Powered by Deep Web Technologies
Note: This page contains sample records for the topic "disposal cell evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Evaluation of Background Concentrations of Contaminants in an Unusual Desert Arroyo Near a Uranium Mill Tailings Disposal Cell - 12260  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Office of Legacy Management (LM) manages 27 sites that have groundwater containing uranium concentrations above background levels. The distal portions of the plumes merge into background groundwater that can have 50 ?g/L or more uranium. Distinguishing background from site-related uranium is often problematic, but it is critical to determining if remediation is warranted, establishing appropriate remediation goals, and evaluating disposal cell performance. In particular, groundwater at disposal cells located on the upper Cretaceous Mancos Shale may have relatively high background concentrations of uranium. Elevated concentrations of nitrate, selenium, and sulfate accompany the uranium. LM used geologic analogs and uranium isotopic signatures to distinguish background groundwater from groundwater contaminated by a former uranium processing site. The same suite of contaminants is present in groundwater near former uranium processing sites and in groundwater seeps emanating from the Mancos Shale over a broad area. The concentrations of these contaminants in Many Devils Wash, located near LM's Shiprock disposal cell, are similar to those in samples collected from many Mancos seeps, including two analog sites that are 8 to 11 km from the disposal cell. Samples collected from Many Devils Wash and the analog sites have high AR values (about 2.0)-in contrast, groundwater samples collected near the tailings disposal cell have AR values near 1.0. These chemical signatures raise questions about the origin of the contamination seeping into Many Devils Wash. (authors)

Bush, Richard P. [U.S. Department of Energy Office of Legacy Management (United States); Morrison, Stan J. [S.M. Stoller Corporation (United States)

2012-07-01T23:59:59.000Z

2

Recommendation 212: Evaluate additional storage and disposal...  

Office of Environmental Management (EM)

212: Evaluate additional storage and disposal options Recommendation 212: Evaluate additional storage and disposal options The ORSSAB encourages DOE to evaluate additional storage...

3

disposal_cell.cdr  

Office of Legacy Management (LM)

With the With the April 24, 1997, ceremonial ground-breaking for disposal facility construction, the Weldon Spring Site Remedial Action Project (WSSRAP) moved into the final stage of cleanup, treatment, and disposal of uranium- processing wastes. The cleanup of the former uranium- refining plant consisted of three primary operations: Demolition and removal of remaining concrete pads and foundations that supported the 44 structures and buildings on site Treatment of selected wastes Permanent encapsulation of treated and untreated waste in an onsite engineered disposal facility In September l993, a Record of Decision (ROD) was signed by the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE), with concurrence by the Missouri Department of Natural

4

Unreviewed Disposal Question Evaluation: Waste Disposal In Engineered Trench #3  

SciTech Connect (OSTI)

Because Engineered Trench #3 (ET#3) will be placed in the location previously designated for Slit Trench #12 (ST#12), Solid Waste Management (SWM) requested that the Savannah River National Laboratory (SRNL) determine if the ST#12 limits could be employed as surrogate disposal limits for ET#3 operations. SRNL documented in this Unreviewed Disposal Question Evaluation (UDQE) that the use of ST#12 limits as surrogates for the new ET#3 disposal unit will provide reasonable assurance that Department of Energy (DOE) 435.1 performance objectives and measures (USDOE, 1999) will be protected. Therefore new ET#3 inventory limits as determined by a Special Analysis (SA) are not required.

Hamm, L. L.; Smith, F. G. III; Flach, G. P.; Hiergesell, R. A.; Butcher, B. T.

2013-07-29T23:59:59.000Z

5

New Facility Will Test Disposal Cell Cover Renovation | Department...  

Broader source: Energy.gov (indexed) [DOE]

Services Ecosystem Management Team New Facility Will Test Disposal Cell Cover Renovation New Facility Will Test Disposal Cell Cover Renovation New Facility Will Test Disposal...

6

DOE - Office of Legacy Management -- Cheney Disposal Cell - 008  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cheney Disposal Cell - 008 Cheney Disposal Cell - 008 FUSRAP Considered Sites Site: Cheney Disposal Cell (008) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: All of the uranium mill tailings and other residual radioactive materials from the former Grand Junction uranium mill site were disposed of in this dedicated disposal cell. The cell is authorized to remain open until 2003 to accept any additional byproduct materials from Title I UMTRA sites and the Monticello, Utah site; e.g. materials from additional vicinity properties that may be identified. The Department of Energy¿s Grand Junction Office is responsible for Long Term Surveillance and Maintenance

7

DOE - Office of Legacy Management -- Burro Canyon Disposal Cell...  

Office of Legacy Management (LM)

materials from the Slick RockOld North Continent site and the Slick RockUnion Carbide site were disposed of in this dedicated disposal cell. The Department of Energys...

8

Disposal Systems Evaluations and Tool Development - Engineered Barrier  

Broader source: Energy.gov (indexed) [DOE]

Disposal Systems Evaluations and Tool Development - Engineered Disposal Systems Evaluations and Tool Development - Engineered Barrier System (EBS) Evaluation Disposal Systems Evaluations and Tool Development - Engineered Barrier System (EBS) Evaluation The engineered barrier system (EBS) plays a key role in the long-term isolation of nuclear waste in geological repository environments. This report focuses on the progress made in the evaluation of EBS design concepts, assessment of clay phase stability at repository-relevant conditions, thermodynamic database development for cement and clay phases, and THMC coupled phenomena along with the development of tools and methods to examine these processes. This report also documents the advancements of the Disposal System Evaluation Framework (DSEF) for the development of

9

Design and Installation of a Disposal Cell Cover Field Test  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Office of Legacy Management (LM) initiated a cover assessment project in September 2007 to evaluate an inexpensive approach to enhancing the hydrological performance of final covers for disposal cells. The objective is to accelerate and enhance natural processes that are transforming existing conventional covers, which rely on low-conductivity earthen barriers, into water balance covers, that store water in soil and release it as soil evaporation and plant transpiration. A low conductivity cover could be modified by deliberately blending the upper layers of the cover profile and planting native shrubs. A test facility was constructed at the Grand Junction, Colorado, Disposal Site to evaluate the proposed methodology. The test cover was constructed in two identical sections, each including a large drainage lysimeter. The test cover was constructed with the same design and using the same materials as the existing disposal cell in order to allow for a direct comparison of performance. One test section will be renovated using the proposed method; the other is a control. LM is using the lysimeters to evaluate the effectiveness of the renovation treatment by monitoring hydrologic conditions within the cover profile as well as all water entering and leaving the system. This paper describes the historical experience of final covers employing earthen barrier layers, the design and operation of the lysimeter test facility, testing conducted to characterize the as-built engineering and edaphic properties of the lysimeter soils, the calibration of instruments installed at the test facility, and monitoring data collected since the lysimeters were constructed.

Benson, C.H. [University of Wisconsin–Madison, Madison, Wisconsin; Waugh, W.J. [S.M. Stoller Corporation, Grand Junction, Colorado; Albright, W.H. [Desert Research Institute, Reno, Nevada; Smith, G.M. [Geo-Smith Engineering, Grand Junction, Colorado; Bush, R.P. [U.S. Department of Energy, Grand Junction, Colorado

2011-02-27T23:59:59.000Z

10

Design and Installation of a Disposal Cell Cover Field Test ...  

Broader source: Energy.gov (indexed) [DOE]

through March 3, 2011, Phoenix, Arizona. C.H. Benson, W.J. Waugh, W.H. Albright, G.M. Smith, R.P. Bush Design and Installation of a Disposal Cell Cover Field Test More Documents...

11

Sustainable Disposal Cell Covers: Legacy Management Practices, Improvements, and Long-Term Performance  

Broader source: Energy.gov [DOE]

Sustainable Disposal Cell Covers: Legacy Management Practices, Improvements, and Long-Term Performance

12

Disposal of CCA-treated Wood: An Evaluation of  

E-Print Network [OSTI]

Disposal of CCA-treated Wood: An Evaluation of Existing and Alternative Management Options (FINAL CHARACTERISTICS OF CCA-TREATED WOOD ASH II.1 Sample Preparation 10 II.2 Laboratory Methods 15 II.3 Laboratory Results 24 CHAPTER III, SORTING TECHNOLOGIES FOR SEPARATING TREATED WOOD FROM UNTREATED WOOD III.1

Florida, University of

13

Plant Encroachment on the Burrell, Pennsylvania, Disposal Cell--GJO-99-96-TAR, June 1999  

Office of Legacy Management (LM)

Performed Under DOE Contract No. DE-AC13-96GJ87335 for the U.S. Department of Energy Performed Under DOE Contract No. DE-AC13-96GJ87335 for the U.S. Department of Energy Approved for public release; distribution is unlimited. U.S. Department of Energy GJO-99-96-TAR Plant Encroachment on the Burrell, Pennsylvania, Disposal Cell: Evaluation of Long-Term Performance and Risk June 1999 DOE Grand Junction Office June 1999 Plant Encroachment on the Burrell, Pennsylvania, Disposal Cell Page iii Contents Page Executive Summary .....................................................................................................................vii 1.0 Introduction ........................................................................................................................ 1 1.1 Purpose......................................................................................................................... 1

14

Long-Term Performance of Uranium Tailings Disposal Cells - 13340  

SciTech Connect (OSTI)

Recently, there has been interest in the performance and evolution of Uranium Mill Tailings Remedial Action (UMTRA) Project disposal cell covers because some sites are not compliant with groundwater standards. Field observations of UMTRA disposal cells indicate that rock covers tend to become vegetated and that saturated conductivities in the upper portion of radon barriers may increase due to freeze/thaw cycles and biointrusion. This paper describes the results of modeling that addresses whether these potential changes and transient drainage of moisture in the tailings affect overall performance of the disposal cells. A numerical unsaturated/saturated 3-dimensional flow model was used to simulate whether increases in saturated conductivities in radon barriers with rock covers affect the overall performance of the disposal cells using field data from the Shiprock, NM, UMTRA site. A unique modeling approach allowed simulation with daily climatic conditions to determine changes in moisture and moisture flux from the disposal cell. Modeling results indicated that increases in the saturated conductivity at the top of radon barrier do not influence flux from the tailings with time because the tailings behave similar hydraulically to the radon barrier. The presence of a thin layer of low conductivity material anywhere in the cover or tailings restricts flux in the worst case to the saturated conductivity of that material. Where materials are unsaturated at depth within the radon barrier of tailings slimes, conductivities are typically less than 10{sup -8} centimeters per second. If the low conductivity layer is deep within the disposal cell, its saturated properties are less likely to change with time. The significance of this modeling is that operation and maintenance of the disposal cells can be minimized if they are allowed to progress to a natural condition with some vegetation and soil genesis. Because the covers and underlying tailings have a very low saturated hydraulic conductivity after transient drainage, eventually the amount of moisture leaving the tailings has a negligible effect on groundwater quality. Although some of the UMTRA sites are not in compliance with the groundwater standards, the explanation may be legacy contamination from mining, or earlier higher fluxes from the tailings or unlined processing ponds. Investigation of other legacy sources at the UMTRA sites may help explain persistent groundwater contamination. (authors)

Bostick, Kent; Daniel, Anamary; Pill, Ken [Professional Project Services, Inc., 1100 Bethel Valley Road, Oak Ridge, TN, 37922 (United States)] [Professional Project Services, Inc., 1100 Bethel Valley Road, Oak Ridge, TN, 37922 (United States); Tachiev, Georgio; Noosai, Nantaporn; Villamizar, Viviana [Florida International University, 10555 W. Flagler St., EC 2100, Miami FL, 33174 (United States)] [Florida International University, 10555 W. Flagler St., EC 2100, Miami FL, 33174 (United States)

2013-07-01T23:59:59.000Z

15

Tritiated wastewater treatment and disposal evaluation for 1994  

SciTech Connect (OSTI)

This report discusses and analyzes information and issues regarding tritium and tritium management. It was prepared in response to the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-05A for the evaluation of tritiated wastewater treatment and disposal. The key elements of the report are summarized as follows: Discharge of tritiated water is regulated worldwide. Differences exist in discharge limits and in regulatory philosophy from country to country and from state to state in the United States. Tritium from manmade sources is emitted into the atmosphere and discharged into the ground or directly to the oceans and to waterways that empty into the oceans. In 1989, reported worldwide emissions of tritium from nuclear power generating plants totaled almost 1,000,000 Curies (Ci).

Not Available

1994-08-01T23:59:59.000Z

16

Disposal systems evaluations and tool development : Engineered Barrier System (EBS) evaluation.  

SciTech Connect (OSTI)

Key components of the nuclear fuel cycle are short-term storage and long-term disposal of nuclear waste. The latter encompasses the immobilization of used nuclear fuel (UNF) and radioactive waste streams generated by various phases of the nuclear fuel cycle, and the safe and permanent disposition of these waste forms in geological repository environments. The engineered barrier system (EBS) plays a very important role in the long-term isolation of nuclear waste in geological repository environments. EBS concepts and their interactions with the natural barrier are inherently important to the long-term performance assessment of the safety case where nuclear waste disposition needs to be evaluated for time periods of up to one million years. Making the safety case needed in the decision-making process for the recommendation and the eventual embracement of a disposal system concept requires a multi-faceted integration of knowledge and evidence-gathering to demonstrate the required confidence level in a deep geological disposal site and to evaluate long-term repository performance. The focus of this report is the following: (1) Evaluation of EBS in long-term disposal systems in deep geologic environments with emphasis on the multi-barrier concept; (2) Evaluation of key parameters in the characterization of EBS performance; (3) Identification of key knowledge gaps and uncertainties; and (4) Evaluation of tools and modeling approaches for EBS processes and performance. The above topics will be evaluated through the analysis of the following: (1) Overview of EBS concepts for various NW disposal systems; (2) Natural and man-made analogs, room chemistry, hydrochemistry of deep subsurface environments, and EBS material stability in near-field environments; (3) Reactive Transport and Coupled Thermal-Hydrological-Mechanical-Chemical (THMC) processes in EBS; and (4) Thermal analysis toolkit, metallic barrier degradation mode survey, and development of a Disposal Systems Evaluation Framework (DSEF). This report will focus on the multi-barrier concept of EBS and variants of this type which in essence is the most adopted concept by various repository programs. Empasis is given mainly to the evaluation of EBS materials and processes through the analysis of published studies in the scientific literature of past and existing repository research programs. Tool evaluations are also emphasized, particularly on THCM processes and chemical equilibria. Although being an increasingly important aspect of NW disposition, short-term or interim storage of NW will be briefly discussed but not to the extent of the EBS issues relevant to disposal systems in deep geologic environments. Interim storage will be discussed in the report Evaluation of Storage Concepts FY10 Final Report (Weiner et al. 2010).

Rutqvist, Jonny (LBNL); Liu, Hui-Hai (LBNL); Steefel, Carl I. (LBNL); Serrano de Caro, M. A. (LLNL); Caporuscio, Florie Andre (LANL); Birkholzer, Jens T. (LBNL); Blink, James A. (LLNL); Sutton, Mark A. (LLNL); Xu, Hongwu (LANL); Buscheck, Thomas A. (LLNL); Levy, Schon S. (LANL); Tsang, Chin-Fu (LBNL); Sonnenthal, Eric (LBNL); Halsey, William G. (LLNL); Jove-Colon, Carlos F.; Wolery, Thomas J. (LLNL)

2011-01-01T23:59:59.000Z

17

Disposal Systems Evaluations and Tool Development - Engineered Barrier System Evaluation (Work Package LL1015080425)  

SciTech Connect (OSTI)

The Disposal Systems Evaluation Framework (DSEF) will use a logical process for developing one or more disposal system concepts (also referred to as repository system in this report) for any given waste form and geologic setting combination. In the Features, Events, and Processes (FEPs) group of work packages, there are seven categories of waste forms and eight categories of geologic setting being studied. The DSEF will also establish a Used Fuel Disposition Campaign (UFDC) knowledge management system to organize high-level information, data, and assumptions, thereby facilitating consistency in high-level system simulation and economic analyses. This system likely will be housed with the INL-based documentation system. Attention is given to lessons oearned from the systems used at the Waste Isolation Pilot Plant (WIPP) and the Yucca Mountain Project (YMP). Where reference material from other programs (e.g., international) is used or cited, the knowledge-management system imports the reference material directly or refer to it in bibliography form. Alternative data sets (e.g., from other programs) will also be utilized to evaluate their influence on DSEF analyses for given waste form and disposal-system combinations. The knowledge-management system can also be used to maintain the results of DSEF realizations, enabling the comparison and ranking of various waste-form/disposal-system-environment/disposal-system-design options. Finally, the UFDC knowledge-management system will be able to provide a compendium of 'templates' that can be utilized, in a labor-efficient fashion, to build parallel DSEF analyses (e.g., 'one offs'). The DSEF will not be a stand-alone, push-the-button and wait for the results, item of software. it will use osftware (probably EXCEL, initially), to guide the team members through a logical process of evaluating combinations of waste-form, disposal-syste-environment, and disposal-system design. In later stages, it will utilize software developed in the field of knowledge engineering and knowledge-management systems (Umeki et al. 2009). At certain points in the logical process, the DSEF software will point the evaluate to other software tools to do analyses needed to move the process forward. In the development of the DSEF, they will be mindful to make it no more complex than necessary to evaluate the system being considered. The DSEF will organize and document the work such that multiple realizations for different combinations can be compared and contrasted.

Blink, J A; Buscheck, T A; Halsey, W G; Wolery, T

2010-03-19T23:59:59.000Z

18

Operating limit evaluation for disposal of uranium enrichment plant wastes  

SciTech Connect (OSTI)

A proposed solid waste landfill at Paducah Gaseous Diffusion Plant (PGDP) will accept wastes generated during normal plant operations that are considered to be non-radioactive. However, nearly all solid waste from any source or facility contains small amounts of radioactive material, due to the presence in most materials of trace quantities of such naturally occurring radionuclides as uranium and thorium. This paper describes an evaluation of operating limits, which are protective of public health and the environment, that would allow waste materials containing small amounts of radioactive material to be sent to a new solid waste landfill at PGDP. The operating limits are expressed as limits on concentrations of radionuclides in waste materials that could be sent to the landfill based on a site-specific analysis of the performance of the facility. These limits are advantageous to PGDP and DOE for several reasons. Most importantly, substantial cost savings in the management of waste is achieved. In addition, certain liabilities that could result from shipment of wastes to a commercial off-site solid waste landfill are avoided. Finally, assurance that disposal operations at the PGDP landfill are protective of public health and the environment is provided by establishing verifiable operating limits for small amounts of radioactive material; rather than relying solely on administrative controls. The operating limit determined in this study has been presented to the Commonwealth of Kentucky and accepted as a condition to be attached to the operating permit for the solid waste landfill.

Lee, D.W.; Kocher, D.C.; Wang, J.C.

1996-02-01T23:59:59.000Z

19

Disposal Systems Evaluations and Tool Development - Engineered Barrier System (EBS) Evaluation  

Broader source: Energy.gov (indexed) [DOE]

Disposal Systems Disposal Systems Evaluations and Tool Development - Engineered Barrier System (EBS) Evaluation (FCRD-USED-2011-000132) Prepared for U.S. Department of Energy Used Fuel Disposition Campaign Carlos F. Jové Colón (SNL) Florie A. Caporuscio, Schön S. Levy (LANL) Mark Sutton, James A. Blink, Harris R. Greenberg, Massimiliano Fratoni, William G. Halsey, Thomas J. Wolery (LLNL) Jonny Rutqvist, Carl I. Steefel, Juan Galindez, Jens Birkholzer, Hui-Hai Liu, (LBNL) June 15 th , 2011 SAND2011-4335 P Prepared by: Sandia National Laboratories Albuquerque, New Mexico 87185 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of

20

Idaho Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell  

Broader source: Energy.gov (indexed) [DOE]

Crews Overcome Challenges to Safely Dispose 1-Million-Pound Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell Idaho Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell American Recovery and Reinvestment Act cleanup crews at the Idaho site recently disposed of a hot cell as heavy as nine fully loaded Boeing 737s. Unlike the aircrafts, the 1-million-pound concrete structure moved about two miles per hour on a trailer with 224 tires towed by a semi-truck. Workers safely transported the cell from the Advanced Test Reactor Complex (ATR-C) to an onsite landfill two miles away. Idaho Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell More Documents & Publications 2011 ARRA Newsletters CX-001627: Categorical Exclusion Determination Occupational Safety Performance Trends

Note: This page contains sample records for the topic "disposal cell evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Idaho Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell  

Broader source: Energy.gov (indexed) [DOE]

Crews Overcome Challenges to Safely Dispose 1-Million-Pound Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell Idaho Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell American Recovery and Reinvestment Act cleanup crews at the Idaho site recently disposed of a hot cell as heavy as nine fully loaded Boeing 737s. Unlike the aircrafts, the 1-million-pound concrete structure moved about two miles per hour on a trailer with 224 tires towed by a semi-truck. Workers safely transported the cell from the Advanced Test Reactor Complex (ATR-C) to an onsite landfill two miles away. Idaho Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell More Documents & Publications 2011 ARRA Newsletters CX-002327: Categorical Exclusion Determination CX-001627: Categorical Exclusion Determination

22

Graphene sheets fabricated from disposable paper cups as a catalyst support material for fuel cells  

E-Print Network [OSTI]

Graphene sheets fabricated from disposable paper cups as a catalyst support material for fuel cells Hong Zhao and T. S. Zhao* Disposable paper-cups are used for the formation of graphene sheets with Fe2+ as a catalyst. The proposed synthesis strategy not only enables graphene sheets to be produced in high yield

Zhao, Tianshou

23

Interim radiological safety standards and evaluation procedures for subseabed high-level waste disposal  

SciTech Connect (OSTI)

The Seabed Disposal Project (SDP) was evaluating the technical feasibility of high-level nuclear waste disposal in deep ocean sediments. Working standards were needed for risk assessments, evaluation of alternative designs, sensitivity studies, and conceptual design guidelines. This report completes a three part program to develop radiological standards for the feasibility phase of the SDP. The characteristics of subseabed disposal and how they affect the selection of standards are discussed. General radiological protection standards are reviewed, along with some new methods, and a systematic approach to developing standards is presented. The selected interim radiological standards for the SDP and the reasons for their selection are given. These standards have no legal or regulatory status and will be replaced or modified by regulatory agencies if subseabed disposal is implemented. 56 refs., 29 figs., 15 tabs.

Klett, R.D.

1997-06-01T23:59:59.000Z

24

Preliminary Criticality Safety Evaluation for In Situ Grouting in the Subsurface Disposal Area  

SciTech Connect (OSTI)

A preliminary criticality safety evaluation is presented for in situ grouting in the Subsurface Disposal Area (SDA) at the Idaho National Engineering Laboratory. The grouting materials evaluated are cement and paraffin. The evaluation determines physical and administrative controls necessary to preclude criticality and identifies additional information required for a final criticality safety evaluation. The evaluation shows that there are no criticality concerns with cementitious grout but a neutron poison such as boron would be required for the use of the paraffin matrix.

Slate, Lawrence J; Taylor, Joseph Todd

2000-08-01T23:59:59.000Z

25

Preliminary Criticality Safety Evaluation for In Situ Grouting in the Subsurface Disposal Area  

SciTech Connect (OSTI)

A preliminary criticality safety evaluation is presented for in situ grouting in the Subsurface Disposal Area (SDA) at the Idaho National Engineering Laboratory. The grouting materials evaluated are cement and paraffin. The evaluation determines physical and administrative controls necessary to preclude criticality and identifies additional information required for a final criticality safety evaluation. The evaluation shows that there are no criticality concerns with cementitious grout but a neutron poison such as boron would be required for the use of the paraffin matrix.

Slate, L.J.; Taylor, J.T.

2000-08-31T23:59:59.000Z

26

Tritiated wastewater treatment and disposal evaluation for 1995  

SciTech Connect (OSTI)

A second annual summary and analysis of potential processes for the mitigation of tritium contained in process effluent, ground water and stored waste is presented. It was prepared to satisfy the Hanford Federal Facility and Consent Order (Tri-Party Agreement) Milestone M-26-05B. Technologies with directed potential for separation of tritium at present environmental levels are organized into two groups. The first group consists of four processes that have or are undergoing significant development. Of these four, the only active project is the development of membrane separation technology at the Pacific Northwest Laboratory (PNL). Although research is progressing, membrane separation does not present a near term option for the mitigation of tritium. A second grouping of five early stage projects gives an indication of the breadth of interest in low level tritium separation. If further developed, two of these technologies might prove to be candidates for a separation process. At the present, there continues to be no known commercially available process for the practical reduction of the tritium burden in process effluent. Material from last year`s report regarding the occurrence, regulation and management of tritium is updated and included in the appendices of this report. The use of the State Approved Land Disposal Site (SALDS) for disposal of tritiated effluent from the 200 Area Effluent Treatment Facility (ETF) begins in the fall of 1995. This is the most significant event impacting tritium in the environment at the Hanford Site this coming year.

Allen, W.L. [Westinghouse Hanford Co., Richland, WA (United States)

1995-08-01T23:59:59.000Z

27

Evaluation of Dredged Material Proposed for Ocean Disposal from Port Chester, New York  

SciTech Connect (OSTI)

Port Chester was one of seven waterways that the US Army Corps of Engineers-New York District requested the Battelle Marine Sciences Laboratory to sample and evaluate for dredging and disposal in March 1994. Tests and analyses were conducted on Port Chester sediment core samples. Because the Port Chester area is located on the border between New York and southeast Connecticut, its dredged material may also be considered for disposal at the Central Long Island Sound Disposal Site. The sediment evaluation consisted of bulk sediment chemical analyses, chemical analyses of site water and dredged material elutriate preparations, water-column and benthic acute toxicity tests, and bioaccumulation studies. Individual sediment core samples collected from Port Chester were analyzed for grain size, moisture content, and total organic carbon. In addition, sediment was analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl congers, polynuclear aromatic hydrocarbons and 1,4-dichlorobenzene.

Barrows, E.S.; Mayhew, H.L.; Word, J.Q.; Tokos, J.J.S. [Battelle Marine Sciences Laboratory, Sequim, WA (United States)

1996-08-01T23:59:59.000Z

28

A Summary of Properties Used to Evaluate INEEL Calcine Disposal in the Yucca Mountain Repository  

SciTech Connect (OSTI)

To support evaluations of the direct disposal of Idaho National Engineering and Environmental Laboratory calcines to the repository at Yucca Mountain, an evaluation of the performance of the calcine in the repository environment must be performed. This type of evaluation demonstrates, through computer modeling and analysis, the impact the calcine would have on the ability of the repository to perform its function of containment of materials during the repository lifetime. This report discusses parameters that were used in the scoping evaluation conducted in FY 2003. It provides nominal values for the parameters, with explanation of the source of the values, and how the values were modified for use in repository analysis activities.

Dahl, C.A.

2003-07-14T23:59:59.000Z

29

PORTSMOUTH ON-SITE DISPOSAL CELL HIGH DENSITY POLYETHYLENE GEOMEMBRANE LONGEVITY  

SciTech Connect (OSTI)

It is anticipated that high density polyethylene (HDPE) geomembranes will be utilized within the liner and closure cap of the proposed On-Site Disposal Cell (OSDC) at the Portsmouth Gaseous Diffusion Plant. The likely longevity (i.e. service life) of HDPE geomembranes in OSDC service is evaluated within the following sections of this report: (1) Section 2.0 provides an overview of HDPE geomembranes, (2) Section 3.0 outlines potential HDPE geomembranes degradation mechanisms, (3) Section 4.0 evaluates the applicability of HDPE geomembrane degradation mechanisms to the Portsmouth OSDC, (4) Section 5.0 provides a discussion of the current state of knowledge relative to the longevity (service life) of HDPE geomembranes, including the relation of this knowledge to the Portsmouth OSDC, and (5) Section 6.0 provides summary and conclusions relative to the anticipated service life of HDPE geomembranes in OSDC service. Based upon this evaluation it is anticipated that the service life of HDPE geomembranes in OSDC service would be significantly greater than the 200 year service life assumed for the OSDC closure cap and liner HDPE geomembranes. That is, a 200 year OSDC HDPE geomembrane service life is considered a conservative assumption.

Phifer, M.

2012-01-31T23:59:59.000Z

30

Idaho Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell  

Broader source: Energy.gov (indexed) [DOE]

Depar Depar tment of Energy | Office of Environmental Management For More Information on EM Recovery Act Work, Visit Us on the Web: http://www.em.doe.gov/emrecovery/ EM Recovery NEWS FLASH RECOVERY.GOV ENVIRONMENTAL MANAGEMENT OFFICE OF ENVIRONMENTAL MANAGEMENT OFFICE OF ENVIRONMENTAL MANAGEMENT OFFICE OF November 9, 2011 Idaho Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell IDAHO FALLS, Idaho - American Recovery and Reinvestment Act cleanup crews at the Idaho site recently disposed of a hot cell as heavy as nine fully loaded Boeing 737s. Unlike the aircrafts, the 1-million-pound concrete structure moved

31

Preliminary evaluation of the use of the greater confinement disposal concept for the disposal of Fernald 11e(2) byproduct material at the Nevada Test Site  

SciTech Connect (OSTI)

This report documents a preliminary evaluation of the ability of the greater confinement disposal boreholes at the Nevada Test Site to provide long-term isolation of radionuclides from the disposal of vitrified byproduct material. The byproduct material is essentially concentrated residue from processing uranium ore that contains a complex mixture of radionuclides, many of which are long-lived and present in concentrations greater than 100,000 picoCuries per gram. This material has been stored in three silos at the fernald Environmental Management Project since the early 1950s and will be vitrified into 6,000 yd{sup 3} (4,580 m{sup 3}) of glass gems prior to disposal. This report documents Sandia National Laboratories` preliminary evaluation for disposal of the byproduct material and includes: the selection of quantitative performance objectives; a conceptual model of the disposal system and the waste; results of the modeling; identified issues, and activities necessary to complete a full performance assessment.

Cochran, J.R.; Brown, T.J.; Stockman, H.W.; Gallegos, D.P.; Conrad, S.H. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); Price, L.L. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); [Beta Inc. (United States)

1997-09-01T23:59:59.000Z

32

Plant Encroachment on the Burrell, Pennsylvania, Disposal Cell...  

Energy Savers [EERE]

of Long-Term Performance More Documents & Publications Design, Performance, and Sustainability of Engineered Covers for Uranium Mill Tailings Performance Evaluation of the...

33

A preliminary evaluation of alternatives for disposal of INEL low-level waste and low-level mixed waste  

SciTech Connect (OSTI)

The Mixed and Low-Level Waste Disposal Facility (MLLWDF) project was established in 1992 by the US Department of Energy Idaho Operations Office to provide enhanced disposal capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This Preliminary Evaluation of Alternatives for Disposal of INEL Low-Level Waste and Low-Level Mixed Waste identifies and evaluates-on a preliminary, overview basis-the alternatives for disposal of that waste. Five disposal alternatives, ranging from of no-action`` to constructing and operating the MLLWDF, are identified and evaluated. Several subalternatives are formulated within the MLLWDF alternative. The subalternatives involve various disposal technologies as well as various scenarios related to the waste volumes and waste forms to be received for disposal. The evaluations include qualitative comparisons of the projected isolation performance for each alternative, and facility, health and safety, environmental, institutional, schedule, and rough order-of-magnitude life-cycle cost comparisons. The performance of each alternative is evaluated against lists of ``musts`` and ``wants.`` Also included is a discussion of other key considerations for decisionmaking. The analysis of results indicated further study is necessary to obtain the best estimate of long-term future waste volume and characteristics from the INEL Environmental Restoration activities and the expanded INEL Decontamination and Decommissioning Program.

Smith, T.H.; Roesener, W.S.; Jorgenson-Waters, M.J.

1993-07-01T23:59:59.000Z

34

Evaluation of exposure pathways to man from disposal of radioactive materials into sanitary sewer systems  

SciTech Connect (OSTI)

In accordance with 10 CFR 20, the US Nuclear Regulatory Commission (NRC) regulates licensees` discharges of small quantities of radioactive materials into sanitary sewer systems. This generic study was initiated to examine the potential radiological hazard to the public resulting from exposure to radionuclides in sewage sludge during its treatment and disposal. Eleven scenarios were developed to characterize potential exposures to radioactive materials during sewer system operations and sewage sludge treatment and disposal activities and during the extended time frame following sewage sludge disposal. Two sets of deterministic dose calculations were performed; one to evaluate potential doses based on the radionuclides and quantities associated with documented case histories of sewer system contamination and a second, somewhat more conservative set, based on theoretical discharges at the maximum allowable levels for a more comprehensive list of 63 radionuclides. The results of the stochastic uncertainty and sensitivity analysis were also used to develop a collective dose estimate. The collective doses for the various radionuclides and scenarios range from 0.4 person-rem for {sup 137}Cs in Scenario No. 5 (sludge incinerator effluent) to 420 person-rem for {sup 137}Cs in Scenario No. 3 (sewage treatment plant liquid effluent). None of the 22 scenario/radionuclide combinations considered have collective doses greater than 1000 person-rem/yr. However, the total collective dose from these 22 combinations was found to be about 2100 person-rem.

Kennedy, W.E. Jr.; Parkhurst, M.A.; Aaberg, R.L.; Rhoads, K.C.; Hill, R.L.; Martin, J.B. [Pacific Northwest Lab., Richland, WA (United States)

1992-05-01T23:59:59.000Z

35

Source team evaluation for radioactive low-level waste disposal performance assessment  

SciTech Connect (OSTI)

Information compiled on the low-level radioactive waste disposed at the three currently operating commercial disposal sites during the period 1987--1989 have been reviewed and processed in order to determine the total activity distribution in terms of waste stream, waste classification and waste form. The review identified deficiencies in the information currently being recorded on shipping manifests and the development of a uniform manifest is recommended (the NRC is currently developing a rule to establish a uniform manifest). The data from waste disposed during 1989 at one of the sites (Richland, WA) were more detailed than the data available during other years and at other sites, and thus were amenable to a more in-depth treatment. This included determination of the distribution of activity for each radionuclide by waste form, and thus enabled these data to be evaluated in terms of the specific needs for improved modeling of releases from waste packages. From the results, preliminary lists have been prepared of the isotopes which might be the most significant from the aspect of the development of a source term model.

Cowgill, M.G.; Sullivan, T.M. [Brookhaven National Lab., Upton, NY (United States)

1993-01-01T23:59:59.000Z

36

Electrorefining cell evaluation  

SciTech Connect (OSTI)

Operational characteristics of the LANL electrorefining cell, a modified LANL electrorefining cell, and an advanced electrorefining cell (known as the CRAC cell) were determined. Average process yields achieved were: 75% for the LANL cell, 82% for the modified LANL cell, and 86% for the CRAC cell. All product metal from the LANL and modified LANL cells was within foundry specifications. Metal from one run in the CRAC cell exceeded foundry specifications for tantalum. The LANL and modified LANL cells were simple in design and operation, but product separation was more labor intensive than with the CRAC cell. The CRAC cell was more complicated in design but remained relatively simple in operation. A decision analysis concluded that the modified LANL cell was the preferred cell. It was recommended that the modified LANL cell be implemented by the Plutonium Recovery Project at Rocky Flats and that development of the CRAC cell continue. 8 refs., 22 figs., 12 tabs.

Bronson, M.C.; Thomas, R.L. (ed.)

1989-04-14T23:59:59.000Z

37

Chemical hazard evaluation of material disposal area (MDA) B closure project  

SciTech Connect (OSTI)

TA-21, MDA-B (NES) is the 'contaminated dump,' landfill with radionuclides and chemicals from process waste disposed in 1940s. This paper focuses on chemical hazard categorization and hazard evaluation of chemicals of concern (e.g., peroxide, beryllium). About 170 chemicals were disposed in the landfill. Chemicals included products, unused and residual chemicals, spent, waste chemicals, non-flammable oils, mineral oil, etc. MDA-B was considered a High hazard site. However, based on historical records and best engineering judgment, the chemical contents are probably at best 5% of the chemical inventory. Many chemicals probably have oxidized, degraded or evaporated for volatile elements due to some fire and limited shelf-life over 60 yrs, which made it possible to downgrade from High to Low chemical hazard site. Knowing the site history and physical and chemical properties are very important in characterizing a NES site. Public site boundary is only 20 m, which is a major concern. Chemicals of concern during remediation are peroxide that can cause potential explosion and beryllium exposure due to chronic beryllium disease (CBD). These can be prevented or mitigated using engineering control (EC) and safety management program (SMP) to protect the involved workers and public.

Laul, Jadish C [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

38

US DOE-EM On-Site Disposal Cell Working Group - Fostering Communication On Performance Assessment Challenges  

SciTech Connect (OSTI)

On-site disposal cells are in use and being considered at several U.S. Department of Energy (USDOE) sites as the final disposition for large amounts of waste associated with cleanup of contaminated areas and facilities. These facilities are typically developed with regulatory oversight from States and/or the US Environmental Protection Agency (USEPA) in addition to USDOE. The facilities are developed to meet design standards for disposal of hazardous waste as well as the USDOE performance based standards for disposal of radioactive waste. The involvement of multiple and different regulators for facilities across separate sites has resulted in some differences in expectations for performance assessments and risk assessments (PA/RA) that are developed for the disposal facilities. The USDOE-EM Office of Site Restoration formed a working group to foster improved communication and sharing of information for personnel associated with these Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) disposal cells and work towards more consistent assumptions, as appropriate, for technical and policy considerations related to performance and risk assessments in support of a Record of Decision and Disposal Authorization Statement. The working group holds teleconferences, as needed, focusing on specific topics of interest. The topics addressed to date include an assessment of the assumptions used for performance assessments and risk assessments (PA/RAs) for on-site disposal cells, requirements and assumptions related to assessment of inadvertent intrusion, DOE Manual 435.1-1 requirements, and approaches for consideration of the long-term performance of liners and covers in the context of PAs. The working group has improved communication among the staff and oversight personnel responsible for onsite disposal cells and has provided a forum to identify and resolve common concerns.

Seitz, Roger R. [Savannah River Site (SRS), Aiken, SC (United States); Suttora, Linda C. [U.S. Department of Energy, Office of Site Restoration, Germantown, MD (United States); Phifer, Mark [Savannah River Site (SRS), Aiken, SC (United States)

2014-03-01T23:59:59.000Z

39

Evaluation of food waste disposal options by LCC analysis from the perspective of global warming: Jungnang case, South Korea  

SciTech Connect (OSTI)

Highlights: > Various food waste disposal options were evaluated from the perspective of global warming. > Costs of the options were compared by the methodology of life cycle assessment and life cycle cost analysis. > Carbon price and valuable by-products were used for analyzing environmental credits. > The benefit-cost ratio of wet feeding scenario was the highest. - Abstract: The costs associated with eight food waste disposal options, dry feeding, wet feeding, composting, anaerobic digestion, co-digestion with sewage sludge, food waste disposer, incineration, and landfilling, were evaluated in the perspective of global warming and energy and/or resource recovery. An expanded system boundary was employed to compare by-products. Life cycle cost was analyzed through the entire disposal process, which included discharge, separate collection, transportation, treatment, and final disposal stages, all of which were included in the system boundary. Costs and benefits were estimated by an avoided impact. Environmental benefits of each system per 1 tonne of food waste management were estimated using carbon prices resulting from CO{sub 2} reduction by avoided impact, as well as the prices of by-products such as animal feed, compost, and electricity. We found that the cost of landfilling was the lowest, followed by co-digestion. The benefits of wet feeding systems were the highest and landfilling the lowest.

Kim, Mi-Hyung, E-mail: mhkim9@snu.ac.kr [Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, San 56-1, Sillim-Dong, Gwanak-Gu, Seoul 151-742 (Korea, Republic of); Song, Yul-Eum, E-mail: yesong0724@dongguk.edu [Department of Philosophy, Dongguk University, Pil-Dong 3-Ga, Jung-Gu, Seoul 100-715 (Korea, Republic of); Department of Life Science, Dongguk University, Pil-Dong 3-Ga, Jung-Gu, Seoul 100-715 (Korea, Republic of); Song, Han-Byul, E-mail: kuackyang@ssu.ac.kr [Department of Chemical Engineering, Soongsil University, Sangdo-Ro 369, Dongjak-Gu, Seoul 156-743 (Korea, Republic of); Kim, Jung-Wk, E-mail: kimjw@snu.ac.kr [Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, San 56-1, Sillim-Dong, Gwanak-Gu, Seoul 151-742 (Korea, Republic of); Hwang, Sun-Jin, E-mail: sjhwang@khu.ac.kr [Department of Environmental Science and Engineering, Center for Environmental Studies, Kyung Hee University, Seocheon-Dong, Giheung-Gu, Yongin-Si, Gyeonggi-Do 446-701 (Korea, Republic of)

2011-09-15T23:59:59.000Z

40

A rational approach for evaluation and screening of treatment and disposal options for the solar pond sludges at Rocky Flats  

SciTech Connect (OSTI)

This document consists of information about the treatment options for the sludge that is located in the evaporation ponds at the Rocky Flats Plant. The sludges are mixed low-level radioactive wastes whose composition and character were variable. Sludges similar to these are typically treated prior to ultimate disposal. Disposal of treated sludges includes both on-site and off-site options. The rational approach described in this paper is useful for technology evaluation and screening because it provides a format for developing objectives, listing alternatives, and weighing the alternatives against the objectives and against each other.

Dickerson, K.S.

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "disposal cell evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Disposal Systems Evaluations and Tool Development - Engineered Barrier System (EBS) Evaluation  

Broader source: Energy.gov (indexed) [DOE]

Evaluation of Generic EBS Evaluation of Generic EBS Design Concepts and Process Models: Implications to EBS Design Optimization (FCRD-USED-2012-000140) Prepared for U.S. Department of Energy Used Fuel Disposition Campaign Carlos F. Jové Colón, Jeffrey A. Greathouse, Stephanie Teich- McGoldrick, Randall T. Cygan, Teklu Hadgu, James E. Bean, Mario J. Martinez, Polly L. Hopkins, José G. Argüello, Francis D. Hansen (SNL) Florie A. Caporuscio, Michael Cheshire, Schön S. Levy, Mary K. McCarney (LANL) Harris R. Greenberg, Thomas J. Wolery, Mark Sutton (LLNL) Jonny Rutqvist, Carl I. Steefel, Jens Birkholzer, Hui-Hai Liu, James A. Davis, Ruth Tinnacher, Ian Bourg, Michael Holmboe, Juan Galindez (LBNL) June 15 th , 2012 SAND 2012-5083 P 2 Prepared by: Sandia National Laboratories

42

slc_disposal.cdr  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Disposal Disposal Site This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I disposal site at Salt Lake City, Utah. This site is managed by the U.S. Department of Energy Office of Legacy Management. Salt Lake City, Utah, Disposal Site ENERGY Office of Legacy Management U.S. DEPARTMENT OF Site Description and History Regulatory Setting The Salt Lake Disposal Site is located approximately 81 miles west of Salt Lake City and 2.5 miles south of Interstate 80 on the eastern edge of the Great Salt Lake Desert. The disposal cell is adjacent to Energy Solutions, Inc., a commercial low-level radioactive materials disposal site. The surrounding area is sparsely populated, and the nearest residences are at least 15 miles from the site. Vegetation in the area is sparse and typical of semiarid low shrubland. The disposal cell encapsulates about

43

Technology Validation: Fuel Cell Bus Evaluations | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology Validation: Fuel Cell Bus Evaluations Technology Validation: Fuel Cell Bus Evaluations 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and...

44

A Summary of INEEL Calcine Properties Used to Evaluate Direct Calcine Disposal in the Yucca Mountain Repository  

SciTech Connect (OSTI)

To support evaluations of the direct disposal of Idaho National Engineering and Environmental Laboratory calcines to the repository at Yucca Mountain, an evaluation of the performance of the calcine in the repository environment must be performed. This type of evaluation demonstrates, through computer modeling and analysis, the impact the calcine would have on the ability of the repository to perform its function of containment of materials during the repository lifetime. This report discusses parameters that were used in the scoping evaluation conducted in FY 2003. It provides nominal values for the parameters, with explanation of the source of the values, and how the values were modified for use in repository analysis activities.

C. A. Dahl

2003-07-01T23:59:59.000Z

45

Statistical evaluation of effluent monitoring data for the 200 Area Treated Effluent Disposal Facility  

SciTech Connect (OSTI)

The 200 Area Treated Effluent Disposal Facility (TEDF) consists of a pair of infiltration basins that receive wastewater originating from the 200 West and 200 East Areas of the Hanford Site. TEDF has been in operation since 1995 and is regulated by State Waste Discharge Permit ST 4502 (Ecology 1995) under the authority of Chapter 90.48 Revised Code of Washington (RCW) and Washington Administrative Code (WAC) Chapter 173-216. The permit stipulates monitoring requirements for effluent (or end-of-pipe) discharges and groundwater monitoring for TEDF. Groundwater monitoring began in 1992 prior to TEDF construction. Routine effluent monitoring in accordance with the permit requirements began in late April 1995 when the facility began operations. The State Waste Discharge Permit ST 4502 included a special permit condition (S.6). This condition specified a statistical study of the variability of permitted constituents in the effluent from TEDF during its first year of operation. The study was designed to (1) demonstrate compliance with the waste discharge permit; (2) determine the variability of all constituents in the effluent that have enforcement limits, early warning values, and monitoring requirements (WHC 1995); and (3) determine if concentrations of permitted constituents vary with season. Additional and more frequent sampling was conducted for the effluent variability study. Statistical evaluation results were provided in Chou and Johnson (1996). Parts of the original first year sampling and analysis plan (WHC 1995) were continued with routine monitoring required up to the present time.

CJ Chou; VG Johnson

2000-04-04T23:59:59.000Z

46

Model evaluation of geochemically induced swelling/shrinkage in argillaceous formations for nuclear waste disposal  

Science Journals Connector (OSTI)

Abstract Argillaceous formations are being considered as host rocks for geologic disposal of nuclear waste in a number of countries. One advantage of emplacing nuclear waste in such formations is the potential self-sealing capability of clay due to swelling, which is of particular importance for the sealing and healing of disturbed rock zones (DRZ). It is therefore necessary to understand and be able to predict the changes in swelling properties within clay rock near the waste-emplacement tunnel. In this paper, considering that the clay rock formation is mostly under saturated conditions and the swelling property changes are mostly due to geochemical changes, we propose a modeling method that links a THC simulator with a swelling module that is based on diffuse double layer theory. Simulations were conducted to evaluate the geochemically induced changes in the swelling properties of the clay rock. Our findings are as follows: (1) geochemically induced swelling/shrinkage occurs exclusively in the EBS–clay formation interface, within a few meters from the waste-emplacement tunnels; (2) swelling/shrinkage-induced porosity changes are generally much smaller than those caused by mineral precipitation/dissolution processes; (3) geochemically induced swelling/shrinkage of the host clay rock is affected by variations in the pore water chemistry, exchangeable cations, and smectite abundance. Neglecting any of these three factors might lead to a miscalculation of the geochemically induced swelling pressure.

Liange Zheng; Jonny Rutqvist; Hui-Hai Liu; Jens T. Birkholzer; Eric Sonnenthal

2014-01-01T23:59:59.000Z

47

Engineering safety evaluation for 22 ton steel disposal box lifting bail design  

SciTech Connect (OSTI)

The objective of this analysis is to design and analyze the lifting bail of the 22 Ton Steel Waste Disposal Box (SWDB). The new design takes the original lifting bail and adds a hinge allowing the top portion of the bail to fold over towards the lid.

BOEHNKE, W.M.

1999-11-23T23:59:59.000Z

48

Long-Term Surveillance Plan for the Burro Canyon Disposal Cell...  

Office of Legacy Management (LM)

developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 1 0 CFR Part 40. The purpose of this general...

49

Long-Term Surveillance Plan for the Upper Burbank Disposal Cell...  

Office of Legacy Management (LM)

dsvdoped regulations for tfw issuanca of e general license for the custody and long-term care of UMTM Project disposal sites in 10 CFR Part 40. The purpose of this general Iiamse...

50

UNREVIEWED DISPOSAL QUESTION EVALUATION: IMPACT OF NEW INFORMATION SINCE 2008 PA ON CURRENT LOW-LEVEL SOLID WASTE OPERATIONS  

SciTech Connect (OSTI)

Solid low-level waste disposal operations are controlled in part by an E-Area Low-Level Waste Facility (ELLWF) Performance Assessment (PA) that was completed by the Savannah River National Laboratory (SRNL) in 2008 (WSRC 2008). Since this baseline analysis, new information pertinent to disposal operations has been identified as a natural outcome of ongoing PA maintenance activities and continuous improvement in model simulation techniques (Flach 2013). An Unreviewed Disposal Question (UDQ) Screening (Attachment 1) has been initiated regarding the continued ability of the ELLWF to meet Department of Energy (DOE) Order 435.1 performance objectives in light of new PA items and data identified since completion of the original UDQ Evaluation (UDQE). The present UDQE assesses the ability of Solid Waste (SW) to meet performance objectives by estimating the influence of new information items on a recent sum-of-fractions (SOF) snapshot for each currently active E-Area low-level waste disposal unit. A final SOF, as impacted by this new information, is projected based on the assumptions that the current disposal limits, Waste Information Tracking System (WITS) administrative controls, and waste stream composition remain unchanged through disposal unit operational closure (Year 2025). Revision 1 of this UDQE addresses the following new PA items and data identified since completion of the original UDQE report in 2013: ? New K{sub d} values for iodine, radium and uranium ? Elimination of cellulose degradation product (CDP) factors ? Updated radionuclide data ? Changes in transport behavior of mobile radionuclides ? Potential delay in interim closure beyond 2025 ? Component-in-grout (CIG) plume interaction correction Consideration of new information relative to the 2008 PA baseline generally indicates greater confidence that PA performance objectives will be met than indicated by current SOF metrics. For SLIT9, the previous prohibition of non-crushable containers in revision 0 of this UDQE has rendered the projected final SOF for SLIT9 less than the WITS Admin Limit. With respect to future disposal unit operations in the East Slit Trench Group, consideration of new information for Slit Trench#14 (SLIT14) reduced the current SOF for the limiting All-Pathways 200-1000 year period (AP2) by an order of magnitude and by one quarter for the Beta-Gamma 12-100 year period (BG2) pathway. On the balance, updates to K{sub d} values and dose factors and elimination of CDP factors (generally favorable) more than compensated for the detrimental impact of a more rigorous treatment of plume dispersion. These observations suggest that future operations in the East Slit Trench Group can be conducted with higher confidence using current inventory limits, and that limits could be increased if desired for future low-level waste disposal units. The same general conclusion applies to future ST’s in the West Slit Trench Group based on the Impacted Final SOFs for existing ST’s in that area.

Flach, G.; Smith, F.; Hamm, L.; Butcher, T.

2014-10-06T23:59:59.000Z

51

Fuel Cell Transit Bus Coordination and Evaluation Plan California...  

Broader source: Energy.gov (indexed) [DOE]

Transit Bus Coordination and Evaluation Plan California Fuel Cell Transit Evaluation Team Fuel Cell Transit Bus Coordination and Evaluation Plan California Fuel Cell Transit...

52

Final Safety Evaluation Report to license the construction and operation of a facility to receive, store, and dispose of 11e.(2) byproduct material near Clive, Utah (Docket No. 40-8989)  

SciTech Connect (OSTI)

The Final Safety Evaluation Report (FSER) summarizes the US Nuclear Regulatory Commission (NRC) staff`s review of Envirocare of Utah, Inc.`s (Envirocare`s) application for a license to receive, store, and dispose of uranium and thorium byproduct material (as defined in Section 11e.(2) of the Atomic Energy Act of 1954, as amended) at a site near Clive, Utah. Envirocare proposes to dispose of high-volume, low-activity Section 11e.(2) byproduct material in separate earthen disposal cells on a site where the applicant currently disposes of naturally occurring radioactive material (NORM), low-level waste, and mixed waste under license by the Utah Department of Environmental Quality. The NRC staff review of the December 23, 1991, license application, as revised by page changes dated July 2 and August 10, 1992, April 5, 7, and 10, 1993, and May 3, 6, 7, 11, and 21, 1993, has identified open issues in geotechnical engineering, water resources protection, radon attenuation, financial assurance, and radiological safety. The NRC will not issue a license for the proposed action until Envirocare adequately resolves these open issues.

Not Available

1994-01-01T23:59:59.000Z

53

In situ testing to determination field-saturated hydraulic conductivity of UMTRA Project disposal cell covers, liners, and foundation areas. Special study  

SciTech Connect (OSTI)

This special study was conducted to prepare a guidance document for selecting in situ hydraulic conductivity (K) tests, comparing in situ testing methods, and evaluating the results of such tests. This report may be used as a practical decision-making tool by the Uranium Mill Tailings Remedial Action (UMTRA) Project staff to determine which testing method will most efficiently achieve the field-saturated K results needed for long-term planning. A detailed section on near-surface test methods discusses each method which may be applicable to characterization of UMTRA disposal cell covers, liners and foundation materials. These potentially applicable test methods include the sealed double-ring infiltrometer (SDRI), the air-entry permeameter (AEP), the guelph permeameter, the two-stage borehole technique (TSB), the pressure infiltrometer, and the disk permeameter. Analytical solutions for these methods are provided, and limitations of these solutions are discussed, and a description of testing equipment design and installation are provided.

Not Available

1994-02-01T23:59:59.000Z

54

Technology Validation: Fuel Cell Bus Evaluations  

SciTech Connect (OSTI)

Presentation for the 2005 U.S. Department of Energy Hydrogen Program review showing status of U.S. and international fuel cell transit bus evaluations.

Eudy, L.

2005-05-01T23:59:59.000Z

55

National Fuel Cell Technology Evaluation Center (NFCTEC) | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Fuel Cell Technology Evaluation Center (NFCTEC) National Fuel Cell Technology Evaluation Center (NFCTEC) Download presentation slides from the DOE Fuel Cell Technologies...

56

Webinar: National Fuel Cell Technology Evaluation Center | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Fuel Cell Technology Evaluation Center Webinar: National Fuel Cell Technology Evaluation Center Below is the text version of the webinar titled "National Fuel Cell...

57

Evaluation of dredged material proposed for ocean disposal from Red Hook/Bay Ridge project areas, New York  

SciTech Connect (OSTI)

The objective of the Red HookIBay Ridge project was to evaluate proposed dredged material from these two areas to determine its suitability for unconfined ocean disposal at the Mud Dump Site. Sediment samples were collected from the Red Hook/Bay Ridge project areas. Tests and analyses were conducted. The evaluation of proposed dredged material from the Red Hook/Bay Ridge project areas consisted of bulk sediment chemical analyses, chemical analyses of dredging site water and elutriate, water-column and benthic acute toxicity tests. Twenty-four individual sediment core samples were collected from these two areas and analyzed for grain size, moisture content, and total organic carbon (TOC). Three composite sediment samples, representing Red Hook Channel and the two Bay Ridge Reaches to be dredged, were analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAH), and 1,4-dichlorobenzene. Dredging site water and elutriate water, which is prepared from the suspended-particulate phase (SPP) of the three Red Hook Bay Ridge sediment composites, were analyzed for metals, pesticides, and PCBS. Benthic acute toxicity tests were performed. Water-column or SPP toxicity tests were performed. Bioaccumulation tests were also conducted.

Pinza, M.R.; Barrows, E.S.; Borde, A.B. [Battelle/Marine Sciences Lab., Sequim, WA (United States)

1996-09-01T23:59:59.000Z

58

Evaluation of geologic materials to limit biological intrusion into low-level radioactive waste disposal sites  

SciTech Connect (OSTI)

This report describes the results of a three-year research program to evaluate the performance of selected soil and rock trench cap designs in limiting biological intrusion into simulated waste. The report is divided into three sections including a discussion of background material on biological interactions with waste site trench caps, a presentation of experimental data from field studies conducted at several scales, and a final section on the interpretation and limitations of the data including implications for the user.

Hakonson, T.E.

1986-02-01T23:59:59.000Z

59

Evaluation of ground-water quality impacts of lignite waste disposal at a Texas lignite mine  

E-Print Network [OSTI]

to be responsible for the high degree of selen1um attenuation 1s adsorption of the element by amorphous iron and alum1num ox1des and organic matter abundant in the clay soils of the study area. ACKNOWLEDGEMENTS I would like to thank the members of my thes1s.... LABORATORY DISTRIBUTION COEFFICIENT INVESTIGATION . . Methods. Preliminary Evaluation Mechanism of Selenium Attenuation. Freundlich Isotherm. . Control Batch Tests Distribution Coefficient Dependence on Soil Type. . . . . Distribution Coefficient...

Green, Deborah Joan

1984-01-01T23:59:59.000Z

60

Stationary Fuel Cell Evaluation (Presentation)  

SciTech Connect (OSTI)

This powerpoint presentation discusses its objectives: real world operation data from the field and state-of-the-art lab; collection; analysis for independent technology validation; collaboration with industry and end users operating stationary fuel cell systems and reporting on technology status, progress and technical challenges. The approach and accomplishments are: A quarterly data analysis and publication of first technical stationary fuel cell composite data products (data through June 2012).

Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "disposal cell evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Changes in Vegetation at the Monticello, Utah, Disposal Site...  

Broader source: Energy.gov (indexed) [DOE]

Monticello, Utah, Disposal Cell Cover Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site Monitoring the...

62

Fuel Cell Transit Bus Coordination and Evaluation Plan California Fuel Cell Transit Evaluation Team  

Broader source: Energy.gov [DOE]

The purpose of this document is to describe the coordination and evaluation of the demonstration of seven full-size (40-foot) fuel cell transit buses. The descriptions in this document include the partners, fuel cell bus demonstration sites, objectives...

63

Septage Disposal, Licensure (Montana)  

Broader source: Energy.gov [DOE]

This statute describes licensing requirements for septage disposal, and addresses land disposal and processing facilities.

64

Hydrogen Fuel Cell Bus Evaluation for California Transit Agencies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transportation Projects Hydrogen Fuel Cell Bus Evaluation for California Transit Agencies Hydrogen Fuel Cell Bus Evaluation for California Transit Agencies In February 2000, the...

65

Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste. Volume 2: Technical basis and discussion of results  

SciTech Connect (OSTI)

A team of analysts designed and conducted a performance evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 2 first describes the screening process used to determine the sites to be considered in the PEs. This volume then provides the technical details of the methodology for conducting the performance evaluations. It also provides a comparison and analysis of the overall results for all sites that were evaluated. Volume 3 contains detailed evaluations of the fifteen sites and discussions of the results for each site.

Waters, R.D.; Gruebel, M.M.; Hospelhorn, M.B. [and others

1996-03-01T23:59:59.000Z

66

Evaluation of Dredged Material Proposed for Ocean Disposal from Federal Projects in New York and New Jersey and the Military Ocean Terminal (MOTBY)  

SciTech Connect (OSTI)

The U.S. Army Corps of Engineers (USACE) is authorized by Section 103 of the Marine Protection, Research, and Sanctuaries Act of 1972 (MPRSA), Public Law 92-532, and by the Clean Water Act of 1972 (CWA) and Amendments of 1977 to permit, evaluate, and regulate the disposal of dredged material in ocean waters to minimize adverse environmental effects. Compliance with the regulations of the MPRSA calls for physical and biological testing of sediment proposed for dredging prior to its disposal in ocean waters. The testing required by the MPRSA criteria is conducted under a testing manual developed by the USACE and the U.S. Environmental Protection Agency (EPA), Evaluation of Dredged Material Proposed for Ocean Disposal (Testing Manual), commonly referred to as the `Green Book.` Testing protocols in the Green Book include bulk sediment analysis, grain size analysis, elutriate testing, and biological testing. The biological testing includes bioassays for acute toxicity as well as analysis to determine bioaccumulation of certain contaminants by marine organisms. The objective of the USACE-NYD Federal Projects Program was to evaluate sediment proposed for dredging and unconfined ocean disposal at the Mud Dump Site. The results of analytical measurements and bioassays performed on the test sediments were compared with analyses of sediment from the Mud Dump Reference Site to determine whether the test sediments were acutely toxic to marine organisms or resulted in statistically significantly greater bioaccumulation of contaminants in marine organisms, relative to the reference sediment. Testing for the federal project areas was performed according to the requirements.

Barrows, E.S.; Antrim, L.D.; Pinza, M.R.; Gardiner, W.W.; Kohn, N.P.; Gruendell, B.D.; Mayhew, H.L.; Word, J.Q.; Rosman, L.B. [Battelle Marine Sciences Laboratory, Sequim, Washington (United States)

1996-08-01T23:59:59.000Z

67

Evaluation of Options for Permanent Geologic Disposal of Spent NuclearFuel and High-Level Radioactive Waste  

Broader source: Energy.gov [DOE]

[In Support of a Comprehensive National Nuclear Fuel Cycle Strategy, Volumes I and II (Appendices)] This study provides a technical basis for informing policy decisions regarding strategies for the management and permanent disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW) in the United States requiring geologic isolation.

68

Electrochemical Apparatus with Disposable and Modifiable Parts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrochemical Apparatus with Disposable and Modifiable Parts Electrochemical Apparatus with Disposable and Modifiable Parts Electrochemical Apparatus with Disposable and Modifiable Parts The invention also includes electrochemical apparatus that can interface with optical instrumentation. If the working electrode is transparent, light from an optical fiber may be directed through the working electrode and into a cuvette. July 3, 2013 Electrochemical Apparatus with Disposable and Modifiable Parts Available for thumbnail of Feynman Center (505) 665-9090 Email Electrochemical Apparatus with Disposable and Modifiable Parts Applications: Electrochemical experiments in solution Electrochemical experiments on surfaces Bulk electrolysis experiments Fuel cells Corrosion studies Academic Labs Teaching and research Benefits: Incorporates disposable, commercially available cuvettes

69

Durability Evaluation of Reversible Solid Oxide Cells  

SciTech Connect (OSTI)

An experimental investigation on the performance and durability of single solid oxide cells (SOCs) is under way at the Idaho National Laboratory. Reversible operation of SOCs includes electricity generation in the fuel cell mode and hydrogen generation in the electrolysis mode. Degradation is a more significant issue when operating SOCs in the electrolysis mode. In order to understand and mitigate the degradation issues in high temperature electrolysis, single SOCs with different configurations from several manufacturers have been evaluated for initial performance and long-term durability. A new test apparatus for single cell and small stack tests has been developed for this purpose. Cells were obtained from four industrial partners. Cells from Ceramatec Inc. and Materials and Systems Research Inc. (MSRI) showed improved durability in electrolysis mode compared to previous stack tests. Cells from Saint Gobain Advanced Materials Inc. (St. Gobain) and SOFCPower Inc. demonstrated stable performance in the fuel cell mode, but rapid degradation in the electrolysis mode, especially at high current density. Electrolyte-electrode delamination was found to have a significant impact on degradation in some cases. Enhanced bonding between electrolyte and electrode and modification of the electrode microstructure helped to mitigate degradation. Polarization scans and AC impedance measurements were performed during the tests to characterize cell performance and degradation.

Xiaoyu Zhang; James E. O'Brien; Robert C. O'Brien; Gregory K. Housley

2013-11-01T23:59:59.000Z

70

20 - Nuclear Waste Disposal  

Science Journals Connector (OSTI)

Disposal options are outlined, including geological and near-surface disposal. Alternative disposal options are briefly considered. The multi-barrier system is described, including the natural geological barrier and the engineered barrier system. The roles of both EBS and NGB are discussed. Worldwide disposal experience is reviewed and acceptance criteria for disposal are analysed.

M.I. Ojovan; W.E. Lee

2014-01-01T23:59:59.000Z

71

Long-Term Surveillance Plan for the Upper Burbank Disposal Cell, Uravan, Colorado, DOE/AL/62350-250, Revision 1, July 1999  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LONG-TERM SURVEILLANCE PLAN LONG-TERM SURVEILLANCE PLAN FOR THE UPPER BURBANK DISPOSAL CELL URAUAN, COLORADO July 1999 Prepared for U.S. Department of Energy Environmental Restoration Dhrision U MTRA Project Team Albuquerque, New Mexico DOElAU62350-250 REV. 1 Prepared by Jacobs Engineering Group Inc. Albuquerque, New Mexico This page intentionally left blank LONG-TERM GURMIWNCE P U N FOR THE UPPER BURBANK DrsPosAL CEU. WYAAI. COhORAOD TABLE OF DONENTe TABLE OF CONTENTS 1.0 PURPOSEANDSCOPE .............................................................................................. 1-1 2 . 1 1 FINAL SlTE CONDITIONS ................... ...-.... ...............................................*.............. 2-1 ..................................................................... ................... 2

72

Evaluating the Potential Impact of Using the Transport, Aging and Disposal (TAD) Canister on Yucca Mountain Pre-Closure Operations  

SciTech Connect (OSTI)

The development and preliminary use of an integrated model to explore the impact of various operational scenarios of the pre-closure waste management system of Yucca Mountain (YM) is described. The capabilities of the model are illustrated by applying it to a simplified operational scenario using Transport, Aging, and Disposal (TAD) Canisters. The application uses existing data on spent nuclear fuel to model the effect on above ground aging at YM by varying four parameters: (1) utility loading behavior, (2) thermal limit for transportation casks, (3) thermal limit for emplacement, and (4) emplacement capacity at YM. Results show that the thermal limit for emplacement is the most important parameter with respect to above ground aging demands at YM. Transportation heat limit is also important, but less so if the capacity of YM is expanded or if older fuel is sent first. Easing the constraint of the emplacement limit, if feasible, would be a preferable method of reducing aging demands, especially under an expanded emplacement capacity. Consequently, there may be incentive for Department of Energy (DOE) to either specify a lower transportation limit or a higher emplacement limit if it wishes to reduce the potential demands on the Aging Facility at YM. (authors)

Spradley, L. [Research Assistant, Civil and Environmental Engineering, Vanderbilt University, VU Station, Nashville, TN (United States); Abkowitz, M. [Civil and Environmental Engineering, Vanderbilt University (United States); Clarke, J.H. [Civil and Environmental Engineering, Vanderbilt University (United States)

2008-07-01T23:59:59.000Z

73

Evaluation of isotope migration: land burial. Water chemistry at commercially operated low-level radioactive waste disposal sites. Quarterly progress report, April-June 1981  

SciTech Connect (OSTI)

Results are reported for radionuclide sorption experiments performed under anaerobic conditions and as a function of solution/solid ratio for trench shale and waters collected at the Maxey Flats disposal site in Kentucky. The observed degree of sorption (equilibrium K/sub d/) varied unpredictably as a function of solution to solid ratio. Measurements of pH and Eh were performed before and after the determinations to determine if redox conditions were altered significantly during the experiments. The experimental procedure appears capable of maintaining anaerobic conditions during most of the determinations. Changes in solution/solid ratio appear to affect the observed equilibrium sorption more than any variations in redox state during the determinations. However, our final evaluation of the proposed test procedure for measuring sorption of radionuclides from anoxic groundwater is that the test is not completely reliable. Since further improvements in the experimental procedure are not planned, this type of batch sorption test for anoxic waters will be terminated. Organo-radionuclide complex stability experiments in controlled environment chambers were completed. The results indicate that the temporal stability of chelated radionuclides in low redox geochemical environments are not easily predicted from comparisons of appropriate association constants and solubility products. Empirical information is required to reliably predict the behavior of chelated radionuclides under field conditions. Controlled oxidation experiments using disposal site trench waters were initiated. Preliminary results suggest that high contents of dissolved ferrous iron in trench waters can act as redox buffers to preserve low redox conditions during subsurface migration. Data on coprecipitation of radionuclides on ferric oxyhydroxide will be reported when analyses are completed.

Czyscinski, K S; Pietrzak, R F; Weiss, A J

1981-11-01T23:59:59.000Z

74

Energy Department Launches National Fuel Cell Technology Evaluation Center  

Broader source: Energy.gov (indexed) [DOE]

Launches National Fuel Cell Technology Evaluation Launches National Fuel Cell Technology Evaluation Center to Advance Fuel Cell Technologies Energy Department Launches National Fuel Cell Technology Evaluation Center to Advance Fuel Cell Technologies September 12, 2013 - 12:00pm Addthis Following Energy Secretary Ernest Moniz's visit to the National Renewable Energy Laboratory (NREL), the Energy Department today announced the unveiling of a one-of-its-kind national secure data center dedicated to the independent analysis of advanced hydrogen and fuel cell technologies at the Energy Department's Energy Systems Integration Facility (ESIF) located at NREL in Golden, Colorado. The National Fuel Cell Technology Evaluation Center (NFCTEC) allows industry, academia, and government organizations to submit and review data

75

Tank Waste Disposal Program redefinition  

SciTech Connect (OSTI)

The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H. [Westinghouse Hanford Co., Richland, WA (United States); Holton, L.K.; Hunter, V.L.; Triplett, M.B. [Pacific Northwest Lab., Richland, WA (United States)

1991-10-01T23:59:59.000Z

76

Evaluation of the WIPP Project`s compliance with the EPA radiation protection standards for disposal of transuranic waste  

SciTech Connect (OSTI)

The US Environmental Protection Agency`s (EPA) proposed rule to certify that the Waste Isolation Pilot Plant (WIPP) meets compliance with the long-term radiation protection standards for geologic repositories (40CFR191 Subparts B and C), is one of the most significant milestones to date for the WIPP project in particular, and for the nuclear waste issue in general. The Environmental Evaluation Group (EEG) has provided an independent technical oversight for the WIPP project since 1978, and is responsible for many improvements in the location, design, and testing of various aspects of the project, including participation in the development of the EPA standards since the early 1980s. The EEG reviewed the development of documentation for assessing the WIPP`s compliance by the Sandia National Laboratories following the 1985 promulgation by EPA, and provided many written and verbal comments on various aspects of this effort, culminating in the overall review of the 1992 performance assessment. For the US Department of Energy`s (DOE) compliance certification application (CCA), the EEG provided detailed comments on the draft CCA in March, 1996, and additional comments through unpublished letters in 1997 (included as Appendices 8.1 and 8.2 in this report). Since the October 30, 1997, publication of the EPA`s proposed rule to certify WIPP, the EEG gave presentations on important issues to the EPA on December 10, 1997, and sent a December 31, 1997 letter with attachments to clarify those issues (Appendix 8.3). The EEG has raised a number of questions that may have an impact on compliance. In spite of the best efforts by the EEG, the EPA reaction to reviews and suggestions has been slow and apparently driven by legal considerations. This report discusses in detail the questions that have been raised about containment requirements. Also discussed are assurance requirements, groundwater protection, individual protection, and an evaluation of EPA`s responses to EEG`s comments.

Neill, R.H.; Chaturvedi, L.; Rucker, D.F.; Silva, M.K.; Walker, B.A.; Channell, J.K.; Clemo, T.M. [Environmental Evaluation Group, Albuquerque, NM (United States)] [Environmental Evaluation Group, Albuquerque, NM (United States); [Environmental Evaluation Group, Carlsbad, NM (United States)

1998-03-01T23:59:59.000Z

77

Waste Disposal | Department of Energy  

Office of Environmental Management (EM)

Disposal Waste Disposal Trucks transport debris from Oak Ridges cleanup sites to the onsite CERCLA disposal area, the Environmental Management Waste Management Facility....

78

Evaluation of Groundwater Impacts to Support the National Environmental Policy Act Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

Groundwater impacts have been analyzed for the proposed remote-handled low-level waste disposal facility. The analysis was prepared to support the National Environmental Policy Act environmental assessment for the top two ranked sites for the proposed disposal facility. A four-phase screening and analysis approach was documented and applied. Phase I screening was site independent and applied a radionuclide half-life cut-off of 1 year. Phase II screening applied the National Council on Radiation Protection analysis approach and was site independent. Phase III screening used a simplified transport model and site-specific geologic and hydrologic parameters. Phase III neglected the infiltration-reducing engineered cover, the sorption influence of the vault system, dispersion in the vadose zone, vertical dispersion in the aquifer, and the release of radionuclides from specific waste forms. These conservatisms were relaxed in the Phase IV analysis which used a different model with more realistic parameters and assumptions. Phase I screening eliminated 143 of the 246 radionuclides in the inventory from further consideration because each had a half-life less than 1 year. An additional 13 were removed because there was no ingestion dose coefficient available. Of the 90 radionuclides carried forward from Phase I, 57 radionuclides had simulated Phase II screening doses exceeding 0.4 mrem/year. Phase III and IV screening compared the maximum predicted radionuclide concentration in the aquifer to maximum contaminant levels. Of the 57 radionuclides carried forward from Phase II, six radionuclides were identified in Phase III as having simulated future aquifer concentrations exceeding maximum contaminant limits. An additional seven radionuclides had simulated Phase III groundwater concentrations exceeding 1/100th of their respective maximum contaminant levels and were also retained for Phase IV analysis. The Phase IV analysis predicted that none of the thirteen remaining radionuclides would exceed the maximum contaminant levels for either site location. The predicted cumulative effective dose equivalent from all 13 radionuclides also was less than the dose criteria set forth in Department of Energy Order 435.1 for each site location. An evaluation of composite impacts showed one site is preferable over the other based on the potential for commingling of groundwater contamination with other facilities.

Annette Schafer, Arthur S. Rood, A. Jeffrey Sondrup

2011-12-23T23:59:59.000Z

79

Waste Disposal (Illinois)  

Broader source: Energy.gov [DOE]

This article lays an outline of waste disposal regulations, permits and fees, hazardous waste management and underground storage tank requirements.

80

Status of UFD Campaign International Activities in Disposal Research |  

Broader source: Energy.gov (indexed) [DOE]

Status of UFD Campaign International Activities in Disposal Status of UFD Campaign International Activities in Disposal Research Status of UFD Campaign International Activities in Disposal Research Several international organizations have made significant progress in the characterization and performance evaluation of other disposal design options and host rock characteristics (clay/shale, granite), most of which were very different from those studied in the United States. The DOE recognizes that close international collaboration is a beneficial and cost effective strategy for advancing disposal science. This report describes the active collaboration opportunities available to U.S. researchers, and presents specific cooperative research activities that have been recently initiated within DOE's disposal research program.

Note: This page contains sample records for the topic "disposal cell evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Bonneville Power to evaluate Hydra fuel cell  

Science Journals Connector (OSTI)

Oregon-based Hydra Fuel Cell Corporation is to deliver a beta unit of its proprietary HydraStax™ hydrogen PEM fuel cell to be tested by the Bonneville Power Administration, a major wholesale power producer in the Pacific Northwest of the US. The HydraStax technology is designed for fixed power applications up to 40 kW.

2006-01-01T23:59:59.000Z

82

Experimental evaluation of cell temperature effects on miniature, air-breathing PEM fuel cells  

E-Print Network [OSTI]

Experimental evaluation of cell temperature effects on miniature, air-breathing PEM fuel cells Z June 2011 Available online 14 June 2011 Keywords: Air-breathing PEM fuel cell Temperature effects Air) fuel cells is investi- gated using polarization and impedance spectroscopy. Three active area sizes

Lee, Tonghun

83

Evaluation of the capabilities of the Hanford Reservation and Envirocare of Utah for disposal of potentially problematic mixed low-level waste streams  

SciTech Connect (OSTI)

The US Department of Energy`s (DOE) Mixed Waste Focus Area is developing a program to address and resolve issues associated with final waste form performance in treating and disposing of DOE`s mixed low-level waste (MLLW) inventory. A key issue for the program is identifying MLLW streams that may be problematic for disposal. Previous reports have quantified and qualified the capabilities of fifteen DOE sites for MLLW disposal and provided volume and radionuclide concentration estimates for treated MLLW based on the DOE inventory. Scoping-level analyses indicated that 101 waste streams identified in this report (approximately 6,250 m{sup 3} of the estimated total treated MLLW) had radionuclide concentrations that may make their disposal problematic. The radionuclide concentrations of these waste streams were compared with the waste acceptance criteria (WAC) for a DOE disposal facility at Hanford and for Envirocare`s commercial disposal facility for MLLW in Utah. Of the treated MLLW volume identified as potentially problematic, about 100 m{sup 3} exceeds the WAC for disposal at Hanford, and about 4,500 m{sup 3} exceeds the WAC for disposal at Envirocare. Approximately 7% of DOE`s total MLLW inventory has not been sufficiently characterized to identify a treatment process for the waste and was not included in the analysis. In addition, of the total treated MLLW volume, about 30% was associated with waste streams that did not have radionuclide concentration data and could not be included in the determination of potentially problematic waste streams.

Waters, R.D.; Pohl, P.I.; Cheng, W.C.; Gruebel, M.M.; Wheeler, T.A.; Langkopf, B.S.

1998-03-01T23:59:59.000Z

84

AN EVALUATION OF SELECT PEM FUEL CELL SYSTEM MODELS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EVALUATING PEM FUEL CELL SYSTEM MODELS EVALUATING PEM FUEL CELL SYSTEM MODELS Kristina Haraldsson, Keith Wipke National Renewable Energy Laboratory (NREL) 1617 Cole Boulevard, MS 1633 Golden, Colorado, 80401 ABSTRACT Many proton exchange membrane (PEM) fuel cell models have been reported in publications, and some are available commercially. This paper helps users match their modeling needs with specific fuel cell models. The paper has three parts. First, it describes the model selection criteria for choosing a fuel cell model. Second, it applies these criteria to select state- of-the-art fuel cell models available in literature and commercially. The advantages and disadvantages of commercial models are discussed. Third, the paper illustrates the process of choosing a fuel cell model with an

85

Optimizing High Level Waste Disposal  

SciTech Connect (OSTI)

If society is ever to reap the potential benefits of nuclear energy, technologists must close the fuel-cycle completely. A closed cycle equates to a continued supply of fuel and safe reactors, but also reliable and comprehensive closure of waste issues. High level waste (HLW) disposal in borosilicate glass (BSG) is based on 1970s era evaluations. This host matrix is very adaptable to sequestering a wide variety of radionuclides found in raffinates from spent fuel reprocessing. However, it is now known that the current system is far from optimal for disposal of the diverse HLW streams, and proven alternatives are available to reduce costs by billions of dollars. The basis for HLW disposal should be reassessed to consider extensive waste form and process technology research and development efforts, which have been conducted by the United States Department of Energy (USDOE), international agencies and the private sector. Matching the waste form to the waste chemistry and using currently available technology could increase the waste content in waste forms to 50% or more and double processing rates. Optimization of the HLW disposal system would accelerate HLW disposition and increase repository capacity. This does not necessarily require developing new waste forms, the emphasis should be on qualifying existing matrices to demonstrate protection equal to or better than the baseline glass performance. Also, this proposed effort does not necessarily require developing new technology concepts. The emphasis is on demonstrating existing technology that is clearly better (reliability, productivity, cost) than current technology, and justifying its use in future facilities or retrofitted facilities. Higher waste processing and disposal efficiency can be realized by performing the engineering analyses and trade-studies necessary to select the most efficient methods for processing the full spectrum of wastes across the nuclear complex. This paper will describe technologies being evaluated at Idaho National Laboratory and the facilities we’ve designed to evaluate options and support optimization.

Dirk Gombert

2005-09-01T23:59:59.000Z

86

VTA Prototype Fuel Cell Bus Evaluation: Interim Results (Presentation)  

Broader source: Energy.gov [DOE]

Details hydrogen fuel cell buses being evaluated in service at AC Transit. Presented at the APTA Bus and Paratransit Conference in Anaheim, California, April 30 through May 3, 2006.

87

On-Site Disposal Facility Inspection Report  

Office of Legacy Management (LM)

72.1 0614 On-Site Disposal Facility Inspection Report June 2014 6319-D6320 8972.2 0614 East Face Cell 1 West Face Cell 1 6319D-6322 6319D-6346 8972.3 0614 North Face Cell 1...

88

Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Preliminary Evaluation Results  

Broader source: Energy.gov [DOE]

This report provides preliminary results from the evaluation of a protoptye fuel cell transit bus operating at Connecticut Transit in Hartford. Included are descriptions of the planned fuel cell bus demonstration and equipment, early results and agency experience are also provided.

89

BC Transit Fuel Cell Bus Project: Evaluation Results Report  

SciTech Connect (OSTI)

This report evaluates a fuel cell electric bus demonstration led by British Columbia Transit (BC Transit) in Whistler, Canada. BC Transit is collaborating with the California Air Resources Board and the U.S. Department of Energy's National Renewable Energy Laboratory to evaluate the buses in revenue service. This evaluation report covers two years of revenue service data on the buses from April 2011 through March 2013.

Eudy, L.; Post, M.

2014-02-01T23:59:59.000Z

90

Material Disposal Areas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Material Disposal Areas Material Disposal Areas Material Disposal Areas Material Disposal Areas, also known as MDAs, are sites where material was disposed of below the ground surface in excavated pits, trenches, or shafts. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Material Disposal Areas at LANL The following are descriptions and status updates of each MDA at LANL. To view a current fact sheet on the MDAs, click on LA-UR-13-25837 (pdf). MDA A MDA A is a Hazard Category 2 nuclear facility comprised of a 1.25-acre, fenced, and radiologically controlled area situated on the eastern end of Delta Prime Mesa. Delta Prime Mesa is bounded by Delta Prime Canyon to the north and Los Alamos Canyon to the south.

91

Environmental Assessment Photovoltaic Solar Project at the Durango, Colorado, Disposal Site  

Broader source: Energy.gov (indexed) [DOE]

U.S. Department of Energy Office of Legacy Management U.S. Department of Energy Office of Legacy Management DOE/EA 1770 FINDING OF NO SIGNIFICANT IMPACT Photovoltaic Solar Project at the Durango, Colorado, Disposal Site, La Plata County AGENCY: U.S. Department of Energy (DOE), Office of Legacy Management (LM) ACTION: Finding of No Significant Impact (FONSI) SUMMARY: LM prepared an Environmental Assessment (EA) (DOE/EA-1770) that evaluated two action alternatives related to the installation, operation, and removal of a photovoltaic (PV) solar energy system on the Durango, Colorado, Disposal Site and the No Action Alternative. Alternative 1 evaluated the use of the 18-acre (ac) vegetated surface of the disposal cell for the installation of a PV system. The second action alternative (Alternative 2, the Preferred Action) considered the use of the surface of the

92

Disposal Information - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Disposal of Radioactive Waste at Hanford The Hanford Site operates lined, RCRA Subtitle C land...

93

Evaluation of isotope migration - land burial. Water chemistry at commercially operated low-level radioactive waste disposal sites. Quarterly progress report, April-June 1980  

SciTech Connect (OSTI)

This report presents the analytical results for tritium content of soil cores taken at the Barnwell, South Carolina, disposal site, field measurements at Barnwell, concentrations of free chelating agents in selected trench waters, and the analyses of water samples collected at the Maxey Flats, Kentucky, disposal site. Tritium contents in soil cores taken below the trenches show a decrease in tritium with depth to a minimum value at approximately ten meters, followed by an increase below this depth. This deeper maximum probably represents the downward movement of the previous years seasonal maxima for water infiltration into the trenches. This amount of downward migration from the trench bottom is approximately what would be expected based on the hydraulic conductivity of these sediments. Field measurements of trench waters at the Barnwell, South Carolina, disposal site indicate that the waters are chemically oxidizing regimes relative to those at Maxey Flats and West Valley. Analyses were performed to determine the amounts of free chelating agents DTPA, EDTA, and NTA in selected trenches at the Maxey Flats, West Valley, Barnwell, and Sheffield, disposal sites. Amounts of free chelating agents were generally below 1 ..mu..g/g, with one sample as high as 28 ..mu..g/g. No drastic changes in trench water compositions were observed relative to previous sampling at Maxey Flats. The experimental interceptor trenches contain detectable amounts of strontium and plutonium. Tritium contents vary from typical disposal trench levels (E7-E8 pCi/L) in trench IT-2E, downward four oders of magnitude in trench IT-5 in a decreasing trend along the line of experimental trenches.

Czyscinski, K.S.; Weiss, A.J.

1980-08-01T23:59:59.000Z

94

Disposal of boiler ash  

SciTech Connect (OSTI)

As more boilers are converted from oil to solid fuels such as coal, the quantity of ash requiring disposal will increase dramatically. The factors associated with the development of land disposal systems for ash landfills are presented, including ash characterization, site selection procedures, design parameters, and costs.

Atwell, J.S.

1981-08-01T23:59:59.000Z

95

Analysis of environmental regulations governing the disposal of geothermal wastes in California  

SciTech Connect (OSTI)

Federal and California regulations governing the disposal of sludges and liquid wastes associated with the production of electricity from geothermal resources were evaluated. Current disposal practices, near/far term disposal requirements, and the potential for alternate disposal methods or beneficial uses for these materials were determined. 36 refs., 3 figs., 15 tabs. (ACR)

Royce, B.A.

1985-09-01T23:59:59.000Z

96

Evaluation of isotope migration: land burial. Water chemistry at commercially operated low-level radioactive waste disposal sites. Quarterly progress report, October-December 1979  

SciTech Connect (OSTI)

Decreasing radionuclide sorption, K/sub d/, was observed for /sup 241/Am, /sup 85/Sr, and /sup 60/Co when organic substances were added to well water and shale from the Maxey Flats, Kentucky, disposal site. Ethylenediaminetetraacetic acid (EDTA) caused the greatest decrease in K/sub d/. Several reference clays were also used for comparison. Only montmorillonite maintained its sorption capability in the presence of EDTA. Experiments were performed to establish the existence of organoradionuclide complexes in trench waters from the low level radioactive waste disposal sites. Fractionations of trench waters were accomplished by gel filtration chromatography. Preliminary results indicated that cesium isotopes in the trench water from West Valley, New York, may be associated with organic molecules as species with molecular weight less than 700, and that it is unlikely an EDTA complex.

Weiss, A.J.; Colombo, P.

1980-02-01T23:59:59.000Z

97

The Salt Defense Disposal Investigations (SDDI)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Salt Defense Disposal Investigations (SDDI) Salt Defense Disposal Investigations (SDDI) will utilize a newly mined Underground Research Lab (URL) in WIPP to perform a cost effective, proof-of-principle field test of the emplacement of heat-generating radioactive waste and validate modeling efforts. The goals of the SDDI Thermal Test are to: * Demonstrate a proof-of-principle concept for in-drift disposal in salt. * Investigate, in a specific emplacement concept, the response of the salt to heat. * Develop a full-scale response for run-of- mine (ROM) salt. * Develop a validated coupled process model for disposal of heat-generating wastes in salt. * Evaluate the environmental conditions of the

98

Municipal Sludge disposal economics  

Science Journals Connector (OSTI)

Municipal Sludge disposal economics ... Atmospheric emissions of elements on particles from the Parkway sewage-sludge incinerator ... Atmospheric emissions of elements on particles from the Parkway sewage-sludge incinerator ...

Jerry Jones; David Bomberger, Jr.; F Lewis; Joel Jacknow

1977-01-01T23:59:59.000Z

99

Hazardous Waste Disposal Sites (Iowa)  

Broader source: Energy.gov [DOE]

These sections contain information on fees and monitoring relevant to operators of hazardous waste disposal sites.

100

BC Transit Fuel Cell Bus Project Evaluation Results: Second Report  

SciTech Connect (OSTI)

Second report evaluating a fuel cell electric bus (FCEB) demonstration led by British Columbia Transit (BC Transit) in Whistler, Canada. BC Transit is collaborating with the California Air Resources Board and the U.S. Department of Energy's National Renewable Energy Laboratory to evaluate the buses in revenue service. NREL published its first report on the demonstration in February 2014. This report is an update to the previous report; it covers 3 full years of revenue service data on the buses from April 2011 through March 2014 and focuses on the final experiences and lessons learned.

Eudy, L.; Post, M.

2014-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "disposal cell evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

SCFA lead lab technical assistance at Oak Ridge Y-12 nationalsecurity complex: Evaluation of treatment and characterizationalternatives of mixed waste soil and debris at disposal area remedialaction DARA solids storage facility (SSF)  

SciTech Connect (OSTI)

On July 17-18, 2002, a technical assistance team from the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) met with the Bechtel Jacobs Company Disposal Area Remedial Action (DARA) environmental project leader to review treatment and characterization options for the baseline for the DARA Solids Storage Facility (SSF). The technical assistance request sought suggestions from SCFA's team of technical experts with experience and expertise in soil treatment and characterization to identify and evaluate (1) alternative treatment technologies for DARA soils and debris, and (2) options for analysis of organic constituents in soil with matrix interference. Based on the recommendations, the site may also require assistance in identifying and evaluating appropriate commercial vendors.

Hazen, Terry

2002-08-26T23:59:59.000Z

102

Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark  

Broader source: Energy.gov (indexed) [DOE]

Landfill Reaches 15 Million Tons Disposed - Waste Disposal Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor July 9, 2013 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE, (509) 376-5365 Cameron.Hardy@rl.doe.gov Mark McKenna, WCH, (509) 372-9032 media@wch-rcc.com RICHLAND, Wash. - The U.S. Department of Energy (DOE) and its contractors have disposed of 15 million tons of contaminated material at the Environmental Restoration Disposal Facility (ERDF) since the facility began operations in 1996. Removing contaminated material and providing for its safe disposal prevents contaminants from reaching the groundwater and the Columbia River. ERDF receives contaminated soil, demolition debris, and solid waste from

103

Radiological performance assessment for the E-Area Vaults Disposal Facility  

SciTech Connect (OSTI)

The E-Area Vaults (EAVs) located on a 200 acre site immediately north of the current LLW burial site at Savannah River Site will provide a new disposal and storage site for solid, low-level, non-hazardous radioactive waste. The EAV Disposal Facility will contain several large concrete vaults divided into cells. Three types of structures will house four designated waste types. The Intermediate Level Non-Tritium Vaults will receive waste radiating greater than 200 mR/h at 5 cm from the outer disposal container. The Intermediate Level Tritium Vaults will receive waste with at least 10 Ci of tritium per package. These two vaults share a similar design, are adjacent, share waste handling equipment, and will be closed as one facility. The second type of structure is the Low Activity Waste Vaults which will receive waste radiating less than 200 mR/h at 5 cm from the outer disposal container and containing less than 10 Ci of tritium per package. The third facility, the Long Lived Waste Storage Building, provides covered, long term storage for waste containing long lived isotopes. Two additional types of disposal are proposed: (1) trench disposal of suspect soil, (2) naval reactor component disposal. To evaluate the long-term performance of the EAVs, site-specific conceptual models were developed to consider: (1) exposure pathways and scenarios of potential importance; (2) potential releases from the facility to the environment; (3) effects of degradation of engineered features; (4) transport in the environment; (5) potential doses received from radionuclides of interest in each vault type.

Cook, J.R.; Hunt, P.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

1994-04-15T23:59:59.000Z

104

Dredged and Fill Material Disposal (North Dakota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Dredged and Fill Material Disposal (North Dakota) Dredged and Fill Material Disposal (North Dakota) Dredged and Fill Material Disposal (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Dakota Program Type Siting and Permitting This chapter provides regulations for the disposal of dredged and fill

105

An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling...

106

SunLine Transit Agency Fuel Cell Transit Bus: Fifth Evaluation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Transit Bus: Fifth Evaluation Report SunLine Transit Agency Fuel Cell Transit Bus: Fifth Evaluation Report This report describes operations at SunLine Transit Agency for...

107

Depleted uranium storage and disposal trade study: Summary report  

SciTech Connect (OSTI)

The objectives of this study were to: identify the most desirable forms for conversion of depleted uranium hexafluoride (DUF6) for extended storage, identify the most desirable forms for conversion of DUF6 for disposal, evaluate the comparative costs for extended storage or disposal of the various forms, review benefits of the proposed plasma conversion process, estimate simplified life-cycle costs (LCCs) for five scenarios that entail either disposal or beneficial reuse, and determine whether an overall optimal form for conversion of DUF6 can be selected given current uncertainty about the endpoints (specific disposal site/technology or reuse options).

Hightower, J.R.; Trabalka, J.R.

2000-02-01T23:59:59.000Z

108

DOE - Office of Legacy Management -- Maryland Disposal Site - MD 05  

Office of Legacy Management (LM)

Maryland Disposal Site - MD 05 Maryland Disposal Site - MD 05 FUSRAP Considered Sites Site: MARYLAND DISPOSAL SITE (MD.05 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Baltimore - Vicinity , Maryland MD.05-1 Evaluation Year: 1989 MD.05-1 Site Operations: Proposed disposal site - never developed. MD.05-1 Site Disposition: Eliminated Radioactive Materials Handled: None Indicated Primary Radioactive Materials Handled: None Indicated Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to MARYLAND DISPOSAL SITE MD.05-1 - Report (DOE/OR/20722-131 Revision 0); Site Plan for the Maryland Disposal Site; April 1989 Historical documents may contain links which are no longer valid or to

109

Electrochemical apparatus comprising modified disposable rectangular cuvette  

DOE Patents [OSTI]

Electrochemical apparatus includes a disposable rectangular cuvette modified with at least one hole through a side and/or the bottom. Apparatus may include more than one cuvette, which in practice is a disposable rectangular glass or plastic cuvette modified by drilling the hole(s) through. The apparatus include two plates and some means of fastening one plate to the other. The apparatus may be interfaced with a fiber optic or microscope objective, and a spectrometer for spectroscopic studies. The apparatus are suitable for a variety of electrochemical experiments, including surface electrochemistry, bulk electrolysis, and flow cell experiments.

Dattelbaum, Andrew M; Gupta, Gautam; Morris, David E

2013-09-10T23:59:59.000Z

110

The disposal of orphan wastes using the greater confinement disposal concept  

SciTech Connect (OSTI)

In the United States, radioactive wastes are conventionally classified as high-level wastes, transuranic wastes, or low-level wastes. Each of these types of wastes, by law, has a ``home`` for their final disposal; i.e., high-level wastes are destined for disposal at the proposed repository at Yucca Mountain, transuranic waste for the proposed Waste Isolation Pilot Plant, and low-level waste for shallow-land disposal sites. However, there are some radioactive wastes within the United States Department of Energy (DOE) complex that do not meet the criteria established for disposal of either high-level waste, transuranic waste, or low-level waste. The former are called ``special-case`` or ``orphan`` wastes. This paper describes an ongoing project sponsored by the DOE`s Nevada Operations Office for the disposal of orphan wastes at the Radioactive Waste Management Site at Area 5 of the Nevada Test Site using the greater confinement disposal (GCD) concept. The objectives of the GCD project are to evaluate the safety of the site for disposal of orphan wastes by assessing compliance with pertinent regulations through performance assessment, and to examine the feasibility of this disposal concept as a cost-effective, safe alternative for management of orphan wastes within the DOE complex. Decisions on the use of GCD or other alternate disposal concepts for orphan wastes can be expected to be addressed in a Programmatic Environmental Impact Statement being prepared by DOE. The ultimate decision to use GCD will require a Record of Decision through the National Environmental Policy Act (NEPA) process. 20 refs., 3 figs., 2 tabs.

Bonano, E.J.; Chu, M.S.Y.; Price, L.L.; Conrad, S.H. [Sandia National Labs., Albuquerque, NM (USA); Dickman, P.T. [Department of Energy, Las Vegas, NV (USA). Nevada Operations Office

1991-02-01T23:59:59.000Z

111

22 - Radioactive waste disposal  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses the disposal of radioactive wastes that arise from a great variety of sources, including the nuclear fuel cycle, beneficial uses of isotopes, and radiation by institutions. Spent fuel contains uranium, plutonium, and highly radioactive fission products. The spent fuel is accumulating, awaiting the development of a high-level waste repository. It is anticipated that a multi-barrier system involving packaging and geologic media will provide protection of the public over the centuries. The favored method of disposal is in a mined cavity deep underground. In some countries, reprocessing the fuel assemblies permits recycling of materials and disposal of smaller volumes of solidified waste. Transportation of wastes is done by casks and containers designed to withstand severe accidents. Low-level wastes come from research and medical procedures and from a variety of activation and fission sources at a reactor site. They generally can be given near-surface burial. Isotopes of special interest are cobalt-60 and cesium-137. Transuranic wastes are being disposed of in the Waste Isolation Pilot Plant. Decommissioning of reactors in the future will contribute a great deal of low-level radioactive waste.

Raymond L. Murray

2001-01-01T23:59:59.000Z

112

Radioactive waste disposal package  

DOE Patents [OSTI]

A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

Lampe, Robert F. (Bethel Park, PA)

1986-01-01T23:59:59.000Z

113

Waste disposal package  

DOE Patents [OSTI]

This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

Smith, M.J.

1985-06-19T23:59:59.000Z

114

Evaluation of Groundwater Impacts to Support the National Environmental Policy Act Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

The groundwater impacts have been analyzed for the proposed RH-LLW disposal facility. A four-step analysis approach was documented and applied. This assessment compared the predicted groundwater ingestion dose to the more restrictive of either the 25 mrem/yr all pathway dose performance objective, or the maximum contaminant limit performance objective. The results of this analysis indicate that the groundwater impacts for either proposed facility location are expected to be less than the performance objectives. The analysis was prepared to support the NEPA-EA for the top two ranking of the proposed RH-LLW sites. As such, site-specific conditions were incorporated for each set of results generated. These site-specific conditions were included to account for the transport of radionuclides through the vadose zone and through the aquifer at each site. Site-specific parameters included the thickness of vadose zone sediments and basalts, moisture characteristics of the sediments, and aquifer velocity. Sorption parameters (Kd) were assumed to be very conservative values used in Track II analysis of CERCLA sites at INL. Infiltration was also conservatively assumed to represent higher rates corresponding to disturbed soil conditions. The results of this analysis indicate that the groundwater impacts for either proposed facility location are expected to be less than the performance objectives.

Annette Schafer; Arthur S. Rood; A. Jeffrey Sondrup

2011-08-01T23:59:59.000Z

115

Evaluation of Groundwater Impacts to Support the National Environmental Policy Act Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

The groundwater impacts have been analyzed for the proposed RH-LLW disposal facility. A four-step analysis approach was documented and applied. This assessment compared the predicted groundwater ingestion dose to the more restrictive of either the 25 mrem/yr all pathway dose performance objective, or the maximum contaminant limit performance objective. The results of this analysis indicate that the groundwater impacts for either proposed facility location are expected to be less than the performance objectives. The analysis was prepared to support the NEPA-EA for the top two ranking of the proposed RH-LLW sites. As such, site-specific conditions were incorporated for each set of results generated. These site-specific conditions were included to account for the transport of radionuclides through the vadose zone and through the aquifer at each site. Site-specific parameters included the thickness of vadose zone sediments and basalts, moisture characteristics of the sediments, and aquifer velocity. Sorption parameters (Kd) were assumed to be very conservative values used in Track II analysis of CERCLA sites at INL. Infiltration was also conservatively assumed to represent higher rates corresponding to disturbed soil conditions. The results of this analysis indicate that the groundwater impacts for either proposed facility location are expected to be less than the performance objectives.

Annette Schafer; Arthur S. Rood; A. Jeffrey Sondrup

2011-12-01T23:59:59.000Z

116

Nuclear Waste Disposal Plan Drafted  

Science Journals Connector (OSTI)

Nuclear Waste Disposal Plan Drafted ... Of all the issues haunting nuclear power plants, that of disposing of the radioactive wastes and spent nuclear fuel they generate has been the most vexing. ...

1984-01-09T23:59:59.000Z

117

Disposable Bioreactors for Inoculum Production and Protein Expression  

Science Journals Connector (OSTI)

Table 1 summarizes the disposable bioreactors available on the market today for animal cells and culture volumes from 2.5 mL up to 500 L. If traditional ...

Regine Eibl; Dieter Eibl

2007-01-01T23:59:59.000Z

118

Fuel Cell Technologies Office: 2003 Annual Merit Review and Peer Evaluation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Peer Evaluation Report to someone by E-mail and Peer Evaluation Report to someone by E-mail Share Fuel Cell Technologies Office: 2003 Annual Merit Review and Peer Evaluation Report on Facebook Tweet about Fuel Cell Technologies Office: 2003 Annual Merit Review and Peer Evaluation Report on Twitter Bookmark Fuel Cell Technologies Office: 2003 Annual Merit Review and Peer Evaluation Report on Google Bookmark Fuel Cell Technologies Office: 2003 Annual Merit Review and Peer Evaluation Report on Delicious Rank Fuel Cell Technologies Office: 2003 Annual Merit Review and Peer Evaluation Report on Digg Find More places to share Fuel Cell Technologies Office: 2003 Annual Merit Review and Peer Evaluation Report on AddThis.com... Publications Program Publications Roadmaps Program Plans Reports to Congress Annual Progress Reports

119

On-Site Disposal Facility Inspection Report  

Office of Legacy Management (LM)

8947.1 8947.1 09/13 On-Site Disposal Facility Inspection Report September 2013 6319-D6242 8947.2 09/13 East Face Cell 1 West Face Cell 1 6319D-6208 6319D-6231 8947.3 09/13 North Face Cell 1 North Drainage (looking west) 6319D-6206 6319D-6205 8947.4 09/13 East Face Cell 2 West Face Cell 2 6319D-6230 6319D-6209 8947.5 09/13 East Face Cell 3 West Face Cell 3 6319D-6229 6319D-6210 8947.6 09/13 East Face Cell 4 West Face Cell 4 6319D-6227 6319D-62111 8947.7 09/13 East Face Cell 5 West Face Cell 5 6319D-6226 6319D-6213 8947.8 09/13 East Face Cell 6 6319D-6214 6319D-6225 West Face Cell 6 8947.9 09/13 East Face Cell 7 6319D-6215 6319D-6223 West Face Cell 7 8947.10 09/13 East Face Cell 8 6319D-6217 6319D-6220 West Face Cell 8 8947.11 09/13 South Face Cell 8 6319D-6219 6319D-6218 South Drainage (looking west) 8947.12 09/13

120

Disposable Electrochemical Immunosensor Diagnosis Device Based...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Disposable Electrochemical Immunosensor Diagnosis Device Based on Nanoparticle Probe and Immunochromatographic Strip. Disposable Electrochemical Immunosensor Diagnosis Device Based...

Note: This page contains sample records for the topic "disposal cell evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Testing to evaluate the suitability of waste forms developed for electrometallurgically treated spent sodium-bonded nuclear fuel for disposal in the Yucca Mountain reporsitory.  

SciTech Connect (OSTI)

The results of laboratory testing and modeling activities conducted to support the development of waste forms to immobilize wastes generated during the electrometallurgical treatment of spent sodium-bonded nuclear fuel and their qualification for disposal in the federal high-level radioactive waste repository are summarized in this report. Tests and analyses were conducted to address issues related to the chemical, physical, and radiological properties of the waste forms relevant to qualification. These include the effects of composition and thermal treatments on the phase stability, radiation effects, and methods for monitoring product consistency. Other tests were conducted to characterize the degradation and radionuclide release behaviors of the ceramic waste form (CWF) used to immobilize waste salt and the metallic waste form (MWF) used to immobilize metallic wastes and to develop models for calculating the release of radionuclides over long times under repository-relevant conditions. Most radionuclides are contained in the binder glass phase of the CWF and in the intermetallic phase of the MWF. The release of radionuclides from the CWF is controlled by the dissolution rate of the binder glass, which can be tracked using the same degradation model that is used for high-level radioactive waste (HLW) glass. Model parameters measured for the aqueous dissolution of the binder glass are used to model the release of radionuclides from a CWF under all water-contact conditions. The release of radionuclides from the MWF is element-specific, but the release of U occurs the fastest under most test conditions. The fastest released constituent was used to represent all radionuclides in model development. An empirical aqueous degradation model was developed to describe the dependence of the radionuclide release rate from a MWF on time, pH, temperature, and the Cl{sup -} concentration. The models for radionuclide release from the CWF and MWF are both bounded by the HLW glass degradation model developed for use in repository licensing, and HLW glass can be used as a surrogate for both CWF and MWF in performance assessment calculations. Test results indicate that the radionuclide release from CWF and MWF is adequately described by other relevant performance assessment models, such as the models for the solution chemistries in breached waste packages, dissolved concentration limits, and the formation of radionuclide-bearing colloids.

Ebert, W. E.

2006-01-31T23:59:59.000Z

122

Disposal Activities and the Unique Waste Streams at the Nevada National Security Site (NNSS)  

SciTech Connect (OSTI)

This slide show documents waste disposal at the Nevada National Security Site. Topics covered include: radionuclide requirements for waste disposal; approved performance assessment (PA) for depleted uranium disposal; requirements; program approval; the Waste Acceptance Review Panel (WARP); description of the Radioactive Waste Acceptance Program (RWAP); facility evaluation; recent program accomplishments, nuclear facility safety changes; higher-activity waste stream disposal; and, large volume bulk waste streams.

Arnold, P.

2012-10-31T23:59:59.000Z

123

Environmental regulations and technology: use and disposal of municipal waste-water sludge  

SciTech Connect (OSTI)

The document describes the five major sludge use/disposal options currently available--land application, distribution and marketing of sludge products, land-filling, incineration, and ocean disposal--and factors influencing their selection and implementation. It also provides an initial framework for evaluating sludge use/disposal alternatives, and describes accepted and proven use/disposal technologies and Federal regulations pertinent to sludge management.

Not Available

1984-09-01T23:59:59.000Z

124

Integration of EBS Models with Generic Disposal System Models | Department  

Broader source: Energy.gov (indexed) [DOE]

Integration of EBS Models with Generic Disposal System Models Integration of EBS Models with Generic Disposal System Models Integration of EBS Models with Generic Disposal System Models This report summarizes research activities on engineered barrier system (EBS) model integration with the generic disposal system model (GDSM), and used fuel degradation and radionuclide mobilization (RM) in support of the EBS evaluation and tool development within the Used Fuel Disposition campaign. This report addresses: predictive model capability for used nuclear fuel degradation based on electrochemical and thermodynamic principles, radiolysis model to evaluate the U(VI)-H2O-CO2 system, steps towards the evaluation of uranium alteration products, discussion of instant release fraction (IRF) of radionuclides from the nuclear fuel, and

125

Integration of EBS Models with Generic Disposal System Models | Department  

Broader source: Energy.gov (indexed) [DOE]

Integration of EBS Models with Generic Disposal System Models Integration of EBS Models with Generic Disposal System Models Integration of EBS Models with Generic Disposal System Models This report summarizes research activities on engineered barrier system (EBS) model integration with the generic disposal system model (GDSM), and used fuel degradation and radionuclide mobilization (RM) in support of the EBS evaluation and tool development within the Used Fuel Disposition campaign. This report addresses: predictive model capability for used nuclear fuel degradation based on electrochemical and thermodynamic principles, radiolysis model to evaluate the U(VI)-H2O-CO2 system, steps towards the evaluation of uranium alteration products, discussion of instant release fraction (IRF) of radionuclides from the nuclear fuel, and

126

Used Fuel Disposition Campaign Disposal Research and Development Roadmap  

Broader source: Energy.gov (indexed) [DOE]

Disposal Research and Development Disposal Research and Development Roadmap Rev. 01 Used Fuel Disposition Campaign Disposal Research and Development Roadmap Rev. 01 The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW) generated by existing and future nuclear fuel cycles. The disposal of SNF and HLW in a range of geologic media has been investigated internationally. Considerable progress has been made in the U.S and other nations, but gaps in knowledge still exist. This document provides an evaluation and prioritization of R&D opportunities

127

Radioactive waste material disposal  

DOE Patents [OSTI]

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

1995-10-24T23:59:59.000Z

128

Radioactive waste material disposal  

DOE Patents [OSTI]

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

1995-01-01T23:59:59.000Z

129

The incandescent disposal system  

SciTech Connect (OSTI)

The electrotechnology device being introduced to the low-level waste market is an Incandescent Disposal System (IDS) for volume reduction and vitrification. The process changes the composition of the waste material, usually long molecular chains, into simple molecules and elements. It renders the volume of low-level wastes to a manageable solid vitrified residue, carbon black, and a water discharge. The solid material, which has been vitrified if silica is introduced into the waste stream, is an ideal inert filler. The carbon black is non-leaching and is readily available for vitrification as it comes out of the IDS.

Smith, R.G.

1996-03-01T23:59:59.000Z

130

Converter waste disposal study  

SciTech Connect (OSTI)

The importance of waste management and disposal issues to the converting and print industries is demonstrated by the high response rate to a survey of US and Canadian converters and printers. The 30-item questionnaire measured the impact of reuse, recycling, source reduction, incineration, and landfilling on incoming raw-material packaging, process scrap, and waste inks, coatings, and adhesives. The results indicate that significant amounts of incoming packaging materials are reused in-house or through supplier take-back programs. However, there is very little reuse of excess raw materials and process scrap, suggesting the need for greater source reduction within these facilities as the regulatory climate becomes increasingly restrictive.

Schultz, R.B. (RBS Technologies, Inc., Skokie, IL (United States))

1993-07-01T23:59:59.000Z

131

Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses: Preliminary Evaluation Results  

SciTech Connect (OSTI)

This report provides an evaluation of three prototype fuel cell-powered transit buses operating at AC Transit in Oakland, California, and six baseline diesel buses similar in design to the fuel cell buses.

Chandler, K.; Eudy, L.

2007-03-01T23:59:59.000Z

132

Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses: Preliminary Evaluation Results  

Broader source: Energy.gov [DOE]

This report provides an evaluation of three prototype fuel cell-powered transit buses operating at AC Transit in Oakland, California, and six baseline diesel buses similar in design to the fuel cell buses.

133

Preliminary Report on Dual-Purpose Canister Disposal Alternatives (FY13) |  

Broader source: Energy.gov (indexed) [DOE]

Preliminary Report on Dual-Purpose Canister Disposal Alternatives Preliminary Report on Dual-Purpose Canister Disposal Alternatives (FY13) Preliminary Report on Dual-Purpose Canister Disposal Alternatives (FY13) This report documents the first phase of a multi-year project to understand the technical feasibility and logistical implications of direct disposal of spent nuclear fuel (SNF) in existing dual-purpose canisters (DPCs) and other types of storage casks. The first phase includes a set of preliminary disposal concepts and associated technical analyses, identification of additional R&D needs, and a recommendation to proceed with the next phase of the evaluation effort. Preliminary analyses indicate that DPC direct disposal could be technically feasible, at least for certain disposal concepts. DPC disposal concepts include the salt concept, and emplacement

134

Fuel Cell Transit Buses: ThunderPower Bus Evaluation at SunLine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transit Buses: ThunderPower Bus Evaluation at SunLine Transit Agency Fuel Cell Transit Buses: ThunderPower Bus Evaluation at SunLine Transit Agency Report details the six-month...

135

An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

An Evaluation of the Total Cost of Ownership of Fuel Cell- Powered Material Handling Equipment Todd Ramsden National Renewable Energy Laboratory Technical Report NRELTP-5600-56408...

136

Fuel Cell Transit Buses: ThunderPower Bus Evaluation at SunLine Transit Agency  

Broader source: Energy.gov [DOE]

Report details the six-month evaluation of the ThunderPower hydrogen fuel cell bus demonstrated at SunLine Transit Agency.

137

Selection of a method for disposing of leachate grout  

SciTech Connect (OSTI)

A major component of the selected remedy for the remediation of the Maxey Flats Disposal Site (MFDS) is the removal, solidification, and on-site disposal of an estimated 3000000 gal of trench leachate. The Record of Decision (ROD) and its predecessor, the Maxey Flats Feasibility Study Report, proposed as a representative process option that the trench leachate be solidified in the form of large (8 x 8 x 4 ft) concrete blocks and disposed of in trenches. The U.S. Environmental Protection Agency (EPA) had recent experience with this method when solidifying and disposing of {approximately}300000 gal of leachate that was stored in above-ground tanks at the MFDS. The EPA experience proved the capability of a U.S. Nuclear Regulatory Commission (NRC)-approved grout mix to satisfy the requirements of 10CFR61.55-56 for the Class-A liquid waste at the site, i.e., the leachate. However, a technical evaluation of the overall solidification/disposal process implemented by the EPA identified some steps that should be improved if this method is to be implemented safely and efficiently for the solidification and disposal of trench leachate as part of the remedial action. In the light of the EPA experience, the present study modified the option proposed in the ROD to make it more workable. This study also evaluated other methods, including three methods for above grade disposal.

Cockrell, R.G.

1994-12-31T23:59:59.000Z

138

Program management plan for development, demonstration, testing, and evaluation efforts associated with Oak Ridge Reservation`s Land Disposal Restrictions Federal Facility Compliance Agreement  

SciTech Connect (OSTI)

This program management plan covers the development, demonstration, testing, and evaluation efforts necessary to identify treatment methods for all the waste listed in Appendix B of the ORR`s LDR/FFCA as well as any new wastes which meet Appendix B criteria. To successfully identify a treatment method, at least a proof-of-principle level of understanding must be obtained: that is, the candidate processes must be demonstrated as effective in treating the wastes to the LDR; however, an optimized process is not required. Where applicable and deemed necessary and where the budgets will support them, pilot-scale demonstrations will be pursued. The overall strategy being adopted in this program will be composed of the following activities: Scoping of the study; characterization; development and screening of alternatives; treatability investigations; and detailed analysis of alternatives.

Conley, T.B.

1994-04-01T23:59:59.000Z

139

Pioneering Nuclear Waste Disposal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

18 18 19 T he WIPP's first waste receipt, 11 years later than originally planned, was a monumental step forward in the safe management of nuclear waste. Far from ending, however, the WIPP story has really just begun. For the next 35 years, the DOE will face many challenges as it manages a complex shipment schedule from transuranic waste sites across the United States and continues to ensure that the repository complies with all regulatory requirements. The DOE will work to maintain the highest level of safety in waste handling and trans- portation. Coordination with sites Disposal operations require coordination with sites that will ship transuranic waste to the WIPP and include periodic certification of waste characterization and handling practices at those facilities. During the WIPP's

140

Pioneering Nuclear Waste Disposal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 3 T he journey to the WIPP began nearly 60 years before the first barrels of transuranic waste arrived at the repository. The United States produced the world's first sig- nificant quantities of transuranic material during the Manhattan Project of World War II in the early 1940s. The government idled its plutonium- producing reactors and warhead manu- facturing plants at the end of the Cold War and scheduled most of them for dismantlement. However, the DOE will generate more transuranic waste as it cleans up these former nuclear weapons facilities. The WIPP is a cor- nerstone of the effort to clean up these facilities by providing a safe repository to isolate transuranic waste in disposal rooms mined out of ancient salt beds, located 2,150 feet below ground. The need for the WIPP

Note: This page contains sample records for the topic "disposal cell evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Land disposal of water treatment plant sludge -- A feasibility analysis  

SciTech Connect (OSTI)

In this study, the following alternative disposal methods for the Buffalo Pound Water Treatment Sludge were evaluated: landfilling, discharge into sanitary sewers, long-term lagooning, use in manufacturing, co-composting, alum recovery and land application. Land application was chosen at the best disposal alternative. Preliminary design resulted in a 1% dry alum sludge loading rate (25 tonnes/ha), requiring 35 ha over a nine-year period and a phosphorus fertilizer supplement of about 50kg/ha.

Viraraghavan, T.; Multon, L.M.; Wasylenchuk, E.J.

1998-07-01T23:59:59.000Z

142

Laboratory Waste Disposal HAZARDOUS GLASS  

E-Print Network [OSTI]

Laboratory Waste Disposal HAZARDOUS GLASS Items that could cut or puncture skin or trash- can without any treatment. Hazardous Glass and Plastic: Items that can puncture, cut or scratch if disposed of in normal trash containers. Pasteur pipettes Other pipettes and tips (glass or plastic) Slides and cover

Sheridan, Jennifer

143

PERFORMANCE EVALUATION OF PHOTOVOLTAIC CELL WITH AND WITHOUT THERMAL SINK  

E-Print Network [OSTI]

The following paper presents concisely the operation principles of photovoltaic cells and their main parameters. The efficiency of photovoltaic (PV) cell drop as their operating temperature increases especially under high insolation levels. The aim of the paper is to improve the performance of PV cell by dissipating excess heat, there by maintaining effective temperature of the cell which will enhance performance of the system. The work also deals with the comparing of the performance of PV cell with and without heat sink. During the study an optimum performance temperature was determined and heat sink mechanisms are used to maintain the determined temperature in PV cell.

Rob Res; Pramod N; K S Shashishekar; Pramod N; K S Shashishekar

144

Hydrogen and Fuel Cell Vehicle Evaluation Richard Parish, Leslie Eudy, and Ken Proc  

E-Print Network [OSTI]

-, and heavy-duty fuel cell vehicles; and the hydrogen fueling and maintenance infrastructure required to make on past experience of developing and evaluating alternative fuel and hybrid electric vehicles, NREL took with its fuel cell vehicle and hydrogen infrastructure development and evaluation. Goals and Objectives The

145

Long-term surveillance plan for the Falls City Disposal Site, Falls City, Texas. Revision 2  

SciTech Connect (OSTI)

The need for ground water monitoring at the Falls City disposal site was evaluated in accordance with NRC regulations and guidelines established by the DOE in Guidance for Implementing the Long-term Surveillance Program for UMTRA Project Title 1 Disposal Sites (DOE, 1996). Based on evaluation of site characterization data, it has been determined that a program to monitor ground water for demonstration of disposal cell performance based on a set of concentration limits is not appropriate because ground water in the uppermost aquifer is of limited use, and a narrative supplemental standard has been applied to the site that does not include numerical concentration limits or a point of compliance. The limited use designation is based on the fact that ground water in the uppermost aquifer is not currently or potentially a source of drinking water in the area because it contains widespread ambient contamination that cannot be cleaned up using methods reasonably employed by public water supply systems. Background ground water quality varies by orders of magnitude since the aquifer is in an area of redistribution of uranium mineralization derived from ore bodies. The DOE plans to perform post-closure ground water monitoring in the uppermost aquifer as a best management practice (BMP) as requested by the state of Texas.

NONE

1996-11-01T23:59:59.000Z

146

Upcoming Webinar March 11: National Fuel Cell Technology Evaluation...  

Broader source: Energy.gov (indexed) [DOE]

academia, and government organizations as well as a new activity to report on current fuel cell price. This webinar will be of interest to hydrogen and fuel cell manufacturers,...

147

SOLAR CELL BASED PYRANOMETERS: EVALUATION OF THE DIFFUSE RESPONSE Frank Vignola  

E-Print Network [OSTI]

260 SOLAR CELL BASED PYRANOMETERS: EVALUATION OF THE DIFFUSE RESPONSE Frank Vignola Department The responsivity to diffuse radiation of a solar cell based pyranometer is studied. Diffuse measurements are made of the LiCor pyranometer is presented. Implication of the spectral dependence of the solar cell based

Oregon, University of

148

Evaluation of landfill gas production and emissions in a MSW large-scale Experimental Cell in Brazil  

Science Journals Connector (OSTI)

Landfill gas (LFG) emissions from municipal solid waste (MSW) landfills are an important environmental concern in Brazil due to the existence of several uncontrolled disposal sites. A program of laboratory and field tests was conducted to investigate gas generation in and emission from an Experimental Cell with a 36,659-ton capacity in Recife/PE – Brazil. This investigation involved waste characterisation, gas production and emission monitoring, and geotechnical and biological evaluations and was performed using three types of final cover layers. The results obtained in this study showed that waste decomposes 4–5 times faster in a tropical wet climate than predicted by traditional first-order models using default parameters. This fact must be included when considering the techniques and economics of projects developed in tropical climate countries. The design of the final cover layer and its geotechnical and biological behaviour proved to have an important role in minimising gas emissions to the atmosphere. Capillary and methanotrophic final cover layers presented lower CH4 flux rates than the conventional layer.

Felipe Jucá Maciel; José Fernando Thomé Jucá

2011-01-01T23:59:59.000Z

149

EC MoDeRn Project: In-situ Demonstration of Innovative Monitoring Technologies for Geological Disposal - 12053  

SciTech Connect (OSTI)

Monitoring to provide information on the evolution of geological disposal presents several challenges. The 4-year, euros M 5, EC MoDeRn Project (http://www.modern-fp7.eu/), which commenced in 2009, addresses monitoring processes, state-of-the-art technology and innovative research and development of monitoring techniques. This paper discusses some of the key drivers for the development of innovative monitoring techniques and provides outlines of the demonstration programmes being conducted within MoDeRn. The aim is to develop these innovative monitoring techniques and to demonstrate them under realistic conditions present in underground laboratories. These demonstration projects, applying a range of different monitoring techniques, are being carried out at underground research facilities in different geological environments at HADES URL in Belgium (plastic clay), Bure in France (indurated clay) and at Grimsel Test Site (granite) in Switzerland. These are either built upon existing infrastructure (EC ESDRED Low pH shotcrete and TEM experiments at Grimsel; and PRACLAY experiment and underground galleries in HADES) or will be attached to infrastructure that is being developed and financed by resources outside of this project (mock-up disposal cell in Bure). At Grimsel Test Site, cross-hole and hole-to-tunnel seismic methods are being employed as a means to monitor induced changes in an artificially saturated bentonite wall confined behind a shotcrete plug. Recognising the limitations for travel-time tomography for monitoring a disposal cell, full waveform inversion techniques are being employed to enhance the capacity to monitor remote from the excavation. At the same Grimsel location, an investigation will be conducted of the potential for using a high frequency wireless (HFW) sensor network embedded within the barrier system; this will include the possibility of providing energy remotely to isolated sensors. At the HADES URL, the monitoring programme will utilise the PRACLAY gallery equipped to simulate a disposal gallery for heat-generating high-level waste evaluating fibre-optic based sensing techniques, including distributed sensing for thermal distribution and long-term reliability in harsh conditions. It also includes the potential to improve the treatment of signals from micro-seismic monitoring to enable enhanced understanding of the evolution around the gallery following its excavation due to ventilation, saturation and heating, and to image a water-bearing concretion layer. HADES URL will also be used to test wireless techniques to transmit monitoring data from the underground to the surface. The main focus of this contribution is to evaluate magneto-inductive data transmission; and to optimise energy usage. At the Bure underground facility in France, monitoring systems have been developed and will be embedded into the steel liner for the mock-up high-level waste disposal tunnel. The aim of this programme is to establish the capacity to conduct integrated monitoring activities inside the disposal cell, on the cell liner and in the near-field and to assess the capability of the monitoring to withstand construction and liner emplacement procedures. These projects, which are supported by focused development and testing of the monitoring systems, will allow the testing of both the effectiveness of these techniques applied to disposal situations and to understand the limits of these monitoring technologies. This approach should also enhance the confidence of key stakeholders in the ability to understand/confirm the changes occurring within a disposal cell. In addition, remote or 'non-intrusive' monitoring technologies are evaluated to provide a means of enhancing understanding of what is occurring in an isolated disposal cell. The projects also test solutions for embedded monitoring systems in challenging (risk of damage) situations. The outputs from this work will lead to improved understanding of these state-of-the-art techniques and allow focused development of those techniques beneficial to future monitoring progr

Breen, B.J. [NDA, Herdus House, Westlakes Science and Technology Park, Moor Row, Cumbria, CA24 3HU (United Kingdom); Garcia-Sineriz, J.L. [AITEMIN, c/Margarita Salas 14-Parque Leganes Tecnologico-Leganes, ES-28918, Madrid (Spain); Maurer, H. [ETH Zurich, ETH Honggerberg, CH-8093, Zurich (Switzerland); Mayer, S. [ANDRA, 1-7 rue Jean-Monnet, F-92298 Chatenay-Malabry cedex (France); Schroeder, T.J. [NRG, P.O. Box 25, NL-1755 ZG Petten (Netherlands); Verstricht, J. [EURIDICE EIG, c/o SCK.CEN, Boeretang 200, BE-2400 Mol (Belgium)

2012-07-01T23:59:59.000Z

150

Transmittal Memo for Disposal Authorization Statement | Department...  

Office of Environmental Management (EM)

Disposal Facility Federal Review Group (LFRG) has conducted a review of the Savannah River Site (SRS) Saltstone Disposal Facility (SDF) 2009 performance assessment (PA) in...

151

ADMINISTRATIVE RECORDS SCHEDULE 4: PROPERTY DISPOSAL RECORDS...  

Broader source: Energy.gov (indexed) [DOE]

4: PROPERTY DISPOSAL RECORDS (Revision 2) ADMINISTRATIVE RECORDS SCHEDULE 4: PROPERTY DISPOSAL RECORDS (Revision 2) These records pertain to the sales by agencies of real and...

152

PROPERTY DISPOSAL RECORDS | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

PROPERTY DISPOSAL RECORDS PROPERTY DISPOSAL RECORDS These records pertain to the sales by agencies of real and personal property surplus to the needs of the Government PROPERTY...

153

Evaluation of Stationary Fuel Cell Deployments, Costs, and Fuels (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes NREL's technology validation of stationary fuel cell systems and presents data on number of deployments, system costs, and fuel types.

Ainscough, C.; Kurtz, J.; Peters, M.; Saur, G.

2013-10-01T23:59:59.000Z

154

EERE and Auto Manufacturers Demonstrate and Evaluate Fuel Cell Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE)

Auto manufacturers demonstrate that switching from a gasoline to a hydrogen fuel cell engine could reduce emissions by more than 90%.

155

Fuel Cell Transit Bus Coordination and Evaluation Plan California...  

Broader source: Energy.gov (indexed) [DOE]

Renewable Energy Laboratory For the United States Department of Energy Hydrogen, Fuel Cells & Infrastructure Technologies Program October 2003 1 Table of Contents About This...

156

Evaluation of isotope migration - land burial. Water chemistry at commercially operated low-level radioactive waste disposal sites. Status report, October 1979-September 1980. [Maxey Flats, KY and Barnwell, SC  

SciTech Connect (OSTI)

A field and laboratory program was initiated to study the existing commercial low-level radioactive waste disposal sites. This investigation will provide source term data for radionuclides and other solutes in trench waters at the sites and will describe the physical, chemical, and biological properties of the geochemical system that control the movement of radionuclides. In the past year, the disposal sites at Maxey Flats, Kentucky, and Barnwell, South Carolina, were sampled, Maxey Flats for the fourth time, Barnwell for the second. Results of trench water inorganic, organic, and radiochemical analyses are similar to those reported for previous samplings. No overall systematic changes in any disposal trenches were observed during the relatively brief sampling interval. However, changes in some radionuclide and inorganic components were observed in several trenches. Tritium was the most abundant of the radionuclides and was found in all the trench waters. Analyses of water collected from a series of experimental interceptor trenches at Maxey Flats showed them to have a chemical composition intermediate between disposal trench water and local groundwater. Preliminary results of batch sorption tests using site-specific materials from the Barnwell disposal site are reported. Tritium content as a function of depth has been determined in four sediment cores collected from beneath the disposal trenches at the Barnwell facility. Gel filtration chromatography experiments using trench waters from the West Valley, New York, disposal site showed an association between /sup 137/Cs and a portion of the trench water dissolved organic content (DOC). Experiments with spiked trench water (/sup 137/Cs and EDTA) indicated that the organic fraction referred to above was not EDTA.

Czyscinski, K.S.; Weiss, A.J.

1981-01-01T23:59:59.000Z

157

Optimization of Waste Disposal - 13338  

SciTech Connect (OSTI)

From 2009 through 2011, remediation of areas of a former fuel cycle facility used for government contract work was conducted. Remediation efforts were focused on building demolition, underground pipeline removal, contaminated soil removal and removal of contaminated sediments from portions of an on-site stream. Prior to conducting the remediation field effort, planning and preparation for remediation (including strategic planning for waste characterization and disposal) was conducted during the design phase. During the remediation field effort, waste characterization and disposal practices were continuously reviewed and refined to optimize waste disposal practices. This paper discusses strategic planning for waste characterization and disposal that was employed in the design phase, and continuously reviewed and refined to optimize efficiency. (authors)

Shephard, E.; Walter, N.; Downey, H. [AMEC E and I, Inc., 511 Congress Street, Suite 200, Portland, ME 04101 (United States)] [AMEC E and I, Inc., 511 Congress Street, Suite 200, Portland, ME 04101 (United States); Collopy, P. [AMEC E and I, Inc., 9210 Sky Park Court, Suite 200, San Diego, CA 92123 (United States)] [AMEC E and I, Inc., 9210 Sky Park Court, Suite 200, San Diego, CA 92123 (United States); Conant, J. [ABB Inc., 5 Waterside Crossing, Windsor, CT 06095 (United States)] [ABB Inc., 5 Waterside Crossing, Windsor, CT 06095 (United States)

2013-07-01T23:59:59.000Z

158

Advanced coal technology by-products: Long-term results from landfill test cells and their implications for reuse or disposal applications  

SciTech Connect (OSTI)

New air pollution regulations under the 1991 Clean Air Act and other legislation are motivating continued development and implementation, of cleaner, more efficient processes for converting coal to electrical power. These clean coal processes produce solid by-products which differ in important respects from conventional pulverized coal combustion ash. Clean coal by-products` contain both residual sorbent and captured SO{sub 2} control products, as well as the mineral component of the coal. The Department of Energy/Morgantown Energy Technology Center has contracted Radian Corporation to construct and monitor landfill test cells with a several different advanced coal combustion by-products at three locations around the US; data from these sites provide a unique picture of the long-term field behavior of clean coal combustion by-products. The field testing sites were located in western Colorado, northern Ohio, and central Illinois. Fluidized bed combustion and lime injection residues are characterized by high lime and calcium sulfate contents` contributed by reacted and unreacted sorbent materials, and produce an leachate, when wetted. Compared with conventional coal fly ash, the clean coal technology ashes have been noted for potential difficulties when wetted, including corrosivity, heat generation, cementation, and swelling on hydration. On the other hand, the high lime content and chemical reactivity of clean coal residues offer potential benefits in reuse as a cementitious material.The results of three years of data collection suggest a fairly consistent pattern of behavior for the calcium-based dry sorbent systems involved in the project, despite differences in the initial of the by-products, differences in the methods of placement, and differences in climate at the test sites.

Weinberg, A. [Radian Corp., Austin, TX (United States); Harness, J.L. [USDOE, Washington, DC (United States)

1994-06-01T23:59:59.000Z

159

Chapter 22 - Radioactive Waste Disposal  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses safe disposal of radioactive waste in order to provide safety to workers and the public. Radioactive wastes arise from a great variety of sources, including the nuclear fuel cycle, and from beneficial uses of isotopes and radiation by institutions. Spent fuel contains uranium, plutonium, and highly radioactive fission products. In the United States spent fuel is accumulating, awaiting the development of a high-level waste repository. A multi-barrier system involving packaging and geological media will provide protection of the public over the centuries the waste must be isolated. The favored method of disposal is in a mined cavity deep underground. In other countries, reprocessing the fuel assemblies permits recycling of materials and disposal of smaller volumes of solidified waste. Transportation of wastes is by casks and containers designed to withstand severe accidents. Low-level wastes (LLWs) come from research and medical procedures and from a variety of activation and fission sources at a reactor site. They generally can be given near-surface burial. Isotopes of special interest are cobalt-60 and cesium-137. Transuranic wastes are being disposed of in the Waste Isolation Pilot Plant. Establishment of regional disposal sites by interstate compacts has generally been unsuccessful in the United States. Decontamination of defense sites will be long and costly. Decommissioning of reactors in the future will contribute a great deal of low-level radioactive waste.

Raymond L. Murray

2009-01-01T23:59:59.000Z

160

Long-term surveillance plan for the Collins Ranch Disposal Site, Lakeview, Oregon. Revision 2  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) for the Lakeview, Oregon, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Lakeview (Collins Ranch) disposal cell, which will be referred to as the Collins Ranch disposal cell throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States or an Indian tribe, and details how the long-term care of the disposal site will be carried out. It is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a).

Not Available

1993-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "disposal cell evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

SunLine Transit Agency Fuel Cell Transit Bus: Fifth Evaluation Report-- Appendices  

Broader source: Energy.gov [DOE]

This report describes operations at SunLine Transit Agency for a prototype fuel cell bus and five compressed natural gas (CNG) buses. This is the fifth evaluation report for this site, and it describes results and experiences from October 2008 through June 2009. These results are an addition to those provided in the previous four evaluation reports.

162

SunLine Transit Agency Fuel Cell Transit Bus: Fifth Evaluation Report (Report and Appendices)  

SciTech Connect (OSTI)

This report describes operations at SunLine Transit Agency for a prototype fuel cell bus and five compressed natural gas (CNG) buses. This is the fifth evaluation report for this site, and it describes results and experiences from October 2008 through June 2009. These results are an addition to those provided in the previous four evaluation reports.

Eudy, L.; Chandler, K.

2009-08-01T23:59:59.000Z

163

2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report Posted  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program has posted the 2014 Annual Merit Review and Peer Evaluation Report, which summarizes the comments of expert peer reviewers at the 2014 Annual Merit Review and Peer Evaluation Meeting (AMR) held June 16–20, 2014, in Washington, D.C.

164

SunLine Transit Agency Fuel Cell Transit Bus: Fifth Evaluation Report  

Broader source: Energy.gov [DOE]

This report describes operations at SunLine Transit Agency for a prototype fuel cell bus and five compressed natural gas (CNG) buses. This is the fifth evaluation report for this site, and it describes results and experiences from October 2008 through June 2009. These results are an addition to those provided in the previous four evaluation reports.

165

RSSC RADIOACTIVE WASTE DISPOSAL 08/2011 7-1 RADIOACTIVE WASTE DISPOSAL  

E-Print Network [OSTI]

RSSC RADIOACTIVE WASTE DISPOSAL 08/2011 7-1 CHAPTER 7 RADIOACTIVE WASTE DISPOSAL PAGE I. Radioactive Waste Disposal ............................................................................................ 7-2 II. Radiation Control Technique #2 Instructions for Preparation of Radioactive Waste

Slatton, Clint

166

Disposable telemetry cable deployment system  

DOE Patents [OSTI]

A disposable telemetry cable deployment system for facilitating information retrieval while drilling a well includes a cable spool adapted for insertion into a drill string and an unarmored fiber optic cable spooled onto the spool cable and having a downhole end and a stinger end. Connected to the cable spool is a rigid stinger which extends through a kelly of the drilling apparatus. A data transmission device for transmitting data to a data acquisition system is disposed either within or on the upper end of the rigid stinger.

Holcomb, David Joseph (Sandia Park, NM)

2000-01-01T23:59:59.000Z

167

THERMAL EVALUATION OF CONTAMINATED LIQUID ONTO CELL FLOORS  

SciTech Connect (OSTI)

For the Salt Disposition Integration Project (SDIP), postulated events in the new Salt Waste Processing Facility (SWPF) can result in spilling liquids that contain Cs-137 and organics onto cell floors. The parameters of concern are the maximum temperature of the fluid following a spill and the time required for the maximum fluid temperature to be reached. Control volume models of the various process cells have been developed using standard conduction and natural convection relationships. The calculations are performed using the Mathcad modeling software. The results are being used in Consolidated Hazards Analysis Planning (CHAP) to determine the controls that may be needed to mitigate the potential impact of liquids containing Cs-137 and flammable organics that spill onto cell floors. Model development techniques and the ease of making model changes within the Mathcad environment are discussed. The results indicate that certain fluid spills result in overheating of the fluid, but the times to reach steady-state are several hundred hours. The long times allow time for spill clean up without the use of expensive mitigation controls.

(NOEMAIL), J

2009-05-04T23:59:59.000Z

168

Commercial disposal options for Idaho National Engineering Laboratory low-level radioactive waste  

SciTech Connect (OSTI)

The Idaho National Engineering Laboratory (INEL) is a Department of Energy (DOE)-owned, contractor-operated site. Significant quantities of low-level radioactive waste (LLW) have been generated and disposed of onsite at the Radioactive Waste Management Complex (RWMC). The INEL expects to continue generating LLW while performing its mission and as aging facilities are decommissioned. An on-going Performance Assessment process for the RWMC underscores the potential for reduced or limited LLW disposal capacity at the existing onsite facility. In order to properly manage the anticipated amount of LLW, the INEL is investigating various disposal options. These options include building a new facility, disposing the LLW at other DOE sites, using commercial disposal facilities, or seeking a combination of options. This evaluation reports on the feasibility of using commercial disposal facilities.

Porter, C.L.; Widmayer, D.A.

1995-09-01T23:59:59.000Z

169

Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Third Evaluation Report and Appendices  

Broader source: Energy.gov [DOE]

This report describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location. The prototype fuel cell bus was manufactured by Van Hool and ISE Corp. and features an electric hybrid drive system with a UTC Power PureMotion 120 Fuel Cell Power System and ZEBRA batteries for energy storage. The fuel cell bus started operation in April 2007, and evaluation results through October 2009 are provided in this report.

170

Review of Yucca Mountain Disposal Criticality Studies  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Office of Civilian Radioactive Waste Management, submitted a license application for construction authorization of a deep geologic repository at Yucca Mountain, Nevada, in June of 2008. The license application is currently under review by the U.S. Nuclear Regulatory Commission. However,on March 3, 2010 the DOE filed a motion requesting withdrawal of the license application. With the withdrawal request and the development of the Blue Ribbon Commission to seek alternative strategies for disposing of spent fuel, the status of the proposed repository at Yucca Mountain is uncertain. What is certain is that spent nuclear fuel (SNF) will continue to be generated and some long-lived components of the SNF will eventually need a disposition path(s). Strategies for the back end of the fuel cycle will continue to be developed and need to include the insights from the experience gained during the development of the Yucca Mountain license application. Detailed studies were performed and considerable progress was made in many key areas in terms of increased understanding of relevant phenomena and issues regarding geologic disposal of SNF. This paper reviews selected technical studies performed in support of the disposal criticality analysis licensing basis and the use of burnup credit. Topics include assembly misload analysis, isotopic and criticality validation, commercial reactor critical analyses, loading curves, alternative waste package and criticality control studies, radial burnup data and effects, and implementation of a conservative application model in the criticality probabilistic evaluation as well as other information that is applicable to operations regarding spent fuel outside the reactor. This paper summarizes the work and significant accomplishments in these areas and provides a resource for future, related activities.

Scaglione, John M [ORNL] [ORNL; Wagner, John C [ORNL] [ORNL

2011-01-01T23:59:59.000Z

171

Disposal Practices at the Nevada Test Site 2008 | Department...  

Broader source: Energy.gov (indexed) [DOE]

Disposal Practices at the Nevada Test Site 2008 Disposal Practices at the Nevada Test Site 2008 Full Document and Summary Versions are available for download Disposal Practices at...

172

Spent Fuel Disposal Trust Fund (Maine)  

Broader source: Energy.gov [DOE]

Any licensee operating a nuclear power plant in this State shall establish a segregated Spent Nuclear Fuel Disposal Trust Fund in accordance with this subchapter for the eventual disposal of spent...

173

Deep Borehole Disposal Research: Demonstration Site Selection...  

Office of Environmental Management (EM)

Site Selection Guidelines, Borehole Seals Design, and RD&D Needs The U.S. Department of Energy has been investigating deep borehole disposal as one alternative for the disposal...

174

EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and  

Broader source: Energy.gov (indexed) [DOE]

00: Managing Treatment, Storage, and Disposal of Radioactive 00: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste SUMMARY This EIS evaluates the potential environmental and cost impacts of strategic managment alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 7, 2011 EIS-0200-SA-03: Supplement Analysis Treatment of Transuranic Waste at the Idaho National Laboratory, Carlsbad Field Office March 7, 2008 EIS-0200: Amendment to the Record of Decision Treatment and Storage of Transuranic Waste

175

Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment  

SciTech Connect (OSTI)

This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

Ramsden, T.

2013-04-01T23:59:59.000Z

176

EIS-0375: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and  

Broader source: Energy.gov (indexed) [DOE]

5: Disposal of Greater-than-Class-C Low-Level Radioactive 5: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and Department of Energy GTCC-like Waste EIS-0375: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and Department of Energy GTCC-like Waste EIS-0375: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and Department of Energy GTCC-like Waste Summary This EIS evaluates the reasonably foreseeable environmental impacts associated with the proposed development, operation, and long-term management of a disposal facility or facilities for Greater-Than-Class C (GTCC) low-level radioactive waste and GTCC-like waste. The Environmental Protection Agency is a cooperating agency in the preparation of this EIS. The EIS evaluates potential impacts from the construction and operation of

177

Generic Argillite/Shale Disposal Reference Case  

E-Print Network [OSTI]

of eastern Devonian gas shale: Society of PetroleumShale Disposal Reference Case August 2014 Borehole activity: Oil and gas

Zheng, Liange

2014-01-01T23:59:59.000Z

178

Environmental waste disposal contracts awarded  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental contracts awarded locally Environmental contracts awarded locally Environmental waste disposal contracts awarded locally Three small businesses with offices in Northern New Mexico awarded nuclear waste clean-up contracts. April 3, 2012 Worker moves drums of transuranic (TRU) waste at a staging area A worker stages drums of transuranic waste at Los Alamos National Laboratory's Technical Area 54. the Lap ships such drums to the U.S. Department of Energy's Waste Isolation Pilot Plant (WIPP) in Southern New Mexico. The Lab annually averages about 120 shipments of TRU waste to WIPP. Contact Small Business Office (505) 667-4419 Email "They will be valuable partners in the Lab's ability to dispose of the waste safely and efficiently." Small businesses selected for environmental work at LANL

179

EA-1097: Solid waste Disposal- Nevada Test Site, Nye County, Nevada  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the proposal to continue the on-site disposal of solid waste at the Area 9 and Area 23 landfills at the U.S. Department of Energy Nevada Test Site...

180

Santa Clara Valley Transportation Authority and San Mateo County Transit District; Fuel Cell Transit Buses: Preliminary Evaluation Results  

SciTech Connect (OSTI)

Report provides preliminary results from an evaluation of prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority (VTA) in San Jose, California.

Eudy, L.; Chandler, K.

2006-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "disposal cell evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Santa Clara Valley Transportation Authority and San Mateo County Transit District -- Fuel Cell Transit Buses: Evaluation Results  

SciTech Connect (OSTI)

This report provides evaluation results for prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority in San Jose, California.

Chandler, K.; Eudy, L.

2006-11-01T23:59:59.000Z

182

Santa Clara Valley Transportation Authority and San Mateo County Transit District-- Fuel Cell Transit Buses: Evaluation Results  

Broader source: Energy.gov [DOE]

This report provides evaluation results for prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority in San Jose, California.

183

Operational Issues at the Environmental Restoration Disposal Facility at Hanford  

Broader source: Energy.gov (indexed) [DOE]

Hanford Operations Hanford Operations Evaluating Operational Issues at the Environmental Restoration Disposal Facility at Hanford By Craig H. Benson, PhD, PE; William H. Albright, PhD; and David P. Ray, PE Sponsored by: The Office of Engineering and Technology (EM-20) 17 June 2007 i TABLE OF CONTENTS EXECUTIVE SUMMARY ii ACKNOWLEDGEMENTS iv INTRODUCTION 1 BACKGROUND 1 Environmental Restoration Disposal Facility 1 Source of Concern 2 LINES OF INQUIRY 2 1. Validate Scope of Identified Problems 2 2. Assess Contractor Evaluation of the Elevated Leachate Level on the Landfill Liner 3 3. Evaluate Adequacy of Landfill Performance in View of the Discovered Falsified Compaction Data and Potential Leachate Level Problems 4

184

Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003 Merit Review and Peer Evaluation Report  

Broader source: Energy.gov [DOE]

This document summarizes the comments provided by the Merit Review Panel at the U.S. Department of Energy Hydrogen, Fuel Cells and Infrastructure Technologies Program FY 2003 Merit Review and Peer Evaluation, held on May 19-22, 2003, in Berkeley, California.

185

SunLine Transit Agency Fuel Cell Transit Bus: Fourth Evaluation Report and Appendices  

Broader source: Energy.gov [DOE]

This report describes operations at SunLine Transit Agency for a prototype fuel cell bus and five new compressed natural gas (CNG) buses. This is the fourth evaluation report for this site, and it describes results and experiences from April 2008 through October 2008.

186

Grand Junction, Colorado, Disposal Site Long-Term Surveillance and Maintenance Program Fact Sheet, July 2001  

Office of Legacy Management (LM)

Grand Junction Disposal Site Grand Junction Disposal Site Uranium ore was processed at the Climax millsite at Grand Junction, Colorado, between 1951 and 1970. The milling operations created process-related waste and tailings, a sandlike material containing radioactive materials and other contaminants. The tailings were an ideal and inexpensive construction material suitable for concrete, mortar, and fill. Accordingly, the tailings were widely used in the Grand Junction area for these purposes. The U.S. Department of Energy (DOE) encapsulated the tailings and other contaminated materials from the millsite and more than 4,000 vicinity properties in the Grand Junction area in an engineered disposal cell. Part of the disposal cell was completed in 1994; the remainder of the cell remains open until it is

187

An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of the Total Cost Evaluation of the Total Cost of Ownership of Fuel Cell- Powered Material Handling Equipment Todd Ramsden National Renewable Energy Laboratory Technical Report NREL/TP-5600-56408 April 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 An Evaluation of the Total Cost of Ownership of Fuel Cell- Powered Material Handling Equipment Todd Ramsden National Renewable Energy Laboratory Prepared under Task No. HT12.8610 Technical Report NREL/TP-5600-56408

188

DOE SPENT NUCLEAR FUEL DISPOSAL CONTAINER  

SciTech Connect (OSTI)

The DOE Spent Nuclear Fuel Disposal Container (SNF DC) supports the confinement and isolation of waste within the Engineered Barrier System of the Mined Geologic Disposal System (MGDS). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the access mains, and emplaced in emplacement drifts. The DOE Spent Nuclear Fuel Disposal Container provides long term confinement of DOE SNF waste, and withstands the loading, transfer, emplacement, and retrieval loads and environments. The DOE SNF Disposal Containers provide containment of waste for a designated period of time, and limit radionuclide release thereafter. The disposal containers maintain the waste in a designated configuration, withstand maximum handling and rockfall loads, limit the individual waste canister temperatures after emplacement. The disposal containers also limit the introduction of moderator into the disposal container during the criticality control period, resist corrosion in the expected repository environment, and provide complete or limited containment of waste in the event of an accident. Multiple disposal container designs may be needed to accommodate the expected range of DOE Spent Nuclear Fuel. The disposal container will include outer and inner barrier walls and outer and inner barrier lids. Exterior labels will identify the disposal container and contents. Differing metal barriers will support the design philosophy of defense in depth. The use of materials with different failure mechanisms prevents a single mode failure from breaching the waste package. The corrosion-resistant inner barrier and inner barrier lid will be constructed of a high-nickel alloy and the corrosion-allowance outer barrier and outer barrier lid will be made of carbon steel. The DOE Spent Nuclear Fuel Disposal Containers interface with the emplacement drift environment by transferring heat from the waste to the external environment and by protecting the DOE waste canisters and their contents from damage/degradation by the external environment. The disposal containers also interface with the SNF by limiting access of moderator and oxidizing agents to the waste. The disposal containers interface with the Ex-Container System's emplacement drift disposal container supports. The disposal containers interface with the Canister Transfer System, Waste Emplacement System, Disposal Container Handling System, and Waste Package Remediation System during loading, handling, transfer, emplacement and remediation of the disposal container.

F. Habashi

1998-06-26T23:59:59.000Z

189

DOE to Weigh Alternatives for Greater Than Class C Low-Level Waste Disposal  

Broader source: Energy.gov (indexed) [DOE]

to Weigh Alternatives for Greater Than Class C Low-Level Waste to Weigh Alternatives for Greater Than Class C Low-Level Waste Disposal DOE to Weigh Alternatives for Greater Than Class C Low-Level Waste Disposal July 20, 2007 - 2:55pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that it will evaluate disposal options for Greater Than Class C (GTCC) low-level radioactive waste (LLW) generated from the decommissioning of nuclear power plants, medical activities and nuclear research. DOE delivered to the Federal Register this week a Notice of Intent (NOI) to prepare an Environmental Impact Statement (EIS), which will evaluate how and where to safely dispose of GTCC LLW that is currently stored at commercial nuclear power plants and other generator sites across the country. The Energy Policy Act of 2005 requires DOE to report to Congress on its evaluation of

190

EA-1793: Replacement Capability for Disposal of Remote-handled Low-level  

Broader source: Energy.gov (indexed) [DOE]

793: Replacement Capability for Disposal of Remote-handled 793: Replacement Capability for Disposal of Remote-handled Low-level Waste Generated at the Department of Energy's Idaho Site EA-1793: Replacement Capability for Disposal of Remote-handled Low-level Waste Generated at the Department of Energy's Idaho Site Summary This EA evaluates the environmental impacts of replacement capability for disposal of remote-handled low-level radioactive waste (LLW) generated at the Idaho National Laboratory (INL) site beginning in October 2017. Public Comment Opportunities Submit Comments to: Mr. Chuck Ljungberg 1955 Fremont Avenue, Mailstop 1216 Idaho Falls, ID 83415 Electronic mail: rhllwea@id.doe.gov Documents Available for Download December 21, 2011 EA-1793: Finding of No Significant Impact Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive

191

The cell phone effect on motor vehicle fatality rates: A Bayesian and classical econometric evaluation  

Science Journals Connector (OSTI)

This paper examines the potential effect of cell phones on motor vehicle fatality rates normalized for other driving related and socioeconomic factors. The model used is non-linear so as to address both life-taking and life-saving attributes of cell phones. The model is evaluated using classical methods along with Bayesian Extreme Bounds Analysis (EBA). The use of both classical and Bayesian methods diminishes the model and parameter uncertainties which afflict more conventional modeling methods which rely on only one of the two methods. The results indicate the presence of both life-taking and life-saving attributes of cell phones on motor vehicle fatality rates depending on the volume of cell phone subscribers in existence.

Richard Fowles; Peter D. Loeb; Wm. A. Clarke

2010-01-01T23:59:59.000Z

192

Thermal evaluation and performance of high-power Lithium-ion cells  

SciTech Connect (OSTI)

Under the sponsorship of the US Advanced Battery Consortium (USABC) and the Partnership for a New Generation of Vehicles (PNGV), Saft has developed high-power lithium-ion (Li-Ion) batteries for hybrid electric vehicles (HEVs). These high-power Li-Ion batteries are being evaluated for the US Department of Energy's (DOE) Hybrid Vehicle Propulsion Program. As part of this program, the National Renewable Energy Laboratory (NREL) characterized the thermal performance of the Saft (6-Ah) Li-Ion cells. The characterization included (1) obtaining thermal images of cells under a specified cycle, (2) measuring heat generation from the cells at various temperatures and under various charge/discharge profiles, and (3) determining the cells' capabilities for following a simulated power profile (driving cycle) at various initial states of charge and temperatures.

Keyser, M.; Pesaran, A.; Oweis, S.; Chagnon, G.; Ashtiani, C.

2000-01-25T23:59:59.000Z

193

Successful Opening and Disposal to-Date of Mixed CERCLA Waste at the ORR-EMWMF  

SciTech Connect (OSTI)

On May 28, 2002, the Environmental Management Waste Management Facility (EMWMF) opened for operations on the Department of Energy's Oak Ridge Reservation (ORR). The EMWMF is the centerpiece in the DOE's strategy for ORR environmental cleanup. The 8+ year planned project is an on-site engineered landfill, which is accepting for disposal radioactive, hazardous, toxic and mixed wastes generated by remedial action subcontractors. The opening of the EMWMF on May 28, 2002 marked the culmination of a long development process that began in mid-1980. In late 1999 the Record of Decision was signed and a full year of design for the initial 400, 000-yd3 disposal cell began. In early 2000 Duratek Federal Services, Inc. (Federal Services) began construction. Since then, Federal Services and Bechtel Jacobs Company, LLC (BJC) have worked cooperatively to complete a required DOE readiness evaluation, develop all the Safety Authorization Basis Documentation (ASA's, SER, and UCD's) and prepare procedures and work controlling documents required to safely accept waste. This paper explains the intricacies and economics of designing and constructing the facility.

Corpstein, P.; Hopper, P.; McNutt, R.

2003-02-25T23:59:59.000Z

194

Enhancements to Generic Disposal System Modeling Capabilities...  

Broader source: Energy.gov (indexed) [DOE]

disposal system modeling and analysis capability that takes advantage of high-performance computing (HPC) environments to simulate the important multi-physics phenomena and...

195

Environmental Restoration Disposal Facility - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Receiving and Processing Facility Waste Sampling and Characterization Facility Waste Treatment Plant Environmental Restoration Disposal Facility Email Email Page | Print Print...

196

Operational Issues at the Environmental Restoration Disposal...  

Broader source: Energy.gov (indexed) [DOE]

Disposal Facility at Idaho National Laboratory Environmental Management Waste Management Facility (EMWMF) at Oak Ridge Briefing: Summary and Recommendations of EM Landfill Workshop...

197

Technical evaluation of Solar Cells, Inc., CdTe modules and array at NREL  

SciTech Connect (OSTI)

The Engineering and Technology Validation Team at the National Renewable Energy Laboratory (NREL) conducts in-situ technical evaluations of polycrystalline thin-film photovoltaic (PV) modules and arrays. This paper focuses on the technical evaluation of Solar Cells, Inc., (SCI) cadmium telluride (CdTe) module and array performance by attempting to correlate individual module and array performance. This is done by examining the performance and stability of the modules and array over a period of more than one year. Temperature coefficients for module and array parameters (P{sub max}V{sub oc}, V{sub max}, I{sub sc}, I{sub max}) are also calculated.

Kroposki, B.; Strand, T.; Hansen, R. [and others] [and others

1996-05-01T23:59:59.000Z

198

Long-term surveillance plan for the Collins Ranch disposal site, Lakeview, Oregon  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Collins Ranch disposal site, Lakeview, Oregon, describes the surveillance activities for the disposal cell. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a).

Not Available

1994-08-01T23:59:59.000Z

199

SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SunLine Transit Agency SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report L. Eudy and K. Chandler Technical Report NREL/TP-5600-57560 January 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report L. Eudy and K. Chandler Prepared under Task No. HT12.8210 Technical Report NREL/TP-5600-57560 January 2013 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

200

SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Third Results Reports  

SciTech Connect (OSTI)

This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. NREL has previously published two reports documenting the operation of the fuel cell bus in service. This report provides a summary of the results with a focus on the bus operation from July 2011 through January 2012.

Eudy, L.; Chandler, K.

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "disposal cell evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposal vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE and commercial disposal options exist for contact-handled LLW; however, offsite disposal options are either not currently available (i.e., commercial disposal facilities), practical, or cost-effective for all remote-handled LLW streams generated at INL. Offsite disposal of all INL and tenant-generated remote-handled waste is further complicated by issues associated with transporting highly radioactive waste in commerce; and infrastructure and processing changes at the generating facilities, specifically NRF, that would be required to support offsite disposal. The INL Remote-Handled LLW Disposal Project will develop a new remote handled LLW disposal facility to meet mission-critical, remote-handled LLW disposal needs. A formal DOE decision to proceed with the project has been made in accordance with the requirements of National Environmental Policy Act (42 USC§ 4321 et seq.). Remote-handled LLW is generated from nuclear programs conducted at INL, including spent nuclear fuel handling and operations at NRF and operations at the Advanced Test Reactor. Remote-handled LLW also will be generated by new INL programs and from segregation and treatment (as necessary) of remote handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex.

Danny Anderson

2014-07-01T23:59:59.000Z

202

Generic Argillite/Shale Disposal Reference Case  

SciTech Connect (OSTI)

Radioactive waste disposal in a deep subsurface repository hosted in clay/shale/argillite is a subject of widespread interest given the desirable isolation properties, geochemically reduced conditions, and widespread geologic occurrence of this rock type (Hansen 2010; Bianchi et al. 2013). Bianchi et al. (2013) provides a description of diffusion in a clay-hosted repository based on single-phase flow and full saturation using parametric data from documented studies in Europe (e.g., ANDRA 2005). The predominance of diffusive transport and sorption phenomena in this clay media are key attributes to impede radionuclide mobility making clay rock formations target sites for disposal of high-level radioactive waste. The reports by Hansen et al. (2010) and those from numerous studies in clay-hosted underground research laboratories (URLs) in Belgium, France and Switzerland outline the extensive scientific knowledge obtained to assess long-term clay/shale/argillite repository isolation performance of nuclear waste. In the past several years under the UFDC, various kinds of models have been developed for argillite repository to demonstrate the model capability, understand the spatial and temporal alteration of the repository, and evaluate different scenarios. These models include the coupled Thermal-Hydrological-Mechanical (THM) and Thermal-Hydrological-Mechanical-Chemical (THMC) models (e.g. Liu et al. 2013; Rutqvist et al. 2014a, Zheng et al. 2014a) that focus on THMC processes in the Engineered Barrier System (EBS) bentonite and argillite host hock, the large scale hydrogeologic model (Bianchi et al. 2014) that investigates the hydraulic connection between an emplacement drift and surrounding hydrogeological units, and Disposal Systems Evaluation Framework (DSEF) models (Greenberg et al. 2013) that evaluate thermal evolution in the host rock approximated as a thermal conduction process to facilitate the analysis of design options. However, the assumptions and the properties (parameters) used in these models are different, which not only make inter-model comparisons difficult, but also compromise the applicability of the lessons learned from one model to another model. The establishment of a reference case would therefore be helpful to set up a baseline for model development. A generic salt repository reference case was developed in Freeze et al. (2013) and the generic argillite repository reference case is presented in this report. The definition of a reference case requires the characterization of the waste inventory, waste form, waste package, repository layout, EBS backfill, host rock, and biosphere. This report mainly documents the processes in EBS bentonite and host rock that are potentially important for performance assessment and properties that are needed to describe these processes, with brief description other components such as waste inventory, waste form, waste package, repository layout, aquifer, and biosphere. A thorough description of the generic argillite repository reference case will be given in Jové Colon et al. (2014).

Zheng, Liange; Jov& #233; Colon, Carlos; Bianchi, Marco; Birkholzer, Jens

2014-08-08T23:59:59.000Z

203

Used Fuel Disposition Campaign Disposal  

Broader source: Energy.gov (indexed) [DOE]

Campaign Disposal Research and Development Roadmap Prepared for U.S. Department of Energy Used Fuel Disposition Campaign September 2012 FCR&D-USED-2011-000065 REV 1 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or

204

14 - Lubricant use and disposal  

Science Journals Connector (OSTI)

Abstract: Criteria are defined for optimum machine-specific selection of conventional, high-performance and specialty lubricants. Lubrication consolidation is indicated as a means of rationalisation of inventories. Intended use of lubricants may be compromised by oxidation, water and air contamination, additive depletion and accumulation of contaminants, including wear debris, and biological degradation. Strategic oil analysis is described from simple in-shop sensory inspections to primary on-site standard testing and more comprehensive secondary testing methods as an operational maintenance tool for machine and lubricant condition monitoring to estimate remaining lubricant life time and prevent premature machine failure. The disposal of spent lubricants, including waste oil legislation and management, and re-refining technologies, are discussed.

Jan C.J. Bart; Emanuele Gucciardi; Stefano Cavallaro

2013-01-01T23:59:59.000Z

205

Waste inventory and preliminary source term model for the Greater Confinement Disposal site at the Nevada Test Site  

SciTech Connect (OSTI)

Currently, there are several Greater Confinement Disposal (GCD) boreholes at the Radioactive Waste Management Site (RWMS) for the Nevada Test Site. These are intermediate-depth boreholes used for the disposal of special case wastes, that is, radioactive waste within the Department of Energy complex that do not meet the criteria established for disposal of high-level waste, transuranic waste, or low-level waste. A performance assessment is needed to evaluate the safety of the GCD site, and to examine the feasibility of the GCD disposal concept as a disposal solution for special case wastes in general. This report documents the effort in defining all the waste inventory presently disposed of at the GCD site, and the inventory and release model to be used in a performance assessment for compliance with the Environmental Protection Agency`s 40 CFR 191.

Chu, M.S.Y.; Bernard, E.A.

1991-12-01T23:59:59.000Z

206

Long-term surveillance plan for the Lowman, Idaho, disposal site  

SciTech Connect (OSTI)

The long-term surveillance plan (LTSP) for the Lowman, Idaho, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Lowman disposal cell. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This preliminary final LTSP is being submitted to the US Nuclear Regulatory Commission (NRC) as a requirement for issuance of a general license for custody and long-term care for the disposal site. The general license requires that the disposal cell be cared for in accordance with the provisions of this LTSP. The LTSP documents whether the land and interests are owned by the United States or an Indian tribe, and describes, in detail, how the long-term care of the disposal site will be carried out through the UMTRA Project long-term surveillance program. The Lowman, Idaho, LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program, (DOE, 1992).

Not Available

1993-09-01T23:59:59.000Z

207

WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE  

E-Print Network [OSTI]

WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE January 2010 Prepared for the Interagency left intentionally blank.] #12;Prepared for the U.S. Department of Energy PNNL-SA-69994 under Contract DE-AC05-76RL01830 Waste Disposal Workshops: Anthrax-Contaminated Waste AM Lesperance JF Upton SL

208

Asset Management Equipment Disposal Form -Refrigerant Recovery  

E-Print Network [OSTI]

enters the waste stream with the charge intact (e.g., motor vehicle air conditioners, refrigeratorsAsset Management Equipment Disposal Form - Refrigerant Recovery Safe Disposal Requirements Under refrigeration, cold storage warehouse refrigeration, chillers, and industrial process refrigeration) has to have

Sin, Peter

209

Title II Disposal Sites Annual Report  

Broader source: Energy.gov [DOE]

This report presents the results of long-term surveillance and maintenance activities conducted by the DOE Office of Legacy Management in 2013 at six uranium mill tailings disposal sites reclaimed under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. These activities verified that the UMTRCA Title II disposal sites remain in compliance with license requirements.

210

Tritium waste disposal technology in the US  

SciTech Connect (OSTI)

Tritium waste disposal methods in the US range from disposal of low specific activity waste along with other low-level waste in shallow land burial facilities, to disposal of kilocurie amounts in specially designed triple containers in 65' deep augered holes located in an aird region of the US. Total estimated curies disposed of are 500,000 in commercial burial sites and 10 million curies in defense related sites. At three disposal sites in humid areas, tritium has migrated into the ground water, and at one arid site tritium vapor has been detected emerging from the soil above the disposal area. Leaching tests on tritium containing waste show that tritium in the form of HTO leaches readily from most waste forms, but that leaching rates of tritiated water into polymer impregnated concrete are reduced by as much as a factor of ten. Tests on improved tritium containment are ongoing. Disposal costs for tritium waste are 7 to 10 dollars per cubic foot for shallow land burial of low specific activity tritium waste, and 10 to 20 dollars per cubic foot for disposal of high specific activity waste. The cost of packaging the high specific activity waste is 150 to 300 dollars per cubic foot. 18 references.

Albenesius, E.L.; Towler, O.A.

1983-01-01T23:59:59.000Z

211

Land Management and Disposal | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Land Management and Disposal Land Management and Disposal Land Management and Disposal Land Management and Disposal 42 USC 2201(g), Section 161(g), of the AEA 42 USC Section 2224, Section 174 DOE, July 2004, Real Property Desk Guide Requirements: Document Title P.L. 83-703 (68 Stat. 919), Section 161g Grants Special Authority as Required in the Act to Acquire, Sell, Dispose, etc., of Real Property in Furtherance of the Department's Mission (Under the Atomic Energy Act of 1954) P.L. 95-91, 91 Stat. 578 (Sections 302 and 347) Department of Energy Organizational Act of 1977, Delegated Authority for Real Property P.L. 106-580 Federal Property and Administrative Services Act of 1949, As Amended P.L. 105-85 Federal Property and Administrative Services Act of 1949, As Amended 10 CFR 770 Transfer of Real Property at Defense Nuclear Facilities for Economic Development

212

Disposal of Draeger Tubes at Savannah River Site  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is a Department of Energy (DOE) facility located in Aiken, South Carolina that is operated by the Westinghouse Savannah River Company (WSRC). At SRS Draeger tubes are used to identify the amount and type of a particular chemical constituent in the atmosphere. Draeger tubes rely on a chemical reaction to identify the nature and type of a particular chemical constituent in the atmosphere. Disposal practices for these tubes were identified by performing a hazardous waste evaluation per the Resource Conservation and Recovery Act (RCRA). Additional investigations were conducted to provide guidance for their safe handling, storage and disposal. A list of Draeger tubes commonly used at SRS was first evaluated to determine if they contained any material that could render them as a RCRA hazardous waste. Disposal techniques for Draeger tubes that contained any of the toxic contaminants listed in South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79. 261.24 (b) and/or contained an acid in the liquid form were addressed.

Malik, N.P.

2000-10-13T23:59:59.000Z

213

Long-term surveillance plan for the Maybell, Colorado Disposal Site  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Maybell disposal site in Moffat County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Maybell disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete for the Maybell site and the NRC formally accepts this LTSP. This document describes the long-term surveillance program the DOE will implement to ensure the Maybell disposal site performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance document and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

NONE

1997-12-01T23:59:59.000Z

214

Long-term surveillance plan for the Maybell, Colorado Disposal Site  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Maybell disposal site in Moffat County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Maybell disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete for the Maybell site and the NRC formally accepts this LTSP. This document describes the long-term surveillance program the DOE will implement to ensure the Maybell disposal site performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance document and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

NONE

1997-09-01T23:59:59.000Z

215

Long-term surveillance plan for the South Clive Disposal Site, Clive, Utah  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) describes the US Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project South Clive disposal site in Clive, Utah. The US Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CRF Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the South Clive disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the South Clive site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the South Clive disposal site performs as designed. The program`s primary activity is site inspections to identify threats to disposal cell integrity.

NONE

1996-03-01T23:59:59.000Z

216

Disposal configuration options for future uses of greater confinement disposal at the Nevada Test Site  

SciTech Connect (OSTI)

The US Department of Energy (DOE) is responsible for disposing of a variety of radioactive and mixed wastes, some of which are considered special-case waste because they do not currently have a clear disposal option. The DOE`s Nevada Field Office contracted with Sandia National Laboratories to investigate the possibility of disposing of some of this special-case waste at the Nevada Test Site (NTS). As part of this investigation, a review of a near-surface and subsurface disposal options that was performed to develop alternative disposal configurations for special-case waste disposal at the NTS. The criteria for the review included (1) configurations appropriate for disposal at the NTS; (2) configurations for disposal of waste at least 100 ft below the ground surface; (3) configurations for which equipment and technology currently exist; and (4) configurations that meet the special requirements imposed by the nature of special-case waste. Four options for subsurface disposal of special-case waste are proposed: mined consolidated rock, mined alluvium, deep pits or trenches, and deep boreholes. Six different methods for near-surface disposal are also presented: earth-covered tumuli, above-grade concrete structures, trenches, below-grade concrete structures, shallow boreholes, and hydrofracture. Greater confinement disposal (GCD) in boreholes at least 100 ft deep, similar to that currently practiced at the GCD facility at the Area 5 Radioactive Waste Management Site at the NTS, was retained as the option that met the criteria for the review. Four borehole disposal configurations are proposed with engineered barriers that range from the native alluvium to a combination of gravel and concrete. The configurations identified will be used for system analysis that will be performed to determine the disposal configurations and wastes that may be suitable candidates for disposal of special-case wastes at the NTS.

Price, L. [Science Applications International Corp., Albuquerque, NM (United States)

1994-09-01T23:59:59.000Z

217

Low-Level Waste Disposal Facility Federal Review Group Manual...  

Office of Environmental Management (EM)

Low-Level Waste Disposal Facility Federal Review Group Manual Low-Level Waste Disposal Facility Federal Review Group Manual This Revision 3 of the Low-Level Waste Disposal Facility...

218

Disposal of Rocky Flats residues as waste  

SciTech Connect (OSTI)

Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

Dustin, D.F.; Sendelweck, V.S. [EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant; Rivera, M.A. [Lamb Associates, Inc., Rockville, MD (United States)

1993-03-01T23:59:59.000Z

219

Disposal of Rocky Flats residues as waste  

SciTech Connect (OSTI)

Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

Dustin, D.F.; Sendelweck, V.S. (EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant); Rivera, M.A. (Lamb Associates, Inc., Rockville, MD (United States))

1993-01-01T23:59:59.000Z

220

Salt caverns for oil field waste disposal.  

SciTech Connect (OSTI)

Salt caverns used for oil field waste disposal are created in salt formations by solution mining. When created, caverns are filled with brine. Wastes are introduced into the cavern by pumping them under low pressure. Each barrel of waste injected to the cavern displaces a barrel of brine to the surface. The brine is either used for drilling mud or is disposed of in an injection well. Figure 8 shows an injection pump used at disposal cavern facilities in west Texas. Several types of oil field waste may be pumped into caverns for disposal. These include drilling muds, drill cuttings, produced sands, tank bottoms, contaminated soil, and completion and stimulation wastes. Waste blending facilities are constructed at the site of cavern disposal to mix the waste into a brine solution prior to injection. Overall advantages of salt cavern disposal include a medium price range for disposal cost, large capacity and availability of salt caverns, limited surface land requirement, increased safety, and ease of establishment of individual state regulations.

Veil, J.; Ford, J.; Rawn-Schatzinger, V.; Environmental Assessment; RMC, Consultants, Inc.

2000-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "disposal cell evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Long-term surveillance plan for the Lowman, Idaho, Disposal site. Revision 1  

SciTech Connect (OSTI)

The long-term surveillance plan (LTSP) for the Lowman, Idaho, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Lowman disposal site, which will be referred to as the Lowman site throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. The radioactive sands at the Lowman site were stabilized on the site. This final LTSP is being submitted to the US Nuclear Regulatory Commission (NRC) as a requirement for issuance of a general license for custody and long-term care for the disposal site. The general license requires that the disposal cell be cared for in accordance with the provisions of this LTSP. The LTSP documents whether the land and interests are owned by the United States or a state, and describes, in detail, how the long-term care of the disposal site will be carried out through the UMTRA Project long-term surveillance program. The Lowman, Idaho, LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program, (DOE, 1992).

Not Available

1994-04-01T23:59:59.000Z

222

Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project  

Broader source: Energy.gov (indexed) [DOE]

Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project Accomplishes Milestone While Doing it Safely Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project Accomplishes Milestone While Doing it Safely February 27, 2012 - 12:00pm Addthis Media Contacts Donald Metzler, Moab Federal Project Director, (970) 257-2115 Wendee Ryan, S&K Aerospace Public Affairs Manager, (970) 257-2145 Grand Junction, CO- The U.S. Department of Energy (DOE) reached another milestone today for the Uranium Mill Tailings Remedial Action Project, having shipped 5 million tons of tailings from the massive pile located in Moab, Utah, to the engineered disposal cell near Crescent Junction, Utah. The pile comprised an estimated 16 million tons total when DOE's Remedial

223

Long-term surveillance plan for the Falls City Disposal Site, Falls City, Texas  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Falls City disposal site, Falls City, Texas, describes the surveillance activities for the disposal site. DOE will carry out these activities to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a).

NONE

1995-06-01T23:59:59.000Z

224

Long-term Surveillance Plan for the Falls City Disposal Site, Falls City, Texas. Revision 1  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Falls City disposal site, Falls City, Texas, describes the surveillance activities for the disposal site. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a).

NONE

1995-08-01T23:59:59.000Z

225

International Collaboration Activities in Different Geologic Disposal Environments  

Broader source: Energy.gov [DOE]

This report describes the current status of international collaboration regarding geologic disposal research in the Used Fuel Disposition (UFD) Campaign.  To date, UFD’s International Disposal R...

226

Used Fuel Disposition Campaign Disposal Research and Development...  

Broader source: Energy.gov (indexed) [DOE]

related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW) generated by existing and future nuclear fuel cycles. The disposal of...

227

A novel nanoparticle-based disposable electrochemical immunosensor...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nanoparticle-based disposable electrochemical immunosensor for diagnosis of exposure to toxic organophosphorus agents. A novel nanoparticle-based disposable electrochemical...

228

EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive...  

Broader source: Energy.gov (indexed) [DOE]

00: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste SUMMARY This...

229

Framework for DOE mixed low-level waste disposal: Site fact sheets  

SciTech Connect (OSTI)

The Department of Energy (DOE) is required to prepare and submit Site Treatment Plans (STPS) pursuant to the Federal Facility Compliance Act (FFCAct). Although the FFCAct does not require that disposal be addressed in the STPS, the DOE and the States recognize that treatment of mixed low-level waste will result in residues that will require disposal in either low-level waste or mixed low-level waste disposal facilities. As a result, the DOE is working with the States to define and develop a process for evaluating disposal-site suitability in concert with the FFCAct and development of the STPS. Forty-nine potential disposal sites were screened; preliminary screening criteria reduced the number of sites for consideration to twenty-six. The DOE then prepared fact sheets for the remaining sites. These fact sheets provided additional site-specific information for understanding the strengths and weaknesses of the twenty-six sites as potential disposal sites. The information also provided the basis for discussion among affected States and the DOE in recommending sites for more detailed evaluation.

Gruebel, M.M.; Waters, R.D.; Hospelhorn, M.B.; Chu, M.S.Y. [eds.

1994-11-01T23:59:59.000Z

230

Unrestricted disposal of minimal activity levels of radioactive wastes: exposure and risk calculations  

SciTech Connect (OSTI)

The US Nuclear Regulatory Commission is currently considering revision of rule 10 CFR Part 20, which covers disposal of solid wastes containing minimal radioactivity. In support of these revised rules, we have evaluated the consequences of disposing of four waste streams at four types of disposal areas located in three different geographic regions. Consequences are expressed in terms of human exposures and associated health effects. Each geographic region has its own climate and geology. Example waste streams, waste disposal methods, and geographic regions chosen for this study are clearly specified. Monetary consequences of minimal activity waste disposal are briefly discussed. The PRESTO methodology was used to evaluate radionuclide transport and health effects. This methodology was developed to assess radiological impacts to a static local population for a 1000-year period following disposal. Pathways and processes of transit from the trench to exposed populations included the following considerations: groundwater transport, overland flow, erosion, surface water dilution, resuspension, atmospheric transport, deposition, inhalation, and ingestion of contaminated beef, milk, crops, and water. 12 references, 2 figures, 8 tables.

Fields, D.E.; Emerson, C.J.

1984-08-01T23:59:59.000Z

231

Summary - Proposed On-Site Disposal Facility (OSDF) at the Paducah Gaseous Diffusion Plant  

Broader source: Energy.gov (indexed) [DOE]

Paducah, KY Paducah, KY EM Project: On-Site Disposal Facility ETR Report Date: August 2008 ETR-16 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Proposed On-Site Disposal Facility(OSDF) at the Paducah Gaseous Diffusion Plant Why DOE-EM Did This Review The Paducah Gaseous Diffusion Plant (PGDP) is an active uranium enrichment facility that was placed on the National Priorities List. DOE is required to remediate the PGDP in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). DOE is evaluating alternatives to dispose of waste generated from the remedial activities at the PGDP. One option is to construct an on-site disposal facility (OSDF) meeting the CERCLA requirements.

232

EA-1889: Disposal of Decommissioned, Defueled Naval Reactor Plants from USS  

Broader source: Energy.gov (indexed) [DOE]

89: Disposal of Decommissioned, Defueled Naval Reactor Plants 89: Disposal of Decommissioned, Defueled Naval Reactor Plants from USS Enterprise (CVN 65) at the Hanford Site, Richland, Washington EA-1889: Disposal of Decommissioned, Defueled Naval Reactor Plants from USS Enterprise (CVN 65) at the Hanford Site, Richland, Washington Summary This EA, prepared by the Department of the Navy, evaluates the environmental impacts of the disposal of decommissioned, defueled, naval reactor plants from the USS Enterprise at DOE's Hanford Site, Richland, Washington. DOE participated as a cooperating agency in the preparation of this EA. The Department of the Navy issued its FONSI on August 23, 2012. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download August 23, 2012

233

EIS-0250: Geologic Repository for the Disposal of Spent Nuclear Fuel and  

Broader source: Energy.gov (indexed) [DOE]

EIS-0250: Geologic Repository for the Disposal of Spent Nuclear EIS-0250: Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada EIS-0250: Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada Summary This EIS analyzes DOE's proposed action to construct, operate, monitor, and eventually close a geologic repository at Yucca Mountain for the disposal of spent nuclear fuel and high-level radioactive waste. The EIS evaluates not only impacts from constructing, operating, monitoring, and closing a repository, but also from transporting the materials from 72 commercial and 4 DOE sites to the Yucca Mountain repository site in Nye County, Nevada. Public Comment Opportunities

234

Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer We outline the differences of Chinese MSW characteristics from Western MSW. Black-Right-Pointing-Pointer We model the requirements of four clusters of plant owner/operators in China. Black-Right-Pointing-Pointer We examine the best technology fit for these requirements via a matrix. Black-Right-Pointing-Pointer Variance in waste input affects result more than training and costs. Black-Right-Pointing-Pointer For China technology adaptation and localisation could become push, not pull factors. - Abstract: Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don't sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no 'best' plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is suggested and a technology matrix is set out to ease the choice of technology to transfer and avoid past errors. The four steps are (1) Identification of plant owner/operator requirement clusters; (2) Determination of different municipal solid waste (MSW) treatment plant attributes; (3) Development of a matrix matching requirement clusters to plant attributes; (4) Application of Quality Function Deployment Method to aid in technology localisation. The technology transfer matrices thus derived show significant performance differences between the various technologies available. It is hoped that the resulting research can build a bridge between technology transfer research and waste disposal research in order to enhance the exchange of more sustainable solutions in future.

Dorn, Thomas, E-mail: thomas.dorn@uni-rostock.de [University of Rostock, Faculty of Agricultural and Environmental Sciences, Department Waste Management, Justus-v.-Liebig-Weg 6, 18059 Rostock (Germany); Nelles, Michael, E-mail: michael.nelles@uni-rostock.de [University of Rostock, Faculty of Agricultural and Environmental Sciences, Department Waste Management, Justus-v.-Liebig-Weg 6, 18059 Rostock (Germany); Flamme, Sabine, E-mail: flamme@fh-muenster.de [University of Applied Sciences Muenster, Corrensstrasse 25, 48149 Muenster (Germany); Jinming, Cai [Hefei University of Technology, 193 Tunxi Road, 230009 Hefei (China)

2012-11-15T23:59:59.000Z

235

Acquisition, Use, and Disposal of Real Estate  

Broader source: Energy.gov (indexed) [DOE]

Chapter 17.3 (March 2011) Chapter 17.3 (March 2011) 1 Acquisition, Use, and Disposal of Real Estate References DEAR 917.74 - Acquisition, Use, and Disposal of Real Estate DOE Directives DOE Order 413.3B, Program and Project Management for the Acquisition of Capital Assets, or current version DOE Order 430.1B, Real Property Asset Management, or current version Overview This section provides internal Departmental information and DOE and NNSA points of contact for issues dealing with real estate acquisition, use, and disposal for cost reimbursement and fixed price contracts when in performance of the contract, the contractor will acquire or proposes to acquire use of real property. Background DEAR Subpart 917.74 - Acquisition, Use, and Disposal of Real Estate provides the policy and

236

Policy Issues in Nuclear Waste Disposal  

Science Journals Connector (OSTI)

The Congressional Research Service, in an issue brief on nuclear waste disposal, compactly described a common assessment when it noted that “nuclear waste has sometimes been called the Achilles’ heel of the nu...

2005-01-01T23:59:59.000Z

237

A disposable, self-administered electrolyte test  

E-Print Network [OSTI]

This thesis demonstrates the novel concept that it is possible to make a disposable, self-administered electrolyte test to be introduced to the general consumer market. Although ion specific electrodes have been used to ...

Prince, Ryan, 1977-

2003-01-01T23:59:59.000Z

238

Available Options for Waste Disposal [and Discussion  

Science Journals Connector (OSTI)

...vitrified high-activity waste in properly selected deep...alternatives to present projects of waste disposal, but rather as...benefits will be different. Long-term storage of either spent fuel or vitrified waste, although not an alternative...

1986-01-01T23:59:59.000Z

239

US nuclear waste: Widespread problem of disposal  

Science Journals Connector (OSTI)

... individual states in the United States to develop facilities for disposal of low-level radioactive waste produced by ... produced by nuclear reactors, industry and biomdical research and treatment. The federal Low-Level ...

Christopher Earl

1984-07-19T23:59:59.000Z

240

Assessment of Preferred Depleted Uranium Disposal Forms  

SciTech Connect (OSTI)

The Department of Energy (DOE) is in the process of converting about 700,000 metric tons (MT) of depleted uranium hexafluoride (DUF6) containing 475,000 MT of depleted uranium (DU) to a stable form more suitable for long-term storage or disposal. Potential conversion forms include the tetrafluoride (DUF4), oxide (DUO2 or DU3O8), or metal. If worthwhile beneficial uses cannot be found for the DU product form, it will be sent to an appropriate site for disposal. The DU products are considered to be low-level waste (LLW) under both DOE orders and Nuclear Regulatory Commission (NRC) regulations. The objective of this study was to assess the acceptability of the potential DU conversion products at potential LLW disposal sites to provide a basis for DOE decisions on the preferred DU product form and a path forward that will ensure reliable and efficient disposal.

Croff, A.G.; Hightower, J.R.; Lee, D.W.; Michaels, G.E.; Ranek, N.L.; Trabalka, J.R.

2000-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "disposal cell evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

CSMRI Bagged Soil Disposal Summary Report  

E-Print Network [OSTI]

.......................................................................................................................... 1 4. Landfill Acceptance and Equipment Appendix G Daily GPS Coordinants of Disposal Location at BFI Foothills Landfill Appendix H Ambient Landfill (Stoller 2005a). After review of the dose assessment report, the CDPHE approved shipment

242

Disposable Bioreactors: Maturation into Pharmaceutical Glycoprotein Manufacturing  

Science Journals Connector (OSTI)

To summarise: the range of disposable bioreactors available on the market offers flexible, cost efficient and time-saving solutions from early process development to large-scale production. Table 1 gives an overv...

René Brecht

2010-01-01T23:59:59.000Z

243

Pesticide fate in an aboveground disposal system  

E-Print Network [OSTI]

PESTICIDE FATE IN AN ABOVEGROUND DISPOSAL SYSTEM A Thesis by BRIAN RICHARD VANDERGLAS Submitted to the Graduate College of Texas A 8 M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 'l988... Major Subject: Soil Science PESTICIDE FATE IN AN ABOVEGROUND DISPOSAL SYSTEM A Thesis by BRIAN RICHARD VANDERGLAS Approved as to style and content by: K. W. Brown (Chair of Committee) John M. Sweeten (Member) Jack D. Price (Member) E. C. A...

Vanderglas, Brian Richard

2012-06-07T23:59:59.000Z

244

Title I Disposal Sites Annual Report  

Broader source: Energy.gov [DOE]

This report presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) in 2013 at 19 uranium mill tailings disposal sites established under Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. These activities verified that the UMTRCA Title I disposal sites remain in compliance with license requirements.

245

Performance assessment methodology and preliminary results for low-level radioactive waste disposal in Taiwan.  

SciTech Connect (OSTI)

Sandia National Laboratories (SNL) and Taiwan's Institute for Nuclear Energy Research (INER) have teamed together to evaluate several candidate sites for Low-Level Radioactive Waste (LLW) disposal in Taiwan. Taiwan currently has three nuclear power plants, with another under construction. Taiwan also has a research reactor, as well as medical and industrial wastes to contend with. Eventually the reactors will be decomissioned. Operational and decommissioning wastes will need to be disposed in a licensed disposal facility starting in 2014. Taiwan has adopted regulations similar to the US Nuclear Regulatory Commission's (NRC's) low-level radioactive waste rules (10 CFR 61) to govern the disposal of LLW. Taiwan has proposed several potential sites for the final disposal of LLW that is now in temporary storage on Lanyu Island and on-site at operating nuclear power plants, and for waste generated in the future through 2045. The planned final disposal facility will have a capacity of approximately 966,000 55-gallon drums. Taiwan is in the process of evaluating the best candidate site to pursue for licensing. Among these proposed sites there are basically two disposal concepts: shallow land burial and cavern disposal. A representative potential site for shallow land burial is located on a small island in the Taiwan Strait with basalt bedrock and interbedded sedimentary rocks. An engineered cover system would be constructed to limit infiltration for shallow land burial. A representative potential site for cavern disposal is located along the southeastern coast of Taiwan in a tunnel system that would be about 500 to 800 m below the surface. Bedrock at this site consists of argillite and meta-sedimentary rocks. Performance assessment analyses will be performed to evaluate future performance of the facility and the potential dose/risk to exposed populations. Preliminary performance assessment analyses will be used in the site-selection process and to aid in design of the disposal system. Final performance assessment analyses will be used in the regulatory process of licensing a site. The SNL/INER team has developed a performance assessment methodology that is used to simulate processes associated with the potential release of radionuclides to evaluate these sites. The following software codes are utilized in the performance assessment methodology: GoldSim (to implement a probabilistic analysis that will explicitly address uncertainties); the NRC's Breach, Leach, and Transport - Multiple Species (BLT-MS) code (to simulate waste-container degradation, waste-form leaching, and transport through the host rock); the Finite Element Heat and Mass Transfer code (FEHM) (to simulate groundwater flow and estimate flow velocities); the Hydrologic Evaluation of Landfill performance Model (HELP) code (to evaluate infiltration through the disposal cover); the AMBER code (to evaluate human health exposures); and the NRC's Disposal Unit Source Term -- Multiple Species (DUST-MS) code (to screen applicable radionuclides). Preliminary results of the evaluations of the two disposal concept sites are presented.

Arnold, Bill Walter; Chang, Fu-lin (Institute of Nuclear Energy Research, Taiwan); Mattie, Patrick D.; Knowlton, Robert G.; Chuang, W-S (Institute of Nuclear Energy Research, Taiwan); Chi, L-M (Institute of Nuclear Energy Research, Taiwan); Jow, Hong-Nian; Tien, Norman C. (Institute of Nuclear Energy Research, Taiwan); Ho, Clifford Kuofei

2006-02-01T23:59:59.000Z

246

Microsoft Word - S08254_CellConditions  

Office of Legacy Management (LM)

Shiprock, New Mexico, Disposal Shiprock, New Mexico, Disposal Cell Internal Water Balance and Cell Conditions February 2012 LMS/SHP/S08254 This page intentionally left blank LMS/SHP/S08254 Shiprock, New Mexico, Disposal Cell Internal Water Balance and Cell Conditions February 2012 This page intentionally left blank U.S. Department of Energy Shiprock Disposal Cell Internal Water Balance and Cell Conditions February 2012 Doc. No.S08254 Page i Contents Abbreviations ................................................................................................................................. iii Executive Summary .........................................................................................................................v 1.0 Introduction ............................................................................................................................1

247

Thermodynamic data management system for nuclear waste disposal performance assessment  

SciTech Connect (OSTI)

Thermodynamic property values for use in assessing the performance of a nuclear waste repository are described. More emphasis is on a computerized data base management system which facilitates use of the thermodynamic data in sensitivity analysis and other studies which critically assess the performance of disposal sites. Examples are given of critical evaluation procedures; comparison of apparent equilibrium constants calculated from the data base, with other work; and of correlations useful in estimating missing values of both free energy and enthalpy of formation for aqueous species. 49 refs., 11 figs., 6 tabs.

Phillips, S.L.; Hale, F.V.; Siegel, M.D.

1988-04-01T23:59:59.000Z

248

NRC Monitoring of Salt Waste Disposal at the Savannah River Site - 13147  

SciTech Connect (OSTI)

As part of monitoring required under Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA), the NRC staff reviewed an updated DOE performance assessment (PA) for salt waste disposal at the Saltstone Disposal Facility (SDF). The NRC staff concluded that it has reasonable assurance that waste disposal at the SDF meets the 10 CFR 61 performance objectives for protection of individuals against intrusion (chap.61.42), protection of individuals during operations (chap.61.43), and site stability (chap.61.44). However, based on its evaluation of DOE's results and independent sensitivity analyses conducted with DOE's models, the NRC staff concluded that it did not have reasonable assurance that DOE's disposal activities at the SDF meet the performance objective for protection of the general population from releases of radioactivity (chap.61.41) evaluated at a dose limit of 0.25 mSv/yr (25 mrem/yr) total effective dose equivalent (TEDE). NRC staff also concluded that the potential dose to a member of the public is expected to be limited (i.e., is expected to be similar to or less than the public dose limit in chap.20.1301 of 1 mSv/yr [100 mrem/yr] TEDE) and is expected to occur many years after site closure. The NRC staff used risk insights gained from review of the SDF PA, its experience monitoring DOE disposal actions at the SDF over the last 5 years, as well as independent analysis and modeling to identify factors that are important to assessing whether DOE's disposal actions meet the performance objectives. Many of these factors are similar to factors identified in the NRC staff's 2005 review of salt waste disposal at the SDF. Key areas of interest continue to be waste form and disposal unit degradation, the effectiveness of infiltration and erosion controls, and estimation of the radiological inventory. Based on these factors, NRC is revising its plan for monitoring salt waste disposal at the SDF in coordination with South Carolina Department of Health and Environmental Control (SCDHEC). DOE has completed or begun additional work related to salt waste disposal to address these factors. NRC staff continues to evaluate information related to the performance of the SDF and has been working with DOE and SCDHEC to resolve NRC staff's technical concerns. (authors)

Pinkston, Karen E.; Ridge, A. Christianne; Alexander, George W.; Barr, Cynthia S.; Devaser, Nishka J.; Felsher, Harry D. [U.S. Nuclear Regulatory Commission (United States)] [U.S. Nuclear Regulatory Commission (United States)

2013-07-01T23:59:59.000Z

249

Economic Analysis on Direct Use of Spent Pressurized Water Reactor Fuel in CANDU Reactors - III: Spent DUPIC Fuel Disposal Cost  

SciTech Connect (OSTI)

The disposal costs of spent pressurized water reactor (PWR), Canada deuterium uranium (CANDU) reactor, and DUPIC fuels have been estimated based on available literature data and the engineering design of a spent CANDU fuel disposal facility by the Atomic Energy of Canada Limited. The cost estimation was carried out by the normalization concept of total electricity generation. Therefore, the future electricity generation scale was analyzed to evaluate the appropriate capacity of the high-level waste disposal facility in Korea, which is a key parameter of the disposal cost estimation. Based on the total electricity generation scale, it is concluded that the disposal unit costs for spent CANDU natural uranium, CANDU-DUPIC, and PWR fuels are 192.3, 388.5, and 696.5 $/kg heavy element, respectively.

Ko, Won Il; Choi, Hangbok; Roh, Gyuhong; Yang, Myung Seung [Korea Atomic Energy Research Institute (Korea, Republic of)

2001-05-15T23:59:59.000Z

250

Clean Cities: National Clean Fleets Partner: Advanced Disposal Services  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Advanced Disposal Services to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Google Bookmark Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Delicious Rank Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions

251

Generic Disposal System Modeling, Fiscal Year 2011 Progress Report |  

Broader source: Energy.gov (indexed) [DOE]

Disposal System Modeling, Fiscal Year 2011 Progress Report Disposal System Modeling, Fiscal Year 2011 Progress Report Generic Disposal System Modeling, Fiscal Year 2011 Progress Report The UFD Campaign is developing generic disposal system models (GDSM) of different disposal environments and waste form options. Currently, the GDSM team is investigating four main disposal environment options: mined repositories in three geologic media (salt, clay, and granite) and the deep borehole concept in crystalline rock (DOE 2010d). Further developed the individual generic disposal system (GDS) models for salt, granite, clay, and deep borehole disposal environments. GenericDisposalSystModelFY11.pdf More Documents & Publications Integration of EBS Models with Generic Disposal System Models TSPA Model Development and Sensitivity Analysis of Processes Affecting

252

Soil Segregation Methods for Reducing Transportation and Disposal Costs - 13544  

SciTech Connect (OSTI)

At Formerly Utilized Sites Remedial Action Program (FUSRAP) sites where the selected alternative for contaminated soil is excavation and off-site disposal, the most significant budget items of the remedial action are the costs for transportation and disposal of soil at an off-site facility. At these sites, the objective is to excavate and dispose of only those soils that exceed derived concentration guideline levels. In situ soil segregation using gross gamma detectors to guide the excavation is often challenging at sites where the soil contamination is overlain by clean soil or where the contaminated soil is located in isolated, subsurface pockets. In addition, data gaps are often identified during the alternative evaluation and selection process, resulting in increased uncertainty in the extent of subsurface contamination. In response, the U.S. Army Corps of Engineers, Buffalo District is implementing ex situ soil segregation methods. At the remediated Painesville Site, soils were excavated and fed through a conveyor-belt system, which automatically segregated them into above- and below-cleanup criteria discharge piles utilizing gamma spectroscopy. At the Linde Site and the Shallow Land Disposal Area (SLDA) Site, which are both in the remediation phase, soils are initially segregated during the excavation process using gross gamma detectors and then transported to a pad for confirmatory manual surveying and sampling. At the Linde Site, the ex situ soils are analyzed on the basis of a site-specific method, to establish compliance with beneficial reuse criteria that were developed for the Linde remediation. At the SLDA Site, the ex situ soils are surveyed and sampled based on Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) final status survey guidance to demonstrate compliance with the derived concentration guideline levels. At all three sites, the ex situ soils that meet the site- specific DCGLs are retained on-site and used as backfill material. This paper describes the ex situ soil segregation methods, the considerations of each method, and the estimated cost savings from minimizing the volume of soil requiring transportation and off-site disposal. (authors)

Frothingham, David; Andrews, Shawn; Barker, Michelle; Boyle, James; Buechi, Stephen; Graham, Marc; Houston, Linda; Polek, Michael; Simmington, Robert; Spector, Harold [U.S. Army Corps of Engineers, Buffalo District, 1776 Niagara St., Buffalo, NY 14207 (United States)] [U.S. Army Corps of Engineers, Buffalo District, 1776 Niagara St., Buffalo, NY 14207 (United States); Elliott, Robert 'Dan' [U.S. Army Reserve, 812A Franklin St.,Worcester, MA 01604 (United States)] [U.S. Army Reserve, 812A Franklin St.,Worcester, MA 01604 (United States); Durham, Lisa [Argonne National Laboratory, Environmental Science Division, 9700 S. Cass Ave., Argonne, IL 60439 (United States)] [Argonne National Laboratory, Environmental Science Division, 9700 S. Cass Ave., Argonne, IL 60439 (United States)

2013-07-01T23:59:59.000Z

253

Microsoft Word - SRSSaltWasteDisposal.doc  

Broader source: Energy.gov (indexed) [DOE]

Salt Waste Disposal - References - §3116 Determination (RWR NDAA of 2005) Salt Waste Disposal - References - §3116 Determination (RWR NDAA of 2005) Doc. No. Filename Title Main Document References 1. 2005 RWR DAA §3116 NDAA.pdf "Ronald W. Regan National Defense Authorization Act for FY 2005," Section 3116, 2004. 2. CBU-PIT-2004-00024 CBU-PIT-2004-00024.pdf Ledbetter, L. S., CBU-PIT-2004-00024, 12/01/04 - December Monthly WCS Curie and Volume Inventory Report," Revision 0, December 9, 2004. 3. CBU-PIT-2005-00031 CBU-PIT-2005-00031.pdf Rios-Armstrong, M. A., CBU-PIT-2005-00031, "Decontaminated Salt Solution Volume to be transferred to the Saltstone Disposal Facility from Salt Treatment and Disposition Activities," Revision 0, February 13, 2005.

254

Qualifying radioactive waste forms for geologic disposal  

SciTech Connect (OSTI)

We have developed a phased strategy that defines specific program-management activities and critical documentation for producing radioactive waste forms, from pyrochemical processing of spent nuclear fuel, that will be acceptable for geologic disposal by the US Department of Energy. The documentation of these waste forms begins with the decision to develop the pyroprocessing technology for spent fuel conditioning and ends with production of the last waste form for disposal. The need for this strategy is underscored by the fact that existing written guidance for establishing the acceptability for disposal of radioactive waste is largely limited to borosilicate glass forms generated from the treatment of aqueous reprocessing wastes. The existing guidance documents do not provide specific requirements and criteria for nonstandard waste forms such as those generated from pyrochemical processing operations.

Jardine, L.J. [Lawrence Livermore National Lab., CA (United States); Laidler, J.J.; McPheeters, C.C. [Argonne National Lab., IL (United States)

1994-09-01T23:59:59.000Z

255

Phase 1 - Evaluation of a Functional Interconnect System for Solid Oxide Fuel Cells  

SciTech Connect (OSTI)

This project is focused on evaluating the suitability of materials and complex multi-materials systems for use as solid oxide fuel cell interconnects. ATI Allegheny Ludlum has generated promising results for interconnect materials which incorporate modified surfaces. Methods for producing these surfaces include cladding, which permits the use of novel materials, and modifications via unique thermomechanical processing, which allows for the modification of materials chemistry. The University of Pittsburgh is assisting in this effort by providing use of their in-place facilities for dual atmosphere testing and ASR measurements, along with substantial work to characterize post-exposure specimens. Carnegie Mellon is testing interconnects for chromia scale spallation resistance using macro-scale and nano-scale indentation tests. Chromia spallation can increase electrical resistance to unacceptable levels and interconnect systems must be developed that will not experience spallation within 40,000 hours at operating temperatures. Spallation is one of three interconnect failure mechanisms, the others being excessive growth of the chromia scale (increasing electrical resistance) and scale evaporation (which can poison the cathode). The goal of indentation fracture testing at Carnegie Mellon is to accelerate the evaluation of new interconnect systems (by inducing spalls at after short exposure times) and to use fracture mechanics to understand mechanisms leading to premature interconnect failure by spallation. Tests include bare alloys from ATI and coated systems from DOE Laboratories and industrial partners, using ATI alloy substrates. West Virginia University is working towards developing a cost-effective material for use as a contact material in the cathode chamber of the SOFC. Currently materials such as platinum are well suited for this purpose, but are cost-prohibitive. For the solid-oxide fuel cell to become a commercial reality it is imperative that lower cost components be developed. Based on the results obtained to date, it appears that sterling silver could be an inexpensive, dependable candidate for use as a contacting material in the cathode chamber of the solid-oxide fuel cell. Although data regarding pure silver samples show a lower rate of thickness reduction, the much lower cost of sterling silver makes it an attractive alternative for use in SOFC operation.

James M. Rakowski

2006-09-30T23:59:59.000Z

256

U.S. Department of Energy Hydrogen and Fuel Cells Program, 2013 Annual Merit Review and Peer Evaluation Report (Book)  

SciTech Connect (OSTI)

The fiscal year (FY) 2013 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting (AMR), in conjunction with DOE's Vehicle Technologies Office AMR, was held from May 13-16, 2013, at the Crystal City Marriott and Crystal Gateway Marriott in Arlington, Virginia. This report is a summary of comments by AMR peer reviewers about the hydrogen and fuel cell projects funded by DOE's Office of Energy Efficiency and Renewable Energy (EERE).

Not Available

2013-10-01T23:59:59.000Z

257

Experimental Evaluation of a Pt-based Heat Exchanger Methanol Reformer for a HTPEM Fuel Cell Stack  

E-Print Network [OSTI]

) Included in this reaction is the decomposition of methanol, which produces CO: CH3OH CO + 2H2 (90.5 kJ mol a picture of the methanol reformer which has been designed to produce hydrogen for a 1 kWe HTPEM fuel cellExperimental Evaluation of a Pt-based Heat Exchanger Methanol Reformer for a HTPEM Fuel Cell Stack

Berning, Torsten

258

Low-level radioactive waste disposal facility closure  

SciTech Connect (OSTI)

Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs.

White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1990-11-01T23:59:59.000Z

259

Generic Deep Geologic Disposal Safety Case | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Deep Geologic Disposal Safety Case Deep Geologic Disposal Safety Case Generic Deep Geologic Disposal Safety Case The Generic Deep Geologic Disposal Safety Case presents generic information that is of use in understanding potential deep geologic disposal options in the U.S. for used nuclear fuel (UNF) from reactors and high-level radioactive waste (HLW). Potential disposal options include mined disposal in a variety of geologic media (e.g., salt, shale, granite), and deep borehole disposal in basement rock. The Generic Safety Case is intended to be a source of information to provide answers to questions that may arise as the U.S. works to develop strategies to dispose of current and future inventories of UNF and HLW. DOE is examining combinations of generic geologic media and facility designs that could potentially support

260

Evaluation of HIV-1 Tat induced neurotoxicity in rat cortical cell culture  

Science Journals Connector (OSTI)

In a substantial number of cases, Human Immunodeficiency Virus type 1 (HIV-1) infection causes neuronal cell loss and ... loss. Here we studied the effect of HIV-1 Tat in primary rat neuronal cells as a ... cell ...

Aleida Pérez; Albert W. Probert; Kevin K. W. Wang…

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "disposal cell evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Long-term surveillance plan for the Tuba City, Arizona disposal site  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Tuba City, Arizona, describes the site surveillance activities. The U.S. Department of Energy (DOE) will carry out these activities to ensure the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM) (10 CFR {section}40.27).

NONE

1996-02-01T23:59:59.000Z

262

Low-level-waste-disposal methodologies  

SciTech Connect (OSTI)

This report covers the followng: (1) history of low level waste disposal; (2) current practice at the five major DOE burial sites and six commercial sites with dominant features of these sites and radionuclide content of major waste types summarized in tables; (3) site performance with performance record on burial sites tabulated; and (4) proposed solutions. Shallow burial of low level waste is a continuously evolving practice, and each site has developed its own solutions to the handling and disposal of unusual waste forms. There are no existing national standards for such disposal. However, improvements in the methodology for low level waste disposal are occurring on several fronts. Standardized criteria are being developed by both the Nuclear Regulatory Commission (NRC) and by DOE. Improved techniques for shallow burial are evolving at both commercial and DOE facilities, as well as through research sponsored by NRC, DOE, and the Environmental Protection Agency. Alternatives to shallow burial, such as deeper burial or the use of mined cavities is also being investigated by DOE.

Wheeler, M.L.; Dragonette, K.

1981-01-01T23:59:59.000Z

263

COUEB N T ED Safe Disposal of  

E-Print Network [OSTI]

COUEB N T ED Safe Disposal of Household Chemicals: Protect Yourself and Your Community see inside Minutes The 2010 census asks 10 questions that most households can answer in 10 minutes! You will be asked the name, age, gender, race, ethnic group (if Hispanic), and relationship of all persons living at your

Liskiewicz, Maciej

264

Deep borehole disposal of high-level radioactive waste.  

SciTech Connect (OSTI)

Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).

Stein, Joshua S.; Freeze, Geoffrey A.; Brady, Patrick Vane; Swift, Peter N.; Rechard, Robert Paul; Arnold, Bill Walter; Kanney, Joseph F.; Bauer, Stephen J.

2009-07-01T23:59:59.000Z

265

IMPACT OF THE SUN PATCH ON HEATING AND COOLING POWER EVALUATION: APPLIED TO A LOW ENERGY CELL  

E-Print Network [OSTI]

IMPACT OF THE SUN PATCH ON HEATING AND COOLING POWER EVALUATION: APPLIED TO A LOW ENERGY CELL A we study the impact of the incoming radiation through a window (sun patch) on the heating and cooling demand. Existing studies have shown that not considering the sun patch and fast climatic variations

Paris-Sud XI, Université de

266

INNOVATIVE DISPOSAL PRACTICES AT THE NEVADA TEST SITE TO MEET...  

National Nuclear Security Administration (NNSA)

Innovative Disposal Practices at the Nevada Test Site to Meet Its Low-Level Waste Generators' Future Disposal Needs E.F. Di Sanza, J.T. Carilli U.S. Department of Energy National...

267

Strategy for the Management and Disposal of Used Nuclear Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level...

268

Maintenance Guide for DOE Low-Level Waste Disposal Facility ...  

Office of Environmental Management (EM)

Guide for DOE Low-Level Waste Disposal Facility Maintenance Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses...

269

Nuclear Waste Disposal: Can the Geologist Guarantee Isolation?  

Science Journals Connector (OSTI)

...to check whether waste disposal really does need an almost...been reported recently at Maxey Flats (Kentucky) (26...radioactive waste burial site, inside a fractured rock...effect of the geological disposal is to con-centrate 3530...

G. de Marsily; E. Ledoux; A. Barbreau; J. Margat

1977-08-05T23:59:59.000Z

270

Environmental Assessment Photovoltaic Solar Project at the Durango, Colorado, Disposal Site  

Broader source: Energy.gov (indexed) [DOE]

Photovoltaic Solar Project Photovoltaic Solar Project at the Durango, Colorado, Disposal Site Final June 2011 LMS/DUD/S06350 DOE/EA-1770 This page intentionally left blank LMS/DUD/S06350 DOE/EA 1770 Environmental Assessment Photovoltaic Solar Project at the Durango, Colorado, Disposal Site Final June 2011 This page intentionally left blank -1- U.S. Department of Energy Office of Legacy Management DOE/EA 1770 FINDING OF NO SIGNIFICANT IMPACT Photovoltaic Solar Project at the Durango, Colorado, Disposal Site, La Plata County AGENCY: U.S. Department of Energy (DOE), Office of Legacy Management (LM) ACTION: Finding of No Significant Impact (FONSI) SUMMARY: LM prepared an Environmental Assessment (EA) (DOE/EA-1770) that evaluated two action alternatives related to the installation, operation, and removal of a photovoltaic (PV) solar energy

271

System-Level Logistics for Dual Purpose Canister Disposal  

SciTech Connect (OSTI)

The analysis presented in this report investigated how the direct disposal of dual purpose canisters (DPCs) may be affected by the use of standard transportation aging and disposal canisters (STADs), early or late start of the repository, and the repository emplacement thermal power limits. The impacts were evaluated with regard to the availability of the DPCs for emplacement, achievable repository acceptance rates, additional storage required at an interim storage facility (ISF) and additional emplacement time compared to the corresponding repackaging scenarios, and fuel age at emplacement. The result of this analysis demonstrated that the biggest difference in the availability of UNF for emplacement between the DPC-only loading scenario and the DPCs and STADs loading scenario is for a repository start date of 2036 with a 6 kW thermal power limit. The differences are also seen in the availability of UNF for emplacement between the DPC-only loading scenario and the DPCs and STADs loading scenario for the alternative with a 6 kW thermal limit and a 2048 start date, and for the alternatives with a 10 kW thermal limit and 2036 and 2048 start dates. The alternatives with disposal of UNF in both DPCs and STADs did not require additional storage, regardless of the repository acceptance rate, as compared to the reference repackaging case. In comparison to the reference repackaging case, alternatives with the 18 kW emplacement thermal limit required little to no additional emplacement time, regardless of the repository start time, the fuel loading scenario, or the repository acceptance rate. Alternatives with the 10 kW emplacement thermal limit and the DPCs and STADs fuel loading scenario required some additional emplacement time. The most significant decrease in additional emplacement time occurred in the alternative with the 6 kW thermal limit and the 2036 repository starting date. The average fuel age at emplacement ranges from 46 to 88 years. The maximum fuel age at emplacement ranges from 81 to 146 years. The difference in the average and maximum age of fuel at emplacement between the DPC-only and the DPCs and STADs fuel loading scenarios becomes less significant as the repository thermal limit increases and as the repository start date increases. In general, the role of STADs is to store young (30 year or younger) high burnup (45 GWD/MTU or higher) fuel. Recommendations for future study include detailed evaluation of the feasible alternatives with regard to the costs and factors not considered in this analysis, such as worker dose, dose to members of the public, and economic benefits to host entities. It is also recommended to conduct an additional analysis to evaluate the assumption regarding the transportability and disposability of DPCs for the next iteration of the direct disposal of DPCs study.

Kalinina, Elena A.

2014-06-03T23:59:59.000Z

272

Estimated human health risks of disposing of nonhazardous oil field waste in salt caverns  

SciTech Connect (OSTI)

Argonne National Laboratory (ANL) has completed an evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from nonhazardous oil field wastes (NOW) disposed in domal salt caverns. In this assessment, several steps were used to evaluate potential human health risks: identifying potential contaminants of concern, determining how humans could be exposed to these contaminants, assessing the contaminants` toxicities, estimating contaminant intakes, and, finally, calculating human cancer and noncancer risks.

Tomasko, D.; Elcock, D.; Veil, J.

1997-09-01T23:59:59.000Z

273

State-of-the-art of liquid waste disposal for geothermal energy systems: 1979. Report PNL-2404  

SciTech Connect (OSTI)

The state-of-the-art of geothermal liquid waste disposal is reviewed and surface and subsurface disposal methods are evaluated with respect to technical, economic, legal, and environmental factors. Three disposal techniques are currently in use at numerous geothermal sites around the world: direct discharge into surface waters; deep-well injection; and ponding for evaporation. The review shows that effluents are directly discharged into surface waters at Wairakei, New Zealand; Larderello, Italy; and Ahuachapan, El Salvador. Ponding for evaporation is employed at Cerro Prieto, Mexico. Deep-well injection is being practiced at Larderello; Ahuachapan; Otake and Hatchobaru, Japan; and at The Geysers in California. All sites except Ahuachapan (which is injecting only 30% of total plant flow) have reported difficulties with their systems. Disposal techniques used in related industries are also reviewed. The oil industry's efforts at disposal of large quantities of liquid effluents have been quite successful as long as the effluents have been treated prior to injection. This study has determined that seven liquid disposal methods - four surface and three subsurface - are viable options for use in the geothermal energy industry. However, additional research and development is needed to reduce the uncertainties and to minimize the adverse environmental impacts of disposal. (MHR)

Defferding, L.J.

1980-06-01T23:59:59.000Z

274

Acceptance of Classified Excess Components for Disposal at Area 5  

SciTech Connect (OSTI)

This slide-show discusses weapons dismantlement and disposal, issues related to classified waste and their solutions.

Poling, Jeanne [National Security Technologies, LLC (United States); Saad, Max [Sandia National Lab., NM (United States)

2012-04-09T23:59:59.000Z

275

Transportation, Aging and Disposal Canister System Performance Specification: Revision 1  

Broader source: Energy.gov [DOE]

This document provides specifications for selected system components of the Transportation, Aging and Disposal (TAD) canister-based system.

276

Evaluation of Options for Permanent Geologic Disposal of Spent...  

Energy Savers [EERE]

engineering, earth sciences, materials science, chemical engineering, and materials safeguards and security, and regulatory considerations. The inventory of HLW and SNF is...

277

Disposability Assessment: Aluminum-Based Spent Nuclear Fuel Forms  

SciTech Connect (OSTI)

This report provides a technical assessment of the Melt-Dilute and Direct Al-SNF forms in disposable canisters with respect to meeting the requirements for disposal in the Mined Geologic Disposal System (MGDS) and for interim dry storage in the Treatment and Storage Facility (TSF) at SRS.

Vinson, D.W.

1998-11-06T23:59:59.000Z

278

Landfill Disposal of CCA-Treated Wood with Construction and  

E-Print Network [OSTI]

Landfill Disposal of CCA-Treated Wood with Construction and Demolition (C&D) Debris: Arsenic phased out of many residential uses in the United States, the disposal of CCA-treated wood remains. Catastrophic events have also led to the concentrated disposal of CCA-treated wood, often in unlined landfills

Florida, University of

279

Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011  

SciTech Connect (OSTI)

As a condition to the Disposal Authorization Statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year 2011 annual review for Area G. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 and formally approved in 2009. These analyses are expected to provide reasonable estimates of the long-term performance of Area G and, hence, the disposal facility's ability to comply with Department of Energy (DOE) performance objectives. Annual disposal receipt reviews indicate that smaller volumes of waste will require disposal in the pits and shafts at Area G relative to what was projected for the performance assessment and composite analysis. The future inventories are projected to decrease modestly for the pits but increase substantially for the shafts due to an increase in the amount of tritium that is projected to require disposal. Overall, however, changes in the projected future inventories of waste are not expected to compromise the ability of Area G to satisfy DOE performance objectives. The Area G composite analysis addresses potential impacts from all waste disposed of at the facility, as well as other sources of radioactive material that may interact with releases from Area G. The level of knowledge about the other sources included in the composite analysis has not changed sufficiently to call into question the validity of that analysis. Ongoing environmental surveillance activities are conducted at, and in the vicinity of, Area G. However, the information generated by many of these activities cannot be used to evaluate the validity of the performance assessment and composite analysis models because the monitoring data collected are specific to operational releases or address receptors that are outside the domain of the performance assessment and composite analysis. In general, applicable monitoring data are supportive of some aspects of the performance assessment and composite analysis. Several research and development (R and D) efforts have been initiated under the performance assessment and composite analysis maintenance program. These investigations are designed to improve the current understanding of the disposal facility and site, thereby reducing the uncertainty associated with the projections of the long-term performance of Area G. The status and results of R and D activities that were undertaken in fiscal year 2011 are discussed in this report. Special analyses have been conducted to determine the feasibility of disposing of specific waste streams, to address proposed changes in disposal operations, and to consider the impacts of changes to the models used to conduct the performance assessment and composite analysis. These analyses are described and the results of the evaluations are summarized in this report. The Area G disposal facility consists of Material Disposal Area (MDA) G and the Zone 4 expansion area. To date, all disposal operations at Area G have been confined to MDA G. Material Disposal Area G is scheduled to undergo final closure in 2015; disposal of waste in the pits and shafts is scheduled to end in 2013. In anticipation of the closure of MDA G, plans are being made to ship the majority of the waste generated at LANL to off-site locations for disposal. It is not clear at this time if waste that will be disposed of at LANL will be placed in Zone 4 or if disposal operations will move to a new location at the Laboratory. Separately, efforts to optimize the final cover used in the closure of MDA G are underway; a final cover design different than that adopted for the performance assessment and composite analy

French, Sean B. [Los Alamos National Laboratory; Shuman, Rob [WPS: WASTE PROJECTS AND SERVICES

2012-05-22T23:59:59.000Z

280

Evaluation of Fuel Cell Auxiliary Power Units for Heavy-Duty Diesel Trucks  

E-Print Network [OSTI]

Cost Estimates for Polymer Electrolyte Membrane (PEM) Fuel Cellsmanufacturing costs of automotive PEM fuel cell systems incosts of di?erent sizes of direct-hydrogen PEM fuel cell

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "disposal cell evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Chapter 8 - Coal Combustion Residue Disposal Options  

Science Journals Connector (OSTI)

Abstract Coal combustion residues (CCRs) are presently regulated as solid waste (Subtitle D) under the Resource Conservation Recovery Act. Such classification promotes beneficial use by end-users i.e. mitigating excessive liability. According to the US Environmental Protection agency (USEPA), about 131 million tons of coal combustion residuals—including 71 million tons of fly ash, 20 million tons of bottom ash and boiler slag, and 40 million tons of flue gas desulfurization (FGD) material—were generated in the US in 2007. Of this, approximately 36% was disposed of in landfills, 21% was disposed of in surface impoundments, 38% was beneficially reused, and 5% was used as minefill. Stringent regulation, as Subtitle C (hazardous waste), would impose a perceived liability upon end-users; greatly reducing beneficial use opportunities. Mandatory use of synthetic liners—would not have prevented dike wall failure and fails to consider inherent engineering characteristics of CCRs.

Richard W. Goodwin

2014-01-01T23:59:59.000Z

282

Evaluation of Fuel Cell Auxiliary Power Units for Heavy-Duty Diesel Trucks  

E-Print Network [OSTI]

where K 0 is the cost of the fuel cell stack, fuel storagefuel cell stack, plumbing, inverter, fuel storage tank, and accessories), fuel cost,costs of about $700 per kW for the basic solid oxide fuel cell stack

2002-01-01T23:59:59.000Z

283

Technical and philosophical aspects of ocean disposal  

E-Print Network [OSTI]

Di sposai . Geological aspects Physical aspects Chemical aspects Biological aspects CHAPTER II. TECHNICAL ASPECTS OF OCEAN DISPOSAL Types of Waste Materials. Dredged materiais. Industrial wastes, DomestIc sewage wa tes Solid wastes Radloact..., can reduce the passage of light through the water column and cause damaging effects to the marine ecosystem. Each of five major oceans has pronounced gyral, or circular current motion (Fiaure 1. 1). The North Atlantic current system is comprised...

Zapatka, Marchi Charisse

1976-01-01T23:59:59.000Z

284

Geochemical aspects of radioactive waste disposal  

SciTech Connect (OSTI)

The book addresses various topics related to the geochemistry of waste disposal: natural radioactivity, kinds of radioactive waste, details of possible disposal sites, low-level waste, uranium mill tailing, natural analogs, waste forms, and engineered barriers. Emphasis throughout is on the importance of natural analogs, the behavior of elements resembling those to be put in a waste repository as they occur in natural situations where the temperature, pressure, and movement of ground water are similar to those expected near a repository. The author is convinced that conclusions drawn from the study of analog elements are directly applicable to predictions about radionuclide behavior, and that the observed near-immobility of most of these elements in comparable geologic environments is good evidence that radioactive waste can be disposed of underground with negligible effects on the biosphere. Much of his own research has been in this area, and the best parts of the book are the descriptions of his work on trace elements in the salt minerals at the Waste Isolation Pilot Plant in southeastern New Mexico, on the movement of radionuclides and their daughter elements from the famous Precambrian reactor at Oklahoma in Gabon, and on the distribution of analog elements in rocks near the contacts of igneous intrusions.

Brookins, D.G.

1984-01-01T23:59:59.000Z

285

Field study of disposed solid wastes from advanced coal processes  

SciTech Connect (OSTI)

Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute's fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison's limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United's mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells.

Not Available

1992-01-01T23:59:59.000Z

286

Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis  

SciTech Connect (OSTI)

This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

David Duncan

2009-10-01T23:59:59.000Z

287

Hydrogen and Fuel Cells Program Overview: 2011 Annual Merit Review and Peer Evaluation Meeting  

Broader source: Energy.gov [DOE]

Presentation by Sunita Satyapal at the 2011 Annual Merit Review and Peer Evaluation Meeting on May 9, 2011.

288

Hydrogen and Fuel Cells Program Overview: 2014 Annual Merit Review and Peer Evaluation Meeting  

Broader source: Energy.gov [DOE]

Presentation by Sunita Satyapal at the 2014 Annual Merit Review and Peer Evaluation Meeting plenary session on June 16, 2014.

289

Hydrogen and Fuel Cells Program Overview: 2013 Annual Merit Review and Peer Evaluation Meeting  

Broader source: Energy.gov [DOE]

Presentation by Sunita Satyapal at the 2013 Annual Merit Review and Peer Evaluation Meeting plenary session on May 13, 2013.

290

Hydrogen and Fuel Cells Program Overview: 2012 Annual Merit Review and Peer Evaluation Meeting  

Broader source: Energy.gov [DOE]

Presentation by Sunita Satyapal at the 2012 Annual Merit Review and Peer Evaluation Meeting plenary session on May 14, 2012.

291

Innovative Technique Accelerates Waste Disposal at Idaho Site | Department  

Broader source: Energy.gov (indexed) [DOE]

Innovative Technique Accelerates Waste Disposal at Idaho Site Innovative Technique Accelerates Waste Disposal at Idaho Site Innovative Technique Accelerates Waste Disposal at Idaho Site May 15, 2013 - 12:00pm Addthis A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Macro-packs from the Idaho site are shown here safely and compliantly disposed. Macro-packs from the Idaho site are shown here safely and compliantly disposed. A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Macro-packs from the Idaho site are shown here safely and compliantly disposed. IDAHO FALLS, Idaho - An innovative treatment and disposal technique is enabling the Idaho site to accelerate shipments of legacy nuclear waste for

292

DOE Applauds Opening of Historic Disposal Facility | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Applauds Opening of Historic Disposal Facility Applauds Opening of Historic Disposal Facility DOE Applauds Opening of Historic Disposal Facility June 6, 2013 - 12:00pm Addthis The Waste Control Specialists Federal Waste Disposal Facility in Andrews, Texas. The Waste Control Specialists Federal Waste Disposal Facility in Andrews, Texas. ANDREWS, Texas - DOE officials participated in an event today to celebrate the opening of the first commercial disposal facility of its kind. EM Senior Advisor Dave Huizenga and several other federal, state and local officials attended the event at Waste Control Specialists (WCS) in Andrews and witnessed the first container being placed in the new state-of-the-art facility. WCS is a waste processing and disposal company. "I am proud to be here today to celebrate this historic event. We

293

Innovative Technique Accelerates Waste Disposal at Idaho Site | Department  

Broader source: Energy.gov (indexed) [DOE]

Innovative Technique Accelerates Waste Disposal at Idaho Site Innovative Technique Accelerates Waste Disposal at Idaho Site Innovative Technique Accelerates Waste Disposal at Idaho Site May 15, 2013 - 12:00pm Addthis A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Macro-packs from the Idaho site are shown here safely and compliantly disposed. Macro-packs from the Idaho site are shown here safely and compliantly disposed. A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Macro-packs from the Idaho site are shown here safely and compliantly disposed. IDAHO FALLS, Idaho - An innovative treatment and disposal technique is enabling the Idaho site to accelerate shipments of legacy nuclear waste for

294

DOE Applauds Opening of Historic Disposal Facility | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

DOE Applauds Opening of Historic Disposal Facility DOE Applauds Opening of Historic Disposal Facility DOE Applauds Opening of Historic Disposal Facility June 6, 2013 - 12:00pm Addthis The Waste Control Specialists Federal Waste Disposal Facility in Andrews, Texas. The Waste Control Specialists Federal Waste Disposal Facility in Andrews, Texas. ANDREWS, Texas - DOE officials participated in an event today to celebrate the opening of the first commercial disposal facility of its kind. EM Senior Advisor Dave Huizenga and several other federal, state and local officials attended the event at Waste Control Specialists (WCS) in Andrews and witnessed the first container being placed in the new state-of-the-art facility. WCS is a waste processing and disposal company. "I am proud to be here today to celebrate this historic event. We

295

Economic Decision Making Model for Geothermal Sludge Disposal alternatives (EDM-GSD): Version 1. 0  

SciTech Connect (OSTI)

The Economic Decision Making Model for Geothermal Sludge Disposal Alternatives-Version 1.0'' (EDM-GSD 1.0) is a microcomputer-based dynamic model developed to assist in determining the benefits and costs of various geothermal solid waste treatment procedures. It is intended for use by geothermal managers in dealing with geothermal waste and treatment process issues as a means to assist in overcoming the technical and economic barriers to expanded geothermal energy utilization. The model is based on a 50MW flash plant. However, it is designed to provide the user with sufficient flexibility when inputing data to analyze all types of geothermal plants. Default values for economic and technical parameters can be overridden by the user through the input of specific data. In addition, data can be changed for any year of an analysis to account for desired changes in input parameters such as costs and distance to disposal sites. The results of the model will allow the user to: Determine current geothermal plant disposal costs; Evaluate the cost-effectiveness of alternative treatment techniques; and Evaluate the economic effects of changes in disposal regulations.

Not Available

1987-09-01T23:59:59.000Z

296

Challenges dealing with depleted uranium in Germany - Reuse or disposal  

SciTech Connect (OSTI)

During enrichment large amounts of depleted Uranium are produced. In Germany every year 2.800 tons of depleted uranium are generated. In Germany depleted uranium is not classified as radioactive waste but a resource for further enrichment. Therefore since 1996 depleted Uranium is sent to ROSATOM in Russia. However it still has to be dealt with the second generation of depleted Uranium. To evaluate the alternative actions in case a solution has to be found in Germany, several studies have been initiated by the Federal Ministry of the Environment. The work that has been carried out evaluated various possibilities to deal with depleted uranium. The international studies on this field and the situation in Germany have been analyzed. In case no further enrichment is planned the depleted uranium has to be stored. In the enrichment process UF{sub 6} is generated. It is an international consensus that for storage it should be converted to U{sub 3}O{sub 8}. The necessary technique is well established. If the depleted Uranium would have to be characterized as radioactive waste, a final disposal would become necessary. For the planned Konrad repository - a repository for non heat generating radioactive waste - the amount of Uranium is limited by the licensing authority. The existing license would not allow the final disposal of large amounts of depleted Uranium in the Konrad repository. The potential effect on the safety case has not been roughly analyzed. As a result it may be necessary to think about alternatives. Several possibilities for the use of depleted uranium in the industry have been identified. Studies indicate that the properties of Uranium would make it useful in some industrial fields. Nevertheless many practical and legal questions are open. One further option may be the use as shielding e.g. in casks for transport or disposal. Possible techniques for using depleted Uranium as shielding are the use of the metallic Uranium as well as the inclusion in concrete. Another possibility could be the use of depleted uranium for the blending of High enriched Uranium (HEU) or with Plutonium to MOX-elements. (authors)

Moeller, Kai D. [Federal Office for Radiation Protection, Bundesamt fuer Strahlenschutz - BFS, Postfach 10 01 49, D-38201 Salzgitter (Germany)

2007-07-01T23:59:59.000Z

297

Risk assessment of nonhazardous oil-field waste disposal in salt caverns.  

SciTech Connect (OSTI)

Salt caverns can be formed in underground salt formations incidentally as a result of mining or intentionally to create underground chambers for product storage or waste disposal. For more than 50 years, salt caverns have been used to store hydrocarbon products. Recently, concerns over the costs and environmental effects of land disposal and incineration have sparked interest in using salt caverns for waste disposal. Countries using or considering using salt caverns for waste disposal include Canada (oil-production wastes), Mexico (purged sulfates from salt evaporators), Germany (contaminated soils and ashes), the United Kingdom (organic residues), and the Netherlands (brine purification wastes). In the US, industry and the regulatory community are pursuing the use of salt caverns for disposal of oil-field wastes. In 1988, the US Environmental Protection Agency (EPA) issued a regulatory determination exempting wastes generated during oil and gas exploration and production (oil-field wastes) from federal hazardous waste regulations--even though such wastes may contain hazardous constituents. At the same time, EPA urged states to tighten their oil-field waste management regulations. The resulting restrictions have generated industry interest in the use of salt caverns for potentially economical and environmentally safe oil-field waste disposal. Before the practice can be implemented commercially, however, regulators need assurance that disposing of oil-field wastes in salt caverns is technically and legally feasible and that potential health effects associated with the practice are acceptable. In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. It investigated regulatory issues; the types of oil-field wastes suitable for cavern disposal; cavern design and location considerations; and disposal operations, closure and remediation issues. It determined that if caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they could, from technical and legal perspectives, be suitable for disposing of oil-field wastes. On the basis of these findings, ANL subsequently conducted a preliminary risk assessment on the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the NOW disposed of in salt caverns. The methodology for the risk assessment included the following steps: identifying potential contaminants of concern; determining how humans could be exposed to these contaminants; assessing contaminant toxicities; estimating contaminant intakes; and estimating human cancer and noncancer risks. To estimate exposure routes and pathways, four postclosure cavern release scenarios were assessed. These were inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks, failure of the cavern through leaky interbeds, and partial collapse of the cavern roof. Assuming a single, generic, salt cavern and generic oil-field wastes, potential human health effects associated with constituent hazardous substances (arsenic, benzene, cadmium, and chromium) were assessed under each of these scenarios. Preliminary results provided excess cancer risk and hazard index (for noncancer health effects) estimates that were well within the EPA target range for acceptable exposure risk levels. These results lead to the preliminary conclusion that from a human health perspective, salt caverns can provide an acceptable disposal method for nonhazardous oil-field wastes.

Elcock, D.

1998-03-10T23:59:59.000Z

298

Evaluation of critical materials in five additional advance design photovoltaic cells  

SciTech Connect (OSTI)

The objective of this study is to identify potential material supply constraints due to the large-scale deployment of five advanced photovoltaic (PV) cell designs, and to suggest strategies to reduce the impacts of these production capacity limitations and potential future material shortages. The Critical Materials Assessment Program (CMAP) screens the designs and their supply chains and identifies potential shortages which might preclude large-scale use of the technologies. The results of the screening of five advanced PV cell designs are presented: (1) indium phosphide/cadmium sulfide, (2) zinc phosphide, (3) cadmium telluride/cadmium sulfide, (4) copper indium selenium, and (5) cadmium selenide photoelectrochemical. Each of these five cells is screened individually assuming that they first come online in 1991, and that 25 Gwe of peak capacity is online by the year 2000. A second computer screening assumes that each cell first comes online in 1991 and that each cell has a 5 GWe of peak capacity by the year 2000, so that the total online capacity for the five cells is 25 GWe. Based on a review of the preliminary baseline screening results, suggestions were made for varying such parameters as the layer thickness, cell production processes, etc. The resulting PV cell characterizations were then screened again by the CMAP computer code. The CMAP methodology used to identify critical materials is described; and detailed characterizations of the advanced photovoltaic cell designs under investigation, descriptions of additional cell production processes, and the results are presented. (WHK)

Smith, S.A.; Watts, R.L.; Martin, P.; Gurwell, W.E.

1981-02-01T23:59:59.000Z

299

Microsoft Word - DisposalInSaltDifferentThanDisposalInWIPP.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Issues Statement Concerning Debates Over DOE Issues Statement Concerning Debates Over Waste Disposal in Salt CARLSBAD, N.M., July 24, 2009 - The U.S. Department of Energy and its Carlsbad Field Office recognize and respect the long history that led to the current regulations that govern operations at the Waste Isolation Pilot Plant (WIPP). The WIPP is authorized to ship and dispose of transuranic (TRU) waste that was created by U.S. defense programs. TRU waste is a category of waste strictly defined by legislation and legal agreements. The WIPP mission includes the safe disposal of two types of defense-related TRU waste, contact-handled (CH) and remote-handled (RH). Both consist of tools, rags, protective clothing, sludges, soil and other materials contaminated with radioactive

300

Degradation Of Cementitious Materials Associated With Saltstone Disposal Units  

SciTech Connect (OSTI)

The Saltstone facilities at the DOE Savannah River Site (SRS) stabilize and dispose of low-level radioactive salt solution originating from liquid waste storage tanks at the site. The Saltstone Production Facility (SPF) receives treated salt solution and mixes the aqueous waste with dry cement, blast furnace slag, and fly ash to form a grout slurry which is mechanically pumped into concrete disposal cells that compose the Saltstone Disposal Facility (SDF). The solidified grout is termed “saltstone”. Cementitious materials play a prominent role in the design and long-term performance of the SDF. The saltstone grout exhibits low permeability and diffusivity, and thus represents a physical barrier to waste release. The waste form is also reducing, which creates a chemical barrier to waste release for certain key radionuclides, notably Tc-99. Similarly, the concrete shell of an SDF disposal unit (SDU) represents an additional physical and chemical barrier to radionuclide release to the environment. Together the waste form and the SDU compose a robust containment structure at the time of facility closure. However, the physical and chemical state of cementitious materials will evolve over time through a variety of phenomena, leading to degraded barrier performance over Performance Assessment (PA) timescales of thousands to tens of thousands of years. Previous studies of cementitious material degradation in the context of low-level waste disposal have identified sulfate attack, carbonation influenced steel corrosion, and decalcification (primary constituent leaching) as the primary chemical degradation phenomena of most relevance to SRS exposure conditions. In this study, degradation time scales for each of these three degradation phenomena are estimated for saltstone and concrete associated with each SDU type under conservative, nominal, and best estimate assumptions. The nominal value (NV) is an intermediate result that is more probable than the conservative estimate (CE) and more defensible than the best estimate (BE). The combined effects of multiple phenomena are then considered to determine the most limiting degradation time scale for each cementitious material. Degradation times are estimated using a combination of analytic solutions from literature and numerical simulation codes provided through the DOE Cementitious Barriers Partnership (CBP) Software Toolbox (http://cementbarriers.org). For the SDU 2 design, the roof, wall, and floor components are projected to become fully degraded under Nominal conditions at 3866, 923, and 1413 years, respectively. For SDU 4 the roof and floor are estimated to be fully degraded under Nominal conditions after 1137 and 1407 years, respectively; the wall is assumed to be fully degraded at time zero in the most recent PA simulations. Degradation of these concrete barriers generally occurs from combined sulfate attack and corrosion of embedded steel following carbonation. Saltstone is projected to degrade very slowly by decalcification, with complete degradation occurring in excess of 200,000 years for any SDU type. Complete results are provided.

Flach, G. P; Smith, F. G. III

2013-03-19T23:59:59.000Z

Note: This page contains sample records for the topic "disposal cell evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Evaluation of Four Imaging Techniques for the Electrical Characterization of Solar Cells (Presentation)  

SciTech Connect (OSTI)

The imaging techniques enable the possibility of higher-level quality control and defect analysis of solar cell materials in in-line production processes.

Johnston. S.; Berman, G.; Call, N.; Ahrenkiel, R.

2008-12-03T23:59:59.000Z

302

Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Second Evaluation Report and Appendices  

Broader source: Energy.gov [DOE]

This report describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location.

303

Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses: Third Evaluation Report  

Broader source: Energy.gov [DOE]

This report describes operations at Alameda-Contra Costa Transit district for three protoype fuel cell buses and six diesel buses operating from the same location.

304

Evaluation of Novel and Low-Cost Materials for Bipolar Plates in PEM Fuel Cells.  

E-Print Network [OSTI]

??Bipolar plate material and fabrication costs make up a significant fraction of the total cost in a polymer electrolyte membrane fuel cell stack. In an… (more)

Desrosiers, Kevin Campbell

2002-01-01T23:59:59.000Z

305

DOE's Hydrogen Fuel Cell Activities: Developing Technology and Validating it through Real-World Evaluation (Presentation)  

SciTech Connect (OSTI)

Presentation prepared for the May 12, 2008 Alternative Fuels and Vehicles Conference that describes DOE's current hydrogen fuel cell technology validation projects.

Wipke, K.; Sprik, S.; Kurtz, J.; Garbak, J.

2008-05-12T23:59:59.000Z

306

Evaluating thermal imaging for identification and characterization of solar cell defects.  

E-Print Network [OSTI]

??Solar cells have become a primary technology in today's world for harvesting clean and renewable energy. Progress has been made towards improving the performance and… (more)

Chen, Jiahao

2014-01-01T23:59:59.000Z

307

An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment  

Broader source: Energy.gov [DOE]

This report by NREL discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment.

308

Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses: Third Evaluation Report- Appendices  

Broader source: Energy.gov [DOE]

This report describes operations at Alameda-Contra Costa Transit district for three protoype fuel cell buses and six diesel buses operating from the same location.

309

Generating a Consistent Framework for Evaluating Cell Response to External Stimuli through Epigenetic Assessors  

E-Print Network [OSTI]

(matrix- mediated stimuli); and (5) initial cell state ........ 2 Figure 2 Chromatin landscape of a cellular gene whose expression is regulated by transcription factor SRF... chromatin by enzymatic digestion .................. 16 Figure 8 SRF enrichment of different genes in C3H10T1/2 cells encapsulated in PEGDA matrices ....................................................................... 17 Figure 9...

Wang, Bo

2011-08-08T23:59:59.000Z

310

NETL: IEP - Mercury and Air Toxic Element Impacts of CCB Disposal and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mercury and Air Toxic Element Impacts of CCB Disposal and Utilization Mercury and Air Toxic Element Impacts of CCB Disposal and Utilization The goal of the proposed effort is to evaluate the impact of mercury and other air toxic elements on the management of CCBs. Supporting objectives are to 1) determine the release potential of selected air toxic elements, including mercury and arsenic, from CCBs under specific environmental conditions; 2) increase the database of information on mercury and other air toxic element releases for CCBs; 3) develop comparative laboratory and field data; and 4) develop appropriate laboratory and field protocols. The specific mechanisms of air toxic element releases to be evaluated will be leaching releases, vapor releases to the atmosphere, and biologically induced leaching and vapor releases.

311

Summary - Disposal Practices at the Nevada Test Site  

Broader source: Energy.gov (indexed) [DOE]

Nevada Test Site, NV Nevada Test Site, NV EM Project: Area 5 LLRW & MLLW Disposal ETR Report Date: July 2008 ETR-14 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Disposal Practices at the Nevada Test Site Why DOE-EM Did This Review Radioactively contaminated materials from the Nevada Test Site (NTS), other DOE facilities and other federal agencies are disposed of at NTS at two low-level radioactive waste (LLRW) management sites: Areas 3 and 5. Disposal operations at Area 3 have been discontinued, but the facility is available for future disposal. The anticipated closure date for Area 3 is 2027. Area 5 is operating and will be expanded to accept future wastes. LLRW and mixed low-level radioactive waste (MLLW) are disposed of in Area 5 in shallow

312

Deep Borehole Disposal Research: Demonstration Site Selection Guidelines,  

Broader source: Energy.gov (indexed) [DOE]

Deep Borehole Disposal Research: Demonstration Site Selection Deep Borehole Disposal Research: Demonstration Site Selection Guidelines, Borehole Seals Design, and RD&D Needs Deep Borehole Disposal Research: Demonstration Site Selection Guidelines, Borehole Seals Design, and RD&D Needs The U.S. Department of Energy has been investigating deep borehole disposal as one alternative for the disposal of spent nuclear fuel and other radioactive waste forms, along with research and development for mined repositories in salt, granite, and clay, as part of the used fuel disposition (UFD) campaign. The deep borehole disposal concept consists of drilling a borehole on the order of 5,000 m deep, emplacing waste canisters in the lower part of the borehole, and sealing the upper part of the borehole with bentonite and concrete seals. A reference design of the

313

Summary - Idaho CERCLA Disposal Facility (ICDF) at Idaho National Laboratory  

Broader source: Energy.gov (indexed) [DOE]

INL, Idaho INL, Idaho EM Project: Idaho CERCLA Disposal Facility ETR Report Date: December 2007 ETR-10 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Idaho CERCLA Disposal Facility (ICDF) At Idaho National Laboratory (INL) Why DOE-EM Did This Review The Idaho CERCLA Disposal Facility (ICDF) is a land disposal facility that is used to dispose of LLW and MLW generated from remedial activities at the Idaho National Laboratory (INL). Components of the ICDF include a landfill that is used for disposal of solid waste, an evaporation pond that is used to manage leachate from the landfill and other aqueous wastes (8.3 million L capacity), and a staging and treatment facility. The ICDF is located near the southwest

314

LANL completes excavation of 1940s waste disposal site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LANL completes excavation LANL completes excavation LANL completes excavation of 1940s waste disposal site The excavation removed about 43,000 cubic yards of contaminated debris and soil from the six-acre site. September 22, 2011 Workers sample contents of LANL's Material Disposal Area B (MDA-B) before excavation Workers sample contents of LANL's Material Disposal Area B (MDA-B) before excavation. Contact Colleen Curran Communicatons Office (505) 664-0344 Email LOS ALAMOS, New Mexico, September 22, 2011-Los Alamos National Laboratory has completed excavation of its oldest waste disposal site, Material Disposal Area B (MDA-B). The excavation removed about 43,000 cubic yards of contaminated debris and soil from the six-acre site. MDA-B was used from 1944-48 as a waste disposal site for Manhattan Project and Cold War-era research and

315

Used Fuel Disposition Campaign Disposal Research and Development Roadmap |  

Broader source: Energy.gov (indexed) [DOE]

Used Fuel Disposition Campaign Disposal Research and Development Used Fuel Disposition Campaign Disposal Research and Development Roadmap Used Fuel Disposition Campaign Disposal Research and Development Roadmap The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW). The Mission of the UFDC is To identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. has, for the past twenty-plus years, focused efforts on disposing

316

Low-Level Radioactive Waste Disposal Act (Pennsylvania) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Low-Level Radioactive Waste Disposal Act (Pennsylvania) Low-Level Radioactive Waste Disposal Act (Pennsylvania) Low-Level Radioactive Waste Disposal Act (Pennsylvania) < Back Eligibility Utility Commercial Investor-Owned Utility State/Provincial Govt Municipal/Public Utility Local Government Rural Electric Cooperative Transportation Program Info State Pennsylvania Program Type Environmental Regulations Provider Pennsylvania Department of Environmental Protection This act provides a comprehensive strategy for the siting of commercial low-level waste compactors and other waste management facilities, and to ensure the proper transportation, disposal and storage of low-level radioactive waste. Commercial incineration of radioactive wastes is prohibited. Licenses are required for low-level radioactive waste disposal facilities not licensed to accept low-level radioactive waste. Disposal at

317

Used Fuel Disposition Campaign Disposal Research and Development Roadmap |  

Broader source: Energy.gov (indexed) [DOE]

Disposal Research and Development Disposal Research and Development Roadmap Used Fuel Disposition Campaign Disposal Research and Development Roadmap The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW). The Mission of the UFDC is To identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. has, for the past twenty-plus years, focused efforts on disposing

318

Disposal Practices at the Nevada Test Site 2008  

Broader source: Energy.gov (indexed) [DOE]

Area 5 LLRW & MLLW Disposal Area 5 LLRW & MLLW Disposal ETR Report Date: July 2008 ETR-14 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Disposal Practices at the Nevada Test Site Why DOE-EM Did This Review Radioactively contaminated materials from the Nevada Test Site (NTS), other DOE facilities and other federal agencies are disposed of at NTS at two low-level radioactive waste (LLRW) management sites: Areas 3 and 5. Disposal operations at Area 3 have been discontinued, but the facility is available for future disposal. The anticipated closure date for Area 3 is 2027. Area 5 is operating and will be expanded to accept future wastes. LLRW and mixed low-level radioactive

319

Mixed waste disposal facilities at the Savannah River Site  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE's Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site's waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission.

Wells, M.N.; Bailey, L.L.

1991-01-01T23:59:59.000Z

320

Mixed waste disposal facilities at the Savannah River Site  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE`s Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site`s waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission.

Wells, M.N.; Bailey, L.L.

1991-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "disposal cell evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) |  

Broader source: Energy.gov (indexed) [DOE]

Low-Level Radioactive Waste Disposal Regional Facility Act Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) < Back Eligibility Utility Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Program Info State Pennsylvania Program Type Environmental Regulations Fees This act establishes a low-level radioactive waste disposal regional facility siting fund that requires nuclear power reactor constructors and operators to pay to the Department of Environmental Resources funds to be utilized for disposal facilities. This act ensures that nuclear facilities and the Department comply with the Low-Level Radioactive Disposal Act. The regional facility siting fund is used for reimbursement of expenses

322

Reactor Pressure Vessel Head Packaging & Disposal  

SciTech Connect (OSTI)

Reactor Pressure Vessel (RPV) Head replacements have come to the forefront due to erosion/corrosion and wastage problems resulting from the susceptibility of the RPV Head alloy steel material to water/boric acid corrosion from reactor coolant leakage through the various RPV Head penetrations. A case in point is the recent Davis-Besse RPV Head project, where detailed inspections in early 2002 revealed significant wastage of head material adjacent to one of the Control Rod Drive Mechanism (CRDM) nozzles. In lieu of making ASME weld repairs to the damaged head, Davis-Besse made the decision to replace the RPV Head. The decision was made on the basis that the required weld repair would be too extensive and almost impractical. This paper presents the packaging, transport, and disposal considerations for the damaged Davis-Besse RPV Head. It addresses the requirements necessary to meet Davis Besse needs, as well as the regulatory criteria, for shipping and burial of the head. It focuses on the radiological characterization, shipping/disposal package design, site preparation and packaging, and the transportation and emergency response plans that were developed for the Davis-Besse RPV Head project.

Wheeler, D. M.; Posivak, E.; Freitag, A.; Geddes, B.

2003-02-26T23:59:59.000Z

323

Municipal solid waste disposal in Portugal  

SciTech Connect (OSTI)

In recent years municipal solid waste (MSW) disposal has been one of the most important environmental problems for all of the Portuguese regions. The basic principles of MSW management in Portugal are: (1) prevention or reduction, (2) reuse, (3) recovery (e.g., recycling, incineration with heat recovery), and (4) polluter-pay principle. A brief history of legislative trends in waste management is provided herein as background for current waste management and recycling activities. The paper also presents and discusses the municipal solid waste management in Portugal and is based primarily on a national inquiry carried out in 2003 and directed to the MSW management entities. Additionally, the MSW responsibility and management structure in Portugal is presented, together with the present situation of production, collection, recycling, treatment and elimination of MSW. Results showed that 96% of MSW was collected mixed (4% was separately collected) and that 68% was disposed of in landfill, 21% was incinerated at waste-to-energy plants, 8% was treated at organic waste recovery plants and 3% was delivered to sorting. The average generation rate of MSW was 1.32 kg/capita/day.

Magrinho, Alexandre [Mechanical Engineering Department, Escola Superior de Tecnologia de Setubal, Campus IPS, Estefanilha, Setubal (Portugal); Didelet, Filipe [Mechanical Engineering Department, Escola Superior de Tecnologia de Setubal, Campus IPS, Estefanilha, Setubal (Portugal); Semiao, Viriato [Mechanical Engineering Department, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)]. E-mail: ViriatoSemiao@ist.utl.pt

2006-07-01T23:59:59.000Z

324

Iraq nuclear facility dismantlement and disposal project  

SciTech Connect (OSTI)

The Al Tuwaitha nuclear complex near Baghdad contains a significant number of nuclear facilities from Saddam Hussein's dictatorship. Because of past military operations, lack of upkeep and looting there is now an enormous radioactive waste problem at Al Tuwaitha. Al Tuwaitha contains uncharacterised radioactive wastes, yellow cake, sealed radioactive sources, and contaminated metals. The current security situation in Iraq hampers all aspects of radioactive waste management. Further, Iraq has never had a radioactive waste disposal facility, which means that ever increasing quantities of radioactive waste and material must be held in guarded storage. The Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) has been initiated by the U.S. Department of State (DOS) to assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials, while building human capacities so that the GOI can manage other environmental cleanups in their country. The DOS has funded the International Atomic Energy Agency (IAEA) to provide technical assistance to the GOI via a Technical Cooperation Project. Program coordination will be provided by the DOS, consistent with U.S. and GOI policies, and Sandia National Laboratories will be responsible for coordination of participants and for providing waste management support. Texas Tech University will continue to provide in-country assistance, including radioactive waste characterization and the stand-up of the Iraq Nuclear Services Company. The GOI owns the problems in Iraq and will be responsible for the vast majority of the implementation of the NDs Program. (authors)

Cochran, J.R.; Danneels, J. [Sandia National Laboratories, Albuquerque, NM (United States); Kenagy, W.D. [U.S. Department of State, Bureau of International Security and Nonproliferation, Office of Nuclear Energy, Safety and Security, Washington, DC (United States); Phillips, C.J.; Chesser, R.K. [Center for Environmental Radiation Studies, Texas Tech University, Lubbock, TX (United States)

2007-07-01T23:59:59.000Z

325

Conductivity measurements of molten metal oxides and their evaluation in a Direct Carbon Fuel Cell (DCFC)  

E-Print Network [OSTI]

ABSTRACT Since Direct Carbon Fuel Cell (DCFC) technology is in a beginning stage, emphasis should be laid on addressing the fundamental aspects. A molten electrolyte is required to facilitate ionic contact between solid ...

Yarlagadda, Venkata Raviteja

2011-09-08T23:59:59.000Z

326

Recovery and evaluation of somatic cells from ovine and bovine semen for use in nuclear transfer  

E-Print Network [OSTI]

for chromosome analysis of cellsbefore using them for cloning experiments. In our attempts to clone animals, blastocyststage embryos were successfully produced using epithelial cells cultured from semen ofthree different bulls. However, no compact morulae...

Liu, Jie

2009-05-15T23:59:59.000Z

327

Evaluating Charge Recombination Rate in Dye-Sensitized Solar Cells from Electronic Structure Calculations  

Science Journals Connector (OSTI)

Estimating the Maximum Attainable Efficiency in Dye-Sensitized Solar Cells ... Altogether, our study provides evidence that adsorption of the sensitizer via "three anchoring sites" is a key requisite to obtain high open-circuit potentials when employed in DSSC devices, thus paving the route to the design of new and more efficient sensitizers. ... cells are discussed, considering the high photovoltaic efficiencies obtained for devices employing Ru bipyridyl sensitizer dyes in combination with iodide/tri-iodide based redox electrolytes. ...

E. Maggio; N. Martsinovich; A. Troisi

2012-03-13T23:59:59.000Z

328

A data base for low-level radioactive waste disposal sites  

SciTech Connect (OSTI)

A computerized database was developed to assist the US Environmental Protection Agency (EPA) in evaluating methods and data for characterizing health hazards associated with land and ocean disposal options for low-level radioactive wastes. The data cover 1984 to 1987. The types of sites considered include Nuclear Regulatory Commission (NRC) licensed commercial disposal sites, EPA National Priority List (NPL) sites, US Department of Energy (DOE) Formerly Utilized Sites Remedial Action Project (FUSRAP) and DOE Surplus Facilities Management Program (SFMP) sites, inactive US ocean disposal sites, and DOE/Department of Defense facilities. Sources of information include reports from EPA, the US Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC), as well as direct communication with individuals associated with specific programs. The data include site descriptions, waste volumes and activity levels, and physical and radiological characterization of low-level wastes. Additional information on mixed waste, packaging forms, and disposal methods were compiled, but are not yet included in the database. 55 refs., 4 figs., 2 tabs.

Daum, M.L.; Moskowitz, P.D.

1989-07-01T23:59:59.000Z

329

Will new disposal regulations undo decades of progress?  

SciTech Connect (OSTI)

In 1980, the Belville Amendments to RCRA instructed EPA to 'conduct a detailed and comprehensive study and submit a report' to Congress on the 'adverse effects on human health and the environment, if any, of the disposal and utilization' of coal ash. In both 1988 and 1999, EPA submitted reports to Congress and recommended coal ash should not be regulated as hazardous waste. After the failure of a Tennesse power plant's coal ash disposal facility, EPA will be proposing new disposal regulations.

Ward, J. [John Ward Inc. (United States)

2009-07-01T23:59:59.000Z

330

Remedial Action and Waste Disposal Conduct of OperationsMatrix  

SciTech Connect (OSTI)

This Conduct of Operations (CONOPS) matrix incorporates the Environmental Restoration Disposal Facility (ERDF) CONOPS matrix (BHI-00746, Rev. 0). The ERDF CONOPS matrix has been expanded to cover all aspects of the RAWD project. All remedial action and waste disposal (RAWD) operations, including waste remediation, transportation, and disposal at the ERDF consist of construction-type activities as opposed to nuclear power plant-like operations. In keeping with this distinction, the graded approach has been applied to the developmentof this matrix.

M. A. Casbon.

1999-05-24T23:59:59.000Z

331

Commercial low-level radioactive waste disposal in the US  

SciTech Connect (OSTI)

Why are 11 states attempting to develop new low-level radioactive waste disposal facilities? Why is only on disposal facility accepting waste nationally? What is the future of waste disposal? These questions are representative of those being asked throughout the country. This paper attempts to answer these questions in terms of where we are, how we got there, and where we might be going.

Smith, P.

1995-10-01T23:59:59.000Z

332

Selected biological investigations on deep sea disposal of industrial wastes  

E-Print Network [OSTI]

found at an actual disposal site with respect to waste dilution with time. This technique was incorporated into the standard 96-hour bioassay test to afford a means of obtaining preliminary information regarding the bioaccumulation of each waste... with time from the 16 ocean dispose 1 study by Ball (1973) Laboratory dilution setup used to simulate conditions found at an actual disposal site with regard to waste dilution. 18 20 CHAPTER I INTRODUCTION Until recently man haS considered...

Page, Sandra Lea

2012-06-07T23:59:59.000Z

333

System design for disposal of tritium at TFTR  

SciTech Connect (OSTI)

The Tokamak Fusion Test Reactor (TFTR) has cleanup systems which convert tritium gas to the oxide form and absorb it on molecular sieve beds. These beds are regenerated by transferring their moisture content to disposable sieve beds. Preparing this sieve for disposal can be awkward and hazardous. Monitoring the tritium and moisture content of the disposable sieve is not straightforward. Modifications to the regeneration system at the TFTR are being made to address these concerns and others relating to maintainability.

Tuohy, J.M.; Cherdack, R.; Lacy, N.H.

1988-09-01T23:59:59.000Z

334

Marine disposal of radioactive wastes. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning radioactive waste disposal in seas, oceans, and coastal regions. Models, standards and regulations, government policy, and evaluations are covered. High-level and low-level nuclear wastes from nuclear power plants and ship propulsion reactors are discussed. References cover radionuclide migration, environmental exposure pathway, ecosystems, radiation dosages, carcinogens and neoplasms, and the effects on food chains. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1995-11-01T23:59:59.000Z

335

Implications of recent ICRP recommendations for risk assessments for radioactive waste disposal and cleanup  

SciTech Connect (OSTI)

The International Commission on Radiological Protection (ICRP) adopted a new set of recommendations in November 1990 which were issued at ICRP Publication No. 60 in March 1991. These recommendations incorporate new radiobiological information and outline a comprehensive system of radiological protection. This paper evaluates the implications of these new recommendations vis a vis risk assessments for radioactive waste disposal and remediation of radioactively contaminated sites.

Devgun, J.S.

1992-04-01T23:59:59.000Z

336

Implications of recent ICRP recommendations for risk assessments for radioactive waste disposal and cleanup  

SciTech Connect (OSTI)

The International Commission on Radiological Protection (ICRP) adopted a new set of recommendations in November 1990 which were issued at ICRP Publication No. 60 in March 1991. These recommendations incorporate new radiobiological information and outline a comprehensive system of radiological protection. This paper evaluates the implications of these new recommendations vis a vis risk assessments for radioactive waste disposal and remediation of radioactively contaminated sites.

Devgun, J.S.

1992-01-01T23:59:59.000Z

337

Long-term evaluation of solid oxide fuel cell candidate materials in a 3-cell generic short stack fixture, Part II: sealing glass stability, microstructure and interfacial reactions.  

SciTech Connect (OSTI)

A generic solid oxide fuel cell stack test fixture was developed to evaluate candidate materials and processing methods under realistic conditions. Part I of the work addressed the stack fixture, seal system and cell performance of a 3-cell short stack tested at 800oC for 6000h. Commercial NiO-YSZ anode-supported thin YSZ electrolyte cells with LSM cathodes were used for assessment and were tested in constant current mode with dilute (~50% H2) fuel versus air. Part II of the work examined the sealing glass stability, microstructure development, interfacial reactions, and volatility issues. Part III of the work investigated the stability of Ce-(Mn,Co) spinel coating, AISI441 metallic interconnect, alumina coating, and cell degradation. After 6000h of testing, the refractory sealing glass YSO77 (Ba-Sr-Y-B-Si) showed desirable chemical compatibility with YSZ electrolyte in that no discernable interfacial reaction was identified, consistent with thermodynamic calculations. In addition, no glass penetration into the thin electrolyte was observed. At the aluminized AISI441 interface, the protective alumina coating appeared to be corroded by the sealing glass. Air side interactions appeared to be more severe than fuel side interactions. Metal species such as Cr, Mn, and Fe were detected in the glass, but were limited to the vicinity of the interface. No alkaline earth chromates were found at the air side. Volatility was also studied in a similar glass and weight loss in a wet reducing environment was determined. Using the steady-state volatility data, the life time (40,000h) weight loss of refractory sealing glass YSO77 was estimated to be less than 0.1 wt%.

Chou, Y. S.; Stevenson, Jeffry W.; Choi, Jung-Pyung

2014-03-15T23:59:59.000Z

338

Hazardous Waste Treatment, Storage and Disposal Facilities (TSDF...  

Open Energy Info (EERE)

Treatment, Storage and Disposal Facilities (TSDF) Guidance Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook:...

339

South Carolina Radioactive Waste Transportation and Disposal Act (South Carolina)  

Broader source: Energy.gov [DOE]

The Department of Health and Environmental Control is responsible for regulating the transportation of radioactive waste, with some exceptions, into or within the state for storage, disposal, or...

340

Canister design for deep borehole disposal of nuclear waste .  

E-Print Network [OSTI]

??The objective of this thesis was to design a canister for the disposal of spent nuclear fuel and other high-level waste in deep borehole repositories… (more)

Hoag, Christopher Ian.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "disposal cell evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Fees For Disposal Of Hazardous Waste Or Substances (Alabama)  

Broader source: Energy.gov [DOE]

The article lists annual payments to be made to counties, restrictions on disposal of hazardous waste, additional fees collected by counties and penalties.

342

The Hazardous Waste/Mixed Waste Disposal Facility  

SciTech Connect (OSTI)

The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy's (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency's (EPA's) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996.

Bailey, L.L.

1991-01-01T23:59:59.000Z

343

The Hazardous Waste/Mixed Waste Disposal Facility  

SciTech Connect (OSTI)

The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy`s (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency`s (EPA`s) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996.

Bailey, L.L.

1991-12-31T23:59:59.000Z

344

Erosion Control and Revegetation at DOE's Lowman Disposal Site...  

Office of Environmental Management (EM)

Site, Lowman, Idaho More Documents & Publications Title I Disposal Sites Annual Report Long-Term Surveillance and Maintenance Program 2003 Report Revegetation of the Rocky Flats...

345

Disposal Practices at the Savannah River Site | Department of...  

Office of Environmental Management (EM)

Site More Documents & Publications Compilation of ETR Summaries Disposal Practices at the Nevada Test Site 2008 Briefing: DOE EM ITR Landfill Assessment Project Lessons Learned...

346

Solid Waste Disposal Facilities (Massachusetts) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solid Waste Disposal Facilities (Massachusetts) Solid Waste Disposal Facilities (Massachusetts) Solid Waste Disposal Facilities (Massachusetts) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Transportation Tribal Government Utility Program Info State Massachusetts Program Type Siting and Permitting Provider Department of Environmental Protection These sections articulate rules for the maintenance and operation of solid waste disposal facilities, as well as site assignment procedures. Applications for site assignment will be reviewed by the Massachusetts Department of Environmental Protection as well as the Department of Public

347

2013 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report Posted  

Broader source: Energy.gov [DOE]

The report summarizes the comments of expert peer reviewers at the 2013 Annual Merit Review and Peer Evaluation Meeting, which was held May 13–17, 2013, in Arlington, Virginia.

348

Microsoft Word - Appendix C_DisposalCellContents.doc  

Office of Legacy Management (LM)

and entombed in soil. Total occupied volume is below 50 cy. Use 50 cy. 50.00 Brine tanks from SWTP Mixed with soil. Est. conversion factor is 0.430. 25.80 Contaminated Jersey...

349

Stakeholder Engagement on the Environmental Impact Statement for the Disposal of Greater-Than-Class C Low-Level Radioactive Waste -12565  

SciTech Connect (OSTI)

The Department of Energy's (DOE) Office of Disposal Operations is responsible for developing a permanent disposal capability for a small volume, but highly radioactive, class of commercial low-level radioactive waste, known as Greater-Than-Class C (GTCC) low-level radioactive waste. DOE has issued a draft environmental impact statement (EIS) and will be completing a final EIS under the National Environmental Policy Act (NEPA) that evaluates a range of disposal alternatives. Like other classes of radioactive waste, proposing and evaluating disposal options for GTCC waste is highly controversial, presents local and national impacts, and generates passionate views from stakeholders. Recent national and international events, such as the cancellation of the Yucca Mountain project and the Fukushima Daiichi nuclear accident, have heighten stakeholder awareness of everything nuclear, including disposal of radioactive waste. With these challenges, the Office of Disposal Operations recognizes that informed decision-making that will result from stakeholder engagement and participation is critical to the success of the GTCC EIS project. This paper discusses the approach used by the Office of Disposal Operations to engage stakeholders on the GTCC EIS project, provides advice based on our experiences, and proffers some ideas for future engagements in today's open, always connected cyber environment. (authors)

Gelles, Christine; Joyce, James; Edelman, Arnold [Office of Environmental Management, Office of Disposal Operations-EM-43 (United States)

2012-07-01T23:59:59.000Z

350

Treatment, storage, and disposal alternatives for the gunite and associated tanks at the Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The gunite and associated tanks (GAAT) are inactive, liquid low-level waste tanks located in and around the North and South Tank Farms at Oak Ridge National Laboratory. These underground tanks are the subject of an ongoing treatability study that will determine the best remediation alternatives for the tanks. As part of the treatability study, an assessment of viable treatment, storage, and disposal (TSD) alternatives has been conducted. The report summarizes relevant waste characterization data and statistics obtained to date. The report describes screening and evaluation criteria for evaluating TSD options. Individual options that pass the screening criteria are described in some detail. Order-or-magnitude cost estimates are presented for each of the TSD system alternatives. All alternatives are compared to the baseline approach of pumping all of the GAAT sludge and supernate to the Melton Valley Storage Tank (MVST) facility for eventual TSD along with the existing MOST waste. Four TSD systems are identified as alternatives to the baseline approach. The baseline is the most expensive of the five identified alternatives. The least expensive alternative is in-situ grouting of all GAAT sludge followed by in-situ disposal. The other alternatives are: (1) ex-situ grouting with on-site storage and disposal at Nevada Test Site (NTS); (2) ex-situ grouting with on-site storage and disposal at NTS and the Waste Isolation Pilot Plant (WIPP); and (3) ex-situ vitrification with on-site storage and disposal at NTS and WIPP.

DePew, R.E.; Rickett, K. [Advanced Systems Technology, Inc., Oak Ridge, TN (United States); Redus, K.S. [MACTEC, Oak Ridge, TN (United States); DuMont, S.P. [Hazardous and Medical Waste Services, Inc. (United States); Lewis, B.E.; DePaoli, S.M.; Van Hoesen, S.D. Jr. [Oak Ridge National Lab., TN (United States)

1996-05-01T23:59:59.000Z

351

U.S. Department of Energy Hydrogen and Fuel Cells Program 2013 Annual Merit Review (AMR) and Peer Evaluation Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TRANSFORMATION TRANSFORMATION 442 | FY 2013 Merit Review and Peer Evaluation Report 2013 - Market Transformation Summary of Annual Merit Review of the Market Transformation Program Summary of Reviewer Comments on the Market Transformation Program: The purpose of the Market Transformation program is to spur market growth for domestically produced hydrogen and fuel cell systems. By supporting increased sales in key early markets, this program helps to identify and overcome non-technical barriers to commercial deployment and to reduce the life cycle costs of fuel cell power by helping to achieve economies of scale. The current focus of the Market Transformation program is to build on past successes in lift truck and emergency backup power applications (part of the U.S. Department of Energy's [DOE's]

352

Oil-field disposal practices in hydrogeologic setting of Midway Sunset and Buena Vista oil fields; review of past effects, current activities, and future scenarios  

SciTech Connect (OSTI)

Class 2 water disposal in the Midway Sunset and Buena Vista oil fields of Kern County, California, has been by injection and infiltration from spreading ponds into the unsaturated zone, which is typically hundreds of feet thick. Water collection is mostly through an extensive tributary network of collection ditches radiating from several disposal facility locations. The purpose of this study was to evaluate the subsurface movement of fluid in the hydrogeological environment and to determine the fate of the disposed water and its long-term impact on the area.

Sengebush, R.M.; Kiser, S.C.; Greenwood, E.J.; Crozier, R.N.; Crewdson, R.A.; Wilson, M.J.; Rycerski, B.A.

1988-03-01T23:59:59.000Z

353

U.S. Department of Energy Hydrogen and Fuel Cells Program 2013 Annual Merit Review (AMR) and Peer Evaluation Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AND DELIVERY AND DELIVERY FY 2013 Merit Review and Peer Evaluation Report | 7 2013 - Hydrogen Production and Delivery Summary of Annual Merit Review of the Hydrogen Production and Delivery Program Summary of Reviewer Comments on the Hydrogen Production and Delivery Program: This review session evaluated hydrogen production and delivery research and development (R&D) activities in the U.S. Department of Energy (DOE) Fuel Cell Technologies Office (FCTO) in the Office of Energy Efficiency and Renewable Energy. The hydrogen production projects reviewed represented a diverse portfolio of technologies to produce hydrogen from renewable energy sources. Production project sub-categories included water electrolysis, solar-driven thermochemical cycles, photoelectrochemical (PEC) direct water splitting, and biological hydrogen

354

U.S. Department of Energy Hydrogen and Fuel Cells Program 2013 Annual Merit Review (AMR) and Peer Evaluation Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

VALIDATION VALIDATION 380 | FY 2013 Merit Review and Peer Evaluation Report 2013 - Technology Validation Summary of Annual Merit Review of the Technology Validation Program Summary of Reviewer Comments on the Technology Validation Program: In general, the reviewers believed the program area was adequately covered. The role of the Technology Validation program within the structure of the Fuel Cell Technologies Office was clearly identified. Progress relating to projects was clearly presented and plans were identified for addressing issues and challenges. The partnership with the National Renewable Energy Laboratory's (NREL's) data collection/analysis team was seen as key to the success

355

U.S. Department of Energy Hydrogen and Fuel Cells Program 2013 Annual Merit Review (AMR) and Peer Evaluation Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ANALYSIS ANALYSIS FY 2013 Merit Review and Peer Evaluation Report | 465 2013 - Systems Analysis Summary of Annual Merit Review of the Systems Analysis Program Summary of Reviewer Comments on the Systems Analysis Program: The reviewers considered the Systems Analysis program to be an essential component of the U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program's (the Program's) mission. The projects were considered to be appropriately diverse and focused on addressing technical barriers and meeting targets. In general, the reviewers noted that the Systems Analysis program is well managed and demonstrated the ability to address immediate analytical needs and overall objectives and plans, especially to implement the new initiative, H

356

U.S. Department of Energy Hydrogen and Fuel Cells Program 2012 Annual Merit Review and Peer Evaluation Report: May 14-18, 2012, Arlington, VA  

SciTech Connect (OSTI)

This document summarizes the comments provided by peer reviewers on hydrogen and fuel cell projects presented at the fiscal year (FY) 2012 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting (AMR), held May 14-18, 2012, in Arlington, VA.

Not Available

2012-09-01T23:59:59.000Z

357

Grout Long Radius Flow Testing to Support Saltstone Disposal Unit 6 Design - 13352  

SciTech Connect (OSTI)

The Saltstone Facility, located within the Savannah River Site (SRS) near Aiken, South Carolina, consists of two facility segments: The Saltstone Production Facility (SPF) and the Saltstone Disposal Facility (SDF). The SPF receives decontaminated legacy low level sodium salt waste solution that is a byproduct of prior nuclear material processing. The salt solution is mixed with cementitious materials to form a grout slurry known as 'Saltstone'. The grout is pumped to the SDF where it is placed in a Saltstone Disposal Unit (SDU) to solidify. SDU 6 is referred to as a 'mega vault' and is currently in the design stage. The conceptual design for SDU 6 is a single cell, cylindrical geometry approximately 114.3 meters in diameter by 13.1 meter high and is larger than previous cylindrical SDU designs, 45.7 meters in diameter by 7.01 meters high (30 million gallons versus 2.9 million gallons of capacity). Saltstone slurry will be pumped into the new waste disposal unit through roof openings at a projected flow rate of about 34.1 cubic meters per hour. Nine roof openings are included in the design to discharge material into the SDU with an estimated grout pour radius of 22.9 to 24.4 meters and initial drop height of 13.1 meters. The conceptual design for the new SDU does not include partitions to limit the pour radius of the grout slurry during placement other than introducing material from different pour points. This paper addresses two technical issues associated with the larger diameter of SDU 6; Saltstone flow distance in a tank 114.3 meters in diameter and quality of the grout. A long-radius flow test scaled to match the velocity of an advancing grout front was designed to address these technology gaps. The emphasis of the test was to quantify the flow distance and to collect samples to evaluate cured properties including compressive strength, porosity, density, and saturated hydraulic conductivity. Two clean cap surrogate mixes (Saltstone premix plus water) were designed to simulate slurry with the reference Saltstone rheology and a Saltstone with extra water from the process flushing operation. Long-radius flow tests were run using approximately 4.6 cubic meters of each of these mixes. In both tests the pump rate was 0.063 liters/second (1 gpm). A higher pump rate, 0.19 liters/second (3 gpm), was used in a third long-radius flow test. The angle of repose of the grout wedges increased as a function of time in all three tests. The final angles of repose were measured at 3.0 deg., 2.4 deg., and 0.72 deg.. The pump rate had the largest effect on the radial flow distance and slope of the grout surface. The slope on the pour placed at 0.19 liters/second (3 gpm) was most representative of the slope on the grout currently being pumped into SDU 2 which is estimated to be 0.7 deg. to 0.9 deg. The final grout heights at 1/3 of a meter from the discharge point were 115, 105, and 38 cm. Entrapped air (? 0.25 cm bubbles) was also observed in all of the mixes. The entrapped air appeared to be released from the flows within about 3.1 meters (10 feet) of the discharge point. The bleed water was clear but had a thin layer of floating particulates. The bleed water should be retrievable by a drain water collection system in SDU 6 assuming the system does not get clogged. Layering was observed and was attributed to intervals when the hopper was being cleaned. Heat from the hydration reactions was noticeable to the touch. (authors)

Stefanko, D.B.; Langton, C.A.; Serrato, M.G. [Savannah River National Laboratory, Savannah River Nuclear Solutions, LLC, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Nuclear Solutions, LLC, Savannah River Site, Aiken, SC 29808 (United States); Brooks, T.E. II; Huff, T.H. [Savannah River Remediation, LLC, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River Remediation, LLC, Savannah River Site, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

358

EIS-0110: Central Waste Disposal Facility for Low-Level Radioactive Waste, Oak Ridge Reservation, Oak Ridge, Tennessee  

Broader source: Energy.gov [DOE]

This EIS assesses the environmental impacts of alternatives for the disposal of low-level waste and by-product materials generated by the three major plants on the Oak Ridge Reservation (ORR). In addition to the no-action alternative, two classes of alternatives are evaluated: facility design alternatives and siting alternatives.

359

Sludge utilization and disposal in Virginia  

SciTech Connect (OSTI)

This state-of-the-art study was initiated to determine the problem issues, present knowledge about the issues, and additional research needs in the area of land disposal of municipal sewage sludge. Three questionnaires were developed to survey technically oriented professional, county extension agents, and Virginia NPDES permit holders to obtain these groups' views on problems and deficiencies needing further investigation. Another phase of the study was to conduct an extensive review of the literature on the subject of land application of sewage sludge. Listings of pertinent literature relating to land application with specific interest toward potentially toxic metals, pathogens, nitrogen, and phosphorus were obtained and reviewed. Additional research is needed in the following areas: a method that accurately estimates metal availability within the soil; a method to determine the potential for a disease outbreak from controlled application of treated municipal sewage sludge; a more precise method of N-balancing; the impact of P loading on water quality.

Martens, D.C.; McCart, G.D.; Reneau, R.B. Jr; Simpson, T.W.; Ban-Kiat, T.

1982-10-01T23:59:59.000Z

360

Risk assessment of nonhazardous oil-field waste disposal in salt caverns.  

SciTech Connect (OSTI)

In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. Argonne determined that if caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they could be suitable for disposing of oil-field wastes. On the basis of these findings, Argonne subsequently conducted a preliminary evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the NOW disposed of in domal salt caverns. Steps used in this evaluation included the following: identifying potential contaminants of concern, determining how humans could be exposed to these contaminants, assessing contaminant toxicities, estimating contaminant intakes, and calculating human cancer and noncancer risk estimates. Five postclosure cavern release scenarios were assessed. These were inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks, failure of the cavern through leaky interbeds, and a partial collapse of the cavern roof. Assuming a single, generic, salt cavern and generic oil-field wastes, potential human health effects associated with constituent hazardous substances (arsenic, benzene, cadmium, and chromium) were assessed under each of these scenarios. Preliminary results provided excess cancer risk and hazard index (referring to noncancer health effects) estimates that were well within the US Environmental Protection Agency (EPA) target range for acceptable exposure risk levels. These results led to the preliminary conclusion that from a human health perspective, salt caverns can provide an acceptable disposal method for nonhazardous oil-field wastes.

Elcock, D.

1998-03-05T23:59:59.000Z

Note: This page contains sample records for the topic "disposal cell evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Evaluation of multi-brush anode systems in microbial fuel cells Vanessa Lanas, Bruce E. Logan  

E-Print Network [OSTI]

on performance was studied in terms of carbon fiber length (brush diameter), the number of brushes connected (You et al., 2007), carbon cloth (Wang et al., 2009), and activated carbon fiber felt (Zhu et al., 2011 27 August 2013 Available online 5 September 2013 Keywords: Microbial fuel cell Carbon brush anode

362

Cell Penetrating Peptide (CPP)-Conjugated Desferrioxamine for Enhanced Neuroprotection: Synthesis and in Vitro Evaluation  

Science Journals Connector (OSTI)

Enhanced access to intracellular labile iron compared to the parent siderophore was achieved in HeLa and RBE4 (a model of blood-brain-barrier) cell lines. ... DFO antioxidant and iron binding properties were preserved and its bioavailability was increased upon CPP conjugation, which opens new therapeutic possibilities for neurodegenerative processes associated with brain iron overload. ...

Dibakar Goswami; M. Teresa Machini; Daniel M. Silvestre; Cassiana S. Nomura; Breno Pannia Esposito

2014-10-09T23:59:59.000Z

363

Sorting and disposal of hazardous laboratory Radioactive waste  

E-Print Network [OSTI]

Sorting and disposal of hazardous laboratory waste Radioactive waste Solid radioactive waste or in a Perspex box. Liquid radioactive waste collect in a screw-cap plastic bottle, ½ or 1 L size. Place bottles in a tray to avoid spill Final disposal of both solid and radioactive waste into the yellow barrel

Maoz, Shahar

364

1 INSTRODUCTION In the concept of geological radioactive waste disposal,  

E-Print Network [OSTI]

1 INSTRODUCTION In the concept of geological radioactive waste disposal, argillite is being of the radioactive waste disposal, the host rock will be subjected to various thermo-hydro-mechanical loadings, thermal solicitation comes from the heat emitting from the radioactive waste packages. On one hand

Boyer, Edmond

365

A model approach to radioactive waste disposal at Sellafield  

E-Print Network [OSTI]

A model approach to radioactive waste disposal at Sellafield R. 5. Haszeldine* and C. Mc of the great environmentalproblems of our age is the safe disposal of radioactive waste for geological time periods. Britain is currently investigating a potential site for underground burial of waste, near

Haszeldine, Stuart

366

User Guide for Disposal of Unwanted Items and Electronic Waste  

E-Print Network [OSTI]

is the Recycle department at 502-6808 o For more information on the UCSF Sustainability program visit: http://sustainability.ucsf.edu/stay_informed/recycling_resources consulting support Ensuring proper reuse, recycle, or disposal Maintaining regulatory and policy compliance metal and wood o Waste/trash management o Recycle, reuse or disposal of materials D&S does not process o

Mullins, Dyche

367

Solid waste disposal options: an optimum disposal model for the management of municipal solid waste  

E-Print Network [OSTI]

and compostable material was generally burned in backyards. In 1970, the Clean Air Act was passed restricting the burning of leaves and other yard waste. ' These wastes were then disposed in landfills. As landfills reached capacity, commu- nities composted... separation pro- grams because of their "throw-away" mentality. " ~ln in r ttgtt Incineration is the controlled burning of the combustible fraction of solid waste. The first electrical generating station in the United States that was fueled by solid waste...

Haney, Brenda Ann

2012-06-07T23:59:59.000Z

368

Operating Experience and Lessons Learned in the Use of Soft-Sided Packaging for Transportation and Disposal of Low Activity Radioactive Waste  

SciTech Connect (OSTI)

This paper describes the operating experience and lessons learned at U.S. Department of Energy (DOE) sites as a result of an evaluation of potential trailer contamination and soft-sided packaging integrity issues related to the disposal of low-level and mixed low-level (LLW/MLLW) radioactive waste shipments. Nearly 4.3 million cubic meters of LLW/MLLW will have been generated and disposed of during fiscal year (FY) 2010 to FY 2015—either at commercial disposal sites or disposal sites owned by DOE. The LLW/MLLW is packaged in several different types of regulatory compliant packaging and transported via highway or rail to disposal sites safely and efficiently in accordance with federal, state, and local regulations and DOE orders. In 1999, DOE supported the development of LLW containers that are more volumetrically efficient, more cost effective, and easier to use as compared to metal or wooden containers that existed at that time. The DOE Idaho National Engineering and Environmental Laboratory (INEEL), working in conjunction with the plastic industry, tested several types of soft-sided waste packaging systems that meet U.S. Department of Transportation requirements for transport of low specific activity and surface contaminated objects. Since then, soft-sided packaging of various capacities have been used successfully by the decontamination and decommissioning (D&D) projects to package, transport, and dispose D&D wastes throughout the DOE complex. The joint team of experts assembled by the Energy Facility Contractors Group from DOE waste generating sites, DOE and commercial waste disposal facilities, and soft-sided packaging suppliers conducted the review of soft-sided packaging operations and transportation of these packages to the disposal sites. As a result of this evaluation, the team developed several recommendations and best practices to prevent or minimize the recurrences of equipment contamination issues and proper use of soft-sided packaging for transport and disposal of waste.

Kapoor, A. [DOE; Gordon, S. [NSTec; Goldston, W. [Energy Solutions

2013-07-08T23:59:59.000Z

369

2009 Performance Assessment for the Saltstone Disposal Facility |  

Broader source: Energy.gov (indexed) [DOE]

Performance Assessment for the Saltstone Disposal Facility Performance Assessment for the Saltstone Disposal Facility 2009 Performance Assessment for the Saltstone Disposal Facility This Performance Assessment (PA) for the Savannah River Site (SRS) was prepared to support the operation and eventual closure of the Saltstone Disposal Facility (SDF). This PA was prepared to demonstrate compliance with the pertinent requirements of the United States Department of Energy (DOE) Order 435.1, Change 1, Radioactive Waste Management, Chapter IV, and Title 10, of the Code of Federal Regulations (CFR) Part 61, Licensing Requirements for Land Disposal of Radioactive Waste, Subpart C as required by the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, Section 3116. [DOE O 435.1-1, 10 CFR 61, NDAA_3116]

370

Summary - Disposal Practices at the Savannah River Site  

Broader source: Energy.gov (indexed) [DOE]

ETR-19 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Disposal Practices at the Savannah River Site Why DOE-EM Did This Review Disposal operations have been ongoing at the Savannah River Site (SRS) for over 50 years. Active disposal in E-Area, is near the center of the site. Although a wide range of wastes are being managed at the SRS, only low level radioactive wastes (LLRW) are disposed of on site. Wastes are disposed of in unlined slit and engineered trenches, and in low activity waste and intermediate level vaults. Some wastes are isolated in place with grout and all wastes will be covered with a cap that includes a hydraulic barrier to limit precipitation infiltration. The objective of this review was to

371

Low-Level Waste Disposal Facility Federal Review Group Manual  

Broader source: Energy.gov (indexed) [DOE]

LEVEL WASTE DISPOSAL FACILITY FEDERAL REVIEW GROUP MANUAL REVISION 3 JUNE 2008 (This page intentionally left blank) Low-Level JVllsfe Disposal Fllcili~l' Federal Review Group il1allUlli Revision 3, June 200S Concurrence The Low-Level Waste Disposal Facility Federal Review Group Manual, Revision 3, is approved for use as of the most recent date below. Date Chair, Low-Level Waste Disposal Federal Review Group Andrew WalJo, 1II Deputy Director, Otlice of Nuclear Safety, Quality Assurance, and Environment Department of Energy OHlce of Health, Safety, and Security e C. WilJiams Associate Administrator for Infrastructure and Environment National Nuclear Security Administration Low-Level 'Vaste Disposal Facility Federal Review Group J1aJll/ai

372

NNSA Reaches LEU Disposal Milestone | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Reaches LEU Disposal Milestone | National Nuclear Security Reaches LEU Disposal Milestone | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > NNSA Reaches LEU Disposal Milestone NNSA Reaches LEU Disposal Milestone November 08, 2004 Aiken, SC NNSA Reaches LEU Disposal Milestone The National Nuclear Security Administration's reached an important

373

OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE | Department  

Broader source: Energy.gov (indexed) [DOE]

OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE December 1, 2010 - 12:00pm Addthis OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE Oak Ridge, TN - The Environmental Management Waste Management Facility (EMWMF) provides the onsite disposal capability for the majority of cleanup-generated wastes on the Oak Ridge Reservation. EMWMF has continued a long-standing pattern of safe, complaint operations with 3,000 days without a lost workday case since operations commenced on May 28, 2002. The EMWMF has placed 1.5 million tons of waste and fill in the facility. The EMWMF receives waste from many Oak Ridge cleanup projects, including American Recovery and Reinvestment Act-funded projects, multiple

374

Drilling Waste Management Fact Sheet: Offsite Disposal at Commercial  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commercial Disposal Facilities Commercial Disposal Facilities Fact Sheet - Commercial Disposal Facilities Although drilling wastes from many onshore wells are managed at the well site, some wastes cannot be managed onsite. Likewise, some types of offshore drilling wastes cannot be discharged, so they are either injected underground at the platform (not yet common in the United States) or are hauled back to shore for disposal. According to an American Petroleum Institute waste survey, the exploration and production segment of the U.S. oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes in 1985. The report estimates that 28% of drilling wastes are sent to offsite commercial facilities for disposal (Wakim 1987). A similar American Petroleum Institute study conducted ten years later found that the volume of drilling waste had declined substantially to about 150 million bbl.

375

Research, Development, and Demonstration Roadmap for Deep Borehole Disposal  

Broader source: Energy.gov (indexed) [DOE]

Research, Development, and Demonstration Roadmap for Deep Borehole Research, Development, and Demonstration Roadmap for Deep Borehole Disposal Research, Development, and Demonstration Roadmap for Deep Borehole Disposal This roadmap is intended to advance deep borehole disposal (DBD) from its current conceptual status to potential future deployment as a disposal system for spent nuclear fuel (SNF) and high-level waste (HLW). The objectives of the DBD RD&D roadmap include providing the technical basis for fielding a DBD demonstration project, defining the scientific research activities associated with site characterization and postclosure safety, as well as defining the engineering demonstration activities associated with deep borehole drilling, completion, and surrogate waste canister emplacement. Research, Development, and Demonstration Roadmap for Deep Borehole Disposal

376

Summary - Operational Issues at the Environmental Restoration Disposal Facility (ERDF) at Hanford  

Broader source: Energy.gov (indexed) [DOE]

ERDF ERDF ETR Report Date: June 2007 ETR-6 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Operational Issues at the Environmental Restoration Disposal Facility(ERDF) at Hanford Why DOE-EM Did This Review The ERDF is a large- scale disposal facility authorized to receive waste from Hanford cleanup activities. It contains double-lined cells with a RCRA Subtitle C- type liner and leachate collection system. By 2007, 6.8 million tons of waste with 39,000 Curies of radioactivity had been placed in the ERDF. In 2006, events occurred that affected the operation of the automatic leachate transfer pumps and a technician confessed to having not performed compaction tests and to falsification of the data.

377

Evaluation of Yeast Cell Wall on Early Production Laying Hen Performance  

E-Print Network [OSTI]

from non-hydrolyzable oligo and polysaccharides increases the proliferation of the gut epithelial cells, thus increasing intestinal tissue weight, with changes in the overall morphology of intestinal mucosa (Niba et al., 2009; Bonos et al., 2011... and multiply within the digestive tract mucosa (Baurhoo et al., 2007b; Bonos et al., 2011; Jacobs, 2011). Types of prebiotics Most identified prebiotics are classified as carbohydrate oligosaccharides with differing molecular structure that are normally...

Hashim, Mohammed Malik Hashim 1981-

2012-11-08T23:59:59.000Z

378

Systems engineering study: tank 241-C-103 organic skimming,storage, treatment and disposal options  

SciTech Connect (OSTI)

This report evaluates alternatives for pumping, storing, treating and disposing of the separable phase organic layer in Hanford Site Tank 241-C-103. The report provides safety and technology based preferences and recommendations. Two major options and several varations of these options were identified. The major options were: 1) transfer both the organic and pumpable aqueous layers to a double-shell tank as part of interim stabilization using existing salt well pumping equipment or 2) skim the organic to an above ground before interim stabilization of Tank 241-C-103. Other options to remove the organic were considered but rejected following preliminary evaluation.

Klem, M.J.

1996-10-23T23:59:59.000Z

379

Performance Assessment for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility  

SciTech Connect (OSTI)

This performance assessment for the Remote-Handled Low-Level Radioactive Waste Disposal Facility at the Idaho National Laboratory documents the projected radiological dose impacts associated with the disposal of low-level radioactive waste at the facility. This assessment evaluates compliance with the applicable radiological criteria of the U.S. Department of Energy and the U.S. Environmental Protection Agency for protection of the public and the environment. The calculations involve modeling transport of radionuclides from buried waste to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses are calculated for both offsite receptors and individuals who inadvertently intrude into the waste after site closure. The results of the calculations are used to evaluate the future performance of the low-level radioactive waste disposal facility and to provide input for establishment of waste acceptance criteria. In addition, one-factor-at-a-time, Monte Carlo, and rank correlation analyses are included for sensitivity and uncertainty analysis. The comparison of the performance assessment results to the applicable performance objectives provides reasonable expectation that the performance objectives will be met

Annette L. Schafer; A. Jeffrey Sondrup; Arthur S. Rood

2012-05-01T23:59:59.000Z

380

Analysis of Mineral Trapping for CO2 Disposal in Deep Aquifers  

Office of Scientific and Technical Information (OSTI)

Reactive Geochemical Transport Simulation to Study Mineral Trapping Reactive Geochemical Transport Simulation to Study Mineral Trapping for CO 2 Disposal in Deep Saline Arenaceous Aquifers Tianfu Xu, John A. Apps, and Karsten Pruess Earth Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA Abstract. A reactive fluid flow and geochemical transport numerical model for evaluating long-term CO 2 disposal in deep aquifers has been developed. Using this model, we performed a number of sensitivity simulations under CO 2 injection conditions for a commonly encountered Gulf Coast sediment to analyze the impact of CO 2 immobilization through carbonate precipitation. Geochemical models are needed because alteration of the predominant host rock aluminosilicate minerals is very slow and is not

Note: This page contains sample records for the topic "disposal cell evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

PORFLOW MODELING FOR A PRELIMINARY ASSESSMENT OF THE PERFORMANCE OF NEW SALTSTONE DISPOSAL UNIT DESIGNS  

SciTech Connect (OSTI)

At the request of Savannah River Remediation (SRR), SRNL has analyzed the expected performance obtained from using seven 32 million gallon Saltstone Disposal Units (SDUs) in the Z-Area Saltstone Disposal Facility (SDF) to store future saltstone grout. The analysis was based on preliminary SDU final design specifications. The analysis used PORFLOW modeling to calculate the release of 20 radionuclides from an SDU and transport of the radionuclides and daughters through the vadose zone. Results from this vadose zone analysis were combined with previously calculated releases from existing saltstone vaults and FDCs and a second PORFLOW model run to calculate aquifer transport to assessment points located along a boundary 100 m from the nearest edge of the SDF sources. Peak concentrations within 12 sectors spaced along the 100 m boundary were determined over a period of evaluation extending 20,000 years after SDF closure cap placement. These peak concentrations were provided to SRR to use as input for dose calculations.

Smith, F.

2012-08-06T23:59:59.000Z

382

Natural hazards phenomena mitigation with respect to seismic hazards at the Environmental Restoration Disposal Facility  

SciTech Connect (OSTI)

This report provides information on the seismic hazard for design of the proposed Environmental Restoration Disposal Facility (ERDF), a facility designed for the disposal of wastes generated during the cleanup of Hanford Site aggregate areas. The preferred ERDF site is located south and east of 200 East and 200 West Areas. The Washington State Groundwater Protection Program (WAC 173-303-806 (4)(a)(xxi)) requires that the characteristics of local and regional hydrogeology be defined. A plan for that work has been developed (Weekes and Borghese 1993). In addition, WAC 173-303-282 provides regulatory guidance on siting a dangerous waste facility, and US Department of Energy (DOE) Order 5480.28 requires consideration of natural phenomena hazards mitigation for DOE sites and facilities. This report provides information to evaluate the ERDF site with respect to seismic hazard. The ERDF will be a Corrective Action Management Unit (CAMU) as defined by 40 CFR 260.10.

Reidel, S.P.

1994-01-06T23:59:59.000Z

383

Mitigation action plan for remedial action at the Uranium Mill Tailing Sites and Disposal Site, Rifle, Colorado  

SciTech Connect (OSTI)

The Estes Gulch disposal site is approximately 10 kilometers (6 miles) north of the town of Rifle, off State Highway 13 on Federal land administered by the Bureau of Land Management. The Department of Energy (DOE) will transport the residual radioactive materials (RRM) by truck to the Estes Gulch disposal site via State Highway 13 and place it in a partially below-grade disposal cell. The RRM will be covered by an earthen radon barrier, frost protection layers, and a rock erosion protection layer. A toe ditch and other features will also be constructed to control erosion at the disposal site. After removal of the RRM and disposal at the Estes Gulch site, the disturbed areas at all three sites will be backfilled with clean soils, contoured to facilitate surface drainage, and revegetated. Wetlands areas destroyed at the former Rifle processing sites will be compensated for by the incorporation of now wetlands into the revegetation plan at the New Rifle site. The UMTRA Project Office, supported by the Remedial Action Contractor (RAC) and the Technical Assistance Contractor (TAC), oversees the implementation of the MAP. The RAC executes mitigation measures in the field. The TAC provides monitoring of the mitigation actions in cases where mitigation measures are associated with design features. Site closeout and inspection compliance will be documented in the site completion report.

Not Available

1992-07-01T23:59:59.000Z

384

Cellcube: A new system for large scale growth of adherent cells  

Science Journals Connector (OSTI)

A new disposable cell culture unit for adherent cell lines, the CellCube, was used to grow a variety of...2 growth surface area generated up to 4·109 cells. The disposable system consists of a series of polystyre...

Horst D. Blasey; Cedric Isch; Alain R. Bernard

1995-10-01T23:59:59.000Z

385

Safer Transportation and Disposal of Remote Handled Transuranic Waste - 12033  

SciTech Connect (OSTI)

Since disposal of remote handled (RH) transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP) began in 2007, the Department of Energy (DOE) has had difficulty meeting the plans and schedule for disposing this waste. PECOS Management Services, Inc. (PECOS) assessed the feasibility of proposed alternate RH-TRU mixed waste containerisation concepts that would enhance the transportation rate of RH-TRU waste to WIPP and increase the utilization of available WIPP space capacity for RH-TRU waste disposal by either replacing or augmenting current and proposed disposal methods. In addition engineering and operational analyses were conducted that addressed concerns regarding criticality, heat release, and worker exposure to radiation. The results of the analyses showed that the concept, development, and use of a concrete pipe based design for an RH-TRU waste shipping and disposal container could be potentially advantageous for disposing a substantial quantity of RHTRU waste at WIPP in the same manner as contact-handled RH waste. Additionally, this new disposal method would eliminate the hazard associated with repackaging this waste in other containers without the requirement for NRC approval for a new shipping container. (authors)

Rojas, Vicente; Timm, Christopher M.; Fox, Jerry V. [PECOS Management Services, Inc., Albuquerque, NM (United States)

2012-07-01T23:59:59.000Z

386

Fluorescent ballast and lamp disposal issues  

SciTech Connect (OSTI)

All around the world, governments, utility companies, and private businesses are attempting to reduce the amount of energy consumed. In the US alone, new economic strategies and programs are being created to facilitate this process. For instance, the recent enactment of the National Energy Policy Act, the Environmental Protection Agency`s (EPA) Green Lights Program, and a surge of utility involvement in Demand Side Management (DSM) Commercial/Industrial Direct Install and Rebate Programs. Many of these problems target commercial/industrial lighting system retrofits as one of the most cost effective avenues for reducing the consumption of energy. Due to this trend, hundreds of millions of lighting ballasts and lamps are being discarded. The benefits of these programs result in enormous reductions in fossil fuels (and subsequent carbon dioxide, sulfur dioxide, and nitrogen oxide emissions) required to generate the displaced electricity. Throughout the US, however, there is an increasing concern for the environmental impacts surrounding the accelerated disposal of both lighting ballasts and lamps. Regulations initially established were for a one by one, retirement (failure) process rather than promoted obsolescence and forced retirement of lamp groups or entire systems (truckloads of old technologies). Recognizing this trend and the potential negative environmental effects, federal, state, and local regulators are reevaluating the impacts and are being asked to promulgate policies to specifically address this situation.

Leishman, D.L. [Alta Resource Management Services, Inc., Springfield, MA (United States)

1996-12-01T23:59:59.000Z

387

CHARACTERIZATION OF CORE SAMPLE COLLECTED FROM THE SALTSTONE DISPOSAL FACILITY  

SciTech Connect (OSTI)

During the month of September 2008, grout core samples were collected from the Saltstone Disposal Facility, Vault 4, cell E. This grout was placed during processing campaigns in December 2007 from Deliquification, Dissolution and Adjustment Batch 2 salt solution. The 4QCY07 Waste Acceptance Criteria sample collected on 11/16/07 represents the salt solution in the core samples. Core samples were retrieved to initiate the historical database of properties of emplaced Saltstone and to demonstrate the correlation between field collected and laboratory prepared samples. Three samples were collected from three different locations. Samples were collected using a two-inch diameter concrete coring bit. In April 2009, the core samples were removed from the evacuated sample container, inspected, transferred to PVC containers, and backfilled with nitrogen. Samples furthest from the wall were the most intact cylindrically shaped cored samples. The shade of the core samples darkened as the depth of coring increased. Based on the visual inspection, sample 3-3 was selected for all subsequent analysis. The density and porosity of the Vault 4 core sample, 1.90 g/cm{sup 3} and 59.90% respectively, were comparable to values achieved for laboratory prepared samples. X-ray diffraction analysis identified phases consistent with the expectations for hydrated Saltstone. Microscopic analysis revealed morphology features characteristic of cementitious materials with fly ash and calcium silicate hydrate gel. When taken together, the results of the density, porosity, x-ray diffraction analysis and microscopic analysis support the conclusion that the Vault 4, Cell E core sample is representative of the expected waste form.

Cozzi, A.; Duncan, A.

2010-01-28T23:59:59.000Z

388

Rules and Regulations for the Disposal of Low-Level Radioactive Waste (Nebraska)  

Broader source: Energy.gov [DOE]

These regulations, promulgated by the Department of Environmental Quality, contain provisions pertaining to the disposal of low-level radioactive waste, disposal facilities, and applicable fees.

389

Introduction to DOE Order 435.1 Low Level Radioactive Waste Disposal...  

Broader source: Energy.gov (indexed) [DOE]

Introduction to DOE Order 435.1 Low Level Radioactive Waste Disposal Requirements Introduction to DOE Order 435.1 Low Level Radioactive Waste Disposal Requirements Christine...

390

Systems engineering programs for geologic nuclear waste disposal  

SciTech Connect (OSTI)

The design sequence and system programs presented begin with general approximate solutions that permit inexpensive analysis of a multitude of possible wastes, disposal media, and disposal process properties and configurations. It then continues through progressively more precise solutions as parts of the design become fixed, and ends with repository and waste form optimization studies. The programs cover both solid and gaseous waste forms. The analytical development, a program listing, a users guide, and examples are presented for each program. Sensitivity studies showing the effects of disposal media and waste form thermophysical properties and repository layouts are presented as examples.

Klett, R. D.; Hertel, Jr., E. S.; Ellis, M. A.

1980-06-01T23:59:59.000Z

391

Analysis of alternatives for immobilized low activity waste disposal  

SciTech Connect (OSTI)

This report presents a study of alternative disposal system architectures and implementation strategies to provide onsite near-surface disposal capacity to receive the immobilized low-activity waste produced by the private vendors. The analysis shows that a flexible unit strategy that provides a suite of design solutions tailored to the characteristics of the immobilized low-activity waste will provide a disposal system that best meets the program goals of reducing the environmental, health, and safety impacts; meeting the schedule milestones; and minimizing the life-cycle cost of the program.

Burbank, D.A.

1997-10-28T23:59:59.000Z

392

Demilitarization and disposal technologies for conventional munitions and energetic materials  

SciTech Connect (OSTI)

Technologies for the demilitarization and disposal of conventional munitions and energetic materials are presented. A hazard separation system has been developed to remove hazardous subcomponents before processing. Electronic component materials separation processes have been developed that provide for demilitarization as well as the efficient recycling of materials. Energetic materials demilitarization and disposal using plasma arc and molten metal technologies are currently being investigated. These regulatory compliant technologies will allow the recycling of materials and will also provide a waste form suitable for final disposal.

Lemieux, A.A.; Wheelis, W.T.; Blankenship, D.M.

1994-09-01T23:59:59.000Z

393

U.S. Department of Energy Hydrogen and Fuel Cells Program 2013 Annual Merit Review (AMR) and Peer Evaluation Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SAFETY, CODES AND STANDARDS SAFETY, CODES AND STANDARDS 402 | FY 2013 Merit Review and Peer Evaluation Report 2013 - Safety, Codes and Standards Summary of Annual Merit Review of the Safety, Codes and Standards Program Summary of Reviewer Comments on the Safety, Codes and Standards Program: The Safety, Codes and Standards program supports research and development (R&D) that provides the critical information needed to define requirements and close gaps in safety, codes, and standards to enable the safe use and handling of hydrogen and fuel cell technologies. The program also conducts safety activities focused on promoting safety practices among U.S. Department of Energy (DOE) projects and the development of information resources and best practices. Reviewers recognized that the program continues to provide strong support in the following

394

U.S. Department of Energy Hydrogen and Fuel Cells Program 2013 Annual Merit Review (AMR) and Peer Evaluation Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A: ATTENDEE LIST A: ATTENDEE LIST FY 2013 Merit Review and Peer Evaluation Report | 511 Attendee List: 2013 Hydrogen and Fuel Cells Program Last Name First Name Organization Abdel-Baset Tarek Chrysler Group LLC Abraham Judi Conference Management Associates, Inc. Aceves Salvador Lawrence Livermore National Laboratory Adams Jesse U.S. Department of Energy, Golden Field Office Adzic Radoslav Brookhaven National Laboratory Afzal Kareem PDC Machines Agar Ertan Drexel University Agrawal Nisha Defense Production Act Committee Ahluwalia Rajesh Argonne National Laboratory Ahmed Aysha National Highway Traffic Safety Administration Ahmed Shabbir Argonne National Laboratory Ahn Channing U.S. Department of Energy (IPA from California Institute of Technology) Ahn Sang Hyun National Institute of Standards and Technology

395

Gasification combined cycle: Carbon dioxide recovery, transport, and disposal  

SciTech Connect (OSTI)

The objective of the project is to develop engineering evaluations of technologies for the capture, use, and disposal of carbon dioxide (CO{sub 2}). This project emphasizes CO{sub 2}-capture technologies combined with integrated gasification combined-cycle (IGCC) power systems. Complementary evaluations address CO{sub 2} transportation, CO{sub 2} use, and options for the long-term sequestering of unused CO{sub 2}. Commercially available CO{sub 2}-capture technology is providing a performance and economic baseline against which to compare innovative technologies. The intent is to provide the CO{sub 2} budget, or an {open_quotes}equivalent CO{sub 2}{close_quotes} budget, associated with each of the individual energy-cycle steps, in addition to process design capital and operating costs. The value used for the {open_quotes}equivalent CO{sub 2}{close_quotes} budget is 1 kg of CO{sub 2} per kilowatt-hour (electric). The base case is a 458-MW IGCC system that uses an air-blown Kellogg-Rust-Westinghouse agglomerating fluidized-bed gasifier, Illinois No. 6 bituminous coal feed, and in-bed sulfur removal. Mining, feed preparation, and conversion result in a net electric power production of 454 MW, with a CO{sub 2} release rate of 0.835 kg/kWhe. Two additional life-cycle energy balances for emerging technologies were considered: (1) high-temperature CO{sub 2} separation with calcium- or magnesium-based sorbents, and (2) ambient-temperature facilitated-transport polymer membranes for acid-gas removal.

Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.R.; Berry, G.F.; Livengood, C.D.

1994-09-01T23:59:59.000Z

396

Evaluation of synthetic salt water desalination by using a functionalized polysulfone based bipolar membrane electrodialysis cell  

Science Journals Connector (OSTI)

Abstract The work reported herein describes the study of desalination of synthetic salt water at laboratory scale in five different feed concentrations using a lab-made functionalized high molecular weight polysulfone (PSu) polymer based monopolar (cation exchange and anion exchange) and bipolar ion exchange membranes (with PVA as the intermediate layer) using bipolar membrane electrodialysis cell. Various parameters such as conductivity, solution pH, feed concentration, current efficiency, energy consumption, transport number, fluxes and water dissociation efficiency were determined. During the 8 h treatment under optimal conditions (i.e. time, current, higher acid and base concentrations), for the various initial feed concentrations (from 10 g/L to 50 g/L), the current efficiencies obtained ranged from 27% to 75%. And for the highest feed concentration, the highest current efficiency (? max. of about 75% for \\{PSu\\} and 63% for polystyrene divinylbenzene (PSDVB)) with lowest energy consumption (? max. of about 1.2 Wh/mol for \\{PSu\\} and 2.6 Wh/mol for PSDVB) in addition to acid-base production (? max. of about 0.018 N acid: 0.016 N base for \\{PSu\\} and 0.012 N acid: 0.013 N base for PSDVB) was observed. The results of the study demonstrated the promising potential of functionalized polysulfone based ion exchange membranes for greater water dissociation efficiency in desalination of water.

Krishnaveni Venugopal; Sangeetha Dharmalingam

2014-01-01T23:59:59.000Z

397

Integrated process for coalbed brine disposal  

SciTech Connect (OSTI)

A brine disposal process is described that converts the brine stream of a coalbed gas producing site into clean water for agricultural use, combustion products and water vapor that can be released into the atmosphere and dry solids that can be recycled for industrial consumption. The process uses a reverse osmosis unit, a submerged combustion evaporator and a pulse combustion dryer. Pretreatment of the brine feedstream is necessary to prevent fouling of the membranes of the reverse osmosis unit and to separate from the brine stream hazardous metal and other constituents that may make the permeate from the reverse osmosis unit unsuitable for agricultural or other use. A chemical modeling code is used to calculate the saturation states of solids that may precipitate and foul the reverse osmosis membranes. Sodium carbonate is added to the brine to precipitate carbonates of Ba, Ca, Mg and Sr prior to filtration, acidification, and passage into the reverse osmosis unit. Optimization of the process in terms of types and amounts of additives is possible with analysis using the modeling code. The minimum amounts of additives to prevent scaling are calculated. In a typical operation, a brine feedstream of 1,000 m{sup 3}/day (6,290 bpd) that may have a total dissolved salt concentration (TDS) of 7,000 ppm will be separated into a permeate stream of 750 m{sup 3}/day (4,718 bpd) with a TDS of 400 ppm and a concentrated brine stream of 250 m{sup 3}/day (1,573 bpd) with a TDS of 26,800 ppm. The submerged combustion evaporator will concentrate this latter stream to a concentration of 268,000 ppm and reduce the volume to 25 m{sup 3}/day (158 bpd). The pulse combustion dryer can dry the concentrated brine mixture to a low moisture salt. Energy costs to operate the reverse osmosis unit are primarily the pumping costs.

Brandt, H. [AQUATECH Services, Inc., Fair Oaks, CA (United States)]|[California Univ., Davis, CA (United States). Dept. of Mechanical Engineering; Bourcier, W.L.; Jackson, K.J. [Lawrence Livermore National Lab., CA (United States)

1994-03-01T23:59:59.000Z

398

Bypass diode for a solar cell  

DOE Patents [OSTI]

Bypass diodes for solar cells are described. In one embodiment, a bypass diode for a solar cell includes a substrate of the solar cell. A first conductive region is disposed above the substrate, the first conductive region of a first conductivity type. A second conductive region is disposed on the first conductive region, the second conductive region of a second conductivity type opposite the first conductivity type.

Rim, Seung Bum (Palo Alto, CA); Kim, Taeseok (San Jose, CA); Smith, David D. (Campbell, CA); Cousins, Peter J. (Menlo Park, CA)

2012-03-13T23:59:59.000Z

399

A Critical Step Toward Sustainable Nuclear Fuel Disposal | Department of  

Broader source: Energy.gov (indexed) [DOE]

A Critical Step Toward Sustainable Nuclear Fuel Disposal A Critical Step Toward Sustainable Nuclear Fuel Disposal A Critical Step Toward Sustainable Nuclear Fuel Disposal January 26, 2012 - 2:30pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy The Blue Ribbon Commission on America's Nuclear Future was formed at the direction of the President to conduct a comprehensive review of polices for managing the back end of the nuclear fuel cycle. If we are going to ensure that the United States remains at the forefront of nuclear safety and security, non-proliferation, and nuclear energy technology we must develop an effective strategy and workable plan for the safe and secure management and disposal of used nuclear fuel and nuclear waste. That is why I asked General Scowcroft and Representative Hamilton to draw on their

400

Repository Reference Disposal Concepts and Thermal Load Management Analysis  

Broader source: Energy.gov (indexed) [DOE]

Repository Reference Disposal Concepts and Thermal Load Management Repository Reference Disposal Concepts and Thermal Load Management Analysis Repository Reference Disposal Concepts and Thermal Load Management Analysis A disposal concept consists of three parts: waste inventory (7 waste types examined), geologic setting (e.g., clay/shale, salt, crystalline, other sedimentary), and the engineering concept of operations (range of generic operational concepts examined). Two major categories for waste package emplacement modes are identified: 1) "open" where extended ventilation can remove heat for many years following waste emplacement underground; and 2) "enclosed" modes for clay/shale and salt media where waste packages are emplaced in direct or close contact with natural or engineered materials which may have temperature limits that constrain thermal

Note: This page contains sample records for the topic "disposal cell evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage  

Broader source: Energy.gov (indexed) [DOE]

Disposal, Hazardous Waste Management Act, Underground Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Tribal Government Utility Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Tennessee Department Of Environment and Conservation The Solid Waste Disposal Laws and Regulations are found in Tenn. Code 68-211. These rules are enforced and subject to change by the Public Waste Board (PWB), which is established by the Division of Solid and Hazardous

402

Disposing of nuclear waste in a salt bed  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Disposing of nuclear waste in a salt bed Disposing of nuclear waste in a salt bed 1663 Los Alamos science and technology magazine Latest Issue:November 2013 All Issues » submit Disposing of nuclear waste in a salt bed Decades' worth of transuranic waste from Los Alamos is being laid to rest at the Waste Isolation Pilot Plant in southeastern New Mexico March 25, 2013 Disposing of nuclear waste in a salt bed Depending on the impurities embedded within it, the salt from WIPP can be anything from a reddish, relatively opaque rock to a clear crystal like the one shown here. Ordinary salt effectively seals transuranic waste in a long-term repository Transuranic waste, made of items such as lab coats and equipment that have been contaminated by radioactive elements heavier than uranium, is being shipped from the Los Alamos National Laboratory to a long-term storage

403

Repository Reference Disposal Concepts and Thermal Load Management Analysis  

Broader source: Energy.gov (indexed) [DOE]

Repository Reference Disposal Concepts and Thermal Load Management Repository Reference Disposal Concepts and Thermal Load Management Analysis Repository Reference Disposal Concepts and Thermal Load Management Analysis A disposal concept consists of three parts: waste inventory (7 waste types examined), geologic setting (e.g., clay/shale, salt, crystalline, other sedimentary), and the engineering concept of operations (range of generic operational concepts examined). Two major categories for waste package emplacement modes are identified: 1) "open" where extended ventilation can remove heat for many years following waste emplacement underground; and 2) "enclosed" modes for clay/shale and salt media where waste packages are emplaced in direct or close contact with natural or engineered materials which may have temperature limits that constrain thermal

404

Southwestern Low-Level Radioactive Waste Disposal Compact (South Dakota) |  

Broader source: Energy.gov (indexed) [DOE]

Southwestern Low-Level Radioactive Waste Disposal Compact (South Southwestern Low-Level Radioactive Waste Disposal Compact (South Dakota) Southwestern Low-Level Radioactive Waste Disposal Compact (South Dakota) < Back Eligibility Utility Investor-Owned Utility Industrial Construction Municipal/Public Utility Rural Electric Cooperative Fuel Distributor Program Info State South Dakota Program Type Siting and Permitting Provider Southwestern Low-Level Radioactive Waste Commission This legislation authorizes the state's entrance into the Southwestern Low-Level Radioactive Waste Disposal Compact, which provides for the cooperative management of low-level radioactive waste. The Compact is administered by a commission, which can regulate and impose fees on in-state radioactive waste generators. The states of Arizona, California,

405

Shell keeps its options open for disposing of Brent Spar  

Science Journals Connector (OSTI)

... Brent Spar, may lead to similar disposal of 50 deep-water oil installations in UK offshore waters that are next in line for decommissioning, Johnston says. "No one knows ... this would have on the marine environment."

Ehsan Masood

1995-08-03T23:59:59.000Z

406

Waste Disposal Site and Radioactive Waste Management (Iowa)  

Broader source: Energy.gov [DOE]

This section describes the considerations of the Commission in determining whether to approve the establishment and operation of a disposal site for nuclear waste. If a permit is issued, the...

407

Proof of Proper Solid Waste Disposal (West Virginia)  

Broader source: Energy.gov [DOE]

This rule provides guidance to persons occupying a residence or operating a business establishment in this state regarding the approved method of providing proof of proper solid waste disposal to...

408

Burning Chemical Waste Disposal Site: Investigation, Assessment and Rehabilitation  

Science Journals Connector (OSTI)

A series of underground fires on a site previously used for disposal of chemical wastes from the nylon industry was causing a nuisance and restricting the commercial development of the site and adjacent areas....

D. L. Barry; J. M. Campbell; E. H. Jones

1990-01-01T23:59:59.000Z

409

A microelectronic design for low-cost disposable chemical sensors  

E-Print Network [OSTI]

This thesis demonstrates the novel concept and design of integrated microelectronics for a low-cost disposable chemical sensor. The critical aspects of this chemical sensor are the performance of the microelectronic chip ...

Laval, Stuart S. (Stuart Sean), 1980-

2004-01-01T23:59:59.000Z

410

Figure ES2. Annual Indices of Real Disposable Income, Vehicle...  

U.S. Energy Information Administration (EIA) Indexed Site

ES2 Figure ES2. Annual Indices of Real Disposable Income, Vehicle-Miles Traveled, Consumer Price Index (CPI-U), and Real Average Retail Gasoline Price, 1978-2004, 1985100...

411

Nuclear Waste Disposal: Yucca Blowup Theory Bombs, Says Study  

Science Journals Connector (OSTI)

...leaked into the storage area, the depleted uranium would quickly saturate it, making...disposing of the 400,000 tons of depleted uranium left over from the arms race...andotherbranches ofthe Public Health Service must demonstrate that...

Gary Taubes

1996-03-22T23:59:59.000Z

412

Canister design for deep borehole disposal of nuclear waste  

E-Print Network [OSTI]

The objective of this thesis was to design a canister for the disposal of spent nuclear fuel and other high-level waste in deep borehole repositories using currently available and proven oil, gas, and geothermal drilling ...

Hoag, Christopher Ian

2006-01-01T23:59:59.000Z

413

Draft Environmental Impact Statement for the Disposal of Greater...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Friday, February 18, 2011 Draft Environmental Impact Statement for the Disposal of Greater-Than-Class C Low-Level Radioactive Waste and GTCC-Like Waste WASHINGTON The...

414

A sensitivity analysis of the WIPP disposal room model: Phase 1  

SciTech Connect (OSTI)

The WIPP Disposal Room Model (DRM) is a numerical model with three major components constitutive models of TRU waste, crushed salt backfill, and intact halite -- and several secondary components, including air gap elements, slidelines, and assumptions on symmetry and geometry. A sensitivity analysis of the Disposal Room Model was initiated on two of the three major components (waste and backfill models) and on several secondary components as a group. The immediate goal of this component sensitivity analysis (Phase I) was to sort (rank) model parameters in terms of their relative importance to model response so that a Monte Carlo analysis on a reduced set of DRM parameters could be performed under Phase II. The goal of the Phase II analysis will be to develop a probabilistic definition of a disposal room porosity surface (porosity, gas volume, time) that could be used in WIPP Performance Assessment analyses. This report documents a literature survey which quantifies the relative importance of the secondary room components to room closure, a differential analysis of the creep consolidation model and definition of a follow-up Monte Carlo analysis of the model, and an analysis and refitting of the waste component data on which a volumetric plasticity model of TRU drum waste is based. A summary, evaluation of progress, and recommendations for future work conclude the report.

Labreche, D.A.; Beikmann, M.A. [RE/SPEC, Inc., Albuquerque, NM (United States); Osnes, J.D. [RE/SPEC, Inc., Rapid City, SD (United States); Butcher, B.M. [Sandia National Labs., Albuquerque, NM (United States)

1995-07-01T23:59:59.000Z

415

Assessment of microbial processes on gas production at radioactive low-level waste disposal sites  

SciTech Connect (OSTI)

Factors controlling gaseous emanations from low level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide, and possible hydrogen from the site, stems from the inclusion of tritium and/or carbon-14 into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste material, primary emphasis of the study involved an examination of the biochemical pathways producing methane, carbon dioxide, and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Initial examination of the data indicates that the ecosystem is anaerobic. As the result of the complexity of the pathway leading to methane production, factors such as substrate availability, which limit the initial reaction in the sequence, greatly affect the overall rate of methane evolution. Biochemical transformations of methane, hydrogen and carbon dioxide as they pass through the soil profile above the trench are discussed. Results of gas studies performed at three commercial low level radioactive waste disposal sites are reviewed. Methods used to obtain trench and soil gas samples are discussed. Estimates of rates of gas production and amounts released into the atmosphere (by the GASFLOW model) are evaluated. Tritium and carbon-14 gaseous compounds have been measured in these studies; tritiated methane is the major radionuclide species in all disposal trenches studied. The concentration of methane in a typical trench increases with the age of the trench, whereas the concentration of carbon dioxide is similar in all trenches.

Weiss, A.J.; Tate, R.L. III; Colombo, P.

1982-05-01T23:59:59.000Z

416

Environmental impact statement for initiation of transuranic waste disposal at the waste isolation pilot plant  

SciTech Connect (OSTI)

WIPP`s long-standing mission is to demonstrate the safe disposal of TRU waste from US defense activities. In 1980, to comply with NEPA, US DOE completed its first environmental impact statement (EIS) which compared impacts of alternatives for TRU waste disposal. Based on this 1980 analysis, DOE decided to construct WIPP in 1981. In a 1990 decision based on examination of alternatives in a 1990 Supplemental EIS, DOE decided to continue WIPP development by proceeding with a testing program to examine WIPP`s suitability as a TRU waste repository. Now, as DOE`s Carlsbad Area Office (CAO) attempts to complete its regulatory obligations to begin WIPP disposal operations, CAO is developing WIPP`s second supplemental EIS (SEIS-II). To complete the SEIS-II, CAO will have to meet a number of challenges. This paper explores both the past and present EISs prepared to evaluate the suitability of WIPP. The challenges in completing an objective comparison of alternatives, while also finalizing other critical-path compliance documents, controlling costs, and keeping stakeholders involved during the decision-making process are addressed.

Johnson, H.E. [U.S. Dept. of Energy, Carlsbad, NM (United States) Carlsbad Area Office; Whatley, M.E. [Westinghouse Electric Corp., Carlsbad, NM (United States). Waste Isolation Div.

1996-08-01T23:59:59.000Z

417

U.S. Department of Energy Hydrogen and Fuel Cells Program 2014 Annual Merit Review and Peer Evaluation Report: June 16-20, 2014, Washington, D.C.  

SciTech Connect (OSTI)

The fiscal year (FY) 2014 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting (AMR), in conjunction with DOE's Vehicle Technologies Office AMR, was held from June 16-20, 2014, at the Washington Marriott Wardman Park in Washington, D.C. This report is a summary of comments by AMR peer reviewers about the hydrogen and fuel cell projects funded by DOE's Office of Energy Efficiency and Renewable Energy (EERE).

Not Available

2014-10-01T23:59:59.000Z

418

Salt disposal of heat-generating nuclear waste.  

SciTech Connect (OSTI)

This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United States repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, helps define a clear strategy for a heat-generating nuclear waste repository in salt.

Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

2011-01-01T23:59:59.000Z

419

Decontamination of the Plum Brook Reactor Facility Hot Cells  

SciTech Connect (OSTI)

The NASA Plum Brook Reactor Facility decommissioning project recently completed a major milestone with the successful decontamination of seven hot cells. The cells included thick concrete walls and leaded glass windows, manipulator arms, inter cell dividing walls, and roof slabs. There was also a significant amount of embedded conduit and piping that had to be cleaned and surveyed. Prior to work starting evaluation studies were performed to determine whether it was more cost effective to do this work using a full up removal approach (rip and ship) or to decontaminate the cells to below required clean up levels, leaving the bulk of the material in place. This paper looks at that decision process, how it was implemented, and the results of that effort including the huge volume of material that can now be used as fill during site restoration rather than being disposed of as LLRW. (authors)

Peecook, K.M. [NASA Glenn Research Center, Plum Brook Station, Sandusky, OH (United States)

2008-07-01T23:59:59.000Z

420

Example of a Risk-Based Disposal Approval: Solidification of Hanford Site Transuranic Waste  

SciTech Connect (OSTI)

The Hanford Site requested, and the U.S. Environmental Protection Agency (EPA) Region 10 approved, a Toxic Substances Control Act of 1976 (TSCA) risk-based disposal approval (RBDA) for solidifying approximately four cubic meters of waste from a specific area of one of the K East Basin: the North Loadout Pit (NLOP). The NLOP waste is a highly radioactive sludge that contained polychlorinated biphenyls (PCBs) regulated under TSCA. The prescribed disposal method for liquid PCB waste under TSCA regulations is either thermal treatment or decontamination. Due to the radioactive nature of the waste, however, neither thermal treatment nor decontamination was a viable option. As a result, the proposed treatment consisted of solidifying the material to comply with waste acceptance criteria at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico, or possibly the Environmental Restoration Disposal Facility at the Hanford Site, depending on the resulting transuranic (TRU) content of the stabilized waste. The RBDA evaluated environmental risks associated with potential airborne PCBs. In addition, the RBDA made use of waste management controls already in place at the treatment unit. The treatment unit, the T Plant Complex, is a Resource Conservation and Recovery Act of 1976 (RCRA)-permitted facility used for storing and treating radioactive waste. The EPA found that the proposed activities did not pose an unreasonable risk to human health or the environment. Treatment took place from October 26, 2005 to June 9, 2006, and 332 208-liter (55-gallon) containers of solidified waste were produced. All treated drums assayed to date are TRU and will be disposed at WIPP. (authors)

Barnes, B.M.; Hyatt, J.E.; Martin, P.W.; Prignano, A.L. [Fluor Hanford, Inc., Richland, WA (United States)

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "disposal cell evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Temperature-package power correlations for open-mode geologic disposal concepts.  

SciTech Connect (OSTI)

Logistical simulation of spent nuclear fuel (SNF) management in the U.S. combines storage, transportation and disposal elements to evaluate schedule, cost and other resources needed for all major operations leading to final geologic disposal. Geologic repository reference options are associated with limits on waste package thermal power output at emplacement, in order to meet limits on peak temperature for certain key engineered and natural barriers. These package power limits are used in logistical simulation software such as CALVIN, as threshold requirements that must be met by means of decay storage or SNF blending in waste packages, before emplacement in a repository. Geologic repository reference options include enclosed modes developed for crystalline rock, clay or shale, and salt. In addition, a further need has been addressed for open modes in which SNF can be emplaced in a repository, then ventilated for decades or longer to remove heat, prior to permanent repository closure. For each open mode disposal concept there are specified durations for surface decay storage (prior to emplacement), repository ventilation, and repository closure operations. This study simulates those steps for several timing cases, and for SNF with three fuel-burnup characteristics, to develop package power limits at which waste packages can be emplaced without exceeding specified temperature limits many years later after permanent closure. The results are presented in the form of correlations that span a range of package power and peak postclosure temperature, for each open-mode disposal concept, and for each timing case. Given a particular temperature limit value, the corresponding package power limit for each case can be selected for use in CALVIN and similar tools.

Hardin, Ernest L.

2013-02-01T23:59:59.000Z

422

Geological Disposal Concept Selection Aligned with a Voluntarism Process - 13538  

SciTech Connect (OSTI)

The UK's Radioactive Waste Management Directorate (RWMD) is currently at a generic stage in its implementation programme. The UK site selection process is a voluntarist process and, as yet, no communities have decided to participate. RWMD has set out a process to describe how a geological disposal concept would be selected for the range of higher activity wastes in the UK inventory, including major steps and decision making points, aligned with the stages of the UK site selection process. A platform of information is being developed on geological disposal concepts at various stages of implementation internationally and, in order to build on international experience, RWMD is developing its approach to technology transfer. The UK has a range of different types of higher activity wastes with different characteristics; therefore a range of geological disposal concepts may be needed. In addition to identifying key aspects for considering the compatibility of different engineered barrier systems for different types of waste, RWMD is developing a methodology to determine minimum separation distances between disposal modules in a co-located geological disposal facility. RWMD's approach to geological disposal concept selection is intended to be flexible, recognising the long term nature of the project. RWMD is also committed to keeping alternative radioactive waste management options under review; an approach has been developed and periodic reviews of alternative options will be published. (authors)

Crockett, Glenda; King, Samantha [Nuclear Decommissioning Authority, Building 587, Curie Avenue, Harwell Oxford, Didcot, Oxfordshire, OX11 0RH (United Kingdom)] [Nuclear Decommissioning Authority, Building 587, Curie Avenue, Harwell Oxford, Didcot, Oxfordshire, OX11 0RH (United Kingdom)

2013-07-01T23:59:59.000Z

423

University of Delaware Laboratory Chemical Waste Disposal Guide ALL CHEMICAL WASTE MUST BE DISPOSED OF THROUGH THE  

E-Print Network [OSTI]

experiments and procedures Non-Returnable gas cylinders Batteries Spent solvents, Stains, Strippers, Thinners, Fertilizers Formaldehyde and Formalin Solutions Mercury containing items (other heavy metals) Liquid OR SMALL CONTAINERS IMPORTANT: DO NOT DISPOSE OF REACTIVE, AIR SENSITIVE, OR OXIDIZER SAMPLES

Firestone, Jeremy

424

Modeling the Performance of Engineered Systems for Closure and Near-Surface Disposal  

Broader source: Energy.gov (indexed) [DOE]

performance cleanup closure performance cleanup closure M E Environmental Management Environmental Management Performance Assessment Community of Practice Technical Exchange July 13-14, 2009 Modeling the Performance of Engineered Systems for Closure and Near-Surface Disposal - Overview and Focused Discussions David S. Kosson CRESP and Vanderbilt University Tank Waste Corporate Board Meeting July 29, 2009 1 safety performance cleanup closure M E Environmental Management Environmental Management Agenda * Overview of DOE Performance Assessment Practices * Focused Discussions - Role of PA Process in Risk Communication and Decisions - Modeling Improvements - PA Assumption Validation - Uncertainty Evaluation - Evolving EPA Developments - Related IAEA Activities * Looking forward

425

Submergible barge retrievable storage and permanent disposal system for radioactive waste  

DOE Patents [OSTI]

A submergible barge and process for submerging and storing radioactive waste material along a seabed. A submergible barge receives individual packages of radwaste within segregated cells. The cells are formed integrally within the barge, preferably surrounded by reinforced concrete. The cells are individually sealed by a concrete decking and by concrete hatch covers. Seawater may be vented into the cells for cooling, through an integral vent arrangement. The vent ducts may be attached to pumps when the barge is bouyant. The ducts are also arranged to promote passive ventilation of the cells when the barge is submerged. Packages of the radwaste are loaded into individual cells within the barge. The cells are then sealed and the barge is towed to the designated disposal-storage site. There, the individual cells are flooded and the barge will begin descent controlled by a powered submarine control device to the seabed storage site. The submerged barge will rest on the seabed permanently or until recovered by a submarine control device.

Goldsberry, Fred L. (Spring, TX); Cawley, William E. (Richland, WA)

1981-01-01T23:59:59.000Z

426

Disposal of oil field wastes into salt caverns: Feasibility, legality, risk, and costs  

SciTech Connect (OSTI)

Salt caverns can be formed through solution mining in the bedded or domal salt formations that are found in many states. Salt caverns have traditionally been used for hydrocarbon storage, but caverns have also been used to dispose of some types of wastes. This paper provides an overview of several years of research by Argonne National Laboratory on the feasibility and legality of using salt caverns for disposing of oil field wastes, the risks to human populations from this disposal method, and the cost of cavern disposal. Costs are compared between the four operating US disposal caverns and other commercial disposal options located in the same geographic area as the caverns. Argonne`s research indicates that disposal of oil field wastes into salt caverns is feasible and legal. The risk from cavern disposal of oil field wastes appears to be below accepted safe risk thresholds. Disposal caverns are economically competitive with other disposal options.

Veil, J.A. [Argonne National Lab., Washington, DC (United States). Water Policy Program

1997-10-01T23:59:59.000Z

427

Toward microscale Cu,,In,Ga...Se2 solar cells for efficient conversion and optimized material usage: Theoretical evaluation  

E-Print Network [OSTI]

solar cells are gaining a growing market share in the photovoltaic field. CIGS thin film solar cells. In this paper, the behavior of microscale thin film solar cells under concen- tration will be studied. We focusToward microscale Cu,,In,Ga...Se2 solar cells for efficient conversion and optimized material usage

Boyer, Edmond

428

Solid oxide fuel cell with single material for electrodes and interconnect  

DOE Patents [OSTI]

A solid oxide fuel cell having a plurality of individual cells. A solid oxide fuel cell has an anode and a cathode with electrolyte disposed therebetween, and the anode, cathode and interconnect elements are comprised of substantially one material.

McPheeters, Charles C. (Naperville, IL); Nelson, Paul A. (Wheaton, IL); Dees, Dennis W. (Downers Grove, IL)

1994-01-01T23:59:59.000Z

429

Advancing Performance Assessment for Disposal of Depleted Uranium at Clive Utah - 12493  

SciTech Connect (OSTI)

A Performance Assessment (PA) for disposal of depleted uranium (DU) waste has recently been completed for a potential disposal facility at Clive in northwestern Utah. For the purposes of this PA, 'DU waste' includes uranium oxides of all naturally-occurring isotopes, though depleted in U-235, varying quantities of other radionuclides introduced to the uranium enrichment process in the form of used nuclear reactor fuel (reactor returns), and decay products of all of these radionuclides. The PA will be used by the State of Utah to inform an approval decision for disposal of DU waste at the facility, and will be available to federal regulators as they revisit rulemaking for the disposal of DU. The specific performance objectives of the Clive DU PA relate to annual individual radiation dose within a 10,000-year performance period, groundwater concentrations of specific radionuclides within a 500-year compliance period, and site stability in the longer term. Fate and transport processes that underlie the PA model include radioactive decay and ingrowth, diffusion in gaseous and water phases, water advection in unsaturated and saturated zones, transport caused by plant and animal activity, cover naturalization, natural and anthropogenic erosion, and air dispersion. Fate and transport models were used to support the dose assessment and the evaluation of groundwater concentrations. Exposure assessment was based on site-specific scenarios, since the traditional human exposure scenarios suggested by DOE and NRC guidance are unrealistic for this site. Because the U-238 in DU waste reaches peak radioactivity (secular equilibrium) after 2 million years (My) following its separation, the PA must also evaluate the impact of climate change cycles, including the return of pluvial lakes such as Lake Bonneville. The first draft of the PA has been submitted to the State of Utah for review. The results of this preliminary analysis indicate that doses are very low for the site-specific receptors for the 10,000-year compliance period. This is primarily because DU waste is not highly radioactive within this time frame, the DU waste is assumed to be buried beneath zones exposed by erosion, groundwater concentrations of DU waste constituents do not exceed groundwater protection limits with in the 500-year compliance period, and the first deep lake occurrence will disperse DU waste across a large area, and will ultimately be covered by lake-derived sediment. A probabilistic PA model was constructed that considered DU waste and decay product doses to site-specific receptors for a 10,000-yr performance period, as well as deep-time effects. The quantitative results are summarized in Table VII. Doses (as TEDE) are always less than 5 mSv in a year, and doses to the offsite receptors are always much less than 0.25 mSv in a year. Groundwater concentrations of Tc-99 are always less than its GWPL except when the Tc-99 contaminated waste is disposed below grade. Even in this case, the median groundwater concentration is only 4.18 Bq/L (113 pCi/L), which is more than one order of magnitude less than the GWPL for Tc-99. The results overall suggest that there are disposal configurations that can be used to dispose of the proposed quantities of DU waste that are adequately protective of human health. (authors)

Black, Paul; Tauxe, John; Perona, Ralph; Lee, Robert; Catlett, Kate; Balshi, Mike; Fitzgerald, Mark; McDermott, Greg [Neptune and Company, Inc., Los Alamos, New Mexico 87544 (United States); Shrum, Dan; McCandless, Sean; Sobocinski, Robert; Rogers, Vern [EnergySolutions, LLC, Salt Lake City, Utah 84101 (United States)

2012-07-01T23:59:59.000Z

430

Human health-risk assessment for municipal-sludge disposal: benefits of alternative regulatory options. Draft report  

SciTech Connect (OSTI)

This report discusses numerical criteria for the reuse and disposal of municipal sewage sludge and evaluates reductions in human health risks or benefits derived from controlling sludge-disposal practices. Quantitative aggregate risk estimates are projected for 31 contaminants for each of the key sludge-management practices: incineration; monofilling; land application (food chain and non-food chain); and distribution and marketing. The study utilizes state-of-the-art fate, transport, and exposure methodologies in predicting environmental concentrations. The analysis evaluates a number of human-exposure routes including dietary, drinking water, and inhalation pathways. The analysis couples this information with national and local populations exposed along with the Agency's most recent health-effects data in assessing risks. A methodology for quantitatively assessing non-carcinogenic effects from exposure to lead is introduced.

Not Available

1989-02-01T23:59:59.000Z

431

Spent nuclear fuel as a waste form for geologic disposal: Assessment and recommendations on data and modeling needs  

SciTech Connect (OSTI)

This study assesses the status of knowledge pertinent to evaluating the behavior of spent nuclear fuel as a waste form in geologic disposal systems and provides background information that can be used by the DOE to address the information needs that pertain to compliance with applicable standards and regulations. To achieve this objective, applicable federal regulations were reviewed, expected disposal environments were described, the status of spent-fuel modeling was summarized, and information regarding the characteristics and behavior of spent fuel was compiled. This compiled information was then evaluated from a performance modeling perspective to identify further information needs. A number of recommendations were made concerning information still needed to enhance understanding of spent-fuel behavior as a waste form in geologic repositories. 335 refs., 22 figs., 44 tabs.

Van Luik, A.E.; Apted, M.J.; Bailey, W.J.; Haberman, J.H.; Shade, J.S.; Guenther, R.E.; Serne, R.J.; Gilbert, E.R.; Peters, R.; Williford, R.E.

1987-09-01T23:59:59.000Z

432

Field study of disposed wastes from advanced coal processes. Quarterly technical progress report, May--July 1989  

SciTech Connect (OSTI)

The Department of Energy/Morgantown Energy Technology Center (DOE/METC) has initiated research on the disposal of solid wastes from advanced coal processes. The objective of this research is to develop information to be used by private industry and government agencies for planning waste disposal practices associated with advanced coal processes. To accomplish this objective, DOE has contracted Radian Corporation and the North Dakota Energy & Mineral Research Center (EMRC) to design, construct and monitor a limited number of field disposal tests with advanced coal process wastes. These field tests will be monitored over a three year period with the emphasis on collecting data on the field disposal of these wastes. The specific objectives for the reporting period were as follows: review fourth site candidates; obtain site access for the Freeman United site; select an ash supplier for the Illinois site and initiate subcontracts for on-site work; commence construction of the Freeman United test cell; and obtain waste for the Colorado Ute test site. Accomplishments under each task are discussed.

NONE

1989-12-31T23:59:59.000Z

433

Uncanistered Spent Nuclear fuel Disposal Container System Description Document  

SciTech Connect (OSTI)

The Uncanistered Spent Nuclear Fuel (SNF) Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded with intact uncanistered assemblies and/or individually canistered SNF assemblies and sealed in the surface waste handling facilities, transferred to the underground through the access drifts, and emplaced in the emplacement drifts. The Uncanistered SNF Disposal Container provides long-term confinement of the commercial SNF placed inside, and withstands the loading, transfer, emplacement, and retrieval loads and environments. The Uncanistered SNF Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual SNF assembly temperatures after emplacement, limits the introduction of moderator into the disposal container during the criticality control period, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Multiple boiling water reactor (BWR) and pressurized water reactor (PWR) disposal container designs are needed to accommodate the expected range of spent fuel assemblies and provide long-term confinement of the commercial SNF. The disposal container will include outer and inner cylinder walls, outer cylinder lids (two on the top, one on the bottom), inner cylinder lids (one on the top, one on the bottom), and an internal metallic basket structure. Exterior labels will provide a means by which to identify the disposal container and its contents. The two metal cylinders, in combination with the cladding, Emplacement Drift System, drip shield, and natural barrier, will support the design philosophy of defense-in-depth. The use of materials with different properties prevents a single mode failure from breaching the waste package. The inner cylinder and inner cylinder lids will be constructed of stainless steel and the outer cylinder and outer cylinder lid will be made of high-nickel alloy. The basket will assist criticality control, provide structural support, and improve heat transfer. The Uncanistered SNF Disposal Container System interfaces with the emplacement drift environment and internal waste by transferring heat from the SNF to the external environment and by protecting the SFN assemblies and their contents from damage/degradation by the external environment. The system also interfaces with the SFN by limiting access of moderator and oxidizing agents of the SFN. The waste package interfaces with the Emplacement Drift System's emplacement drift pallets upon which the wasted packages are placed. The disposal container interfaces with the Assembly Transfer System, Waste Emplacement/Retrieval System, Disposal Container Handling System, and Waste Package Remediation System during loading, handling, transfer, emplacement and retrieval of the disposal container/waste package.

NONE

2000-10-12T23:59:59.000Z

434

Heterojunction solar cell  

DOE Patents [OSTI]

A high-efficiency single heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the emitter layer. 1 fig.

Olson, J.M.

1994-08-30T23:59:59.000Z

435

Evaluation on the harm effects of accidental releases from cryo-compressed hydrogen tank for fuel cell cars  

Science Journals Connector (OSTI)

Abstract Cryogenic compressed hydrogen tank may open new possibilities for onboard storage due to its high energy density and acceptable thermal endurance. As promising hydrogen storage for commercial use, its hazards need comprehensive investigation. This paper studies the consequences of accidental hydrogen releases from cryo-compressed storage and evaluates the cold effects, thermal effects, and overpressure and missile effects. Two typical storage conditions for a fuel cell car are considered, including driving condition and quasi-venting condition after a long-term of parking. Results show that flash fire and vapor cloud explosion can be considered as the leading consequences. Without ignition, catastrophic rupture may be more dangerous than leakages but with ignition the results may vary for different release diameters. For leakages, quasi-venting condition may be more dangerous than driving condition. However, for catastrophic rupture, the results may be not uniformed but depend on whether and when the hydrogen is ignited. Moreover, the influences of wind velocity and atmospheric pressure are also investigated.

Zhiyong Li; Xiangmin Pan; Ke Sun; Jianxin Ma

2013-01-01T23:59:59.000Z

436

Unique method of ash disposal can benefit marine life  

SciTech Connect (OSTI)

As more communities turn to waste-to-energy facilities to help solve their solid waste disposal problems, the amount of ash created by these facilities increases. Incineration of solid waste produces particulate residues which are often rich in lead, cadmium, copper, and zinc because of the concentration which occurs as a result of reduction. It has been shown that such metals can sometimes be leached from ash residues, giving rise to special concerns that incineration ashes be disposed of in an environmentally acceptable manner. In urban coastal areas where landfills are few and increasingly distant, ocean disposal of stabilized incineration residues (SIR) may provide an acceptable alternative to current landfill practices. In May 1985, a research program was initiated at the Marine Sciences Research Center to examine the feasibility of utilizing SIR for artificial reef construction in the ocean. Results of these studies showed that particulate incineration residues could be combined with cement to form a solid block possessing physical properties necessary for ocean disposal. The stabilized residues were subjected to regulatory extraction protocols, and in no instance did the metal concentrations in the leachates exceed the regulatory limits for toxicity. Bioassays revealed no adverse effects on the phytoplankton communities exposed to elutriate concentrations higher than could be encountered under normal disposal conditions. The success of the laboratory studies resulted in securing the necessary permits for the placement of an artificial habitat constructed using SIR in coastal wasters. Results from this program are described.

Roethel, F.J.; Breslin, V.T. (State Univ. of New York, Stony Brook (USA))

1988-10-01T23:59:59.000Z

437

EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion  

Broader source: Energy.gov (indexed) [DOE]

EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion Dollars EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion Dollars August 1, 2012 - 12:00pm Addthis For more than 50 years, the uranium-233 (U-233) supply has been stored at the Oak Ridge National Laboratory’s (ORNL) Building 3019. The facility, located near the center of the ORNL campus, is owned by EM and one of the nation’s few repositories for U-233 and other special nuclear materials dating back to the Manhattan Project. For more than 50 years, the uranium-233 (U-233) supply has been stored at the Oak Ridge National Laboratory's (ORNL) Building 3019. The facility, located near the center of the ORNL campus, is owned by EM and one of the nation's few repositories for U-233 and other special nuclear materials

438

Laboratory to demolish excavation enclosures at Material Disposal Area B  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Excavation Enclosures At MDA B Excavation Enclosures At MDA B Laboratory to demolish excavation enclosures at Material Disposal Area B near DP Road Pre-demolition activities are beginning this week and the work should be completed by the end of March 2013. November 1, 2012 The Laboratory plans to demolish the enclosures used to safely excavate and clean up the Lab's oldest waste disposal site near DP Road in Los Alamos. The Laboratory plans to demolish the enclosures used to safely excavate and clean up the Lab's oldest waste disposal site near DP Road in Los Alamos. Contact Communications Office (505) 667-7000 "We look forward to the day we officially turn the property over for the benefit of our community." Work is beginning this week LOS ALAMOS, New Mexico, November 1, 2012-Los Alamos National Laboratory

439

Laboratory to demolish excavation enclosures at Material Disposal Area B  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Excavation enclosures at MDA B Excavation enclosures at MDA B Laboratory to demolish excavation enclosures at Material Disposal Area B near DP road Pre-demolition activities are beginning this week and the work should be completed by the end of March 2013. November 1, 2012 The Laboratory plans to demolish the enclosures used to safely excavate and clean up the Lab's oldest waste disposal site near DP Road in Los Alamos. The Laboratory plans to demolish the enclosures used to safely excavate and clean up the Lab's oldest waste disposal site near DP Road in Los Alamos. Contact Colleen Curran Communications Office (505) 664-0344 Email "We look forward to the day we officially turn the property over for the benefit of our community." Work is beginning this week LOS ALAMOS, New Mexico, November 1, 2012-Los Alamos National Laboratory

440

EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and  

Broader source: Energy.gov (indexed) [DOE]

EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste SUMMARY Final Waste Management Programmatic Environmental Impact Statement examines the potential environmental and cost impacts of strategic managment alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 7, 2011 EIS-0200-SA-03: Supplement Analysis Treatment of Transuranic Waste at the Idaho National Laboratory, Carlsbad Field Office March 7, 2008

Note: This page contains sample records for the topic "disposal cell evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Laboratory to demolish excavation enclosures at Material Disposal Area B  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Excavation Enclosures At MDA B Excavation Enclosures At MDA B Laboratory to demolish excavation enclosures at Material Disposal Area B near DP Road Pre-demolition activities are beginning this week and the work should be completed by the end of March 2013. November 1, 2012 The Laboratory plans to demolish the enclosures used to safely excavate and clean up the Lab's oldest waste disposal site near DP Road in Los Alamos. The Laboratory plans to demolish the enclosures used to safely excavate and clean up the Lab's oldest waste disposal site near DP Road in Los Alamos. Contact Communications Office (505) 667-7000 "We look forward to the day we officially turn the property over for the benefit of our community." Work is beginning this week LOS ALAMOS, New Mexico, November 1, 2012-Los Alamos National Laboratory

442

Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway  

Broader source: Energy.gov (indexed) [DOE]

Gas, Heat, Water, Sewerage Collection and Disposal, and Street Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway Companies (South Carolina) Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway Companies (South Carolina) < Back Eligibility Agricultural Commercial Construction Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State South Carolina Program Type Generating Facility Rate-Making Siting and Permitting Provider South Carolina Public Service Commission This legislation applies to public utilities and entities furnishing natural gas, heat, water, sewerage, and street railway services to the public. The legislation addresses rates and services, exemptions, investigations, and records. Article 4 (58-5-400 et seq.) of this

443

EM's Richland Operations Office Celebrates Disposal Achievement in 2013 |  

Broader source: Energy.gov (indexed) [DOE]

EM's Richland Operations Office Celebrates Disposal Achievement EM's Richland Operations Office Celebrates Disposal Achievement in 2013 EM's Richland Operations Office Celebrates Disposal Achievement in 2013 December 24, 2013 - 12:00pm Addthis Workers sample a well used to monitor groundwater at the Hanford site. Workers sample a well used to monitor groundwater at the Hanford site. Workers separate a glove box for removal from Hanford’s Plutonium Finishing Plant. Workers separate a glove box for removal from Hanford's Plutonium Finishing Plant. Workers sample a well used to monitor groundwater at the Hanford site. Workers separate a glove box for removal from Hanford's Plutonium Finishing Plant. RICHLAND, Wash. - EM's Richland Operations Office's 2013 accomplishments ranged from cleaning up buildings and waste sites to treating a record

444

EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion  

Broader source: Energy.gov (indexed) [DOE]

EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion Dollars EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion Dollars August 1, 2012 - 12:00pm Addthis For more than 50 years, the uranium-233 (U-233) supply has been stored at the Oak Ridge National Laboratory’s (ORNL) Building 3019. The facility, located near the center of the ORNL campus, is owned by EM and one of the nation’s few repositories for U-233 and other special nuclear materials dating back to the Manhattan Project. For more than 50 years, the uranium-233 (U-233) supply has been stored at the Oak Ridge National Laboratory's (ORNL) Building 3019. The facility, located near the center of the ORNL campus, is owned by EM and one of the nation's few repositories for U-233 and other special nuclear materials

445

Crystalline ceramics: Waste forms for the disposal of weapons plutonium  

SciTech Connect (OSTI)

At present, there are three seriously considered options for the disposition of excess weapons plutonium: (i) incorporation, partial burn-up and direct disposal of MOX-fuel; (ii) vitrification with defense waste and disposal as glass ``logs``; (iii) deep borehole disposal (National Academy of Sciences Report, 1994). The first two options provide a safeguard due to the high activity of fission products in the irradiated fuel and the defense waste. The latter option has only been examined in a preliminary manner, and the exact form of the plutonium has not been identified. In this paper, we review the potential for the immobilization of plutonium in highly durable crystalline ceramics apatite, pyrochlore, monazite and zircon. Based on available data, we propose zircon as the preferred crystalline ceramic for the permanent disposition of excess weapons plutonium.

Ewing, R.C.; Lutze, W. [New Mexico Univ., Albuquerque, NM (United States); Weber, W.J. [Pacific Northwest Lab., Richland, WA (United States)

1995-05-01T23:59:59.000Z

446

Earth melter and method of disposing of feed materials  

SciTech Connect (OSTI)

An apparatus, and method of operating the apparatus, wherein a feed material is converted into a glassified condition for subsequent use or disposal. The apparatus is particularly useful for disposal of hazardous or noxious waste materials which are otherwise either difficult or expensive to dispose of. The apparatus is preferably constructed by excavating a melt zone in a quantity of soil or rock, and lining the melt zone with a back fill material if refractory properties are needed. The feed material is fed into the melt zone and, preferably, combusted to an ash, whereupon the heat of combustion is used to melt the ash to a molten condition. Electrodes may be used to maintain the molten feed material in a molten condition, and to maintain homogeneity of the molten materials.

Chapman, Christopher C. (Richland, WA)

1994-01-01T23:59:59.000Z

447

Subproject L-045H 300 Area Treated Effluent Disposal Facility  

SciTech Connect (OSTI)

The study focuses on the project schedule for Project L-045H, 300 Area Treated Effluent Disposal Facility. The 300 Area Treated Effluent Disposal Facility is a Department of Energy subproject of the Hanford Environmental Compliance Project. The study scope is limited to validation of the project schedule only. The primary purpose of the study is to find ways and means to accelerate the completion of the project, thereby hastening environmental compliance of the 300 Area of the Hanford site. The 300 Area'' has been utilized extensively as a laboratory area, with a diverse array of laboratory facilities installed and operational. The 300 Area Process Sewer, located in the 300 Area on the Hanford Site, collects waste water from approximately 62 sources. This waste water is discharged into two 1500 feet long percolation trenches. Current environmental statutes and policies dictate that this practice be discontinued at the earliest possible date in favor of treatment and disposal practices that satisfy applicable regulations.

Not Available

1991-06-01T23:59:59.000Z

448

Classified Component Disposal at the Nevada National Security Site  

SciTech Connect (OSTI)

The Nevada National Security Site (NNSS) has added the capability needed for the safe, secure disposal of non-nuclear classified components that have been declared excess to national security requirements. The NNSS has worked with U.S. Department of Energy, National Nuclear Security Administration senior leadership to gain formal approval for permanent burial of classified matter at the NNSS in the Area 5 Radioactive Waste Management Complex owned by the U.S. Department of Energy. Additionally, by working with state regulators, the NNSS added the capability to dispose non-radioactive hazardous and non-hazardous classified components. The NNSS successfully piloted the new disposal pathway with the receipt of classified materials from the Kansas City Plant in March 2012.

Poling, J. [NSTec; Arnold, P. [NSTec; Saad, M. [SNL; DiSanza, F.; Cabble, K. [NNSA/NSO

2012-11-05T23:59:59.000Z

449

Idaho CERCLA Disposal Facility at Idaho National Laboratory  

Broader source: Energy.gov (indexed) [DOE]

Idaho Operations Idaho Operations Review of the Idaho CERCLA Disposal Facility (ICDF) at Idaho National Laboratory By Craig H. Benson, PhD, PE; William H. Albright, PhD; David P. Ray, PE, and John Smegal Sponsored by: The Office of Engineering and Technology (EM-20) 5 December 2007 i TABLE OF CONTENTS 1. INTRODUCTION 1 2. OBJECTIVE AND SCOPE 1 3. LINE OF INQUIRY NO. 1 2 3.1 Containerized Waste 2 3.2 Compacted Mixtures of Soil and Debris 3 3.3 Final Cover Settlement 3 3.4 Leachate Collection System and Leak Detection Zone Monitoring 4 4. LINE OF INQUIRY NO. 2 4 5. LINE OF INQUIRY NO. 3 5 6. SUMMARY OF RECOMMENDATIONS 6 7. ACKNOWLEDGEMENTS 6 FIGURES 7 1 1. INTRODUCTION The Idaho CERCLA Disposal Facility (ICDF) is a land disposal facility authorized by the US

450

Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria  

SciTech Connect (OSTI)

The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

W. Mahlon Heileson

2006-10-01T23:59:59.000Z

451

Risk analyses for disposing of nonhazardous oil field wastes in salt caverns  

SciTech Connect (OSTI)

Argonne National Laboratory (ANL) has completed an evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from nonhazardous oil field wastes (NOW) disposed of in domal salt caverns. In this assessment, several steps were used to evaluate potential human health risks: identifying potential contaminants of concern; determining how humans could be exposed to these contaminants; assessing the contaminants` toxicities; estimating contaminant intakes; and, finally, calculating human cancer and noncancer risks. Potential human health risks associated with hazardous substances (arsenic, benzene, cadmium, and chromium) in NOW were assessed under four postclosure cavern release scenarios: inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks or leaky interbeds, and a partial collapse of the cavern roof. To estimate potential human health risks for these scenarios, contaminant concentrations at the receptor were calculated using a one-dimensional solution to an advection/dispersion equation that included first order degradation. Even under worst-case conditions, the risks have been found to be within the US EPA target range for acceptable exposure levels. From a human health risk perspective, salt caverns can provide an acceptable disposal method for NOW.

Tomasko, D.; Elcock, D.; Veil, J.

1997-09-01T23:59:59.000Z

452

Maintenance Guide for DOE Low-Level Waste Disposal Facility  

Broader source: Energy.gov (indexed) [DOE]

4 4 G Approved: XX-XX-XX IMPLEMENTATION GUIDE for use with DOE M 435.1-1 Maintenance Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses U.S. DEPARTMENT OF ENERGY DOE G 435.1-4 i (and ii) DRAFT XX-XX-XX LLW Maintenance Guide Revision 0, XX-XX-XX Maintenance Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses CONTENTS 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . .

453

Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites  

Broader source: Energy.gov (indexed) [DOE]

Annual Site Inspection and Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites November 2012 LMS/S09415 ENERGY Legacy Management U.S. DEPARTMENT OF Sherwood, Washington, Disposal Site, 2012 Sherwood, Washington, Disposal Site, 2012 L-Bar, New Mexico, Disposal Site, 2012 L-Bar, New Mexico, Disposal Site, 2012 Bluewater, New Mexico, Disposal Site, 2012 Bluewater, New Mexico, Disposal Site, 2012 Maybell West, Colorado, Disposal Site, 2012 Maybell West, Colorado, Disposal Site, 2012 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,

454

Encapsulant Material For Solar Cell Module And Laminated Glass Applications  

DOE Patents [OSTI]

An encapsulant material includes a layer of metallocene polyethylene disposed between two layers of an acid copolymer of polyethylene. More specifically, the layer of metallocene polyethylene is disposed adjacent a rear surface of the first layer of the acid copolymer of polyethylene, and a second layer of the acid copolymer of polyethlene is disposed adjacent a rear surface of the layer of metallocene polyethylene. The encapsulant material can be used in solar cell module and laminated glass applications.

Hanoka, Jack I. (Brookline, MA); Klemchuk, Peter P. (Watertown, CT)

2001-02-13T23:59:59.000Z

455

Encapsulant Material For Solar Cell Module And Laminated Glass Applications  

DOE Patents [OSTI]

An encapsulant material includes a layer of metallocene polyethylene disposed between two layers of ionomer. More specifically, the layer of metallocene polyethylene is disposed adjacent a rear surface of the first ionomer layer, and a second layer of ionomer is disposed adjacent a rear surface of the layer of metallocene polyethylene. The encapsulant material can be used in solar cell module and laminated glass applications.

Hanoka, Jack I. (Brookline, MA)

2000-09-05T23:59:59.000Z

456

EA-1053: Decontaminating and Decommissioning the General Atomics Hot Cell  

Broader source: Energy.gov (indexed) [DOE]

3: Decontaminating and Decommissioning the General Atomics 3: Decontaminating and Decommissioning the General Atomics Hot Cell Facility, San Diego, California EA-1053: Decontaminating and Decommissioning the General Atomics Hot Cell Facility, San Diego, California SUMMARY This EA evaluates the environmental impacts of the proposal for low-level radioactive and mixed wastes generated by decontaminating and decommissioning activities at the U.S. Department of Energy's General Atomics' Hot Cell Facility would be transported to either a DOE owned facility, such as the Hanford site in Washington, or to a commercial facility, such as Envirocare in Utah, for treatment and/or storage and disposal. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 14, 1995 EA-1053: Finding of No Significant Impact

457

EIS-0375: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and Department of Energy GTCC-like Waste  

Broader source: Energy.gov [DOE]

This EIS evaluates the reasonably foreseeable environmental impacts associated with the proposed development, operation, and long-term management of a disposal facility or facilities for Greater-Than-Class C (GTCC) low-level radioactive waste and GTCC-like waste. The Environmental Protection Agency is a cooperating agency in the preparation of this EIS.

458

Ministers block disposal of oil rigs at sea  

Science Journals Connector (OSTI)

... ministers last week ended three years of public controversy about the fate of disused oil rigs in the northeast Atlantic ocean. They decided that most will have to be dismantled ... all environmentalist groups. Oil companies, on the other hand, were disappointed. The UK Offshore Operators Association said the decision to outlaw deep-sea disposal of oil and gas ...

Ehsan Masood

1998-07-30T23:59:59.000Z

459

Disposal of soluble salt waste from coal gasification  

SciTech Connect (OSTI)

This paper addresses pollutants in the form of soluble salts and resource recovery in the form of water and land. A design for disposal of soluble salts has been produced. The interactions of its parameters have been shown by a process design study. The design will enable harmonious compliance with United States Public Laws 92-500 and 94-580, relating to water pollution and resource recovery. In the disposal of waste salt solutions, natural water resources need not be contaminated, because an encapsulation technique is available which will immobilize the salts. At the same time it will make useful landforms available, and water as a resource can be recovered. There is a cost minimum when electrodialysis and evaporation are combined, which is not realizable with evaporation alone, unless very low-cost thermal energy is available or unless very high-cost pretreatment for electrodialysis is required. All the processes making up the proposed disposal process are commercially available, although they are nowhere operating commercially as one process. Because of the commercial availability of the processes, the proposed process may be a candidate 'best commercially available treatment' for soluble salt disposal.

McKnight, C.E.

1980-06-01T23:59:59.000Z