National Library of Energy BETA

Sample records for disposal compact south

  1. Passive and active plasma deceleration for the compact disposal...

    Office of Scientific and Technical Information (OSTI)

    Passive and active plasma deceleration for the compact disposal of electron beams Citation Details In-Document Search This content will become publicly available on August 11, 2016...

  2. Recent progress in siting low-level waste disposal facilities in the Southwestern Compact and the Central Interstate Compact

    SciTech Connect (OSTI)

    DeOld, J.H.; Shaffner, J.A.

    1995-11-01

    US Ecology is the private contractor selected to develop and operate low-level waste disposal facilities in the Southwestern and the Central Interstate Compacts. These initiatives have been proceeding for almost a decade in somewhat different regulatory and political climates. This paper chronicles recent events in both projects. In both cases there is reason for continued optimism that low-level waste facilities to serve the needs of waste generators in these two compacts will soon be a reality. When the California Department of Health Services issued a license for the proposed Ward Valley LLRW disposal facility on September 16, 1993, it represented a significant step in implementation of a new generation of regional LLRW disposal facilities. While limited scope land transfer hearings were on the horizon, project beneficiaries were confident that the disposal site would be operational by 1995. Since then, however, political initiatives championed by Senator Barbara Boxer (D-CA) have clouded the federal land transfer process and left the commencement date of operations indeterminant. Since 1993, the biomedical community, waste generators most affected by delays, have been petitioning the current administration to emphasize the need for a timely solution. These efforts are aimed at Clinton administration officials responsible for current delays, who apparently have not recognized the importance of the Ward Valley facility to California`s economy, nor the national ramifications of their delaying actions. The current status of challenges to the Ward Valley license and California Environmental Quality Act (CEQA) documentation is also provided. The presentation also discusses the recently completed National Academy of Science evaluation of reports critical of the Ward Valley development process.

  3. Status of the North Carolina/Southeast Compact low-level radioactive waste disposal project

    SciTech Connect (OSTI)

    Walker, C.K.

    1993-03-01

    The Southeast Compact is a sited region for low-level radioactive waste because of the current facility at Barnwell, South Carolina. North Carolina has been designated as the next host state for the compact, and the North Carolina Low-Level Radioactive Waste Management Authority is the agency charged with developing the new facility. Chem-Nuclear Systems, Inc., has been selected by the Authority as its primary site development and operations contractor. This paper will describe the progress currently being made toward the successful opening of the facility in January 1996. The areas to be addressed include site characterization, performance assessment, facility design, public outreach, litigation, finances, and the continued operation of the Barnwell facility.

  4. LLRW disposal site selection process. Southeast Compact -- State of North Carolina: A combined technical and public information approach

    SciTech Connect (OSTI)

    Snider, F.G.; Amick, D.C.; Khoury, S.G.; Stowe, C.H.; Guichard, P.

    1989-11-01

    The State of North Carolina has been designated to host the second commercial low level radioactive waste disposal facility for the Southeast Compact. The North Carolina facility is to be operational on January 1, 1993, concurrent with the closing of the present facility in Barnwell, South Carolina. The NC Low Level Radioactive Waste Management Authority and its contractor, Ebasco Services Incorporated, initiated the site selection process in July of 1988. The present schedule calls for the identification of two or more sites for detailed characterization in the latter half of 1989. The site selection process is following two concurrent and parallel paths. The first is the technical site screening process, which is focusing the search for a suitable site by the systematic application of state and federal laws and regulations regarding exclusion and suitability factors. In a parallel effort, the NCLL Radioactive Waste Management Authority has embarked on an extensive public information program. In addition to newsletters, fact sheets, brochures, video tapes, and news releases, a total of six regional meetings and 26 public forums have been held across the state. A total of 4,764 people attended the forums, 1,241 questions were asked, and 243 public statements were made. The combination of a systematic, defensible technical siting process and the concurrent release of information and numerous statewide public meetings and forums is proving to be an effective strategy for the eventual identification of sites that are both technically suitable and publicly acceptable.

  5. Compact disposal of high-energy electron beams using passive or laser-driven plasma decelerating stage

    SciTech Connect (OSTI)

    Bonatto, A.; Schroeder, C.B.; Vay, J.-L.; Geddes, C.R.; Benedetti, C.; Esarey and, E.; Leemans, W.P.

    2014-07-13

    A plasma decelerating stage is investigated as a compact alternative for the disposal of high-energy beams (beam dumps). This could benefit the design of laser-driven plasma accelerator (LPA) applications that require transportability and or high-repetition-rate operation regimes. Passive and laser-driven (active) plasma-based beam dumps are studied analytically and with particle-in-cell (PIC) simulations in a 1D geometry. Analytical estimates for the beam energy loss are compared to and extended by the PIC simulations, showing that with the proposed schemes a beam can be efficiently decelerated in a centimeter-scale distance.

  6. Compact

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compact soft x-ray multichord camera: Design and initial operation P. Franz Consorzio RFX-Associazione EURATOM ENEA sulla fusione, Italy and Istituto Nazionale di Fisica della Materia, Unita ` di Ricerca di Padova, Italy G. Gadani Consorzio RFX-Associazione EURATOM ENEA sulla fusione, Italy R. Pasqualotto Consorzio RFX-Associazione EURATOM ENEA sulla fusione, Italy and Istituto Nazionale di Fisica della Materia, Unita ` di Ricerca di Padova, Italy L. Marrelli Consorzio RFX-Associazione EURATOM

  7. Site selection and licensing issues: Southwest Compact low-level radioactive waste disposal site

    SciTech Connect (OSTI)

    Grant, J.L.

    1989-11-01

    The low-level radioactive waste disposal site in California is being selected through a three-phase program. Phase 1 is a systematic statewide, regional, and local screening study. This program was conducted during 1986 and 1987, and culminated in the selection of three candidate sites fur further study. The candidate sites are identified as the Panamint, Silurian, and Ward Valley sites. Phase 2 comprises site characterization and environmental and socio-economic impact study activities at the three candidate sites. Based upon the site characterization studies, the candidate sites are ranked according to the desirability and conformance with regulatory requirements. Phase 3 comprises preparation of a license application for the selected candidate site. The license application will include a detailed characterization of the site, detailed design and operations plans for the proposed facility, and assessments of potential impacts of the site upon the environment and the local communities. Five types of siting criteria were developed to govern the site selection process. These types are: technical suitability exclusionary criteria, high-avoidance criteria beyond technical suitability requirements, discretionary criteria, public acceptance, and schedule requirements of the LLWR Policy Act Amendments. This paper discusses the application of the hydrological and geotechnical criteria during the siting and licensing studies in California. These criteria address site location and performance, and the degree to which present and future site behavior can be predicted. Primary regulatory requirements governing the suitability of a site are that the site must be hydrologically and geologically simple enough for the confident prediction of future behavior, and that the site must be stable enough that frequent or intensive maintenance of the closed site will not be required. This paper addresses the methods to measure site suitability at each stage of the process, methods to

  8. Justification Of The Use Of Boreholes For Disposal Of Sealed Radiological Sources

    SciTech Connect (OSTI)

    Zarling, John [Los Alamos National Laboratory; Johnson, Peter [Los Alamos National Laboratory

    2008-01-01

    Soon there will be only 14 states in two compacts that are able to dispose of Low Level Waste (LLW): the Northwest and Rocky Mountain compact with disposal options in Richland, Washington, and the Atlantic compact with disposal options in Barnwell, South Carolina. How do states not in one of the two compacts dispose of their LLW? The Off-Site Source Recovery Project can take possession and dispose of some of the unwanted transuranic sources at the Waste Isolation Pilot Plant (WIPP). However, there will be no path forward for states outside of the two compacts for disposal of their non-transuranic LLW. A solution that has been much discussed, debated and researched, but has not been put into wide scale practice, is the borehole disposal concept. It is the author's position that companies that drill and explore for oil have been disposing of sources in borehole-like structures for years. It should be noted that these companies are not purposely disposing of these sources, but the sources are irretrievable and must be abandoned. Additionally, there are Nuclear Regulatory Commission (NRC) regulations that must be followed to seal the well that contains the lost and abandoned source. According to the NRC Event Notification Reports database, there were a minimum of 29 reports of lost and abandoned sources in oil wells between December 1999 and October 2006. The sources were lost at depths between 2,018-18,887 feet, or 600-5,750 meters. The companies that are performing explorations with the aid of sealed radiological sources must follow regulation 10 CFR Part 39. Subsection 15 outlines the procedures that must be followed if sources are determined to be irretrievable and abandoned in place. If the NRC allows and has regulations in place for oil companies, why can't states and/or companies be allowed to dispose of LLW in a similar fashion?

  9. Evaluation of food waste disposal options by LCC analysis from the perspective of global warming: Jungnang case, South Korea

    SciTech Connect (OSTI)

    Kim, Mi-Hyung; Song, Yul-Eum; Song, Han-Byul; Kim, Jung-Wk; Hwang, Sun-Jin

    2011-09-15

    Highlights: > Various food waste disposal options were evaluated from the perspective of global warming. > Costs of the options were compared by the methodology of life cycle assessment and life cycle cost analysis. > Carbon price and valuable by-products were used for analyzing environmental credits. > The benefit-cost ratio of wet feeding scenario was the highest. - Abstract: The costs associated with eight food waste disposal options, dry feeding, wet feeding, composting, anaerobic digestion, co-digestion with sewage sludge, food waste disposer, incineration, and landfilling, were evaluated in the perspective of global warming and energy and/or resource recovery. An expanded system boundary was employed to compare by-products. Life cycle cost was analyzed through the entire disposal process, which included discharge, separate collection, transportation, treatment, and final disposal stages, all of which were included in the system boundary. Costs and benefits were estimated by an avoided impact. Environmental benefits of each system per 1 tonne of food waste management were estimated using carbon prices resulting from CO{sub 2} reduction by avoided impact, as well as the prices of by-products such as animal feed, compost, and electricity. We found that the cost of landfilling was the lowest, followed by co-digestion. The benefits of wet feeding systems were the highest and landfilling the lowest.

  10. Compact laser amplifier system

    DOE Patents [OSTI]

    Carr, R.B.

    1974-02-26

    A compact laser amplifier system is described in which a plurality of face-pumped annular disks, aligned along a common axis, independently radially amplify a stimulating light pulse. Partially reflective or lasing means, coaxially positioned at the center of each annualar disk, radially deflects a stimulating light directed down the common axis uniformly into each disk for amplification, such that the light is amplified by the disks in a parallel manner. Circumferential reflecting means coaxially disposed around each disk directs amplified light emission, either toward a common point or in a common direction. (Official Gazette)

  11. DOE - Office of Legacy Management -- Clive Disposal Cell - 036

    Office of Legacy Management (LM)

    All of the mill tailings and other residual radioactive materials from the South Salt Lake City mining site were disposed of in this dedicated disposal cell. The U. S. Nuclear ...

  12. Z-Bed Recovery Water Disposal | Department of Energy

    Office of Environmental Management (EM)

    Z-Bed Recovery Water Disposal Z-Bed Recovery Water Disposal Presentation from the 33rd Tritium Focus Group Meeting held in Aiken, South Carolina on April 22-24, 2014. Z-Bed ...

  13. Disposal rabbit

    DOE Patents [OSTI]

    Lewis, L.C.; Trammell, D.R.

    1983-10-12

    A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.

  14. Disposable rabbit

    DOE Patents [OSTI]

    Lewis, Leroy C.; Trammell, David R.

    1986-01-01

    A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.

  15. Compact accelerator

    DOE Patents [OSTI]

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  16. Mexican Hat, Utah, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Mexican Hat, Utah, Disposal Site This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I processing site at Mexican Hat, Utah. This site is managed by the U.S. Department of Energy Office of Legacy Management. Location of the Mexican Hat, Utah, Disposal Cell Site Location and History The Mexican Hat disposal site is located on the Navajo Reservation in southeast Utah, 1.5 miles southwest of the town of Mexican Hat and 1 mile south of the San

  17. NNSA Reaches LEU Disposal Milestone | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Reaches LEU Disposal Milestone NNSA Reaches LEU Disposal Milestone Aiken, SC The National Nuclear Security Administration's reached an important milestone in its efforts to dispose of surplus weapons-usable material as the 100th shipment of low enriched uranium (LEU) departed the Savannah River Site (SRS) in South Carolina for Nuclear Fuels Services in Erwin, Tennessee, four months ahead of schedule. The shipment is part of the Off-Specification HEU Blend Down

  18. Edgemont, South Dakota, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Title II of the Uranium Mill Tailings Radiation Control Act of 1978. Location of the ... Congress passed the Uranium Mill Tailings Radiation Control Act (UMTRCA) in 1978 (Public ...

  19. Disposal Authorization Statement

    Broader source: Energy.gov [DOE]

    The Saltstone Disposal Facility (SDF) is authorized to operate under this Disposal Authorization Statement (DAS) (Revision 1).  The revised DAS requirements ensure the facility does not pose a...

  20. disposal_cell.cdr

    Office of Legacy Management (LM)

    With the April 24, 1997, ceremonial ground-breaking for disposal facility construction, ... the way for detailed design and subcontracting of many construction-related activities. ...

  1. Pioneering Nuclear Waste Disposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... agen- cies, scientific advisory panels, and concerned citizens. * As a ... It also prohibited the disposal of high-level radioactive waste and spent nuclear fuel. In 1996, ...

  2. Russian low-level waste disposal program

    SciTech Connect (OSTI)

    Lehman, L.

    1993-03-01

    The strategy for disposal of low-level radioactive waste in Russia differs from that employed in the US. In Russia, there are separate authorities and facilities for wastes generated by nuclear power plants, defense wastes, and hospital/small generator/research wastes. The reactor wastes and the defense wastes are generally processed onsite and disposed of either onsite, or nearby. Treating these waste streams utilizes such volume reduction techniques as compaction and incineration. The Russians also employ methods such as bitumenization, cementation, and vitrification for waste treatment before burial. Shallow land trench burial is the most commonly used technique. Hospital and research waste is centrally regulated by the Moscow Council of Deputies. Plans are made in cooperation with the Ministry of Atomic Energy. Currently the former Soviet Union has a network of low-level disposal sites located near large cities. Fifteen disposal sites are located in the Federal Republic of Russia, six are in the Ukraine, and one is located in each of the remaining 13 republics. Like the US, each republic is in charge of management of the facilities within their borders. The sites are all similarly designed, being modeled after the RADON site near Moscow.

  3. Appendix K Disposal Cell Groundwater Monitoring Plan

    Office of Legacy Management (LM)

    K Disposal Cell Groundwater Monitoring Plan

  4. Compact microchannel system

    DOE Patents [OSTI]

    Griffiths, Stewart

    2003-09-30

    The present invention provides compact geometries for the layout of microchannel columns through the use of turns and straight channel segments. These compact geometries permit the use of long separation or reaction columns on a small microchannel substrate or, equivalently, permit columns of a fixed length to occupy a smaller substrate area. The new geometries are based in part on mathematical analyses that provide the minimum turn radius for which column performance in not degraded. In particular, we find that straight channel segments of sufficient length reduce the required minimum turn radius, enabling compact channel layout when turns and straight segments are combined. The compact geometries are obtained by using turns and straight segments in overlapped or nested arrangements to form pleated or coiled columns.

  5. Waste Disposal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Disposal Waste Disposal Trucks transport debris from Oak Ridge’s cleanup sites to the onsite CERCLA disposal area, the Environmental Management Waste Management Facility. Trucks transport debris from Oak Ridge's cleanup sites to the onsite CERCLA disposal area, the Environmental Management Waste Management Facility. The low-level radiological and hazardous wastes generated from Oak Ridge's cleanup projects are disposed in the Environmental Management Waste Management Facility (EMWMF). The

  6. Treatment and Disposal of Unanticipated 'Scavenger' Wastewater

    SciTech Connect (OSTI)

    Payne, W.L.

    2003-09-15

    The Savannah River Site often generates wastewater for disposal that is not included as a source to one of the site's wastewater treatment facilities that are permitted by the South Carolina Department of Health and Environmental Control. The techniques used by the SRS contract operator (Westinghouse Savannah River Company) to evaluate and treat this unanticipated 'scavenger' wastewater may benefit industries and municipalities who experience similar needs. Regulations require that scavenger wastewater be treated and not just diluted. Each of the pollutants that are present must meet effluent permit limitations and/or receiving stream water quality standards. if a scavenger wastewater is classified as 'hazardous' under the Resource Conservation and Recovery Act (RCRA) its disposal must comply with RCRA regulations. Westinghouse Savannah River Company obtained approval from SCDHEC to dispose of scavenger wastewater under specific conditions that are included within the SRS National Pollutant Discharge Elimination System permit. Scavenger wastewater is analyzed in a laboratory to determine its constituency. Pollutant values are entered into spreadsheets that calculate treatment plant removal capabilities and instream concentrations. Disposal rates are computed, ensuring compliance with regulatory requirements and protection of treatment system operating units. Appropriate records are maintained in the event of an audit.

  7. Building America Case Study: Compact Buried Ducts in a Hot-Humid...

    Energy Savers [EERE]

    Compact Buried Ducts in a Hot-Humid Climate House Lady's Island, South Carolina PROJECT ... Price: 300,000 Date Completed: August 2015 Climate Zone: Hot-humid (International Energy ...

  8. Compact optical transconductance varistor

    DOE Patents [OSTI]

    Sampayan, Stephen

    2015-09-22

    A compact radiation-modulated transconductance varistor device having both a radiation source and a photoconductive wide bandgap semiconductor material (PWBSM) integrally formed on a substrate so that a single interface is formed between the radiation source and PWBSM for transmitting PWBSM activation radiation directly from the radiation source to the PWBSM.

  9. Chemical Stockpile Disposal Program

    SciTech Connect (OSTI)

    Krummel, J.R.; Policastro, A.J.; Olshansky, S.J.; McGinnis, L.D.

    1990-10-01

    As part of the Chemical Stockpile Disposal Program mandated by Public Law 99--145 (Department of Defense Authorization Act), an independent review is presented of the US Army Phase I environmental report for the disposal program at the Umatilla Depot Activity (UMDA) in Hermiston, Oregon. The Phase I report addressed new and additional concerns not incorporated in the final programmatic environmental impact statement (FPEIS). Those concerns were addressed by examining site-specific data for the Umatilla Depot Activity and by recommending the scope and content of a more detailed site-specific study. This independent review evaluates whether the new site-specific data presented in the Phase I report would alter the decision in favor of on-site disposal that was reached in the FPEIS, and whether the recommendations for the scope and content of the site-specific study are adequate. Based on the methods and assumptions presented in the FPEIS, the inclusion of more detailed site-specific data in the Phase I report does not change the decision reached in the FPEIS (which favored on-site disposal at UMDA). It is recommended that alternative assumptions about meteorological conditions be considered and that site-specific data on water, ecological, socioeconomic, and cultural resources; seismicity; and emergency planning and preparedness be considered explicitly in the site-specific EIS decision-making process. 7 refs., 1 fig.

  10. Radioactive waste disposal package

    DOE Patents [OSTI]

    Lampe, Robert F.

    1986-11-04

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  11. Radioactive waste disposal package

    DOE Patents [OSTI]

    Lampe, Robert F. (Bethel Park, PA)

    1986-01-01

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  12. Waste disposal package

    DOE Patents [OSTI]

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  13. Oil field waste disposal costs at commercial disposal facilities

    SciTech Connect (OSTI)

    Veil, J.A.

    1997-10-01

    The exploration and production segment of the U.S. oil and gas industry generates millions of barrels of nonhazardous oil field wastes annually. In most cases, operators can dispose of their oil fields wastes at a lower cost on-site than off site and, thus, will choose on-site disposal. However, a significant quantity of oil field wastes are still sent to off-site commercial facilities for disposal. This paper provides information on the availability of commercial disposal companies in different states, the treatment and disposal methods they employ, and how much they charge. There appear to be two major off-site disposal trends. Numerous commercial disposal companies that handle oil field wastes exclusively are located in nine oil-and gas-producing states. They use the same disposal methods as those used for on-site disposal. In addition, the Railroad Commission of Texas has issued permits to allow several salt caverns to be used for disposal of oil field wastes. Twenty-two other oil- and gas-producing states contain few or no disposal companies dedicated to oil and gas industry waste. The only off-site commercial disposal companies available handle general industrial wastes or are sanitary landfills. In those states, operators needing to dispose of oil field wastes off-site must send them to a local landfill or out of state. The cost of off-site commercial disposal varies substantially, depending on the disposal method used, the state in which the disposal company is located, and the degree of competition in the area.

  14. Portsmouth Waste Disposal | Department of Energy

    Office of Environmental Management (EM)

    Environmental Cleanup Portsmouth Waste Disposal Portsmouth Waste Disposal Preliminary design cross section of Planned On-site Disposal Cell Preliminary design cross section of ...

  15. Compact Spreader Schemes

    SciTech Connect (OSTI)

    Placidi, M.; Jung, J. -Y.; Ratti, A.; Sun, C.

    2014-07-25

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  16. Compact power reactor

    DOE Patents [OSTI]

    Wetch, Joseph R.; Dieckamp, Herman M.; Wilson, Lewis A.

    1978-01-01

    There is disclosed a small compact nuclear reactor operating in the epithermal neutron energy range for supplying power at remote locations, as for a satellite. The core contains fuel moderator elements of Zr hydride with 7 w/o of 93% enriched uranium alloy. The core has a radial beryllium reflector and is cooled by liquid metal coolant such as NaK. The reactor is controlled and shut down by moving portions of the reflector.

  17. Developing a low-level radioactive waste disposal facility in Connecticut: Update on progress and new directions

    SciTech Connect (OSTI)

    Gingerich, R.E.

    1993-03-01

    Connecticut is a member of the Northeast Interstate Low-Level Radioactive Waste Management Compact (Northeast LLRW Compact). The other member of the Northeast LLRW Compact is New Jersey. The Northeast Interstate Low-Level Radioactive Waste Commission (Northeast Compact Commission), the Northeast LLRW Compact`s governing body, has designated both Connecticut and New Jersey as host states for disposal facilities. The Northeast Compact Commission has recommended that, for purposes of planning for each state`s facility, the siting agency for the state should use projected volumes and characteristics of the LLW generated in its own state. In 1987 Connecticut enacted legislation that assigns major responsibilities for developing a LLW disposal facility in Connecticut to the Connecticut Hazardous Waste Management Service (CHWMS). The CHWMS is required to: prepare and revise, as necessary, a LLW Management Plan for the state; select a site for a LLW disposal facility; select a disposal technology to be used at the site; select a firm to obtain the necessary approvals for the facility and to develop and operate it; and serve as the custodial agency for the facility. This paper discusses progress in developing a facility.

  18. Transportation, Aging and Disposal Canister System Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation, Aging and Disposal Canister System Performance Specification: Revision 1 Transportation, Aging and Disposal Canister System Performance Specification: Revision 1 ...

  19. Recommendation 223: Recommendations on Additional Waste Disposal...

    Office of Environmental Management (EM)

    3: Recommendations on Additional Waste Disposal Capacity Recommendation 223: Recommendations on Additional Waste Disposal Capacity ORSSAB's recommendations encourage DOE to...

  20. Compact gate valve

    DOE Patents [OSTI]

    Bobo, Gerald E.

    1977-01-01

    This invention relates to a double-disc gate valve which is compact, comparatively simple to construct, and capable of maintaining high closing pressures on the valve discs with low frictional forces. The valve casing includes axially aligned ports. Mounted in the casing is a sealed chamber which is pivotable transversely of the axis of the ports. The chamber contains the levers for moving the valve discs axially, and an actuator for the levers. When an external drive means pivots the chamber to a position where the discs are between the ports and axially aligned therewith, the actuator for the levers is energized to move the discs into sealing engagement with the ports.

  1. COMPACT CASCADE IMPACTS

    DOE Patents [OSTI]

    Lippmann, M.

    1964-04-01

    A cascade particle impactor capable of collecting particles and distributing them according to size is described. In addition the device is capable of collecting on a pair of slides a series of different samples so that less time is required for the changing of slides. Other features of the device are its compactness and its ruggedness making it useful under field conditions. Essentially the unit consists of a main body with a series of transverse jets discharging on a pair of parallel, spaced glass plates. The plates are capable of being moved incremental in steps to obtain the multiple samples. (AEC)

  2. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1995-01-01

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  3. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-10-24

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

  4. Pioneering Nuclear Waste Disposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PIONEERING NUCLEAR WASTE DISPOSAL U.S. Department of Energy Carlsbad Area Office February 2000 DOE/CAO-00-3124 T h e W a s t e I s o l a t i o n P i l o t P l a n t ii Table of Contents Closing the Circle on Transuranic Waste 1 The Long Road to the WIPP 3 The need for the WIPP The National Academy of Sciences Community leaders suggest Carlsbad as the site for the WIPP Construction of the WIPP The WIPP Land Withdrawal Act Certification by the EPA The National Environmental Policy Act The Resource

  5. Compact electrostatic comb actuator

    DOE Patents [OSTI]

    Rodgers, M. Steven; Burg, Michael S.; Jensen, Brian D.; Miller, Samuel L.; Barnes, Stephen M.

    2000-01-01

    A compact electrostatic comb actuator is disclosed for microelectromechanical (MEM) applications. The actuator is based upon a plurality of meshed electrostatic combs, some of which are stationary and others of which are moveable. One or more restoring springs are fabricated within an outline of the electrostatic combs (i.e. superposed with the moveable electrostatic combs) to considerably reduce the space required for the actuator. Additionally, a truss structure is provided to support the moveable electrostatic combs and prevent bending or distortion of these combs due to unbalanced electrostatic forces or external loading. The truss structure formed about the moveable electrostatic combs allows the spacing between the interdigitated fingers of the combs to be reduced to about one micron or less, thereby substantially increasing the number of active fingers which can be provided in a given area. Finally, electrostatic shields can be used in the actuator to substantially reduce unwanted electrostatic fields to further improve performance of the device. As a result, the compact electrostatic comb actuator of the present invention occupies only a fraction of the space required for conventional electrostatic comb actuators, while providing a substantial increase in the available drive force (up to one-hundred times).

  6. Disposal concepts and characteristics of existing and potential low-waste repositories - 9076

    SciTech Connect (OSTI)

    Johnson, Peter J [Los Alamos National Laboratory; Zarling, John C [Los Alamos National Laboratory

    2009-01-01

    The closure of the Barnwell low-level waste (LLW) disposal facility to non-Atlantic Compact users poses significant problems for organizations seeking to remove waste material from public circulation. Beta-gamma sources such as {sup 137}Cs and {sup 90}Sr in particular create problems because in 36 states no path forward exists for disposal. Furthermore, several other countries are considering disposition of sealed sources in a variety of facilities. Like much of the United States, many of these countries currently have no means of disposal. Consequently, there is a greater tendency for sources to be misplaced or stored in insufficient facilities, resulting in an increased likelihood of unwitting exposure of nearby people to radioactive materials. This paper provides an overview of the various disposal concepts that have been employed or attempted in the United States. From these concepts, a general overview of characteristics necessary for long-term disposal is synthesized.

  7. METHOD OF FORMING ELONGATED COMPACTS

    DOE Patents [OSTI]

    Larson, H.F.

    1959-05-01

    A powder compacting procedure and apparatus which produces elongated compacts of Be is described. The powdered metal is placed in a thin metal tube which is chemically compatible to lubricant, powder, atmosphere, and die material and will undergo a high degree of plastic deformation and have intermediate hardness. The tube is capped and placed in the die, and punches are applied to the ends. During the compacting stroke the powder seizes the tube and a thickening and shortening of the tube occurs. The tube is easily removed from the die, split, and peeled from the compact. (T.R.H.)

  8. Environmental waste disposal contracts awarded

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental contracts awarded locally Environmental waste disposal contracts awarded locally Three small businesses with offices in Northern New Mexico awarded nuclear waste...

  9. Compact acoustic refrigerator

    DOE Patents [OSTI]

    Bennett, G.A.

    1992-11-24

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment. 18 figs.

  10. Compact acoustic refrigerator

    DOE Patents [OSTI]

    Bennett, Gloria A.

    1992-01-01

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.

  11. Compact vacuum insulation

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  12. Compact vacuum insulation

    DOE Patents [OSTI]

    Benson, David K.; Potter, Thomas F.

    1993-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  13. Compact vacuum insulation embodiments

    DOE Patents [OSTI]

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  14. Compact vacuum insulation embodiments

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  15. Compact acoustic refrigerator

    SciTech Connect (OSTI)

    Bennett, G.A.

    1991-12-31

    This invention is comprised of a compact acoustic refrigeration system that actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment.

  16. Compact cogeneration system

    SciTech Connect (OSTI)

    Cabral, R.E.

    1991-07-23

    This patent describes a compact heat exchanger for heating water with, and cleaning, the exhaust gas of an internal combustion engine of a cogeneration system. It comprises an outer shell having gas inlet means for entry of exhaust gas from the engine, gas outlet means for outflow of exhaust gas, water inlet means for entry of water to be heated, and water outlet means for outflow of water; a housing positioned within and spaced from the outer shell to form a flow channel therebetween; a coil in communication with the water inlet means and the water outlet means and positioned in the flow channel between the housing and the outer shell; catalytic converter material within the housing; wherein the housing is connected to the gas inlet means to receive exhaust gas from the engine and to direct the exhaust gas through the catalytic converter material.

  17. Pyramiding tumuli waste disposal site and method of construction thereof

    DOE Patents [OSTI]

    Golden, Martin P.

    1989-01-01

    An improved waste disposal site for the above-ground disposal of low-level nuclear waste as disclosed herein. The disposal site is formed from at least three individual waste-containing tumuli, wherein each tumuli includes a central raised portion bordered by a sloping side portion. Two of the tumuli are constructed at ground level with adjoining side portions, and a third above-ground tumulus is constructed over the mutually adjoining side portions of the ground-level tumuli. Both the floor and the roof of each tumulus includes a layer of water-shedding material such as compacted clay, and the clay layer in the roofs of the two ground-level tumuli form the compacted clay layer of the floor of the third above-ground tumulus. Each tumulus further includes a shield wall, preferably formed from a solid array of low-level handleable nuclear wate packages. The provision of such a shield wall protects workers from potentially harmful radiation when higher-level, non-handleable packages of nuclear waste are stacked in the center of the tumulus.

  18. Integrated Disposal Facility Risk Assessment

    SciTech Connect (OSTI)

    MANN, F. M.

    2003-06-03

    An environmental risk assessment associated with the disposal of projected Immobilized Low-Activity Waste, solid wastes and failed or decommissioned melters in an Integrated Disposal Facility was performed. Based on the analyses all performance objectives associated with the groundwater, air, and intruder pathways were met.

  19. Melter Disposal Strategic Planning Document

    SciTech Connect (OSTI)

    BURBANK, D.A.

    2000-09-25

    This document describes the proposed strategy for disposal of spent and failed melters from the tank waste treatment plant to be built by the Office of River Protection at the Hanford site in Washington. It describes program management activities, disposal and transportation systems, leachate management, permitting, and safety authorization basis approvals needed to execute the strategy.

  20. South Carolina - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    South Carolina South Carolina

  1. South Carolina - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    South Carolina South Carolina

  2. South Carolina - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    South Carolina South Carolina

  3. A Compact Ring Design with Tunable Momentum Compaction

    SciTech Connect (OSTI)

    Sun, Y.; ,

    2012-05-17

    A storage ring with tunable momentum compaction has the advantage in achieving different RMS bunch length with similar RF capacity, which is potentially useful for many applications, such as linear collider damping ring and predamping ring where injected beam has a large energy spread and a large transverse emittance. A tunable bunch length also makes the commissioning and fine tuning easier in manipulating the single bunch instabilities. In this paper, a compact ring design based on a supercell is presented, which achieves a tunable momentum compaction while maintaining a large dynamic aperture.

  4. Compact neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  5. Compact vacuum insulation

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1992-10-27

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases there between are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and various laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels. 35 figs.

  6. Compact vacuum insulation

    DOE Patents [OSTI]

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases therebetween are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and variious laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels.

  7. Unreviewed Disposal Question Evaluation: Waste Disposal In Engineered Trench #3

    SciTech Connect (OSTI)

    Hamm, L. L.; Smith, F. G. III; Flach, G. P.; Hiergesell, R. A.; Butcher, B. T.

    2013-07-29

    Because Engineered Trench #3 (ET#3) will be placed in the location previously designated for Slit Trench #12 (ST#12), Solid Waste Management (SWM) requested that the Savannah River National Laboratory (SRNL) determine if the ST#12 limits could be employed as surrogate disposal limits for ET#3 operations. SRNL documented in this Unreviewed Disposal Question Evaluation (UDQE) that the use of ST#12 limits as surrogates for the new ET#3 disposal unit will provide reasonable assurance that Department of Energy (DOE) 435.1 performance objectives and measures (USDOE, 1999) will be protected. Therefore new ET#3 inventory limits as determined by a Special Analysis (SA) are not required.

  8. Paducah Waste Disposal | Department of Energy

    Office of Environmental Management (EM)

    Remediation Paducah Waste Disposal Paducah Waste Disposal The U.S. Department of Energy (DOE) is looking at options to dispose of waste that will be generated from further ...

  9. Application of Generic Disposal System Models

    Office of Energy Efficiency and Renewable Energy (EERE)

    Two of the high priorities for UFDC disposal R&D are design concept development and disposal system modeling; these are directly addressed in the Generic Disposal Systems Analysis (GDSA) work. ...

  10. Compaction managed mirror bend achromat

    DOE Patents [OSTI]

    Douglas, David

    2005-10-18

    A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.

  11. Performance Assessment and Composit Analysis Material Disposal...

    Office of Environmental Management (EM)

    Performance Assessment and Composit Analysis Material Disposal Area G Revision 4 Performance Assessment and Composit Analysis Material Disposal Area G Revision 4 Los Alamos...

  12. Recommendation 212: Evaluate additional storage and disposal...

    Office of Environmental Management (EM)

    2: Evaluate additional storage and disposal options Recommendation 212: Evaluate additional storage and disposal options The ORSSAB encourages DOE to evaluate additional storage...

  13. MESOSCALE SIMULATIONS OF POWDER COMPACTION

    SciTech Connect (OSTI)

    Lomov, Ilya; Fujino, Don; Antoun, Tarabay; Liu, Benjamin

    2009-12-28

    Mesoscale 3D simulations of shock compaction of metal and ceramic powders have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating a well-characterized shock compaction experiment of a porous ductile metal. Simulation results using the Steinberg material model and handbook values for solid 2024 aluminum showed good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not as well studied as metals, so a simple material model for solid ceramic (tungsten carbide) has been calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powders have been performed and showed good agreement with experimental data. The numerical shock wave profile has same character and thickness as that measured experimentally using VISAR. The numerical results show reshock states above the single-shock Hugoniot line as observed in experiments. We found that for good quantitative agreement with experiments 3D simulations are essential.

  14. Shirley Basin South, Wyoming, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Title II of the Uranium Mill Tailings Radiation Control Act of 1978. Location of the ... Congress passed the Uranium Mill Tailings Radiation Control Act (UMTRCA) in 1978 (Public ...

  15. WIPP - Pioneering Nuclear Waste Disposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pioneering Nuclear Waste Disposal Cover Page and Table of Contents Closing the Circle The Long Road to WIPP - Part 1 The Long Road to WIPP - Part 2 Looking to the Future Related Reading and The WIPP Team

  16. Optimization of Waste Disposal - 13338

    SciTech Connect (OSTI)

    Shephard, E.; Walter, N.; Downey, H.; Collopy, P.; Conant, J.

    2013-07-01

    From 2009 through 2011, remediation of areas of a former fuel cycle facility used for government contract work was conducted. Remediation efforts were focused on building demolition, underground pipeline removal, contaminated soil removal and removal of contaminated sediments from portions of an on-site stream. Prior to conducting the remediation field effort, planning and preparation for remediation (including strategic planning for waste characterization and disposal) was conducted during the design phase. During the remediation field effort, waste characterization and disposal practices were continuously reviewed and refined to optimize waste disposal practices. This paper discusses strategic planning for waste characterization and disposal that was employed in the design phase, and continuously reviewed and refined to optimize efficiency. (authors)

  17. Disposal phase experimental program plan

    SciTech Connect (OSTI)

    1997-01-31

    The Waste Isolation Pilot Plant (WIPP) facility comprises surface and subsurface facilities, including a repository mined in a bedded salt formation at a depth of 2,150 feet. It has been developed to safely and permanently isolate transuranic (TRU) radioactive wastes in a deep geological disposal site. On April 12, 1996, the DOE submitted a revised Resource Conservation and Recovery Act (RCRA) Part B permit application to the New Mexico Environment Department (NMED). The DOE anticipates receiving an operating permit from the NMED; this permit is required prior to the start of disposal operations. On October 29, 1996, the DOE submitted a Compliance Certification Application (CCA) to the US Environmental Protection Agency (EPA) in accordance with the WIPP land Withdrawal Act (LWA) of 1992 (Public Law 102-579) as amended, and the requirements of Title 40 of the Code of Federal Regulations (40 CFR) Parts 191 and 194. The DOE plans to begin disposal operations at the WIPP in November 1997 following receipt of certification by the EPA. The disposal phase is expected to last for 35 years, and will include recertification activities no less than once every five years. This Disposal Phase Experimental Program (DPEP) Plan outlines the experimental program to be conducted during the first 5-year recertification period. It also forms the basis for longer-term activities to be carried out throughout the 35-year disposal phase. Once the WIPP has been shown to be in compliance with regulatory requirements, the disposal phase gives an opportunity to affirm the compliance status of the WIPP, enhance the operations of the WIPP and the national TRU system, and contribute to the resolution of national and international nuclear waste management technical needs. The WIPP is the first facility of its kind in the world. As such, it provides a unique opportunity to advance the technical state of the art for permanent disposal of long-lived radioactive wastes.

  18. Low-level radioactive waste disposal technologies used outside the United States

    SciTech Connect (OSTI)

    Templeton, K.J.; Mitchell, S.J.; Molton, P.M.; Leigh, I.W.

    1994-01-01

    Low-level radioactive waste (LLW) disposal technologies are an integral part of the waste management process. In the United States, commercial LLW disposal is the responsibility of the State or groups of States (compact regions). The United States defines LLW as all radioactive waste that is not classified as spent nuclear fuel, high- level radioactive waste, transuranic waste, or by-product material as defined in Section II(e)(2) of the Atomic Energy Act. LLW may contain some long-lived components in very low concentrations. Countries outside the United States, however, may define LLW differently and may use different disposal technologies. This paper outlines the LLW disposal technologies that are planned or being used in Canada, China, Finland, France, Germany, Japan, Sweden, Taiwan, and the United Kingdom (UK).

  19. Compact Potentiometric NOx Sensor | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potentiometric NOx Sensor Compact Potentiometric NOx Sensor 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation pm023_singh_2011_p.pdf (1.09 MB) More Documents & Publications Compact Potentiometric O2/NOx Sensor Compact Potentiometric NOx Sensor Compact Potentiometric NOx

  20. PROPERTY DISPOSAL RECORDS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROPERTY DISPOSAL RECORDS PROPERTY DISPOSAL RECORDS These records pertain to the sales by agencies of real and personal property surplus to the needs of the Government PROPERTY DISPOSAL RECORDS (21.21 KB) More Documents & Publications ADMINISTRATIVE RECORDS SCHEDULE 4: PROPERTY DISPOSAL RECORDS (Revision 2) ADMINISTRATIVE RECORDS: PROCUREMENT, SUPPLY, AND GRANT RECORDS ADMINISTRATIVE RECORDS SCHEDULE 12: COMMUNICATIONS RECORDS

  1. Transportation, Aging and Disposal Canister System Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Specification: Revision 1 | Department of Energy Transportation, Aging and Disposal Canister System Performance Specification: Revision 1 Transportation, Aging and Disposal Canister System Performance Specification: Revision 1 This document provides specifications for selected system components of the Transportation, Aging and Disposal (TAD) canister-based system. Transportation, Aging and Disposal Canister System Performance Specification: Revision 1 (6.49 MB) More Documents &

  2. Disposal of Draeger Tubes at Savannah River Site

    SciTech Connect (OSTI)

    Malik, N.P.

    2000-10-13

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility located in Aiken, South Carolina that is operated by the Westinghouse Savannah River Company (WSRC). At SRS Draeger tubes are used to identify the amount and type of a particular chemical constituent in the atmosphere. Draeger tubes rely on a chemical reaction to identify the nature and type of a particular chemical constituent in the atmosphere. Disposal practices for these tubes were identified by performing a hazardous waste evaluation per the Resource Conservation and Recovery Act (RCRA). Additional investigations were conducted to provide guidance for their safe handling, storage and disposal. A list of Draeger tubes commonly used at SRS was first evaluated to determine if they contained any material that could render them as a RCRA hazardous waste. Disposal techniques for Draeger tubes that contained any of the toxic contaminants listed in South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79. 261.24 (b) and/or contained an acid in the liquid form were addressed.

  3. Cost benefit analysis of waste compaction alternatives at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1990-11-01

    This report presents a cost benefit analysis of the potential procurement and operation of various solid waste compactors, or, of the use of commercial compaction services, for compaction of solid transuranic (TRU), low-level radioactive, hazardous, and mixed wastes at Lawrence Livermore National Laboratory (LLNL) Hazardous Waste Management (HWM) facilities. The cost benefit analysis was conducted to determine if increased compaction capacity at HWM might afford the potential for significant waste volume reduction and annual savings in material, shipping, labor, and disposal costs. In the following cost benefit analysis, capital costs and recurring costs of increased HWM compaction capabilities are considered. Recurring costs such as operating and maintenance costs are estimated based upon detailed knowledge of system parameters. When analyzing the economic benefits of enhancing compaction capabilities, continued use of the existing HWM compaction units is included for comparative purposes. In addition, the benefits of using commercial compaction services instead of procuring a new compactor system are evaluated. 31 refs., 1 fig., 6 tabs.

  4. Tank Waste Disposal Program redefinition

    SciTech Connect (OSTI)

    Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H.; Holton, L.K.; Hunter, V.L.; Triplett, M.B.

    1991-10-01

    The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

  5. Compact orthogonal NMR field sensor

    DOE Patents [OSTI]

    Gerald, II, Rex E.; Rathke, Jerome W.

    2009-02-03

    A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.

  6. Depleted uranium disposal options evaluation

    SciTech Connect (OSTI)

    Hertzler, T.J.; Nishimoto, D.D.; Otis, M.D.

    1994-05-01

    The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ``waste,`` but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity.

  7. Compact accelerator for medical therapy

    DOE Patents [OSTI]

    Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.

    2010-05-04

    A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.

  8. Compact monolithic capacitive discharge unit

    DOE Patents [OSTI]

    Roesler, Alexander W.; Vernon, George E.; Hoke, Darren A.; De Marquis, Virginia K.; Harris, Steven M.

    2007-06-26

    A compact monolithic capacitive discharge unit (CDU) is disclosed in which a thyristor switch and a flyback charging circuit are both sandwiched about a ceramic energy storage capacitor. The result is a compact rugged assembly which provides a low-inductance current discharge path. The flyback charging circuit preferably includes a low-temperature co-fired ceramic transformer. The CDU can further include one or more ceramic substrates for enclosing the thyristor switch and for holding various passive components used in the flyback charging circuit. A load such as a detonator can also be attached directly to the CDU.

  9. Compact intermediates in RNA folding

    SciTech Connect (OSTI)

    Woodson, S.A. (JHU)

    2011-12-14

    Large noncoding RNAs fold into their biologically functional structures via compact yet disordered intermediates, which couple the stable secondary structure of the RNA with the emerging tertiary fold. The specificity of the collapse transition, which coincides with the assembly of helical domains, depends on RNA sequence and counterions. It determines the specificity of the folding pathways and the magnitude of the free energy barriers to the ensuing search for the native conformation. By coupling helix assembly with nascent tertiary interactions, compact folding intermediates in RNA also play a crucial role in ligand binding and RNA-protein recognition.

  10. Disposable telemetry cable deployment system

    DOE Patents [OSTI]

    Holcomb, David Joseph

    2000-01-01

    A disposable telemetry cable deployment system for facilitating information retrieval while drilling a well includes a cable spool adapted for insertion into a drill string and an unarmored fiber optic cable spooled onto the spool cable and having a downhole end and a stinger end. Connected to the cable spool is a rigid stinger which extends through a kelly of the drilling apparatus. A data transmission device for transmitting data to a data acquisition system is disposed either within or on the upper end of the rigid stinger.

  11. Tracer diffusion in compacted, water-saturated bentonite

    SciTech Connect (OSTI)

    Bourg, Ian C.; Sposito, Garrison; Bourg, Alain C.M.

    2005-08-04

    Compacted Na-bentonite clay barriers, widely used in theisolation of solid-waste landfills and other contaminated sites, havebeen proposed for a similar use in the disposal of high-level radioactivewaste. Molecular diffusion through the pore space in these barriers playsa key role in their performance, thus motivating recent measurements ofthe apparent diffusion coefficient tensor of water tracers in compacted,water-saturated Na-bentonites. In the present study, we introduce aconceptual model in which the pore space of water-saturated bentonite isdivided into 'macropore' and 'interlayer nanopore' compartments. Withthis model we determine quantitatively the relative contributions ofpore-network geometry (expressed as a geometric factor) and of thediffusive behavior of water molecules near montmorillonite basal surfaces(expressed as a contristivity factor) to the apparent diffusioncoefficient tensor. Our model predicts, in agreement with experiment,that the mean principal value of the apparent diffusion coefficienttensor follows a single relationship when plotted against the partialmontmorillonite dry density (mass of montmorillonite per combined volumeof montmorillonite and pore space). Using a single fitted parameter, themean principal geometric factor, our model successfully describes thisrelationship for a broad range of bentonite-water system, from dilute gelto highly-compacted bentonite with 80 percent of its pore water ininterlayer nanopores.

  12. Challenges in establishing LLW disposal capacity: Pennsylvania`s perspective

    SciTech Connect (OSTI)

    Dornsife, W.P.; Saraka, L.J.

    1989-11-01

    Even though Pennsylvania is host state for the Compact, state implementing legislation was non-existent until early 1988. In February of 1998 Governor Casey signed the Los-Level Radioactive Waste Disposal Act (Act) into law. The Act incorporates three years of Departmental work and interaction with the legislature, a Public Advisory Committee on Low-Level Waste, many interest groups and the general public. It is a comprehensive Act that: provides the Department with broad powers and duties to manage, license and regulate a low-level waste disposal program; requires development phase; and establishes benefits and guarantees for communities affected by the establishment and operation of a low-level waste site. The Department considers that its powers and duties to manage, license and regulate a low-level waste disposal program begins with interpreting the provisions established by the Act. Interpretation will establish how the Department intends to implement its authority. The Department is communicating interpretations through various methods such as regulation, policy, and written or verbal guidance. Interpretations typically require a mix of technical, policy, and social solutions to clarify concepts established by law. This paper identifies select items established by law that require technical solutions. Its purpose is to share some creative approaches for solving unmanageable legislature requirements.

  13. Mesoscale Simulations of Power Compaction

    SciTech Connect (OSTI)

    Lomov, I; Fujino, D; Antoun, T; Liu, B

    2009-08-06

    Mesoscale 3D simulations of metal and ceramic powder compaction in shock waves have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating shock compaction of porous well-characterized ductile metal using Steinberg material model. Results of the simulations with handbook values for parameters of solid 2024 aluminum have good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not so well studied as metals, so material model for ceramic (tungsten carbide) has been fitted to shock compression experiments of non-porous samples and further calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powder have been performed and showed good agreement with experimental data. Numerical shock wave profile has same character and thickness as measured with VISAR. Numerical results show reshock states above the single-shock Hugoniot line also observed in experiments. They found that to receive good quantitative agreement with experiment it is essential to perform 3D simulations.

  14. Laser driven compact ion accelerator

    DOE Patents [OSTI]

    Tajima, Toshiki

    2005-03-15

    A laser driven compact ion source including a light source that produces an energy pulse, a light source guide that guides the energy pulse to a target and produces an ion beam. The ion beam is transported to a desired destination.

  15. Equity of commercial low-level radioactive waste disposal fees. Report to Congress

    SciTech Connect (OSTI)

    1998-02-01

    In the Report accompanying the Fiscal Year 1997 Senate Energy and Water Development Appropriations Bill, the Senate Appropriations Committee directed the Department of Energy (DOE) to prepare a study of the costs of operating a low-level radioactive waste (LLW) disposal facility such as the one at Barnwell, South Carolina, and to determine whether LLW generators are paying equitable disposal fees. The disposal costs of four facilities are reviewed in this report, two operating facilities and two planned facilities. The operating facilities are located at Barnwell, South Carolina, and Richland, Washington. They are operated by Chem-Nuclear, LLC, (Chem-Nuclear), and US Ecology, Inc., (US Ecology), respectively. The planned facilities are expected to be built at Ward Valley, California, and Sierra Blanca, Texas. They will be operated by US Ecology and the State of Texas, respectively. This report found that disposal fees vary significantly among facilities for a variety of reasons. However, the information suggests that at each disposal facility, LLW generators pay equitable disposal fees.

  16. Optimizing High Level Waste Disposal

    SciTech Connect (OSTI)

    Dirk Gombert

    2005-09-01

    If society is ever to reap the potential benefits of nuclear energy, technologists must close the fuel-cycle completely. A closed cycle equates to a continued supply of fuel and safe reactors, but also reliable and comprehensive closure of waste issues. High level waste (HLW) disposal in borosilicate glass (BSG) is based on 1970s era evaluations. This host matrix is very adaptable to sequestering a wide variety of radionuclides found in raffinates from spent fuel reprocessing. However, it is now known that the current system is far from optimal for disposal of the diverse HLW streams, and proven alternatives are available to reduce costs by billions of dollars. The basis for HLW disposal should be reassessed to consider extensive waste form and process technology research and development efforts, which have been conducted by the United States Department of Energy (USDOE), international agencies and the private sector. Matching the waste form to the waste chemistry and using currently available technology could increase the waste content in waste forms to 50% or more and double processing rates. Optimization of the HLW disposal system would accelerate HLW disposition and increase repository capacity. This does not necessarily require developing new waste forms, the emphasis should be on qualifying existing matrices to demonstrate protection equal to or better than the baseline glass performance. Also, this proposed effort does not necessarily require developing new technology concepts. The emphasis is on demonstrating existing technology that is clearly better (reliability, productivity, cost) than current technology, and justifying its use in future facilities or retrofitted facilities. Higher waste processing and disposal efficiency can be realized by performing the engineering analyses and trade-studies necessary to select the most efficient methods for processing the full spectrum of wastes across the nuclear complex. This paper will describe technologies being

  17. Tank farms compacted low-level waste

    SciTech Connect (OSTI)

    Hetzer, D.C.

    1997-08-01

    This report describes the process of Low-Level Waste (LLW) volume reduction by compaction. Also included is the data used for characterization of LLW destined for compaction. Scaling factors (ratios) are formed based on data contained in this report.

  18. Tank farms compacted low level waste

    SciTech Connect (OSTI)

    Waters, M.S., Westinghouse Hanford

    1996-07-01

    This report describes the process of Low Level Waste (LLW) volume reduction by compaction. Also included is the data used for characterization of LLW destined for compaction. Scaling factors (ratios) are formed based on data contained in this report.

  19. Brine disposal process for Morcinek coal mine

    SciTech Connect (OSTI)

    Tait, J.H.

    1995-04-01

    This paper describes the work to develop a commercial brine disposal process for the Morcinek mine, located 45 km south of the city of Katowice in Poland. Currently, brine is discharged into the Odra river and methane from the mine is released into the atmosphere. The process would use the released methane and convert a large percentage of the brine into potable water for commercial use. Thus, the proposed process has two environmental benefits. The brine salinity is about 31,100 ppm. Major brine components are Na (10,300 ppm), Ca (1,170 ppm), Mg (460 ppm), Cl (18,500 ppm) and SO{sub 4}{sup 2-} (252 ppm). Present in smaller amounts are K, S, Sr, B, Ba and NO{sub 3}. The process integrates a reverse osmosis (RO) unit and a submerged combustion evaporator. Extensive studies made at the Lawrence Livermore National Laboratory established the pretreatment method of the brine before it enters the RO unit. Without adequate pretreatment, mineral phases in the brine would become super-saturated and would precipitate in the RO unit. The pretreatment consists of first adding sodium carbonate to increase both the pH and the carbonate concentration of the brine. This addition causes precipitation of carbonate solids containing Ca, Mg, Sr, and Ba. After filtration of these precipitates, the fluid is acidified with HCl to prevent precipitation in the RO unit as the brine increases in salinity.

  20. Transmittal Memo for Disposal Authorization Statement

    Broader source: Energy.gov [DOE]

    The Low-Level Waste Disposal Facility Federal Review Group (LFRG) has conducted a review of the Savannah River Site (SRS) Saltstone Disposal Facility (SDF) 2009 performance assessment (PA) in...

  1. Z-Bed Recovery Water Disposal

    Office of Environmental Management (EM)

    Z-Bed Recovery Water Disposal Tritium Programs Engineering Louis Boone Josh Segura ... detailed explanation of the plan to capture and dispose of Z-Bed Recovery (ZR) water. ...

  2. Disposal of NORM waste in salt caverns

    SciTech Connect (OSTI)

    Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

    1998-07-01

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approving cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  3. Invariant distributions on compact homogeneous spaces

    SciTech Connect (OSTI)

    Gorbatsevich, V V

    2013-12-31

    In this paper, we study distributions on compact homogeneous spaces, including invariant distributions and also distributions admitting asub-Riemannian structure. We first consider distributions of dimension 1 and 2 on compact homogeneous spaces. After this, we study the cases of compact homogeneous spaces of dimension 2, 3, and 4 in detail. Invariant distributions on simply connected compact homogeneous spaces are also treated. Bibliography: 18 titles.

  4. Compact Thermoelastic Cooling System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compact Thermoelastic Cooling System Compact Thermoelastic Cooling System Latest prototype being constructed of a compact Thermoelastic Cooling System. Image courtesy of Maryland Energy and Sensor Technologies and BTO Peer Review. Latest prototype being constructed of a compact Thermoelastic Cooling System. Image courtesy of Maryland Energy and Sensor Technologies and BTO Peer Review. Lead Performer: Maryland Energy and Sensor Technologies, LLC - College Park, MD DOE Total Funding: $614,592 Cost

  5. Disposal Practices at the Nevada Test Site 2008 | Department...

    Energy Savers [EERE]

    Disposal Practices at the Nevada Test Site 2008 Disposal Practices at the Nevada Test Site 2008 Full Document and Summary Versions are available for download Disposal Practices at ...

  6. Disposal Systems Evaluations and Tool Development - Engineered...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    conditions, thermodynamic database development for cement and clay phases, ... and potential variants according to waste form and disposal environment characteristics. ...

  7. Electrochemical Apparatus with Disposable and Modifiable Parts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research Benefits: Incorporates disposable, commercially available cuvettes Modifiable design Allows multiple experiments using a single solution Designed for interface with...

  8. Sustainable Disposal Cell Covers: Legacy Management Practices,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improvements, and Long-Term Performance | Department of Energy Sustainable Disposal Cell Covers: Legacy Management Practices, Improvements, and Long-Term Performance Sustainable Disposal Cell Covers: Legacy Management Practices, Improvements, and Long-Term Performance Sustainable Disposal Cell Covers: Legacy Management Practices, Improvements, and Long-Term Performance Sustainable Disposal Cell Covers: Legacy Management Practices, Improvements, and Long-Term Performance (882.35 KB) More

  9. Compact portable diffraction moire interferometer

    DOE Patents [OSTI]

    Deason, V.A.; Ward, M.B.

    1988-05-23

    A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observations means including film and video cameras may be used to view and record the resultant fringe patterns. 7 figs.

  10. Compact portable diffraction moire interferometer

    DOE Patents [OSTI]

    Deason, Vance A.; Ward, Michael B.

    1989-01-01

    A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observation means including film and video cameras may be used to view and record the resultant fringe patterns.

  11. Compact magnetic energy storage module

    DOE Patents [OSTI]

    Prueitt, Melvin L.

    1994-01-01

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.

  12. Compact magnetic energy storage module

    DOE Patents [OSTI]

    Prueitt, M.L.

    1994-12-20

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.

  13. Disposable remote zero headspace extractor

    DOE Patents [OSTI]

    Hand, Julie J.; Roberts, Mark P.

    2006-03-21

    The remote zero headspace extractor uses a sampling container inside a stainless steel vessel to perform toxicity characteristics leaching procedure to analyze volatile organic compounds. The system uses an in line filter for ease of replacement. This eliminates cleaning and disassembly of the extractor. All connections are made with quick connect fittings which can be easily replaced. After use, the bag can be removed and disposed of, and a new sampling container is inserted for the next extraction.

  14. Application for Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site - U10c Disposal Site

    SciTech Connect (OSTI)

    NSTec Environmental Programs

    2010-08-05

    The NTS is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. NNSA/NSO is the federal lands management authority for the NTS and NSTec is the Management & Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The U10C Disposal Site is located in the northwest corner of Area 9 at the NTS (Figure 1) and is located in a subsidence crater created by two underground nuclear events, one in October 1962 and another in April 1964. The disposal site opened in 1971 for the disposal of rubbish, refuse, pathological waste, asbestos-containing material, and industrial solid waste. A Notice of Intent form to operate the disposal site as a Class II site was submitted to the state of Nevada on January 26, 1994, and was acknowledged in a letter to the DOE on February 8, 1994. It operated as a state of Nevada Class II Solid Waste Disposal Site (SWDS) until it closed on October 5, 1995, for retrofit as a Class III SWDS. The retrofit consisted of the installation of a minimum four-foot compacted soil layer to segregate the different waste types and function as a liner to inhibit leachate and water flow into the lower waste zone. Five neutron monitoring tubes were installed in this layer to monitor possible leachate production and water activity. Upon acceptance of the installed barrier and approval of an Operating Plan by NDEP/BFF, the site reopened in January 1996 as a Class III SWDS for the disposal of industrial solid waste and other inert waste.

  15. Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal

    SciTech Connect (OSTI)

    Not Available

    1990-10-01

    This report presents a history of commercial low-level radioactive waste management in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the 1980s to ensure the safe disposal of low-level waste in the 1990s and beyond. These steps include the issuance of Title 10 Code of Federal Regulations Part 61, Licensing Requirements for the Land Disposal of Radioactive Waste, the Low-Level Radioactive Waste Policy Act of 1980, the Low-Level Radioactive Waste Policy Amendments Act of 1985, and steps taken by states and regional compacts to establish additional disposal sites. 42 refs., 13 figs., 1 tab.

  16. WIPP - Shipment & Disposal Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shipment & Disposal Information Shipments Received As of February 11, 2014 Site Shipments Loaded Miles Argonne National Laboratory 193 331,333 Bettis Atomic Power Laboratory 5 10,955 GE Vallecitos Nuclear Center 32 44,800 Idaho National Laboratory 5,844 8,132,064 Los Alamos National Laboratory 1,344 459,648 Lawrence Livermore National Laboratory 18 24,804 Nevada Test Site 48 57,312 Oak Ridge National Laboratory 131 175,933 Rocky Flats Environmental Technology Site 2,045 1,446,444 Hanford

  17. DOE SPENT NUCLEAR FUEL DISPOSAL CONTAINER

    SciTech Connect (OSTI)

    F. Habashi

    1998-06-26

    The DOE Spent Nuclear Fuel Disposal Container (SNF DC) supports the confinement and isolation of waste within the Engineered Barrier System of the Mined Geologic Disposal System (MGDS). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the access mains, and emplaced in emplacement drifts. The DOE Spent Nuclear Fuel Disposal Container provides long term confinement of DOE SNF waste, and withstands the loading, transfer, emplacement, and retrieval loads and environments. The DOE SNF Disposal Containers provide containment of waste for a designated period of time, and limit radionuclide release thereafter. The disposal containers maintain the waste in a designated configuration, withstand maximum handling and rockfall loads, limit the individual waste canister temperatures after emplacement. The disposal containers also limit the introduction of moderator into the disposal container during the criticality control period, resist corrosion in the expected repository environment, and provide complete or limited containment of waste in the event of an accident. Multiple disposal container designs may be needed to accommodate the expected range of DOE Spent Nuclear Fuel. The disposal container will include outer and inner barrier walls and outer and inner barrier lids. Exterior labels will identify the disposal container and contents. Differing metal barriers will support the design philosophy of defense in depth. The use of materials with different failure mechanisms prevents a single mode failure from breaching the waste package. The corrosion-resistant inner barrier and inner barrier lid will be constructed of a high-nickel alloy and the corrosion-allowance outer barrier and outer barrier lid will be made of carbon steel. The DOE Spent Nuclear Fuel Disposal Containers interface with the emplacement drift environment by transferring heat from the waste to the external environment and by protecting

  18. AIR PASSIVATION OF METAL HYDRIDE BEDS FOR WASTE DISPOSAL

    SciTech Connect (OSTI)

    Klein, J; R. H. Hsu, R

    2007-07-02

    Metal hydride beds offer compact, safe storage of tritium. After metal hydride beds have reached the end of their useful life, the beds will replaced with new beds and the old beds prepared for disposal. One acceptance criteria for hydride bed waste disposal is that the material inside the bed not be pyrophoric. To determine the pyrophoric nature of spent metal hydride beds, controlled air ingress tests were performed. A simple gas handling manifold fitted with pressure transducers and a calibrated volume were used to introduce controlled quantities of air into a metal hydride bed and the bed temperature rise monitored for reactivity with the air. A desorbed, 4.4 kg titanium prototype hydride storage vessel (HSV) produced a 4.4 C internal temperature rise upon the first air exposure cycle and a 0.1 C temperature rise upon a second air exposure. A total of 346 scc air was consumed by the bed (0.08 scc per gram Ti). A desorbed, 9.66 kg LaNi{sub 4.25}Al{sub 0.75} prototype storage bed experienced larger temperature rises over successive cycles of air ingress and evacuation. The cycles were performed over a period of days with the bed effectively passivated after the 12th cycle. Nine to ten STP-L of air reacted with the bed producing both oxidized metal and water.

  19. SouthSouthNorth | Open Energy Information

    Open Energy Info (EERE)

    policy environment. SouthSouthNorth contributed to the development of the International Gold Standard label which ensures the highest standards of practice throughout CDM project...

  20. Compacted carbon for electrochemical cells

    DOE Patents [OSTI]

    Greinke, R.A.; Lewis, I.C.

    1997-10-14

    This invention provides compacted carbon that is useful in the electrode of an alkali metal/carbon electrochemical cell of improved capacity selected from the group consisting of: (a) coke having the following properties: (1) an x-ray density of at least 2.00 grams per cubic centimeters, (2) a closed porosity of no greater than 5%, and (3) an open porosity of no greater than 47%; and (b) graphite having the following properties: (1) an x-ray density of at least 2.20 grams per cubic centimeters, (2) a closed porosity of no greater than 5%, and (3) an open porosity of no greater than 25%. This invention also relates to an electrode for an alkali metal/carbon electrochemical cell comprising compacted carbon as described above and a binder. This invention further provides an alkali metal/carbon electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrolytically conductive salt and an alkali metal, and (c) a counter electrode. 10 figs.

  1. Compacted carbon for electrochemical cells

    DOE Patents [OSTI]

    Greinke, Ronald Alfred; Lewis, Irwin Charles

    1997-01-01

    This invention provides compacted carbon that is useful in the electrode of an alkali metal/carbon electrochemical cell of improved capacity selected from the group consisting of: (a) coke having the following properties: (i) an x-ray density of at least 2.00 grams per cubic centimeters, (ii) a closed porosity of no greater than 5%, and (iii) an open porosity of no greater than 47%; and (b) graphite having the following properties: (i) an x-ray density of at least 2.20 grams per cubic centimeters, (ii) a closed porosity of no greater than 5%, and (iii) an open porosity of no greater than 25%. This invention also relates to an electrode for an alkali metal/carbon electrochemical cell comprising compacted carbon as described above and a binder. This invention further provides an alkali metal/carbon electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrolytically conductive salt and an alkali metal, and (c) a counterelectrode.

  2. Compact submanifolds supporting singular interactions

    SciTech Connect (OSTI)

    Kaynak, Burak Tevfik Teoman Turgut, O.

    2013-12-15

    A quantum particle moving under the influence of singular interactions on embedded surfaces furnish an interesting example from the spectral point of view. In these problems, the possible occurrence of a bound-state is perhaps the most important aspect. Such systems can be introduced as quadratic forms and generically they do not require renormalization. Yet an alternative path through the resolvent is also beneficial to study various properties. In the present work, we address these issues for compact surfaces embedded in a class of ambient manifolds. We discover that there is an exact bound state solution written in terms of the heat kernel of the ambient manifold for a range of coupling strengths. Moreover, we develop techniques to estimate bounds on the ground state energy when several surfaces, each of which admits a bound state solution, coexist. -- Highlights: Schrdinger operator with singular interactions supported on compact submanifolds. Exact bound-state solution in terms of the heat kernel of the ambient manifold. Generalization of the variational approach to a collection of submanifolds. Existence of a lower bound for a unique ground state energy.

  3. Aerosol can waste disposal device

    DOE Patents [OSTI]

    O'Brien, Michael D.; Klapperick, Robert L.; Bell, Chris

    1993-01-01

    Disclosed is a device for removing gases and liquid from containers. The ice punctures the bottom of a container for purposes of exhausting gases and liquid from the container without their escaping into the atmosphere. The device includes an inner cup or cylinder having a top portion with an open end for receiving a container and a bottom portion which may be fastened to a disposal or waste container in a substantially leak-proof manner. A piercing device is mounted in the lower portion of the inner cylinder for puncturing the can bottom placed in the inner cylinder. An outer cylinder having an open end and a closed end fits over the top portion of the inner cylinder in telescoping engagement. A force exerted on the closed end of the outer cylinder urges the bottom of a can in the inner cylinder into engagement with the piercing device in the bottom of the inner cylinder to form an opening in the can bottom, thereby permitting the contents of the can to enter the disposal container.

  4. Aerosol can waste disposal device

    DOE Patents [OSTI]

    O'Brien, M.D.; Klapperick, R.L.; Bell, C.

    1993-12-21

    Disclosed is a device for removing gases and liquid from containers. The device punctures the bottom of a container for purposes of exhausting gases and liquid from the container without their escaping into the atmosphere. The device includes an inner cup or cylinder having a top portion with an open end for receiving a container and a bottom portion which may be fastened to a disposal or waste container in a substantially leak-proof manner. A piercing device is mounted in the lower portion of the inner cylinder for puncturing the can bottom placed in the inner cylinder. An outer cylinder having an open end and a closed end fits over the top portion of the inner cylinder in telescoping engagement. A force exerted on the closed end of the outer cylinder urges the bottom of a can in the inner cylinder into engagement with the piercing device in the bottom of the inner cylinder to form an opening in the can bottom, thereby permitting the contents of the can to enter the disposal container. 7 figures.

  5. Method for preparing porous metal hydride compacts

    DOE Patents [OSTI]

    Ron, Moshe; Gruen, Dieter M.; Mendelsohn, Marshall H.; Sheft, Irving

    1981-01-01

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  6. Disposal of tritium-exposed metal hydrides

    SciTech Connect (OSTI)

    Nobile, A.; Motyka, T.

    1991-01-01

    A plan has been established for disposal of tritium-exposed metal hydrides used in Savannah River Site (SRS) tritium production or Materials Test Facility (MTF) R D operations. The recommended plan assumes that the first tritium-exposed metal hydrides will be disposed of after startup of the Solid Waste Disposal Facility (SWDF) Expansion Project in 1992, and thus the plan is consistent with the new disposal requiremkents that will be in effect for the SWDF Expansion Project. Process beds containing tritium-exposed metal hydride powder will be disposed of without removal of the powder from the bed; however, disposal of tritium-exposed metal hydride powder that has been removed from its process vessel is also addressed.

  7. Disposal of tritium-exposed metal hydrides

    SciTech Connect (OSTI)

    Nobile, A.; Motyka, T.

    1991-12-31

    A plan has been established for disposal of tritium-exposed metal hydrides used in Savannah River Site (SRS) tritium production or Materials Test Facility (MTF) R&D operations. The recommended plan assumes that the first tritium-exposed metal hydrides will be disposed of after startup of the Solid Waste Disposal Facility (SWDF) Expansion Project in 1992, and thus the plan is consistent with the new disposal requiremkents that will be in effect for the SWDF Expansion Project. Process beds containing tritium-exposed metal hydride powder will be disposed of without removal of the powder from the bed; however, disposal of tritium-exposed metal hydride powder that has been removed from its process vessel is also addressed.

  8. Compact Absorption Chiller - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Compact Absorption Chiller Pacific Northwest National Laboratory Contact PNNL About This...

  9. Compact Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Place: Bristol, England, United Kingdom Zip: BS11 9HZ Product: Builds gasification plants for municipal, industrial and clinical waste. References: Compact Power Ltd1 This...

  10. DOE Applauds Opening of Historic Disposal Facility

    Broader source: Energy.gov [DOE]

    ANDREWS, Texas – DOE officials participated in an event today to celebrate the opening of the first commercial disposal facility of its kind.

  11. ADMINISTRATIVE RECORDS SCHEDULE 4: PROPERTY DISPOSAL RECORDS...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ADMINISTRATIVE RECORDS SCHEDULE 4: PROPERTY DISPOSAL RECORDS (Revision 2) These records pertain to the sales by agencies of real and personal property surplus to the needs of the ...

  12. WPCF Underground Injection Control Disposal Permit Evaluation...

    Open Energy Info (EERE)

    WPCF Underground Injection Control Disposal Permit Evaluation and Fact Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: WPCF Underground Injection...

  13. Lowman, Idaho, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Site Description and History The Lowman disposal site is the location of a former mechanical concentrator for sands containing rare-earth elements, uranium, and thorium. The site ...

  14. Hanford Landfill Reaches 15 Million Tons Disposed- Waste Disposal Mark Shows Success Cleaning Up River Corridor

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – The U.S. Department of Energy (DOE) and its contractors have disposed of 15 million tons of contaminated material at the Environmental Restoration Disposal Facility (ERDF) since the facility began operations in 1996.

  15. General Relativity&Compact Stars

    SciTech Connect (OSTI)

    Glendenning, Norman K.

    2005-08-16

    Compact stars--broadly grouped as neutron stars and white dwarfs--are the ashes of luminous stars. One or the other is the fate that awaits the cores of most stars after a lifetime of tens to thousands of millions of years. Whichever of these objects is formed at the end of the life of a particular luminous star, the compact object will live in many respects unchanged from the state in which it was formed. Neutron stars themselves can take several forms--hyperon, hybrid, or strange quark star. Likewise white dwarfs take different forms though only in the dominant nuclear species. A black hole is probably the fate of the most massive stars, an inaccessible region of spacetime into which the entire star, ashes and all, falls at the end of the luminous phase. Neutron stars are the smallest, densest stars known. Like all stars, neutron stars rotate--some as many as a few hundred times a second. A star rotating at such a rate will experience an enormous centrifugal force that must be balanced by gravity or else it will be ripped apart. The balance of the two forces informs us of the lower limit on the stellar density. Neutron stars are 10{sup 14} times denser than Earth. Some neutron stars are in binary orbit with a companion. Application of orbital mechanics allows an assessment of masses in some cases. The mass of a neutron star is typically 1.5 solar masses. They can therefore infer their radii: about ten kilometers. Into such a small object, the entire mass of our sun and more, is compressed.

  16. Compact Process Development at Babcock & Wilcox

    SciTech Connect (OSTI)

    Eric Shaber; Jeffrey Phillips

    2012-03-01

    Multiple process approaches have been used historically to manufacture cylindrical nuclear fuel compacts. Scale-up of fuel compacting was required for the Next Generation Nuclear Plant (NGNP) project to achieve an economically viable automated production process capable of providing a minimum of 10 compacts/minute with high production yields. In addition, the scale-up effort was required to achieve matrix density equivalent to baseline historical production processes, and allow compacting at fuel packing fractions up to 46% by volume. The scale-up approach of jet milling, fluid-bed overcoating, and hot-press compacting adopted in the U.S. Advanced Gas Reactor (AGR) Fuel Development Program involves significant paradigm shifts to capitalize on distinct advantages in simplicity, yield, and elimination of mixed waste. A series of compaction trials have been completed to optimize compaction conditions of time, temperature, and forming pressure using natural uranium oxycarbide (NUCO) fuel at packing fractions exceeding 46% by volume. Results from these trials are included. The scale-up effort is nearing completion with the process installed and operable using nuclear fuel materials. Final process testing is in progress to certify the process for manufacture of qualification test fuel compacts in 2012.

  17. Physics of compact ignition tokamak designs

    SciTech Connect (OSTI)

    Singer, C.E.; Ku, L.P.; Bateman, G.; Seidl, F.; Sugihara, M.

    1986-03-01

    Models for predicting plasma performance in compact ignition experiments are constructed on the basis of theoretical and empirical constraints and data from tokamak experiments. Emphasis is placed on finding transport and confinement models which reproduce results of both ohmically and auxiliary heated tokamak data. Illustrations of the application of the models to compact ignition designs are given.

  18. Generic Deep Geologic Disposal Safety Case

    Broader source: Energy.gov [DOE]

    The Generic Deep Geologic Disposal Safety Case presents generic information that is of use in understanding potential deep geologic disposal options (e.g., salt, shale, granite, deep borehole) in the U.S. for used nuclear fuel (UNF) from reactors and high-level radioactive waste (HLW).

  19. Crystalline and Crystalline International Disposal Activities

    SciTech Connect (OSTI)

    Viswanathan, Hari S.; Chu, Shaoping; Reimus, Paul William; Makedonska, Nataliia; Hyman, Jeffrey De'Haven; Karra, Satish; Dittrich, Timothy M.

    2015-12-21

    This report presents the results of work conducted between September 2014 and July 2015 at Los Alamos National Laboratory in the crystalline disposal and crystalline international disposal work packages of the Used Fuel Disposition Campaign (UFDC) for DOE-NE’s Fuel Cycle Research and Development program.

  20. Density variations and anomalies in palladium compacts

    SciTech Connect (OSTI)

    Back, D.; Jones, T.; Ransick, M.; Walburg, T.; Werkmeister, D.

    1992-05-14

    Low-density compacts of palladium powder have relative densities of about 30{plus minus}10% TD. The variations in density are of concern for operations such as chemical/hydrogen pump systems because heat, mass, and momentum transport properties can be affected. Variations in density result from the inherent nature and interacting forces of UASA compaction of powder in cylinders. In addition to these expected variations, discontinuous density anomalies, such as cracks or high density ridges, are also found. An anomaly of particular concern was found to resemble a steer's head.'' it is a symmetrical region of low density located at or near the center of a compact. Typically, this region is surrounded by a band of high density, compacted palladium that sometimes exceeds the density of the surrounding compact matrix by a factor of three. This report examines these density variations and anomalies both theoretically and empirically.

  1. Density variations and anomalies in palladium compacts

    SciTech Connect (OSTI)

    Back, D.; Jones, T.; Ransick, M.; Walburg, T.; Werkmeister, D.

    1992-05-14

    Low-density compacts of palladium powder have relative densities of about 30{plus_minus}10% TD. The variations in density are of concern for operations such as chemical/hydrogen pump systems because heat, mass, and momentum transport properties can be affected. Variations in density result from the inherent nature and interacting forces of UASA compaction of powder in cylinders. In addition to these expected variations, discontinuous density anomalies, such as cracks or high density ridges, are also found. An anomaly of particular concern was found to resemble a ``steer`s head.`` it is a symmetrical region of low density located at or near the center of a compact. Typically, this region is surrounded by a band of high density, compacted palladium that sometimes exceeds the density of the surrounding compact matrix by a factor of three. This report examines these density variations and anomalies both theoretically and empirically.

  2. Large Component Removal/Disposal

    SciTech Connect (OSTI)

    Wheeler, D. M.

    2002-02-27

    This paper describes the removal and disposal of the large components from Maine Yankee Atomic Power Plant. The large components discussed include the three steam generators, pressurizer, and reactor pressure vessel. Two separate Exemption Requests, which included radiological characterizations, shielding evaluations, structural evaluations and transportation plans, were prepared and issued to the DOT for approval to ship these components; the first was for the three steam generators and one pressurizer, the second was for the reactor pressure vessel. Both Exemption Requests were submitted to the DOT in November 1999. The DOT approved the Exemption Requests in May and July of 2000, respectively. The steam generators and pressurizer have been removed from Maine Yankee and shipped to the processing facility. They were removed from Maine Yankee's Containment Building, loaded onto specially designed skid assemblies, transported onto two separate barges, tied down to the barges, th en shipped 2750 miles to Memphis, Tennessee for processing. The Reactor Pressure Vessel Removal Project is currently under way and scheduled to be completed by Fall of 2002. The planning, preparation and removal of these large components has required extensive efforts in planning and implementation on the part of all parties involved.

  3. FACT SHEET: The Path Forward on Nuclear Waste Disposal | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FACT SHEET: The Path Forward on Nuclear Waste Disposal FACT SHEET: The Path Forward on Nuclear Waste Disposal FACT SHEET: The Path Forward on Nuclear Waste Disposal More Documents...

  4. Low-Level Waste Disposal Facility Federal Review Group Manual...

    Office of Environmental Management (EM)

    Low-Level Waste Disposal Facility Federal Review Group Manual Low-Level Waste Disposal Facility Federal Review Group Manual This Revision 3 of the Low-Level Waste Disposal Facility ...

  5. Strategy Guideline. Compact Air Distribution Systems

    SciTech Connect (OSTI)

    Burdick, Arlan

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  6. Compacting Plastic-Bonded Explosive Molding Powders to Dense Solids

    SciTech Connect (OSTI)

    B. Olinger

    2005-04-15

    Dense solid high explosives are made by compacting plastic-bonded explosive molding powders with high pressures and temperatures for extended periods of time. The density is influenced by manufacturing processes of the powders, compaction temperature, the magnitude of compaction pressure, pressure duration, and number of repeated applications of pressure. The internal density variation of compacted explosives depends on method of compaction and the material being compacted.

  7. Issues in the review of a license application for an above grade low-level radioactive waste disposal facility

    SciTech Connect (OSTI)

    Ringenberg, J.D.

    1993-03-01

    In December 1987, Nebraska was selected by the Central Interstate Compact (CIC) Commission as the host state for the construction of a low-level radioactive waste disposal facility. After spending a year in the site screening process, the Compact`s developer, US Ecology, selected three sites for detailed site characterization. These sites were located in Nemaha, Nuckolls and Boyd Counties. One year later the Boyd County site was selected as the preferred site and additional site characterization studies were undertaken. On July 29, 1990, US Ecology submitted a license application to the Nebraska Department of Environmental Control (now Department of Environmental Quality-NDEQ). This paper will present issues that the NDEQ has dealt with since Nebraska`s selection as the host state for the CIC facility.

  8. CONTAINMENT OF LOW-LEVEL RADIOACTIVE WASTE AT THE DOE SALTSTONE DISPOSAL FACILITY

    SciTech Connect (OSTI)

    Jordan, J.; Flach, G.

    2012-03-29

    As facilities look for permanent storage of toxic materials, they are forced to address the long-term impacts to the environment as well as any individuals living in affected area. As these materials are stored underground, modeling of the contaminant transport through the ground is an essential part of the evaluation. The contaminant transport model must address the long-term degradation of the containment system as well as any movement of the contaminant through the soil and into the groundwater. In order for disposal facilities to meet their performance objectives, engineered and natural barriers are relied upon. Engineered barriers include things like the design of the disposal unit, while natural barriers include things like the depth of soil between the disposal unit and the water table. The Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) in South Carolina is an example of a waste disposal unit that must be evaluated over a timeframe of thousands of years. The engineered and natural barriers for the SDF allow it to meet its performance objective over the long time frame. Some waste disposal facilities are required to meet certain standards to ensure public safety. These type of facilities require an engineered containment system to ensure that these requirements are met. The Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) is an example of this type of facility. The facility is evaluated based on a groundwater pathway analysis which considers long-term changes to material properties due to physical and chemical degradation processes. The facility is able to meet these performance objectives due to the multiple engineered and natural barriers to contaminant migration.

  9. New Facility Will Test Disposal Cell Cover Renovation | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Services » New Facility Will Test Disposal Cell Cover Renovation New Facility Will Test Disposal Cell Cover Renovation New Facility Will Test Disposal Cell Cover Renovation New Facility Will Test Disposal Cell Cover Renovation (178.03 KB) More Documents & Publications Design and Installation of a Disposal Cell Cover Field Test Sustainable Disposal Cell Covers: Legacy Management Practices, Improvements, and Long-Term Performance Long-Term Surveillance Operations and Maintenance

  10. DOE - Office of Legacy Management -- Commercial (Burial) Disposal Site

    Office of Legacy Management (LM)

    Maxey Flats Disposal Site - KY 02 Commercial (Burial) Disposal Site Maxey Flats Disposal Site - KY 02 FUSRAP Considered Sites Site: Commercial (Burial) Disposal Site, Maxey Flats Disposal Site (KY.02) Remediated by EPA; a portion of the records are managed by DOE LM. More information at http://www.lm.doe.gov/maxey_flats/Sites.aspx Designated Name: Not Designated under FUSRAP Alternate Name: Maxey Flats, KY, Disposal Site Location: Fleming County, Kentucky Evaluation Year: Not considered for

  11. Compact, electro-hydraulic, variable valve actuation system providing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compact, electro-hydraulic, variable valve actuation system providing variable lift, timing and duration to enable high efficiency engine combustion control Compact, electro-hydrau...

  12. Development of Compact Gaseous Sensors with Internal Reference...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compact Gaseous Sensors with Internal Reference for Monitoring O2 and NOx in Combustion Environments Development of Compact Gaseous Sensors with Internal Reference for Monitoring ...

  13. Plasma research shows promise for future compact accelerators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma research shows promise for future compact accelerators Plasma research shows promise for future compact accelerators A transformative breakthrough in controlling ion beams ...

  14. COLLOQUIUM: The Lockheed Martin Compact Fusion Reactor | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COLLOQUIUM: The Lockheed Martin Compact Fusion Reactor Dr. Thomas McGuire Lockheed Martin Lockheed Martin Skunkworks is developing a compact fusion reactor concept, CFR. The novel ...

  15. Formation of Compact Clusters from High Resolution Hybrid Cosmological...

    Office of Scientific and Technical Information (OSTI)

    Formation of Compact Clusters from High Resolution Hybrid Cosmological Simulations Citation Details In-Document Search Title: Formation of Compact Clusters from High Resolution ...

  16. Probabilistic Modeling of Settlement Risk at Land Disposal Facilities - 12304

    SciTech Connect (OSTI)

    Foye, Kevin C.; Soong, Te-Yang

    2012-07-01

    The long-term reliability of land disposal facility final cover systems - and therefore the overall waste containment - depends on the distortions imposed on these systems by differential settlement/subsidence. The evaluation of differential settlement is challenging because of the heterogeneity of the waste mass (caused by inconsistent compaction, void space distribution, debris-soil mix ratio, waste material stiffness, time-dependent primary compression of the fine-grained soil matrix, long-term creep settlement of the soil matrix and the debris, etc.) at most land disposal facilities. Deterministic approaches to long-term final cover settlement prediction are not able to capture the spatial variability in the waste mass and sub-grade properties which control differential settlement. An alternative, probabilistic solution is to use random fields to model the waste and sub-grade properties. The modeling effort informs the design, construction, operation, and maintenance of land disposal facilities. A probabilistic method to establish design criteria for waste placement and compaction is introduced using the model. Random fields are ideally suited to problems of differential settlement modeling of highly heterogeneous foundations, such as waste. Random fields model the seemingly random spatial distribution of a design parameter, such as compressibility. When used for design, the use of these models prompts the need for probabilistic design criteria. It also allows for a statistical approach to waste placement acceptance criteria. An example design evaluation was performed, illustrating the use of the probabilistic differential settlement simulation methodology to assemble a design guidance chart. The purpose of this design evaluation is to enable the designer to select optimal initial combinations of design slopes and quality control acceptance criteria that yield an acceptable proportion of post-settlement slopes meeting some design minimum. For this specific

  17. Used Fuel Disposition Campaign Disposal Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Disposal Research and Development Roadmap Rev. 01 Used Fuel Disposition Campaign Disposal Research and Development Roadmap Rev. 01 The U.S. Department of Energy Office of Nuclear...

  18. Erosion Control and Revegetation at DOE's Lowman Disposal Site...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Erosion Control and Revegetation at DOE's Lowman Disposal Site, Lowman, Idaho Erosion Control and Revegetation at DOE's Lowman Disposal Site, Lowman, Idaho Erosion Control and ...

  19. A Critical Step Toward Sustainable Nuclear Fuel Disposal | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Critical Step Toward Sustainable Nuclear Fuel Disposal A Critical Step Toward Sustainable Nuclear Fuel Disposal January 26, 2012 - 2:30pm Addthis Secretary Chu Secretary Chu...

  20. Plant Encroachment on the Burrell, Pennsylvania, Disposal Cell...

    Office of Environmental Management (EM)

    Plant Encroachment on the Burrell, Pennsylvania, Disposal Cell: Evaluation of Long-Term Performance Plant Encroachment on the Burrell, Pennsylvania, Disposal Cell: Evaluation of...

  1. Deep Borehole Disposal of Spent Fuel. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Deep Borehole Disposal of Spent Fuel. Citation Details In-Document Search Title: Deep Borehole Disposal of Spent Fuel. Abstract not provided. Authors: Brady, Patrick V. Publication...

  2. Disposal Practices at the Savannah River Site | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Practices at the Savannah River Site Disposal Practices at the Savannah River Site Full Document and Summary Versions are available for download PDF icon Disposal Practices at the ...

  3. Deep Borehole Disposal of Nuclear Waste. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Deep Borehole Disposal of Nuclear Waste. Citation Details In-Document Search Title: Deep Borehole Disposal of Nuclear Waste. Abstract not provided. Authors: Arnold, Bill Walter ;...

  4. Design and Installation of a Disposal Cell Cover Field Test ...

    Office of Environmental Management (EM)

    Design and Installation of a Disposal Cell Cover Field Test Design and Installation of a Disposal Cell Cover Field Test Paper presented at the Waste Management 2011 Conference. ...

  5. Deep Borehole Disposal Research: Geological Data Evaluation Alternativ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deep Borehole Disposal Research: Geological Data Evaluation Alternative Waste Forms and Borehole Seals Citation Details In-Document Search Title: Deep Borehole Disposal Research:...

  6. Repository Reference Disposal Concepts and Thermal Load Management...

    Broader source: Energy.gov (indexed) [DOE]

    enclosed and open mode disposal concepts, thermal analysis of open modes, a range of spent nuclear fuel (SNF) burnup, additional disposal system description, and cost estimation. ...

  7. Generic disposal concepts and thermal load management for larger...

    Office of Scientific and Technical Information (OSTI)

    Generic disposal concepts and thermal load management for larger waste packages. Citation Details In-Document Search Title: Generic disposal concepts and thermal load management...

  8. Title 40 CFR 268 Land Disposal Restrictions | Open Energy Information

    Open Energy Info (EERE)

    disposal and defines those limited circumstances under which an otherwise prohibited waste may continue to be land disposed. Except as specifically provided otherwise in this...

  9. Deep Borehole Disposal of Nuclear Waste: Science Needs. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Deep Borehole Disposal of Nuclear Waste: Science Needs. Citation Details In-Document Search Title: Deep Borehole Disposal of Nuclear Waste: Science Needs. Abstract not provided. ...

  10. Innovative Technique Accelerates Waste Disposal at Idaho Site

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – An innovative treatment and disposal technique is enabling the Idaho site to accelerate shipments of legacy nuclear waste for permanent disposal.

  11. Final Environmental Impact Statement Brings DOE Closer to Disposing...

    Office of Environmental Management (EM)

    Final Environmental Impact Statement Brings DOE Closer to Disposing Unique Waste Final Environmental Impact Statement Brings DOE Closer to Disposing Unique Waste March 16, 2016 - ...

  12. A new design for a disposable and modifiable electrochemical...

    Office of Scientific and Technical Information (OSTI)

    A new design for a disposable and modifiable electrochemical cell Citation Details In-Document Search Title: A new design for a disposable and modifiable electrochemical cell ...

  13. LOW-LEVEL WASTE DISPOSAL FACILITY FEDERAL REVIEW GROUP EXECUTION...

    Office of Environmental Management (EM)

    LOW-LEVEL WASTE DISPOSAL FACILITY FEDERAL REVIEW GROUP EXECUTION PLAN Los Alamos National ... Safety and Security LFRG Low-Level Waste Disposal Facility Federal Review Group LLW ...

  14. DOE - Office of Legacy Management -- Cheney Disposal Cell - 008

    Office of Legacy Management (LM)

    Cheney Disposal Cell - 008 FUSRAP Considered Sites Site: Cheney Disposal Cell (008) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: ...

  15. DOE - Office of Legacy Management -- Estes Gulch Disposal Cell...

    Office of Legacy Management (LM)

    Estes Gulch Disposal Cell - 010 FUSRAP Considered Sites Site: Estes Gulch Disposal Cell (010) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site ...

  16. DOE - Office of Legacy Management -- 11 E (2) Disposal Cell ...

    Office of Legacy Management (LM)

    11 E (2) Disposal Cell - 037 FUSRAP Considered Sites Site: 11 E. (2) Disposal Cell (037) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site ...

  17. DOE - Office of Legacy Management -- Burro Canyon Disposal Cell...

    Office of Legacy Management (LM)

    Burro Canyon Disposal Cell - 007 FUSRAP Considered Sites Site: Burro Canyon Disposal Cell (007) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site ...

  18. Nevada Industrial Solid Waste Disposal Site Permit Application...

    Open Energy Info (EERE)

    Nevada Industrial Solid Waste Disposal Site Permit Application Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Nevada Industrial Solid Waste Disposal Site...

  19. NRC Monitoring of Salt Waste Disposal at the Savannah River Site - 13147

    SciTech Connect (OSTI)

    Pinkston, Karen E.; Ridge, A. Christianne; Alexander, George W.; Barr, Cynthia S.; Devaser, Nishka J.; Felsher, Harry D.

    2013-07-01

    As part of monitoring required under Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA), the NRC staff reviewed an updated DOE performance assessment (PA) for salt waste disposal at the Saltstone Disposal Facility (SDF). The NRC staff concluded that it has reasonable assurance that waste disposal at the SDF meets the 10 CFR 61 performance objectives for protection of individuals against intrusion (chap.61.42), protection of individuals during operations (chap.61.43), and site stability (chap.61.44). However, based on its evaluation of DOE's results and independent sensitivity analyses conducted with DOE's models, the NRC staff concluded that it did not have reasonable assurance that DOE's disposal activities at the SDF meet the performance objective for protection of the general population from releases of radioactivity (chap.61.41) evaluated at a dose limit of 0.25 mSv/yr (25 mrem/yr) total effective dose equivalent (TEDE). NRC staff also concluded that the potential dose to a member of the public is expected to be limited (i.e., is expected to be similar to or less than the public dose limit in chap.20.1301 of 1 mSv/yr [100 mrem/yr] TEDE) and is expected to occur many years after site closure. The NRC staff used risk insights gained from review of the SDF PA, its experience monitoring DOE disposal actions at the SDF over the last 5 years, as well as independent analysis and modeling to identify factors that are important to assessing whether DOE's disposal actions meet the performance objectives. Many of these factors are similar to factors identified in the NRC staff's 2005 review of salt waste disposal at the SDF. Key areas of interest continue to be waste form and disposal unit degradation, the effectiveness of infiltration and erosion controls, and estimation of the radiological inventory. Based on these factors, NRC is revising its plan for monitoring salt waste disposal at the SDF in coordination with South

  20. Steady state compact toroidal plasma production

    DOE Patents [OSTI]

    Turner, William C.

    1986-01-01

    Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.

  1. Charlton Compact Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    England, United Kingdom Zip: BA11 2RH Sector: Biomass Product: A joint venture between A. J. Charlton & Sons and Compact Power to develop a 3.6MW to 4.5MW biomass plant in...

  2. Compact reflective imaging spectrometer utilizing immersed gratings

    DOE Patents [OSTI]

    Chrisp, Michael P. (Danville, CA)

    2006-05-09

    A compact imaging spectrometer comprising an entrance slit for directing light, a first mirror that receives said light and reflects said light, an immersive diffraction grating that diffracts said light, a second mirror that focuses said light, and a detector array that receives said focused light. The compact imaging spectrometer can be utilized for remote sensing imaging spectrometers where size and weight are of primary importance.

  3. Special Analysis: Naval Reactor Waste Disposal Pad

    SciTech Connect (OSTI)

    Cook, J.R.

    2003-03-31

    This report presents the results of a special study of the Naval Reactor Waste Disposal Pad located within the boundary of the E-Area Low-Level Waste Facility at the Savannah River Site.

  4. Tuba City, Arizona, Disposal Site Community Information

    Office of Legacy Management (LM)

    Tuba City, Arizona, Disposal Site Tuba City Site Background 1954-1955 Tuba City mill is built. 1956-1966 Rare Metals Corporation and El Paso Natural Gas Company operate the ...

  5. Supplement Analysis for Disposal of Polychlorinated Biphenyl...

    Office of Environmental Management (EM)

    Disposal of Polychlorinated Biphenyl-Commingled Transuranic Waste at the Waste Isolation Pilot Plant (DOEEIS-0026-SA02) 1.0 Purpose and Need for Action Transuranic (TRU) waste is...

  6. Assessment of Preferred Depleted Uranium Disposal Forms

    SciTech Connect (OSTI)

    Croff, A.G.; Hightower, J.R.; Lee, D.W.; Michaels, G.E.; Ranek, N.L.; Trabalka, J.R.

    2000-06-01

    The Department of Energy (DOE) is in the process of converting about 700,000 metric tons (MT) of depleted uranium hexafluoride (DUF6) containing 475,000 MT of depleted uranium (DU) to a stable form more suitable for long-term storage or disposal. Potential conversion forms include the tetrafluoride (DUF4), oxide (DUO2 or DU3O8), or metal. If worthwhile beneficial uses cannot be found for the DU product form, it will be sent to an appropriate site for disposal. The DU products are considered to be low-level waste (LLW) under both DOE orders and Nuclear Regulatory Commission (NRC) regulations. The objective of this study was to assess the acceptability of the potential DU conversion products at potential LLW disposal sites to provide a basis for DOE decisions on the preferred DU product form and a path forward that will ensure reliable and efficient disposal.

  7. Method of Disposing of Corrosive Gases

    DOE Patents [OSTI]

    Burford, W.B. III; Anderson, H.C.

    1950-07-11

    Waste gas containing elemental fluorine is disposed of in the disclosed method by introducing the gas near the top of a vertical chamber under a downward spray of caustic soda solution which contains a small amount of sodium sulfide.

  8. Green River, Utah, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Uranium Mill Tailings Radiation Control Act of 1978 Title I disposal site near Green River, Utah. This site is managed by the U.S. Department of Energy Office of Legacy Management. ...

  9. Deep Borehole Disposal Research: Demonstration Site Selection...

    Office of Environmental Management (EM)

    The deep borehole disposal concept consists of drilling a borehole on the order of 5,000 m deep, emplacing waste canisters in the lower part of the borehole, and sealing the upper ...

  10. Dynamic compaction of tungsten carbide powder.

    SciTech Connect (OSTI)

    Gluth, Jeffrey Weston; Hall, Clint Allen; Vogler, Tracy John; Grady, Dennis Edward

    2005-04-01

    The shock compaction behavior of a tungsten carbide powder was investigated using a new experimental design for gas-gun experiments. This design allows the Hugoniot properties to be measured with reasonably good accuracy despite the inherent difficulties involved with distended powders. The experiments also provide the first reshock state for the compacted powder. Experiments were conducted at impact velocities of 245, 500, and 711 m/s. A steady shock wave was observed for some of the sample thicknesses, but the remainder were attenuated due to release from the back of the impactor or the edge of the sample. The shock velocity for the powder was found to be quite low, and the propagating shock waves were seen to be very dispersive. The Hugoniot density for the 711 m/s experiment was close to ambient crystal density for tungsten carbide, indicating nearly complete compaction. When compared with quasi-static compaction results for the same material, the dynamic compaction data is seen to be significantly stiffer for the regime over which they overlap. Based on these initial results, recommendations are made for improving the experimental technique and for future work to improve our understanding of powder compaction.

  11. Acquisition, Use, and Disposal of Real Estate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chapter 17.3 (March 2011) 1 Acquisition, Use, and Disposal of Real Estate References DEAR 917.74 - Acquisition, Use, and Disposal of Real Estate DOE Directives DOE Order 413.3B, Program and Project Management for the Acquisition of Capital Assets, or current version DOE Order 430.1B, Real Property Asset Management, or current version Overview This section provides internal Departmental information and DOE and NNSA points of contact for issues dealing with real estate acquisition, use, and

  12. Title II Disposal Sites Annual Report

    Broader source: Energy.gov [DOE]

    This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management in 2015 at six uranium mill tailings disposal sites reclaimed under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. These activities verified that the UMTRCA Title II disposal sites remain in compliance with license requirements.

  13. Turner County, South Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Davis, South Dakota Dolton, South Dakota Hurley, South Dakota Irene, South Dakota Marion, South Dakota Monroe, South Dakota Parker, South Dakota Viborg, South Dakota Retrieved...

  14. Orangeburg County, South Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    South Carolina Livingston, South Carolina Neeses, South Carolina North, South Carolina Norway, South Carolina Orangeburg, South Carolina Rowesville, South Carolina Santee, South...

  15. Acquisition, Use, and Disposal of Real Estate | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acquisition, Use, and Disposal of Real Estate Acquisition, Use, and Disposal of Real Estate Acquisition, Use, and Disposal of Real Estate (76.66 KB) More Documents & Publications OPAM Policy Acquisition Guides Chapter 17 - Special Contracting Methods Acquisition Guide Chapter 17.3, Acquisition, Use, and Disposal of Real Estate

  16. Acquisition, Use, and Disposal of Real Estate | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acquisition, Use, and Disposal of Real Estate Acquisition, Use, and Disposal of Real Estate More Documents & Publications Acquisition Guide Chapter 17.3, Acquisition, Use, and Disposal of Real Estate OPAM Policy Acquisition Guides Acquisition, Use, and Disposal of Real Estate

  17. Lessons Learned from Raw Treatment in the Slovak Republic - Minimization for Final Disposal

    SciTech Connect (OSTI)

    Hanusik, V.; Hladky, E.; Krajc, T.; Pekar, A.; Stubna, M.; Urbanec, M. [Milan Zatkulak, VUJE, a.s., Trnava (Slovakia); Ehn, L.; Kover, M.; Remias, V.; Slezak, M. [JAVYS, a.s., Bohunice (Slovakia)

    2008-07-01

    This paper is referring about the utilization of technologies for the treatment and conditioning of low and intermediate level RAW from operation and decommissioning of nuclear facilities in Slovakia. This experience represents more than 116 reactor years of NPP operation, mainly of NPPs equipped with VVER 440 reactors, 30 years of decommissioning activities, 27 years of development and operation of technologies for the treatment and conditioning of RAW and 7 years of LLW and ILW final repository operation. These technologies are located in two localities: Jaslovske Bohunice and Mochovce. The complex treatment and conditioning center (cementation, bituminization, incineration, vitrification, fragmentation and compacting) for almost all types of radioactive waste is located in Jaslovske Bohunice NPP site. The treatment and conditioning center for liquid radioactive waste (cementation and bituminization) and the surface type repository for LLW and ILW final disposal are located in Mochovce area. The treated waste forms are disposed to repository in cubical Fiber Reinforced Concrete (FRC) containers. The experience from the phase of technology development and the phase of technology modifications for various types of RAW, the experience from long term operation of technologies and the experience from transportation of original and packed wastes are described in this paper. The method of optimally combined technology utilization in order to maximize the radionuclide inventory at the same time with respect of disposal safety limitations of repository is described, too. The significant RAW volume reduction for final disposal was achieved through mediation of the combination of treatment and conditioning technologies. The disposal of treated RAW in cubic FRC containers allowed the optimal utilization of volume and radiological capacity of LLW and ILW repository in Mochovce and the fulfillment of determined safety requirements at the same time. (authors)

  18. Approaches to LLW disposal site selection and current progress of host states

    SciTech Connect (OSTI)

    Walsh, J.J.; Kerr, T.A.

    1990-11-01

    In accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985 and under the guidance of 10 CFR 61, States have begun entering into compacts to establish and operate regional disposal facilities for low-level radioactive waste. The progress a state makes in implementing a process to identify a specific location for a disposal site is one indication of the level of a state's commitment to meeting its responsibilities under Federal law and interstate compact agreements. During the past few years, several States have been engaged in site selection processes. The purpose of this report is to summarize the site selection approaches of some of the Host States (California, Michigan, Nebraska, New York, North Carolina, Texas, and Illinois), and their progress to date. An additional purpose of the report is to discern whether the Host States's site selection processes were heavily influenced by any common factors. One factor each state held in common was that political and public processes exerted a powerful influence on the site selection process at virtually every stage. 1 ref.

  19. Disposal in Crystalline Rocks: FY'15 Progress Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Disposal in Crystalline Rocks: FY'15 Progress Report Disposal in Crystalline Rocks: FY'15 Progress Report The objective of the Crystalline Disposal R&D Work Package is to advance our understanding of long-term disposal of used fuel in crystalline rocks and to develop necessary experimental and computational capabilities to evaluate various disposal concepts in such media. The major accomplishments are summarized in the report: 1) Development of Fuel Matrix Degradation Model

  20. Summary - Idaho CERCLA Disposal Facility (ICDF) at Idaho National Laboratory

    Office of Environmental Management (EM)

    INL, Idaho EM Project: Idaho CERCLA Disposal Facility ETR Report Date: December 2007 ETR-10 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Idaho CERCLA Disposal Facility (ICDF) At Idaho National Laboratory (INL) Why DOE-EM Did This Review The Idaho CERCLA Disposal Facility (ICDF) is a land disposal facility that is used to dispose of LLW and MLW generated from remedial activities at the Idaho National Laboratory (INL). Components of

  1. DOE - Office of Legacy Management -- Cheney Disposal Cell - 008

    Office of Legacy Management (LM)

    Cheney Disposal Cell - 008 FUSRAP Considered Sites Site: Cheney Disposal Cell (008) Remediated; managed by DOE LM. More information at http://www.lm.doe.gov/Grand_Junction_DP/Disposal/Sites.aspx Designated Name: Not Designated under FUSRAP Alternate Name: Grand Junction, CO, Disposal Site Location: Mesa County, Colorado Evaluation Year: Not considered for FUSRAP - in another program Site Operations: Uranium mill tailings disposal Site Disposition: Remediated under UMTRCA Title I Radioactive

  2. DOE - Office of Legacy Management -- Clive Disposal Cell - 036

    Office of Legacy Management (LM)

    Clive Disposal Cell - 036 FUSRAP Considered Sites Site: Clive Disposal Cell (036 ) Remediated; managed by DOE LM. More information at http://www.lm.doe.gov/Salt_Lake/Disposal/Sites.aspx Designated Name: Not Designated under FUSRAP Alternate Name: Salt Lake City, UT, Disposal Site Location: Salt Lake City, Utah Evaluation Year: Not considered for FUSRAP - in another program Site Operations: Uranium mill tailings disposal Site Disposition: Remediated under UMTRCA Title I Radioactive Materials

  3. DOE - Office of Legacy Management -- Estes Gulch Disposal Cell - 010

    Office of Legacy Management (LM)

    Estes Gulch Disposal Cell - 010 FUSRAP Considered Sites Site: Estes Gulch Disposal Cell (010) Remediated; managed by DOE LM. More information at http://www.lm.doe.gov/Rifle/Disposal/Sites.aspx Designated Name: Not Designated under FUSRAP Alternate Name: Rifle, CO, Disposal Site Location: Rifle, Colorado Evaluation Year: Not considered for FUSRAP - in another program Site Operations: Uranium mill tailings disposal Site Disposition: Remediated under UMTRCA Title I Radioactive Materials Handled:

  4. Title I Disposal Sites Annual Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    I Disposal Sites Annual Report Title I Disposal Sites Annual Report 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites (March 2016) 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites (March 2016) (35.26 MB) More Documents & Publications Guidance for Developing and Implementing Long-Term Surveillance Plans for UMTRCA Title I and Title II Disposal Sites

  5. Generic Disposal System Modeling, Fiscal Year 2011 Progress Report

    Broader source: Energy.gov [DOE]

    The UFD Campaign is developing generic disposal system models (GDSM) of different disposal environments and waste form options. Currently, the GDSM team is investigating four main disposal environment options: mined repositories in three geologic media (salt, clay, and granite) and the deep borehole concept in crystalline rock (DOE 2010d). Further developed the individual generic disposal system (GDS) models for salt, granite, clay, and deep borehole disposal environments.

  6. Idaho CERCLA Disposal Facility at Idaho National Laboratory | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy CERCLA Disposal Facility at Idaho National Laboratory Idaho CERCLA Disposal Facility at Idaho National Laboratory Full Document and Summary Versions are available for download Idaho CERCLA Disposal Facility at Idaho National Laboratory (822.35 KB) Summary - Idaho CERCLA Disposal Facility (ICDF) at Idaho National Laboratory (49.03 KB) More Documents & Publications Environmental Management Waste Management Facility (EMWMF) at Oak Ridge Proposed On-Site Waste Disposal Facility

  7. Settlement of footing on compacted ash bed

    SciTech Connect (OSTI)

    Ramasamy, G.; Pusadkar, S.S.

    2007-11-15

    Compacted coal ash fills exhibit capillary stress due to contact moisture and preconsolidation stress due to the compaction process. As such, the conventional methods of estimating settlement of footing on cohesionless soils based on penetration tests become inapplicable in the case of footings on coal ash fills, although coal ash is also a cohesionless material. Therefore, a method of estimating load-settlement behavior of footings resting on coal ash fills accounting for the effect of capillary and preconsolidation stresses is presented here. The proposed method has been validated by conducting plate load tests on laboratory prepared compacted ash beds and comparing the observed and predicted load-settlement behavior. Overestimation of settlement greater than 100% occurs when capillary and preconsolidation stresses are not accounted for, as is the case in conventional methods.

  8. Remote vacuum compaction of compressible hazardous waste

    DOE Patents [OSTI]

    Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

    1998-10-06

    A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut. 8 figs.

  9. COMPACT ACCELERATOR CONCEPT FOR PROTON THERAPY

    SciTech Connect (OSTI)

    Caporaso, G; Sampayan, S; Chen, Y; Harris, J; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Nunnally, W; Paul, A; Poole, B; Rhodes, M; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J

    2006-08-18

    A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is being developed as a compact flash x-ray radiography source. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be presented.

  10. Remote vacuum compaction of compressible hazardous waste

    DOE Patents [OSTI]

    Coyne, Martin J.; Fiscus, Gregory M.; Sammel, Alfred G.

    1998-01-01

    A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

  11. NEVADA NATIONAL SECURITY SITE WASTE DISPOSAL OPERATIONS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SITE WASTE DISPOSAL OPERATIONS FY 2016 - QUARTER TWO DISPOSAL VOLUME REPORT DOE/NV/25946--2779 Data is a snapshot for the stated fiscal year and quarter and is considered preliminary until internal quality checks are completed. Report Run Date and Time: 6/8/2016 9:21 AM FY16 - Quarter 2 FY16 Cumulative FY16 - Quarter 2 FY16 Cumulative DOE APPROVED Waste Volume Volume DOE APPROVED Waste Volume Volume GENERATORS Type (Ft 3 ) (Ft 3 ) GENERATORS Type (Ft 3 ) (Ft 3 ) ABERDEEN PROVING GROUNDS (MD) LLW

  12. Disposal of bead ion exchange resin wastes

    SciTech Connect (OSTI)

    Gay, R.L.; Granthan, L.F.

    1985-12-17

    Bead ion exchange resin wastes are disposed of by a process which involves spray-drying a bead ion exchange resin waste in order to remove substantially all of the water present in such waste, including the water on the surface of the ion exchange resin beads and the water inside the ion exchange resin beads. The resulting dried ion exchange resin beads can then be solidified in a suitable solid matrix-forming material, such as a polymer, which solidifies to contain the dried ion exchange resin beads in a solid monolith suitable for disposal by burial or other conventional means.

  13. Electrochemical apparatus comprising modified disposable rectangular cuvette

    DOE Patents [OSTI]

    Dattelbaum, Andrew M; Gupta, Gautam; Morris, David E

    2013-09-10

    Electrochemical apparatus includes a disposable rectangular cuvette modified with at least one hole through a side and/or the bottom. Apparatus may include more than one cuvette, which in practice is a disposable rectangular glass or plastic cuvette modified by drilling the hole(s) through. The apparatus include two plates and some means of fastening one plate to the other. The apparatus may be interfaced with a fiber optic or microscope objective, and a spectrometer for spectroscopic studies. The apparatus are suitable for a variety of electrochemical experiments, including surface electrochemistry, bulk electrolysis, and flow cell experiments.

  14. Low-level radioactive-waste compacts. Status report as of July 1982

    SciTech Connect (OSTI)

    Not Available

    1982-07-01

    The Low-Level Radioactive Waste Policy Act (P.L. 96-573), enacted in December 1980, established as federal policy that states take responsibility for providing disposal capacity for low-level radioactive waste (LLW) generated within their borders, except for defense waste and Federal R and D. At the request of Senator James A. McClure, Chairman of the Senate Committee on Energy and Natural Resources, DOE has documented the progress of states individually and collectively in fulfilling their responsibilities under the Public Law. Regionalization through formation of low-level waste compacts has been the primary vehicle by which many states are assuming this responsibility. To date seven low-level waste compacts have been drafted and six have been enacted by state legislatures or ratified by a governor. As indicated by national progress to date, DOE considers the task of compacting achievable by the January 1, 1986, exclusionary date set in law, although several states and NRC questioned this.

  15. Ecological evaluation of proposed dredged material from Winyah Bay, South Carolina

    SciTech Connect (OSTI)

    Ward, J.A.; Gardiner, W.W.; Pinza, M.R.; Word, J.Q.

    1993-10-01

    The navigational channels of Winyah Bay, Georgetown Harbor, South Carolina require dredging to enable normal shipping traffic to use these areas. Before dredging, environmental assessments must be conducted to determine the suitability of this dredged sediment for unconfined, open-water disposal. The Charleston, South Carolina District Office of the US Army Corps of Engineers (USACE) requested that the Battelle/Marine Science Laboratory (MSL) collect sediment samples and conduct the required physical/chemical, toxicological, and bioaccumulation evaluations as required in the 1991 Implementation Manual. This report is intended to provide information required to address potential ecological effects of the Entrance Channel and Inner Harbor sediments proposed disposal in the ocean.

  16. Compaction Scale Up and Optimization of Cylindrical Fuel Compacts for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Jeffrey J. Einerson; Jeffrey A. Phillips; Eric L. Shaber; Scott E. Niedzialek; W. Clay Richardson; Scott G. Nagley

    2012-10-01

    Multiple process approaches have been used historically to manufacture cylindrical nuclear fuel compacts. Scale-up of fuel compacting was required for the Next Generation Nuclear Plant (NGNP) project to achieve an economically viable automated production process capable of providing a minimum of 10 compacts/minute with high production yields. In addition, the scale-up effort was required to achieve matrix density equivalent to baseline historical production processes, and allow compacting at fuel packing fractions up to 46% by volume. The scale-up approach of jet milling, fluid-bed overcoating, and hot-press compacting adopted in the U.S. Advanced Gas Reactor (AGR) Fuel Development Program involves significant paradigm shifts to capitalize on distinct advantages in simplicity, yield, and elimination of mixed waste. A series of designed experiments have been completed to optimize compaction conditions of time, temperature, and forming pressure using natural uranium oxycarbide (NUCO) fuel. Results from these experiments are included. The scale-up effort is nearing completion with the process installed and operational using nuclear fuel materials. The process is being certified for manufacture of qualification test fuel compacts for the AGR-5/6/7 experiment at the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL).

  17. FODO-Supercell Based Compact Ring Design with Tunable Momentum Compaction and Optimized Dynamic Aperture

    SciTech Connect (OSTI)

    Sun, Yipeng; /SLAC

    2012-05-11

    A storage ring with tunable momentum compaction has the advantage in achieving different RMS bunch length with similar RF capacity, which is potentially useful for many applications, such as linear collider damping ring and pre-damping ring where injected beam has a large energy spread and a large transverse emittance. A tunable bunch length also makes the commissioning and fine tuning easier in manipulating the single bunch instabilities. In this paper, a compact ring design based on a supercell is presented, which achieves a tunable momentum compaction while maintaining a large dynamic aperture.

  18. Compact imaging spectrometer utilizing immersed gratings

    DOE Patents [OSTI]

    Lerner, Scott A.

    2005-12-20

    A compact imaging spectrometer comprising an entrance slit for directing light, lens means for receiving the light, refracting the light, and focusing the light; an immersed diffraction grating that receives the light from the lens means and defracts the light, the immersed diffraction grating directing the detracted light back to the lens means; and a detector that receives the light from the lens means.

  19. Compact range for variable-zone measurements

    DOE Patents [OSTI]

    Burnside, Walter D.; Rudduck, Roger C.; Yu, Jiunn S.

    1988-08-02

    A compact range for testing antennas or radar targets includes a source for directing energy along a feedline toward a parabolic reflector. The reflected wave is a spherical wave with a radius dependent on the distance of the source from the focal point of the reflector.

  20. Compact range for variable-zone measurements

    DOE Patents [OSTI]

    Burnside, Walter D.; Rudduck, Roger C.; Yu, Jiunn S.

    1988-01-01

    A compact range for testing antennas or radar targets includes a source for directing energy along a feedline toward a parabolic reflector. The reflected wave is a spherical wave with a radius dependent on the distance of the source from the focal point of the reflector.

  1. Compact range for variable-zone measurements

    DOE Patents [OSTI]

    Burnside, W.D.; Rudduck, R.C.; Yu, J.S.

    1987-02-27

    A compact range for testing antennas or radar targets includes a source for directing energy along a feedline toward a parabolic reflector. The reflected wave is a spherical wave with a radius dependent on the distance of the source from the focal point of the reflector. 2 figs.

  2. Realisation of a compact methane optical clock

    SciTech Connect (OSTI)

    Gubin, M A; Kireev, A N; Konyashchenko, A V; Kryukov, P G; Tausenev, A V; Tyurikov, D A; Shelkovnikov, A S

    2008-07-31

    A compact optical clock based on a double-mode He-Ne/CH{sub 4} optical frequency standard and a femtosecond Er{sup 3+} fibre laser is realised and its stability against a commercial hydrogen frequency standard is measured. (letters)

  3. Duluth co-disposal: Lessons learned

    SciTech Connect (OSTI)

    Law, I.J. )

    1988-10-01

    The Western Lake Superior Sanitary District (WLSSD) was formed to combat water pollution, not handle waste disposal. In 1971, the newly formed district hired an engineering firm to design a wastewater treatment facility, which resulted in the design of a 44 million gallon per day treatment plant in Duluth, home of about 70% of the districts residents. Sewage sludge from the wastewater process would be dried and burned in multiple hearth incinerators fired with No. 2 fuel oil. Design work was well underway when the 1973 oil embargo occurred, causing oil prices to quadruple, and oil or natural gas fuel to become non-existant for this type of usage. The engineers considered such fuels as coal, wood chips, and solid waste, and recommended solid waste in the form of refuse-derived fuel (RDF). The district obtained legislative authority in 1974 to control the solid waste stream in the area. All of this delayed design and construction of the sludge disposal portion of the project, but the rest of the treatment plant remained on schedule and was completed in 1978. The co-disposal portion was designed in 1975 and construction was essentially completed by November 1979. The total co-disposal project cost was about $20 million. This paper discusses special features of this system, operating problems, initial modifications, explosion hazards, and later modifications.

  4. Low level tank waste disposal study

    SciTech Connect (OSTI)

    Mullally, J.A.

    1994-09-29

    Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site.

  5. Process for the disposal of alkali metals

    DOE Patents [OSTI]

    Lewis, Leroy C.

    1977-01-01

    Large quantities of alkali metals may be safely reacted for ultimate disposal by contact with a hot concentrated caustic solution. The alkali metals react with water in the caustic solution in a controlled reaction while steam dilutes the hydrogen formed by the reaction to a safe level.

  6. Solving the problems of infectious waste disposal

    SciTech Connect (OSTI)

    Hoffman, S.L.; Cabral, N.J. )

    1989-06-01

    Lawmakers are increasing pressures to ensure safe, appropriate disposal of infectious waste. This article discusses the problems, the regulatory climate, innovative approaches, and how to pay for them. The paper discusses the regulatory definition of infectious waste, federal and state regulations, and project finance.

  7. Land Disposal Restrictions (LDR) program overview

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    The Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation and Recovery Act (RCRA) enacted in 1984 required the Environmental Protection Agency (EPA) to evaluate all listed and characteristic hazardous wastes according to a strict schedule and to develop requirements by which disposal of these wastes would be protective of human health and the environment. The implementing regulations for accomplishing this statutory requirement are established within the Land Disposal Restrictions (LDR) program. The LDR regulations (40 CFR Part 268) impose significant requirements on waste management operations and environmental restoration activities at DOE sites. For hazardous wastes restricted by statute from land disposal, EPA is required to set levels or methods of treatment that substantially reduce the waste`s toxicity or the likelihood that the waste`s hazardous constituents will migrate. Upon the specified LDR effective dates, restricted wastes that do not meet treatment standards are prohibited from land disposal unless they qualify for certain variances or exemptions. This document provides an overview of the LDR Program.

  8. ORAU South Campus Facility

    Broader source: Energy.gov [DOE]

    This document explains the cleanup activities and any use limitations for the land surrounding the ORAU South Campus Facility.

  9. COMPILATION OF DISPOSABLE SOLID WASTE CASK EVALUATIONS

    SciTech Connect (OSTI)

    THIELGES, J.R.; CHASTAIN, S.A.

    2007-06-21

    The Disposable Solid Waste Cask (DSWC) is a shielded cask capable of transporting, storing, and disposing of six non-fuel core components or approximately 27 cubic feet of radioactive solid waste. Five existing DSWCs are candidates for use in storing and disposing of non-fuel core components and radioactive solid waste from the Interim Examination and Maintenance Cell, ultimately shipping them to the 200 West Area disposal site for burial. A series of inspections, studies, analyses, and modifications were performed to ensure that these casks can be used to safely ship solid waste. These inspections, studies, analyses, and modifications are summarized and attached in this report. Visual inspection of the casks interiors provided information with respect to condition of the casks inner liners. Because water was allowed to enter the casks for varying lengths of time, condition of the cask liner pipe to bottom plate weld was of concern. Based on the visual inspection and a corrosion study, it was concluded that four of the five casks can be used from a corrosion standpoint. Only DSWC S/N-004 would need additional inspection and analysis to determine its usefulness. The five remaining DSWCs underwent some modification to prepare them for use. The existing cask lifting inserts were found to be corroded and deemed unusable. New lifting anchor bolts were installed to replace the existing anchors. Alternate lift lugs were fabricated for use with the new lifting anchor bolts. The cask tiedown frame was modified to facilitate adjustment of the cask tiedowns. As a result of the above mentioned inspections, studies, analysis, and modifications, four of the five existing casks can be used to store and transport waste from the Interim Examination and Maintenance Cell to the disposal site for burial. The fifth cask, DSWC S/N-004, would require further inspections before it could be used.

  10. Walworth County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    A. Places in Walworth County, South Dakota Akaska, South Dakota Glenham, South Dakota Java, South Dakota Lowry, South Dakota Mobridge, South Dakota Selby, South Dakota Retrieved...

  11. Laurens County, South Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Clinton, South Carolina Cross Hill, South Carolina Fountain Inn, South Carolina Gray Court, South Carolina Joanna, South Carolina Laurens, South Carolina Mountville, South...

  12. Day County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    A. Places in Day County, South Dakota Andover, South Dakota Bristol, South Dakota Butler, South Dakota Grenville, South Dakota Lily, South Dakota Pierpont, South Dakota...

  13. Codington County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Glacial Lakes Energy Places in Codington County, South Dakota Florence, South Dakota Henry, South Dakota Kranzburg, South Dakota South Shore, South Dakota Wallace, South Dakota...

  14. Lexington County, South Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Carolina Oak Grove, South Carolina Pelion, South Carolina Pine Ridge, South Carolina Red Bank, South Carolina Seven Oaks, South Carolina South Congaree, South Carolina...

  15. Beadle County, South Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    A. Places in Beadle County, South Dakota Broadland, South Dakota Cavour, South Dakota Hitchcock, South Dakota Huron, South Dakota Iroquois, South Dakota Virgil, South Dakota...

  16. Disposal options for burner ash from spent graphite fuel. Final study report November 1993

    SciTech Connect (OSTI)

    Pinto, A.P.

    1994-08-01

    Three major disposal alternatives are being considered for Fort St. Vrain Reactor (FSVR) and Peach Bottom Reactor (PBR) spent fuels: direct disposal of packaged, intact spent fuel elements; (2) removal of compacts to separate fuel into high-level waste (HLW) and low-level waste (LLW); and (3) physical/chemical processing to reduce waste volumes and produce stable waste forms. For the third alternative, combustion of fuel matrix graphite and fuel particle carbon coatings is a preferred technique for head-end processing as well as for volume reduction and chemical pretreatment prior to final fixation, packaging, and disposal of radioactive residuals (fissile and fertile materials together with fission and activation products) in a final repository. This report presents the results of a scoping study of alternate means for processing and/or disposal of fissile-bearing particles and ash remaining after combustion of FSVR and PBR spent graphite fuels. Candidate spent fuel ash (SFA) waste forms in decreasing order of estimated technical feasibility include glass-ceramics (GCs), polycrystalline ceramic assemblages (PCAs), and homogeneous amorphous glass. Candidate SFA waste form production processes in increasing order of estimated effort and cost for implementation are: low-density GCs via fuel grinding and simultaneous combustion and waste form production in a slagging cyclone combustor (SCC); glass or low-density GCs via fluidized bed SFA production followed by conventional melting of SFA and frit; PCAs via fluidized bed SFA production followed by hot isostatic pressing (HIPing) of SFA/frit mixtures; and high-density GCs via fluidized bed SFA production followed by HIPing of Calcine/Frit/SFA mixtures.

  17. Reference design and operations for deep borehole disposal of high-level radioactive waste.

    SciTech Connect (OSTI)

    Herrick, Courtney Grant; Brady, Patrick Vane; Pye, Steven; Arnold, Bill Walter; Finger, John Travis; Bauer, Stephen J.

    2011-10-01

    A reference design and operational procedures for the disposal of high-level radioactive waste in deep boreholes have been developed and documented. The design and operations are feasible with currently available technology and meet existing safety and anticipated regulatory requirements. Objectives of the reference design include providing a baseline for more detailed technical analyses of system performance and serving as a basis for comparing design alternatives. Numerous factors suggest that deep borehole disposal of high-level radioactive waste is inherently safe. Several lines of evidence indicate that groundwater at depths of several kilometers in continental crystalline basement rocks has long residence times and low velocity. High salinity fluids have limited potential for vertical flow because of density stratification and prevent colloidal transport of radionuclides. Geochemically reducing conditions in the deep subsurface limit the solubility and enhance the retardation of key radionuclides. A non-technical advantage that the deep borehole concept may offer over a repository concept is that of facilitating incremental construction and loading at multiple perhaps regional locations. The disposal borehole would be drilled to a depth of 5,000 m using a telescoping design and would be logged and tested prior to waste emplacement. Waste canisters would be constructed of carbon steel, sealed by welds, and connected into canister strings with high-strength connections. Waste canister strings of about 200 m length would be emplaced in the lower 2,000 m of the fully cased borehole and be separated by bridge and cement plugs. Sealing of the upper part of the borehole would be done with a series of compacted bentonite seals, cement plugs, cement seals, cement plus crushed rock backfill, and bridge plugs. Elements of the reference design meet technical requirements defined in the study. Testing and operational safety assurance requirements are also defined. Overall

  18. Maintenance Guide for DOE Low-Level Waste Disposal Facility ...

    Broader source: Energy.gov (indexed) [DOE]

    Maintenance Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses Maintenance Guide for DOE Low-Level Waste Disposal ...

  19. Grout treatment facility land disposal restriction management plan

    SciTech Connect (OSTI)

    Hendrickson, D.W.

    1991-04-04

    This document establishes management plans directed to result in the land disposal of grouted wastes at the Hanford Grout Facilities in compliance with Federal, State of Washington, and Department of Energy land disposal restrictions. 9 refs., 1 fig.

  20. DOE Issues Final Environmental Impact Statement for Disposal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Impact Statement for Disposal of Greater-Than-Class C Waste DOE Issues Final Environmental Impact Statement for Disposal of Greater-Than-Class C Waste February 25, ...

  1. DOE Selects Two Contractors for Multiple-Award Waste Disposal...

    Office of Environmental Management (EM)

    Selects Two Contractors for Multiple-Award Waste Disposal Contract DOE Selects Two Contractors for Multiple-Award Waste Disposal Contract April 12, 2013 - 12:00pm Addthis Media ...

  2. International Collaboration Activities in Different Geologic Disposal Environments

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report describes the current status of international collaboration regarding geologic disposal research in the Used Fuel Disposition (UFD) Campaign.  To date, UFD’s International Disposal R...

  3. Maintenance Guide for DOE Low-Level Waste Disposal Facility

    Office of Environmental Management (EM)

    Maintenance Guide for U.S. Department of Energy Low-Level Waste Disposal Facility ... for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments ...

  4. Low-Level Waste Disposal Facility Federal Review Group Manual

    Office of Environmental Management (EM)

    LEVEL WASTE DISPOSAL FACILITY FEDERAL REVIEW GROUP MANUAL REVISION 3 JUNE 2008 (This page ... 3, June 200S Concurrence The Low-Level Waste Disposal Facility Federal Review Group ...

  5. NNSS Waste Disposal Proves Vital Resource for DOE Complex | Department...

    Office of Environmental Management (EM)

    Waste Disposal Proves Vital Resource for DOE Complex NNSS Waste Disposal Proves Vital Resource for DOE Complex March 20, 2013 - 12:00pm Addthis The Area 5 Radioactive Waste ...

  6. Salt Waste Disposal at the Savannah River Site | Department of...

    Office of Environmental Management (EM)

    Salt Waste Disposal at the Savannah River Site Salt Waste Disposal at the Savannah River Site Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal ...

  7. Development of Compact Gaseous Sensors with Internal Reference for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monitoring O2 and NOx in Combustion Environments | Department of Energy Compact Gaseous Sensors with Internal Reference for Monitoring O2 and NOx in Combustion Environments Development of Compact Gaseous Sensors with Internal Reference for Monitoring O2 and NOx in Combustion Environments Compact sensors have been developed to allow for real-time monitoring of O2 and NOx during combustion. deer08_singh.pdf (396.99 KB) More Documents & Publications Compact Electrochemical Bi-functional

  8. Method and system for compact efficient laser architecture

    DOE Patents [OSTI]

    Bayramian, Andrew James; Erlandson, Alvin Charles; Manes, Kenneth Rene; Spaeth, Mary Louis; Caird, John Allyn; Deri, Robert J.

    2015-09-15

    A laser amplifier module having an enclosure includes an input window, a mirror optically coupled to the input window and disposed in a first plane, and a first amplifier head disposed along an optical amplification path adjacent a first end of the enclosure. The laser amplifier module also includes a second amplifier head disposed along the optical amplification path adjacent a second end of the enclosure and a cavity mirror disposed along the optical amplification path.

  9. Recommendation 223: Recommendations on Additional Waste Disposal Capacity |

    Office of Environmental Management (EM)

    Department of Energy 3: Recommendations on Additional Waste Disposal Capacity Recommendation 223: Recommendations on Additional Waste Disposal Capacity ORSSAB's recommendations encourage DOE to continue planning for an additional on-site disposal facility for low-level waste and that a second facility be placed in an area already used for similar waste disposal. Recommendation 223 (51.59 KB) Response to Recommendation 223 (779.96 KB) More Documents & Publications ORSSAB Meeting -

  10. ADMINISTRATIVE RECORDS SCHEDULE 4: PROPERTY DISPOSAL RECORDS (Revision 2) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 4: PROPERTY DISPOSAL RECORDS (Revision 2) ADMINISTRATIVE RECORDS SCHEDULE 4: PROPERTY DISPOSAL RECORDS (Revision 2) These records pertain to the sales by agencies of real and personal property surplus to the needs of the Government. ADMINISTRATIVE RECORDS SCHEDULE 4: PROPERTY DISPOSAL RECORDS (Revision 2) (13.24 KB) More Documents & Publications PROPERTY DISPOSAL RECORDS ADMINISTRATIVE RECORDS: PROCUREMENT, SUPPLY, AND GRANT RECORDS ADMINISTRATIVE RECORDS SCHEDULE 3:

  11. Crushing leads to waste disposal savings for FUSRAP

    SciTech Connect (OSTI)

    Darby, J.

    1997-02-01

    In this article the author discusses the application of a rock crusher as a means of implementing cost savings in the remediation of FUSRAP sites. Transportation and offsite disposal costs are at present the biggest cost items in the remediation of FUSRAP sites. If these debris disposal problems can be handled in different manners, then remediation savings are available. Crushing can result in the ability to handle some wastes as soil disposal problems, which have different disposal regulations, thereby permitting cost savings.

  12. Operational Issues at the Environmental Restoration Disposal Facility at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hanford | Department of Energy Operational Issues at the Environmental Restoration Disposal Facility at Hanford Operational Issues at the Environmental Restoration Disposal Facility at Hanford Full Document and Summary Versions are available for download Operational Issues at the Environmental Restoration Disposal Facility at Hanford (238.34 KB) Summary - Operational Issues at the Environmental Restoration Disposal Facility (ERDF) at Hanford (56.27 KB) More Documents & Publications Idaho

  13. DOE - Office of Legacy Management -- Burro Canyon Disposal Cell - 007

    Office of Legacy Management (LM)

    Burro Canyon Disposal Cell - 007 FUSRAP Considered Sites Site: Burro Canyon Disposal Cell (007) Remediated; managed by DOE LM. More information at http://www.lm.doe.gov/Slick_Rock/Processing/Sites.aspx Designated Name: Not Designated under FUSRAP Alternate Name: Slick Rock, CO, Disposal Site Location: San Miguel County, Colorado Evaluation Year: Not considered for FUSRAP - in another program Site Operations: Uranium mill tailings disposal Site Disposition: Remediated under UMTRCA Title I

  14. Acceptance of Classified Excess Components for Disposal at Area 5

    SciTech Connect (OSTI)

    Poling, Jeanne; Saad, Max

    2012-04-09

    This slide-show discusses weapons dismantlement and disposal, issues related to classified waste and their solutions.

  15. January 28, 2016 Webinar - Borehole Disposal of Spent Radioactive Sources |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy January 28, 2016 Webinar - Borehole Disposal of Spent Radioactive Sources January 28, 2016 Webinar - Borehole Disposal of Spent Radioactive Sources Performance & RIsk Assessment (P&RA) Community of Practice (CoP) Webinar - January 28, 2016 - Borehole Disposal of Spent Radioactive Sources (Dr. Matt Kozak, INTERA). Webinar Recording Agenda & Webinar Instructions - January 28, 2016 - P&RA CoP Webinar (117.24 KB) Borehole Disposal of Spent Sources (BOSS)

  16. Compact Potentiometric O2/NOx Sensor | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    12 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting pm043_singh_2012_o.pdf (1.97 MB) More Documents & Publications Compact Potentiometric NOx Sensor Compact Potentiometric NOx Sensor Compact Potentiometric NOx

  17. A Remote Absorption Process for Disposal of Evaporate and Reverse Osmosis Concentrates

    SciTech Connect (OSTI)

    Brunsell, D.A.

    2008-07-01

    Many commercial nuclear plants and DOE facilities generate secondary waste streams consisting of evaporator bottoms and reverse osmosis (RO) concentrate. Since liquids are not permitted in disposal facilities, these waste streams must be converted to dry solids, either by evaporation to dried solids or by solidification to liquid-free solids. Evaporation of the liquid wastes reduces their volume, but requires costly energy and capital equipment. In some cases, concentration of the contaminants during drying can cause the waste to exceed Class A waste for nuclear utilities or exceed DOE transuranic limits. This means that disposal costs will be increased, or that, when the Barnwell, SC disposal site closes to waste outside of the Atlantic Compact in July 2008, the waste will be precluded from disposal for the foreseeable future). Solidification with cement agents requires less energy and equipment than drying, but results in a volume increase of 50-100%. The doubling or tripling of waste weight, along with the increased volume, sharply increases shipping and disposal costs. Confronted with these unattractive alternatives, Diversified Technologies Services (DTS), in conjunction with selected nuclear utilities and D and D operations at Rocky Flats, undertook an exploratory effort to convert this liquid wastewater to a solid without using cement. This would avoid the bulking effect of cement, and permit the waste to be disposed of the Energy Solutions facility in Utah as well as some DOE facilities. To address the need for an attractive alternative to drying and cement solidification, a test program was developed using a polymer absorbent media to convert the concentrate streams to a liquid-free waste form that meets the waste acceptance criteria of the pertinent burial sites. Two approaches for mixing the polymer with the liquid were tested: mechanical mixing and in-situ incorporation. As part of this test program, a process control program (PCP) was developed that is

  18. A nonlinear compaction model for sandstone

    SciTech Connect (OSTI)

    Fahrenthold, E.P.; Gray, K.E.

    1986-06-01

    Constitutive relations for the compaction behavior of porous sandstone have been formulated to describe the results of uniaxial and triaxial tests under reservoir pressure and temperature conditions. An expression for loading behavior in uniaxial compression is derived by treating the loading modulus as an independent variable. Similar relations are derived for uniaxial and triaxial compaction tests. Elastic unloading takes a quadratic form when described by incremental stresses and strains. The constitutive equations relate the values of the incremental stress and strain on loading and unloading using parameters that are a function of the state of prestress in the material. Published data on samples cored from three different wells at various depths exhibited a similar dependence of rock properties on mechanical and pore pressure loads.

  19. Compact fast analyzer of rotary cuvette type

    DOE Patents [OSTI]

    Thacker, Louis H.

    1976-01-01

    A compact fast analyzer of the rotary cuvette type is provided for simultaneously determining concentrations in a multiplicity of discrete samples using either absorbance or fluorescence measurement techniques. A rigid, generally rectangular frame defines optical passageways for the absorbance and fluorescence measurement systems. The frame also serves as a mounting structure for various optical components as well as for the cuvette rotor mount and drive system. A single light source and photodetector are used in making both absorbance and fluorescence measurements. Rotor removal and insertion are facilitated by a swing-out drive motor and rotor mount. BACKGROUND OF THE INVENTION The invention relates generally to concentration measuring instruments and more specifically to a compact fast analyzer of the rotary cuvette type which is suitable for making either absorbance or fluorescence measurements. It was made in the course of, or under, a contract with the U.S. Atomic Energy Commission.

  20. Compact simulators can improve fossil plant operation

    SciTech Connect (OSTI)

    Fray, R.; Divakaruni, S.M. )

    1995-01-01

    This article examines new and affordable technology that can simulate operations in real time and is finding application across a broad spectrum of power plant designs. A significant breakthrough for utilities, compact simulator technology, has reduced the cost of replica simulators by a factor of five to 10. This affordable technology, combined with innovative software developments, can realistically simulate the operation of fossil power plants in real time on low-cost PC or workstation platforms.

  1. Compact quiescent galaxies at intermediate redshifts {sup ,}

    SciTech Connect (OSTI)

    Hsu, Li-Yen; Stockton, Alan; Shih, Hsin-Yi

    2014-12-01

    From several searches of the area common to the Sloan Digital Sky Survey and the United Kingdom Infrared Telescope Infrared Deep Sky Survey, we have selected 22 luminous galaxies between z ? 0.4 and z ? 0.9 that have colors and sizes similar to those of the compact quiescent galaxies at z > 2. By exploring structural parameters and stellar populations, we found that most of these galaxies actually formed most of their stars at z < 2 and are generally less compact than those found at z > 2. Several of these young objects are disk-like or possibly prolate. This lines up with several previous studies that found that massive quiescent galaxies at high redshifts often have disk-like morphologies. If these galaxies were to be confirmed to be disk-like, their formation mechanism must be able to account for both compactness and disks. On the other hand, if these galaxies were to be confirmed to be prolate, the fact that prolate galaxies do not exist in the local universe would indicate that galaxy formation mechanisms have evolved over cosmic time. We also found five galaxies forming over 80% of their stellar masses at z > 2. Three of these galaxies appear to have been modified to have spheroid-like morphologies, in agreement with the scenario of 'inside-out' buildup of massive galaxies. The remaining galaxies, SDSS J014355.21+133451.4 and SDSS J115836.93+021535.1, have truly old stellar populations and disk-like morphologies. These two objects would be good candidates for nearly unmodified compact quiescent galaxies from high redshifts that are worth future study.

  2. Application of Generic Disposal System Models

    SciTech Connect (OSTI)

    Mariner, Paul; Hammond, Glenn Edward; Sevougian, S. David; Stein, Emily

    2015-11-01

    This report describes specific GDSA activities in fiscal year 2015 (FY2015) toward the development of the enhanced disposal system modeling and analysis capability for geologic disposal of nuclear waste. The GDSA framework employs the PFLOTRAN thermal-hydrologic-chemical multi-physics code (Hammond et al., 2011) and the Dakota uncertainty sampling and propagation code (Adams et al., 2013). Each code is designed for massively-parallel processing in a high-performance computing (HPC) environment. Multi-physics representations in PFLOTRAN are used to simulate various coupled processes including heat flow, fluid flow, waste dissolution, radionuclide release, radionuclide decay and ingrowth, precipitation and dissolution of secondary phases, and radionuclide transport through the engineered barriers and natural geologic barriers to a well location in an overlying or underlying aquifer. Dakota is used to generate sets of representative realizations and to analyze parameter sensitivity.

  3. Compact x-ray source and panel

    DOE Patents [OSTI]

    Sampayon, Stephen E.

    2008-02-12

    A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

  4. Environmental Restoration Disposal Facility - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Restoration Disposal Facility About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration

  5. Public attitudes toward garbage disposal. Special report

    SciTech Connect (OSTI)

    1990-05-03

    This document is meant to inform the reader about the results of the National Solid Waste Management Association`s opinion research which focused on public attitudes toward recycling, garbage disposal, waste-to-energy, and other waste management concerns. The general public and opinion leaders were asked a wide range of questions about managing our nation`s solid waste and their responses are listed in percentages.

  6. Specialized Disposal Sites for Different Reprocessing Plant Wastes

    SciTech Connect (OSTI)

    Forsberg, Charles W.; Driscoll, Michael J.

    2007-07-01

    Once-through fuel cycles have one waste form: spent nuclear fuel (SNF). In contrast, the reprocessed SNF yields multiple wastes with different chemical, physical, and radionuclide characteristics. The different characteristics of each waste imply that there are potential cost and performance benefits to developing different disposal sites that match the disposal requirements of different waste. Disposal sites as defined herein may be located in different geologies or in a single repository containing multiple sections, each with different characteristics. The paper describes disposal options for specific wastes and the potential for a waste management system that better couples various reprocessing plant wastes with disposal facilities. (authors)

  7. Steam plant ash disposal facility and industrial landfill at the Y-12 Plant, Anderson County, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    The US Department of Energy (DOE) is proposing to install a wet ash handling system to dewater bottom ash from the coal-fired steam plant at its Y-12 Plant and to construct a new landfill for disposal of industrial wastes, including the dewatered bottom ash. The DOE operates three major facilities on its Oak Ridge Reservation (ORR). Operation of these facilities results in the production of a variety of nonhazardous, nonradioactive solid wastes (approximately 300 m{sup 3} per day, compacted) including sanitary wastes, common industrial wastes and construction debris. At the current rate of use, this existing landfill will be filled within approximately 18 months, and more space is urgently needed. In an effort to alleviate this problem, DOE and WMD management propose to create additional landfill facilities at a nearby site. The potential environmental impacts associated with this proposed action are the subject of this environmental assessment (EA).

  8. Microsoft Word - DisposalInSaltDifferentThanDisposalInWIPP.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Issues Statement Concerning Debates Over Waste Disposal in Salt CARLSBAD, N.M., July 24, 2009 - The U.S. Department of Energy and its Carlsbad Field Office recognize and respect the long history that led to the current regulations that govern operations at the Waste Isolation Pilot Plant (WIPP). The WIPP is authorized to ship and dispose of transuranic (TRU) waste that was created by U.S. defense programs. TRU waste is a category of waste strictly defined by legislation and legal agreements.

  9. Compact Imaging Spectrometer Utilizing Immersed Gratings

    DOE Patents [OSTI]

    Chrisp, Michael P.; Lerner, Scott A.; Kuzmenko, Paul J.; Bennett, Charles L.

    2006-03-21

    A compact imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The imaging spectrometer comprises an entrance slit for transmitting light, a system for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the system for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the system for receiving the light and the system for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light through an optical element to the detector array.

  10. Impact compaction of a granular material

    SciTech Connect (OSTI)

    Fenton, Gregg; Asay, Blaine; Dalton, Devon

    2015-05-19

    The dynamic behavior of granular materials has importance to a variety of engineering applications. Structural seismic coupling, planetary science, and earth penetration mechanics, are just a few of the application areas. Although the mechanical behavior of granular materials of various types have been studied extensively for several decades, the dynamic behavior of such materials remains poorly understood. High-quality experimental data are needed to improve our general understanding of granular material compaction physics. This study will describe how an instrumented plunger impact system can be used to measure pressure-density relationships for model materials at high and controlled strain rates and subsequently used for computational modeling.

  11. Raytheon's next generation compact inline cryocooler architecture

    SciTech Connect (OSTI)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T.

    2014-01-29

    Since the 1970s, Raytheon has developed, built, tested and integrated high performance cryocoolers. Our versatile designs for single and multi-stage cryocoolers provide reliable operation for temperatures from 10 to 200 Kelvin with power levels ranging from 50 W to nearly 600 W. These advanced cryocoolers incorporate clearance seals, flexure suspensions, hermetic housings and dynamic balancing to provide long service life and reliable operation in all relevant environments. Today, sensors face a multitude of cryocooler integration challenges such as exported disturbance, efficiency, scalability, maturity, and cost. As a result, cryocooler selection is application dependent, oftentimes requiring extensive trade studies to determine the most suitable architecture. To optimally meet the needs of next generation passive IR sensors, the Compact Inline Raytheon Stirling 1-Stage (CI-RS1), Compact Inline Raytheon Single Stage Pulse Tube (CI-RP1) and Compact Inline Raytheon Hybrid Stirling/Pulse Tube 2-Stage (CI-RSP2) cryocoolers are being developed to satisfy this suite of requirements. This lightweight, compact, efficient, low vibration cryocooler combines proven 1-stage (RS1 or RP1) and 2-stage (RSP2) cold-head architectures with an inventive set of warm-end mechanisms into a single cooler module, allowing the moving mechanisms for the compressor and the Stirling displacer to be consolidated onto a common axis and in a common working volume. The CI cryocooler is a significant departure from the current Stirling cryocoolers in which the compressor mechanisms are remote from the Stirling displacer mechanism. Placing all of the mechanisms in a single volume and on a single axis provides benefits in terms of package size (30% reduction), mass (30% reduction), thermodynamic efficiency (>20% improvement) and exported vibration performance (≤25 mN peak in all three orthogonal axes at frequencies from 1 to 500 Hz). The main benefit of axial symmetry is that proven balancing

  12. Review of Yucca Mountain Disposal Criticality Studies

    SciTech Connect (OSTI)

    Scaglione, John M; Wagner, John C

    2011-01-01

    The U.S. Department of Energy (DOE), Office of Civilian Radioactive Waste Management, submitted a license application for construction authorization of a deep geologic repository at Yucca Mountain, Nevada, in June of 2008. The license application is currently under review by the U.S. Nuclear Regulatory Commission. However,on March 3, 2010 the DOE filed a motion requesting withdrawal of the license application. With the withdrawal request and the development of the Blue Ribbon Commission to seek alternative strategies for disposing of spent fuel, the status of the proposed repository at Yucca Mountain is uncertain. What is certain is that spent nuclear fuel (SNF) will continue to be generated and some long-lived components of the SNF will eventually need a disposition path(s). Strategies for the back end of the fuel cycle will continue to be developed and need to include the insights from the experience gained during the development of the Yucca Mountain license application. Detailed studies were performed and considerable progress was made in many key areas in terms of increased understanding of relevant phenomena and issues regarding geologic disposal of SNF. This paper reviews selected technical studies performed in support of the disposal criticality analysis licensing basis and the use of burnup credit. Topics include assembly misload analysis, isotopic and criticality validation, commercial reactor critical analyses, loading curves, alternative waste package and criticality control studies, radial burnup data and effects, and implementation of a conservative application model in the criticality probabilistic evaluation as well as other information that is applicable to operations regarding spent fuel outside the reactor. This paper summarizes the work and significant accomplishments in these areas and provides a resource for future, related activities.

  13. Release and disposal of materials during decommissioning of Siemens MOX fuel fabrication plant at Hanau, Germany

    SciTech Connect (OSTI)

    Koenig, Werner; Baumann, Roland

    2007-07-01

    In September 2006, decommissioning and dismantling of the Siemens MOX Fuel Fabrication Plant in Hanau were completed. The process equipment and the fabrication buildings were completely decommissioned and dismantled. The other buildings were emptied in whole or in part, although they were not demolished. Overall, the decommissioning process produced approximately 8500 Mg of radioactive waste (including inactive matrix material); clearance measurements were also performed for approximately 5400 Mg of material covering a wide range of types. All the equipment in which nuclear fuels had been handled was disposed of as radioactive waste. The radioactive waste was conditioned on the basis of the requirements specified for the projected German final disposal site 'Schachtanlage Konrad'. During the pre-conditioning, familiar processes such as incineration, compacting and melting were used. It has been shown that on account of consistently applied activity containment (barrier concept) during operation and dismantling, there has been no significant unexpected contamination of the plant. Therefore almost all the materials that were not a priori destined for radioactive waste were released without restriction on the basis of the applicable legal regulations (chap. 29 of the Radiation Protection Ordinance), along with the buildings and the plant site. (authors)

  14. Compact solid source of hydrogen gas

    DOE Patents [OSTI]

    Kravitz, Stanley H.; Hecht, Andrew M.; Sylwester, Alan P.; Bell, Nelson S.

    2004-06-08

    A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

  15. Marlboro County, South Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Marlboro County, South Carolina Bennettsville, South Carolina Blenheim, South Carolina Clio, South Carolina McColl, South Carolina Tatum, South Carolina Retrieved from "http:...

  16. Aiken County, South Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Burnettown, South Carolina Clearwater, South Carolina Gloverville, South Carolina Jackson, South Carolina Monetta, South Carolina New Ellenton, South Carolina North Augusta,...

  17. Horry County, South Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Loris, South Carolina Myrtle Beach, South Carolina North Myrtle Beach, South Carolina Red Hill, South Carolina Socastee, South Carolina Surfside Beach, South Carolina Retrieved...

  18. Roberts County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Country Ethanol LLC Places in Roberts County, South Dakota Claire City, South Dakota Corona, South Dakota New Effington, South Dakota Ortley, South Dakota Peever, South Dakota...

  19. Bon Homme County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Homme County, South Dakota Broin Enterprises Places in Bon Homme County, South Dakota Avon, South Dakota Scotland, South Dakota Springfield, South Dakota Tabor, South Dakota...

  20. Douglas County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    County, South Dakota Armour, South Dakota Corsica, South Dakota Delmont, South Dakota Harrison, South Dakota New Holland, South Dakota Retrieved from "http:en.openei.orgw...

  1. Faulk County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Onaka, South Dakota Orient, South Dakota Pulaski, South Dakota Rockham, South Dakota Seneca, South Dakota Southwest Faulk, South Dakota Retrieved from "http:en.openei.orgw...

  2. Oconee County, South Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Climate Zone Subtype A. Places in Oconee County, South Carolina Salem, South Carolina Seneca, South Carolina Utica, South Carolina Walhalla, South Carolina West Union, South...

  3. Beaufort County, South Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Burton, South Carolina Hilton Head Island, South Carolina Laurel Bay, South Carolina Port Royal, South Carolina Shell Point, South Carolina Yemassee, South Carolina Retrieved...

  4. Lancaster County, South Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    County, South Carolina Fort Mill, South Carolina Heath Springs, South Carolina Irwin, South Carolina Kershaw, South Carolina Lancaster Mill, South Carolina Lancaster,...

  5. Lincoln County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    South Dakota Hudson, South Dakota Lennox, South Dakota Sioux Falls, South Dakota Tea, South Dakota Worthing, South Dakota Retrieved from "http:en.openei.orgw...

  6. Charles Mix County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Zone Subtype A. Places in Charles Mix County, South Dakota Castalia, South Dakota Dante, South Dakota Geddes, South Dakota Lake Andes, South Dakota Marty, South Dakota...

  7. Transuranic waste disposal in the United State

    SciTech Connect (OSTI)

    Thompson, J.D.

    1986-01-01

    The US is unique in having created a special class of radioactive waste disposal based on the concentration of transuranic (TRU) elements in the waste. Since 1970, the US has been placing newly generated TRU waste in retrievable storage. It is intended that these wastes will be placed in a permanent deep geologic repository, the Waste Isolation Pilot Plant (WIPP). The WIPP opening for a demonstration emplacement period is set for October 1988. Transuranic wastes derive from some of the manufacturing and research activities carried out by the US Department of Energy (DOE). The bulk of this waste is generated in plutonium parts fabrication activities. A variety of plutonium-contaminated materials ranging from glove boxes, high-efficiency particulate air filters, and machine tools, to chemical sludges derived from plutonium recovery streams are stored as TRU wastes. Other processes that generate TRU waste are plutonium production operations, preparation for and cleanup from fuel reprocessing, manufacturing of plutonium heat sources, and nuclear fuel cycle research activities. Extensive procedures will be used to examine and prepare waste before it is placed in the WIPP for disposal. After the WIPP opens, certified waste will be transported to it and emplaced in the repository.

  8. Iraq nuclear facility dismantlement and disposal project

    SciTech Connect (OSTI)

    Cochran, J.R.; Danneels, J.; Kenagy, W.D.; Phillips, C.J.; Chesser, R.K.

    2007-07-01

    The Al Tuwaitha nuclear complex near Baghdad contains a significant number of nuclear facilities from Saddam Hussein's dictatorship. Because of past military operations, lack of upkeep and looting there is now an enormous radioactive waste problem at Al Tuwaitha. Al Tuwaitha contains uncharacterised radioactive wastes, yellow cake, sealed radioactive sources, and contaminated metals. The current security situation in Iraq hampers all aspects of radioactive waste management. Further, Iraq has never had a radioactive waste disposal facility, which means that ever increasing quantities of radioactive waste and material must be held in guarded storage. The Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) has been initiated by the U.S. Department of State (DOS) to assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials, while building human capacities so that the GOI can manage other environmental cleanups in their country. The DOS has funded the International Atomic Energy Agency (IAEA) to provide technical assistance to the GOI via a Technical Cooperation Project. Program coordination will be provided by the DOS, consistent with U.S. and GOI policies, and Sandia National Laboratories will be responsible for coordination of participants and for providing waste management support. Texas Tech University will continue to provide in-country assistance, including radioactive waste characterization and the stand-up of the Iraq Nuclear Services Company. The GOI owns the problems in Iraq and will be responsible for the vast majority of the implementation of the NDs Program. (authors)

  9. REGULATIONS ON PHOTOVOLTAIC MODULE DISPOSAL AND RECYCLING.

    SciTech Connect (OSTI)

    FTHENAKIS,V.

    2001-01-29

    Environmental regulations can have a significant impact on product use, disposal, and recycling. This report summarizes the basic aspects of current federal, state and international regulations which apply to end-of-life photovoltaic (PV) modules and PV manufacturing scrap destined for disposal or recycling. It also discusses proposed regulations for electronics that may set the ground of what is to be expected in this area in the near future. In the US, several states have started programs to support the recycling of electronic equipment, and materials destined for recycling often are excepted from solid waste regulations during the collection, transfer, storage and processing stages. California regulations are described separately because they are different from those of most other states. International agreements on the movement of waste between different countries may pose barriers to cross-border shipments. Currently waste moves freely among country members of the Organization of Economic Cooperation and Development (OECD), and between the US and the four countries with which the US has bilateral agreements. However, it is expected, that the US will adopt the rules of the Basel Convention (an agreement which currently applies to 128 countries but not the US) and that the Convection's waste classification system will influence the current OECD waste-handling system. Some countries adopting the Basel Convention consider end-of-life electronics to be hazardous waste, whereas the OECD countries consider them to be non-hazardous. Also, waste management regulations potentially affecting electronics in Germany and Japan are mentioned in this report.

  10. Defense High Level Waste Disposal Container System Description

    SciTech Connect (OSTI)

    2000-10-12

    The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms (IPWF)) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as 'co-disposal'. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by which to identify the disposal container and its contents. Different materials

  11. Radiography to measure the longitudinal density gradients of Pd compacts

    SciTech Connect (OSTI)

    Back, D.D.

    1992-05-14

    This study used radiography to detect and quantify density gradients in green compacts of Palladium powder. Ultrasonic velocity measurements had been tried previously, but they were affected by material properties, in addition to the density, so that an alternative was sought. The alternative technique used radiographic exposures of a series of standard compacts whose density is known and correlated with the radiographic film density. These correlations are used to predict the density in subsequent compacts.

  12. Lighting the Way with Compact Fluorescent Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting the Way with Compact Fluorescent Lighting Lighting the Way with Compact Fluorescent Lighting April 28, 2009 - 5:00am Addthis John Lippert There is a major push today to get homeowners to adopt compact fluorescent lamp (CFL) light bulbs. They have been on the market for nearly three decades, and many homeowners still do not use them widely. But the tide is definitely turning. Their availability and the percentage of homeowners familiar with the technology and purchasing them for their

  13. WIPP Concludes Zone Recovery Activities for Panel 7 Disposal Pathway

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    24, 2015 WIPP Concludes Zone Recovery Activities for Panel 7 Disposal Pathway After months of catch-up rock bolting and contamination mitigation, zone recovery activities along the pathway to Panel 7 have been completed. Panel 7, which consists of seven disposal rooms (see map below), will be the active disposal area when waste emplacement activities resume. Initial closure of Panel 7 Room 7 was completed in May 2015. Although the pathway has been established, a significant number of activities,

  14. FY 2006 ANNUAL REVIEW-SALTSTONE DISPOSAL FACILITY PERFORMANCE ASSESSMENT

    SciTech Connect (OSTI)

    Crapse, K; Benjamin Culbertson, B

    2007-03-15

    The Z-Area Saltstone Disposal Facility (SDF) consists of two disposal units, Vaults 1 and 4, described in the Performance Assessment (PA) (WSRC 1992). The FY06 PA Annual Review concludes that both vaults contain much lower levels of radionuclides (curies) than that allowed by the PA. The PA controls established to govern waste operations and monitor disposal facility performance are determined to be adequate.

  15. Naturita, Colorado, Processing and Disposal Sites Fact Sheet

    Office of Legacy Management (LM)

    Naturita, Colorado, Processing and Disposal Sites This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I processing and disposal sites located at Naturita, Colorado. These sites are managed by the U.S. Department of Energy Office of Legacy Management. Locations of the Naturita, Colorado, Processing and Disposal Sites Site Description and History The Naturita processing site is a former uranium- and vanadium-ore processing facility in western

  16. Slick Rock, Colorado, Processing Sites and Disposal Sites Fact Sheet

    Office of Legacy Management (LM)

    Slick Rock, Colorado, Processing Sites and Disposal Sites This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I processing sites and disposal site at Slick Rock, Colorado. These sites are managed by the U.S. Department of Energy Office of Legacy Management. Locations of the Slick Rock, Colorado, Processing and Disposal Sites Site Descriptions and History The Slick Rock processing sites consist of two former uranium- and vanadium-ore processing

  17. Microsoft Word - WIPP Marks A Decade of Safe Disposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marks a Decade of Safe Disposal CARLSBAD, N.M., March 25, 2009 - The nation's first and only deep geologic repository for the disposal of defense-related transuranic (TRU) radioactive waste has safely operated for more than 10 years. The U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) began disposal operations March 26, 1999 and today serves as an international model for radioactive waste management. "What this project has accomplished is remarkable," said DOE

  18. LANL completes excavation of 1940s waste disposal site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL completes excavation LANL completes excavation of 1940s waste disposal site The excavation removed about 43,000 cubic yards of contaminated debris and soil from the six-acre site. September 22, 2011 Workers sample contents of LANL's Material Disposal Area B (MDA-B) before excavation Workers sample contents of LANL's Material Disposal Area B (MDA-B) before excavation. Contact Colleen Curran Communications Office (505) 664-0344 Email LOS ALAMOS, New Mexico, September 22, 2011-Los Alamos

  19. DOE - Office of Legacy Management -- Maryland Disposal Site - MD 05

    Office of Legacy Management (LM)

    Maryland Disposal Site - MD 05 FUSRAP Considered Sites Site: MARYLAND DISPOSAL SITE (MD.05 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Baltimore - Vicinity , Maryland MD.05-1 Evaluation Year: 1989 MD.05-1 Site Operations: Proposed disposal site - never developed. MD.05-1 Site Disposition: Eliminated Radioactive Materials Handled: None Indicated Primary Radioactive Materials Handled: None Indicated Radiological Survey(s): None

  20. Development, Test and Demonstration of a Cost-Effective, Compact...

    Broader source: Energy.gov (indexed) [DOE]

    Test and Demonstration of a Cost-Effective, Compact, Light-Weight, and Scalable High Temperature Inverter for HEVs, PHEVs, and FCVs High Temperature Inverter Development, Test ...

  1. Development, Test and Demonstration of a Cost-Effective, Compact...

    Broader source: Energy.gov (indexed) [DOE]

    Development, Test and Demonstration of a Cost-Effective, Compact, Light-Weight, and Scalable High Temperature Inverter for HEVs, PHEVs, and FCVs Development, Test and Demonstration ...

  2. Cape Light Compact- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Cape Light Compact (CLC) offers a variety of financial incentives to customers for purchasing energy efficient residential equipment. Residential customers can take advantage of incentives on...

  3. Compact Cross-Dipole Sonic (CXD) | Open Energy Information

    Open Energy Info (EERE)

    Sonic (CXD) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Compact Cross-Dipole Sonic (CXD) Author Weatherford Published Publisher Not...

  4. Green strength of zirconium sponge and uranium dioxide powder compacts

    SciTech Connect (OSTI)

    Balakrishna, Palanki Murty, B. Narasimha; Sahoo, P.K.; Gopalakrishna, T.

    2008-07-15

    Zirconium metal sponge is compacted into rectangular or cylindrical shapes using hydraulic presses. These shapes are stacked and electron beam welded to form a long electrode suitable for vacuum arc melting and casting into solid ingots. The compact electrodes should be sufficiently strong to prevent breakage in handling as well as during vacuum arc melting. Usually, the welds are strong and the electrode strength is limited by the green strength of the compacts, which constitute the electrode. Green strength is also required in uranium dioxide (UO{sub 2}) powder compacts, to withstand stresses during de-tensioning after compaction as well as during ejection from the die and for subsequent handling by man and machine. The strengths of zirconium sponge and UO{sub 2} powder compacts have been determined by bending and crushing respectively, and Weibul moduli evaluated. The green density of coarse sponge compact was found to be larger than that from finer sponge. The green density of compacts from lightly attrited UO{sub 2} powder was higher than that from unattrited category, accompanied by an improvement in UO{sub 2} green crushing strength. The factors governing green strength have been examined in the light of published literature and experimental evidence. The methodology and results provide a basis for quality control in metal sponge and ceramic powder compaction in the manufacture of nuclear fuel.

  5. Micro- & Nano-Technologies Enabling More Compact, Lightweight...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Micro- & Nano-Technologies Enabling More Compact, Lightweight Thermoelectric Power Generation & Cooling Systems Micro- & Nano-Technologies Enabling ...

  6. SN1987A Constraints on Large Compact Dimensions (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    scale. The observed weakness of gravitational interactions is then explained by the existence of extra compact dimensions of space, which are accessible to gravity but not to...

  7. International low level waste disposal practices and facilities

    SciTech Connect (OSTI)

    Nutt, W.M.

    2011-12-19

    options for the management of radioactive waste. There is a variety of alternatives for processing waste and for short term or long term storage prior to disposal. Likewise, there are various alternatives currently in use across the globe for the safe disposal of waste, ranging from near surface to geological disposal, depending on the specific classification of the waste. At present, there appears to be a clear and unequivocal understanding that each country is ethically and legally responsible for its own wastes, in accordance with the provisions of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. Therefore the default position is that all nuclear wastes will be disposed of in each of the 40 or so countries concerned with nuclear power generation or part of the fuel cycle. To illustrate the global distribution of radioactive waste now and in the near future, Table 1 provides the regional breakdown, based on the UN classification of the world in regions illustrated in Figure 1, of nuclear power reactors in operation and under construction worldwide. In summary, 31 countries operate 433 plants, with a total capacity of more than 365 gigawatts of electrical energy (GW[e]). A further 65 units, totaling nearly 63 GW(e), are under construction across 15 of these nations. In addition, 65 countries are expressing new interest in, considering, or actively planning for nuclear power to help address growing energy demands to fuel economic growth and development, climate change concerns, and volatile fossil fuel prices. Of these 65 new countries, 21 are in Asia and the Pacific region, 21 are from the Africa region, 12 are in Europe (mostly Eastern Europe), and 11 in Central and South America. However, 31 of these 65 are not currently planning to build reactors, and 17 of those 31 have grids of less than 5 GW, which is said to be too small to accommodate most of the reactor designs available. For the remaining 34

  8. Depleted uranium storage and disposal trade study: Summary report

    SciTech Connect (OSTI)

    Hightower, J.R.; Trabalka, J.R.

    2000-02-01

    The objectives of this study were to: identify the most desirable forms for conversion of depleted uranium hexafluoride (DUF6) for extended storage, identify the most desirable forms for conversion of DUF6 for disposal, evaluate the comparative costs for extended storage or disposal of the various forms, review benefits of the proposed plasma conversion process, estimate simplified life-cycle costs (LCCs) for five scenarios that entail either disposal or beneficial reuse, and determine whether an overall optimal form for conversion of DUF6 can be selected given current uncertainty about the endpoints (specific disposal site/technology or reuse options).

  9. Deep Borehole Disposal Research: Geological Data Evaluation Alternativ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    much of the enhanced geothermal focus on stimulating fracture development (e.g., fracking) at depth is not directly relevant to deep borehole disposal. For deep borehole...

  10. Enhancements to Generic Disposal System Modeling Capabilities Rev2

    Office of Energy Efficiency and Renewable Energy (EERE)

    Contributions are described for the development of an enhanced generic disposal system modeling and analysis capability that takes advantage of high-performance computing (HPC) environments to...

  11. Hazardous Waste Treatment, Storage and Disposal Facilities (TSDF...

    Open Energy Info (EERE)

    Treatment, Storage and Disposal Facilities (TSDF) Guidance Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook:...

  12. OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE

    Broader source: Energy.gov [DOE]

    Oak Ridge, TN - The Environmental Management Waste Management Facility (EMWMF) provides the onsite disposal capability for the majority of cleanup-generated wastes on the Oak Ridge Reservation....

  13. Evaluation of Options for Permanent Geologic Disposal of Spent...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and permanent disposal of spentnuclear fuel (SNF) and high-level radioactive waste (HLW) ... engineering, and materials safeguards and security, and regulatory considerations. ...

  14. A new design for a disposable and modifiable electrochemical...

    Office of Scientific and Technical Information (OSTI)

    and modifiable electrochemical cell Citation Details In-Document Search Title: A new design for a disposable and modifiable electrochemical cell Authors: Dattelbaum, Andrew M ...

  15. Investigations of Dual-Purpose Canister Direct Disposal Feasibility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    feasible, at least for some DPCs, and for some disposal concepts (geologic host media). ... Several activities described herein have focused on clayshale media. Tunnel boring ...

  16. The Hazardous Waste/Mixed Waste Disposal Facility

    SciTech Connect (OSTI)

    Bailey, L.L.

    1991-01-01

    The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy's (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency's (EPA's) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996.

  17. The Hazardous Waste/Mixed Waste Disposal Facility

    SciTech Connect (OSTI)

    Bailey, L.L.

    1991-12-31

    The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy`s (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency`s (EPA`s) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996.

  18. Strategy for the Management and Disposal of Used Nuclear Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    waste from civilian nuclear power generation, defense, national security and other activities. Strategy for the Management and Disposal of Used Nuclear Fuel and High ...

  19. Summary - Disposal Practices at the Nevada Test Site

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Area 5 LLRW & MLLW Disposal ETR Report Date: July 2008 ETR-14 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Disposal Practices at the Nevada Test Site Why DOE-EM Did This Review Radioactively contaminated materials from the Nevada Test Site (NTS), other DOE facilities and other federal agencies are disposed of at NTS at two low-level radioactive waste (LLRW) management sites: Areas 3 and 5. Disposal operations at Area 3 have been

  20. Low-Level Waste Disposal Alternatives Analysis Report

    SciTech Connect (OSTI)

    Timothy Carlson; Kay Adler-Flitton; Roy Grant; Joan Connolly; Peggy Hinman; Charles Marcinkiewicz

    2006-09-01

    This report identifies and compares on-site and off-site disposal options for the disposal of contract-handled and remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Potential disposal options are screened for viability by waste type resulting in a short list of options for further consideration. The most crediable option are selected after systematic consideration of cost, schedule constraints, and risk. In order to holistically address the approach for low-level waste disposal, options are compiled into comprehensive disposal schemes, that is, alternative scenarios. Each alternative scenario addresses the disposal path for all low-level waste types over the period of interest. The alternative scenarios are compared and ranked using cost, risk and complexity to arrive at the recommended approach. Schedule alignment with disposal needs is addressed to ensure that all waste types are managed appropriately. The recommended alternative scenario for the disposal of low-level waste based on this analysis is to build a disposal facility at the Idaho National Laboratory Site.

  1. Changes in Vegetation at the Monticello, Utah, Disposal Site...

    Energy Savers [EERE]

    the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site Monitoring the Performance of an Alternative Cover Using Caisson...

  2. Moab Project Disposes 2 Million Tons of Uranium Mill Tailings...

    Office of Environmental Management (EM)

    The Moab Uranium Mill Tailings Remedial Action Project reached its primary American ... of schedule on Wednesday with the disposal of 2 million tons of uranium mill tailings. ...

  3. RRC - Injection/Disposal Well Permitting, Testing, and Monitoring...

    Open Energy Info (EERE)

    InjectionDisposal Well Permitting, Testing, and Monitoring manual Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Guide...

  4. Compact imaging spectrometer utilizing immersed gratings

    DOE Patents [OSTI]

    Chrisp, Michael P.; Lerner, Scott A.; Kuzmenko, Paul J.; Bennett, Charles L.

    2007-07-03

    A compact imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The imaging spectrometer comprises an entrance slit for transmitting light, means for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the means for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the means for receiving the light and the means for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light to the means for receiving the light, and the means for receiving the light directs the light to the detector array.

  5. Compact conscious animal positron emission tomography scanner

    DOE Patents [OSTI]

    Schyler, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois; Volkow, Nora

    2006-10-24

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal for an event, generating an address signal representing a detecting channel, generating a detector channel signal including the time and address signals, and generating a composite signal including the channel signal and similarly generated signals. The composite signal includes events from detectors in a block and is serially output. An apparatus that serially transfers annihilation information from a block includes time signal generators for detectors in a block and an address and channel signal generator. The PET scanner includes a ring tomograph that mounts onto a portion of an animal, which includes opposing block pairs. Each of the blocks in a block pair includes a scintillator layer, detection array, front-end array, and a serial encoder. The serial encoder includes time signal generators and an address signal and channel signal generator.

  6. Compact microwave ion source for industrial applications

    SciTech Connect (OSTI)

    Cho, Yong-Sub; Kim, Dae-Il; Kim, Han-Sung; Seol, Kyung-Tae; Kwon, Hyeok-Jung; Hong, In-Seok

    2012-02-15

    A 2.45 GHz microwave ion source for ion implanters has many good properties for industrial application, such as easy maintenance and long lifetime, and it should be compact for budget and space. But, it has a dc current supply for the solenoid and a rf generator for plasma generation. Usually, they are located on high voltage platform because they are electrically connected with beam extraction power supply. Using permanent magnet solenoid and multi-layer dc break, high voltage deck and high voltage isolation transformer can be eliminated, and the dose rate on targets can be controlled by pulse duty control with semiconductor high voltage switch. Because the beam optics does not change, beam transfer components, such as focusing elements and beam shutter, can be eliminated. It has shown the good performances in budget and space for industrial applications of ion beams.

  7. Compact hydrogen/helium isotope mass spectrometer

    DOE Patents [OSTI]

    Funsten, Herbert O.; McComas, David J.; Scime, Earl E.

    1996-01-01

    The compact hydrogen and helium isotope mass spectrometer of the present invention combines low mass-resolution ion mass spectrometry and beam-foil interaction technology to unambiguously detect and quantify deuterium (D), tritium (T), hydrogen molecule (H.sub.2, HD, D.sub.2, HT, DT, and T.sub.2), .sup.3 He, and .sup.4 He concentrations and concentration variations. The spectrometer provides real-time, high sensitivity, and high accuracy measurements. Currently, no fieldable D or molecular speciation detectors exist. Furthermore, the present spectrometer has a significant advantage over traditional T detectors: no confusion of the measurements by other beta-emitters, and complete separation of atomic and molecular species of equivalent atomic mass (e.g., HD and .sup.3 He).

  8. Apparatus for the compact cooling of modules

    DOE Patents [OSTI]

    Iyengar, Madhusudan K.; Parida, Pritish R.

    2015-07-07

    An apparatus for the compact cooling of modules. The apparatus includes a clip, a first cover plate coupled to a first side of the clip, a second cover plate coupled to a second side of the clip opposite to the first side of the clip, a first frame thermally coupled to the first cover plate, and a second frame thermally coupled to the second cover plate. Each of the first frame and the second frame may include a plurality of channels for passing coolant through the first frame and the second frame, respectively. Additionally, the apparatus may further include a filler for directing coolant through the plurality of channels, and for blocking coolant from flowing along the first side of the clip and the second side of the clip.

  9. Impact compaction of a granular material

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fenton, Gregg; Asay, Blaine; Dalton, Devon

    2015-05-19

    The dynamic behavior of granular materials has importance to a variety of engineering applications. Structural seismic coupling, planetary science, and earth penetration mechanics, are just a few of the application areas. Although the mechanical behavior of granular materials of various types have been studied extensively for several decades, the dynamic behavior of such materials remains poorly understood. High-quality experimental data are needed to improve our general understanding of granular material compaction physics. This study will describe how an instrumented plunger impact system can be used to measure pressure-density relationships for model materials at high and controlled strain rates and subsequentlymore » used for computational modeling.« less

  10. Compact and highly efficient laser pump cavity

    DOE Patents [OSTI]

    Chang, Jim J.; Bass, Isaac L.; Zapata, Luis E.

    1999-01-01

    A new, compact, side-pumped laser pump cavity design which uses non-conventional optics for injection of laser-diode light into a laser pump chamber includes a plurality of elongated light concentration channels. In one embodiment, the light concentration channels are compound parabolic concentrators (CPC) which have very small exit apertures so that light will not escape from the pumping chamber and will be multiply reflected through the laser rod. This new design effectively traps the pump radiation inside the pump chamber that encloses the laser rod. It enables more uniform laser pumping and highly effective recycle of pump radiation, leading to significantly improved laser performance. This new design also effectively widens the acceptable radiation wavelength of the diodes, resulting in a more reliable laser performance with lower cost.

  11. Compact high voltage solid state switch

    DOE Patents [OSTI]

    Glidden, Steven C.

    2003-09-23

    A compact, solid state, high voltage switch capable of high conduction current with a high rate of current risetime (high di/dt) that can be used to replace thyratrons in existing and new applications. The switch has multiple thyristors packaged in a single enclosure. Each thyristor has its own gate drive circuit that circuit obtains its energy from the energy that is being switched in the main circuit. The gate drives are triggered with a low voltage, low current pulse isolated by a small inexpensive transformer. The gate circuits can also be triggered with an optical signal, eliminating the trigger transformer altogether. This approach makes it easier to connect many thyristors in series to obtain the hold off voltages of greater than 80 kV.

  12. Quantum chaos in compact lattice QED

    SciTech Connect (OSTI)

    Berg, B.A. [Department of Physics, The Florida State University, Tallahassee, Florida 32306 (United States)] [Department of Physics, The Florida State University, Tallahassee, Florida 32306 (United States); [Supercomputer Computations Research Institute, The Florida State University, Tallahassee, Florida 32306 (United States); Markum, H. [Institut fuer Kernphysik, Technische Universitaet Wien, A-1040 Vienna (Austria)] [Institut fuer Kernphysik, Technische Universitaet Wien, A-1040 Vienna (Austria); Pullirsch, R. [Department of Physics, The Florida State University, Tallahassee, Florida 32306 (United States)] [Department of Physics, The Florida State University, Tallahassee, Florida 32306 (United States); [Institut fuer Kernphysik, Technische Universitaet Wien, A-1040 Vienna (Austria)

    1999-05-01

    Complete eigenvalue spectra of the staggered Dirac operator in quenched 4D compact QED are studied on 8{sup 3}{times}4 and 8{sup 3}{times}6 lattices. We investigate the behavior of the nearest-neighbor spacing distribution P(s) as a measure of the fluctuation properties of the eigenvalues in the strong coupling and the Coulomb phase. In both phases we find agreement with the Wigner surmise of the unitary ensemble of random-matrix theory indicating quantum chaos. Combining this with previous results on QCD, we conjecture that quite generally the non-linear couplings of quantum field theories lead to a chaotic behavior of the eigenvalues of the Dirac operator. {copyright} {ital 1999} {ital The American Physical Society}

  13. Test Area for Remedial Actions (TARA) site characterization and dynamic compaction of low-level radioactive waste trenches

    SciTech Connect (OSTI)

    Davis, E.C.; Spalding, B.P.; Lee, S.Y.; Hyder, L.K.

    1989-01-01

    As part of a low-level radioactive waste burial ground stabilization and closure technology demonstration project, a group of five burial trenches in Oak Ridge National Laboratory (ORNL) Solid Waste Storage Area (SWSA) 6 was selected as a demonstration site for testing trench compaction, trench grouting, and trench cap installation and performance. This report focuses on site characterization, trench compaction, and grout-trench leachate compatibility. Trench grouting and cap design and construction will be the subject of future reports. The five trenches, known as the Test Area for Remedial Actions (TARA) site, are contained within a hydrologically isolated area of SWSA 6; for that reason, any effects of stabilization activities on site performance and groundwater quality will be separable from the influence of other waste disposal units in SWSA 6. To obviate the chronic problem of burial trench subsidence and to provide support for an infiltration barrier cap, these five trenches were dynamically compacted by repeated dropping of a 4-ton weight onto each trench from heights of approximately 7 m.

  14. Environmental monitoring report for commercial low-level radioactive waste disposal sites (1960`s through 1990`s)

    SciTech Connect (OSTI)

    1996-11-01

    During the time period covered in this report (1960`s through early 1990`s), six commercial low-level radioactive waste (LLRW) disposal facilities have been operated in the US. This report provides environmental monitoring data collected at each site. The report summarizes: (1) each site`s general design, (2) each site`s inventory, (3) the environmental monitoring program for each site and the data obtained as the program has evolved, and (4) what the program has indicated about releases to off-site areas, if any, including a statement of the actual health and safety significance of any release. A summary with conclusions is provided at the end of each site`s chapter. The six commercial LLRW disposal sites discussed are located near: Sheffield, Illinois; Maxey Flats, Kentucky; Beatty, Nevada; West Valley, New York; Barnwell, South Carolina; Richland, Washington.

  15. Transuranic waste disposal in the United States

    SciTech Connect (OSTI)

    Hoffman, R.B.

    1986-01-01

    The United States is unique in having created a special class of radioactive waste disposal based on the concentration of transuranic elements in the waste. Since 1970, the US has been placing newly generated transuranic waste in retrievable storage. It is intended that these wastes will be placed in a permanent deep geologic repository, the Waste Isolation Pilot Plant (WIPP). WIPP opening for a demonstration emplacement period is set for October, 1988. Transuranic wastes derive from some of the manufacturing and research activities carried out by DOE. The bulk of this waste is generated in plutonium parts fabrication activities. A variety of plutonium contaminated materials ranging from glove boxes, HEPA filters, and machine tools, to chemical sludges derived from plutonium recovery streams are stored as TRU wastes. Other processes that generate TRU waste are plutonium production operations, preparation for and cleanup from fuel reprocessing, manufacturing of plutonium heat sources, and nuclear fuel cycle research activities.

  16. DISPOSAL CONTAINER HANDLING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    E. F. Loros

    2000-06-30

    The Disposal Container Handling System receives and prepares new disposal containers (DCs) and transfers them to the Assembly Transfer System (ATS) or Canister Transfer System (CTS) for loading. The system receives the loaded DCs from ATS or CTS and welds the lids. When the welds are accepted the DCs are termed waste packages (WPs). The system may stage the WP for later transfer or transfer the WP directly to the Waste Emplacement/Retrieval System. The system can also transfer DCs/WPs to/from the Waste Package Remediation System. The Disposal Container Handling System begins with new DC preparation, which includes installing collars, tilting the DC upright, and outfitting the container for the specific fuel it is to receive. DCs and their lids are staged in the receipt area for transfer to the needed location. When called for, a DC is put on a cart and sent through an airlock into a hot cell. From this point on, all processes are done remotely. The DC transfer operation moves the DC to the ATS or CTS for loading and then receives the DC for welding. The DC welding operation receives loaded DCs directly from the waste handling lines or from interim lag storage for welding of the lids. The welding operation includes mounting the DC on a turntable, removing lid seals, and installing and welding the inner and outer lids. After the weld process and non-destructive examination are successfully completed, the WP is either staged or transferred to a tilting station. At the tilting station, the WP is tilted horizontally onto a cart and the collars removed. The cart is taken through an air lock where the WP is lifted, surveyed, decontaminated if required, and then moved into the Waste Emplacement/Retrieval System. DCs that do not meet the welding non-destructive examination criteria are transferred to the Waste Package Remediation System for weld preparation or removal of the lids. The Disposal Container Handling System is contained within the Waste Handling Building System

  17. Method for disposing of hazardous wastes

    DOE Patents [OSTI]

    Burton, Frederick G.; Cataldo, Dominic A.; Cline, John F.; Skiens, W. Eugene

    1995-01-01

    A method and system for long-term control of root growth without killing the plants bearing those roots involves incorporating a 2,6-dinitroaniline in a polymer and disposing the polymer in an area in which root control is desired. This results in controlled release of the substituted aniline herbicide over a period of many years. Herbicides of this class have the property of preventing root elongation without translocating into other parts of the plant. The herbicide may be encapsulated in the polymer or mixed with it. The polymer-herbicide mixture may be formed into pellets, sheets, pipe gaskets, pipes for carrying water, or various other forms. The invention may be applied to other protection of buried hazardous wastes, protection of underground pipes, prevention of root intrusion beneath slabs, the dwarfing of trees or shrubs and other applications. The preferred herbicide is 4-difluoromethyl-N,N-dipropyl- 2,6-dinitro-aniline, commonly known as trifluralin.

  18. Disposable sludge dewatering container and method

    DOE Patents [OSTI]

    Cole, Clifford M.

    1993-01-01

    A device and method for preparing sludge for disposal comprising a box with a thin layer of gravel on the bottom and a thin layer of sand on the gravel layer, an array of perforated piping deployed throughout the gravel layer, and a sump in the gravel layer below the perforated piping array. Standpipes connect the array and sump to an external ion exchanger/fine particulate filter and a pump. Sludge is deposited on the sand layer and dewatered using a pump connected to the piping array, topping up with more sludge as the aqueous component of the sludge is extracted. When the box is full and the free standing water content of the sludge is acceptable, the standpipes are cut and sealed and the lid secured to the box.

  19. On-Site Disposal Facility Inspection Report

    Office of Legacy Management (LM)

    8947.1 09/13 On-Site Disposal Facility Inspection Report September 2013 6319-D6242 8947.2 09/13 East Face Cell 1 West Face Cell 1 6319D-6208 6319D-6231 8947.3 09/13 North Face Cell 1 North Drainage (looking west) 6319D-6206 6319D-6205 8947.4 09/13 East Face Cell 2 West Face Cell 2 6319D-6230 6319D-6209 8947.5 09/13 East Face Cell 3 West Face Cell 3 6319D-6229 6319D-6210 8947.6 09/13 East Face Cell 4 West Face Cell 4 6319D-6227 6319D-62111 8947.7 09/13 East Face Cell 5 West Face Cell 5 6319D-6226

  20. TMI Fuel Characteristics for Disposal Criticality Analysis

    SciTech Connect (OSTI)

    Larry L. Taylor

    2003-09-01

    This report documents the reported contents of the Three Mile Island Unit 2 (TMI-2) canisters. proposed packaging, and degradation scenarios expected in the repository. Most fuels within the U.S. Department of Energy spent nuclear fuel inventory deal with highly enriched uranium, that in most cases require some form of neutronic poisoning inside the fuel canister. The TMI-2 fuel represents a departure from these fuel forms due to its lower enrichment (2.96% max.) values and the disrupted nature of the fuel itself. Criticality analysis of these fuel canisters has been performed over the years to reflect conditions expected during transit from the reactor to the Idaho National Engineering and Environmental Laboratory, water pool storage,1 and transport/dry-pack storage at Idaho Nuclear Technology and Engineering Center.2,3 None of these prior analyses reflect the potential disposal conditions for this fuel inside a postclosure repository.

  1. Safe disposal of metal values in slag

    SciTech Connect (OSTI)

    Halpin, P.T.; Zarur, G.L.

    1982-10-26

    The method of safely disposing of sludge containing metal values capable of displaying toxic ecological properties includes the steps of deriving from an organic or inorganic sludge an intermediate product such as a dewatered sludge or an incinerated ash, and adding this intermediate product to a metal smelting step of a type producing a slag such that most of the metal values become encapsulated in the slag. Some precious metal values may be recovered with the metal being smelted, and may be subsequently separated therefrom by appropriate metal winning steps. The sludge product brings to the smelting process certain additives needed therein such as silica and phosphates for the slag, alumina and magnesium to lower the viscosity of the molten slag, and organic matter serving as reducing agents.

  2. Mixed waste characterization, treatment & disposal focus area

    SciTech Connect (OSTI)

    1996-08-01

    The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.

  3. Challenges in Disposing of Anthrax Waste

    SciTech Connect (OSTI)

    Lesperance, Ann M.; Stein, Steven L.; Upton, Jaki F.; Toomey, Christopher

    2011-09-01

    Disasters often create large amounts of waste that must be managed as part of both immediate response and long-term recovery. While many federal, state, and local agencies have debris management plans, these plans often do not address chemical, biological, and radiological contamination. The Interagency Biological Restoration Demonstration’s (IBRD) purpose was to holistically assess all aspects of an anthrax incident and assist the development of a plan for long-term recovery. In the case of wide-area anthrax contamination and the follow-on response and recovery activities, a significant amount of material will require decontamination and disposal. Accordingly, IBRD facilitated the development of debris management plans to address contaminated waste through a series of interviews and workshops with local, state, and federal representatives. The outcome of these discussion was the identification of three primary topical areas that must be addressed: 1) Planning; 2) Unresolved research questions, and resolving regulatory issues.

  4. Constraints to waste utilization and disposal

    SciTech Connect (OSTI)

    Steadman, E.N.; Sondreal, E.A.; Hassett, D.J.; Eylands, K.E.; Dockter, B.A.

    1995-12-01

    The value of coal combustion by-products for various applications is well established by research and commercial practice worldwide. As engineering construction materials, these products can add value and enhance strength and durability while simultaneously reducing cost and providing the environmental benefit of reduced solid waste disposal. In agricultural applications, gypsum-rich products can provide plant nutrients and improve the tilth of depleted soils over large areas of the country. In waste stabilization, the cementitious and pozzolanic properties of these products can immobilize hazardous nuclear, organic, and metal wastes for safe and effective environmental disposal. Although the value of coal combustion by-products for various applications is well established, the full utilization of coal combustion by-products has not been realized in most countries. The reasons for the under utilization of these materials include attitudes that make people reluctant to use waste materials, lack of engineering standards for high-volume uses beyond eminent replacement, and uncertainty about the environmental safety of coal ash utilization. More research and education are needed to increase the utilization of these materials. Standardization of technical specifications should be pursued through established standards organizations. Adoption of uniform specifications by government agencies and user trade associations should be encouraged. Specifications should address real-world application properties, such as air entrainment in concrete, rather than empirical parameters (e.g., loss on ignition). The extensive environmental assessment data already demonstrating the environmental safety of coal ash by-products in many applications should be more widely used, and data should be developed to include new applications.

  5. Consolidation and disposal of PWR fuel inserts

    SciTech Connect (OSTI)

    Wakeman, B.H. (Virginia Electric and Power Co., Glen Allen, VA (United States))

    1992-08-01

    Design and licensing of the Surry Power Station Independent Spent Fuel Storage Installation was initiated in 1982 by Virginia Power as part of a comprehensive strategy to increase spent fuel storage capacity at the Station. Designed to use large, metal dry storage casks, the Surry Installation will accommodate 84 such casks with a total storage capacity of 811 MTU of spent pressurized water reactor fuel assemblies. Virginia Power provided three storage casks for testing at the Idaho National Engineerinq Laboratory's Test Area North and the testing results have been published by the Electric Power Research Institute. Sixty-nine spent fuel assemblies were transported in truck casks from the Surry Power Station to Test Area North for testing in the three casks. Because of restrictions imposed by the cask testing equipment at Test Area North, the irradiated insert components stored in these fuel assemblies at Surry were removed prior to transport of the fuel assemblies. Retaining these insert components proved to be a problem because of a shortage of spent fuel assemblies in the spent fuel storage pool that did not already contain insert components. In 1987 Virginia Power contracted with Chem-Nuclear Systems, Inc. to process and dispose of 136 irradiated insert components consisting of 125 burnable poison rod assemblies, 10 thimble plugging devices and 1 part-length rod cluster control assembly. This work was completed in August and September 1987, culminating in the disposal at the Barnwell, SC low-level radioactive waste facility of two CNS 3-55 liners containing the consolidated insert components.

  6. South Carolina- Net Metering

    Broader source: Energy.gov [DOE]

    In April of 2014 the South Carolina legislature unanimously passed S.B. 1189 to create a voluntary Distributed Energy Resource Program. In March 2015 the Public Utilities Commission approved a...

  7. South Valley Compliance Agreement

    Office of Environmental Management (EM)

    South Carolina Energy Office - Energy Efficiency and Conservation Block Grant Program Funds Provided by the American Recovery and Reinvestment Act of 2009 OAS-RA-13-21 May 2013 Department of Energy Washington, DC 20585 May 14, 2013 MEMORANDUM FOR THE PROGRAM MANAGER, WEATHERIZATION AND INTERGOVERNMENTAL PROGRAM, OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY FROM: Jack Rouch, Director Central Audits Division Office of Inspector General SUBJECT: INFORMATION: Examination Report on "South

  8. North Central","West North Central","South Atlantic","East South...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...heast",,"Midwest",,"South",,,"West" ,,"New England","Middle Atlantic","East North Central","West North Central","South Atlantic","East South Central","West South ...

  9. Universal Monitor (UM) for OTEC compact heat exchangers

    SciTech Connect (OSTI)

    Kuzay, T.M.

    1981-09-01

    Universal Monitor (UM), is a device-independent concept to measure, with precision, the initiation and progression of fouling in any given OTEC Compact Heat Exchanger model with or without the application of countermeasures. Design description and supporting analyses for the Universal Monitor for OTEC Compact Heat Exchangers are presented.

  10. Repository Reference Disposal Concepts and Thermal Load Management Analysis

    Office of Energy Efficiency and Renewable Energy (EERE)

    A disposal concept consists of three parts: waste inventory (7 waste types examined), geologic setting (e.g., clay/shale, salt, crystalline, other sedimentary), and the engineering concept of operations (range of generic operational concepts examined; enclosed and open mode disposal concepts, thermal analysis, other).

  11. COMPACTION OF FIBERBOARD OVERPACK MATERIALS IN A 9975 SHIPPING PACKAGE

    SciTech Connect (OSTI)

    Stefek, T.; Daugherty, W.; Estochen, E.; Murphy, J.

    2010-05-27

    Compaction of lower layers in the 9975 fiberboard overpack has been observed in packages that contain excess moisture. Dynamic loading of the package during transportation may also contribute to compaction of the fiberboard. This condition is being tested and analyzed to better understand these compaction mechanisms and provide a basis from which to evaluate their impact to the safety basis for transportation (Safety Analysis Report for Packaging) and storage (facility Design Safety Analysis) at the Savannah River Site (SRS). A test program has been developed and is being implemented to identify the extent of the compaction as a function of fiberboard moisture and typical transport dynamic loadings. Test conditions will be compared to regulatory requirements for dynamic loading. Characterization of the recovery of short-term compaction following the application of dynamic loading is also being evaluated. Interim results from this test program will be summarized.

  12. Composite analysis E-area vaults and saltstone disposal facilities

    SciTech Connect (OSTI)

    Cook, J.R.

    1997-09-01

    This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potential sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public.

  13. The full fuel cycle of CO{sub 2} capture and disposal capture and disposal technology

    SciTech Connect (OSTI)

    Saroff, L.

    1995-12-31

    The overall objective of this study was to develop a methodology for the evaluation of the energy usage and cost both private and societal (external cost)for full fuel cycles. It was envisioned that other organizations could employ the methodology with minor alterations for a consistent means of evaluating full fuel cycles. The methodology has been applied to three fossil fuel electric generation processes each producing 500 MWe (net). These are: a Natural Gas Combined Cycle (NGCC) power plant burning natural gas with direct CO{sub 2} capture and disposal; an Integrated Gasification Combined Cycle (IGCC) power plant burning coal with direct CO{sub 2} capture and disposal; and a Pulverized Fuel (PC) power plant burning coal with a managed forest indirectly sequestering CO{sub 2}. The primary aim is to provide decision makers with information from which to derive policy. Thus, the evaluation reports total energy used, private costs to build the facility, emissions and burdens, and the valuation (externalities) of the impacts of the burdens. The energy usage, private costs including capture and disposal, and emissions are reported in this paper. The valuations and analysis of the impact of the plant on the environment are reported in the companion paper. The loss in efficiency (LHV) considering the full fuel cycle as opposed to the thermal efficiency of the power plant is; 0.9, 2.4, and 4.6 for the NGCC, IGCC, and PC+controls, respectively. Electricity cost, c/kWh, including capital, operating and fuel, at a 10% discount rate. ranges from 5.6 to 7.08 for NGCC and 7.24 to 8.61 for IGCC. The range is dependent on the mode of disposal, primarily due to the long pipeline to reach a site for the pope disposal in the ocean. For the PC+ controls then is a considerable range from 7.66 to over 16 c/kWh dependent on the size and cost of the managed forest.

  14. Generic Argillite/Shale Disposal Reference Case

    SciTech Connect (OSTI)

    Zheng, Liange; Colon, Carlos Jové; Bianchi, Marco; Birkholzer, Jens

    2014-08-08

    Radioactive waste disposal in a deep subsurface repository hosted in clay/shale/argillite is a subject of widespread interest given the desirable isolation properties, geochemically reduced conditions, and widespread geologic occurrence of this rock type (Hansen 2010; Bianchi et al. 2013). Bianchi et al. (2013) provides a description of diffusion in a clay-hosted repository based on single-phase flow and full saturation using parametric data from documented studies in Europe (e.g., ANDRA 2005). The predominance of diffusive transport and sorption phenomena in this clay media are key attributes to impede radionuclide mobility making clay rock formations target sites for disposal of high-level radioactive waste. The reports by Hansen et al. (2010) and those from numerous studies in clay-hosted underground research laboratories (URLs) in Belgium, France and Switzerland outline the extensive scientific knowledge obtained to assess long-term clay/shale/argillite repository isolation performance of nuclear waste. In the past several years under the UFDC, various kinds of models have been developed for argillite repository to demonstrate the model capability, understand the spatial and temporal alteration of the repository, and evaluate different scenarios. These models include the coupled Thermal-Hydrological-Mechanical (THM) and Thermal-Hydrological-Mechanical-Chemical (THMC) models (e.g. Liu et al. 2013; Rutqvist et al. 2014a, Zheng et al. 2014a) that focus on THMC processes in the Engineered Barrier System (EBS) bentonite and argillite host hock, the large scale hydrogeologic model (Bianchi et al. 2014) that investigates the hydraulic connection between an emplacement drift and surrounding hydrogeological units, and Disposal Systems Evaluation Framework (DSEF) models (Greenberg et al. 2013) that evaluate thermal evolution in the host rock approximated as a thermal conduction process to facilitate the analysis of design options. However, the assumptions and the

  15. System studies of compact ignition tokamaks

    SciTech Connect (OSTI)

    Galambos, J.D.; Blackfield, D.T.; Peng, Y.K.M.; Reid, R.L.; Strickler, D.J.; Selcow, E.

    1987-08-01

    The new Tokamak Systems Code, used to investigate Compact Ignition Tokamaks (CITs), can simultaneously vary many parameters, satisfy many constraints, and minimize or maximize a figure of merit. It is useful in comparing different CIT design configurations over wide regions of parameter space and determining a desired design point for more detailed physics and engineering analysis, as well as for performing sensitivity studies for physics or engineering issues. Operational windows in major radius (R) and toroidal field (B) space for fixed ignition margin are calculated for the Ignifed and Inconel candidate CITs. The minimum R bounds are predominantly physics limited, and the maximum R portions of the windows are engineering limited. For a modified Kaye-Goldston plasma-energy-confinement scaling, the minimum size is 1.15 m for the Ignifed device and 1.25 m for the Inconel device. With the Ignition Technical Oversight Committee (ITOC) physics guidance of B/sup 2/a/q and I/sub p/ >10 MA, the Ignifed and Base-line Inconel devices have a minimum size of 1.2 and 1.25 m and a toroidal field of 11 and 10.4 T, respectively. Sensitivity studies show Ignifed to be more sensitive to coil temperature changes than the Inconel device, whereas the Inconel device is more sensitive to stress perturbations.

  16. MACHO (MAssive Compact Halo Objects) Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The primary aim of the MACHO Project is to test the hypothesis that a significant fraction of the dark matter in the halo of the Milky Way is made up of objects like brown dwarfs or planets: these objects have come to be known as MACHOs, for MAssive Compact Halo Objects. The signature of these objects is the occasional amplification of the light from extragalactic stars by the gravitational lens effect. The amplification can be large, but events are extremely rare: it is necessary to monitor photometrically several million stars for a period of years in order to obtain a useful detection rate. For this purpose MACHO has a two channel system that employs eight CCDs, mounted on the 50 inch telescope at Mt. Stromlo. The high data rate (several GBytes per night) is accommodated by custom electronics and on-line data reduction. The Project has taken more than 27,000 images with this system since June 1992. Analysis of a subset of these data has yielded databases containing light curves in two colors for 8 million stars in the LMC and 10 million in the bulge of the Milky Way. A search for microlensing has turned up four candidates toward the Large Magellanic Cloud and 45 toward the Galactic Bulge. The web page for data provides links to MACHO Project data portals and various specialized interfaces for viewing or searching the data. (Specialized Interface)

  17. Disposal of Rocky Flats residues as waste

    SciTech Connect (OSTI)

    Dustin, D.F.; Sendelweck, V.S. . Rocky Flats Plant); Rivera, M.A. )

    1993-01-01

    Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

  18. Disposal of Rocky Flats residues as waste

    SciTech Connect (OSTI)

    Dustin, D.F.; Sendelweck, V.S.; Rivera, M.A.

    1993-03-01

    Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

  19. Process for forming coal compacts and product thereof

    DOE Patents [OSTI]

    Gunnink, Brett; Kanunar, Jayanth; Liang, Zhuoxiong

    2002-01-01

    A process for forming durable, mechanically strong compacts from coal particulates without use of a binder is disclosed. The process involves applying a compressive stress to a particulate feed comprising substantially water-saturated coal particles while the feed is heated to a final compaction temperature in excess of about 100.degree. C. The water present in the feed remains substantially in the liquid phase throughout the compact forming process. This is achieved by heating and compressing the particulate feed and cooling the formed compact at a pressure sufficient to prevent water present in the feed from boiling. The compacts produced by the process have a moisture content near their water saturation point. As a result, these compacts absorb little water and retain exceptional mechanical strength when immersed in high pressure water. The process can be used to form large, cylindrically-shaped compacts from coal particles (i.e., "coal logs") so that the coal can be transported in a hydraulic coal log pipeline.

  20. Standardization of DOE Disposal Facilities Waste Acceptance Process

    SciTech Connect (OSTI)

    SHRADER, T.; MACBETH, P.

    2002-01-01

    On February 25, 2000, the US. Department of Energy (DOE) issued the Record of Decision (ROD) for the Waste Management Programmatic Environmental Impact Statement (WM PEIS) for low-level and mixed low-level wastes (LLW/ MLLW) treatment and disposal. The ROD designated the disposal sites at Hanford and the Nevada Test Site (NTS) to dispose of LLWMLLW from sites without their own disposal facilities. DOE's Richland Operations Office (RL) and the National Nuclear Security Administration's Nevada Operations Office (NV) have been charged with effectively implementing the ROD. To accomplish this task NV and RL, assisted by their operating contractors Bechtel Nevada (BN), Fluor Hanford (FH), and Bechtel Hanford (BH) assembled a task team to systematically map out and evaluate the current waste acceptance processes and develop an integrated, standardized process for the acceptance of LLWMLLW. A structured, systematic, analytical process using the Six Sigma system identified disposal process improvements and quantified the associated efficiency gains to guide changes to be implemented. The review concluded that a unified and integrated Hanford/NTS Waste Acceptance Process would be a benefit to the DOE Complex, particularly the waste generators. The Six Sigma review developed quantitative metrics to address waste acceptance process efficiency improvements, and provides an initial look at development of comparable waste disposal cost models between the two disposal sites to allow quantification of the proposed improvements.

  1. South Carolina State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-08-01

    The South Carolina State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in South Carolina. The profile is the result of a survey of NRC licensees in South Carolina. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as definied by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in South Carolina.

  2. Hanson County, South Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Biodiesel Producers LLC Places in Hanson County, South Dakota Alexandria, South Dakota Emery, South Dakota Farmer, South Dakota Fulton, South Dakota Retrieved from "http:...

  3. Berkeley County, South Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Jamestown, South Carolina Ladson, South Carolina Moncks Corner, South Carolina St. Stephen, South Carolina Summerville, South Carolina Retrieved from "http:en.openei.orgw...

  4. Moody County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Colman, South Dakota Egan, South Dakota Flandreau, South Dakota Trent, South Dakota Ward, South Dakota Retrieved from "http:en.openei.orgwindex.php?titleMoodyCounty,Sout...

  5. Davison County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    LLC Places in Davison County, South Dakota Ethan, South Dakota Loomis, South Dakota Mitchell, South Dakota Mount Vernon, South Dakota Retrieved from "http:en.openei.orgw...

  6. Clark County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 6 Climate Zone Subtype A. Places in Clark County, South Dakota Bradley, South Dakota Clark, South Dakota Garden City, South Dakota Naples, South Dakota...

  7. Greenwood County, South Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Zone Number 3 Climate Zone Subtype A. Places in Greenwood County, South Carolina Bradley, South Carolina Cokesbury, South Carolina Coronaca, South Carolina Greenwood, South...

  8. Union County, South Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Carlisle, South Carolina Jonesville, South Carolina Lockhart, South Carolina Monarch Mill, South Carolina Union, South Carolina Retrieved from "http:en.openei.orgw...

  9. York County, South Carolina: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Zone Subtype A. Places in York County, South Carolina Clover, South Carolina Fort Mill, South Carolina Hickory Grove, South Carolina India Hook, South Carolina Lake Wylie,...

  10. Chester County, South Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Zone Subtype A. Places in Chester County, South Carolina Chester, South Carolina Eureka Mill, South Carolina Fort Lawn, South Carolina Gayle Mill, South Carolina Great Falls,...

  11. Iron-carbon compacts and process for making them

    DOE Patents [OSTI]

    Sheinberg, Haskell

    2000-01-01

    The present invention includes iron-carbon compacts and a process for making them. The process includes preparing a slurry comprising iron powder, furfuryl alcohol, and a polymerization catalyst for initiating the polymerization of the furfuryl alcohol into a resin, and heating the slurry to convert the alcohol into the resin. The resulting mixture is pressed into a green body and heated to form the iron-carbon compact. The compact can be used as, or machined into, a magnetic flux concentrator for an induction heating apparatus.

  12. METHOD AND APPARATUS FOR MAKING URANIUM-HYDRIDE COMPACTS

    DOE Patents [OSTI]

    Wellborn, W.; Armstrong, J.R.

    1959-03-10

    A method and apparatus are presented for making compacts of pyrophoric hydrides in a continuous operation out of contact with air. It is particularly useful for the preparation of a canned compact of uranium hydride possessing high density and purity. The metallic uranium is enclosed in a container, positioned in a die body evacuated and nvert the uranium to the hydride is admitted and the container sealed. Heat is applied to bring about the formation of the hydride, following which compression is used to form the compact sealed in a container ready for use.

  13. Summary - Disposal Practices at the Savannah River Site

    Office of Environmental Management (EM)

    Nevada Test Site, NV EM Project: Area 5 LLRW & MLLW Disposal ETR Report Date: July 2008 ETR-14 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Disposal Practices at the Nevada Test Site Why DOE-EM Did This Review Radioactively contaminated materials from the Nevada Test Site (NTS), other DOE facilities and other federal agencies are disposed of at NTS at two low-level radioactive waste (LLRW) management sites: Areas 3 and 5.

  14. Analysis of alternatives for immobilized low activity waste disposal

    SciTech Connect (OSTI)

    Burbank, D.A.

    1997-10-28

    This report presents a study of alternative disposal system architectures and implementation strategies to provide onsite near-surface disposal capacity to receive the immobilized low-activity waste produced by the private vendors. The analysis shows that a flexible unit strategy that provides a suite of design solutions tailored to the characteristics of the immobilized low-activity waste will provide a disposal system that best meets the program goals of reducing the environmental, health, and safety impacts; meeting the schedule milestones; and minimizing the life-cycle cost of the program.

  15. Municipal garbage disposal: A problem we cannot ignore

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    In 1980 the US generated 150 million metric tons of municipal solid waste, and this figure is expected to increase to over 200 million metric tons by 1990. This comment discusses the traditional approaches to waste management, as well as current options available for waste disposal and the federal environmental laws that impinge on these options. Next, the national dimensions of the garbage disposal problem, as epitomized by the garbage barge and the international export of waste generated by this country, are discussed. This Comment concludes with recommendations for a change in public policy to foster recycling, taxing non-biodegradable products, as well as more stringent regulatory controls on solid waste disposal.

  16. Immobilized low-level waste disposal options configuration study

    SciTech Connect (OSTI)

    Mitchell, D.E.

    1995-02-01

    This report compiles information that supports the eventual conceptual and definitive design of a disposal facility for immobilized low-level waste. The report includes the results of a joint Westinghouse/Fluor Daniel Inc. evaluation of trade-offs for glass manufacturing and product (waste form) disposal. Though recommendations for the preferred manufacturing and disposal option for low-level waste are outside the scope of this document, relative ranking as applied to facility complexity, safety, remote operation concepts and ease of retrieval are addressed.

  17. Status of UFD Campaign International Activities in Disposal Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    Several international organizations have made significant progress in the characterization and performance evaluation of other disposal design options and host rock characteristics (clay/shale, granite), most of which were very different from those studied in the U.S. The DOE recognizes that close international collaboration is a beneficial and costeffective strategy for advancing disposal science. This report describes the active collaboration opportunities available to U.S. researchers, and presents specific cooperative research activities that have been recently initiated within DOE’s disposal research program.

  18. Compact Electrochemical Bi-functional NOx/O2 Sensors with an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Development of Compact Gaseous Sensors with Internal Reference for Monitoring O2 and NOx in Combustion Environments Compact Potentiometric NOx Sensor ...

  19. Integrated process for coalbed brine disposal

    SciTech Connect (OSTI)

    Brandt, H. |; Bourcier, W.L.; Jackson, K.J.

    1994-03-01

    A brine disposal process is described that converts the brine stream of a coalbed gas producing site into clean water for agricultural use, combustion products and water vapor that can be released into the atmosphere and dry solids that can be recycled for industrial consumption. The process uses a reverse osmosis unit, a submerged combustion evaporator and a pulse combustion dryer. Pretreatment of the brine feedstream is necessary to prevent fouling of the membranes of the reverse osmosis unit and to separate from the brine stream hazardous metal and other constituents that may make the permeate from the reverse osmosis unit unsuitable for agricultural or other use. A chemical modeling code is used to calculate the saturation states of solids that may precipitate and foul the reverse osmosis membranes. Sodium carbonate is added to the brine to precipitate carbonates of Ba, Ca, Mg and Sr prior to filtration, acidification, and passage into the reverse osmosis unit. Optimization of the process in terms of types and amounts of additives is possible with analysis using the modeling code. The minimum amounts of additives to prevent scaling are calculated. In a typical operation, a brine feedstream of 1,000 m{sup 3}/day (6,290 bpd) that may have a total dissolved salt concentration (TDS) of 7,000 ppm will be separated into a permeate stream of 750 m{sup 3}/day (4,718 bpd) with a TDS of 400 ppm and a concentrated brine stream of 250 m{sup 3}/day (1,573 bpd) with a TDS of 26,800 ppm. The submerged combustion evaporator will concentrate this latter stream to a concentration of 268,000 ppm and reduce the volume to 25 m{sup 3}/day (158 bpd). The pulse combustion dryer can dry the concentrated brine mixture to a low moisture salt. Energy costs to operate the reverse osmosis unit are primarily the pumping costs.

  20. Introduction to DOE Order 435.1 Low Level Radioactive Waste Disposal...

    Office of Environmental Management (EM)

    Introduction to DOE Order 435.1 Low Level Radioactive Waste Disposal Requirements Introduction to DOE Order 435.1 Low Level Radioactive Waste Disposal Requirements Christine ...

  1. 12/2000 Low-Level Waste Disposal Capacity Report Version 2 |...

    Office of Environmental Management (EM)

    Waste Management Waste Disposition 122000 Low-Level Waste Disposal Capacity Report Version 2 122000 Low-Level Waste Disposal Capacity Report Version 2 The purpose of this ...

  2. Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth...

    Office of Environmental Management (EM)

    Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant Full Document ...

  3. Used Fuel Disposal in Crystalline Rocks: Status and FY14 Progress...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Used Fuel Disposal in Crystalline Rocks: Status and FY14 Progress. Citation Details In-Document Search Title: Used Fuel Disposal in Crystalline Rocks: Status and ...

  4. Los Alamos Lab Completes Excavation of Waste Disposal Site Used in the 1940s

    Broader source: Energy.gov [DOE]

    Los Alamos National Laboratory recently completed excavation of its oldest waste disposal site, Material Disposal Area B (MDA-B), thanks to American Recovery and Reinvestment Act funding.

  5. Nuclear Transmutations in HFIR's Beryllium Reflector and Their Impact on Reactor Operation and Reflector Disposal

    SciTech Connect (OSTI)

    Chandler, David [ORNL; Maldonado, G Ivan [ORNL; Primm, Trent [ORNL; Proctor, Larry Duane [ORNL

    2012-01-01

    The High Flux Isotope Reactor located at the Oak Ridge National Laboratory utilizes a large cylindrical beryllium reflector that is subdivided into three concentric regions and encompasses the compact reactor core. Nuclear transmutations caused by neutron activation occur in the beryllium reflector regions, which leads to unwanted neutron absorbing and radiation emitting isotopes. During the past year, two topics related to the HFIR beryllium reflector were reviewed. The first topic included studying the neutron poison (helium-3 and lithium-6) buildup in the reflector regions and its affect on beginning-of-cycle reactivity. A new methodology was developed to predict the reactivity impact and estimated symmetrical critical control element positions as a function of outage time between cycles due to helium-3 buildup and was shown to be in better agreement with actual symmetrical critical control element position data than the current methodology. The second topic included studying the composition of the beryllium reflector regions at discharge as well as during decay to assess the viability of transporting, storing, and ultimately disposing the reflector regions currently stored in the spent fuel pool. The post-irradiation curie inventories were used to determine whether the reflector regions are discharged as transuranic waste or become transuranic waste during the decay period for disposal purposes and to determine the nuclear hazard category, which may affect the controls invoked for transportation and temporary storage. Two of the reflector regions were determined to be transuranic waste at discharge and the other region was determined to become transuranic waste in less than 2 years after being discharged due to the initial uranium content (0.0044 weight percent uranium). It was also concluded that all three of the reflector regions could be classified as nuclear hazard category 3 (potential for localized consequences only).

  6. Save Energy Now South Carolina

    Broader source: Energy.gov [DOE]

    South Carolina is home to a diverse manufacturing base with more than 3,500 industries. The manufacturing sector in South Carolina accounts for approximately 40% of the energy consumed in the state...

  7. Cape Light Compact- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Through a multi-member partnership, Cape Light Compact (CLC) and Mass Save offer a variety of financial incentives for commercial and industrial facilities. Custom rebate options are available for...

  8. Compact Ignition Tokamak Program: status of FEDC studies

    SciTech Connect (OSTI)

    Flanagan, C.A.

    1985-01-01

    Viewgraphs on the Compact Ignition Tokamak Program comprise the report. The technical areas discussed are the mechanical configuration status, magnet analysis, stress analysis, cooling between burns, TF coil joint, and facility/device layout options. (WRF)

  9. Title 10 Chapter 45 Connecticut River Flood Control Compact ...

    Open Energy Info (EERE)

    5 Connecticut River Flood Control Compact Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Title 10 Chapter 45 Connecticut River...

  10. Compact AC susceptometer for fast sample characterization down...

    Office of Scientific and Technical Information (OSTI)

    Compact AC susceptometer for fast sample characterization down to 0.1 K Citation Details ... down to 0.1 K is demonstrated using several superconducting and magnetic materials. ...

  11. Preparation of bulk superhard B-C-N nanocomposite compact

    DOE Patents [OSTI]

    Zhao, Yusheng; He, Duanwei

    2011-05-10

    Bulk, superhard, B--C--N nanocomposite compacts were prepared by ball milling a mixture of graphite and hexagonal boron nitride, encapsulating the ball-milled mixture at a pressure in a range of from about 15 GPa to about 25 GPa, and sintering the pressurized encapsulated ball-milled mixture at a temperature in a range of from about 1800-2500 K. The product bulk, superhard, nanocomposite compacts were well sintered compacts with nanocrystalline grains of at least one high-pressure phase of B--C--N surrounded by amorphous diamond-like carbon grain boundaries. The bulk compacts had a measured Vicker's hardness in a range of from about 41 GPa to about 68 GPa.

  12. South Carolina Clean Energy Summit

    Broader source: Energy.gov [DOE]

    The South Carolina Clean Energy Business Alliance will host the fourth annual Clean Energy Summit. Learn more. 

  13. Plasma research shows promise for future compact accelerators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma research shows promise for future compact accelerators Plasma research shows promise for future compact accelerators A transformative breakthrough in controlling ion beams allows small-scale laser-plasma accelerators to deliver unprecedented power densities. December 21, 2015 The team in front of the Trident Target Chamber. Back, from left: Tom Shimada, Sha-Marie Reid, Adam Sefkow, Miguel Santiago, and Chris Hamilton. Front, from left: Russ Mortensen, Chengkun Huang, Sasi Palaniyappan,

  14. Compaction measurements on the Sweet Lake test well

    SciTech Connect (OSTI)

    Jogi, P.N.; Kalra, S.; Gray, K.E.; Thompson, T.W.; Bebout, D.G.; Bachman, A.L.

    1981-01-01

    Measurements of compressibilities, moduli, compaction coefficients, porosities, and permeabilities have been conducted on cores from Magma Gulf-Technadril/Department of Energy Amoco Fee No. 1 in the Sweet Lake Field in Cameron Parish, Louisiana. All rock parameters show nonlinear behavior with changing reservoir pressure. Compressibilities and uniaxial compaction coefficients decline rapidly with pore pressure reduction. Porosity reduction was generally less than 10%; permeability reduction was 30 to 40%. Additional tests are in progress.

  15. Energy Cost Calculator for Compact Fluorescent Lamps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compact Fluorescent Lamps Energy Cost Calculator for Compact Fluorescent Lamps This tool calculates the payback period for your calc retrofit project. Modify the default values to suit your project requirements. Existing incandescent lamp wattage Watts Incandescent lamp cost dollars Incandescent lamp life 1000 hours calc wattage Watts calc cost dollars calc life (6000 hours for moderate use, 10000 hours for high use) 8000 hours Number of lamps in retrofit project Hours operating per week hours

  16. Compact Buried Ducts in a Hot-Humid Climate House

    SciTech Connect (OSTI)

    Mallay, D.

    2016-01-01

    A system of compact, buried ducts provides a high-performance and cost-effective solution for delivering conditioned air throughout the building. This report outlines research activities that are expected to facilitate adoption of compact buried duct systems by builders. The results of this research would be scalable to many new house designs in most climates and markets, leading to wider industry acceptance and building code and energy program approval.

  17. Compact portable electric power sources (Technical Report) | SciTech

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Connect Compact portable electric power sources Citation Details In-Document Search Title: Compact portable electric power sources × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is also available for sale to the

  18. ORS 454 - Sewage Treatment and Disposal Systems | Open Energy...

    Open Energy Info (EERE)

    54 - Sewage Treatment and Disposal Systems Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: ORS 454 - Sewage Treatment and...

  19. Disposal Practices at the Nevada Test Site 2008

    Office of Environmental Management (EM)

    Review of Disposal Practices at the Nevada Test Site Why DOE-EM Did This Review Radioactively contaminated materials from the Nevada Test Site (NTS), other DOE facilities and other ...

  20. Draft Geologic Disposal Requirements Basis for STAD Specification

    SciTech Connect (OSTI)

    Ilgen, Anastasia G.; Bryan, Charles R.; Hardin, Ernest

    2015-03-25

    This document provides the basis for requirements in the current version of Performance Specification for Standardized Transportation, Aging, and Disposal Canister Systems, (FCRD-NFST-2014-0000579) that are driven by storage and geologic disposal considerations. Performance requirements for the Standardized Transportation, Aging, and Disposal (STAD) canister are given in Section 3.1 of that report. Here, the requirements are reviewed and the rationale for each provided. Note that, while FCRD-NFST-2014-0000579 provides performance specifications for other components of the STAD storage system (e.g. storage overpack, transfer and transportation casks, and others), these have no impact on the canister performance during disposal, and are not discussed here.

  1. ORS 466 - Storage, Treatment, and Disposal of Hazardous Waste...

    Open Energy Info (EERE)

    ORS 466 - Storage, Treatment, and Disposal of Hazardous Waste and Materials Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: ORS...

  2. Figure ES2. Annual Indices of Real Disposable Income, Vehicle...

    U.S. Energy Information Administration (EIA) Indexed Site

    ES2 Figure ES2. Annual Indices of Real Disposable Income, Vehicle-Miles Traveled, Consumer Price Index (CPI-U), and Real Average Retail Gasoline Price, 1978-2004, 1985100...

  3. Integration of EBS Models with Generic Disposal System Models

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report summarizes research activities on engineered barrier system (EBS) model integration with the generic disposal system model (GDSM), and used fuel degradation and radionuclide mobilization (RM) in support of the EBS evaluation and tool development within the UFD campaign.

  4. Draft Environmental Impact Statement for the Disposal of Greater...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Friday, February 18, 2011 Draft Environmental Impact Statement for the Disposal of ... many as 50,000 diagnostic medical procedures every day in the U.S. Today, the ...

  5. Hazards and scenarios examined for the Yucca Mountain disposal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazards and scenarios examined for the Yucca Mountain disposal system for spent nuclear fuel and ... For PSHA, two expert panels were convened. The first panel consisted of six teams ...

  6. Basis for Section 3116 Determination for Salt Waste Disposal...

    Office of Environmental Management (EM)

    WD-2005-001 January 2006 Basis for Section 3116 Determination for Salt Waste Disposal at ......... 28 4.0 THE WASTE DOES NOT REQUIRE PERMANENT ISOLATION IN A ...

  7. Laboratory to demolish excavation enclosures at Material Disposal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Excavation Enclosures At MDA B Laboratory to demolish excavation enclosures at Material Disposal Area B near DP Road Pre-demolition activities are beginning this week and the work...

  8. Supporting Calculations For Submerged Bed Scrubber Condensate Disposal Preconceptual Study

    SciTech Connect (OSTI)

    Pajunen, A. J.; Tedeschi, A. R.

    2012-09-18

    This document provides supporting calculations for the preparation of the Submerged Bed Scrubber Condensate Disposal Preconceptual Study report The supporting calculations include equipment sizing, Hazard Category determination, and LAW Melter Decontamination Factor Adjustments.

  9. NREL: Sustainable NREL - South Entrance Building

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    South Entrance Building A photo of a grey building with a red and white security checkpoint to the right. NREL's South Entrance Building NREL's South Entrance Building on the South ...

  10. South Atlantic summary report

    SciTech Connect (OSTI)

    Havran, K.J.; Wiese, J.D.

    1983-12-01

    To date, four Federal offshore oil-and-gas leasing actions have occurred in the South Atlantic Region. Two additional South Atlantic lease offerings remain on the July 1982 final 5-year OCS oil-and-gas leasing schedule before June 1987. The South Atlantic Region consists of three major sedimentary basins: the Carolina Trough, the Blake Plateau, and the Southeast Georgia Embayment. Lease Sale 43, the first in the South Atlantic Region, featured blocks for exploration in the Southeast Georgia Embayment. Offshore operators drilled a total of six exploratory wells on blocks leased in Lease Sale 43. All were dry. The 43 leases from Lease Sale 43 have now expired, some blocks were relinquished earlier by their lease-holders. In the recent Lease Sales 56 and RS-2, and in the South Atlantic Lease Offering (July 1983), blocks leased were largely concentrated in the Carolina Trough Basin. Exploration of these blocks may begin anew in early 1984. The blocks are in deep water and will require careful, long-range planning before drilling can commence. As of July 1983, all 66 leases from the above three sales are active. Two plans of exploration have been approved by Minerals Management Service for exploration on blocks leased in Lease Sale 56. The plans are for Russell Area, Blocks 709 and 710, and Manteo Area, Block 510. Blocks 709 and 710 are held by ARCO, and Block 510 is held by Chevron. Based on current plans of exploration, operations will begin in 1984, first by Chevron, and sometime later by ARCO. Operations will be supported by a temporary service base to be established at Morehead City, North Carolina. 6 references, 4 figures.

  11. Country Energy Profile, South Africa

    SciTech Connect (OSTI)

    1995-08-01

    This country energy profile provides energy and economic information about South Africa. Areas covered include: Economics, demographics, and environment; Energy situation; Energy structure; Energy investment opportunities; Department of Energy (DOE) programs in South Africa; and a listing of International aid to South Africa.

  12. NDAA Section 3116 Waste Determinations with Related Disposal Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessments | Department of Energy NDAA Section 3116 Waste Determinations with Related Disposal Performance Assessments NDAA Section 3116 Waste Determinations with Related Disposal Performance Assessments Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 authorizes the Secretary of Energy, in consultation with the Nuclear Regulatory Commission, to reclassify certain waste from reprocessing spent nuclear fuel from high-level waste to low-level waste

  13. Naval Spent Nuclear Fuel disposal Container System Description Document

    SciTech Connect (OSTI)

    N. E. Pettit

    2001-07-13

    The Naval Spent Nuclear Fuel Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers/waste packages are loaded and sealed in the surface waste handling facilities, transferred underground through the access drifts using a rail mounted transporter, and emplaced in emplacement drifts. The Naval Spent Nuclear Fuel Disposal Container System provides long term confinement of the naval spent nuclear fuel (SNF) placed within the disposal containers, and withstands the loading, transfer, emplacement, and retrieval operations. The Naval Spent Nuclear Fuel Disposal Container System provides containment of waste for a designated period of time and limits radionuclide release thereafter. The waste package maintains the waste in a designated configuration, withstands maximum credible handling and rockfall loads, limits the waste form temperature after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Each naval SNF disposal container will hold a single naval SNF canister. There will be approximately 300 naval SNF canisters, composed of long and short canisters. The disposal container will include outer and inner cylinder walls and lids. An exterior label will provide a means by which to identify a disposal container and its contents. Different materials will be selected for the waste package inner and outer cylinders. The two metal cylinders, in combination with the Emplacement Drift System, drip shield, and the natural barrier will support the design philosophy of defense-in-depth. The use of materials with different properties prevents a single mode failure from breaching the waste package. The inner cylinder and inner cylinder lids will be constructed of stainless steel while the outer cylinder and outer cylinder lids will be made of high-nickel alloy.

  14. Grand Junction, Colorado, Processing Site and Disposal Sites Fact Sheet

    Office of Legacy Management (LM)

    Grand Junction, Colorado, Disposal and Processing Sites This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I disposal and processing sites at Grand Junction, Colorado. These sites are managed by the U.S. Department of Energy Office of Legacy Management. Locations of the Grand Junction, Colorado, Sites Site Description and History The former Grand Junction processing site, historically known as the Climax uranium mill, sits at an elevation of

  15. Gunnison, Colorado, Processing and Disposal Sites Fact Sheet

    Office of Legacy Management (LM)

    Gunnison, Colorado, Processing and Disposal Sites This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I processing site and disposal site at Gunnison, Colorado. These sites are managed by the U.S. Department of Energy Office of Legacy Management. Location of the Gunnison, Colorado, Sites Site Description and History The Gunnison, Colorado, Processing Site is a former uranium-ore processing site on a 61.5-acre tract of land adjacent to the

  16. Stack gas disposal extracts: March 1947--January 1952

    SciTech Connect (OSTI)

    Cleavenger, P.M.; Gydesen, S.P.

    1989-10-01

    This document presents information on stack gas disposal which was extracted from weekly or monthly technical progress letters published during the period from March 1947 through January 1952. These extracts were taken from documents currently available on the Hanford Site. Selected extracts have been retyped because the reproductions made from some of the aging microfilm are nearly illegible. This chronology of stack gas disposal information was developed specifically for use by the Hanford Environmental Dose Reconstruction (HEDR) staff.

  17. Salt disposal of heat-generating nuclear waste.

    SciTech Connect (OSTI)

    Leigh, Christi D.; Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United

  18. LANL demolishes first containment dome at disposal area

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL Demolishes First Containment Dome LANL demolishes first containment dome at disposal area It once housed thousands of drums of radioactive waste that have been shipped to the Waste Isolation Pilot Plant for disposal. September 30, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new

  19. DOE - Office of Legacy Management -- Pennsylvania Disposal Site - PA 43

    Office of Legacy Management (LM)

    Disposal Site - PA 43 FUSRAP Considered Sites Site: Pennsylvania Disposal Site (PA.43) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: This site is one of a group of 77 FUSRAP considered sites for which few, if any records are available in their respective site files to provide an historical account of past operations and their relationship, if

  20. Steam plant ash disposal facility and industrial landfill at the Y-12 Plant, Anderson County, Tennessee. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    The US Department of Energy (DOE) is proposing to install a wet ash handling system to dewater bottom ash from the coal-fired steam plant at its Y-12 Plant and to construct a new landfill for disposal of industrial wastes, including the dewatered bottom ash. The DOE operates three major facilities on its Oak Ridge Reservation (ORR). Operation of these facilities results in the production of a variety of nonhazardous, nonradioactive solid wastes (approximately 300 m{sup 3} per day, compacted) including sanitary wastes, common industrial wastes and construction debris. At the current rate of use, this existing landfill will be filled within approximately 18 months, and more space is urgently needed. In an effort to alleviate this problem, DOE and WMD management propose to create additional landfill facilities at a nearby site. The potential environmental impacts associated with this proposed action are the subject of this environmental assessment (EA).

  1. Standardization of DOE Disposal Facilities Waste Acceptance Processes

    SciTech Connect (OSTI)

    Shrader, T. A.; Macbeth, P. J.

    2002-02-26

    On February 25, 2000, the U.S. Department of Energy (DOE) issued the Record of Decision (ROD) for the Waste Management Programmatic Environmental Impact Statement (WM PEIS) for low-level and mixed low-level wastes (LLW/ MLLW) treatment and disposal. The ROD designated the disposal sites at Hanford and the Nevada Test Site (NTS) to dispose of LLW/MLLW from sites without their own disposal facilities. DOE's Richland Operations Office (RL) and the National Nuclear Security Administration's Nevada Operations Office (NV) have been charged with effectively implementing the ROD. To accomplish this task NV and RL, assisted by their operating contractors Bechtel Nevada (BN), Fluor Hanford (FH), and Bechtel Hanford (BH) assembled a task team to systematically map out and evaluate the current waste acceptance processes and develop an integrated, standardized process for the acceptance of LLW/MLLW. A structured, systematic, analytical process using the Six Sigma system identified dispos al process improvements and quantified the associated efficiency gains to guide changes to be implemented. The review concluded that a unified and integrated Hanford/NTS Waste Acceptance Process would be a benefit to the DOE Complex, particularly the waste generators. The Six Sigma review developed quantitative metrics to address waste acceptance process efficiency improvements, and provides an initial look at development of comparable waste disposal cost models between the two disposal sites to allow quantification of the proposed improvements.

  2. Uncanistered Spent Nuclear fuel Disposal Container System Description Document

    SciTech Connect (OSTI)

    N. E. Pettit

    2001-07-13

    The Uncanistered Spent Nuclear Fuel (SNF) Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded with intact uncanistered assemblies and/or individually canistered SNF assemblies and sealed in the surface waste handling facilities, transferred to the underground through the access drifts, and emplaced in emplacement drifts. The Uncanistered SNF Disposal Container provides long-term confinement of the commercial SNF placed inside, and withstands the loading, transfer, emplacement, and retrieval loads and environments. The Uncanistered SNF Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual SNF assembly temperatures after emplacement, limits the introduction of moderator into the disposal container during the criticality control period, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident.

  3. Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China

    SciTech Connect (OSTI)

    Dorn, Thomas; Nelles, Michael; Flamme, Sabine; Jinming, Cai

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer We outline the differences of Chinese MSW characteristics from Western MSW. Black-Right-Pointing-Pointer We model the requirements of four clusters of plant owner/operators in China. Black-Right-Pointing-Pointer We examine the best technology fit for these requirements via a matrix. Black-Right-Pointing-Pointer Variance in waste input affects result more than training and costs. Black-Right-Pointing-Pointer For China technology adaptation and localisation could become push, not pull factors. - Abstract: Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don't sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no 'best' plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is

  4. Costs for off-site disposal of nonhazardous oil field wastes: Salt caverns versus other disposal methods

    SciTech Connect (OSTI)

    Veil, J.A.

    1997-09-01

    According to an American Petroleum Institute production waste survey reported on by P.G. Wakim in 1987 and 1988, the exploration and production segment of the US oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes, more than 20 billion bbl of produced water, and nearly 12 million bbl of associated wastes in 1985. Current exploration and production activities are believed to be generating comparable quantities of these oil field wastes. Wakim estimates that 28% of drilling wastes, less than 2% of produced water, and 52% of associated wastes are disposed of in off-site commercial facilities. In recent years, interest in disposing of oil field wastes in solution-mined salt caverns has been growing. This report provides information on the availability of commercial disposal companies in oil-and gas-producing states, the treatment and disposal methods they employ, and the amounts they charge. It also compares cavern disposal costs with the costs of other forms of waste disposal.

  5. South Dakota geothermal handbook

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)

  6. 9800 South Cass Avenue

    Office of Legacy Management (LM)

    Chicago Operations Office- 9800 South Cass Avenue Argonne, Illinois 60139 JAN 18 1979 William E. Mott, Acting Director, Division of Environmental Control Technology, HQ SMALL ANIMAL FACILITY, UNIVERSITY OF CHICAGO - FORMERLY UTILIZED MED/AEC SITES REMEDIAL ACTION PROGRAM (FLISRAP) Enclosed you will find a report detailing the findings of a search as part of the FUSRAP to locate the subject facility. As detailed in the report four areas of the University were reviewed as possible areas within the

  7. Design and operational considerations of United States commercial near-surface low-level radioactive waste disposal facilities

    SciTech Connect (OSTI)

    Birk, S.M.

    1997-10-01

    In accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985, states are responsible for providing for disposal of commercially generated low-level radioactive waste (LLW) within their borders. LLW in the US is defined as all radioactive waste that is not classified as spent nuclear fuel, high-level radioactive waste, transuranic waste, or by-product material resulting from the extraction of uranium from ore. Commercial waste includes LLW generated by hospitals, universities, industry, pharmaceutical companies, and power utilities. LLW generated by the country`s defense operations is the responsibility of the Federal government and its agency, the Department of Energy. The commercial LLRW disposal sites discussed in this report are located near: Sheffield, Illinois (closed); Maxey Flats, Kentucky (closed); Beatty, Nevada (closed); West Valley, New York (closed); Barnwell, South Carolina (operating); Richland, Washington (operating); Ward Valley, California, (proposed); Sierra Blanca, Texas (proposed); Wake County, North Carolina (proposed); and Boyd County, Nebraska (proposed). While some comparisons between the sites described in this report are appropriate, this must be done with caution. In addition to differences in climate and geology between sites, LLW facilities in the past were not designed and operated to today`s standards. This report summarizes each site`s design and operational considerations for near-surface disposal of low-level radioactive waste. The report includes: a description of waste characteristics; design and operational features; post closure measures and plans; cost and duration of site characterization, construction, and operation; recent related R and D activities for LLW treatment and disposal; and the status of the LLW system in the US.

  8. Fort Saint Vrain HTGR (Th/U carbide) Fuel Characteristics for Disposal Criticality Analysis

    SciTech Connect (OSTI)

    Taylor, Larry Lorin

    2001-01-01

    DOE-owned spent nuclear fuels encompass many fuel types. In an effort to facilitate criticality analysis for these various fuel types, they were categorized into eight characteristic fuel groups with emphasis on fuel matrix composition. Out of each fuel group, a representative fuel type was chosen for analysis as a bounding case within that fuel group. Generally, burnup data, fissile enrichments and total fuel mass govern the selection of the representative or candidate fuel within that group. For the HTGR group, the Fort Saint Vrain (FSV) reactor fuel has been chosen for the evaluation of viability for waste co-disposal. The FSV reactor was operated by Public Service of Colorado as a licensed power reactor. The FSV fuel employs a U/Th carbide matrix in individually pyrolytic carbon-coated particles. These individual particles are in turn coated with silicon carbide (SiC) and contained within fuel compacts, that are in turn embedded in graphite blocks that comprised the structural core of the reactor.

  9. Location standards for RCRA Treatment, Storage, and Disposal Facilities (TSDFs). RCRA Information Brief

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This bulletin describes RCRA location standards for hazardous waste storage and disposal facilities.

  10. Multi-Pack Disposal Concepts for Spent Fuel (Revision 1)

    SciTech Connect (OSTI)

    Hardin, Ernest; Matteo, Edward N.; Hadgu, Teklu

    2016-01-01

    At the initiation of the Used Fuel Disposition (UFD) R&D campaign, international geologic disposal programs and past work in the U.S. were surveyed to identify viable disposal concepts for crystalline, clay/shale, and salt host media. Concepts for disposal of commercial spent nuclear fuel (SNF) and high-level waste (HLW) from reprocessing are relatively advanced in countries such as Finland, France, and Sweden. The UFD work quickly showed that these international concepts are all “enclosed,” whereby waste packages are emplaced in direct or close contact with natural or engineered materials . Alternative “open” modes (emplacement tunnels are kept open after emplacement for extended ventilation) have been limited to the Yucca Mountain License Application Design. Thermal analysis showed that if “enclosed” concepts are constrained by peak package/buffer temperature, that waste package capacity is limited to 4 PWR assemblies (or 9 BWR) in all media except salt. This information motivated separate studies: 1) extend the peak temperature tolerance of backfill materials, which is ongoing; and 2) develop small canisters (up to 4-PWR size) that can be grouped in larger multi-pack units for convenience of storage, transportation, and possibly disposal (should the disposal concept permit larger packages). A recent result from the second line of investigation is the Task Order 18 report: Generic Design for Small Standardized Transportation, Aging and Disposal Canister Systems. This report identifies disposal concepts for the small canisters (4-PWR size) drawing heavily on previous work, and for the multi-pack (16-PWR or 36-BWR).

  11. Multi-pack Disposal Concepts for Spent Fuel (Rev. 0)

    SciTech Connect (OSTI)

    Hadgu, Teklu; Hardin, Ernest; Matteo, Edward N.

    2015-12-01

    At the initiation of the Used Fuel Disposition (UFD) R&D campaign, international geologic disposal programs and past work in the U.S. were surveyed to identify viable disposal concepts for crystalline, clay/shale, and salt host media (Hardin et al., 2012). Concepts for disposal of commercial spent nuclear fuel (SNF) and high-level waste (HLW) from reprocessing are relatively advanced in countries such as Finland, France, and Sweden. The UFD work quickly showed that these international concepts are all “enclosed,” whereby waste packages are emplaced in direct or close contact with natural or engineered materials . Alternative “open” modes (emplacement tunnels are kept open after emplacement for extended ventilation) have been limited to the Yucca Mountain License Application Design (CRWMS M&O, 1999). Thermal analysis showed that, if “enclosed” concepts are constrained by peak package/buffer temperature, waste package capacity is limited to 4 PWR assemblies (or 9-BWR) in all media except salt. This information motivated separate studies: 1) extend the peak temperature tolerance of backfill materials, which is ongoing; and 2) develop small canisters (up to 4-PWR size) that can be grouped in larger multi-pack units for convenience of storage, transportation, and possibly disposal (should the disposal concept permit larger packages). A recent result from the second line of investigation is the Task Order 18 report: Generic Design for Small Standardized Transportation, Aging and Disposal Canister Systems (EnergySolution, 2015). This report identifies disposal concepts for the small canisters (4-PWR size) drawing heavily on previous work, and for the multi-pack (16-PWR or 36-BWR).

  12. Disposal of oil field wastes into salt caverns: Feasibility, legality, risk, and costs

    SciTech Connect (OSTI)

    Veil, J.A.

    1997-10-01

    Salt caverns can be formed through solution mining in the bedded or domal salt formations that are found in many states. Salt caverns have traditionally been used for hydrocarbon storage, but caverns have also been used to dispose of some types of wastes. This paper provides an overview of several years of research by Argonne National Laboratory on the feasibility and legality of using salt caverns for disposing of oil field wastes, the risks to human populations from this disposal method, and the cost of cavern disposal. Costs are compared between the four operating US disposal caverns and other commercial disposal options located in the same geographic area as the caverns. Argonne`s research indicates that disposal of oil field wastes into salt caverns is feasible and legal. The risk from cavern disposal of oil field wastes appears to be below accepted safe risk thresholds. Disposal caverns are economically competitive with other disposal options.

  13. Compact Reversed-Field Pinch Reactors (CRFPR): preliminary engineering considerations

    SciTech Connect (OSTI)

    Hagenson, R.L.; Krakowski, R.A.; Bathke, C.G.; Miller, R.L.; Embrechts, M.J.; Schnurr, N.M.; Battat, M.E.; LaBauve, R.J.; Davidson, J.W.

    1984-08-01

    The unique confinement physics of the Reversed-Field Pinch (RFP) projects to a compact, high-power-density fusion reactor that promises a significant reduction in the cost of electricity. The compact reactor also promises a factor-of-two reduction in the fraction of total cost devoted to the reactor plant equipment (i.e., fusion power core (FPC) plus support systems). In addition to operational and developmental benefits, these physically smaller systems can operate economically over a range of total power output. After giving an extended background and rationale for the compact fusion approaches, key FPC subsystems for the Compact RFP Reactor (CRFPR) are developed, designed, and integrated for a minimum-cost, 1000-MWe(net) system. Both the problems and promise of the compact, high-power-density fusion reactor are quantitatively evaluated on the basis of this conceptual design. The material presented in this report both forms a framework for a broader, more expanded conceptual design as well as suggests directions and emphases for related research and development.

  14. Uncanistered Spent Nuclear fuel Disposal Container System Description Document

    SciTech Connect (OSTI)

    2000-10-12

    The Uncanistered Spent Nuclear Fuel (SNF) Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded with intact uncanistered assemblies and/or individually canistered SNF assemblies and sealed in the surface waste handling facilities, transferred to the underground through the access drifts, and emplaced in the emplacement drifts. The Uncanistered SNF Disposal Container provides long-term confinement of the commercial SNF placed inside, and withstands the loading, transfer, emplacement, and retrieval loads and environments. The Uncanistered SNF Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual SNF assembly temperatures after emplacement, limits the introduction of moderator into the disposal container during the criticality control period, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Multiple boiling water reactor (BWR) and pressurized water reactor (PWR) disposal container designs are needed to accommodate the expected range of spent fuel assemblies and provide long-term confinement of the commercial SNF. The disposal container will include outer and inner cylinder walls, outer cylinder lids (two on the top, one on the bottom), inner cylinder lids (one on the top, one on the bottom), and an internal metallic basket structure. Exterior labels will provide a means by which to identify the disposal container and its contents. The two metal cylinders, in combination with the cladding, Emplacement Drift System, drip shield, and natural barrier, will support the design philosophy of defense-in-depth. The use of materials with different

  15. Integrated Disposal Facility FY2011 Glass Testing Summary Report

    SciTech Connect (OSTI)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Westsik, Joseph H.

    2011-09-29

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 x 10{sup 5} m{sup 3} of glass (Certa and Wells 2010). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 8.9 x 10{sup 14} Bq total activity) of long-lived radionuclides, principally {sup 99}Tc (t{sub 1/2} = 2.1 x 10{sup 5}), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2011 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses.

  16. Basic research needs for management and disposal of DOE wastes

    SciTech Connect (OSTI)

    Grazis, B.M.; Horwitz, E.P. ); Schulz, W.W. )

    1991-04-01

    This document was chartered by the Department of Energy (DOE), Office of Energy Research. It identifies and describes 87 basic research needs in support of advanced technology for management and disposal of Department of Energy radioactive, hazardous chemical, and mixed wastes. A team of scientists and engineers from several DOE laboratories and sites, from academia, and from industry identified and described the basic research needs called out in this report. Special efforts were made to ensure that basic research needs related to management and disposal of any hazardous chemical wastes generated at nonnuclear DOE sites and facilities were properly identified. It is hoped that scientists in both DOE and nongovernment laboratories and institutions will find this document useful when formulating research efforts relevant to waste management and disposal. For management and disposal of DOE radioactive and mixed wastes, basic research needs are identified in nine separate action areas. Basic research needs for management and disposal of DOE hazardous chemical wastes are identified in five action areas. Sufficient description and background information are provided in the report for each particular research need to enable qualified and imaginative scientists to conceive research efforts and programs that will meet the need. 28 refs., 7 tabs.

  17. FACT SHEET: The Path Forward on Nuclear Waste Disposal | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy FACT SHEET: The Path Forward on Nuclear Waste Disposal FACT SHEET: The Path Forward on Nuclear Waste Disposal FACT SHEET: The Path Forward on Nuclear Waste Disposal (76.83 KB) More Documents & Publications Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Integrated Waste Management and Consent-Based Siting Booklet

  18. DOE - Office of Legacy Management -- 11 E (2) Disposal Cell - 037

    Office of Legacy Management (LM)

    11 E (2) Disposal Cell - 037 FUSRAP Considered Sites Site: 11 E. (2) Disposal Cell (037) Active UMTRCA Title II site; when completed site will be managed by LM Designated Name: Not Designated under FUSRAP Alternate Name: Salt Lake City 11 e.(2), UT, Disposal Site Location: Tooele County, Utah Evaluation Year: Salt Lake City 11 e.(2), UT, Disposal Site Site Operations: Disposal site Site Disposition: Remediation under UMTRCA Title II - site not ready to transition Radioactive Materials Handled:

  19. Determining heavy metals in spent compact fluorescent lamps (CFLs) and their waste management challenges: Some strategies for improving current conditions

    SciTech Connect (OSTI)

    Taghipour, Hassan; Amjad, Zahra; Jafarabadi, Mohamad Asghari; Gholampour, Akbar; Norouz, Prviz

    2014-07-15

    Highlights: • Heavy metals in spent compact fluorescent lamps (CFLs) determined. • Current waste management condition of CFLs in Iran assessed. • Currently, waste of CFLs is disposed by municipal waste stream in waste landfills. • We propose extended producer responsibility (EPR) for CFLs waste management. - Abstract: From environmental viewpoint, the most important advantage of compact fluorescent lamps (CFLs) is reduction of green house gas emissions. But their significant disadvantage is disposal of spent lamps because of containing a few milligrams of toxic metals, especially mercury and lead. For a successful implementation of any waste management plan, availability of sufficient and accurate information on quantities and compositions of the generated waste and current management conditions is a fundamental prerequisite. In this study, CFLs were selected among 20 different brands in Iran. Content of heavy metals including mercury, lead, nickel, arsenic and chromium was determined by inductive coupled plasma (ICP). Two cities, Tehran and Tabriz, were selected for assessing the current waste management condition of CFLs. The study found that waste generation amount of CFLs in the country was about 159.80, 183.82 and 153.75 million per year in 2010, 2011 and 2012, respectively. Waste generation rate of CFLs in Iran was determined to be 2.05 per person in 2012. The average amount of mercury, lead, nickel, arsenic and chromium was 0.417, 2.33, 0.064, 0.056 and 0.012 mg per lamp, respectively. Currently, waste of CFLs is disposed by municipal waste stream in waste landfills. For improving the current conditions, we propose by considering the successful experience of extended producer responsibility (EPR) in other electronic waste management. The EPR program with advanced recycling fee (ARF) is implemented for collecting and then recycling CFLs. For encouraging consumers to take the spent CFLs back at the end of the products’ useful life, a proportion of

  20. High lumen compact fluorescents boost light output in new fixtures

    SciTech Connect (OSTI)

    1992-12-31

    Some compact fluorescent lamps aren`t so compact. General Electric (GE), OSRAM, and Philips have been expanding offerings in longer, more powerful, hard wired CFLs that generate enough light to serve applications once limited to conventional fluorescents and metal halide systems. All three of these manufacturers have for some time offered 18- to 40-watt high-output CFLs, which use a fluorescent tube doubled back on itself to produce a lot of light in a compact source. Now GE has introduced an even larger, more powerful 50-watt unit, and OSRAM is soon to follow suit with a 55-watt lamp. These new entries to the field of turbocharged CFLs can provide general lighting at ceiling heights of 12 feet or more as well as indirect lighting, floodlighting, and wall washing. They are such a concentrated source of light that they can provide the desired illumination using fewer lamps and fixtures than would be needed with competing sources.

  1. Compact multiwavelength transmitter module for multimode fiber optic ribbon cable

    DOE Patents [OSTI]

    Deri, Robert J.; Pocha, Michael D.; Larson, Michael C.; Garrett, Henry E.

    2002-01-01

    A compact multiwavelength transmitter module for multimode fiber optic ribbon cable, which couples light from an M.times.N array of emitters onto N fibers, where the M wavelength may be distributed across two or more vertical-cavity surface-emitting laser (VCSEL) chips, and combining emitters and multiplexer into a compact package that is compatible with placement on a printed circuit board. A key feature is bringing together two emitter arrays fabricated on different substrates--each array designed for a different wavelength--into close physical proximity. Another key feature is to compactly and efficiently combine the light from two or more clusters of optical emitters, each in a different wavelength band, into a fiber ribbon.

  2. McPherson County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Subtype A. Places in McPherson County, South Dakota Central McPherson, South Dakota Eureka, South Dakota Hillsview, South Dakota Leola, South Dakota Long Lake, South Dakota West...

  3. Geological aspects of the nuclear waste disposal problem

    SciTech Connect (OSTI)

    Laverov, N.P.; Omelianenko, B.L.; Velichkin, V.I.

    1994-06-01

    For the successful solution of the high-level waste (HLW) problem in Russia one must take into account such factors as the existence of the great volume of accumulated HLW, the large size and variety of geological conditions in the country, and the difficult economic conditions. The most efficient method of HLW disposal consists in the maximum use of protective capacities of the geological environment and in using inexpensive natural minerals for engineered barrier construction. In this paper, the principal trends of geological investigation directed toward the solution of HLW disposal are considered. One urgent practical aim is the selection of sites in deep wells in regions where the HLW is now held in temporary storage. The aim of long-term investigations into HLW disposal is to evaluate geological prerequisites for regional HLW repositories.

  4. Used Fuel Disposal in Crystalline Rocks. FY15 Progress Report

    SciTech Connect (OSTI)

    Wang, Yifeng

    2015-08-20

    The objective of the Crystalline Disposal R&D Work Package is to advance our understanding of long-term disposal of used fuel in crystalline rocks and to develop necessary experimental and computational capabilities to evaluate various disposal concepts in such media. Chapter headings are as follows: Fuel matrix degradation model and its integration with performance assessments, Investigation of thermal effects on the chemical behavior of clays, Investigation of uranium diffusion and retardation in bentonite, Long-term diffusion of U(VI) in bentonite: dependence on density, Sorption and desorption of plutonium by bentonite, Dissolution of plutonium intrinsic colloids in the presence of clay and as a function of temperature, Laboratory investigation of colloid-facilitated transport of cesium by bentonite colloids in a crystalline rock system, Development and demonstration of discrete fracture network model, Fracture continuum model and its comparison with discrete fracture network model.

  5. International Collaboration Activities in Different Geologic Disposal Environments

    SciTech Connect (OSTI)

    Birkholzer, Jens

    2015-09-01

    This report describes the current status of international collaboration regarding geologic disposal research in the Used Fuel Disposition (UFD) Campaign. Since 2012, in an effort coordinated by Lawrence Berkeley National Laboratory, UFD has advanced active collaboration with several international geologic disposal programs in Europe and Asia. Such collaboration allows the UFD Campaign to benefit from a deep knowledge base with regards to alternative repository environments developed over decades, and to utilize international investments in research facilities (such as underground research laboratories), saving millions of R&D dollars that have been and are being provided by other countries. To date, UFD’s International Disposal R&D Program has established formal collaboration agreements with five international initiatives and several international partners, and national lab scientists associated with UFD have conducted specific collaborative R&D activities that align well with its R&D priorities.

  6. Low-level waste disposal in highly populated areas

    SciTech Connect (OSTI)

    Kowalski, E.; McCombie, C.; Issler, H.

    1989-11-01

    Nuclear-generated electricity supplies almost 40% of the demand in Switzerland (the rest being hydro-power). Allowing for a certain reserve and assuming an operational life-time of 40 years for each reactor, and taking into account wastes from decommissioning and from medicine, industry and research, the total amount of low-level radioactive waste to be disposed of is about 175,000 m{sup 3}. Since there are no unpopulated areas in Switzerland, and since Swiss Federal Law specifies that the safety of disposal may not depend upon supervision of the repository, no shallow-land burial has been foreseen, even for short-lived low-level waste. Instead, geological disposal in a mined cavern system with access through a horizontal tunnel was selected as the best way of meeting the requirements and ensuring the necessary public acceptance.

  7. Classified Component Disposal at the Nevada National Security Site

    SciTech Connect (OSTI)

    Poling, J.; Arnold, P.; Saad, M.; DiSanza, F.; Cabble, K.

    2012-11-05

    The Nevada National Security Site (NNSS) has added the capability needed for the safe, secure disposal of non-nuclear classified components that have been declared excess to national security requirements. The NNSS has worked with U.S. Department of Energy, National Nuclear Security Administration senior leadership to gain formal approval for permanent burial of classified matter at the NNSS in the Area 5 Radioactive Waste Management Complex owned by the U.S. Department of Energy. Additionally, by working with state regulators, the NNSS added the capability to dispose non-radioactive hazardous and non-hazardous classified components. The NNSS successfully piloted the new disposal pathway with the receipt of classified materials from the Kansas City Plant in March 2012.

  8. Decision document for function 4.2.4 dispose waste

    SciTech Connect (OSTI)

    Claghorn, R.D.

    1996-09-23

    This report formally documents the planning assumptions for Function 4.2.4, Dispose Waste, to provide a basis for lower level Tank Waste Remediation System (TWRS) Disposal Program decisions and analyses. The TWRS Environmental Impact Statement (DOE/EIS 1996) and a supplemental Environmental Impact Statement for closure of operable units will provide the ultimate Records of Decision for the TWRS strategy at this level. However, in the interim, this decision document provides a formal basis for the TWRS Dispose Waste planning assumptions. Function 4.2.4 addresses the disposition of immobilized high-level waste (IHLW), the disposition of immobilized low-activity waste (ILAW), and closure of the tank farm operable units.

  9. Decision document for function 4.2.4 dispose waste

    SciTech Connect (OSTI)

    Mcconville, C.M.

    1996-09-23

    This report formally documents the planning assumptions for Function 4.2.4, {ital Dispose Waste} to provide a basis for lower level Tank Waste Remediation System (TWRS) Disposal Program decisions and analyses. The TWRS Environmental Impact Statement (DOE/EIS 1996) and a supplemental Environmental Impact Statement for closure of operable units will provide the ultimate Records of Decision for the TWRS strategy at this level. However, in the interim, this decision document provides a formal basis for the TWRS Dispose Waste planning assumptions. Function 4.2.4 addresses the disposition of immobilized high-level waste (IHLW), the disposition of immobilized low-activity waste (ILAW), and closure of the tank farm operable units.

  10. Earth melter and method of disposing of feed materials

    DOE Patents [OSTI]

    Chapman, Christopher C.

    1994-01-01

    An apparatus, and method of operating the apparatus, wherein a feed material is converted into a glassified condition for subsequent use or disposal. The apparatus is particularly useful for disposal of hazardous or noxious waste materials which are otherwise either difficult or expensive to dispose of. The apparatus is preferably constructed by excavating a melt zone in a quantity of soil or rock, and lining the melt zone with a back fill material if refractory properties are needed. The feed material is fed into the melt zone and, preferably, combusted to an ash, whereupon the heat of combustion is used to melt the ash to a molten condition. Electrodes may be used to maintain the molten feed material in a molten condition, and to maintain homogeneity of the molten materials.

  11. Earth melter and method of disposing of feed materials

    DOE Patents [OSTI]

    Chapman, C.C.

    1994-10-11

    An apparatus, and method of operating the apparatus is described, wherein a feed material is converted into a glassified condition for subsequent use or disposal. The apparatus is particularly useful for disposal of hazardous or noxious waste materials which are otherwise either difficult or expensive to dispose of. The apparatus is preferably constructed by excavating a melt zone in a quantity of soil or rock, and lining the melt zone with a back fill material if refractory properties are needed. The feed material is fed into the melt zone and, preferably, combusted to an ash, whereupon the heat of combustion is used to melt the ash to a molten condition. Electrodes may be used to maintain the molten feed material in a molten condition, and to maintain homogeneity of the molten materials. 3 figs.

  12. SU-D-BRE-07: Neutron Shielding Assessment for a Compact Proton Therapy Vault

    SciTech Connect (OSTI)

    Prusator, M; Ahmad, S; Chen, Y

    2014-06-01

    Purpose: To perform a neutron shielding assessment of a commercially available compact proton therapy system. Methods: TOPAS (TOol for PArticle Simulation) beta release was used to model beam line components for Mevion S250 proton treatment system the design of which is that the cyclotron is present in the treatment room. Three neutron production sources were taken into account in the simulation. These are the cyclotron, the treatment nozzle and the patient itself, respectively. The cyclotron was modeled as a cylindrical iron target (r =5 cm, length = 8 cm). A water phantom (10 cm ×10 cm ×60 cm) was used to model the patient and various structures (scattering foils, range modulator wheel, applicator and compensator) defaulted in TOPAS were used to model the passive scattering treatment nozzle. Neutron fluences and energy spectra were counted in a spherical scoring geometry per incident proton in 18 angular bins (10 degree each). Fluence to dose conversion factors from ICRU publication 74 were used to acquire neutron ambient dose equivalent H*(10). A point source line of sight model was then used to calculate neutron dose at eight locations beyond shielding barriers. Results: The neutron ambient dose equivalent was calculated at the 8 points of interest around the proton treatment vault. The highest dose was found to be less than 0.781 mSv/year outside south barrier wall. However, the dose is less than 0.05 mSv/year at the control room area of the proton vault. Conclusion: All Points of interest were well under annual dose limits. This suggests that the shielding design of this compact proton therapy system is sufficient for radiation protection purpose. However, it is important to note that the workload and the occupancy factors are direct multipliers for dose calculations beyond the barrier and must be accurately estimated for validation of our results.

  13. Compact two-beam push-pull free electron laser

    DOE Patents [OSTI]

    Hutton, Andrew (Yorktown, VA)

    2009-03-03

    An ultra-compact free electron laser comprising a pair of opposed superconducting cavities that produce identical electron beams moving in opposite directions such that each set of superconducting cavities accelerates one electron beam and decelerates the other electron beam. Such an arrangement, allows the energy used to accelerate one beam to be recovered and used again to accelerate the second beam, thus, each electron beam is decelerated by a different structure than that which accelerated it so that energy exchange rather than recovery is achieved resulting in a more compact and highly efficient apparatus.

  14. Rapid-cycling synchrotron with variable momentum compaction

    SciTech Connect (OSTI)

    Alexahin, Y.; Summers, D.J.; /Mississippi U.

    2010-05-01

    There are conflicting requirements on the value of the momentum compaction factor during energy ramping in a synchrotron: at low energies it should be positive and sufficiently large to make the slippage factor small so that it is possible to work closer to the RF voltage crest and ensure sufficient RF bucket area, whereas at higher energies it should be small or negative to avoid transition crossing. In the present report we propose a lattice with a variable momentum compaction factor and consider the possibility of using it in a high repetition rate proton driver for a muon collider and neutrino factory.

  15. Effect of suspension property on granule morphology and compaction behavior

    SciTech Connect (OSTI)

    Hae-Weon Lee, Guesup Song, In-Sik Suk

    1995-12-31

    Granule morphology is an important factor during dry pressing, since it has great influences on die flowability, compaction ratio, and resulting green microstructure. Granule morphology and packing structure of ultrafine Si{sub 3}N{sub 4} particles in the granule were optimized during spray drying by adjusting the suspension structure. The particle packing structure of spray-dried granule was investigated with suspension structure. The effects of granule morphology and its particle packing structure on compaction and resultant sintering behavior were evaluated.

  16. Compact high resolution isobar separator for study of exotic decays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compact high resolution isobar separator for study of exotic decays A. Piechaczek 1 , V. Shchepunov 1 , H. K. Carter 1 J. C. Batchelder 1 , E. F. Zganjar 2 1 UNIRIB, Oak Ridge Associated Universities, Oak Ridge, TN 37830 2 Department of Physics & Astronomy, Louisiana State University, Baton Rouge, LA 70803 A compact isobar separator, based on the Multi-Pass-Time-of-Flight (MTOF) principle, is developed [1]. A mass resolving power (MRP) as spectrometer of 110,000 (FWHM) is achieved in

  17. Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria

    SciTech Connect (OSTI)

    W. Mahlon Heileson

    2006-10-01

    The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

  18. Geological site characterization for the proposed Mixed Waste Disposal Facility, Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Reneau, S.L.; Raymond, R. Jr.

    1995-12-01

    This report presents the results of geological site characterization studies conducted from 1992 to 1994 on Pajarito Mesa for a proposed Los Alamos National Laboratory Mixed Waste Disposal Facility (MWDF). The MWDF is being designed to receive mixed waste (waste containing both hazardous and radioactive components) generated during Environmental Restoration Project cleanup activities at Los Alamos. As of 1995, there is no Resource Conservation and Recovery Act (RCRA) permitted disposal site for mixed waste at the Laboratory, and construction of the MWDF would provide an alternative to transport of this material to an off-site location. A 2.5 km long part of Pajarito Mesa was originally considered for the MWDF, extending from an elevation of about 2150 to 2225 m (7060 to 7300 ft) in Technical Areas (TAs) 15, 36, and 67 in the central part of the Laboratory, and planning was later concentrated on the western area in TA-67. The mesa top lies about 60 to 75 m (200 to 250 ft) above the floor of Pajarito Canyon on the north, and about 30 m (100 ft) above the floor of Threemile Canyon on the south. The main aquifer used as a water supply for the Laboratory and for Los Alamos County lies at an estimated depth of about 335 m (1100 ft) below the mesa. The chapters of this report focus on surface and near-surface geological studies that provide a basic framework for siting of the MWDF and for conducting future performance assessments, including fulfillment of specific regulatory requirements. This work includes detailed studies of the stratigraphy, mineralogy, and chemistry of the bedrock at Pajarito Mesa by Broxton and others, studies of the geological structure and of mesa-top soils and surficial deposits by Reneau and others, geologic mapping and studies of fracture characteristics by Vaniman and Chipera, and studies of potential landsliding and rockfall along the mesa-edge by Reneau.

  19. WIPP Reaches Milestone „ First Disposal Room Filled

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WIPP Reaches Milestone - First Disposal Room Filled CARLSBAD, N.M., September 4, 2001 - The U.S. Department of Energy's (DOE) Carlsbad Field Office today announced that Room 7 of Panel 1 at the Waste Isolation Pilot Plant (WIPP), the first underground room used for disposal operations, has been filled to capacity with transuranic waste. The milestone was reached at about 3:30 p.m. on August 24, as Waste Handling personnel emplaced a shipment of waste from the Idaho National Engineering and

  20. Laboratory to demolish excavation enclosures at Material Disposal Area B

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    near DP Road Excavation Enclosures At MDA B Laboratory to demolish excavation enclosures at Material Disposal Area B near DP Road Pre-demolition activities are beginning this week and the work should be completed by the end of March 2013. November 1, 2012 The Laboratory plans to demolish the enclosures used to safely excavate and clean up the Lab's oldest waste disposal site near DP Road in Los Alamos. The Laboratory plans to demolish the enclosures used to safely excavate and clean up the

  1. Laboratory to demolish excavation enclosures at Material Disposal Area B

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    near DP Road Excavation Enclosures At MDA B Laboratory to demolish excavation enclosures at Material Disposal Area B near DP Road Pre-demolition activities are beginning this week and the work should be completed by the end of March 2013. November 1, 2012 The Laboratory plans to demolish the enclosures used to safely excavate and clean up the Lab's oldest waste disposal site near DP Road in Los Alamos. The Laboratory plans to demolish the enclosures used to safely excavate and clean up the

  2. INERT-MATRIX FUEL: ACTINIDE ''BURINGIN'' AND DIRECT DISPOSAL

    SciTech Connect (OSTI)

    Rodney C. Ewing; Lumin Wang

    2002-10-30

    Excess actinides result from the dismantlement of nuclear weapons (Pu) and the reprocessing of commercial spent nuclear fuel (mainly 241 Am, 244 Cm and 237 Np). In Europe, Canada and Japan studies have determined much improved efficiencies for burnup of actinides using inert-matrix fuels. This innovative approach also considers the properties of the inert-matrix fuel as a nuclear waste form for direct disposal after one-cycle of burn-up. Direct disposal can considerably reduce cost, processing requirements, and radiation exposure to workers.

  3. Laboratory to demolish excavation enclosures at Material Disposal Area B

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    near DP road Excavation enclosures at MDA B Laboratory to demolish excavation enclosures at Material Disposal Area B near DP road Pre-demolition activities are beginning this week and the work should be completed by the end of March 2013. November 1, 2012 The Laboratory plans to demolish the enclosures used to safely excavate and clean up the Lab's oldest waste disposal site near DP Road in Los Alamos. The Laboratory plans to demolish the enclosures used to safely excavate and clean up the

  4. A Critical Step Toward Sustainable Nuclear Fuel Disposal | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy A Critical Step Toward Sustainable Nuclear Fuel Disposal A Critical Step Toward Sustainable Nuclear Fuel Disposal January 26, 2012 - 2:30pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy The Blue Ribbon Commission on America's Nuclear Future was formed at the direction of the President to conduct a comprehensive review of polices for managing the back end of the nuclear fuel cycle. If we are going to ensure that the United States remains at the forefront of nuclear

  5. 2009 Performance Assessment for the Saltstone Disposal Facility

    Broader source: Energy.gov [DOE]

    This Performance Assessment (PA) for the Savannah River Site (SRS) was prepared to support the operation and eventual closure of the Saltstone Disposal Facility (SDF). This PA was prepared to demonstrate compliance with the pertinent requirements of the United States Department of Energy (DOE) Order 435.1, Change 1, Radioactive Waste Management, Chapter IV, and Title 10, of the Code of Federal Regulations (CFR) Part 61, Licensing Requirements for Land Disposal of Radioactive Waste, Subpart C as required by the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, Section 3116. [DOE O 435.1-1, 10 CFR 61, NDAA_3116

  6. DOE Issues Final Environmental Impact Statement for Disposal of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Greater-Than-Class C Waste | Department of Energy Environmental Impact Statement for Disposal of Greater-Than-Class C Waste DOE Issues Final Environmental Impact Statement for Disposal of Greater-Than-Class C Waste February 25, 2016 - 3:30pm Addthis WASHINGTON, D.C. - The U.S. Department of Energy (DOE) today issued a Final Environmental Impact Statement (EIS) that evaluates the potential environmental impacts associated with the proposed development, operation, and long-term management of

  7. Test Area for Remedial Actions (TARA) site characterization and dynamic compaction of low-level radioactive waste trenches. FY 1988 progress report

    SciTech Connect (OSTI)

    Davis, E.C.; Spalding, B.P.; Lee, S.Y.; Hyder, L.K.

    1989-01-01

    As part of a low-level radioactive waste burial ground stabilization and closure technology demonstration project, a group of five burial trenches in Oak Ridge National Laboratory (ORNL) Solid Waste Storage Area (SWSA) 6 was selected as a demonstration site for testing trench compaction, trench grouting, and trench cap installation and performance. This report focuses on site characterization, trench compaction, and grout-trench leachate compatibility. Trench grouting and cap design and construction will be the subject of future reports. The five trenches, known as the Test Area for Remedial Actions (TARA) site, are contained within a hydrologically isolated area of SWSA 6; for that reason, any effects of stabilization activities on site performance and groundwater quality will be separable from the influence of other waste disposal units in SWSA 6. To obviate the chronic problem of burial trench subsidence and to provide support for an infiltration barrier cap, these five trenches were dynamically compacted by repeated dropping of a 4-ton weight onto each trench from heights of approximately 7 m.

  8. Analysis of Natural Graphite, Synthetic Graphite, and Thermosetting Resin Candidates for Use in Fuel Compact Matrix

    SciTech Connect (OSTI)

    Trammell, Michael P; Pappano, Peter J

    2011-09-01

    The AGR-1 and AGR-2 compacting process involved overcoating TRISO particles and compacting them in a steel die. The overcoating step is the process of applying matrix to the OPyC layer of TRISO particles in a rotating drum in order to build up an overcoat layer of desired thickness. The matrix used in overcoating is a mixture of natural graphite, synthetic graphite, and thermosetting resin in the ratio, by weight, of 64:16:20. A wet mixing process was used for AGR-1 and AGR-2, in that the graphites and resin were mixed in the presence of ethyl alcohol. The goal of the wet mixing process was to 'resinate' the graphite particles, or coat each individual graphite particle with a thin layer of resin. This matrix production process was similar to the German, Chinese, Japanese, and South African methods, which also use various amount of solvent during mixing. See Appendix 1 for information on these countries matrix production techniques. The resin used for AGR-1 and AGR-2 was provided by Hexion, specifically Hexion grade Durite SC1008. Durite SC1008 is a solvated (liquid) resole phenolic resin. A resole resin does not typically have a hardening agent added. The major constituent of SC1008 is phenol, with minor amounts of formaldehyde. Durite SC1008 is high viscosity, so additional ethyl alcohol was added during matrix production in order to reduce its viscosity and enhance graphite particle resination. The current compacting scale up plan departs from a wet mixing process. The matrix production method specified in the scale up plan is a co-grinding jet mill process where powdered phenolic resin and graphite are all fed into a jet mill at the same time. Because of the change in matrix production style, SC1008 cannot be used in the jet milling process because it is a liquid. The jet milling/mixing process requires that a suite of solid or powdered resins be investigated. The synthetic graphite used in AGR-1 and AGR-2 was provided by SGL Carbon, grade KRB2000. KRB2000 is a

  9. Buffalo County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Zone Number 6 Climate Zone Subtype A. Places in Buffalo County, South Dakota Fort Thompson, South Dakota North Buffalo, South Dakota Southeast Buffalo, South Dakota Retrieved...

  10. Colleton County, South Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Carolina Lodge, South Carolina Smoaks, South Carolina Walterboro, South Carolina Williams, South Carolina Retrieved from "http:en.openei.orgwindex.php?titleColletonCount...

  11. Saluda County, South Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Carolina Monetta, South Carolina Ridge Spring, South Carolina Saluda, South Carolina Ward, South Carolina Retrieved from "http:en.openei.orgwindex.php?titleSaludaCounty,S...

  12. Hand County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 6 Climate Zone Subtype A. Places in Hand County, South Dakota Miller, South Dakota Northwest Hand, South Dakota Ree Heights, South Dakota St. Lawrence,...

  13. Spink County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    6 Climate Zone Subtype A. Registered Energy Companies in Spink County, South Dakota Redfield Energy LLC Places in Spink County, South Dakota Ashton, South Dakota Brentford, South...

  14. Regulatory Framework for Salt Waste Disposal and Tank Closure at the Savannah River Site - 13663

    SciTech Connect (OSTI)

    Thomas, Steve; Dickert, Ginger

    2013-07-01

    The end of the Cold War has left a legacy of approximately 37 million gallons of radioactive waste in the aging waste tanks at the Department of Energy's Savannah River Site (SRS). A robust program is in place to remove waste from these tanks, treat the waste to separate into a relatively small volume of high-level waste and a large volume of low-level waste, and to actively dispose of the low-level waste on-site and close the waste tanks and associated ancillary structures. To support performance-based, risk-informed decision making and to ensure compliance with all regulatory requirements, the U.S. Department of Energy (DOE) and its current and past contractors have worked closely with the South Carolina Department of Health and Environmental Control (SCDHEC), the U.S. Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC) to develop and implement a framework for on-site low-level waste disposal and closure of the SRS waste tanks. The Atomic Energy Act of 1954, as amended, provides DOE the authority to manage defense-related radioactive waste. DOE Order 435.1 and its associated manual and guidance documents detail this radioactive waste management process. The DOE also has a requirement to consult with the NRC in determining that waste that formerly was classified as high-level waste can be safely managed as either low-level waste or transuranic waste. Once DOE makes a determination, NRC then has a responsibility to monitor DOE's actions in coordination with SCDHEC to ensure compliance with the Title 10 Code of Federal Regulations Part 61 (10CFR61), Subpart C performance objectives. The management of hazardous waste substances or components at SRS is regulated by SCDHEC and the EPA. The foundation for the interactions between DOE, SCDHEC and EPA is the SRS Federal Facility Agreement (FFA). Managing this array of requirements and successfully interacting with regulators, consultants and stakeholders is a challenging task but ensures

  15. Compact anhydrous HCl to aqueous HCl conversion system

    DOE Patents [OSTI]

    Grossman, Mark W.; Speer, Richard

    1993-01-01

    The present invention is directed to an inexpensive and compact apparatus adapted for use with a .sup.196 Hg isotope separation process and the conversion of anhydrous HCl to aqueous HCl without the use of air flow to carry the HCl vapor into the converter system.

  16. Compact anhydrous HCl to aqueous HCl conversion system

    DOE Patents [OSTI]

    Grossman, M.W.; Speer, R.

    1993-06-01

    The present invention is directed to an inexpensive and compact apparatus adapted for use with a [sup 196]Hg isotope separation process and the conversion of anhydrous HCl to aqueous HCl without the use of air flow to carry the HCl vapor into the converter system.

  17. Recent progress on the Compact Ignition Tokamak (CIT)

    SciTech Connect (OSTI)

    Ignat, D.W.

    1987-01-01

    This report describes work done on the Compact Ignition Tokamak (CIT), both at the Princeton Plasma Physics Laboratory (PPPL) and at other fusion laboratories in the United States. The goal of CIT is to reach ignition in a tokamak fusion device in the mid-1990's. Scientific and engineering features of the design are described, as well as projected cost and schedule.

  18. Ultra-compact Marx-type high-voltage generator

    DOE Patents [OSTI]

    Goerz, David A.; Wilson, Michael J.

    2000-01-01

    An ultra-compact Marx-type high-voltage generator includes individual high-performance components that are closely coupled and integrated into an extremely compact assembly. In one embodiment, a repetitively-switched, ultra-compact Marx generator includes low-profile, annular-shaped, high-voltage, ceramic capacitors with contoured edges and coplanar extended electrodes used for primary energy storage; low-profile, low-inductance, high-voltage, pressurized gas switches with compact gas envelopes suitably designed to be integrated with the annular capacitors; feed-forward, high-voltage, ceramic capacitors attached across successive switch-capacitor-switch stages to couple the necessary energy forward to sufficiently overvoltage the spark gap of the next in-line switch; optimally shaped electrodes and insulator surfaces to reduce electric field stresses in the weakest regions where dissimilar materials meet, and to spread the fields more evenly throughout the dielectric materials, allowing them to operate closer to their intrinsic breakdown levels; and uses manufacturing and assembly methods to integrate the capacitors and switches into stages that can be arranged into a low-profile Marx generator.

  19. A Compact Wireless Charging System for Electric Vehicles

    SciTech Connect (OSTI)

    Ning, Puqi; Miller, John M; Onar, Omer C; White, Cliff P

    2013-01-01

    In this paper, a compact high efficiency wireless power transfer system has been designed and developed. The detailed gate drive design, cooling system design, power stage development, and system assembling are presented. The successful tests verified the feasibility of wireless power transfer system to achieve over-all 90% efficiency.

  20. Fouling characteristics of compact heat exchangers and enhanced tubes.

    SciTech Connect (OSTI)

    Panchal, C. B.; Rabas, T. J.

    1999-07-15

    Fouling is a complex phenomenon that (1) encompasses formation and transportation of precursors, and (2) attachment and possible removal of foulants. A basic understanding of fouling mechanisms should guide the development of effective mitigation techniques. The literature on fouling in complex flow passages of compact heat exchangers is limited; however, significant progress has been made with enhanced tubes.

  1. Gluon Vortices and Induced Magnetic Field in Compact Stars

    SciTech Connect (OSTI)

    Ferrer, Efrain J.

    2007-10-26

    The natural candidates for the realization of color superconductivity are the extremely dense cores of compact stars, many of which have very large magnetic fields, especially the so called magnetars. In this paper we discuss how a color superconducting core can serve to generate and enhance the stellar magnetic field without appealing to a magnetohydrodynamic dynamo mechanism.

  2. Compact X-ray Light Source Workshop Report

    SciTech Connect (OSTI)

    Thevuthasan, Suntharampillai; Evans, James E.; Terminello, Louis J.; Koppenaal, David W.; Manke, Kristin L.; Plata, Charity

    2012-12-01

    This report, produced jointly by EMSL and FCSD, is the result of a workshop held in September 2011 that examined the utility of a compact x-ray light source (CXLS) in addressing many scientific challenges critical to advancing energy science and technology.

  3. ULTRA-COMPACT ACCELERATOR TECHNOLOGIES FOR APPLICATION IN NUCLEAR TECHNIQUES

    SciTech Connect (OSTI)

    Sampayan, S; Caporaso, G; Chen, Y; Carazo, V; Falabella, S; Guethlein, G; Guse, S; Harris, J R; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Paul, A C; Pearson, D; Poole, B; Schmidt, R; Sanders, D; Selenes, K; Sitaraman, S; Sullivan, J; Wang, L; Watson, J

    2009-06-11

    We report on compact accelerator technology development for potential use as a pulsed neutron source quantitative post verifier. The technology is derived from our on-going compact accelerator technology development program for radiography under the US Department of Energy and for a clinic sized compact proton therapy systems under an industry sponsored Cooperative Research and Development Agreement. The accelerator technique relies on the synchronous discharge of a prompt pulse generating stacked transmission line structure with the beam transit. The goal of this technology is to achieve {approx}10 MV/m gradients for 10s of nanoseconds pulses and to {approx}100 MV/m gradients for {approx}1 ns systems. As a post verifier for supplementing existing x-ray equipment, this system can remain in a charged, stand-by state with little or no energy consumption. We detail the progress of our overall component development effort with the multilayer dielectric wall insulators (i.e., the accelerator wall), compact power supply technology, kHz repetition-rate surface flashover ion sources, and the prompt pulse generation system consisting of wide-bandgap switches and high performance dielectric materials.

  4. Integrated Disposal Facility FY 2012 Glass Testing Summary Report

    SciTech Connect (OSTI)

    Pierce, Eric M.; Kerisit, Sebastien N.; Krogstad, Eirik J.; Burton, Sarah D.; Bjornstad, Bruce N.; Freedman, Vicky L.; Cantrell, Kirk J.; Snyder, Michelle MV; Crum, Jarrod V.; Westsik, Joseph H.

    2013-03-29

    PNNL is conducting work to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility for Hanford immobilized low-activity waste (ILAW). Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program, PNNL is implementing a strategy, consisting of experimentation and modeling, to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. Key activities in FY12 include upgrading the STOMP/eSTOMP codes to do near-field modeling, geochemical modeling of PCT tests to determine the reaction network to be used in the STOMP codes, conducting PUF tests on selected glasses to simulate and accelerate glass weathering, developing a Monte Carlo simulation tool to predict the characteristics of the weathered glass reaction layer as a function of glass composition, and characterizing glasses and soil samples exhumed from an 8-year lysimeter test. The purpose of this report is to summarize the progress made in fiscal year (FY) 2012 and the first quarter of FY 2013 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of LAW glasses.

  5. Deep Borehole Disposal Remediation Costs for Off-Normal Outcomes

    SciTech Connect (OSTI)

    Finger, John T.; Cochran, John R.; Hardin, Ernest

    2015-08-17

    This memo describes rough-order-of-magnitude (ROM) cost estimates for a set of off-normal (accident) scenarios, as defined for two waste package emplacement method options for deep borehole disposal: drill-string and wireline. It summarizes the different scenarios and the assumptions made for each, with respect to fishing, decontamination, remediation, etc.

  6. Support of the Iraq nuclear facility dismantlement and disposal program

    SciTech Connect (OSTI)

    Coates, Roger; Cochran, John; Danneels, Jeff; Chesser, Ronald; Phillips, Carlton; Rogers, Brenda

    2007-07-01

    Available in abstract form only. Full text of publication follows: Iraq's former nuclear facilities contain large quantities of radioactive materials and radioactive waste. The Iraq Nuclear Facility Dismantlement and Disposal Program (the Iraq NDs Program) is a new program to decontaminate and permanently dispose of radioactive wastes in Iraq. The NDs Program is led by the Government of Iraq, under International Atomic Energy Agency (IAEA) auspices, with guidance and assistance from a number of countries. The U.S. participants include Texas Tech University and Sandia National Laboratories. A number of activities are ongoing under the broad umbrella of the Iraq NDs Program: drafting a new nuclear law that will provide the legal basis for the cleanup and disposal activities; assembly and analysis of existing data; characterization of soil contamination; bringing Iraqi scientists to the world's largest symposium on radioactive waste management; touring U.S. government and private sector operating radwaste disposal facilities in the U.S., and hosting a planning workshop on the characterization and cleanup of the Al-Tuwaitha Nuclear Facility. (authors)

  7. Combination gas producing and waste-water disposal well

    DOE Patents [OSTI]

    Malinchak, Raymond M.

    1984-01-01

    The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

  8. Readiness Assessment Plan, Hanford 200 areas treated effluent disposal facilities

    SciTech Connect (OSTI)

    Ulmer, F.J.

    1995-02-06

    This Readiness Assessment Plan documents Liquid Effluent Facilities review process used to establish the scope of review, documentation requirements, performance assessment, and plant readiness to begin operation of the Treated Effluent Disposal system in accordance with DOE-RLID-5480.31, Startup and Restart of Facilities Operational Readiness Review and Readiness Assessments.

  9. Remote-Handled Low-Level Waste (RHLLW) Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2010-10-01

    The Remote-Handled Low-Level Waste Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of fiscal year 2015). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability.

  10. Special Analysis: Revision of Saltstone Vault 4 Disposal Limits (U)

    SciTech Connect (OSTI)

    Cook, J

    2005-05-26

    New disposal limits have been computed for Vault 4 of the Saltstone Disposal Facility based on several revisions to the models in the existing Performance Assessment and the Special Analysis issued in 2002. The most important changes are the use of a more rigorous groundwater flow and transport model, and consideration of radon emanation. Other revisions include refinement of the aquifer mesh to more accurately model the footprint of the vault, a new plutonium chemistry model accounting for the different transport properties of oxidation states III/IV and V/VI, use of variable infiltration rates to simulate degradation of the closure system, explicit calculation of gaseous releases and consideration of the effects of settlement and seismic activity on the vault structure. The disposal limits have been compared with the projected total inventory expected to be disposed in Vault 4. The resulting sum-of-fractions of the 1000-year disposal limits is 0.2, which indicates that the performance objectives and requirements of DOE 435.1 will not be exceeded. This SA has not altered the conceptual model (i.e., migration of radionuclides from the Saltstone waste form and Vault 4 to the environment via the processes of diffusion and advection) of the Saltstone PA (MMES 1992) nor has it altered the conclusions of the PA (i.e., disposal of the proposed waste in the SDF will meet DOE performance measures). Thus a PA revision is not required and this SA serves to update the disposal limits for Vault 4. In addition, projected doses have been calculated for comparison with the performance objectives laid out in 10 CFR 61. These doses are 0.05 mrem/year to a member of the public and 21.5 mrem/year to an inadvertent intruder in the resident scenario over a 10,000-year time-frame, which demonstrates that the 10 CFR 61 performance objectives will not be exceeded. This SA supplements the Saltstone PA and supersedes the two previous SAs (Cook et al. 2002; Cook and Kaplan 2003).

  11. Ceramographic Examinations of Irradiated AGR-1 Fuel Compacts

    SciTech Connect (OSTI)

    Paul Demkowicz; Scott Ploger; John Hunn; Jay S. Kehn

    2012-09-01

    The AGR 1 experiment involved irradiating 72 cylindrical fuel compacts containing tri-structural isotropic (TRISO)-coated particles to a peak burnup of 19.5% fissions per initial metal atom with no in-pile failures observed out of almost 300,000 particles. Six irradiated AGR 1 fuel compacts were selected for microscopy that span a range of irradiation conditions (temperature, burnup, and fast fluence). These six compacts also included all four TRISO coating variations irradiated in the AGR experiment. The six compacts were cross-sectioned both transversely and longitudinally, mounted, ground, and polished after development of careful techniques for preserving particle structures against preparation damage. From 36 to 79 particles within each cross section were exposed near enough to midplane for optical microscopy of kernel, buffer, and coating behavior. The microstructural analysis focused on kernel swelling and porosity, buffer densification and fracture, debonding between the buffer and inner pyrolytic carbon (IPyC) layers, and fractures in the IPyC and SiC layers. Three basic particle morphologies were established according to the extent of bonding between the buffer and IPyC layers: complete debonding along the interface (Type A), no debonding along the interface (Type B), and partial debonding (Type AB). These basic morphologies were subdivided according to whether the buffer stayed intact or fractured. The resulting six characteristic morphologies were used to classify particles within each cross section, but no spatial patterns were clearly observed in any of the cross-sectional morphology maps. Although positions of particle types appeared random within compacts, examining a total of 931 classified particles allowed other relationships among morphological types to be established.

  12. Environmental impacts of ocean disposal of CO{sub 2}

    SciTech Connect (OSTI)

    Adams, E.; Herzog, H.; Auerbach, D.

    1995-11-01

    One option to reduce atmospheric CO{sub 2} levels is to capture and sequester power plant CO{sub 2} Commercial CO{sub 2} capture technology, though expensive, exists today. However, the ability to dispose of large quantities of CO{sub 2} is highly uncertain. The deep ocean is one of only a few possible CO{sub 2} disposal options (others are depleted oil and gas wells or deep, confined aquifers) and is a prime candidate because the deep ocean is vast and highly unsaturated in CO{sub 2}. The term disposal is really a misnomer because the atmosphere and ocean eventually equilibrate on a timescale of 1000 years regardless of where the CO{sub 2} is originally discharged. However, peak atmospheric CO{sub 2} concentrations expected to occur in the next few centuries could be significantly reduced by ocean disposal. The magnitude of this reduction will depend upon the quantity of CO{sub 2} injected in the ocean, as well as the depth and location of injection. Ocean disposal of CO{sub 2} will only make sense if the environmental impacts to the ocean are significantly less than the avoided impacts of atmospheric release. Our project has been examining these ocean impacts through a multi-disciplinary effort designed to summarize the current state of knowledge. The end-product will be a report issued during the summer of 1996 consisting of two volumes an executive summary (Vol I) and a series of six, individually authored topical reports (Vol II). A workshop with invited participants from the U.S. and abroad will review the draft findings in January, 1996.

  13. UMTRA project disposal cell cover biointrusion sensitivity assessment, Revision 1

    SciTech Connect (OSTI)

    1995-10-01

    This study provides an analysis of potential changes that may take place in a Uranium Mill Tailings Remedial Action (UMTRA) Project disposal cell cover system as a result of plant biointrusion. Potential changes are evaluated by performing a sensitivity analysis of the relative impact of root penetrations on radon flux out of the cell cover and/or water infiltration into the cell cover. Data used in this analysis consist of existing information on vegetation growth on selected cell cover systems and information available from published studies and/or other available project research. Consistent with the scope of this paper, no new site-specific data were collected from UMTRA Project sites. Further, this paper does not focus on the issue of plant transport of radon gas or other contaminants out of the disposal cell cover though it is acknowledged that such transport has the potential to be a significant pathway for contaminants to reach the environment during portions of the design life of a disposal cell where plant growth occurs. Rather, this study was performed to evaluate the effects of physical penetration and soil drying caused by plant roots that have and are expected to continue to grow in UMTRA Project disposal cell covers. An understanding of the biological and related physical processes that take place within the cover systems of the UMTRA Project disposal cells helps the U.S. Department of Energy (DOE) determine if the presence of a plant community on these cells is detrimental, beneficial, or of mixed value in terms of the cover system`s designed function. Results of this investigation provide information relevant to the formulation of a vegetation control policy.

  14. South American oil

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    GAO reviewed the petroleum industries of the following eight South American Countries that produce petroleum but are not major exporters: Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru, and Trinidad and Tobago. This report discusses the amount of crude oil the United States imports from the eight countries, expected crude oil production for these countries through the year 2010, and investment reforms that these countries have recently made in their petroleum industries. In general, although the United States imports some oil from these countries, as a group, the eight countries are currently net oil importers because combined domestic oil consumption exceeds oil production. Furthermore, the net oil imports are expected to continue to increase through the year 2010, making it unlikely that the United States will obtain increased oil shipments from these countries.

  15. Update on cavern disposal of NORM-contaminated oil field wastes.

    SciTech Connect (OSTI)

    Veil, J. A.

    1998-09-22

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive material (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. Argonne National Laboratory has previously evaluated the feasibility, legality, risk and economics of disposing of nonhazardous oil field wastes, other than NORM waste, in salt caverns. Cavern disposal of nonhazardous oil field waste, other than NORM waste, is occurring at four Texas facilities, in several Canadian facilities, and reportedly in Europe. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns as well. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, a review of federal regulations and regulations from several states indicated that there are no outright prohibitions against NORM disposal in salt caverns or other Class II wells, except for Louisiana which prohibits disposal of radioactive wastes or other radioactive materials in salt domes. Currently, however, only Texas and New Mexico are working on disposal cavern regulations, and no states have issued permits to allow cavern disposal of NORM waste. On the basis of the costs currently charged for cavern disposal of nonhazardous oil field waste (NOW), NORM waste disposal in caverns is likely to be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  16. South Central Electric Assn | Open Energy Information

    Open Energy Info (EERE)

    South Central Electric Assn Place: Minnesota Website: www.southcentralelectric.com Facebook: https:www.facebook.compagesSouth-Central-Electric-Association554997227953077...

  17. South Louisiana Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    South Louisiana Ethanol LLC Place: Louisiana Product: Ethanol production equipment provider. References: South Louisiana Ethanol LLC1 This article is a stub. You can help OpenEI...

  18. South Texas Blending | Open Energy Information

    Open Energy Info (EERE)

    search Name: South Texas Blending Place: Laredo, Texas Zip: 78045 Product: Biodiesel producer based in Texas. References: South Texas Blending1 This article is a stub....

  19. Enernova South America | Open Energy Information

    Open Energy Info (EERE)

    Enernova South America Jump to: navigation, search Name: Enernova (South America) Place: Brazil Sector: Renewable Energy Product: Subsidiary of Energias do Brasil developing 1GW of...

  20. University of South Florida | Open Energy Information

    Open Energy Info (EERE)

    South Florida Jump to: navigation, search Name: University of South Florida Place: St. Petersburg, Florida Zip: FL 33701 Product: Educational and research university. References:...