National Library of Energy BETA

Sample records for disposal cell design

  1. Design and Installation of a Disposal Cell Cover Field Test

    SciTech Connect (OSTI)

    Benson, C.H. [University of Wisconsin–Madison, Madison, Wisconsin; Waugh, W.J. [S.M. Stoller Corporation, Grand Junction, Colorado; Albright, W.H. [Desert Research Institute, Reno, Nevada; Smith, G.M. [Geo-Smith Engineering, Grand Junction, Colorado; Bush, R.P. [U.S. Department of Energy, Grand Junction, Colorado

    2011-02-27

    The U.S. Department of Energy’s Office of Legacy Management (LM) initiated a cover assessment project in September 2007 to evaluate an inexpensive approach to enhancing the hydrological performance of final covers for disposal cells. The objective is to accelerate and enhance natural processes that are transforming existing conventional covers, which rely on low-conductivity earthen barriers, into water balance covers, that store water in soil and release it as soil evaporation and plant transpiration. A low conductivity cover could be modified by deliberately blending the upper layers of the cover profile and planting native shrubs. A test facility was constructed at the Grand Junction, Colorado, Disposal Site to evaluate the proposed methodology. The test cover was constructed in two identical sections, each including a large drainage lysimeter. The test cover was constructed with the same design and using the same materials as the existing disposal cell in order to allow for a direct comparison of performance. One test section will be renovated using the proposed method; the other is a control. LM is using the lysimeters to evaluate the effectiveness of the renovation treatment by monitoring hydrologic conditions within the cover profile as well as all water entering and leaving the system. This paper describes the historical experience of final covers employing earthen barrier layers, the design and operation of the lysimeter test facility, testing conducted to characterize the as-built engineering and edaphic properties of the lysimeter soils, the calibration of instruments installed at the test facility, and monitoring data collected since the lysimeters were constructed.

  2. UMTRA Project remedial action planning and disposal cell design to comply with the proposed EPA (Environmental Protection Agency) standards (40 CFR Part 192)

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project involves stabilizing 24 inactive uranium mill tailings piles in 10 states. Remedial work must meet standards established by the US Environmental Protection Agency (EPA). Remedial action must be designed and constructed to prevent dispersion of the tailings and other contaminated materials, and must prevent the inadvertent use of the tailings by man. This report is prepared primarily for distribution to parties involved in the UMTRA Project, including the US Nuclear Regulatory Commission (NRC), and states and tribes. It is intended to record the work done by the DOE since publication of the proposed EPA groundwater protection standards, and to show how the DOE has attempted to respond and react in a positive way to the new requirements that result from the proposed standards. This report discusses the groundwater compliance strategies now being defined and implemented by the DOE, and details the changes in disposal cell designs that result from studies to evaluate ways to facilitate compliance with the proposed EPA groundwater protection standards. This report also serves to record the technical advances, planning, and progress made on the UMTRA Project since the appearance of the proposed EPA groundwater protection standards. The report serves to establish, document, and disseminate technical approaches and engineering and groundwater information to people who may be interested or involved in similar or related projects. 24 refs., 27 figs., 8 tabs.

  3. Long-term surveillance plan for the Burro Canyon disposal cell, Slick Rock, Colorado

    SciTech Connect (OSTI)

    NONE

    1996-11-01

    This long-term surveillance plant (LTSP) describes the US Department of energy`s (DOE) long-term care program for the Uranium Mill Tailings Remediation Action (UMTRA) Project`s burro Canyon disposal cell in San Miguel County, Colorado. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Burro Canyon disposal cell performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. No ground water monitoring will be required at the Burro Canyon disposal cell because the ground water protection strategy is supplemental standards based on low-yield from the upper-most aquifer.

  4. Appendix K Disposal Cell Groundwater Monitoring Plan

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and Myers Co -VANaval ,, *' ; . Final Disposal Cell

  5. Canister design for deep borehole disposal of nuclear waste

    E-Print Network [OSTI]

    Hoag, Christopher Ian

    2006-01-01

    The objective of this thesis was to design a canister for the disposal of spent nuclear fuel and other high-level waste in deep borehole repositories using currently available and proven oil, gas, and geothermal drilling ...

  6. Long-Term Performance of Uranium Tailings Disposal Cells - 13340

    SciTech Connect (OSTI)

    Bostick, Kent; Daniel, Anamary; Pill, Ken [Professional Project Services, Inc., 1100 Bethel Valley Road, Oak Ridge, TN, 37922 (United States)] [Professional Project Services, Inc., 1100 Bethel Valley Road, Oak Ridge, TN, 37922 (United States); Tachiev, Georgio; Noosai, Nantaporn; Villamizar, Viviana [Florida International University, 10555 W. Flagler St., EC 2100, Miami FL, 33174 (United States)] [Florida International University, 10555 W. Flagler St., EC 2100, Miami FL, 33174 (United States)

    2013-07-01

    Recently, there has been interest in the performance and evolution of Uranium Mill Tailings Remedial Action (UMTRA) Project disposal cell covers because some sites are not compliant with groundwater standards. Field observations of UMTRA disposal cells indicate that rock covers tend to become vegetated and that saturated conductivities in the upper portion of radon barriers may increase due to freeze/thaw cycles and biointrusion. This paper describes the results of modeling that addresses whether these potential changes and transient drainage of moisture in the tailings affect overall performance of the disposal cells. A numerical unsaturated/saturated 3-dimensional flow model was used to simulate whether increases in saturated conductivities in radon barriers with rock covers affect the overall performance of the disposal cells using field data from the Shiprock, NM, UMTRA site. A unique modeling approach allowed simulation with daily climatic conditions to determine changes in moisture and moisture flux from the disposal cell. Modeling results indicated that increases in the saturated conductivity at the top of radon barrier do not influence flux from the tailings with time because the tailings behave similar hydraulically to the radon barrier. The presence of a thin layer of low conductivity material anywhere in the cover or tailings restricts flux in the worst case to the saturated conductivity of that material. Where materials are unsaturated at depth within the radon barrier of tailings slimes, conductivities are typically less than 10{sup -8} centimeters per second. If the low conductivity layer is deep within the disposal cell, its saturated properties are less likely to change with time. The significance of this modeling is that operation and maintenance of the disposal cells can be minimized if they are allowed to progress to a natural condition with some vegetation and soil genesis. Because the covers and underlying tailings have a very low saturated hydraulic conductivity after transient drainage, eventually the amount of moisture leaving the tailings has a negligible effect on groundwater quality. Although some of the UMTRA sites are not in compliance with the groundwater standards, the explanation may be legacy contamination from mining, or earlier higher fluxes from the tailings or unlined processing ponds. Investigation of other legacy sources at the UMTRA sites may help explain persistent groundwater contamination. (authors)

  7. The WIPP is the nation's first geologic facility designed for permanent disposal of transuranic

    E-Print Network [OSTI]

    The WIPP is the nation's first geologic facility designed for permanent disposal of transuranic, New Mexico to dispose of this waste. The TRU waste being disposed at the WIPP is packaged into drums-level waste and spent nuclear fuel. The WIPP has a total capacity of 6.2 million cubic feet of TRU waste

  8. Microsoft Word - Appendix C_DisposalCellContents.doc

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and MyersHr. Anthony V.How Disposal Cell Contents

  9. DOE - Office of Legacy Management -- Cheney Disposal Cell - 008

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth Dakota Edgemont, SouthLaboratory -Cheney Disposal Cell - 008

  10. Idaho Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell

    Office of Energy Efficiency and Renewable Energy (EERE)

    American Recovery and Reinvestment Act cleanup crews at the Idaho site recently disposed of a hot cell as heavy as nine fully loaded Boeing 737s.

  11. US DOE-EM On-Site Disposal Cell Working Group - Fostering Communication On Performance Assessment Challenges

    SciTech Connect (OSTI)

    Seitz, Roger R. [Savannah River Site (SRS), Aiken, SC (United States); Suttora, Linda C. [U.S. Department of Energy, Office of Site Restoration, Germantown, MD (United States); Phifer, Mark [Savannah River Site (SRS), Aiken, SC (United States)

    2014-03-01

    On-site disposal cells are in use and being considered at several U.S. Department of Energy (USDOE) sites as the final disposition for large amounts of waste associated with cleanup of contaminated areas and facilities. These facilities are typically developed with regulatory oversight from States and/or the US Environmental Protection Agency (USEPA) in addition to USDOE. The facilities are developed to meet design standards for disposal of hazardous waste as well as the USDOE performance based standards for disposal of radioactive waste. The involvement of multiple and different regulators for facilities across separate sites has resulted in some differences in expectations for performance assessments and risk assessments (PA/RA) that are developed for the disposal facilities. The USDOE-EM Office of Site Restoration formed a working group to foster improved communication and sharing of information for personnel associated with these Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) disposal cells and work towards more consistent assumptions, as appropriate, for technical and policy considerations related to performance and risk assessments in support of a Record of Decision and Disposal Authorization Statement. The working group holds teleconferences, as needed, focusing on specific topics of interest. The topics addressed to date include an assessment of the assumptions used for performance assessments and risk assessments (PA/RAs) for on-site disposal cells, requirements and assumptions related to assessment of inadvertent intrusion, DOE Manual 435.1-1 requirements, and approaches for consideration of the long-term performance of liners and covers in the context of PAs. The working group has improved communication among the staff and oversight personnel responsible for onsite disposal cells and has provided a forum to identify and resolve common concerns.

  12. Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2010-10-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  13. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2011-03-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  14. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    David Duncan

    2011-05-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  15. DESIGN ANALYSIS FOR THE DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER

    SciTech Connect (OSTI)

    G. Radulesscu; J.S. Tang

    2000-06-07

    The purpose of ''Design Analysis for the Defense High-Level Waste Disposal Container'' analysis is to technically define the defense high-level waste (DHLW) disposal container/waste package using the Waste Package Department's (WPD) design methods, as documented in ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000a). The DHLW disposal container is intended for disposal of commercial high-level waste (HLW) and DHLW (including immobilized plutonium waste forms), placed within disposable canisters. The U.S. Department of Energy (DOE)-managed spent nuclear fuel (SNF) in disposable canisters may also be placed in a DHLW disposal container along with HLW forms. The objective of this analysis is to demonstrate that the DHLW disposal container/waste package satisfies the project requirements, as embodied in Defense High Level Waste Disposal Container System Description Document (SDD) (CRWMS M&O 1999a), and additional criteria, as identified in Waste Package Design Sensitivity Report (CRWMS M&Q 2000b, Table 4). The analysis briefly describes the analytical methods appropriate for the design of the DHLW disposal contained waste package, and summarizes the results of the calculations that illustrate the analytical methods. However, the analysis is limited to the calculations selected for the DHLW disposal container in support of the Site Recommendation (SR) (CRWMS M&O 2000b, Section 7). The scope of this analysis is restricted to the design of the codisposal waste package of the Savannah River Site (SRS) DHLW glass canisters and the Training, Research, Isotopes General Atomics (TRIGA) SNF loaded in a short 18-in.-outer diameter (OD) DOE standardized SNF canister. This waste package is representative of the waste packages that consist of the DHLW disposal container, the DHLW/HLW glass canisters, and the DOE-managed SNF in disposable canisters. The intended use of this analysis is to support Site Recommendation reports and to assist in the development of WPD drawings. Activities described in this analysis were conducted in accordance with the Development Plan ''Design Analysis for the Defense High-Level Waste Disposal Container'' (CRWMS M&O 2000c) with no deviations from the plan.

  16. Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Timothy Solack; Carol Mason

    2012-03-01

    A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

  17. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Boyd D. Christensen

    2010-02-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  18. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Boyd D. Christensen

    2010-05-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  19. An assessment of plant biointrusion at the Uranium Mill Tailings Remedial Action Project rock-covered disposal cells

    SciTech Connect (OSTI)

    Not Available

    1990-10-01

    This study is one of a number of special studies that have been conducted regarding various aspects of the Uranium Mill Tailings Remedial Action (UMTRA) Project. This special study was proposed following routine surveillance and maintenance surveys and observations reported in a special study of vegetative covers (DOE, 1988), in which plants were observed growing up through the rock erosion layer at recently completed disposal cells. Some of the plants observed were deep-rooted woody species, and questions concerning root intrusion into disposal cells and the need to control plant growth were raised. The special study discussed in this report was designed to address some of the ramifications of plant growth on disposal cells that have rock covers. The NRC has chosen rock covers over vegetative covers in the arid western United States because licenses cannot substantiate that the vegetative covers will be significantly greater than 30 percent and preferably 70 percent,'' which is the amount of vegetation required to reduce flow to a point of stability.'' The potential impacts of vegetation growing in rock covers are not addressed by the NRC (1990). The objectives, then, of this study were to determine the species of plants growing on two rock-covered disposal cells, study the rooting pattern of plants on these cells, and identify possible impacts of plant root penetration on these and other UMTRA Project rock-covered cells.

  20. Graphene sheets fabricated from disposable paper cups as a catalyst support material for fuel cells

    E-Print Network [OSTI]

    Zhao, Tianshou

    Graphene sheets fabricated from disposable paper cups as a catalyst support material for fuel cells Hong Zhao and T. S. Zhao* Disposable paper-cups are used for the formation of graphene sheets with Fe2+ as a catalyst. The proposed synthesis strategy not only enables graphene sheets to be produced in high yield

  1. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    Angeles Organic Tandem Solar Cells: Design and Formation AOrganic Tandem Solar Cells: Design and Formation by Chun-multi-junction tandem solar-cell design. Given this design,

  2. Grout long radius flow testing to support Saltstone disposal Unit 5 design

    SciTech Connect (OSTI)

    Stefanko, D. B.; Langton, C. A.; Serrato, M. G.; Brooks, T. E. II; Huff, T. H.

    2013-02-24

    The Saltstone Facility, located within the Savannah River Site (SRS) near Aiken, South Carolina, consists of two facility segments: The Saltstone Production Facility (SPF) and the Saltstone Disposal Facility (SDF). The SPF receives decontaminated legacy low level sodium salt waste solution that is a byproduct of prior nuclear material processing. The salt solution is mixed with cementitious materials to form a grout slurry known as “Saltstone”. The grout is pumped to the SDF where it is placed in a Saltstone Disposal Unit (SDU) to solidify. SDU 6 is referred to as a “mega vault” and is currently in the design stage. The conceptual design for SDU 6 is a single cell, cylindrical geometry approximately 114.3 meters in diameter by 13.1 meter high and is larger than previous cylindrical SDU designs, 45.7 meters in diameter by 7.01 meters high (30 million gallons versus 2.9 million gallons of capacity). Saltstone slurry will be pumped into the new waste disposal unit through roof openings at a projected flow rate of about 34.1 cubic meters per hour. Nine roof openings are included in the design to discharge material into the SDU with an estimated grout pour radius of 22.9 to 24.4 meters and initial drop height of 13.1 meters. The conceptual design for the new SDU does not include partitions to limit the pour radius of the grout slurry during placement other than introducing material from different pour points. This paper addresses two technical issues associated with the larger diameter of SDU 6; saltstone flow distance in a tank 114.3 meters in diameter and quality of the grout. A long-radius flow test scaled to match the velocity of an advancing grout front was designed to address these technology gaps. The emphasis of the test was to quantify the flow distance and to collect samples to evaluate cured properties including compressive strength, porosity, density, and saturated hydraulic conductivity. Two clean cap surrogate mixes (saltstone premix plus water) were designed to simulate slurry with the reference saltstone rheology and a saltstone with extra water from the process flushing operation. Long-radius flow tests were run using approximately 4.6 cubic meters of each of these mixes. In both tests the pump rate was 0.063 liters/second (1 gpm). A higher pump rate, 0.19 liters/second (3 gpm), was used in a third long-radius flow test. The angle of repose of the grout wedges increased as a function of time in all three tests. The final angles of repose were measured at 3.0º, 2.4º, and 0.72º. The pump rate had the largest effect on the radial flow distance and slope of the grout surface. The slope on the pour placed at 0.19 liters/second (3 gpm) was most representative of the slope on the grout currently being pumped into SDU 2 which is estimated to be 0.7º to 0.9º. The final grout heights at 1/3 of a meter from the discharge point were 115, 105, and 38 cm. Entrapped air (? 0.25 cm bubbles) was also observed in all of the mixes. The entrapped air appeared to be released from the flows within about 3.1 meters (10 feet) of the discharge point. The bleed water was clear but had a thin layer of floating particulates. The bleed water should be retrievable by a drain water collection system in SDU 6 assuming the system does not get clogged. Layering was observed and was attributed to intervals when the hopper was being cleaned. Heat from the hydration reactions was noticeable to the touch.

  3. Grout Long Radius Flow Testing to Support Saltstone Disposal Unit 6 Design - 13352

    SciTech Connect (OSTI)

    Stefanko, D.B.; Langton, C.A.; Serrato, M.G. [Savannah River National Laboratory, Savannah River Nuclear Solutions, LLC, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Nuclear Solutions, LLC, Savannah River Site, Aiken, SC 29808 (United States); Brooks, T.E. II; Huff, T.H. [Savannah River Remediation, LLC, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River Remediation, LLC, Savannah River Site, Aiken, SC 29808 (United States)

    2013-07-01

    The Saltstone Facility, located within the Savannah River Site (SRS) near Aiken, South Carolina, consists of two facility segments: The Saltstone Production Facility (SPF) and the Saltstone Disposal Facility (SDF). The SPF receives decontaminated legacy low level sodium salt waste solution that is a byproduct of prior nuclear material processing. The salt solution is mixed with cementitious materials to form a grout slurry known as 'Saltstone'. The grout is pumped to the SDF where it is placed in a Saltstone Disposal Unit (SDU) to solidify. SDU 6 is referred to as a 'mega vault' and is currently in the design stage. The conceptual design for SDU 6 is a single cell, cylindrical geometry approximately 114.3 meters in diameter by 13.1 meter high and is larger than previous cylindrical SDU designs, 45.7 meters in diameter by 7.01 meters high (30 million gallons versus 2.9 million gallons of capacity). Saltstone slurry will be pumped into the new waste disposal unit through roof openings at a projected flow rate of about 34.1 cubic meters per hour. Nine roof openings are included in the design to discharge material into the SDU with an estimated grout pour radius of 22.9 to 24.4 meters and initial drop height of 13.1 meters. The conceptual design for the new SDU does not include partitions to limit the pour radius of the grout slurry during placement other than introducing material from different pour points. This paper addresses two technical issues associated with the larger diameter of SDU 6; Saltstone flow distance in a tank 114.3 meters in diameter and quality of the grout. A long-radius flow test scaled to match the velocity of an advancing grout front was designed to address these technology gaps. The emphasis of the test was to quantify the flow distance and to collect samples to evaluate cured properties including compressive strength, porosity, density, and saturated hydraulic conductivity. Two clean cap surrogate mixes (Saltstone premix plus water) were designed to simulate slurry with the reference Saltstone rheology and a Saltstone with extra water from the process flushing operation. Long-radius flow tests were run using approximately 4.6 cubic meters of each of these mixes. In both tests the pump rate was 0.063 liters/second (1 gpm). A higher pump rate, 0.19 liters/second (3 gpm), was used in a third long-radius flow test. The angle of repose of the grout wedges increased as a function of time in all three tests. The final angles of repose were measured at 3.0 deg., 2.4 deg., and 0.72 deg.. The pump rate had the largest effect on the radial flow distance and slope of the grout surface. The slope on the pour placed at 0.19 liters/second (3 gpm) was most representative of the slope on the grout currently being pumped into SDU 2 which is estimated to be 0.7 deg. to 0.9 deg. The final grout heights at 1/3 of a meter from the discharge point were 115, 105, and 38 cm. Entrapped air (? 0.25 cm bubbles) was also observed in all of the mixes. The entrapped air appeared to be released from the flows within about 3.1 meters (10 feet) of the discharge point. The bleed water was clear but had a thin layer of floating particulates. The bleed water should be retrievable by a drain water collection system in SDU 6 assuming the system does not get clogged. Layering was observed and was attributed to intervals when the hopper was being cleaned. Heat from the hydration reactions was noticeable to the touch. (authors)

  4. ARIA Cell Solenoid Design Considerations

    SciTech Connect (OSTI)

    Schulze, Martin E.

    2015-05-20

    Detailed schematics of the structure of the preliminary ARIA solenoid cell design including overhead and cross section views and dimensions.

  5. DOE - Office of Legacy Management -- Clive Disposal Cell - 036

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth Dakota Edgemont, SouthLaboratory -Cheney Disposal- CO

  6. Reference design and operations for deep borehole disposal of high-level radioactive waste.

    SciTech Connect (OSTI)

    Herrick, Courtney Grant; Brady, Patrick Vane; Pye, Steven; Arnold, Bill Walter; Finger, John Travis; Bauer, Stephen J.

    2011-10-01

    A reference design and operational procedures for the disposal of high-level radioactive waste in deep boreholes have been developed and documented. The design and operations are feasible with currently available technology and meet existing safety and anticipated regulatory requirements. Objectives of the reference design include providing a baseline for more detailed technical analyses of system performance and serving as a basis for comparing design alternatives. Numerous factors suggest that deep borehole disposal of high-level radioactive waste is inherently safe. Several lines of evidence indicate that groundwater at depths of several kilometers in continental crystalline basement rocks has long residence times and low velocity. High salinity fluids have limited potential for vertical flow because of density stratification and prevent colloidal transport of radionuclides. Geochemically reducing conditions in the deep subsurface limit the solubility and enhance the retardation of key radionuclides. A non-technical advantage that the deep borehole concept may offer over a repository concept is that of facilitating incremental construction and loading at multiple perhaps regional locations. The disposal borehole would be drilled to a depth of 5,000 m using a telescoping design and would be logged and tested prior to waste emplacement. Waste canisters would be constructed of carbon steel, sealed by welds, and connected into canister strings with high-strength connections. Waste canister strings of about 200 m length would be emplaced in the lower 2,000 m of the fully cased borehole and be separated by bridge and cement plugs. Sealing of the upper part of the borehole would be done with a series of compacted bentonite seals, cement plugs, cement seals, cement plus crushed rock backfill, and bridge plugs. Elements of the reference design meet technical requirements defined in the study. Testing and operational safety assurance requirements are also defined. Overall, the results of the reference design development and the cost analysis support the technical feasibility of the deep borehole disposal concept for high-level radioactive waste.

  7. Work plan for phase 1A paleochannel studies at the Cheney disposal cell, Grand Junction, Colorado: Draft

    SciTech Connect (OSTI)

    1996-11-01

    This document will serve as a Work Plan for continuing paleochannel characterization activities at the Cheney disposal site near Grand Junction, Colorado. Elevated levels of nitrate were encountered in ground water from two monitor wells installed in alluvial paleochannels near the Cheney disposal cell in 1994. This triggered a series of investigations (Phase 1) designed to determine the source of nitrate and other chemical constituents in ground water at the site. A comprehensive summary of the Phase 1 field investigations (limited to passive monitoring and modeling studies) conducted by the Remedial Action Contractor (RAC) and Technical Assistance Contractor (TAC) to date is provided in Section 2.0 of this document. Results of Phase 1 were inconclusive regarding the potential interaction between the disposal cell and the paleochannels, so additional Phase 1A investigations are planned. Recommendations for Phase 1A tasks and possible future activities are discussed in Section 3.0. Detailed information on the implementation of the proposed Phase 1A tasks appears in Section 4.0 and will provide the basis for Statements of Work (SOW) for each of these tasks. A detailed sampling plan is provided to ensure quality and a consistency with previous data collection efforts.

  8. PORFLOW MODELING FOR A PRELIMINARY ASSESSMENT OF THE PERFORMANCE OF NEW SALTSTONE DISPOSAL UNIT DESIGNS

    SciTech Connect (OSTI)

    Smith, F.

    2012-08-06

    At the request of Savannah River Remediation (SRR), SRNL has analyzed the expected performance obtained from using seven 32 million gallon Saltstone Disposal Units (SDUs) in the Z-Area Saltstone Disposal Facility (SDF) to store future saltstone grout. The analysis was based on preliminary SDU final design specifications. The analysis used PORFLOW modeling to calculate the release of 20 radionuclides from an SDU and transport of the radionuclides and daughters through the vadose zone. Results from this vadose zone analysis were combined with previously calculated releases from existing saltstone vaults and FDCs and a second PORFLOW model run to calculate aquifer transport to assessment points located along a boundary 100 m from the nearest edge of the SDF sources. Peak concentrations within 12 sectors spaced along the 100 m boundary were determined over a period of evaluation extending 20,000 years after SDF closure cap placement. These peak concentrations were provided to SRR to use as input for dose calculations.

  9. Computer software design description for the Treated Effluent Disposal Facility (TEDF), Project L-045H, Operator Training Station (OTS)

    SciTech Connect (OSTI)

    Carter, R.L. Jr.

    1994-11-07

    The Treated Effluent Disposal Facility (TEDF) Operator Training Station (OTS) is a computer-based training tool designed to aid plant operations and engineering staff in familiarizing themselves with the TEDF Central Control System (CCS).

  10. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Boyd D. Chirstensen

    2012-04-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  11. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Boyd D. Chirstensen

    2012-08-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  12. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Gary Mecham

    2010-05-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  13. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Gary Mecham

    2010-10-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  14. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    Improvement: Multi-Junction Solar Cells .2 Design improvement: Multi-Junction Solar Cells 2.1 LossImprovement of transparent metal top electrodes for organic solar cells

  15. Optimized Designs and Materials for Nanostructure Based Solar Cells

    E-Print Network [OSTI]

    Shao, Qinghui

    2009-01-01

    the-art thin film solar cell design and processing becauseto incorporate into the solar cell design the materials withor conventional tandem solar cell designs. The physical

  16. Cell design for lithium alloy/metal sulfide battery

    DOE Patents [OSTI]

    Kaun, Thomas D. (New Lennox, IL)

    1985-01-01

    The disclosed lithium alloy/iron sulfide cell design provides loop-like positive and negative sheet metal current collectors electrically insulated from one another by separator means, the positive collector being located outwardly of the negative collector. The collectors are initially secured within an open-ended cell housing, which allows for collector pretesting for electrical shorts prior to adding any electrode materials and/or electrolyte to the cell. Separate chambers are defined outwardly of the positive collector and inwardly of the negative collector open respectively in opposite directions toward the open ends of the cell housing; and positive and negative electrode materials can be extruded into these respective chambers via the opposite open housing ends. The chambers and cell housing ends can then be sealed closed. A cross wall structurally reinforces the cell housing and also thereby defines two cavities, and paired positive and negative collectors are disposed in each cavity and electrically connected in parallel. The cell design provides for a high specific energy output and improved operating life in that any charge-discharge cycle swelling of the positive electrode material will be inwardly against only the positive collector to minimize shorts caused by the collectors shifting relative to one another.

  17. Impacts of a high-burnup spent fuel on a geological disposal system design

    SciTech Connect (OSTI)

    Cho, D.K.; Lee, Y.; Lee, J.Y.; Choi, H.J.; Choi, J.W. [Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon-city (Korea, Republic of)

    2007-07-01

    The influence of a burnup increase of a spent nuclear fuel on a deep geological disposal system was evaluated in this study. First, the impact of a burnup increase on each aspect related to thermal and nuclear safety concerns was quantified. And then, the tunnel length, excavation volume, and the raw materials for a cast insert, copper, bentonite, and backfill needed to constitute a disposal system were comprehensively analyzed based on the spent fuel inventory to generate 1 Terawatt-year (TWa), to establish the overall effects and consequences on a geological disposal. As a result, impact of a burnup increase on the criticality safety and radiation shielding was shown to be negligible. The disposal area, however, is considerably affected because of a higher thermal load. And, it is reasonable to use a canister such as the Korean Reference Disposal Canister (KDC-1) containing 4 spent fuels up to 50 GWD/MtU, and to use a canister containing 3 spent fuels beyond 50 GWD/MtU. Although a considerable increased, 33 % in the tunnel length and 30 % in the excavation volume, was observed as the burnup increases from 50 to 60 GWD/MtU, because a decrease in the canister needs can offset an increase in the excavation volume, it can be concluded that a burnup increase of a spent fuel is not a critical concern for a geological disposal of a spent fuel. (authors)

  18. Design and operational considerations of United States commercial near-surface low-level radioactive waste disposal facilities

    SciTech Connect (OSTI)

    Birk, S.M.

    1997-10-01

    In accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985, states are responsible for providing for disposal of commercially generated low-level radioactive waste (LLW) within their borders. LLW in the US is defined as all radioactive waste that is not classified as spent nuclear fuel, high-level radioactive waste, transuranic waste, or by-product material resulting from the extraction of uranium from ore. Commercial waste includes LLW generated by hospitals, universities, industry, pharmaceutical companies, and power utilities. LLW generated by the country`s defense operations is the responsibility of the Federal government and its agency, the Department of Energy. The commercial LLRW disposal sites discussed in this report are located near: Sheffield, Illinois (closed); Maxey Flats, Kentucky (closed); Beatty, Nevada (closed); West Valley, New York (closed); Barnwell, South Carolina (operating); Richland, Washington (operating); Ward Valley, California, (proposed); Sierra Blanca, Texas (proposed); Wake County, North Carolina (proposed); and Boyd County, Nebraska (proposed). While some comparisons between the sites described in this report are appropriate, this must be done with caution. In addition to differences in climate and geology between sites, LLW facilities in the past were not designed and operated to today`s standards. This report summarizes each site`s design and operational considerations for near-surface disposal of low-level radioactive waste. The report includes: a description of waste characteristics; design and operational features; post closure measures and plans; cost and duration of site characterization, construction, and operation; recent related R and D activities for LLW treatment and disposal; and the status of the LLW system in the US.

  19. Some logistical considerations in designing a system of deep boreholes for disposal of high-level radioactive waste.

    SciTech Connect (OSTI)

    Gray, Genetha Anne; Brady, Patrick Vane; Arnold, Bill Walter

    2012-09-01

    Deep boreholes could be a relatively inexpensive, safe, and rapidly deployable strategy for disposing Americas nuclear waste. To study this approach, Sandia invested in a three year LDRD project entitled %E2%80%9CRadionuclide Transport from Deep Boreholes.%E2%80%9D In the first two years, the borehole reference design and backfill analysis were completed and the supporting modeling of borehole temperature and fluid transport profiles were done. In the third year, some of the logistics of implementing a deep borehole waste disposal system were considered. This report describes what was learned in the third year of the study and draws some conclusions about the potential bottlenecks of system implementation.

  20. Photonic Design: From Fundamental Solar Cell Physics to Computational Inverse Design

    E-Print Network [OSTI]

    Miller, Owen Dennis

    2012-01-01

    method to a new solar cell design: a thin-film solar cell incharacterize and design next-generation solar cells. Chapterlies with optical design: The solar cell must be designed

  1. PORTSMOUTH ON-SITE DISPOSAL CELL HIGH DENSITY POLYETHYLENE GEOMEMBRANE LONGEVITY

    SciTech Connect (OSTI)

    Phifer, M.

    2012-01-31

    It is anticipated that high density polyethylene (HDPE) geomembranes will be utilized within the liner and closure cap of the proposed On-Site Disposal Cell (OSDC) at the Portsmouth Gaseous Diffusion Plant. The likely longevity (i.e. service life) of HDPE geomembranes in OSDC service is evaluated within the following sections of this report: (1) Section 2.0 provides an overview of HDPE geomembranes, (2) Section 3.0 outlines potential HDPE geomembranes degradation mechanisms, (3) Section 4.0 evaluates the applicability of HDPE geomembrane degradation mechanisms to the Portsmouth OSDC, (4) Section 5.0 provides a discussion of the current state of knowledge relative to the longevity (service life) of HDPE geomembranes, including the relation of this knowledge to the Portsmouth OSDC, and (5) Section 6.0 provides summary and conclusions relative to the anticipated service life of HDPE geomembranes in OSDC service. Based upon this evaluation it is anticipated that the service life of HDPE geomembranes in OSDC service would be significantly greater than the 200 year service life assumed for the OSDC closure cap and liner HDPE geomembranes. That is, a 200 year OSDC HDPE geomembrane service life is considered a conservative assumption.

  2. Zinc-bromine cell design

    SciTech Connect (OSTI)

    Bellows, R.

    1983-11-30

    A set of slides is reproduced which illustrates the design of a zinc-bromine circulating battery. Low-cost manufacturing techniques and scale-up rationale are outlined, and design parameters are listed. Also outlined is a computer model of the zinc-bromine battery. (LEW)

  3. Advanced conceptual design report. Phase II. Liquid effluent treatment and disposal Project W-252

    SciTech Connect (OSTI)

    1995-01-31

    This Advanced Conceptual Design Report (ACDR) provides a documented review and analysis of the Conceptual Design Report (CDR), WHC-SD-W252-CDR-001, June 30, 1993. The ACDR provides further design evaluation of the major design approaches and uncertainties identified in the original CDR. The ACDR will provide a firmer basis for the both the design approach and the associated planning for the performance of the Definitive Design phase of the project.

  4. Rational design of hybrid organic solar cells

    E-Print Network [OSTI]

    Lentz, Levi (Levi Carl)

    2014-01-01

    In this thesis, we will present a novel design for a nano-structured organic-inorganic hybrid photovoltaic material that will address current challenges in bulk heterojunction (BHJ) organic-based solar cell materials. ...

  5. Insights Gained from Testing Alternate Cell Designs

    SciTech Connect (OSTI)

    J. E. O'Brien; C. M. Stoots; J. S. Herring; G. K. Housley; M. S. Sohal; D. G. Milobar; Thomas Cable

    2009-09-01

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cell for large-scale hydrogen production from steam over a temperature range of 800 to 900ºC. The INL has been testing various solid oxide cell designs to characterize their electrolytic performance operating in the electrolysis mode for hydrogen production. Some results presented in this report were obtained from cells, initially developed by the Forschungszentrum Jülich and now manufactured by the French ceramics firm St. Gobain. These cells have an active area of 16 cm2 per cell. They were initially developed as fuel cells, but are being tested as electrolytic cells in the INL test stands. The electrolysis cells are electrode-supported, with ~10 µm thick yttria-stabilized zirconia (YSZ) electrolytes, ~1400 µm thick nickel-YSZ steam-hydrogen electrodes, and manganite (LSM) air-oxygen electrodes. The experiments were performed over a range of steam inlet mole fractions (0.1 to 0.6), gas flow rates, and current densities (0 to 0.6 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. On a molar basis, the steam consumption rate is equal to the hydrogen production rate. Cell performance was evaluated by performing DC potential sweeps at 800, 850, and 900°C. The voltage-current characteristics are presented, along with values of area-specific resistance as a function of current density. Long-term cell performance is also assessed to evaluate cell degradation. Details of the custom single-cell test apparatus developed for these experiments are also presented. NASA, in conjunction with the University of Toledo, has developed another fuel cell concept with the goals of reduced weight and high power density. The NASA cell is structurally symmetrical, with both electrodes supporting the thin electrolyte and containing micro-channels for gas diffusion. This configuration is called a bi-electrode supported cell or BSC. The electrodes are made by freeze-casting, a modified tape casting technique which creates the many micro-channels in the YSZ electrode green tape. This report presents results of the INL’s testing of this new solid oxide cell design as an electrolyzer. Gas composition, operating voltage, and other parameters were varied during testing. Results to date show the NASA cell to be a promising design for both high power-to-weight fuel cell and electrolyzer applications.

  6. Evaluation of proposed designs for streamflow monitoring structures at waste disposal sites

    SciTech Connect (OSTI)

    Clapp, R.B.; Borders, D.M.; Tardiff, M.F.; Huff, D.D.

    1991-01-01

    Design of small surface water monitoring stations associated with waste sites requires an approach that balances several problems. The monitoring site must have a capacity for a wide range of flows, allow accurate measurements over the full performance range, minimize effects from accumulation of contaminated sediments, and minimize costs of construction and operation. Selecting a station design that takes these factors into consideration can be done systematically through use of formal decision analysis. The paper discusses the effectiveness of various hydraulic structures as flumes and weirs to monitor stream flow and drainage. The process has produced the most viable alternative designs and yielded fully documented guidelines for designing new stations as they are needed. 7 refs., 6 figs., 3 tabs.

  7. Construction, Startup and Operation of a New LLRW Disposal Facility in Andrews County, Texas - 12151

    SciTech Connect (OSTI)

    Van Vliet, James A. [Waste Control Specialists LLC, Andrews County, Texas (United States)

    2012-07-01

    During this last year, Waste Control Specialists LLC (WCS) completed construction and achieved start of operations of a new low level radioactive waste (LLRW) disposal facility in Andrews County Texas. Disposal operations are underway for commercial LLRW, and start up evolutions are in progress for disposal of Department of Energy (DOE) LLRW. The overall approach to construction and start up are presented as well as some of the more significant challenges and how they were addressed to achieve initial operations of the first new commercial low level radioactive waste disposal facility in more than 30 years. The WCS disposal facility consists of two LLRW disposal cells, one for Texas Compact waste, and a separate disposal cell for DOE waste. Both disposal cells have very robust and unique designs. The cells themselves are constructed entirely in very low permeability red bed clay. The cell liners include a 0.91 meter thick clay liner meeting unprecedented permeability limits, 0.3 meter thick reinforced concrete barriers, as well as the standard geo-synthetic liners. Actions taken to meet performance criteria and install these liners will be discussed. Consistent with this highly protective landfill design, WCS chose to install a zero discharge site water management system. The considerations behind the design and construction of this system will be presented. Other activities essential to successful start of LLRW disposal operations included process and procedure development and refinement, staffing and staff development, and training. Mock ups were built and used for important evolutions and functions. Consistent with the extensive regulation of LLRW operations, engagement with the Texas Commission on Environmental Quality (TCEQ) was continuous and highly interactive. This included daily activity conference calls, weekly coordination calls and numerous topical conference calls and meetings. TCEQ staff and consultants frequently observed specific construction evolutions, such as geological feature mapping of designated excavation faces, disposal cell clay liner installation, disposal cell concrete barrier construction, etc. (author)

  8. Definitive design report: Design report project W-025, Radioactive Mixed Waste (RMW) Land Disposal Facility NON-DRAG-OFF. Revision 1, Volume 1 and 2

    SciTech Connect (OSTI)

    Roscha, V.

    1994-11-29

    The purpose of this report is to describe the definitive design of the Radioactive Mixed Waste (RMW) Non-Drag-Off disposal facility, Project W-025. This report presents a n of the major landfill design features and a discussion of how each of the criteria is addressed in the design. The appendices include laboratory test results, design drawings, and individual analyses that were conducted in support of the design. Revision 1 of this document incorporates design changes resulting from an increase in the required operating life of the W-025 landfill from 2 to 20 years. The rationale for these design changes is described in Golder Associates Inc. 1991a. These changes include (1) adding a 1.5-foot-thick layer of compacted admix directory-under the primary FML on the floor of the landfill to mitigate the effects of possible stress cracking in the primary flexible membrane liner (FML), and (2) increasing the operations layer thickness from two to three feet over the entire landfill area, to provide additional protection for the secondary admix layer against mechanical damage and the effects of freezing and desiccation. The design of the W-025 Landfill has also been modified in response to the results of the EPA Method 9090 chemical compatibility testing program (Golder Associates Inc. 1991b and 1991c), which was completed after the original design was prepared. This program consisted of testing geosynthetic materials and soil/bentonite admix with synthetic leachate having the composition expected during the life of the W-025 Landfill., The results of this program indicated that the polyester geotextile originally specified for the landfill might be susceptible to deterioration. On this basis, polypropylene geotextiles were substituted as a more chemically-resistant alternative. In addition, the percentage of bentonite in the admix was increased to provide sufficiently low permeability to the expected leachate.

  9. Electrochemical Cell Design With A Hollow Gate

    DOE Patents [OSTI]

    Romero, Antonio (Parkton, MD); Oweis, Salah (Ellicott City, MD); Chagnon, Guy (Columbia, MD); Staniewicz, Robert (Hunt Valley, MD); Briscoe, Douglas (Westminster, MD)

    2000-02-01

    An electrochemical cell having a spiral winding around a central core, wherein the central core is provided with longitudinal grooves on its outer surface to facilitate electrolyte filing and accommodate overpressure. The core itself improves dissipation of heat generated along the center of the cell, and the hollow core design allows the cell core to have a larger radius, permitting the "jelly roll" winding to begin at a larger radius and thereby facilitate the initial turns of the winding by decreasing the amount of bending required of the electrode laminate at the beginning of the winding operation. The hollow core also provides mechanical support end-to-end. A pair of washers are used at each end of the cell to sandwich current collection tabs in a manner that improves electrical and thermal conductivity while also providing structural integrity.

  10. A Water Balance Study of Four Landfill Cover Designs at Material Disposal Area B in Los Alamos, New Mexico

    SciTech Connect (OSTI)

    David D. Breshears; Fairley J. Barnes; John W. Nyhan; Johnny A. Salazar

    1998-09-01

    The goal of disposing of low-level radioactive and hazardous waste in shallow landfills is to reduce risk to human health and the environment by isolating contaminants until they no longer pose an unacceptable hazard. In order to achieve this, the Department of Energy Environmental Restoration Program is comparing the performance of several different surface covers at Material Disposal Area (MDA) B in Los Alamos. Two conventional landfill were compared with an improved cover designed to minimize plant and animal intrusion and to minimize water infiltration into the underlying wastes. The conventional covers varied in depth and both conventional and improved designs had different combinations of vegetation (grass verses shrub) and gravel mulch (no mulch verses mulch). These treatments were applied to each of 12 plots and water balance parameters were measured from March1987 through June 1995. Adding a gravel mulch significantly influenced the plant covered field plots receiving no gravel mulch averaged 21.2% shrub cover, while plots with gravel had a 20% larger percent cover of shrubs. However, the influence of gravel mulch on the grass cover was even larger than the influence on shrub cover, average grass cover on the plots with no gravel was 16.3%, compared with a 42% increase in grass cover due to gravel mulch. These cover relationships are important to reduce runoff on the landfill cover, as shown by a regression model that predicts that as ground cover is increased from 30 to 90%,annual runoff is reduced from 8.8 to 0.98 cm-a nine-fold increase. We also found that decreasing the slope of the landfill cover from 6 to 2% reduced runoff from the landfill cover by 2.7-fold. To minimize the risk of hazardous waste from landfills to humans, runoff and seepage need to be minimized and evapotranspiration maximized on the landfill cover. This has to be accomplished for dry and wet years at MDA B. Seepage consisted of 1.9% and 6.2% of the precipitation in the average and once in ten year events, respectively, whereas corresponding values for runoff were 13% and 16%; these changes were accompanied by corresponding decreases in evapotranspiration, which accounted for 86% and only 78% of the precipitation occurring on the average and once in ten year even~ respectively.

  11. Photonic Design: From Fundamental Solar Cell Physics to Computational Inverse Design

    E-Print Network [OSTI]

    Kastner, Marc A.

    Photonic Design: From Fundamental Solar Cell Physics to Computational Inverse Design by Owen Dennis #12;Photonic Design: From Fundamental Solar Cell Physics to Computational Inverse Design Copyright 2012 by Owen Dennis Miller #12;1 Abstract Photonic Design: From Fundamental Solar Cell Physics

  12. RH-LLW Disposal Facility Project CD-2/3 to Design/Build Proposal Reconciliation Report

    SciTech Connect (OSTI)

    Annette L. Schafer

    2012-06-01

    A reconciliation plan was developed and implemented to address potential gaps and responses to gaps between the design/build vendor proposals and the Critical Decision-2/3 approval request package for the Remote-Handled Low Level Waste Disposal Facility Project. The plan and results of the plan implementation included development of a reconciliation team comprised of subject matter experts from Battelle Energy Alliance and the Department of Energy Idaho Operations Office, identification of reconciliation questions, reconciliation by the team, identification of unresolved/remaining issues, and identification of follow-up actions and subsequent approvals of responses. The plan addressed the potential for gaps to exist in the following areas: • Department of Energy Order 435.1, “Radioactive Waste Management,” requirements, including the performance assessment, composite analysis, monitoring plan, performance assessment/composite analysis maintenance plan, and closure plan • Environmental assessment supporting the National Environmental Policy Act • Nuclear safety • Safeguards and security • Emplacement operations • Requirements for commissioning • General project implementation. The reconciliation plan and results of the plan implementation are provided in a business-sensitive project file. This report provides the reconciliation plan and non-business sensitive summary responses to identified gaps.

  13. Optimized Designs and Materials for Nanostructure Based Solar Cells

    E-Print Network [OSTI]

    Shao, Qinghui

    2009-01-01

    the production cost, thin film solar cells with only a fewstate-of-the-art thin film solar cell design and processingintermediate band solar cell,” Thin Solid Films, 511-512,

  14. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    prediction of the efficiency limitation of solar cell givenperfect solar cell absorber. [29] Following this prediction,

  15. Design of Nanostructured Solar Cells Using Coupled Optical and Electrical Modeling

    E-Print Network [OSTI]

    Deceglie, Michael G

    2014-01-01

    novel route toward optical solar cell design, in which lightDesign of Nanostructured Solar Cells Using Coupled Opticaland electrical design of light trapping in solar cells is

  16. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    grids,? Solar Energy Materials and Solar Cells, 2011, 95(5),layer,? Solar Energy Materials and Solar Cells, 2013, 113,thickness,? Solar Energy Materials and Solar Cells, 2013,

  17. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    photodiodes, and photovoltaic cells,? Applied PhysicsTang, “Two-layer organic photovoltaic cell,” Applied Physicsprocessable polymer photovoltaic cells by self-organization

  18. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    and G. Li, ?Polymer solar cells with enhanced open-circuittandem and triple-junction solar cells,? Materials, 2012, 5(high performance solar cells,” Advanced Energy Materials,

  19. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    performance of multi-junction solar cells combining III-VMulti-Junction Solar Cells .improvement: Multi-Junction Solar Cells 2.1 Loss mechanism

  20. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    grids,? Solar Energy Materials and Solar Cells, 2011, 95(5),thickness,? Solar Energy Materials and Solar Cells, 2013,analysis,? Solar Energy Materials and Solar Cells, [130] J.

  1. Long-term surveillance plan for the Shiprock disposal site, Shiprock, New Mexico

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The long-term surveillance plan (LTSP) for the Shiprock, New Mexico, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Shiprock disposal cell. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP is being submitted to the US Nuclear Regulatory Commission (NRC) as a requirement for issuance of a general license for custody and long-term care for the disposal site. The general license requires that the disposal cell be cared for in accordance with the provisions of this LTSP. This Shiprock, New Mexico, LTSP documents whether the land and interests are owned by the US or an Indian tribe and describes in detail the long-term care program through the UMTRA Project Office.

  2. Long-term surveillance plan for the Collins Ranch Disposal Site, Lakeview, Oregon. Revision 2

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    This long-term surveillance plan (LTSP) for the Lakeview, Oregon, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Lakeview (Collins Ranch) disposal cell, which will be referred to as the Collins Ranch disposal cell throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States or an Indian tribe, and details how the long-term care of the disposal site will be carried out. It is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a).

  3. Photonic Design: From Fundamental Solar Cell Physics to Computational Inverse Design

    E-Print Network [OSTI]

    Miller, Owen Dennis

    2012-01-01

    design setup for thin-film solar cell. An initial anti-in randomly textured thin-film solar cells,” Optics Express,tion enhancement in thin-film solar cells using whispering

  4. EELE408 Photovoltaics Lecture 13: Solar Cell Design I

    E-Print Network [OSTI]

    Kaiser, Todd J.

    · Commercial cost of manufacture · Research highest efficiency w/o regard to expense 2 Si Solar Cell Efficiency1 EELE408 Photovoltaics Lecture 13: Solar Cell Design I Dr. Todd J. Kaiser tjkaiser@ece.montana.edu Department of Electrical and Computer Engineering Montana State University - Bozeman Solar Cell Design

  5. Design and optimization of polymer electrolyte membrane (PEM) fuel cells

    E-Print Network [OSTI]

    Grujicic, Mica

    Design and optimization of polymer electrolyte membrane (PEM) fuel cells M. Grujicic* , K optimization algorithm to determine an optimum design of the fuel cell with respect to the operation difference has the largest effect on the predicted polarization curve of the fuel cell. However, the optimal

  6. Microstructured surface design for omnidirectional antireflection coatings on solar cells

    E-Print Network [OSTI]

    Zhou, Weidong

    Microstructured surface design for omnidirectional antireflection coatings on solar cells Weidong to current crystalline silicon solar cells, as well as future thin film, quantum dot, and organic solar cells for light collection is vital in achieving high performance solar cells.1 An ideal antireflec- tion AR

  7. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    78-85. F. Dimroth, “ High-efficiency solar cells from III-Vand E. D. Dunlop, ?Solar cell efficiency tables (versionOptimizing the organic solar cell efficiency: Role of the

  8. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    and G. Li, ?Polymer solar cells with enhanced open-circuittandem and triple-junction solar cells,? Materials, 2012, 5(for tandem organic solar cells,? Journal of Applied Physics,

  9. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    Solar Energy Materials and Solar Cells, 2011, 95(5), 1339-heterojunction organic solar cells,? Solar Energy MaterialsSolar Energy Materials and Solar Cells, 2013, 113, 85-89. [

  10. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    organic tandem and triple-junction solar cells,? Materials,Current-matched triple-junction solar cell reaching 41.1%demonstrations of triple-junction solar cells outperforming

  11. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    contacts for tandem organic solar cells,? Journal of AppliedITO-free flexible organic solar cells with printed currentC. de Mello, “ Efficient organic solar cells with solution-

  12. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    Y. Wu, and G. Li, ?Polymer solar cells with enhanced open-tandem and triple-junction solar cells,? Materials, 2012, 5(molecules for high performance solar cells,” Advanced Energy

  13. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    solar cells,” Advanced Energy Materials, 2011, 1(5), 771-collecting grids,? Solar Energy Materials and Solar Cells,laboratory stability studies,” Energy Technology, 2014. [

  14. Disposal rabbit

    DOE Patents [OSTI]

    Lewis, L.C.; Trammell, D.R.

    1983-10-12

    A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.

  15. Alternative Evaluation Study: Methods to Mitigate/Accommodate Subsidence for the Radioactive Waste Management Sites at the Nevada Test Site, Nye County Nevada, with Special Focus on Disposal Cell U-3ax/bl

    SciTech Connect (OSTI)

    Barker, L.

    1997-09-01

    An Alternative Evaluation Study is a type of systematic approach to problem identification and solution. An Alternative Evaluation Study was convened August 12-15, 1997, for the purpose of making recommendations concerning closure of Disposal Cell U-3ax/bl and other disposal cells and mitigation/accommodation of waste subsidence at the Radioactive Waste Management Sites at the Nevada Test Site. This report includes results of the Alternative Evaluation Study and specific recommendations.

  16. disposal_cell.cdr

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and700, 1. .&. ' , cMarchW W e e l lJ.b .,'i

  17. Design and Installation of a Disposal Cell Cover Field Test | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratoryof EnergyWASHINGTON, DC - U.S.The

  18. A new design for a disposable and modifiable electrochemical cell (Journal

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnicalInformation4563 LLNL(Technicalentanglements for linear and nonlinearArticle) |

  19. A new design for a disposable and modifiable electrochemical cell (Journal

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnicalInformation4563 LLNL(Technicalentanglements for linear and nonlinearArticle)

  20. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    junction tandem solar cells, one wide-bandgap material withare being applied in one tandem solar-cell device, theTo utilize solar radiation more effectively, one possible

  1. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    solar cells,” Advanced Energy Materials, 2011, 1(5), 771-collecting grids,? Solar Energy Materials and Solar Cells,layer,” Advanced Energy Materials, 2012, 2(8), 945-949. [

  2. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    status and future potential,? Solar Energy, 2005, 79(1), 78-Organic solar cells: their developments and potentials,?Therefore, organic solar cells, with potential in low-cost

  3. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    transparent building integrated photovoltaic facades." 2013.Building integrated photovoltaics .cells. 2.7 Building integrated photovoltaics (BIPV) Building

  4. Unreviewed Disposal Question Evaluation: Waste Disposal In Engineered Trench #3

    SciTech Connect (OSTI)

    Hamm, L. L.; Smith, F. G. III; Flach, G. P.; Hiergesell, R. A.; Butcher, B. T.

    2013-07-29

    Because Engineered Trench #3 (ET#3) will be placed in the location previously designated for Slit Trench #12 (ST#12), Solid Waste Management (SWM) requested that the Savannah River National Laboratory (SRNL) determine if the ST#12 limits could be employed as surrogate disposal limits for ET#3 operations. SRNL documented in this Unreviewed Disposal Question Evaluation (UDQE) that the use of ST#12 limits as surrogates for the new ET#3 disposal unit will provide reasonable assurance that Department of Energy (DOE) 435.1 performance objectives and measures (USDOE, 1999) will be protected. Therefore new ET#3 inventory limits as determined by a Special Analysis (SA) are not required.

  5. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    SciTech Connect (OSTI)

    NONE

    1996-05-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  6. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    SciTech Connect (OSTI)

    NONE

    1996-02-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  7. Long-term surveillance plan for the Gunnison, Colorado disposal site

    SciTech Connect (OSTI)

    NONE

    1996-04-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  8. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    by device optimization, ” Advanced Materials, 2010, 22(39),Optimization of ultra-thin light absorbing layer and transparent cathode architecture,” Advanced Energy Materials,optimization of diketopyrrolopyrrole?based narrow bandgap polymer solar cells‘‘, Advanced Materials,

  9. Final long-term surveillance plan for the Spook, Wyoming, disposal site

    SciTech Connect (OSTI)

    NONE

    1993-01-01

    A general license for the custody and long-term care of DOE Uranium Mill Tailings Remedial Action (UMTRA) Project permanent disposal sites was issued by the US Nuclear Regulatory Commission (NRC), and became effective on November 29, 1990. The general license will be in effect for a specific disposal site when the NRC accepts the disposal site`s long-term surveillance plan (LTSP) and concurs that remedial action is complete at that site. This document describes in detail the long-term surveillance activities for the Spook, Wyoming, disposal site, including monitoring, maintenance, and emergency measures necessary to fulfill the conditions of the general license, and to ensure that the disposal cell continues to comply with the UMTRA design standards.

  10. Long-term surveillance plan for the Ambrosia Lake, New Mexico disposal site

    SciTech Connect (OSTI)

    NONE

    1995-11-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Ambrosia Lake disposal site in McKinley County, New Mexico, describes the US Department of Energy`s (DOE) long-term care program for the disposal site. The DOE will carry out this program to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials.

  11. Long-term surveillance plan for the Ambrosia Lake, New Mexico disposal site

    SciTech Connect (OSTI)

    NONE

    1996-07-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Ambrosia Lake disposal site in McKinley County, New Mexico, describes the U.S. Department of Energy`s (DOE) long-term care program for the disposal site. The DOE will carry out this program to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials.

  12. Design & Fabrication of a High-Voltage Photovoltaic Cell

    SciTech Connect (OSTI)

    Felder, Jennifer; /North Carolina State U. /SLAC

    2012-09-05

    Silicon photovoltaic (PV) cells are alternative energy sources that are important in sustainable power generation. Currently, applications of PV cells are limited by the low output voltage and somewhat low efficiency of such devices. In light of this fact, this project investigates the possibility of fabricating high-voltage PV cells on float-zone silicon wafers having output voltages ranging from 50 V to 2000 V. Three designs with different geometries of diffusion layers were simulated and compared in terms of metal coverage, recombination, built-in potential, and conduction current density. One design was then chosen and optimized to be implemented in the final device design. The results of the simulation serve as a feasibility test for the design concept and provide supportive evidence of the effectiveness of silicon PV cells as high-voltage power supplies.

  13. Micro-bioreactor design for Chinese hamster ovary cells

    E-Print Network [OSTI]

    Goh, Shireen

    2013-01-01

    The research objective is to design a micro-bioreactor for the culture of Chinese Hamster Ovary (CHO) cells. There is an increasing demand for upstream development in high-throughput micro-bioreactors specifically for the ...

  14. Optimization of Waste Disposal - 13338

    SciTech Connect (OSTI)

    Shephard, E.; Walter, N.; Downey, H.; Collopy, P.; Conant, J.

    2013-07-01

    From 2009 through 2011, remediation of areas of a former fuel cycle facility used for government contract work was conducted. Remediation efforts were focused on building demolition, underground pipeline removal, contaminated soil removal and removal of contaminated sediments from portions of an on-site stream. Prior to conducting the remediation field effort, planning and preparation for remediation (including strategic planning for waste characterization and disposal) was conducted during the design phase. During the remediation field effort, waste characterization and disposal practices were continuously reviewed and refined to optimize waste disposal practices. This paper discusses strategic planning for waste characterization and disposal that was employed in the design phase, and continuously reviewed and refined to optimize efficiency. (authors)

  15. Accounting for Localized Defects in the Optoelectronic Design of Thin-Film Solar Cells

    E-Print Network [OSTI]

    Deceglie, Michael G.

    2014-01-01

    W. Prather, "Thin film solar cell design based on photonicH. A. Atwater, "Design of nanostructured solar cells usingBrongersma, "Design of Plasmonic Thin-Film Solar Cells with

  16. Substrate Noise Reduction Based On Noise Aware Cell Design

    E-Print Network [OSTI]

    Friedman, Eby G.

    Substrate Noise Reduction Based On Noise Aware Cell Design Emre Salman, Eby G. Friedman Department dedicated sub- strate contacts in those cells behaving as aggressive digital noise generators. These contacts are connected to a dedicated ground network. The proposed approach reduces two primary noise

  17. Long-term surveillance plan for the Collins Ranch disposal site, Lakeview, Oregon

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Collins Ranch disposal site, Lakeview, Oregon, describes the surveillance activities for the disposal cell. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a).

  18. Long-term surveillance plan for the Shiprock Disposal site, Shiprock, New Mexico

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The long-term surveillance plan (LTSP) for the Shiprock, New Mexico, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Shiprock disposal cell. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). This LTSP documents the land ownership interests and details how the long-term care of the disposal site will be carried out. It is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a).

  19. Performance modeling and cell design for high concentration methanol fuel cells

    E-Print Network [OSTI]

    Chapter 50 Performance modeling and cell design for high concentration methanol fuel cells C. E The direct methanol fuel cell (DMFC) has become a lead- ing contender to replace the lithium-ion (Li density of liquid methanol (CH3OH) fuel is 4800 Wh l-1 , whereas the theoretical energy density of Li

  20. The Design of a Five-Cell Superconducting RF Module with a PBG Coupler Cell

    SciTech Connect (OSTI)

    Arsenyev, Sergey A [Los Alamos National Laboratory; Simakov, Evgenya I [Los Alamos National Laboratory

    2012-08-29

    We discuss the problem of incorporating a Photonic Band Gap (PBG) cell into a superconducting accelerating module of 5 cells designed for the operational frequency of 2.1 GHz. The reason for using a PBG cell is to provide a good accelerating mode confinement and good Higher Order Mode (HOM) suppression. PBG cell can potentially be used for placing HOM and fundamental mode couplers. However, because of the naturally higher ratio of the peak magnetic field to the accelerating field in the PBG cell, it should be designed to operate at a lower accelerating gradient than the other cells of the module. This ensures that the probability of quench in the PBG cell would be no higher than in other elliptical cells of the structure.

  1. Center for Intelligent Fuel Cell Materials Design

    SciTech Connect (OSTI)

    Santurri, P.R., (Chemsultants International); Hartmann-Thompson, C.; Keinath, S.E. (Michigan Molecular Inst.)

    2008-08-26

    The goal of this work was to develop a composite proton exchange membrane utilizing 1) readily available, low cost materials 2) readily modified and 3) easily processed to meet the chemical, mechanical and electrical requirements of high temperature PEM fuel cells. One of the primary goals was to produce a conducting polymer that met the criteria for strength, binding capability for additives, chemical stability, dimensional stability and good conductivity. In addition compatible, specialty nanoparticles were synthesized to provide water management and enhanced conductivity. The combination of these components in a multilayered, composite PEM has demonstrated improved conductivity at high temperatures and low humidity over commercially available polymers. The research reported in this final document has greatly increased the knowledge base related to post sulfonation of chemically and mechanically stable engineered polymers (Radel). Both electrical and strength factors for the degree of post sulfonation far exceed previous data, indicating the potential use of these materials in suitable proton exchange membrane architectures for the development of fuel cells. In addition compatible, hydrophilic, conductive nano-structures have been synthesized and incorporated into unique proton exchange membrane architectures. The use of post sulfonation for the engineered polymer and nano-particle provide cost effective techniques to produce the required components of a proton exchange membrane. The development of a multilayer proton exchange membrane as described in our work has produced a highly stable membrane at 170°C with conductivities exceeding commercially available proton exchange membranes at high temperatures and low humidity. The components and architecture of the proton exchange membrane discussed will provide low cost components for the portable market and potentially the transportation market. The development of unique components and membrane architecture provides a key element for the United States: 1) to transition the country from a fossil fuel based energy economy to a renewable energy based economy, and 2) to reduce our dependence on foreign oil. Developments of this program will serve as an important step toward continuing PEMFC technology and ultimately the broad-based commercial availability of this technology and its benefits.

  2. EELE408 Photovoltaics Lecture 14: Solar Cell Design 2

    E-Print Network [OSTI]

    Kaiser, Todd J.

    1 EELE408 Photovoltaics Lecture 14: Solar Cell Design 2 Dr. Todd J. Kaiser tjkaiser ­ Resistive losses in the emitter ­ Resistive losses in the metal top contact ­ Shading losses from the metal by the fabrication technology 17 width height RatioAspect Low Aspect Ratio High Aspect Ratio Shading Losses · Caused

  3. NATURE'S BUILDING CODE : THE BAUHAUS SCHOOL OF CELL DESIGN

    E-Print Network [OSTI]

    Boal, David

    NATURE'S BUILDING CODE : THE BAUHAUS SCHOOL OF CELL DESIGN by David H. Boal LA PHYSIQUE ET L'ÉDUCATION ( NATURE'S BUILDING CODE ... ) Prof. D.H. Boal , Dept. of Physics, Simon Fra- ser University's building code. By considering the construction of man-made buildings and bridges, we can extract some

  4. Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells

    E-Print Network [OSTI]

    Atwater, Harry

    . Photovoltaics (PV) technology is currently enjoying sub- stantial growth and investment. Although there are manyPlasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells Vivian E. Ferry, Luke Physics, California Institute of Technology, Pasadena, California 91125 Received July 25, 2008; Revised

  5. Probabilistic Based Design Methodology for Solid Oxide Fuel Cell Stacks

    SciTech Connect (OSTI)

    Sun, Xin; Tartakovsky, Alexandre M.; Khaleel, Mohammad A.

    2009-05-01

    A probabilistic-based component design methodology is developed for solid oxide fuel cell (SOFC) stack. This method takes into account the randomness in SOFC material properties as well as the stresses arising from different manufacturing and operating conditions. The purpose of this work is to provide the SOFC designers a design methodology such that desired level of component reliability can be achieved with deterministic design functions using an equivalent safety factor to account for the uncertainties in material properties and structural stresses. Multi-physics-based finite element analyses were used to predict the electrochemical and thermal mechanical responses of SOFC stacks with different geometric variations and under different operating conditions. Failures in the anode and the seal were used as design examples. The predicted maximum principal stresses in the anode and the seal were compared with the experimentally determined strength characteristics for the anode and the seal respectively. Component failure probabilities for the current design were then calculated under different operating conditions. It was found that anode failure probability is very low under all conditions examined. The seal failure probability is relatively high, particularly for high fuel utilization rate under low average cell temperature. Next, the procedures for calculating the equivalent safety factors for anode and seal were demonstrated such that uniform failure probability of the anode and seal can be achieved. Analysis procedures were also included for non-normal distributed random variables such that more realistic distributions of strength and stress can be analyzed using the proposed design methodology.

  6. Long-term surveillance plan for the Falls City Disposal Site, Falls City, Texas

    SciTech Connect (OSTI)

    NONE

    1995-06-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Falls City disposal site, Falls City, Texas, describes the surveillance activities for the disposal site. DOE will carry out these activities to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a).

  7. Long-term Surveillance Plan for the Falls City Disposal Site, Falls City, Texas. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-08-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Falls City disposal site, Falls City, Texas, describes the surveillance activities for the disposal site. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a).

  8. Manipulation of Signaling Thresholds in ``Engineered Stem Cell Niches'' Identifies Design Criteria for

    E-Print Network [OSTI]

    Zandstra, Peter W.

    Manipulation of Signaling Thresholds in ``Engineered Stem Cell Niches'' Identifies Design Criteria Thresholds in ``Engineered Stem Cell Niches'' Identifies Design Criteria for Pluripotent Stem Cell Screens is the Canada Research Chair in Stem Cell Bioengineering. The funders had no role in study design, data

  9. Long-term surveillance plan for the Cheney disposal site near Grand Junction, Colorado

    SciTech Connect (OSTI)

    NONE

    1997-04-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney disposal site. The site is in Mesa County near Grand Junction, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects public health and safety and the environment. Before each disposal site may be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Cheney disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete and the NRC formally accepts this plan. This document describes the long-term surveillance program the DOE will implement to ensure that the Cheney disposal site performs as designed. The program is based on site inspections to identify potential threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  10. Long-term surveillance plan for the South Clive Disposal Site, Clive, Utah

    SciTech Connect (OSTI)

    NONE

    1996-03-01

    This long-term surveillance plan (LTSP) describes the US Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project South Clive disposal site in Clive, Utah. The US Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CRF Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the South Clive disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the South Clive site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the South Clive disposal site performs as designed. The program`s primary activity is site inspections to identify threats to disposal cell integrity.

  11. NREL Designs Promising New Oxides for Solar Cells (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    High-efficiency, thin-film solar cells require electrical contacts with high electrical conductivity, and the top contact must also have high optical transparency. This need is currently met by transparent conducting oxides (TCOs), which conduct electricity but are 90% transparent to visible light. Scientists at the National Renewable Energy Laboratory (NREL) have derived three key design principles for selecting promising materials for TCO contacts. NREL's application of these design principles has resulted in a 10,000-fold improvement in conductivity for one TCO material.

  12. Long-term surveillance plan for the Lowman, Idaho, Disposal site. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The long-term surveillance plan (LTSP) for the Lowman, Idaho, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Lowman disposal site, which will be referred to as the Lowman site throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. The radioactive sands at the Lowman site were stabilized on the site. This final LTSP is being submitted to the US Nuclear Regulatory Commission (NRC) as a requirement for issuance of a general license for custody and long-term care for the disposal site. The general license requires that the disposal cell be cared for in accordance with the provisions of this LTSP. The LTSP documents whether the land and interests are owned by the United States or a state, and describes, in detail, how the long-term care of the disposal site will be carried out through the UMTRA Project long-term surveillance program. The Lowman, Idaho, LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program, (DOE, 1992).

  13. Design and testing of a high accuracy robotic single-cell manipulator

    E-Print Network [OSTI]

    Yoon, Jun Young, S.M. Massachusetts Institute of Technology

    2011-01-01

    We have designed, built and tested a high accuracy robotic single-cell manipulator to be able to pick individual cells from array of microwells, each 30 Pm or 50 pm cubed. Design efforts have been made for higher accuracy, ...

  14. Accounting for Localized Defects in the Optoelectronic Design of Thin-Film Solar Cells

    E-Print Network [OSTI]

    Deceglie, Michael G.

    2014-01-01

    trapping in silicon thin film solar cells," Solar Energy,textured surfaces in thin-film solar cells," Opt. Express,Design of Plasmonic Thin-Film Solar Cells with Broadband

  15. Accepted Manuscript Title: Advanced computational tools for pem fuel cell design

    E-Print Network [OSTI]

    Djilali, Ned

    and water management problems in a fuel cell, in design and optimization, in guiding experimentalAccepted Manuscript Title: Advanced computational tools for pem fuel cell design ­ Part 1.C. Sui, S. Kumar, N. Djilali, Advanced computational tools for pem fuel cell design ­ Part 1: Development

  16. Light trapping design for low band-gap polymer solar cells

    E-Print Network [OSTI]

    John, Sajeev

    Light trapping design for low band-gap polymer solar cells Stephen Foster1,* and Sajeev John1,2 1 demonstrate numerically a 2-D nanostructured design for light trapping in a low band-gap polymer solar cell, "Light harvesting improvement of organic solar cells with self- enhanced active layer designs," Opt

  17. Dynamic Modeling in Solid-Oxide Fuel Cells Controller Design

    SciTech Connect (OSTI)

    Lu, Ning; Li, Qinghe; Sun, Xin; Khaleel, Mohammad A.

    2007-06-28

    In this paper, a dynamic model of the solid-oxide fuel cell (SOFC) power unit is developed for the purpose of designing a controller to regulate fuel flow rate, fuel temperature, air flow rate, and air temperature to maintain the SOFC stack temperature, fuel utilization rate, and voltage within operation limits. A lumped model is used to consider the thermal dynamics and the electro-chemial dynamics inside an SOFC power unit. The fluid dynamics at the fuel and air inlets are considered by using the in-flow ramp-rates.

  18. Water management studies in PEM fuel cells, Part I: Fuel cell design and in situ water distributions

    E-Print Network [OSTI]

    Kandlikar, Satish

    Water management studies in PEM fuel cells, Part I: Fuel cell design and in situ water. Trabolda, * a General Motors Fuel Cell Laboratory, 10 Carriage Street, Honeoye Falls, New York, USA b Accepted 23 December 2008 Available online 23 February 2009 Keywords: PEM fuel cell Two-phase flow Neutron

  19. VLSI Standard Cell Design Using Genetic Algorithms Benjamin Bishop Khaled Rasheed Anil Bahuman

    E-Print Network [OSTI]

    Bishop, Benjamin

    - brary Creation, Integrated System Design, Novem- ber 2000. [3] K. Rasheed and H. Hirsh, Learning Abstract We introduce the idea and a proof of concept of automated standard cell design for Very Large Introduction Standard cells are the lowest-level building blocks in VLSI design. Since most chip designs

  20. Material Disposal Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 facility. The site includes four absorption beds that received treated radioactive liquid waste, 64 buried shafts used for the disposal of cement-treated radioactive mixtures,...

  1. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Table of Contents · Disposal options emergency mortality composting procedure · Use of composting during outbreaks #12;Disposal: Science and disinfection of farms and surveillance around affected flocks. " USDA APHIS VS EMD, 2007 #12;Disposal: Science

  2. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Poultry Farm Daily Disposal Methods 0;Disposal: Science and Theory First Composter in Delaware · Delmarva was of the first daily composting · 120 in USA over next 10 years #12;Disposal: Science and Theory Composting Procedure · Mixture ­ 1 ½ to 2

  3. Optimized Designs and Materials for Nanostructure Based Solar Cells

    E-Print Network [OSTI]

    Shao, Qinghui

    2009-01-01

    impact ionization and solar cell efficiency,” J. Appl. Phys.intermediate band high efficiency solar cell,” Prog. Inthe application of high efficiency solar cells [1-5]. The

  4. Optimized Designs and Materials for Nanostructure Based Solar Cells

    E-Print Network [OSTI]

    Shao, Qinghui

    2009-01-01

    for concentrator photovoltaic cells (CPV) is 100 K – 200 KConcentrated Photovoltaic (CPV) cells have been demonstratedimplementing photovoltaic and photochemical cells on large

  5. Optimized Designs and Materials for Nanostructure Based Solar Cells

    E-Print Network [OSTI]

    Shao, Qinghui

    2009-01-01

    band impact ionization and solar cell efficiency,” J. Appl.Solar Energy Materials and Solar Cells 92, 273, (2008). [28]third generation solar cells Solar cells may be formed using

  6. Long-term surveillance plan for the Mexican Hat disposal site Mexican Hat, Utah

    SciTech Connect (OSTI)

    NONE

    1997-05-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Mexican Hat, Utah, disposal site. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Mexican Hat disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the disposal site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Mexican Hat disposal site performs as designed. The program is based on two distinct types of activities: (1) site inspections to identify potential threats to disposal cell integrity, and (2) monitoring of selected seeps to observe changes in flow rates and water quality. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03. 18 refs., 6 figs., 1 tab.

  7. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado: Remedial Action Selection Report. Preliminary final

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    This proposed remedial action plan incorporates the results of detailed investigation of geologic, geomorphic, and seismic conditions at the proposed disposal site. The proposed remedial action will consist of relocating the uranium mill tailings, contaminated vicinity property materials, demolition debris, and windblown/waterborne materials to a permanent repository at the proposed Burro Canyon disposal cell. The proposed disposal site will be geomorphically stable. Seismic design parameters were developed for the geotechnical analyses of the proposed cell. Cell stability was analyzed to ensure long-term performance of the disposal cell in meeting design standards, including slope stability, settlement, and liquefaction potential. The proposed cell cover and erosion protection features were also analyzed and designed to protect the RRM (residual radioactive materials) against surface water and wind erosion. The location of the proposed cell precludes the need for permanent drainage or interceptor ditches. Rock to be used on the cell top-, side-, and toeslopes was sized to withstand probable maximum precipitation events.

  8. Optimized Designs and Materials for Nanostructure Based Solar Cells

    E-Print Network [OSTI]

    Shao, Qinghui

    2009-01-01

    and P. Peumans, “Organic solar cells with solution-processedtypical thickness in organic solar cell application [4]. At

  9. Transmittal of the Calculation Package that Supports the Analysis of Performance of the Environmental Management Waste Management Facility Oak Ridge, Tennessee (Based 5-Cell Design Issued 8/14/09)

    SciTech Connect (OSTI)

    Williams M.J.

    2009-09-14

    This document presents the results of an assessment of the performance of a build-out of the Environmental Management Waste Management Facility (EMWMF). The EMWMF configuration that was assessed includes the as-constructed Cells 1 through 4, with a groundwater underdrain that was installed beneath Cell 3 during the winter of 2003-2004, and Cell 5, whose proposed design is an Addendum to Remedial Design Report for the Disposal of Oak Ridge Reservation Comprehensive Environmental Response, Compensation, and Liability Act of 1980 Waste, Oak Ridge, Tennessee, DOE/OR/01-1873&D2/A5/R1. The total capacity of the EMWMF with 5 cells is about 1.7 million cubic yards. This assessment was conducted to determine the conditions under which the approved Waste Acceptance Criteria (WAC) for the EMWMF found in the Attainment Plan for Risk/Toxicity-Based Waste Acceptance Criteria at the Oak Ridge Reservation, Oak Ridge, Tennessee [U.S. Department of Energy (DOE) 2001a], as revised for constituents added up to October 2008, would remain protective of public health and safety for a five-cell disposal facility. For consistency, the methods of analyses and the exposure scenario used to predict the performance of a five-cell disposal facility were identical to those used in the Remedial Investigation and Feasibility Study (RI/FS) and its addendum (DOE 1998a, DOE 1998b) to develop the approved WAC. To take advantage of new information and design changes departing from the conceptual design, the modeling domain and model calibration were upaded from those used in the RI/FS and its addendum. It should be noted that this analysis is not intended to justify or propose a change in the approved WAC.

  10. Aalborg Universitet Design and Control of High Temperature PEM Fuel Cell Systems using Methanol

    E-Print Network [OSTI]

    Berning, Torsten

    Aalborg Universitet Design and Control of High Temperature PEM Fuel Cell Systems using Methanol, S. L., & Justesen, K. K. (2013). Design and Control of High Temperature PEM Fuel Cell Systems using FDFC 2013 Proceedings: Fundamentals & Development of Fuel Cells. European Institute for Energy Research

  11. Design and Analysis of a Wireless Nanosensor Network for Monitoring Human Lung Cells

    E-Print Network [OSTI]

    New South Wales, University of

    Design and Analysis of a Wireless Nanosensor Network for Monitoring Human Lung Cells Eisa Zarepour one day. In this paper, we design and analyse a WNSN for monitoring human lung cells. We find that influences the terahertz channel inside lung cells. The channel is characterised as a two-state channel

  12. Design and formulation of functional pluripotent stem cell-derived cardiac microtissues

    E-Print Network [OSTI]

    Zandstra, Peter W.

    Design and formulation of functional pluripotent stem cell-derived cardiac microtissues Nimalan to guide the design of aligned and functional 3D human pluripotent stem cell (hPSC)- derived cardiac propagation. Furthermore, screening a range of hPSC-derived cardiac cell ratios identified that 75% NKX2 Homeo

  13. A Second-Order Achromat Design Based on FODO Cell

    SciTech Connect (OSTI)

    Sun, Yipeng; /SLAC

    2011-08-19

    Two dipole doglegs are widely used to translate the beam axis horizontally or vertically. Quadrupoles are placed between the two consecutive dipoles to match first order dispersion and provide betatron focusing. Similarly a four dipole chicane is usually employed to form a bypass region, where the beam axis is transversely shifted first, then translated back to the original axis. In order to generate an isochronous section, quadrupoles are again needed to tune the first order transfer matrix element R{sub 56} equaling zero. Usually sextupoles are needed to correct second order dispersion in the bending plane, for both the dogleg optics and the chicane (with quad) optics. In this paper, an alternative optics design is introduced, which is based on a simple FODO cell and does not need sextupoles assistance to form a second-order achromat. It may provide a similar function of either a dogleg or a bypass, by using 2 or 4 of such combined supercells.

  14. Polymer selection and cell design for electric-vehicle supercapacitors

    SciTech Connect (OSTI)

    Mastragostino, M.; Arbizzani, C.; Paraventi, R.; Zanelli, A.

    2000-02-01

    Supercapacitors are devices for applications requiring high operating power levels, such as secondary power sources in electric vehicles (EVs) to provide peak power for acceleration and hill climbing. While electronically conducting polymers yield different redox supercapacitor configurations, devices with the n-doped polymer as the negative electrode and the p-doped polymer as the positive one are the most promising for EV applications. Indeed, this type of supercapacitor has a high operating potential, is able to deliver all the doping charge and, when charged, has both electrodes in the conducting (p- and n-doped) states. This study reports selection criteria for polymer materials and cell design for high performance EV supercapacitors and experimental results of selected polymer materials.

  15. GCtool for fuel cell systems design and analysis : user documentation.

    SciTech Connect (OSTI)

    Ahluwalia, R.K.; Geyer, H.K.

    1999-01-15

    GCtool is a comprehensive system design and analysis tool for fuel cell and other power systems. A user can analyze any configuration of component modules and flows under steady-state or dynamic conditions. Component models can be arbitrarily complex in modeling sophistication and new models can be added easily by the user. GCtool also treats arbitrary system constraints over part or all of the system, including the specification of nonlinear objective functions to be minimized subject to nonlinear, equality or inequality constraints. This document describes the essential features of the interpreted language and the window-based GCtool environment. The system components incorporated into GCtool include a gas flow mixer, splitier, heater, compressor, gas turbine, heat exchanger, pump, pipe, diffuser, nozzle, steam drum, feed water heater, combustor, chemical reactor, condenser, fuel cells (proton exchange membrane, solid oxide, phosphoric acid, and molten carbonate), shaft, generator, motor, and methanol steam reformer. Several examples of system analysis at various levels of complexity are presented. Also given are instructions for generating two- and three-dimensional plots of data and the details of interfacing new models to GCtool.

  16. Photonic Design: From Fundamental Solar Cell Physics to Computational Inverse Design

    E-Print Network [OSTI]

    Miller, Owen Dennis

    2012-01-01

    1.2 Inverse Design . . . . . . . . . . . . . . . .II Photonic Inverse Design 5 ANew Photonic Inverse Design Method 5.1 Shape

  17. Optimal design of hybrid and non-hybrid fuel cell vehicles

    E-Print Network [OSTI]

    Papalambros, Panos

    Optimal design of hybrid and non-hybrid fuel cell vehicles by Jeongwoo Han A thesis submitted cell vehicles by Jeongwoo Han Chair: Panos Y. Papalambros Fuel cells are under development technology, however, still has many issues to be addressed for market acceptance. Several fuel cell vehicle

  18. Design and fabrication of photonic crystals in epitaxial free silicon for ultrathin solar cells

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Design and fabrication of photonic crystals in epitaxial free silicon for ultrathin solar cells photovoltaic solar cell. Optical simulations performed on a complete solar cell revealed that patterning to obtain ultrathin patterned solar cells. Keywords: Photonic crystals; Epitaxial crystalline silicon; Thin

  19. Microstructured anti-reflection surface design for the omni-directional solar cells

    E-Print Network [OSTI]

    Zhou, Weidong

    Microstructured anti-reflection surface design for the omni-directional solar cells Li Chen for the formation of hemispherical structures as an omni-directional anti-reflection (omni-AR) coating in solar cell current in such hemispherical solar cells hence enhanced to 1.5 times of bulk silicon solar cells

  20. innovati nNREL Designs Promising New Oxides for Solar Cells

    E-Print Network [OSTI]

    innovati nNREL Designs Promising New Oxides for Solar Cells High-efficiency, thin-film solar cells material. The upper TCO contact in a solar cell allows light to reach the absorber material below, which by the TCO to an external circuit, forming the negative terminal of the solar cell. TCOs used in this fashion

  1. Photonic Design: From Fundamental Solar Cell Physics to Computational Inverse Design

    E-Print Network [OSTI]

    Miller, Owen Dennis

    2012-01-01

    I The Physics of High-Efficiency Solar Cells 2 Luminescentint , on theoretical solar cell efficiency. The shortfall isjunction, flat-plate solar cell efficiency records over

  2. Photonic Design: From Fundamental Solar Cell Physics to Computational Inverse Design

    E-Print Network [OSTI]

    Miller, Owen Dennis

    2012-01-01

    of state-of-the-art photovoltaic cells,” Progress ineffective way. Photovoltaic cells are the most promisingthe absorptivity of photovoltaic cell: the material absorp-

  3. Photonic Design: From Fundamental Solar Cell Physics to Computational Inverse Design

    E-Print Network [OSTI]

    Miller, Owen Dennis

    2012-01-01

    lift-off,” Solar Energy Materials and Solar Cells, vol. 93,conversion,” Solar Energy Materials and Solar Cells, vol.ionisation,” Solar Energy Materials and Solar Cells, vol.

  4. Hydrogen fuel-cell cars designed and built in student competition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Students build hydrogen fuel-cell cars Hydrogen fuel-cell cars designed and built in student competition Middle and elementary school teams from around New Mexico participated in...

  5. DISPOSAL CONTAINER HANDLING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    E. F. Loros

    2000-06-30

    The Disposal Container Handling System receives and prepares new disposal containers (DCs) and transfers them to the Assembly Transfer System (ATS) or Canister Transfer System (CTS) for loading. The system receives the loaded DCs from ATS or CTS and welds the lids. When the welds are accepted the DCs are termed waste packages (WPs). The system may stage the WP for later transfer or transfer the WP directly to the Waste Emplacement/Retrieval System. The system can also transfer DCs/WPs to/from the Waste Package Remediation System. The Disposal Container Handling System begins with new DC preparation, which includes installing collars, tilting the DC upright, and outfitting the container for the specific fuel it is to receive. DCs and their lids are staged in the receipt area for transfer to the needed location. When called for, a DC is put on a cart and sent through an airlock into a hot cell. From this point on, all processes are done remotely. The DC transfer operation moves the DC to the ATS or CTS for loading and then receives the DC for welding. The DC welding operation receives loaded DCs directly from the waste handling lines or from interim lag storage for welding of the lids. The welding operation includes mounting the DC on a turntable, removing lid seals, and installing and welding the inner and outer lids. After the weld process and non-destructive examination are successfully completed, the WP is either staged or transferred to a tilting station. At the tilting station, the WP is tilted horizontally onto a cart and the collars removed. The cart is taken through an air lock where the WP is lifted, surveyed, decontaminated if required, and then moved into the Waste Emplacement/Retrieval System. DCs that do not meet the welding non-destructive examination criteria are transferred to the Waste Package Remediation System for weld preparation or removal of the lids. The Disposal Container Handling System is contained within the Waste Handling Building System. This includes the primary hot cell bounded by the receiving area and WP transport exit air locks; and isolation doors at ATS, CTS, and Waste Package Remediation. The hot cell includes areas for welding, various staging, tilting, and WP transporter loading. There are associated operating galleries and equipment maintenance areas outside the hot cell. These areas operate concurrently to accommodate the DC/WP throughput rates and support system maintenance. The new DC preparation area is located in an unshielded structure. The handling equipment includes DC/WP bridge cranes, tilting stations, and horizontal transfer carts. The welding area includes DC/WP welders and staging stations. Welding operations are supported by remotely operated equipment including a bridge crane and hoists, welder jib cranes, welding turntables, and manipulators. WP transfer includes a transfer/decontamination and transporter load area. The transfer operations are supported by a remotely operated horizontal lifting system, decontamination system, decontamination and inspection manipulator, and a WP horizontal transfer cart. All handling operations are supported by a suite of fixtures including collars, yokes, lift beams, and lid attachments. Remote equipment is designed to facilitate decontamination and maintenance. Interchangeable components are provided where appropriate. Set-aside areas are included, as required, for fixtures and tooling to support off-normal and recovery operations. Semi-automatic, manual, and backup control methods support normal, maintenance, and recovery operations. The system interfaces with the ATS and CTS to provide empty and receive loaded DCs. The Waste Emplacement/Retrieval System interfaces are for loading/unloading WPs on/from the transporter. The system also interfaces with the Waste Package Remediation System for DC/WP repair. The system is housed, shielded, supported, and has ventilation boundaries by the Waste Handling Building (WHB). The system is ventilated by the WHB Ventilation System, which in conjunction with ventilation boundaries ensure that ai

  6. Design Considerations for a PEM Fuel Cell Powered Truck APU

    E-Print Network [OSTI]

    Grupp, David J; Forrest, Matthew E.; Mader, Pippin G.; Brodrick, Christie-Joy; Miller, Marshall; Dwyer, Harry A.

    2004-01-01

    Preventing the fuel cell from freezing is a more challengingProtecting the fuel cell from freezing requires activeproblem. Freezing can be a danger when the fuel cell is not

  7. Optimized Designs and Materials for Nanostructure Based Solar Cells

    E-Print Network [OSTI]

    Shao, Qinghui

    2009-01-01

    of the intermediate band solar cell under nonideal spaceefficient InGaP/GaAs tandem solar cells,” Appl. Phys. Lett.band impact ionization and solar cell efficiency,” J. Appl.

  8. Optimized Designs and Materials for Nanostructure Based Solar Cells

    E-Print Network [OSTI]

    Shao, Qinghui

    2009-01-01

    InGaAs triple-junction solar cells grown inverted with abonded GaAs/InGaAs tandem solar cell,” Appl. Phys. Lett. 89,2 /GaAs tandem-junction solar cells,” Appl. Phys. Lett. 83,

  9. Optimized Designs and Materials for Nanostructure Based Solar Cells

    E-Print Network [OSTI]

    Shao, Qinghui

    2009-01-01

    the intermediate band solar cell under nonideal space chargeInGaP/GaAs tandem solar cells,” Appl. Phys. Lett. 70, 381 (band impact ionization and solar cell efficiency,” J. Appl.

  10. Design Considerations for a PEM Fuel Cell Powered Truck APU

    E-Print Network [OSTI]

    Grupp, David J; Forrest, Matthew E.; Mader, Pippin G.; Brodrick, Christie-Joy; Miller, Marshall; Dwyer, Harry A.

    2004-01-01

    Evaluation of Fuel Cell Auxiliary Power Units for Heavy -Solid Oxide Fuel Cell Auxiliary Power Unit – A DevelopmentMarkets for Fuel Cell Auxiliary Power Units in Vehicles: A

  11. Optimized Designs and Materials for Nanostructure Based Solar Cells

    E-Print Network [OSTI]

    Shao, Qinghui

    2009-01-01

    GaInP/GaAs/InGaAs triple-junction solar cells grown invertedS. Guha, “Triple-junction amorphous silicon alloy solar cell

  12. Multi-Scale Multi-Dimensional Model for Better Cell Design and Management (Presentation)

    SciTech Connect (OSTI)

    Kim, G.-H.; Smith, K.

    2008-09-01

    Describes NREL's R&D to develop a multi-scale model to assist in designing better, more reliable lithium-ion battery cells for advanced vehicles.

  13. PV Optics: A Software Package for Solar Cells and Module Design

    SciTech Connect (OSTI)

    Sopori, B.

    2007-01-01

    PV Optics is a user-friendly software package developed to design and analyze solar cells and modules. It is applicable to a variety of optical structures, including thin and thick cells with light-trapping structures and metal optics. Using a combination of wave and ray optics to include effects of coherence and interference, it can be used to design single-junction and multijunction solar cells and modules. This paper describes some basic applications of PV Optics for crystalline and amorphous Si solar cell design. We present examples to examine the effects on solar cell performance of wafer thickness, antireflection coating thickness, texture height, and metal loss.

  14. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory · El compostaje se ha usado como Virginia (2007) ­ British Columbia (2009) Uso del compostaje #12;Disposal: Science and Theory · Primera apilamiento Delmarva (2004) #12;Disposal: Science and Theory · El compostaje se usó para proteger una densa

  15. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Summary · Foam is currently a viable ­ Foam application directly to cage #12;Disposal: Science and Theory Legal Status of Foam · Procedure depopulation, culling, and euthanasia #12;Disposal: Science and Theory Acknowledgements · USDA AICAP2 · USDA

  16. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Mass Emergency Composting · Basic ­ Create carcass and litter windrow #12;Disposal: Science and Theory Mass Emergency Composting · Basic cover ­ Clean and disinfect house ­ Sample for virus again #12;Disposal: Science and Theory Mass

  17. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Composting · Composting is defined drop #12;Disposal: Science and Theory Composting · Optimal composting ­ Carbon to nitrogen ratio (C;Disposal: Science and Theory Compost Composition · A variety of supplemental carbon materials have been

  18. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory 2004 ­ Participación de Bud Malone y la espuma 2009 ­ Ninguna ventaja para el gas Breve historia de la espuma #12;Disposal: Science sistema de boquilla ¿Qué es la espuma? #12;Disposal: Science and Theory · La espuma puede incluir: ­ Una

  19. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Foam Generator Setup · Drop off foam generator cart at one end of house #12;Disposal: Science and Theory Foam Generator Setup · Trailer parked generator attached to hose #12;Disposal: Science and Theory Foam Generation Begins · Team of two to operate

  20. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Foaming Options · Compressed Air Foam Systems (CAFS) · Foam Blower · Foam Generator · Nozzle Systems #12;Disposal: Science and Theory Compressed ­ Industry owned response team #12;Disposal: Science and Theory Commercial CAFS for Poultry · Poultry

  1. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory · Opciones para la eliminación · ¿Qué compostaje durante brotes de enfermedades Lista de contenido #12;Disposal: Science and Theory "Ante un brote brotes de IIAP #12;Disposal: Science and Theory · En 2004, se despoblaron 100 millones de aves en todo el

  2. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory · Gassing is a preferred #12;Disposal: Science and Theory Carbon Dioxide Gassing · Carbon dioxide (CO2) one of the standard sensitivity time #12;Disposal: Science and Theory · Argon-CO2 gas depopulation evaluated under laboratory

  3. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Opciones para la producción de espuma espuma · Sistemas de boquilla #12;Disposal: Science and Theory Requisitos estimados: · Tiempo: 2 a 3 compactas ­ Equipo de respuesta propio de la industria Espuma de aire comprimido #12;Disposal: Science

  4. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory 0 20 40 60 80 100 Compostaje #12;Disposal: Science and Theory · Delmarva fue de las primeras granjas en realizar el compostaje de en EE.UU. en los próximos 10 años. Pionera en compostaje en Delaware #12;Disposal: Science and Theory

  5. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Use of Composting · Composting has ­ British Columbia 2009 #12;Disposal: Science and Theory · Initial farm linked to NY LBM · Two additional and pile procedure Delmarva 2004 #12;Disposal: Science and Theory Delmarva 2004 · Composting used

  6. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory · Compostaje de aves de corralRouchey et al., 2005) Investigación previa #12;Disposal: Science and Theory · Se ha evaluado y documentado el, bovino Investigación previa #12;Disposal: Science and Theory · Experimento nro. 1 Impacto de la espuma en

  7. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory · Procedimiento básico ­ Desarrollar una pila de carcasas y lecho. Compostaje masivo de emergencia #12;Disposal: Science and Theory de emergencia #12;Disposal: Science and Theory · Desarrollar planes antes de que ocurra una

  8. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Foam Used in Actual Outbreak · Water #12;Disposal: Science and Theory Water Based Foam Culling Demo · First large scale comparison · Two:46 (m:s) #12;Disposal: Science and Theory WV H5N2 AIV 2007 · AIV positive turkeys ­ 25,000 turkey farm

  9. Design of photonic metamaterial multi-junction solar cells using rigorous coupled wave analysis

    E-Print Network [OSTI]

    Lansey, Eli

    Design of photonic metamaterial multi-junction solar cells using rigorous coupled wave analysis Eli a horizontally-oriented multi-junction solar cell by creating an array of cavities tuned with targeted CMs of New York, New York, NY, USA 10031 August 26, 2010 ABSTRACT We have developed a method to design multi-junction

  10. Photonic Design: From Fundamental Solar Cell Physics to Computational Inverse Design

    E-Print Network [OSTI]

    Miller, Owen Dennis

    2012-01-01

    4.9 Multi-junction solar cells more efficiently convertas concentrator or multi-junction solar cells, a similarFigure 4.9: Multi-junction solar cells more efficiently

  11. MODELING THE EFFECT OF FLOW FIELD DESIGN ON PEM FUEL CELL PERFORMANCE

    E-Print Network [OSTI]

    Van Zee, John W.

    and transportation applications. One aspect that is crucial to optimizing the performance of PEM fuel cellsMODELING THE EFFECT OF FLOW FIELD DESIGN ON PEM FUEL CELL PERFORMANCE Jeffrey Glandt, Sirivatch Shimpalee, Woo-kum Lee, and John W. Van Zee Fuel Cell Research Laboratory Department of Chemical Engineering

  12. Electrochemical apparatus comprising modified disposable rectangular cuvette

    DOE Patents [OSTI]

    Dattelbaum, Andrew M; Gupta, Gautam; Morris, David E

    2013-09-10

    Electrochemical apparatus includes a disposable rectangular cuvette modified with at least one hole through a side and/or the bottom. Apparatus may include more than one cuvette, which in practice is a disposable rectangular glass or plastic cuvette modified by drilling the hole(s) through. The apparatus include two plates and some means of fastening one plate to the other. The apparatus may be interfaced with a fiber optic or microscope objective, and a spectrometer for spectroscopic studies. The apparatus are suitable for a variety of electrochemical experiments, including surface electrochemistry, bulk electrolysis, and flow cell experiments.

  13. Optimized Designs and Materials for Nanostructure Based Solar Cells

    E-Print Network [OSTI]

    Shao, Qinghui

    2009-01-01

    is equivalent to irradiance of one solar constant. All thedesigns of QDS solar cells including one, which combined thesunlight into electricity. One is solar thermal electricity

  14. Test Results From The Idaho National Laboratory Of The NASA Bi-Supported Cell Design

    SciTech Connect (OSTI)

    C Stoots; J O'Brien; T Cable

    2009-11-01

    The Idaho National Laboratory has been researching the application of solid-oxide fuel cell technology for large-scale hydrogen production. As a result, the Idaho National Laboratory has been testing various cell designs to characterize electrolytic performance. NASA, in conjunction with the University of Toledo, has developed a new cell concept with the goals of reduced weight and high power density. This paper presents results of the INL's testing of this new solid oxide cell design as an electrolyzer. Gas composition, operating voltage, and other parameters were varied during testing. Results to date show the NASA cell to be a promising design for both high power-to-weight fuel cell and electrolyzer applications.

  15. Defense High Level Waste Disposal Container System Description

    SciTech Connect (OSTI)

    2000-10-12

    The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms (IPWF)) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as 'co-disposal'. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by which to identify the disposal container and its contents. Different materials will be selected for the disposal container inner and outer cylinders. The two metal cylinders, in combination with the Emplacement Drift System, drip shield, and natural barrier, will support the design philosophy of defense-in-depth. The use of materials with different properties prevents a single mode failure from breaching the waste package. The inner cylinder and inner cylinder lids will be constructed of stainless steel and the outer cylinder and outer cylinder lids will be a barrier made of high-nickel alloy. The defense HLW disposal container interfaces with the emplacement drift environment and the internal waste by transferring heat from the canisters to the external environment and by protecting the canisters and their contents from damage/degradation by the external environment. The disposal container also interfaces with the canisters by limiting access of moderator and oxidizing agents to the waste. A loaded and sealed disposal container (waste package) interfaces with the Emplacement Drift System's emplacement drift waste package supports upon which the waste packages are placed. The disposal container interfaces with the Canister Transfer System, Waste Emplacement /Retrieval System, Disposal Container Handling System, and Waste Package Remediation System during loading, handling, transfer, emplacement, and retrieval for the disposal container/waste package.

  16. Waste disposal package

    DOE Patents [OSTI]

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  17. Radioactive waste disposal package

    DOE Patents [OSTI]

    Lampe, Robert F. (Bethel Park, PA)

    1986-01-01

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  18. Oil field waste disposal costs at commercial disposal facilities

    SciTech Connect (OSTI)

    Veil, J.A.

    1997-10-01

    The exploration and production segment of the U.S. oil and gas industry generates millions of barrels of nonhazardous oil field wastes annually. In most cases, operators can dispose of their oil fields wastes at a lower cost on-site than off site and, thus, will choose on-site disposal. However, a significant quantity of oil field wastes are still sent to off-site commercial facilities for disposal. This paper provides information on the availability of commercial disposal companies in different states, the treatment and disposal methods they employ, and how much they charge. There appear to be two major off-site disposal trends. Numerous commercial disposal companies that handle oil field wastes exclusively are located in nine oil-and gas-producing states. They use the same disposal methods as those used for on-site disposal. In addition, the Railroad Commission of Texas has issued permits to allow several salt caverns to be used for disposal of oil field wastes. Twenty-two other oil- and gas-producing states contain few or no disposal companies dedicated to oil and gas industry waste. The only off-site commercial disposal companies available handle general industrial wastes or are sanitary landfills. In those states, operators needing to dispose of oil field wastes off-site must send them to a local landfill or out of state. The cost of off-site commercial disposal varies substantially, depending on the disposal method used, the state in which the disposal company is located, and the degree of competition in the area.

  19. Photonic Design: From Fundamental Solar Cell Physics to Computational Inverse Design

    E-Print Network [OSTI]

    Miller, Owen Dennis

    2012-01-01

    for a plane-parallel solar cell one would have a 0 = 1 ? e ?restricted to only the solar solid angle, one would have ?a planar solar cell with a perfect mirror and one with an

  20. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory · Se ubica el carretón con el enfriamiento Ventiladores de túnel de viento #12;Disposal: Science and Theory · Se estaciona el remolque en uno: Science and Theory · Se usa un equipo de dos personas para hacer funcionar el sistema: ­ Operario del

  1. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Table of Contents · Why Depopulate? · Depopulation Methods · Basics of Foam · Types of Foam Equipment · Science Behind Foam · Implementing Foam Depopulation · Use of Foam in the Field · Conclusions #12;Disposal: Science and Theory "When HPAI outbreaks

  2. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory · El compostaje se define como la: Science and Theory · Compostaje óptimo ­ Relación carbono/nitrógeno (C:N): 20:1 a 35:1 ­ Contenido de Compostaje #12;Disposal: Science and Theory · Se ha utilizado satisfactoriamente una variedad de materiales

  3. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Previous Research · Composting, et.al. 2005; Bendfeldt et al., 2006; DeRouchey et al., 2005) #12;Disposal: Science and Theory: Science and Theory Scientific Validation of Composting · Experiment 1 Impact of foam on composting

  4. Optimized Designs and Materials for Nanostructure Based Solar Cells

    E-Print Network [OSTI]

    Shao, Qinghui

    2009-01-01

    efficiency of solar panels and power to weight ratio insolar cells, there exist two basic processes to convert sunlight power topower to a load connected when charged by Sun. The typical output voltage of a silicon based solar

  5. Design of gasifiers to optimize fuel cell systems

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    The objective of this project is to configure coal gasification/carbonate fuel cell systems that can significantly improve the economics, performance, and efficiency of electric power generation systems. (VC)

  6. Remote-Handled Low-Level Waste (RHLLW) Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2010-10-01

    The Remote-Handled Low-Level Waste Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of fiscal year 2015). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability.

  7. Revised 21/2/12 The University produces and disposes of significant quantities of waste each year, for example during the 2005/06 we disposed of 1284 tonnes

    E-Print Network [OSTI]

    Oakley, Jeremy

    on disposal Batteries The law bans the disposal of all batteries (both wet and dry cell) in landfill or by incineration. This means that batteries must not be disposed of in the general waste; instead they must battery recycling scheme. This guidance relates to dry cell batteries. ScHARR method. You can take your

  8. Speeding the transition: Designing a fuel-cell hypercar

    SciTech Connect (OSTI)

    Williams, B.D.; Moore, T.C.; Lovins, A.B.

    1997-12-31

    A rapid transformation now underway in automotive technology could accelerate the transition to transportation powered by fuel cells. Ultralight, advanced-composite, low-drag, hybrid-electric hypercars--using combustion engines--could be three- to fourfold more efficient and one or two orders of magnitude cleaner than today`s cars, yet equally safe, sporty, desirable, and (probably) affordable. Further, important manufacturing advantages--including low tooling and equipment costs, greater mechanical simplicity, autobody parts consolidation, shorter product cycles, and reduced assembly effort and space--permit a free-market commercialization strategy. This paper discusses a conceptual hypercar powered by a proton-exchange-membrane fuel cell (PEMFC). It outlines the implications of platform physics and component selection for the vehicle`s mass budget and performance. The high fuel-to-traction conversion efficiency of the hypercar platform could help automakers overcome the Achilles` heel of hydrogen-powered vehicles: onboard storage. Moreover, because hypercars would require significantly less tractive power, and even less fuel-cell power, they could adopt fuel cells earlier, before fuel cells` specific cost, mass, and volume have fully matured. In the meantime, commercialization in buildings can help prepare fuel cells for hypercars. The promising performance of hydrogen-fueled PEMFC hypercars suggests important opportunities in infrastructure development for direct-hydrogen vehicles.

  9. Impact of sub-cell internal luminescence yields on energy conversion efficiencies of tandem solar cells: A design principle

    SciTech Connect (OSTI)

    Zhu, Lin Kim, Changsu; Yoshita, Masahiro; Chen, Shaoqiang; Sato, Shintaroh; Mochizuki, Toshimitsu; Akiyama, Hidefumi; Kanemitsu, Yoshihiko

    2014-01-20

    To develop a realistic design principle, we calculated the maximum conversion efficiency ?{sub sc} and optimized sub-cell band-gap energies E{sub g} in double-junction tandem solar cells via a detailed-balance theory, paying particular attention to their dependence on internal luminescence quantum yields y{sub int} of the top and bottom sub-cell materials. A strong drop in the maximum ?{sub sc} occurs when y{sub int} slightly drops from 1 to 0.9, where the drop in y{sub int} of the bottom cell causes a stronger effect than that of the top cell. For low values of y{sub int}, the maximum ?{sub sc} has a simple logarithmic dependence on the geometric mean of the two sub-cells'y{sub int}.

  10. Minor actinide waste disposal in deep geological boreholes

    E-Print Network [OSTI]

    Sizer, Calvin Gregory

    2006-01-01

    The purpose of this investigation was to evaluate a waste canister design suitable for the disposal of vitrified minor actinide waste in deep geological boreholes using conventional oil/gas/geothermal drilling technology. ...

  11. ACTIVATION, DECAY HEAT, AND WASTE DISPOSAL ANALYSES FOR THE ARIES-AT POWER PLANT

    E-Print Network [OSTI]

    California at San Diego, University of

    throughout the device and to compute the Fetter and NRC 10CFR 61 waste disposal ratings (WDR) for variousACTIVATION, DECAY HEAT, AND WASTE DISPOSAL ANALYSES FOR THE ARIES-AT POWER PLANT D. Henderson, L, decay heat and waste disposal calculations of the ARIES-AT design are performed to evaluate the safety

  12. The design of a microfabricated air electrode for liquid electrolyte fuel cells

    E-Print Network [OSTI]

    Pierre, Fritz, 1977-

    2007-01-01

    In this dissertation, the microfabricated electrode (MFE) concept was applied to the design of an air electrode for liquid electrolyte fuel cells. The catalyst layer of the electrode is envisioned to be fabricated by using ...

  13. Design of a microfluidic device for the analysis of biofilm behavior in a microbial fuel cell

    E-Print Network [OSTI]

    Jones, A-Andrew D., III (Akhenaton-Andrew Dhafir)

    2014-01-01

    This thesis presents design, manufacturing, testing, and modeling of a laminar-flow microbial fuel cell. Novel means were developed to use graphite and other bulk-scale materials in a microscale device without loosing any ...

  14. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    SciTech Connect (OSTI)

    NSTec Environmental Programs

    2010-09-14

    The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Waste Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan for the Disposal of Low-Level Waste with Regulated Asbestos Waste.'' A requirement of the authorization was that on or before October 9, 1999, a permit was required to be issued. Because of NDEP and NNSA/NSO review cycles, the final permit was issued on April 5, 2000, for the operation of the Area 5 Low-Level Waste Disposal Site, utilizing Pit 7 (P07) as the designated disposal cell. The original permit applied only to Pit 7, with a total design capacity of 5,831 cubic yards (yd{sup 3}) (157,437 cubic feet [ft{sup 3}]). NNSA/NSO is expanding the SWDS to include the adjacent Upper Cell of Pit 6 (P06), with an additional capacity of 28,037 yd{sup 3} (756,999 ft{sup 3}) (Figure 3). The proposed total capacity of ALLW in Pit 7 and P06 will be approximately 33,870 yd{sup 3} (0.9 million ft{sup 3}). The site will be used for the disposal of regulated ALLW, small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. The only waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM). The term asbestiform is used throughout this document to describe this waste. Other TSCA waste (i.e., polychlorinated biphenyls [PCBs]) will not be accepted for disposal at the SWDS. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the U.S. Department of Energy, Nevada Operations Office (DOE/NV) 325

  15. Method and design for externally applied laser welding of internal connections in a high power electrochemical cell

    DOE Patents [OSTI]

    Martin, Charles E; Fontaine, Lucien; Gardner, William H

    2014-01-21

    An electrochemical cell includes components that are welded from an external source after the components are assembled in a cell canister. The cell canister houses electrode tabs and a core insert. An end cap insert is disposed opposite the core insert. An external weld source, such as a laser beam, is applied to the end cap insert, such that the end cap insert, the electrode tabs, and the core insert are electrically coupled by a weld which extends from the end cap insert to the core insert.

  16. Molten salt bath circulation design for an electrolytic cell

    DOE Patents [OSTI]

    Dawless, Robert K. (Monroeville, PA); LaCamera, Alfred F. (Trafford, PA); Troup, R. Lee (Murrysville, PA); Ray, Siba P. (Murrysville, PA); Hosler, Robert B. (Sarver, PA)

    1999-01-01

    An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride.

  17. Molten salt bath circulation design for an electrolytic cell

    DOE Patents [OSTI]

    Dawless, R.K.; LaCamera, A.F.; Troup, R.L.; Ray, S.P.; Hosler, R.B.

    1999-08-17

    An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride. 4 figs.

  18. Modelling and Design Optimization of Low Speed Fuel Cell Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Victoria, University of

    Modelling and Design Optimization of Low Speed Fuel Cell Hybrid Electric Vehicles by Matthew Blair of emissions to global climate change. Although electric cars and buses have been the focus of much of electric and utility purposes in many countries. In order to explore the viability of fuel cell - battery hybrid

  19. Design of a Control Strategy for a Fuel Cell/Battery Hybrid Power Supply 

    E-Print Network [OSTI]

    Smith, Richard C.

    2010-01-14

    . And the performance of the hybrid power supply exploits these advantages of the fuel cell and the battery. The controller designed in this thesis allows the fuel cell to operate in its most efficient region: even under dynamic load conditions. The passive battery...

  20. Rational design of hybrid dye-sensitized solar cells composed of double-layered photoanodes with

    E-Print Network [OSTI]

    Lin, Zhiqun

    Rational design of hybrid dye-sensitized solar cells composed of double-layered photoanodes,a Bailiang Xue,b Wei Liu,c Zhiqun Lina and Yulin Deng*bc A uniquely structured dye-sensitized solar cell photoanodes have complementary roles in absorbing solar light at different wavelengths. The power conversion

  1. Recommendation 223: Recommendations on Additional Waste Disposal...

    Office of Environmental Management (EM)

    3: Recommendations on Additional Waste Disposal Capacity Recommendation 223: Recommendations on Additional Waste Disposal Capacity ORSSAB's recommendations encourage DOE to...

  2. 2 Gbps SerDes Design Based on IBM Cu-11 (130nm) Standard Cell Technology

    E-Print Network [OSTI]

    Draper, Jeff

    2 Gbps SerDes Design Based on IBM Cu-11 (130nm) Standard Cell Technology Rashed Zafar Bhatti EE Denneau IBM T.J. Watson Research Center Yorktown Heights, NY 10598 denneau@us.ibm.com Jeff Draper of jitter. Power consumption of the proposed SerDes design is 30 mW per serial link targeted to IBM Cu-11

  3. COMPILATION OF DISPOSABLE SOLID WASTE CASK EVALUATIONS

    SciTech Connect (OSTI)

    THIELGES, J.R.; CHASTAIN, S.A.

    2007-06-21

    The Disposable Solid Waste Cask (DSWC) is a shielded cask capable of transporting, storing, and disposing of six non-fuel core components or approximately 27 cubic feet of radioactive solid waste. Five existing DSWCs are candidates for use in storing and disposing of non-fuel core components and radioactive solid waste from the Interim Examination and Maintenance Cell, ultimately shipping them to the 200 West Area disposal site for burial. A series of inspections, studies, analyses, and modifications were performed to ensure that these casks can be used to safely ship solid waste. These inspections, studies, analyses, and modifications are summarized and attached in this report. Visual inspection of the casks interiors provided information with respect to condition of the casks inner liners. Because water was allowed to enter the casks for varying lengths of time, condition of the cask liner pipe to bottom plate weld was of concern. Based on the visual inspection and a corrosion study, it was concluded that four of the five casks can be used from a corrosion standpoint. Only DSWC S/N-004 would need additional inspection and analysis to determine its usefulness. The five remaining DSWCs underwent some modification to prepare them for use. The existing cask lifting inserts were found to be corroded and deemed unusable. New lifting anchor bolts were installed to replace the existing anchors. Alternate lift lugs were fabricated for use with the new lifting anchor bolts. The cask tiedown frame was modified to facilitate adjustment of the cask tiedowns. As a result of the above mentioned inspections, studies, analysis, and modifications, four of the five existing casks can be used to store and transport waste from the Interim Examination and Maintenance Cell to the disposal site for burial. The fifth cask, DSWC S/N-004, would require further inspections before it could be used.

  4. ENI Renewable and Non-conventional Energy Prize 2012 High-efficiency solar cells based on nanophotonic design

    E-Print Network [OSTI]

    Polman, Albert

    demonstrated ultra-thin silicon solar cells on glass, world-record efficiency thin-film GaAs solar cells to solar cell design are applicable to other solar cell technologies as well, including thin-film CuInSe2ENI Renewable and Non-conventional Energy Prize 2012 High-efficiency solar cells based

  5. Design for the fabrication of high efficiency solar cells

    DOE Patents [OSTI]

    Simmons, Joseph H. (Gainesville, FL)

    1998-01-01

    A method and apparatus for a photo-active region for generation of free carriers when a first surface is exposed to optical radiation. The photo-active region includes a conducting transparent matrix and clusters of semiconductor materials embedded within the conducting transparent matrix. The clusters are arranged in the matrix material so as to define at least a first distribution of cluster sizes ranging from those with the highest bandgap energy near a light incident surface of the photo-active region to those with the smallest bandgap energy near an opposite second surface of the photo-active region. Also disclosed is a method and apparatus for a solar cell. The solar cell includes a photo-active region containing a plurality of semiconductor clusters of varying sizes as described.

  6. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-10-24

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

  7. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

    1995-01-01

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  8. Material Disposal Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS onBudgetMaterial Disposal Areas Material

  9. Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal...

    Broader source: Energy.gov (indexed) [DOE]

    as part of the River Corridor Closure Project - DOE's largest environmental cleanup closure project. The landfill is the largest disposal facility in the DOE cleanup complex....

  10. Palmetto Fuel Cell Analysis and Design | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program |View New Pages Recent ChangesEtPalmer,Analysis and Design

  11. Molten carbonate fuel cell product design improvement. Annual report, December 20, 1996--December 20, 1997

    SciTech Connect (OSTI)

    Maru, H.C.; Farooque, M.

    1998-09-01

    This program is designed to advance the carbonate fuel cell technology from the current full-size field test to the commercial design by the turn of the century. The specific objectives selected to attain the overall program goal are: Define power plant requirements and specifications; Establish the design for a multifuel, low-cost, modular, market-responsive power plant; Resolve power plant manufacturing issues and define the design for the commercial-scale manufacturing facility; Define the stack and balance-of-plant (BOP) equipment packaging arrangement and module designs; Acquire capability to support developmental testing of stacks and critical BOP equipment to prepare for commercial design; and Resolve stack and BOP equipment technology issues, and design, build, and field test a modular prototype power plant to demonstrate readiness for commercial entry. ERC is currently in the third year of the multiyear program for development and demonstration of a MW-class power plant. The product definition and specification have been derived with input from potential users, including the Fuel Cell Commercialization Group (FCCG). The baseline power plant final design has been completed. Detailed power plant system and packaging designs are being developed using stack and BOP development results. A MW-scale prototype modular power plant representative of the commercial design is planned. Based on the experience and data generated in the current program, ERC also plans to acquire manufacturing capability for market-entry products through expansion of the existing Torrington production facility.

  12. Mechanical Design of a New Injector Cryomodule 2-Cell Cavity at CEBAF

    SciTech Connect (OSTI)

    Cheng, Guangfeng G. [JLAB; Henry, James E. [JLAB; Mammosser, John D. [JLAB; Rimmer, Robert A. [JLAB; Wang, Haipeng [JLAB; Wiseman, Mark A. [JLAB; Yang, Shuo [JLAB

    2013-12-01

    As a part of Jefferson Lab’s 12 GeV upgrade, a new injector superconducting RF cryomodule is required. This unit consists of a 2-cell and 7-cell cavity, with the latter being refurbished from an existing cavity. The new 2-cell cavity requires electromagnetic design and optimization followed by mechanical design analyses. The electromagnetic design is reported elsewhere. This paper aims to present the procedures and conclusions of the analyses on cavity tuning sensitivity, pressure sensitivity, upset condition pressure induced stresses, and structural vibration frequencies. The purposes of such analyses include: 1) provide reference data for cavity tuner design; 2) examine the structural integrity of the cavity; and 3) evaluate the 2-cell cavity’s resistance to microphonics. Design issues such as the location of stiffening rings, effect of tuner stiffness on cavity stress, choice of cavity wall thickness, etc. are investigated by conducting extensive finite element analyses. Progress in fabrication of the 2-cell cavity is also reported.

  13. Figure 1. 9T SRAM cell in [3] A Highly-Stable Nanometer Memory for Low-Power Design

    E-Print Network [OSTI]

    Ayers, Joseph

    Figure 1. 9T SRAM cell in [3] A Highly-Stable Nanometer Memory for Low-Power Design Sheng Lin, Yong with previous designs for low-power memory operation. Initially, this paper shows that the proposed 9T SRAM cell to further reduce the power consumption of the SRAM cell. The impact of process variations is investigated

  14. Final Report, Validation of Novel Planar Cell Design for MW-Scale SOFC Power Systems

    SciTech Connect (OSTI)

    Swartz, Dr Scott L.; Thrun, Dr Lora B.; Arkenberg, Mr Gene B.; Chenault, Ms Kellie M.

    2012-01-03

    This report describes the work completed by NexTech Materials, Ltd. during a three-year project to validate an electrolyte-supported planar solid oxide fuel cell design, termed the FlexCell, for coal-based, megawatt-scale power generation systems. This project was focused on the fabrication and testing of electrolyte-supported FlexCells with yttria-stabilized zirconia (YSZ) as the electrolyte material. YSZ based FlexCells were made with sizes ranging from 100 to 500 cm2. Single-cell testing was performed to confirm high electrochemical performance, both with diluted hydrogen and simulated coal gas as fuels. Finite element analysis modeling was performed at The Ohio State University was performed to establish FlexCell architectures with optimum mechanical robustness. A manufacturing cost analysis was completed, which confirmed that manufacturing costs of less than $50/kW are achievable at high volumes (500 MW/year).

  15. Validation of Novel Planar Cell Design for MW-Scale SOFC Power Systems

    SciTech Connect (OSTI)

    Scott Swartz; Lora Thrun; Gene Arkenberg; Kellie Chenault

    2011-09-30

    This report describes the work completed by NexTech Materials, Ltd. during a three-year project to validate an electrolyte-supported planar solid oxide fuel cell design, termed the FlexCell, for coal-based, megawatt-scale power generation systems. This project was focused on the fabrication and testing of electrolyte-supported FlexCells with yttria-stabilized zirconia (YSZ) as the electrolyte material. YSZ based FlexCells were made with sizes ranging from 100 to 500 cm{sup 2}. Single-cell testing was performed to confirm high electrochemical performance, both with diluted hydrogen and simulated coal gas as fuels. Finite element analysis modeling was performed at The Ohio State University was performed to establish FlexCell architectures with optimum mechanical robustness. A manufacturing cost analysis was completed, which confirmed that manufacturing costs of less than $50/kW are achievable at high volumes (500 MW/year). DISCLAIMER

  16. Analysis of alternatives for immobilized low activity waste disposal

    SciTech Connect (OSTI)

    Burbank, D.A.

    1997-10-28

    This report presents a study of alternative disposal system architectures and implementation strategies to provide onsite near-surface disposal capacity to receive the immobilized low-activity waste produced by the private vendors. The analysis shows that a flexible unit strategy that provides a suite of design solutions tailored to the characteristics of the immobilized low-activity waste will provide a disposal system that best meets the program goals of reducing the environmental, health, and safety impacts; meeting the schedule milestones; and minimizing the life-cycle cost of the program.

  17. Waste Disposal Guide HOW TO PROPERLY DISPOSE OF WASTE MATERIALS

    E-Print Network [OSTI]

    Schaefer, Marcus

    of Containers p.8 o E. Disposal of Empty Containers p.8 o F. Storage of Waste Chemicals p.8,9 o G. Chemical Compatibility p.9 Radioactive Waste Disposal p.10 Bio Hazard Waste chemical and radioactive waste, and Biohazardous waste. This document contains university procedures

  18. Design and development of a cooling device for solid polymer electrolyte fuel cells 

    E-Print Network [OSTI]

    Nandi, Asis

    1991-01-01

    DESIGN AND DEVEI OPMENT OF A COOLING DEVICE FOR SOLID POLYMER ELECTROLYTE FUEL CELLS A Thesis by- ASIS NANDI Submitted to the Office of Graduate Studies of Texas ALA'I Ifniversity in partial fulfillment of the requirements I' or the degree ot...' MASTER OF SCIENCE December 1991 Major Subject: Mechanical Engineering DESIGN AND DEVELOPMENT OF A COOLING DEVICE FOR SOLID POLYMER ELECTROLYTE FUEL CELLS A Thesis ASIS lVAiVDI Approved as to style and content by: q. v, 4~. V. K. Anand (' Chair...

  19. Tandem Solar Cells Using GaAs Nanowires on Si: Design, Fabrication, and Observation of Voltage Addition

    E-Print Network [OSTI]

    Zhou, Chongwu

    for high-efficiency, low-cost multijunction solar cells. KEYWORDS: Tandem solar cell, Ga so that the efficiency advantage is outweighed by the low cost of Si solar cells for manyTandem Solar Cells Using GaAs Nanowires on Si: Design, Fabrication, and Observation of Voltage

  20. Webinar: 2011-2012 Hydrogen Student Design Contest Winners: On-Campus Tri-Generation Fuel Cell Systems

    Broader source: Energy.gov [DOE]

    Video recording of the Fuel Cell Technologies Office webinar, 2011-2012 Hydrogen Student Design Contest Winners: On-Campus Tri-Generation Fuel Cell Systems, originally presented on September 4, 2012.

  1. Integrated Disposal Facility Risk Assessment

    SciTech Connect (OSTI)

    MANN, F. M.

    2003-06-03

    An environmental risk assessment associated with the disposal of projected Immobilized Low-Activity Waste, solid wastes and failed or decommissioned melters in an Integrated Disposal Facility was performed. Based on the analyses all performance objectives associated with the groundwater, air, and intruder pathways were met.

  2. Laboratory Waste Disposal HAZARDOUS GLASS

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Laboratory Waste Disposal HAZARDOUS GLASS Items that could cut or puncture skin or trash- can without any treatment. Hazardous Glass and Plastic: Items that can puncture, cut or scratch if disposed a significant hazard. Bags of misc. plasticware that has been autoclaved to remove bio contamination. Syringe

  3. Melter Disposal Strategic Planning Document

    SciTech Connect (OSTI)

    BURBANK, D.A.

    2000-09-25

    This document describes the proposed strategy for disposal of spent and failed melters from the tank waste treatment plant to be built by the Office of River Protection at the Hanford site in Washington. It describes program management activities, disposal and transportation systems, leachate management, permitting, and safety authorization basis approvals needed to execute the strategy.

  4. In an effort to design a more low cost, highly efficient alternative to the traditional silicon solar cell, our

    E-Print Network [OSTI]

    In an effort to design a more low cost, highly efficient alternative to the traditional silicon solar cell, our research implements lead sulfide nanocrystals as light harvesters. Semiconducting

  5. Naval Spent Nuclear Fuel disposal Container System Description Document

    SciTech Connect (OSTI)

    N. E. Pettit

    2001-07-13

    The Naval Spent Nuclear Fuel Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers/waste packages are loaded and sealed in the surface waste handling facilities, transferred underground through the access drifts using a rail mounted transporter, and emplaced in emplacement drifts. The Naval Spent Nuclear Fuel Disposal Container System provides long term confinement of the naval spent nuclear fuel (SNF) placed within the disposal containers, and withstands the loading, transfer, emplacement, and retrieval operations. The Naval Spent Nuclear Fuel Disposal Container System provides containment of waste for a designated period of time and limits radionuclide release thereafter. The waste package maintains the waste in a designated configuration, withstands maximum credible handling and rockfall loads, limits the waste form temperature after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Each naval SNF disposal container will hold a single naval SNF canister. There will be approximately 300 naval SNF canisters, composed of long and short canisters. The disposal container will include outer and inner cylinder walls and lids. An exterior label will provide a means by which to identify a disposal container and its contents. Different materials will be selected for the waste package inner and outer cylinders. The two metal cylinders, in combination with the Emplacement Drift System, drip shield, and the natural barrier will support the design philosophy of defense-in-depth. The use of materials with different properties prevents a single mode failure from breaching the waste package. The inner cylinder and inner cylinder lids will be constructed of stainless steel while the outer cylinder and outer cylinder lids will be made of high-nickel alloy.

  6. Standardization of DOE Disposal Facilities Waste Acceptance Process

    SciTech Connect (OSTI)

    SHRADER, T.; MACBETH, P.

    2002-01-01

    On February 25, 2000, the US. Department of Energy (DOE) issued the Record of Decision (ROD) for the Waste Management Programmatic Environmental Impact Statement (WM PEIS) for low-level and mixed low-level wastes (LLW/ MLLW) treatment and disposal. The ROD designated the disposal sites at Hanford and the Nevada Test Site (NTS) to dispose of LLWMLLW from sites without their own disposal facilities. DOE's Richland Operations Office (RL) and the National Nuclear Security Administration's Nevada Operations Office (NV) have been charged with effectively implementing the ROD. To accomplish this task NV and RL, assisted by their operating contractors Bechtel Nevada (BN), Fluor Hanford (FH), and Bechtel Hanford (BH) assembled a task team to systematically map out and evaluate the current waste acceptance processes and develop an integrated, standardized process for the acceptance of LLWMLLW. A structured, systematic, analytical process using the Six Sigma system identified disposal process improvements and quantified the associated efficiency gains to guide changes to be implemented. The review concluded that a unified and integrated Hanford/NTS Waste Acceptance Process would be a benefit to the DOE Complex, particularly the waste generators. The Six Sigma review developed quantitative metrics to address waste acceptance process efficiency improvements, and provides an initial look at development of comparable waste disposal cost models between the two disposal sites to allow quantification of the proposed improvements.

  7. Design of Molecular Solar Cells via Feedback from Soft X-ray Spectroscopy

    SciTech Connect (OSTI)

    Himpsel, Franz J.

    2015-06-12

    Spectroscopy with soft X-rays was used to develop new materials and novel designs for solar cells and artificial photosynthesis. In order to go beyond the widely-used trial-and-error approach of gradually improving a particular design, we started from the most general layout of a solar cell (or a photo-electrochemical device) and asked which classes of materials are promising for best performance. For example, the most general design of a solar cell consists of a light absorber, an electron donor, and an electron acceptor. These are characterized by four energy levels, which were measured by a combination of spectroscopic X-ray techniques. Tuning synchrotron radiation to the absorption edges of specific elements provided element- and bond-selectivity. The spectroscopic results were complemented by state-of-the-art calculations of the electronic states. These helped explaining the observed energy levels and the orbitals associated with them. The calculations were extended to a large class of materials (for example thousands of porphyrin dye complexes) in order to survey trends in the energy level structure. A few highlights serve as examples: 1) Organic molecules combining absorber, donor, and acceptor with atomic precision. 2) Exploration of highly p-doped diamond films as inert, transparent electron donors. 3) Surface-sensitive characterization of nanorod arrays used as photoanodes in water splitting. 4) Computational design of molecular complexes for efficient solar cells using two photons.

  8. Design of Semiconductor-Based Back Reflectors for High Voc Monolithic Multijunction Solar Cells: Preprint

    SciTech Connect (OSTI)

    Garcia, I.; Geisz, J.; Steiner, M.; Olson, J.; Friedman, D.; Kurtz, S.

    2012-06-01

    State-of-the-art multijunction cell designs have the potential for significant improvement before going to higher number of junctions. For example, the Voc can be substantially increased if the photon recycling taking place in the junctions is enhanced. This has already been demonstrated (by Alta Devices) for a GaAs single-junction cell. For this, the loss of re-emitted photons by absorption in the underlying layers or substrate must be minimized. Selective back surface reflectors are needed for this purpose. In this work, different architectures of semiconductor distributed Bragg reflectors (DBR) are assessed as the appropriate choice for application in monolithic multijunction solar cells. Since the photon re-emission in the photon recycling process is spatially isotropic, the effect of the incident angle on the reflectance spectrum is of central importance. In addition, the DBR structure must be designed taking into account its integration into the monolithic multijunction solar cells, concerning series resistance, growth economics, and other issues. We analyze the tradeoffs in DBR design complexity with all these requirements to determine if such a reflector is suitable to improve multijunction solar cells.

  9. Large Component Removal/Disposal

    SciTech Connect (OSTI)

    Wheeler, D. M.

    2002-02-27

    This paper describes the removal and disposal of the large components from Maine Yankee Atomic Power Plant. The large components discussed include the three steam generators, pressurizer, and reactor pressure vessel. Two separate Exemption Requests, which included radiological characterizations, shielding evaluations, structural evaluations and transportation plans, were prepared and issued to the DOT for approval to ship these components; the first was for the three steam generators and one pressurizer, the second was for the reactor pressure vessel. Both Exemption Requests were submitted to the DOT in November 1999. The DOT approved the Exemption Requests in May and July of 2000, respectively. The steam generators and pressurizer have been removed from Maine Yankee and shipped to the processing facility. They were removed from Maine Yankee's Containment Building, loaded onto specially designed skid assemblies, transported onto two separate barges, tied down to the barges, th en shipped 2750 miles to Memphis, Tennessee for processing. The Reactor Pressure Vessel Removal Project is currently under way and scheduled to be completed by Fall of 2002. The planning, preparation and removal of these large components has required extensive efforts in planning and implementation on the part of all parties involved.

  10. Designs of Cell Edge Routers in the Optical Cell Switching (OCS) Network

    E-Print Network [OSTI]

    Chao, Jonathan

    01@utopia.poly.edu, chao@poly.edu Abstract--Optical cell switching (OCS) is a new flexible all complexity and highly scalable switch architecture for the OCX with several high performance scheduling architectures and corresponding efficient scheduling algorithms for ingress and egress CERs accordingly. We show

  11. Design of an Electrochemical Impedance Test Cell with Servomechanically Adjustable Cell Constant

    E-Print Network [OSTI]

    Ma, Hongshen

    test cell uses spherical electrodes separated by an adjustable small gap ranging from less than 1 µm up chemical analysis technique with a wide range of applications such as controlling boiler water quality capacitance and conductance. Accurate evaluation of Kcell can be difficult for practical electrode geometries

  12. Uncanistered Spent Nuclear fuel Disposal Container System Description Document

    SciTech Connect (OSTI)

    N. E. Pettit

    2001-07-13

    The Uncanistered Spent Nuclear Fuel (SNF) Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded with intact uncanistered assemblies and/or individually canistered SNF assemblies and sealed in the surface waste handling facilities, transferred to the underground through the access drifts, and emplaced in emplacement drifts. The Uncanistered SNF Disposal Container provides long-term confinement of the commercial SNF placed inside, and withstands the loading, transfer, emplacement, and retrieval loads and environments. The Uncanistered SNF Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual SNF assembly temperatures after emplacement, limits the introduction of moderator into the disposal container during the criticality control period, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident.

  13. Transportation, Aging and Disposal Canister System Performance...

    Broader source: Energy.gov (indexed) [DOE]

    document provides specifications for selected system components of the Transportation, Aging and Disposal (TAD) canister-based system. Transportation, Aging and Disposal Canister...

  14. Degradation Of Cementitious Materials Associated With Saltstone Disposal Units

    SciTech Connect (OSTI)

    Flach, G. P; Smith, F. G. III

    2013-03-19

    The Saltstone facilities at the DOE Savannah River Site (SRS) stabilize and dispose of low-level radioactive salt solution originating from liquid waste storage tanks at the site. The Saltstone Production Facility (SPF) receives treated salt solution and mixes the aqueous waste with dry cement, blast furnace slag, and fly ash to form a grout slurry which is mechanically pumped into concrete disposal cells that compose the Saltstone Disposal Facility (SDF). The solidified grout is termed “saltstone”. Cementitious materials play a prominent role in the design and long-term performance of the SDF. The saltstone grout exhibits low permeability and diffusivity, and thus represents a physical barrier to waste release. The waste form is also reducing, which creates a chemical barrier to waste release for certain key radionuclides, notably Tc-99. Similarly, the concrete shell of an SDF disposal unit (SDU) represents an additional physical and chemical barrier to radionuclide release to the environment. Together the waste form and the SDU compose a robust containment structure at the time of facility closure. However, the physical and chemical state of cementitious materials will evolve over time through a variety of phenomena, leading to degraded barrier performance over Performance Assessment (PA) timescales of thousands to tens of thousands of years. Previous studies of cementitious material degradation in the context of low-level waste disposal have identified sulfate attack, carbonation influenced steel corrosion, and decalcification (primary constituent leaching) as the primary chemical degradation phenomena of most relevance to SRS exposure conditions. In this study, degradation time scales for each of these three degradation phenomena are estimated for saltstone and concrete associated with each SDU type under conservative, nominal, and best estimate assumptions. The nominal value (NV) is an intermediate result that is more probable than the conservative estimate (CE) and more defensible than the best estimate (BE). The combined effects of multiple phenomena are then considered to determine the most limiting degradation time scale for each cementitious material. Degradation times are estimated using a combination of analytic solutions from literature and numerical simulation codes provided through the DOE Cementitious Barriers Partnership (CBP) Software Toolbox (http://cementbarriers.org). For the SDU 2 design, the roof, wall, and floor components are projected to become fully degraded under Nominal conditions at 3866, 923, and 1413 years, respectively. For SDU 4 the roof and floor are estimated to be fully degraded under Nominal conditions after 1137 and 1407 years, respectively; the wall is assumed to be fully degraded at time zero in the most recent PA simulations. Degradation of these concrete barriers generally occurs from combined sulfate attack and corrosion of embedded steel following carbonation. Saltstone is projected to degrade very slowly by decalcification, with complete degradation occurring in excess of 200,000 years for any SDU type. Complete results are provided.

  15. Design of cascaded low cost solar cell with CuO substrate

    SciTech Connect (OSTI)

    Samson, Mil'shtein; Anup, Pillai; Shiv, Sharma; Garo, Yessayan

    2013-12-04

    For many years the main focus of R and D in solar cells was the development of high-efficiency solar convertors. However with solar technology beginning to be a part of national grids and stand-alone power supplies for variety of individual customers, the emphasis has changed, namely, the cost per kilowatt- hour (kW-hr) started to be an important figure of merit. Although Si does dominate the market of solar convertors, this material has total cost of kilowatt-hour much higher than what the power grid is providing presently to customers. It is well known that the cost of raw semiconductor material is a major factor in formulation of the final cost of a solar cell. That motivated us to search and design a novel solar cell using cheap materials. The new p-i-n solar cell consists of hetero-structure cascade of materials with step by step decreasing energy gap. Since the lattice constant of these three materials do differ not more than 2%, the more expensive epitaxial fabrication methods can be used as well. It should be emphasized that designed solar cell is not a cascade of three solar cells connected in series. Our market study shows that Si solar panel which costs $250–400 / m{sup 2} leads to a cost of $0.12–0.30 / kW-hr. To the contrary, CuO based solar cells with Cadmium compounds on top, would cost $100 / m{sup 2}. This will allow the novel solar cell to produce electricity at a cost of $0.06–0.08 / kW-hr.

  16. Conceptual design report for a Direct Hydrogen Proton Exchange Membrane Fuel Cell for transportation application

    SciTech Connect (OSTI)

    NONE

    1995-09-05

    This report presents the conceptual design for a Direct-Hydrogen-Fueled Proton Exchange Membrane (PEM) Fuel Cell System for transportation applications. The design is based on the initial selection of the Chrysler LH sedan as the target vehicle with a 50 kW (gross) PEM Fuel Cell Stack (FCS) as the primary power source, a battery-powered Load Leveling Unit (LLU) for surge power requirements, an on-board hydrogen storage subsystem containing high pressure gaseous storage, a Gas Management Subsystem (GMS) to manage the hydrogen and air supplies for the FCS, and electronic controllers to control the electrical system. The design process has been dedicated to the use of Design-to-Cost (DTC) principles. The Direct Hydrogen-Powered PEM Fuel Cell Stack Hybrid Vehicle (DPHV) system is designed to operate on the Federal Urban Driving Schedule (FUDS) and Hiway Cycles. These cycles have been used to evaluate the vehicle performance with regard to range and hydrogen usage. The major constraints for the DPHV vehicle are vehicle and battery weight, transparency of the power system and drive train to the user, equivalence of fuel and life cycle costs to conventional vehicles, and vehicle range. The energy and power requirements are derived by the capability of the DPHV system to achieve an acceleration from 0 to 60 MPH within 12 seconds, and the capability to achieve and maintain a speed of 55 MPH on a grade of seven percent. The conceptual design for the DPHV vehicle is shown in a figure. A detailed description of the Hydrogen Storage Subsystem is given in section 4. A detailed description of the FCS Subsystem and GMS is given in section 3. A detailed description of the LLU, selection of the LLU energy source, and the power controller designs is given in section 5.

  17. Long-term surveillance plan for the Falls City Disposal Site, Falls City, Texas. Revision 2

    SciTech Connect (OSTI)

    1996-11-01

    The need for ground water monitoring at the Falls City disposal site was evaluated in accordance with NRC regulations and guidelines established by the DOE in Guidance for Implementing the Long-term Surveillance Program for UMTRA Project Title 1 Disposal Sites (DOE, 1996). Based on evaluation of site characterization data, it has been determined that a program to monitor ground water for demonstration of disposal cell performance based on a set of concentration limits is not appropriate because ground water in the uppermost aquifer is of limited use, and a narrative supplemental standard has been applied to the site that does not include numerical concentration limits or a point of compliance. The limited use designation is based on the fact that ground water in the uppermost aquifer is not currently or potentially a source of drinking water in the area because it contains widespread ambient contamination that cannot be cleaned up using methods reasonably employed by public water supply systems. Background ground water quality varies by orders of magnitude since the aquifer is in an area of redistribution of uranium mineralization derived from ore bodies. The DOE plans to perform post-closure ground water monitoring in the uppermost aquifer as a best management practice (BMP) as requested by the state of Texas.

  18. Disposal: Science and Theory UNIVERSIDAD

    E-Print Network [OSTI]

    Benson, Eric R.

    zona de escarbado. · Se realiza un sellado o se cubren las aves con polietileno y se introduce CO2. Reproductoras de pollos de engorde selladas con polietileno Galpón parcial #12;Disposal: Science and Theory

  19. PEM fuel cell cost minimization using ``Design For Manufacture and Assembly`` techniques

    SciTech Connect (OSTI)

    Lomax, F.D. Jr.; James, B.D.; Mooradian, R.P.

    1997-12-31

    Polymer Electrolyte Membrane (PEM) fuel cells fueled with direct hydrogen have demonstrated substantial technical potential to replace Internal Combustion Engines (ICE`s) in light duty vehicles. Such a transition to a hydrogen economy offers the potential of substantial benefits from reduced criteria and greenhouse emissions as well as reduced foreign fuel dependence. Research conducted for the Ford Motor Co. under a US Department of Energy contract suggests that hydrogen fuel, when used in a fuel cell vehicle (FCV), can achieve a cost per vehicle mile less than or equal to the gasoline cost per mile when used in an ICE vehicle. However, fuel cost parity is not sufficient to ensure overall economic success: the PEM fuel cell power system itself must be of comparable cost to the ICE. To ascertain if low cost production of PEM fuel cells is feasible, a powerful set of mechanical engineering tools collectively referred to as Design for Manufacture and Assembly (DFMA) has been applied to several representative PEM fuel cell designs. The preliminary results of this work are encouraging, as presented.

  20. The Texas Solution to the Nation's Disposal Needs for Irradiated Hardware - 13337

    SciTech Connect (OSTI)

    Britten, Jay M. [Waste Control Specialists LLC, Andrews, TX 79714 (United States)] [Waste Control Specialists LLC, Andrews, TX 79714 (United States)

    2013-07-01

    The closure of the disposal facility in Barnwell, South Carolina, to out-of-compact states in 2008 left commercial nuclear power plants without a disposal option for Class B and C irradiated hardware. In 2012, Waste Control Specialists LLC (WCS) opened a highly engineered facility specifically designed and built for the disposal of Class B and C waste. The WCS facility is the first Interstate Compact low-level radioactive waste disposal facility to be licensed and operated under the Low-level Waste Policy Act of 1980, as amended in 1985. Due to design requirements of a modern Low Level Radioactive Waste (LLRW) facility, traditional methods for disposal were not achievable at the WCS site. Earlier methods primarily utilized the As Low as Reasonably Achievable (ALARA) concept of distance to accomplish worker safety. The WCS method required the use of all three ALARA concepts of time, distance, and shielding to ensure the safe disposal of this highly hazardous waste stream. (authors)

  1. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2012-06-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  2. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2011-01-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  3. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect (OSTI)

    Austad, S. L.; Guillen, L. E.; McKnight, C. W.; Ferguson, D. S.

    2015-04-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  4. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2014-06-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  5. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2012-04-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  6. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2011-04-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  7. Disposal phase experimental program plan

    SciTech Connect (OSTI)

    1997-01-31

    The Waste Isolation Pilot Plant (WIPP) facility comprises surface and subsurface facilities, including a repository mined in a bedded salt formation at a depth of 2,150 feet. It has been developed to safely and permanently isolate transuranic (TRU) radioactive wastes in a deep geological disposal site. On April 12, 1996, the DOE submitted a revised Resource Conservation and Recovery Act (RCRA) Part B permit application to the New Mexico Environment Department (NMED). The DOE anticipates receiving an operating permit from the NMED; this permit is required prior to the start of disposal operations. On October 29, 1996, the DOE submitted a Compliance Certification Application (CCA) to the US Environmental Protection Agency (EPA) in accordance with the WIPP land Withdrawal Act (LWA) of 1992 (Public Law 102-579) as amended, and the requirements of Title 40 of the Code of Federal Regulations (40 CFR) Parts 191 and 194. The DOE plans to begin disposal operations at the WIPP in November 1997 following receipt of certification by the EPA. The disposal phase is expected to last for 35 years, and will include recertification activities no less than once every five years. This Disposal Phase Experimental Program (DPEP) Plan outlines the experimental program to be conducted during the first 5-year recertification period. It also forms the basis for longer-term activities to be carried out throughout the 35-year disposal phase. Once the WIPP has been shown to be in compliance with regulatory requirements, the disposal phase gives an opportunity to affirm the compliance status of the WIPP, enhance the operations of the WIPP and the national TRU system, and contribute to the resolution of national and international nuclear waste management technical needs. The WIPP is the first facility of its kind in the world. As such, it provides a unique opportunity to advance the technical state of the art for permanent disposal of long-lived radioactive wastes.

  8. Submergible barge retrievable storage and permanent disposal system for radioactive waste

    DOE Patents [OSTI]

    Goldsberry, Fred L. (Spring, TX); Cawley, William E. (Richland, WA)

    1981-01-01

    A submergible barge and process for submerging and storing radioactive waste material along a seabed. A submergible barge receives individual packages of radwaste within segregated cells. The cells are formed integrally within the barge, preferably surrounded by reinforced concrete. The cells are individually sealed by a concrete decking and by concrete hatch covers. Seawater may be vented into the cells for cooling, through an integral vent arrangement. The vent ducts may be attached to pumps when the barge is bouyant. The ducts are also arranged to promote passive ventilation of the cells when the barge is submerged. Packages of the radwaste are loaded into individual cells within the barge. The cells are then sealed and the barge is towed to the designated disposal-storage site. There, the individual cells are flooded and the barge will begin descent controlled by a powered submarine control device to the seabed storage site. The submerged barge will rest on the seabed permanently or until recovered by a submarine control device.

  9. Generic Argillite/Shale Disposal Reference Case

    E-Print Network [OSTI]

    Zheng, Liange

    2014-01-01

    Shale Disposal Reference Case August 2014 Borehole activity: Oil and gas drilling targets for hydrocarbon resource

  10. Design, processing, and assembly of large area concentrator cells and subassemblies

    SciTech Connect (OSTI)

    Tobin, S.P.; Landis, G.A.; Nowian, M.J.

    1982-09-01

    This paper describes the development of silicon concentrator cells for use in state-of-the-art linear focus Fresnel lens systems with average sunlight concentration of 30-50 suns. Primary goals were high cell efficiency and a simple, producible, low cost process. In the design phase, a collecting grid pattern optimized for the nonuniform intensity profile of the Fresnel lens was developed. A simple baseline cell process was defined, similar to the ion implanted flat-plate cell process. The most noticeable differences were the silicon resistivity (0.3 ohm-cm), texture etched surfaces to improve current collection, and the grid pattern. Initial cell results measured by Sandia were quite good, with efficiency exceeding 18% at 50 suns. Nine-cell strings interconnected and bonded to glass were delivered to the concentrator system manufacturer and passed all electrical and environmental tests. Also described are several efficiency-enhancing options to the baseline process. These include improved junction anneal schedules, oxide surface passivation, multi-layer antireflection coatings, and a planar process to reduce leakage currents.

  11. Standardization of DOE Disposal Facilities Waste Acceptance Processes

    SciTech Connect (OSTI)

    Shrader, T. A.; Macbeth, P. J.

    2002-02-26

    On February 25, 2000, the U.S. Department of Energy (DOE) issued the Record of Decision (ROD) for the Waste Management Programmatic Environmental Impact Statement (WM PEIS) for low-level and mixed low-level wastes (LLW/ MLLW) treatment and disposal. The ROD designated the disposal sites at Hanford and the Nevada Test Site (NTS) to dispose of LLW/MLLW from sites without their own disposal facilities. DOE's Richland Operations Office (RL) and the National Nuclear Security Administration's Nevada Operations Office (NV) have been charged with effectively implementing the ROD. To accomplish this task NV and RL, assisted by their operating contractors Bechtel Nevada (BN), Fluor Hanford (FH), and Bechtel Hanford (BH) assembled a task team to systematically map out and evaluate the current waste acceptance processes and develop an integrated, standardized process for the acceptance of LLW/MLLW. A structured, systematic, analytical process using the Six Sigma system identified dispos al process improvements and quantified the associated efficiency gains to guide changes to be implemented. The review concluded that a unified and integrated Hanford/NTS Waste Acceptance Process would be a benefit to the DOE Complex, particularly the waste generators. The Six Sigma review developed quantitative metrics to address waste acceptance process efficiency improvements, and provides an initial look at development of comparable waste disposal cost models between the two disposal sites to allow quantification of the proposed improvements.

  12. proteinsSTRUCTURE O FUNCTION O BIOINFORMATICS Structure-based design of a T-cell receptor

    E-Print Network [OSTI]

    Weng, Zhiping

    proteinsSTRUCTURE O FUNCTION O BIOINFORMATICS Structure-based design of a T-cell receptor leads generally fallen into two categories: directed evolu- tion and structure-based design. Directed evolution no reported efforts to enhance the af- finity via structure-based design, which allows more control

  13. General Safety Guidelines for Bio-Hazardous Waste Disposal

    E-Print Network [OSTI]

    Holland, Jeffrey

    General Safety Guidelines for Bio-Hazardous Waste Disposal · Determine if you have a Bio-Hazardous, cell cultures, Petri dishes, and etc. NOT fitting the category 1 description. · ALL BIO-HAZARDOUS WASTE OF CATEGORY 1 NEEDS TO BE TREATED BY AUTOCLAVE OR WITH HIV/HBV KILLING AGENT BEFORE PICK-UP · Bio-hazardous

  14. Salt disposal of heat-generating nuclear waste.

    SciTech Connect (OSTI)

    Leigh, Christi D.; Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United States repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, helps define a clear strategy for a heat-generating nuclear waste repository in salt.

  15. Mirror Advanced Reactor Study interim design report

    SciTech Connect (OSTI)

    Not Available

    1983-04-01

    The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design.

  16. Sustainable Disposal Cell Covers: Legacy Management Practices,

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutory Authority SustainX Inc IsothermalSustainable

  17. Optimization design of electrodes for anode-supported solid oxide fuel cells via genetic algorithm

    SciTech Connect (OSTI)

    Shi, J.; Xue, X.

    2011-01-01

    Porous electrode is the critical component of solid-oxide fuel cells (SOFCs) and provides a functional material backbone for multi-physicochemical processes. Model based electrode designs could significantly improve SOFC performance. This task is usually performed via parameter studies for simple case and assumed property distributions for graded electrodes. When nonlinearly coupled multiparameters of electrodes are considered, it could be very difficult for the model based parameter study method to effectively and systematically search the design space. In this research, the optimization approach with a genetic algorithm is demonstrated for this purpose. An anode-supported proton conducting SOFC integrated with a fuel supply system is utilized as a physical base for the model development and the optimization design. The optimization results are presented, which are difficult to obtain for parametric study method.

  18. New Multijunction Design Leads to Ultra-Efficient Solar Cell; Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-09-01

    NREL has demonstrated a 45.7% conversion efficiency for a four-junction solar cell at 234 suns concentration. This achievement represents one of the highest photovoltaic research cell efficiencies ever achieved across all types of solar cells. NREL's new solar cell, which is designed for operation in a concentrator photovoltaic (CPV) system where it can receive more than 1,000 suns of concentrated sunlight, greatly improves earlier designs by adding an additional high quality absorber layer to achieve an ultra-high efficiency.

  19. Inhibition of ICAM-1/LFA-1-mediated Heterotypic T-cell Adhesion to Epithelial Cells: Design of ICAM-1 Cyclic Peptides

    E-Print Network [OSTI]

    Anderson, Meagan E.; Yakovleva, Tatyana; Yongbo, Hu; Siahaan, Teruna J.

    2004-03-01

    In this work, we have designed cyclic peptides (cIBL, cIBR, cIBC, CH4 and CH7) derived from the parent IB peptide (ICAM-11–21) that are inhibitors of ICAM-1/LFA-1-mediated T-cell adhesion to Caco-2 cell monolayers. Cyclic peptide cIBR has the best...

  20. New York State`s regulations for low-level radioactive waste disposal facilities

    SciTech Connect (OSTI)

    Youngberg, B.; Merges, P.; Owen, K.

    1994-12-31

    The New York State Department of Environmental Conservation`s (NYSDEC) regulations for low-level radioactive waste (LLRW) disposal facilities set primarily performance-based criteria for LLRW disposal facilities. The regulations (Part 383 of Title 6 of the New York State Codes of Rules and Regulations) set requirements for design, construction, operation, monitoring, site safety planning, financial assurance, closure, post closure monitoring and maintenance, and institutional control. The regulations are unique in their detail and in presenting specific requirements for below ground disposal units, above ground disposal units, and underground mined repositories.

  1. Developing operating procedures for a low-level radioactive waste disposal facility

    SciTech Connect (OSTI)

    Sutherland, A.A.; Miner, G.L.; Grahn, K.F.; Pollard, C.G. [Rogers and Associates Engineering Corp., Salt Lake City, UT (United States)

    1993-10-01

    This document is intended to assist persons who are developing operating and emergency procedures for a low-level radioactive waste disposal facility. It provides 25 procedures that are considered to be relatively independent of the characteristics of a disposal facility site, the facility design, and operations at the facility. These generic procedures should form a good starting point for final procedures on their subjects for the disposal facility. In addition, this document provides 55 annotated outlines of other procedures that are common to disposal facilities. The annotated outlines are meant as checklists to assist the developer of new procedures.

  2. Depleted uranium disposal options evaluation

    SciTech Connect (OSTI)

    Hertzler, T.J.; Nishimoto, D.D.; Otis, M.D. [Science Applications International Corp., Idaho Falls, ID (United States). Waste Management Technology Div.

    1994-05-01

    The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ``waste,`` but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity.

  3. Compact disposal of high-energy electron beams using passive or laser-driven plasma decelerating stage

    SciTech Connect (OSTI)

    Bonatto, A.; Schroeder, C.B.; Vay, J.-L.; Geddes, C.R.; Benedetti, C.; Esarey and, E.; Leemans, W.P.

    2014-07-13

    A plasma decelerating stage is investigated as a compact alternative for the disposal of high-energy beams (beam dumps). This could benefit the design of laser-driven plasma accelerator (LPA) applications that require transportability and or high-repetition-rate operation regimes. Passive and laser-driven (active) plasma-based beam dumps are studied analytically and with particle-in-cell (PIC) simulations in a 1D geometry. Analytical estimates for the beam energy loss are compared to and extended by the PIC simulations, showing that with the proposed schemes a beam can be efficiently decelerated in a centimeter-scale distance.

  4. Uncanistered Spent Nuclear fuel Disposal Container System Description Document

    SciTech Connect (OSTI)

    2000-10-12

    The Uncanistered Spent Nuclear Fuel (SNF) Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded with intact uncanistered assemblies and/or individually canistered SNF assemblies and sealed in the surface waste handling facilities, transferred to the underground through the access drifts, and emplaced in the emplacement drifts. The Uncanistered SNF Disposal Container provides long-term confinement of the commercial SNF placed inside, and withstands the loading, transfer, emplacement, and retrieval loads and environments. The Uncanistered SNF Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual SNF assembly temperatures after emplacement, limits the introduction of moderator into the disposal container during the criticality control period, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Multiple boiling water reactor (BWR) and pressurized water reactor (PWR) disposal container designs are needed to accommodate the expected range of spent fuel assemblies and provide long-term confinement of the commercial SNF. The disposal container will include outer and inner cylinder walls, outer cylinder lids (two on the top, one on the bottom), inner cylinder lids (one on the top, one on the bottom), and an internal metallic basket structure. Exterior labels will provide a means by which to identify the disposal container and its contents. The two metal cylinders, in combination with the cladding, Emplacement Drift System, drip shield, and natural barrier, will support the design philosophy of defense-in-depth. The use of materials with different properties prevents a single mode failure from breaching the waste package. The inner cylinder and inner cylinder lids will be constructed of stainless steel and the outer cylinder and outer cylinder lid will be made of high-nickel alloy. The basket will assist criticality control, provide structural support, and improve heat transfer. The Uncanistered SNF Disposal Container System interfaces with the emplacement drift environment and internal waste by transferring heat from the SNF to the external environment and by protecting the SFN assemblies and their contents from damage/degradation by the external environment. The system also interfaces with the SFN by limiting access of moderator and oxidizing agents of the SFN. The waste package interfaces with the Emplacement Drift System's emplacement drift pallets upon which the wasted packages are placed. The disposal container interfaces with the Assembly Transfer System, Waste Emplacement/Retrieval System, Disposal Container Handling System, and Waste Package Remediation System during loading, handling, transfer, emplacement and retrieval of the disposal container/waste package.

  5. Idaho CERCLA Disposal Facility Complex Compliance Demonstration for DOE Order 435.1

    SciTech Connect (OSTI)

    Simonds, J.

    2007-11-06

    This compliance demonstration document provides an analysis of the Idaho CERCLA Disposal Facility (ICDF) Complex compliance with DOE Order 435.1. The ICDF Complex includes the disposal facility (landfill), evaporation pond, administration facility, weigh scale, and various staging/storage areas. These facilities were designed and constructed to be compliant with DOE Order 435.1, Resource Conservation and Recovery act Subtitle C, and Toxic Substances Control Act polychlorinated biphenyl design and construction standards. The ICDF Complex is designated as the Idaho National Laboratory (INL) facility for the receipt, staging/storage, treatment, and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) waste streams.

  6. Disposable telemetry cable deployment system

    DOE Patents [OSTI]

    Holcomb, David Joseph (Sandia Park, NM)

    2000-01-01

    A disposable telemetry cable deployment system for facilitating information retrieval while drilling a well includes a cable spool adapted for insertion into a drill string and an unarmored fiber optic cable spooled onto the spool cable and having a downhole end and a stinger end. Connected to the cable spool is a rigid stinger which extends through a kelly of the drilling apparatus. A data transmission device for transmitting data to a data acquisition system is disposed either within or on the upper end of the rigid stinger.

  7. Overview of Low-Level Waste Disposal Operations at the Nevada Test Site

    SciTech Connect (OSTI)

    DOE /Navarro

    2007-02-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Environmental Management Program is charged with the responsibility to carry out the disposal of on-site and off-site generated low-level radioactive waste at the Nevada Test Site. Core elements of this mission are ensuring that disposal take place in a manner that is safe and cost-effective while protecting workers, the public, and the environment. This paper focuses on giving an overview of the Nevada Test Site facilities regarding currant design of disposal. In addition, technical attributes of the facilities established through the site characterization process will be further described. An update on current waste disposal volumes and capabilities will also be provided. This discussion leads to anticipated volume projections and disposal site requirements as the Nevada Test Site disposal operations look towards the future.

  8. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Signals #12;Disposal: Science and Theory Foam versus Gas · CO2 gassing is an accepted procedure · Argon-CO2 encouraged for humaneness · In individual broilers, foam is as fast as CO2 · Argon-CO2 materially slower 0 50 100 150 200 250 300 350 SilenceofEEGActivity(s) Average Times to EEG Silence Ar-CO2 CO2 Foam

  9. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    on parameters. #12;Disposal: Science and Theory Foam vs. Foam with CO2 · Water based foam is conditionally not approved the use of water based foam · EU: indicated foam with CO2 gas preferred ­ Want the animal ­ Development of procedure ­ USDA APHIS and AVMA conditional approval 2007 - 2008 ­ No difference between CO2

  10. Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria

    SciTech Connect (OSTI)

    W. Mahlon Heileson

    2006-10-01

    The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

  11. The design and evaluation of a water delivery system for evaporative cooling of a proton exchange membrane fuel cell 

    E-Print Network [OSTI]

    Al-Asad, Dawood Khaled Abdullah

    2009-06-02

    An investigation was performed to demonstrate system design for the delivery of water required for evaporative cooling of a proton exchange membrane fuel cell (PEMFC). The water delivery system uses spray nozzles capable of injecting water directly...

  12. Disposal of NORM-Contaminated Oil Field Wastes in Salt Caverns

    SciTech Connect (OSTI)

    Blunt, D.L.; Elcock, D.; Smith, K.P.; Tomasko, D.; Viel, J.A.; and Williams, G.P.

    1999-01-21

    In 1995, the U.S. Department of Energy (DOE), Office of Fossil Energy, asked Argonne National Laboratory (Argonne) to conduct a preliminary technical and legal evaluation of disposing of nonhazardous oil field waste (NOW) into salt caverns. That study concluded that disposal of NOW into salt caverns is feasible and legal. If caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they can be a suitable means of disposing of NOW (Veil et al. 1996). Considering these findings and the increased U.S. interest in using salt caverns for NOW disposal, the Office of Fossil Energy asked Argonne to conduct further research on the cost of cavern disposal compared with the cost of more traditional NOW disposal methods and on preliminary identification and investigation of the risks associated with such disposal. The cost study (Veil 1997) found that disposal costs at the four permitted disposal caverns in the United States were comparable to or lower than the costs of other disposal facilities in the same geographic area. The risk study (Tomasko et al. 1997) estimated that both cancer and noncancer human health risks from drinking water that had been contaminated by releases of cavern contents were significantly lower than the accepted risk thresholds. Since 1992, DOE has funded Argonne to conduct a series of studies evaluating issues related to management and disposal of oil field wastes contaminated with naturally occurring radioactive material (NORM). Included among these studies were radiological dose assessments of several different NORM disposal options (Smith et al. 1996). In 1997, DOE asked Argonne to conduct additional analyses on waste disposal in salt caverns, except that this time the wastes to be evaluated would be those types of oil field wastes that are contaminated by NORM. This report describes these analyses. Throughout the remainder of this report, the term ''NORM waste'' is used to mean ''oil field waste contaminated by NORM''.

  13. WaterTransport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization

    SciTech Connect (OSTI)

    J. Vernon Cole; Abhra Roy; Ashok Damle; Hari Dahr; Sanjiv Kumar; Kunal Jain; Ned Djilai

    2012-10-02

    Water management in Proton Exchange Membrane, PEM, Fuel Cells is challenging because of the inherent conflicts between the requirements for efficient low and high power operation. Particularly at low powers, adequate water must be supplied to sufficiently humidify the membrane or protons will not move through it adequately and resistance losses will decrease the cell efficiency. At high power density operation, more water is produced at the cathode than is necessary for membrane hydration. This excess water must be removed effectively or it will accumulate in the Gas Diffusion Layers, GDLs, between the gas channels and catalysts, blocking diffusion paths for reactants to reach the catalysts and potentially flooding the electrode. As power density of the cells is increased, the challenges arising from water management are expected to become more difficult to overcome simply due to the increased rate of liquid water generation relative to fuel cell volume. Thus, effectively addressing water management based issues is a key challenge in successful application of PEMFC systems. In this project, CFDRC and our partners used a combination of experimental characterization, controlled experimental studies of important processes governing how water moves through the fuel cell materials, and detailed models and simulations to improve understanding of water management in operating hydrogen PEM fuel cells. The characterization studies provided key data that is used as inputs to all state-of-the-art models for commercially important GDL materials. Experimental studies and microscopic scale models of how water moves through the GDLs showed that the water follows preferential paths, not branching like a river, as it moves toward the surface of the material. Experimental studies and detailed models of water and airflow in fuel cells channels demonstrated that such models can be used as an effective design tool to reduce operating pressure drop in the channels and the associated costs and weight of blowers and pumps to force air and hydrogen gas through the fuel cell. Promising improvements to materials structure and surface treatments that can potentially aid in managing the distribution and removal of liquid water were developed; and improved steady-state and freeze-thaw performance was demonstrated for a fuel cell stack under the self-humidified operating conditions that are promising for stationary power generation with reduced operating costs.

  14. MARSHALL UNIVERSITY HAZARDOUS WASTE DISPOSAL

    E-Print Network [OSTI]

    Sanyal, Suman

    /16/2005 1 #12;Marshall University Hazardous Waste Program POLICY STATEMENT- Hazardous Materials Management of the Hazardous Waste Management Program is to ensure that proper handling and legal disposal of hazardous wastes Management Program will apply to the following: 1. Any liquid, semi-solid, solid or gaseous substance defined

  15. Disposal: Science and Theory UNIVERSIDAD

    E-Print Network [OSTI]

    Benson, Eric R.

    aviar #12;Disposal: Science and Theory · En EE.UU., se usó espuma a base de agua en 4 respuestas · 2.500 pollos de engorde / tratamiento · Generador de espuma ­ Agua: 3.463 litros ­ Espuma: 34 litros ­ Cesación: 11:06 (minutos:segundos) · Boquilla ­ Agua: 3.678 litros ­ Espuma: 37 litros ­ Cesación: 8

  16. Computational design of a red fluorophore ligase for site-specific protein labeling in living cells

    SciTech Connect (OSTI)

    Liu, Daniel S.; Nivon, Lucas G.; Richter, Florian; Goldman, Peter J.; Deerinck, Thomas J.; Yao, Jennifer Z.; Richardson, Douglas; Phipps, William S.; Ye, Anne Z.; Ellisman, Mark H.; Drennan, Catherine L.; Baker, David; Ting, Alice Y.

    2014-10-13

    In this study, chemical fluorophores offer tremendous size and photophysical advantages over fluorescent proteins but are much more challenging to target to specific cellular proteins. Here, we used Rosetta-based computation to design a fluorophore ligase that accepts the red dye resorufin, starting from Escherichia coli lipoic acid ligase. X-ray crystallography showed that the design closely matched the experimental structure. Resorufin ligase catalyzed the site-specific and covalent attachment of resorufin to various cellular proteins genetically fused to a 13-aa recognition peptide in multiple mammalian cell lines and in primary cultured neurons. We used resorufin ligase to perform superresolution imaging of the intermediate filament protein vimentin by stimulated emission depletion and electron microscopies. This work illustrates the power of Rosetta for major redesign of enzyme specificity and introduces a tool for minimally invasive, highly specific imaging of cellular proteins by both conventional and superresolution microscopies.

  17. Computational design of a red fluorophore ligase for site-specific protein labeling in living cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Daniel S.; Nivon, Lucas G.; Richter, Florian; Goldman, Peter J.; Deerinck, Thomas J.; Yao, Jennifer Z.; Richardson, Douglas; Phipps, William S.; Ye, Anne Z.; Ellisman, Mark H.; et al

    2014-10-13

    In this study, chemical fluorophores offer tremendous size and photophysical advantages over fluorescent proteins but are much more challenging to target to specific cellular proteins. Here, we used Rosetta-based computation to design a fluorophore ligase that accepts the red dye resorufin, starting from Escherichia coli lipoic acid ligase. X-ray crystallography showed that the design closely matched the experimental structure. Resorufin ligase catalyzed the site-specific and covalent attachment of resorufin to various cellular proteins genetically fused to a 13-aa recognition peptide in multiple mammalian cell lines and in primary cultured neurons. We used resorufin ligase to perform superresolution imaging of themore »intermediate filament protein vimentin by stimulated emission depletion and electron microscopies. This work illustrates the power of Rosetta for major redesign of enzyme specificity and introduces a tool for minimally invasive, highly specific imaging of cellular proteins by both conventional and superresolution microscopies.« less

  18. Abstract --We describe a MEMS-on-CMOS microsystem to encage, culture, and monitor cells. The system was designed

    E-Print Network [OSTI]

    Maryland at College Park, University of

    Abstract -- We describe a MEMS-on-CMOS microsystem to encage, culture, and monitor cells. A MEMS process flow was developed for the fabrication of closeable micro-vials to contain each cell, a custom bio-amplifier CMOS chip was designed, fabricated, and tested, and the fabrication of the MEMS

  19. A new flow field design for polymer electrolyte-based fuel cells C. Xu, T.S. Zhao *

    E-Print Network [OSTI]

    Zhao, Tianshou

    of Mechanical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, HongA new flow field design for polymer electrolyte-based fuel cells C. Xu, T.S. Zhao * Department (CESFF), for polymer electrolyte-based fuel cells, which was obtained by re-patterning conventional

  20. Disposal Practices at the Nevada Test Site 2008 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Disposal Practices at the Nevada Test Site 2008 Disposal Practices at the Nevada Test Site 2008 Full Document and Summary Versions are available for download Disposal Practices at...

  1. Generic Argillite/Shale Disposal Reference Case

    E-Print Network [OSTI]

    Zheng, Liange

    2014-01-01

    S. and K.S. Johnson, (1984). Shale and other argillaceousand R. T. Cygan, (2010). Shale Disposal of U.S. High-LevelDC. Generic Argillite/Shale Disposal Reference Case August

  2. A Comparison of Biomimetic Design and TRIZ Applied to the Design of a Proton Exchange Membrane Fuel Cell

    E-Print Network [OSTI]

    Shu, Lily H.

    Engineering, University of Toronto *shu@mie.utoronto.ca Abstract The Proton Exchange Membrane (PEM) fuel cell Introduction A proton exchange membrane (PEM) fuel cell converts the stored chemical energy in a fuel, e.g., hydrogen, into electrical energy. An important and current challenge in PEM fuel cells involves water

  3. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    0 1 2 3 4 5 6 7 8 60 120 180 240 300 360 420 480 540 600 Observaciones Tiempo (seg.) Ar-CO2 CO2 Foam electroencefalográficas Envenenamiento con gas Ar-CO2 Envenenamiento con CO2 Espuma con aire ambiente Espuma con CO2 #12;Disposal: Science and Theory · El envenenamiento con CO2 es un procedimiento aceptado. · Se alienta el uso

  4. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications: Conceptual vehicle design report pure fuel cell powertrain vehicle

    SciTech Connect (OSTI)

    Oei, D.; Kinnelly, A.; Sims, R.; Sulek, M.; Wernette, D.

    1997-02-01

    In partial fulfillment of the Department of Energy (DOE) Contract No. DE-AC02-94CE50389, {open_quotes}Direct-Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell for Transportation Applications{close_quotes}, this preliminary report addresses the conceptual design and packaging of a fuel cell-only powered vehicle. Three classes of vehicles are considered in this design and packaging exercise, the Aspire representing the small vehicle class, the Taurus or Aluminum Intensive Vehicle (AIV) Sable representing the mid-size vehicle and the E-150 Econoline representing the van-size class. A fuel cell system spreadsheet model and Ford`s Corporate Vehicle Simulation Program (CVSP) were utilized to determine the size and the weight of the fuel cell required to power a particular size vehicle. The fuel cell power system must meet the required performance criteria for each vehicle. In this vehicle design and packaging exercise, the following assumptions were made: fuel cell power system density of 0.33 kW/kg and 0.33 kg/liter, platinum catalyst loading less than or equal to 0.25 mg/cm{sup 2} total and hydrogen tanks containing gaseous hydrogen under 340 atm (5000 psia) pressure. The fuel cell power system includes gas conditioning, thermal management, humidity control, and blowers or compressors, where appropriate. This conceptual design of a fuel cell-only powered vehicle will help in the determination of the propulsion system requirements for a vehicle powered by a PEMFC engine in lieu of the internal combustion (IC) engine. Only basic performance level requirements are considered for the three classes of vehicles in this report. Each vehicle will contain one or more hydrogen storage tanks and hydrogen fuel for 560 km (350 mi) driving range. Under these circumstances, the packaging of a fuel cell-only powered vehicle is increasingly difficult as the vehicle size diminishes.

  5. The Current Status of Radioactive Waste Management and Planning for Near Surface Disposal in Indonesia

    SciTech Connect (OSTI)

    Purnomo, A. S.

    2003-02-24

    Near surface disposal has been practiced for some decades, with a wide variation in sites, types and amounts of wastes, and facility designs employed. Experience has shown that the effective and safe isolation of waste depends on the performance of the overall disposal system, which is formed by three major components or barriers: the site, the disposal facility and the waste form. Near surface disposal also rely on active institutional controls, such as monitoring and maintenance. The objective of radioactive waste disposal is to isolate waste so that it does not result in undue radiation exposure to humans and the environment. The required degree of isolation can be obtained by implementing various disposal methods, of which near surface disposal represents an option commonly used and demonstrated in several countries. In near surface disposal, the disposal facility is located on or below the ground surface, where the protective covering is generally a few meters thick. The se facilities are intended to contain low and intermediate level waste without appreciable quantities of long-lived radionuclides.

  6. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Lisa Harvego; Mike Lehto

    2010-02-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  7. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Lisa Harvego; Mike Lehto

    2010-10-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  8. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Lisa Harvego; Mike Lehto

    2010-05-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  9. The Design of Organic Polymers and Small Molecules to Improve the Efficiency of Excitonic Solar Cells

    E-Print Network [OSTI]

    Armstrong, Paul Barber

    2010-01-01

    50% improvement in solar cell efficiency. The synthesis of asignificantly higher solar cell efficiencies relative tofor obtaining high efficiency solar cells. According to

  10. Rational Design and Preparation of Organic Semiconductors for use in Field Effect Transistors and Photovoltaic Cells

    E-Print Network [OSTI]

    Mauldin, Clayton Edward

    2010-01-01

    Effect Transistors and Photovoltaic Cells By Clayton EdwardEffect Transistors and Photovoltaic Cells By Clayton Edwardin thin film organic photovoltaic cells (OPVs) is presented.

  11. Rational Design and Preparation of Organic Semiconductors for use in Field Effect Transistors and Photovoltaic Cells

    E-Print Network [OSTI]

    Mauldin, Clayton Edward

    2010-01-01

    in thin film organic photovoltaic cells (OPVs) is presented.Effect Transistors and Photovoltaic Cells By Clayton EdwardEffect Transistors and Photovoltaic Cells By Clayton Edward

  12. The Design of Organic Polymers and Small Molecules to Improve the Efficiency of Excitonic Solar Cells

    E-Print Network [OSTI]

    Armstrong, Paul Barber

    2010-01-01

    J. The physics of solar cells; Imperial College Press,for organic polymer solar cells investigated to date. Theincluding organic solar cells and dye-sensitized solar

  13. Accounting for Localized Defects in the Optoelectronic Design of Thin-Film Solar Cells

    E-Print Network [OSTI]

    Deceglie, Michael G.

    2014-01-01

    in ultrathin plasmonic solar cells," Optics Express, vol.Bailat, "Thin-film silicon solar cell technology," Progresstrapping in silicon thin film solar cells," Solar Energy,

  14. The Design of Organic Polymers and Small Molecules to Improve the Efficiency of Excitonic Solar Cells

    E-Print Network [OSTI]

    Armstrong, Paul Barber

    2010-01-01

    bulk heterojunction organic solar cells, blends of a p-typebottleneck, bilayer organic solar cells are normallycells, including organic solar cells and dye-sensitized

  15. Integrating Green Manufacturing in Sustainable Life Cycle Design: A Case Study on PEM Fuel Cells

    E-Print Network [OSTI]

    Chien, Joshua

    2013-01-01

    127 5 PEM Fuel Cell Manufacturing 5.1Fuel cell stack component options andAssembly . . . . . . . . . . . .6 Fuel Cell SGM Modeling

  16. Disposable remote zero headspace extractor

    DOE Patents [OSTI]

    Hand, Julie J. (Idaho Falls, ID); Roberts, Mark P. (Arco, ID)

    2006-03-21

    The remote zero headspace extractor uses a sampling container inside a stainless steel vessel to perform toxicity characteristics leaching procedure to analyze volatile organic compounds. The system uses an in line filter for ease of replacement. This eliminates cleaning and disassembly of the extractor. All connections are made with quick connect fittings which can be easily replaced. After use, the bag can be removed and disposed of, and a new sampling container is inserted for the next extraction.

  17. Coaxial HOM Coupler designs tested on a single cell niobium cavity

    SciTech Connect (OSTI)

    Peter Kneisel; Genfa Wu; Gianluigi Ciovati; Jacek Sekutowicz

    2006-08-28

    Coaxial higher order mode (HOM) couplers have been developed for HERA cavities and are used in TESLA, SNS and JLab upgrade cavities. The principle of operation is the rejection of the fundamental mode by the tunable filter of the coupler and the transmission of the HOMs. It has been recognized recently that inappropriate thermal designs of the feedthrough for the pick-up probe of the HOM coupler will not sufficiently carry away the heat generated in the probe tip by the fundamental mode fields, causing a built-up of the heating of the niobium probe tip and subsequently, a deterioration of the cavity quality factor has been observed in CW operation. An improvement of the situation has been realized by a better thermal design of the feedthrough incorporating a sapphire rf window [1]. An alternative is a modification of the coupler loop (?F? ? part) with an extension towards the pick-up probe. This design has been tested on a single cell niobium cavity in comparison to a ''standard TESLA'' configuration by measuring the Eacc behavior at 2 K. The measurements clearly indicate that the modified version of the coupler loop is thermally much more stable than the standard version.

  18. COAXIAL HOM COUPLER DESIGNS TESTED ON A SINGLE CELL NIOBIUM CAVITY

    SciTech Connect (OSTI)

    Peter Kneisel; Gianluigi Ciovati; Genfa Wu; Jacek Sekutowicz

    2006-08-21

    Poster - Coaxial higher order mode (HOM) couplers have been developed for HERA cavities and are used in TESLA, SNS and JLab upgrade cavities. The principle of operation is the rejection of the fundamental mode by the tunable filter of the coupler and the transmission of the HOMs. It has been recognized recently that inappropriate thermal designs of the feed through for the pick-up probe of the HOM coupler will not sufficiently carry away the heat generated in the probe tip by the fundamental mode fields, causing a built-up of the heating of the niobium probe tip and subsequently, a deterioration of the cavity quality factor has been observed in CW operation. An improvement of the situation has been realized by a better thermal design of the feed through incorporating a sapphire rf window. An alternative is a modification of the coupler loop (?F? ? part) with an extension towards the pick-up probe. This design has been tested on a single cell niobium cavity in comparison to a 'standard TESLA' configuration by measuring the Eacc behavior at 2 K. The measurements clearly indicate that the modified version of the coupler loop is thermally much more stable than the standard version.

  19. Network design optimization of fuel cell systems and distributed energy devices.

    SciTech Connect (OSTI)

    Colella, Whitney G.

    2010-07-01

    This research explores the thermodynamics, economics, and environmental impacts of innovative, stationary, polygenerative fuel cell systems (FCSs). Each main report section is split into four subsections. The first subsection, 'Potential Greenhouse Gas (GHG) Impact of Stationary FCSs,' quantifies the degree to which GHG emissions can be reduced at a U.S. regional level with the implementation of different FCS designs. The second subsection, 'Optimizing the Design of Combined Heat and Power (CHP) FCSs,' discusses energy network optimization models that evaluate novel strategies for operating CHP FCSs so as to minimize (1) electricity and heating costs for building owners and (2) emissions of the primary GHG - carbon dioxide (CO{sub 2}). The third subsection, 'Optimizing the Design of Combined Cooling, Heating, and Electric Power (CCHP) FCSs,' is similar to the second subsection but is expanded to include capturing FCS heat with absorptive cooling cycles to produce cooling energy. The fourth subsection, - Thermodynamic and Chemical Engineering Models of CCHP FCSs,' discusses the physics and thermodynamic limits of CCHP FCSs.

  20. Consolidation and disposal of PWR fuel inserts

    SciTech Connect (OSTI)

    Wakeman, B.H. (Virginia Electric and Power Co., Glen Allen, VA (United States))

    1992-08-01

    Design and licensing of the Surry Power Station Independent Spent Fuel Storage Installation was initiated in 1982 by Virginia Power as part of a comprehensive strategy to increase spent fuel storage capacity at the Station. Designed to use large, metal dry storage casks, the Surry Installation will accommodate 84 such casks with a total storage capacity of 811 MTU of spent pressurized water reactor fuel assemblies. Virginia Power provided three storage casks for testing at the Idaho National Engineerinq Laboratory's Test Area North and the testing results have been published by the Electric Power Research Institute. Sixty-nine spent fuel assemblies were transported in truck casks from the Surry Power Station to Test Area North for testing in the three casks. Because of restrictions imposed by the cask testing equipment at Test Area North, the irradiated insert components stored in these fuel assemblies at Surry were removed prior to transport of the fuel assemblies. Retaining these insert components proved to be a problem because of a shortage of spent fuel assemblies in the spent fuel storage pool that did not already contain insert components. In 1987 Virginia Power contracted with Chem-Nuclear Systems, Inc. to process and dispose of 136 irradiated insert components consisting of 125 burnable poison rod assemblies, 10 thimble plugging devices and 1 part-length rod cluster control assembly. This work was completed in August and September 1987, culminating in the disposal at the Barnwell, SC low-level radioactive waste facility of two CNS 3-55 liners containing the consolidated insert components.

  1. A Case-Based Conceptual Design Information Server for Concurrent Engineering1

    E-Print Network [OSTI]

    Agogino, Alice M.

    the entire life cycle of an artifact: marketing, design, manufacture, distribution, operation, and disposal cycle design costs (including fabrication, construction, energy, maintenance and disposal beyond the direct experience of most practicing engineers. All designers are novices in some contexts

  2. In this paper, we survey various designs of low-power full-adder cells from conventional CMOS to really inven-

    E-Print Network [OSTI]

    Al-Asaad, Hussain

    ABSTRACT In this paper, we survey various designs of low-power full-adder cells from conventional and consequently determine the delay and power consumption for the various full-adder cells. Moreover. Keywords: Full-adder cell design, low-power cir- cuits, power and delay estimation, VLSI implementa- tions

  3. Designing a highly active soluble PQQ-glucose dehydrogenase for efficient glucose biosensors and biofuel cells

    SciTech Connect (OSTI)

    Durand, Fabien; Stines-Chaumeil, Claire; Flexer, Victoria; Andre, Isabelle; CNRS, UMR5504, F-31400 Toulouse; INRA, UMR 792 Ingenierie des Systemes Biologiques et des Procedes, F-31400 Toulouse ; Mano, Nicolas

    2010-11-26

    Research highlights: {yields} A new mutant of PQQ-GDH designed for glucose biosensors application. {yields} First mutant of PQQ-GDH with higher activity for D-glucose than the Wild type. {yields} Position N428 is a key point to increase the enzyme activity. {yields} Molecular modeling shows that the N428 C mutant displays a better interaction for PQQ than the WT. -- Abstract: We report for the first time a soluble PQQ-glucose dehydrogenase that is twice more active than the wild type for glucose oxidation and was obtained by combining site directed mutagenesis, modelling and steady-state kinetics. The observed enhancement is attributed to a better interaction between the cofactor and the enzyme leading to a better electron transfer. Electrochemical experiments also demonstrate the superiority of the new mutant for glucose oxidation and make it a promising enzyme for the development of high-performance glucose biosensors and biofuel cells.

  4. Computer-Aided Optimization of Macroscopic Design Factors for Lithium-Ion Cell Performance and Life (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Kim, G. H.; Pesaran, A.

    2010-04-01

    Electric-drive vehicles enabled by power- and energy-dense batteries promise to improve vehicle efficiency and help reduce society's dependence on fossil fuels. Next generation plug-in hybrid vehicles and battery electric vehicles may also enable vehicles to be powered by electricity generated from clean, renewable resources; however, to increase the commercial viability of such vehicles, the cost, performance and life of the vehicles batteries must be further improved. This work illustrates a virtual design process to optimize the performance and life of large-format lithium ion batteries. Beginning with material-level kinetic and transport properties, the performance and life of multiple large-format cell designs are evaluated, demonstrating the impact of macroscopic design parameters such as foil thickness, tab location, and cell size and shape under various cycling conditions. Challenges for computer-aided engineering of large-format battery cells, such as competing requirements and objectives, are discussed.

  5. Integrating engineering design improvements with exoelectrogen enrichmentprocess to increase power output from microbial fuel cells

    SciTech Connect (OSTI)

    Borole, Abhijeet P; Hamilton, Choo Yieng; Vishnivetskaya, Tatiana A; Leak, David; Andras, Calin; Morrell-Falvey, Jennifer L; Keller, Martin; Davison, Brian H

    2009-01-01

    Microbial fuel cells (MFC) hold promise as a green technology for bioenergy production. The challenge is to improve the engineering design while exploiting the ability of microbes to generate and transfer electrons directly to electrodes. A strategy using a combination of improved anode design and an enrichment processwas formulated to improve power densities. The designwas based on a flow-through anode with minimal dead volume and a high electrode surface area per unit volume. The strategy focused on promoting biofilm formation via a combination of forced flow through the anode, carbon limitation, and step-wise reduction of external resistance. The enrichment process resulted in development of exoelectrogenic biofilm communities dominated by Anaeromusa spp. This is the first report identifying organisms fromthe Veillonellaceae family in MFCs. The power density of the resulting MFC using a ferricyanide cathode reached 300Wm?3 net anode volume (3220mWm?2), which is about a third of what is estimated to be necessary for commercial consideration. The operational stability of the MFC using high specific surface area electrodes was demonstrated by operating the MFC for a period of over four months.

  6. Using optimization and lean principles to design work cells and make capital purchase decisions for hole drilling operations in turbine airfoil manufacturing

    E-Print Network [OSTI]

    Neal, Thomas E. (Thomas Eugene)

    2006-01-01

    Classical manufacturing work cells have machines to perform each operation in the process, the number of each type of machine being chosen so that all machines would be equally busy. Although design of work cells for ...

  7. The Design of Organic Polymers and Small Molecules to Improve the Efficiency of Excitonic Solar Cells

    E-Print Network [OSTI]

    Armstrong, Paul Barber

    2010-01-01

    J. The physics of solar cells; Imperial College Press,for organic polymer solar cells investigated to date. Thebulk heterojunction organic solar cells, blends of a p-type

  8. Achieving High Performance Polymer Tandem Solar Cells via Novel Materials Design

    E-Print Network [OSTI]

    Dou, Letian

    2014-01-01

    polymers for organic solar cell applications. Chem. Rev.Hummelen, J. C. , Plastic solar cells. Adv. Funct. Mater.et al. , Ef?cient organic tandem solar cells based on small

  9. The Design of Organic Polymers and Small Molecules to Improve the Efficiency of Excitonic Solar Cells

    E-Print Network [OSTI]

    Armstrong, Paul Barber

    2010-01-01

    results in a 50% improvement in solar cell efficiency. Theimprovement in performance over previously reported P3HT:PDI solar cells.solar cells. However, not all the PL is quenched, indicating that additional improvement

  10. Integrating Green Manufacturing in Sustainable Life Cycle Design: A Case Study on PEM Fuel Cells

    E-Print Network [OSTI]

    Chien, Joshua

    2013-01-01

    scale modeling and optimization of PEM fuel cells: Analysesand Manufacturing Optimization of Fuel Cells in StationaryOptimization, and Fabrication of Slotted-Interdigitated Thin Metallic Bipolar Plates for PEM Fuel Cells”.

  11. Achieving High Performance Polymer Tandem Solar Cells via Novel Materials Design

    E-Print Network [OSTI]

    Dou, Letian

    2014-01-01

    1980s for inorganic multijunction cells and more recentlyGaInP/GaInAs/Ge multijunction solar cells. Appl. Phys. Lett.of tandem/multijunction organic solar cells is nontrivial.

  12. The Design of Organic Polymers and Small Molecules to Improve the Efficiency of Excitonic Solar Cells

    E-Print Network [OSTI]

    Armstrong, Paul Barber

    2010-01-01

    DSCs. Organic Polymer Photovoltaics Solar cells made fromThe harvesting of solar energy using photovoltaics has theOrganic photovoltaics (OPVs), dye sensitized solar cells (

  13. Achieving High Performance Polymer Tandem Solar Cells via Novel Materials Design

    E-Print Network [OSTI]

    Dou, Letian

    2014-01-01

    1.4eV, inorganic multi-junction solar cells with efficiencyin an inorganic multi-junction solar cell typically has a

  14. Impact of Honeycomb Ceramics Geometrical Cell Design on Urea SCR System

    Broader source: Energy.gov [DOE]

    Honeycomb ceramic substrates with 3 cell geometries were performance tested for Nox conversion. Results provide suggestions for the best cell structure for SCR systems.

  15. Mined Geologic Disposal System Requirements Document. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    This Mined Geologic Disposal System Requirements Document (MGDS-RD) describes the functions to be performed by, and the requirements for, a Mined Geologic Disposal System (MGDS) for the permanent disposal of spent nuclear fuel (SNF) (including SNF loaded in multi-purpose canisters (MPCs)) and commercial and defense high-level radioactive waste (HLW) in support of the Civilian Radioactive Waste Management System (CRWMS). The purpose of the MGDS-RD is to define the program-level requirements for the design of the Repository, the Exploratory Studies Facility (ESF), and Surface Based Testing Facilities (SBTF). These requirements include design, operation, and decommissioning requirements to the extent they impact on the physical development of the MGDS. The document also presents an overall description of the MGDS, its functions (derived using the functional analysis documented by the Physical System Requirements (PSR) documents as a starting point), its segments as described in Section 3.1.3, and the requirements allocated to the segments. In addition, the program-level interfaces of the MGDS are identified. As such, the MGDS-RD provides the technical baseline for the design of the MGDS.

  16. Aerosol can waste disposal device

    DOE Patents [OSTI]

    O'Brien, Michael D. (Las Vegas, NV); Klapperick, Robert L. (Las Vegas, NV); Bell, Chris (Las Vegas, NV)

    1993-01-01

    Disclosed is a device for removing gases and liquid from containers. The ice punctures the bottom of a container for purposes of exhausting gases and liquid from the container without their escaping into the atmosphere. The device includes an inner cup or cylinder having a top portion with an open end for receiving a container and a bottom portion which may be fastened to a disposal or waste container in a substantially leak-proof manner. A piercing device is mounted in the lower portion of the inner cylinder for puncturing the can bottom placed in the inner cylinder. An outer cylinder having an open end and a closed end fits over the top portion of the inner cylinder in telescoping engagement. A force exerted on the closed end of the outer cylinder urges the bottom of a can in the inner cylinder into engagement with the piercing device in the bottom of the inner cylinder to form an opening in the can bottom, thereby permitting the contents of the can to enter the disposal container.

  17. Aerosol can waste disposal device

    DOE Patents [OSTI]

    O'Brien, M.D.; Klapperick, R.L.; Bell, C.

    1993-12-21

    Disclosed is a device for removing gases and liquid from containers. The device punctures the bottom of a container for purposes of exhausting gases and liquid from the container without their escaping into the atmosphere. The device includes an inner cup or cylinder having a top portion with an open end for receiving a container and a bottom portion which may be fastened to a disposal or waste container in a substantially leak-proof manner. A piercing device is mounted in the lower portion of the inner cylinder for puncturing the can bottom placed in the inner cylinder. An outer cylinder having an open end and a closed end fits over the top portion of the inner cylinder in telescoping engagement. A force exerted on the closed end of the outer cylinder urges the bottom of a can in the inner cylinder into engagement with the piercing device in the bottom of the inner cylinder to form an opening in the can bottom, thereby permitting the contents of the can to enter the disposal container. 7 figures.

  18. Evaluation of Alternatives for Hanford 327 Building Hot Cell Removal and Transport

    SciTech Connect (OSTI)

    Stevens, Ray W.; Jasen, William G.

    2003-02-27

    The Department of Energy (DOE) Hanford site 327 Building, built in 1953, played a key role in reactor material and fuel research programs. The facility includes nine shielded hot cells, a fuel storage basin, dry sample storage, and a large inerted hot (SERF) cell. In 1996, the 327 Building was transferred from Pacific Northwest National Laboratory (PNNL) to Fluor Hanford, Inc., to begin the transition from the mission of irradiated fuel examination to stabilization and deactivation. In 2001, a multi-contractor team conducted a review of the concept of intact (one piece) removal, packaging, and disposal of the 327 hot cells. This paper focuses on challenges related to preparing the 327 Building hot cells for intact one-piece disposal as Low Level Waste (LLW) at the Hanford Site. These challenges, described in this paper, are threefold and include: Sampling and characterization of the cells for low level waste designation; Packaging of the cells for transportation and waste disposal; Transportation from the facility to the disposal site. The primary technical challenges in one-piece removal, packaging, and disposal of the hot cells involve the techniques required to characterize, remove, handle, package and transport a large (approximately up to 12-feet long and 8-feet high) contaminated object that weighs 35 to 160 tons. Specific characterization results associated with two hot cells, G and H cells will be reported. A review of the activities and plans to stabilize and deactivate the 327 Building provides insight into the technical challenges faced by this project and identifies a potential opportunity to modify the baseline strategy by removing the hot cells in one piece instead of decontaminating and dismantling the cells.

  19. Electrochemical Apparatus with Disposable and Modifiable Parts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    each. Those used for bulk electrolysis (800), for flow (850), and for general electrochemistry (20-200) are also too expensive to be considered disposable. High cost means...

  20. UNIVERSITY OF SOUTH CAROLINA INFECTIOUS WASTE DISPOSAL

    E-Print Network [OSTI]

    Morgan, Stephen L.

    UNIVERSITY OF SOUTH CAROLINA INFECTIOUS WASTE DISPOSAL Introduction All biologically EHS: -South Carolina Infectious Waste Management Regulations R.61-105 #12;

  1. Long-term surveillance plan for the South Clive disposal site Clive, Utah

    SciTech Connect (OSTI)

    NONE

    1997-09-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project South Clive disposal site in Clive, Utah. This LSTP describes the long-term surveillance program the DOE will implement to ensure the South Clive disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP.

  2. Long-term surveillance plan for the Mexican Hat disposal site Mexican Hat, Utah

    SciTech Connect (OSTI)

    NONE

    1997-06-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Mexican Hat, Utah, disposal site. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Mexican Hat disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP.

  3. Long-term surveillance plan for the Mexican Hat disposal site, Mexican Hat, Utah

    SciTech Connect (OSTI)

    NONE

    1996-01-01

    This plan describes the long-term surveillance activities for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Mexican Hat, Utah. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This long-term surveillance plan (LTSP) was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive material (RRM). This LTSPC documents the land ownership interests and details how the long-term care of the disposal site will be accomplished.

  4. System Design of a Natural Gas PEM Fuel Cell Power Plant for Buildings

    SciTech Connect (OSTI)

    Joe Ferrall, Tim Rehg, Vesna Stanic

    2000-09-30

    The following conclusions are made based on this analysis effort: (1) High-temperature PEM data are not available; (2) Stack development effort for Phase II is required; (3) System results are by definition preliminary, mostly due to the immaturity of the high-temperature stack; other components of the system are relatively well defined; (4) The Grotthuss conduction mechanism yields the preferred system characteristics; the Grotthuss conduction mechanism is also much less technically mature than the vehicle mechanism; (5) Fuel processor technology is available today and can be procured for Phase II (steam or ATR); (6) The immaturity of high-temperature membrane technology requires that a robust system design be developed in Phase II that is capable of operating over a wide temperature and pressure range - (a) Unpressurized or Pressurized PEM (Grotthuss mechanism) at 140 C, Highest temperature most favorable, Lowest water requirement most favorable, Pressurized recommended for base loaded operation, Unpressurized may be preferred for load following; (b) Pressurized PEM (vehicle mechanism) at about 100 C, Pressure required for saturation, Fuel cell technology currently available, stack development required. The system analysis and screening evaluation resulted in the identification of the following components for the most promising system: (1) Steam reforming fuel processor; (2) Grotthuss mechanism fuel cell stack operating at 140 C; (3) Means to deliver system waste heat to a cogeneration unit; (4) Pressurized system utilizing a turbocompressor for a base-load power application. If duty cycling is anticipated, the benefits of compression may be offset due to complexity of control. In this case (and even in the base loaded case), the turbocompressor can be replaced with a blower for low-pressure operation.

  5. DESIGN APPROACHES AND MATERIALS PROCESSES FOR ULTRAHIGH EFFICIENCY LATTICE MISMATCHED MULTI-JUNCTION SOLAR CELLS

    E-Print Network [OSTI]

    Atwater, Harry

    of the minority carrier lifetime. INTRODUCTION High efficiency triple junction solar cells have recently been heterostructures grown in a multi-junction solar cell-like structure by MOCVD. Initial solar cell data are also of the materials used in multi-junction solar cells must be optimized to efficiently absorb as much of the solar

  6. Molten carbonate fuel cell product design & improvement - 2nd quarter, 1996. Quarterly report, April 1--June 30, 1996

    SciTech Connect (OSTI)

    1997-05-01

    The main objective of this project is to establish the commercial readiness of a molten carbonate fuel cell power plant for distributed power generation, cogeneration, and compressor station applications. This effort includes marketing, systems design and analysis, packaging and assembly, test facility development, and technology development, improvement, and verification.

  7. Molten carbonate fuel cell product design & improvement - 2nd quarter, 1995. Quarterly report, April 1--June 30, 1996

    SciTech Connect (OSTI)

    1997-05-01

    The primary objective of this project is to establish, by 1998, the commercial readiness of MW-class molten carbonate fuel cell power plants for distributed power generation, cogeneration, and compressor station applications. Tasks include system design and analysis, manufacturing, packaging and assembly, test facility development, and technology development, improvement, and verification.

  8. The Design of Novel Microwave-Heated Reaction Cells for Infrared Spectroscopy 

    E-Print Network [OSTI]

    Silverwood, Ian P

    Two novel microreactor cells for the investigation of catalysts by in-situ infrared spectroscopy under microwave and conventional heating are presented. A transmission infrared microreactor cell is demonstrated which ...

  9. Free air breathing planar PEM fuel cell design for portable electronics

    E-Print Network [OSTI]

    Crumlin, Ethan J

    2005-01-01

    PEM fuel cell technology is an energy source that can provide several times more energy per unit volume then current lithium ion batteries. However, PEM fuel cells remain to be optimized in volume and mass to create a ...

  10. Design of high-ionic conductivity electrodes for direct methanol fuel cells

    E-Print Network [OSTI]

    Schrauth, Anthony J

    2011-01-01

    Carbon-supported porous electrodes are used in low-temperature fuel cells to provide maximum catalyst surface area, while taking up little volume and using minimum catalyst material. In Direct Methanol Fuel Cells (DMFCs), ...

  11. Design of Zinc Oxide Based Solid-State Excitonic Solar Cell with Improved Efficiency 

    E-Print Network [OSTI]

    Lee, Tao Hua

    2012-02-14

    Excitonic photovoltaic devices, including organic, hybrid organic/inorganic, and dye-sensitized solar cells, are attractive alternatives to conventional inorganic solar cells due to their potential for low cost and low temperature solution...

  12. Design considerations for DC-DC converters in fuel cell systems 

    E-Print Network [OSTI]

    Palma Fanjul, Leonardo Manuel

    2009-05-15

    Rapidly rising fossil fuel costs along with increased environmental awareness has encouraged the development of alternative energy sources. Such sources include fuel cells, wind, solar and ocean tide power. Among them, fuel cells have received...

  13. Integrating Green Manufacturing in Sustainable Life Cycle Design: A Case Study on PEM Fuel Cells

    E-Print Network [OSTI]

    Chien, Joshua

    2013-01-01

    330] S. E. Veyo et al. “SOFC fuel cell systems”. In:and Solid Oxide Fuel Cell (SOFC), which were able to obtainLi2CO3 Solid Oxide (SOFC) Electric Utility, Distributed,

  14. Disposal demonstration of a high integrity container (HIC) containing an EPICOR-II prefilter from Three Mile Island

    SciTech Connect (OSTI)

    McConnell, J.W. Jr.; Tyacke, M.J.; Schmitt, R.C.; Reno, H.W.

    1985-02-01

    A high integrity container (HIC) was developed, tested, and certified for use in disposing of unusual low-level radioactive waste from Three Mile Island Unit 2 (TMI-2). The work was coordinated by EG and G Idaho, Inc. and funded by the US Department of Energy. A disposal demonstration using an HIC containing an EPICOR-II prefilter from TMI-2 was completed at the commercial disposal facility in the State of Washington. A Certification of Compliance was issued by the Department of Social and Health Services of the State of Washington to use the HIC in disposing of up to 50 EPICOR-II prefilters. That Certification of Compliance was issued after rigorous review of the HIC design and test program by the State and by the US Nuclear Regulatory Commission. This report describes the processes of loading, transporting, and disposing of the demonstration HIC and briefly describes the design, testing, and approval effort leading up to the demonstration.

  15. Integrating Green Manufacturing in Sustainable Life Cycle Design: A Case Study on PEM Fuel Cells

    E-Print Network [OSTI]

    Chien, Joshua

    2013-01-01

    British Columbia Hydro and Power Authority: Electric Tariff.hydro- gen fuel cell bus transportation systems”. In: Journal of Power

  16. Siting Study for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Lisa Harvego; Joan Connolly; Lance Peterson; Brennon Orr; Bob Starr

    2010-10-01

    The U.S. Department of Energy has identified a mission need for continued disposal capacity for remote-handled low-level waste (LLW) generated at the Idaho National Laboratory (INL). An alternatives analysis that was conducted to evaluate strategies to achieve this mission need identified two broad options for disposal of INL generated remote-handled LLW: (1) offsite disposal and (2) onsite disposal. The purpose of this study is to identify candidate sites or locations within INL boundaries for the alternative of an onsite remote handled LLW disposal facility and recommend the highest-ranked locations for consideration in the National Environmental Policy Act process. The study implements an evaluation based on consideration of five key elements: (1) regulations, (2) key assumptions, (3) conceptual design, (4) facility performance, and (5) previous INL siting study criteria, and uses a five-step process to identify, screen, evaluate, score, and rank 34 separate sites located across INL. The result of the evaluation is identification of two recommended alternative locations for siting an onsite remote-handled LLW disposal facility. The two alternative locations that best meet the evaluation criteria are (1) near the Advanced Test Reactor Complex and (2) west of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act Disposal Facility.

  17. Preliminary technical and legal evaluation of disposing of nonhazardous oil field waste into salt caverns

    SciTech Connect (OSTI)

    Veil, J.; Elcock, D.; Raivel, M.; Caudle, D.; Ayers, R.C. Jr.; Grunewald, B.

    1996-06-01

    Caverns can be readily formed in salt formations through solution mining. The caverns may be formed incidentally, as a result of salt recovery, or intentionally to create an underground chamber that can be used for storing hydrocarbon products or compressed air or disposing of wastes. The purpose of this report is to evaluate the feasibility, suitability, and legality of disposing of nonhazardous oil and gas exploration, development, and production wastes (hereafter referred to as oil field wastes, unless otherwise noted) in salt caverns. Chapter 2 provides background information on: types and locations of US subsurface salt deposits; basic solution mining techniques used to create caverns; and ways in which salt caverns are used. Later chapters provide discussion of: federal and state regulatory requirements concerning disposal of oil field waste, including which wastes are considered eligible for cavern disposal; waste streams that are considered to be oil field waste; and an evaluation of technical issues concerning the suitability of using salt caverns for disposing of oil field waste. Separate chapters present: types of oil field wastes suitable for cavern disposal; cavern design and location; disposal operations; and closure and remediation. This report does not suggest specific numerical limits for such factors or variables as distance to neighboring activities, depths for casings, pressure testing, or size and shape of cavern. The intent is to raise issues and general approaches that will contribute to the growing body of information on this subject.

  18. Light Trapping Textures Designed by Electromagnetic Optimization for Sub-Wavelength Thick Solar Cells

    E-Print Network [OSTI]

    California at Irvine, University of

    the surface of the solar cell, where n is the material refractive index. This ray-optics absorption enhancement limit only holds when the thickness of the solar cell is much greater than the optical wavelength limit of 4n2 50. Introduction Texturing of solar cell surfaces allows for absorption enhancement, owing

  19. The Design of Organic Polymers and Small Molecules to Improve the Efficiency of Excitonic Solar Cells

    E-Print Network [OSTI]

    Armstrong, Paul Barber

    2010-01-01

    information in hand, thin film solar cells (glass/ITO/PEDOT:in the zoom-in. Thin film solar cells (glass/ITO/PEDOT:PSS/thin film absorbance, are 1.50 eV for both polymers, close to the ideal value for a single layer solar cell.

  20. 1/12/14 EDACafe.com -Video Roundup -Smitha Rao and J.C. Chiao Design Micro-Windmills to Charge Cell Phones www10.edacafe.com/blogs/videoroundup/2014/01/11/smitha-rao-and-j-c-chiao-design-micro-windmills-to-charge-cell-phones/ 1/5

    E-Print Network [OSTI]

    Chiao, Jung-Chih

    1/12/14 EDACafe.com - Video Roundup - Smitha Rao and J.C. Chiao Design Micro-Windmills to Charge Cell Phones www10.edacafe.com/blogs/videoroundup/2014/01/11/smitha-rao-and-j-c-chiao-design-micro-windmills Smitha Rao and J.C. Chiao Design Micro-Windmills to Charge Cell Phones Article source: University

  1. THERMAL EVALUATION OF THE CONCEPTUAL DHLW DISPOSAL CONTAINER LOADED WITH PU/CS GREENFIELD GLASS (SCPB: N/A)

    SciTech Connect (OSTI)

    T.L. Lotz

    1995-11-13

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) as specified in the Waste Package Implementation Plan (pp. 4-8,4-11,4-24,5-1, and 5-13; Ref. 5.10) and Waste Package Plan (pp. 3-15,3-17, and 3-24; Ref. 5.9). The design data request addressed herein is: Characterize the conceptual Defense High Level Waste (DHLW) Disposal Container design to show that the design is feasible for use in the MGDS environment when loaded with a plutonium/cesium greenfield glass waste form. The purpose of this analysis is to respond to a concern that the long-term disposal thermal issues for the conceptual DHLW disposal container design do not preclude compatibility with the MGDS if it is loaded with alternate waste forms. The objective of this analysis is to provide thermal parameter information for the conceptual DHLW disposal container design loaded with an alternative waste form containing a plutonium/cesium mixture under nominal MGDS repository conditions. The results are intended to show that the design loaded with this alternative waste form has a reasonable chance to meet the MGDS design requirements for normal MGDS operation and to provide the required guidance to determining the major design issues for future design efforts. Future design efforts will focus on specific DHLW vendor designs and improved waste form data when they become available.

  2. FACT SHEET: The Path Forward on Nuclear Waste Disposal | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FACT SHEET: The Path Forward on Nuclear Waste Disposal FACT SHEET: The Path Forward on Nuclear Waste Disposal FACT SHEET: The Path Forward on Nuclear Waste Disposal More Documents...

  3. Long-term surveillance plan for the Bodo Canyon Disposal Site, Durango, Colorado

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    This long-term surveillance plan (LTSP) for the Durango, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Durango (Bodo Canyon) disposal site, which will be referred to as the disposal site throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). RRMs include tailings and other uranium ore processing wastes still at the site, which the DOE determines to be radioactive. This LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992).

  4. Generic disposal concepts and thermal load management for larger...

    Office of Scientific and Technical Information (OSTI)

    Generic disposal concepts and thermal load management for larger waste packages. Citation Details In-Document Search Title: Generic disposal concepts and thermal load management...

  5. Deep Borehole Disposal Research: Geological Data Evaluation Alternativ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deep Borehole Disposal Research: Geological Data Evaluation Alternative Waste Forms and Borehole Seals Citation Details In-Document Search Title: Deep Borehole Disposal Research:...

  6. NDAA Section 3116 Waste Determinations with Related Disposal...

    Office of Environmental Management (EM)

    NDAA Section 3116 Waste Determinations with Related Disposal Performance Assessments NDAA Section 3116 Waste Determinations with Related Disposal Performance Assessments Section...

  7. Nevada Industrial Solid Waste Disposal Site Permit Application...

    Open Energy Info (EERE)

    Nevada Industrial Solid Waste Disposal Site Permit Application Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Nevada Industrial Solid Waste Disposal Site...

  8. Evaluation of Options for Permanent Geologic Disposal of Spent...

    Energy Savers [EERE]

    disposal concepts are addressed: mined repositories in three geologic media-salt, clayshale rocks, and crystalline (e.g., granitic) rocks-and deep borehole disposal in...

  9. Deep Borehole Disposal of Spent Fuel. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Deep Borehole Disposal of Spent Fuel. Citation Details In-Document Search Title: Deep Borehole Disposal of Spent Fuel. Abstract not provided. Authors: Brady, Patrick V. Publication...

  10. Low-Level Waste Disposal Facility Federal Review Group Manual

    Office of Environmental Management (EM)

    Low- LEVEL WASTE DISPOSAL FACILITY FEDERAL REVIEW GROUP MANUAL REVISION 3 JUNE 2008 (This page intentionally left blank) Low-Level JVllsfe Disposal Fllcilil' Federal Review Group...

  11. Plans and Progress on Hanford MLLW Treatment and Disposal

    SciTech Connect (OSTI)

    MCKENNEY, D.E.

    2003-01-01

    Fluor Hanford's WMP has shown consistent success in treating and disposing of waste since the mixed waste disposal unit opened in 1999

  12. Deep Borehole Disposal of Nuclear Waste. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Deep Borehole Disposal of Nuclear Waste. Citation Details In-Document Search Title: Deep Borehole Disposal of Nuclear Waste. Abstract not provided. Authors: Arnold, Bill Walter ;...

  13. Design of pulse stretching cell for a sodium guide star optical system

    SciTech Connect (OSTI)

    Friedman, H.W.; Horton, J.A.; Kuklo, T.J.; Wong, N.J.

    1992-11-10

    A pulse stretcher has been designed for the LLNL sodium guide star experiment to lower the laser flux and avoid saturation effects. The optical design, mechanical layout and wavefront error analysis are presented.

  14. Generic Argillite/Shale Disposal Reference Case

    SciTech Connect (OSTI)

    Zheng, Liange; Colon, Carlos Jové; Bianchi, Marco; Birkholzer, Jens

    2014-08-08

    Radioactive waste disposal in a deep subsurface repository hosted in clay/shale/argillite is a subject of widespread interest given the desirable isolation properties, geochemically reduced conditions, and widespread geologic occurrence of this rock type (Hansen 2010; Bianchi et al. 2013). Bianchi et al. (2013) provides a description of diffusion in a clay-hosted repository based on single-phase flow and full saturation using parametric data from documented studies in Europe (e.g., ANDRA 2005). The predominance of diffusive transport and sorption phenomena in this clay media are key attributes to impede radionuclide mobility making clay rock formations target sites for disposal of high-level radioactive waste. The reports by Hansen et al. (2010) and those from numerous studies in clay-hosted underground research laboratories (URLs) in Belgium, France and Switzerland outline the extensive scientific knowledge obtained to assess long-term clay/shale/argillite repository isolation performance of nuclear waste. In the past several years under the UFDC, various kinds of models have been developed for argillite repository to demonstrate the model capability, understand the spatial and temporal alteration of the repository, and evaluate different scenarios. These models include the coupled Thermal-Hydrological-Mechanical (THM) and Thermal-Hydrological-Mechanical-Chemical (THMC) models (e.g. Liu et al. 2013; Rutqvist et al. 2014a, Zheng et al. 2014a) that focus on THMC processes in the Engineered Barrier System (EBS) bentonite and argillite host hock, the large scale hydrogeologic model (Bianchi et al. 2014) that investigates the hydraulic connection between an emplacement drift and surrounding hydrogeological units, and Disposal Systems Evaluation Framework (DSEF) models (Greenberg et al. 2013) that evaluate thermal evolution in the host rock approximated as a thermal conduction process to facilitate the analysis of design options. However, the assumptions and the properties (parameters) used in these models are different, which not only make inter-model comparisons difficult, but also compromise the applicability of the lessons learned from one model to another model. The establishment of a reference case would therefore be helpful to set up a baseline for model development. A generic salt repository reference case was developed in Freeze et al. (2013) and the generic argillite repository reference case is presented in this report. The definition of a reference case requires the characterization of the waste inventory, waste form, waste package, repository layout, EBS backfill, host rock, and biosphere. This report mainly documents the processes in EBS bentonite and host rock that are potentially important for performance assessment and properties that are needed to describe these processes, with brief description other components such as waste inventory, waste form, waste package, repository layout, aquifer, and biosphere. A thorough description of the generic argillite repository reference case will be given in Jové Colon et al. (2014).

  15. Electrode design for low temperature direct-hydrocarbon solid oxide fuel cells

    DOE Patents [OSTI]

    Chen, Fanglin; Zhao, Fei; Liu, Qiang

    2015-10-06

    In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.

  16. Energy Efficient Design of Cognitive Small Cells Matthias Wildemeersch, Tony Q. S. Quek, Alberto Rabbachin, Cornelis H. Slump, and Aiping Huang

    E-Print Network [OSTI]

    Vellekoop, Michel

    Energy Efficient Design of Cognitive Small Cells Matthias Wildemeersch§, Tony Q. S. Quek, Alberto environmental awareness and the high price of energy, the design of energy efficient wireless systems for both, and the aggregate network interference. The proposed framework yields design guidelines for energy efficient small

  17. Solid oxide fuel cell with multi-unit construction and prismatic design

    DOE Patents [OSTI]

    McPheeters, Charles C. (Naperville, IL); Dees, Dennis W. (Downers Grove, IL); Myles, Kevin M. (Downers Grove, IL)

    1999-01-01

    A single cell unit of a solid oxide fuel cell that is individually fabricated and sintered prior to being connected to adjacent cells to form a solid oxide fuel cell. The single cell unit is comprised of a shaped anode sheet positioned between a flat anode sheet and an anode-electrolyte-cathode (A/E/C) sheet, and a shaped cathode sheet positioned between the A/E/C sheet and a cathode-interconnect-anode (C/I/A) sheet. An alternate embodiment comprises a shaped cathode sheet positioned between an A/E/C sheet and a C/I/A sheet. The shaped sheets form channels for conducting reactant gases. Each single cell unit is individually sintered to form a finished sub-assembly. The finished sub-assemblies are connected in electrical series by interposing connective material between the end surfaces of adjacent cells, whereby individual cells may be inspected for defects and interchanged with non-defective single cell units.

  18. Solid oxide fuel cell with multi-unit construction and prismatic design

    DOE Patents [OSTI]

    McPheeters, C.C.; Dees, D.W.; Myles, K.M.

    1999-03-16

    A single cell unit of a solid oxide fuel cell is described that is individually fabricated and sintered prior to being connected to adjacent cells to form a solid oxide fuel cell. The single cell unit is comprised of a shaped anode sheet positioned between a flat anode sheet and an anode-electrolyte-cathode (A/E/C) sheet, and a shaped cathode sheet positioned between the A/E/C sheet and a cathode-interconnect-anode (C/I/A) sheet. An alternate embodiment comprises a shaped cathode sheet positioned between an A/E/C sheet and a C/I/A sheet. The shaped sheets form channels for conducting reactant gases. Each single cell unit is individually sintered to form a finished sub-assembly. The finished sub-assemblies are connected in electrical series by interposing connective material between the end surfaces of adjacent cells, whereby individual cells may be inspected for defects and interchanged with non-defective single cell units. 7 figs.

  19. Computational design of high performance hybrid perovskite on silicon tandem solar cells

    E-Print Network [OSTI]

    Rolland, A; Beck, A; Kepenekian, M; Katan, C; Huang, Y; Wang, S; Cornet, C; Durand, O; Even, J

    2015-01-01

    In this study, the optoelectronic properties of a monolithically integrated series-connected tandem solar cell are simulated. Following the large success of hybrid organic-inorganic perovskites, which have recently demonstrated large efficiencies with low production costs, we examine the possibility of using the same perovskites as absorbers in a tandem solar cell. The cell consists in a methylammonium mixed bromide-iodide lead perovskite, CH3NH3PbI3(1-x)Br3x (0 < x < 1), top sub-cell and a single-crystalline silicon bottom sub-cell. A Si-based tunnel junction connects the two sub-cells. Numerical simulations are based on a one-dimensional numerical drift-diffusion model. It is shown that a top cell absorbing material with 20% of bromide and a thickness in the 300-400 nm range affords current matching with the silicon bottom cell. Good interconnection between single cells is ensured by standard n and p doping of the silicon at 5.10^19cm-3 in the tunnel junction. A maximum efficiency of 27% is predicted ...

  20. Design of Nanostructured Solar Cells Using Coupled Optical and Electrical Modeling

    E-Print Network [OSTI]

    Deceglie, Michael G

    2014-01-01

    J.   K. ;   Schropp,   R.   E.   I.   Solar  Energy  Materials  and  Solar  Cells   39.   Spinelli,  P. ;  J. ;  Vanecek,  M.   Solar  Energy   2004,  77,  (6),  

  1. Accounting for Localized Defects in the Optoelectronic Design of Thin-Film Solar Cells

    E-Print Network [OSTI]

    Deceglie, Michael G.

    2014-01-01

    Accounting for Localized Defects in the OptoelectronicH solar cells. Explicitly accounting for local variations inthe importance of accounting for defect geometry, and that

  2. Z-Bed Recovery Water Disposal

    Office of Environmental Management (EM)

    Z-Bed Recovery Water Disposal Tritium Programs Engineering Louis Boone Josh Segura Savannah River Nuclear Solutions, LLC M-TRT-H-00087 Rev 0 Date: 4102014 Tritium Facilities...

  3. Supplement Analysis for Disposal of Polychlorinated Biphenyl...

    Office of Environmental Management (EM)

    Disposal of Polychlorinated Biphenyl-Commingled Transuranic Waste at the Waste Isolation Pilot Plant (DOEEIS-0026-SA02) 1.0 Purpose and Need for Action Transuranic (TRU) waste is...

  4. Economic assessment of CO? capture and disposal

    E-Print Network [OSTI]

    Eckaus, Richard S.; Jacoby, Henry D.; Ellerman, A. Denny.; Leung, Wing-Chi.; Yang, Zili.

    A multi-sector multi-region general equilibrium model of economic growth and emissions is used to explore the conditions that will determine the market penetration of CO2 capture and disposal technology.

  5. Electrochemical apparatus comprising modified disposable rectangular...

    Office of Scientific and Technical Information (OSTI)

    include more than one cuvette, which in practice is a disposable rectangular glass or plastic cuvette modified by drilling the hole(s) through. The apparatus include two plates...

  6. Assessment of Preferred Depleted Uranium Disposal Forms

    SciTech Connect (OSTI)

    Croff, A.G.; Hightower, J.R.; Lee, D.W.; Michaels, G.E.; Ranek, N.L.; Trabalka, J.R.

    2000-06-01

    The Department of Energy (DOE) is in the process of converting about 700,000 metric tons (MT) of depleted uranium hexafluoride (DUF6) containing 475,000 MT of depleted uranium (DU) to a stable form more suitable for long-term storage or disposal. Potential conversion forms include the tetrafluoride (DUF4), oxide (DUO2 or DU3O8), or metal. If worthwhile beneficial uses cannot be found for the DU product form, it will be sent to an appropriate site for disposal. The DU products are considered to be low-level waste (LLW) under both DOE orders and Nuclear Regulatory Commission (NRC) regulations. The objective of this study was to assess the acceptability of the potential DU conversion products at potential LLW disposal sites to provide a basis for DOE decisions on the preferred DU product form and a path forward that will ensure reliable and efficient disposal.

  7. Disposal of Specific Articles Containing Radioactive Materials

    E-Print Network [OSTI]

    Jia, Songtao

    Am-241 3. NRC: United States Nuclear Regulatory Commission 4. Sodium Iodide (NaI) Detector: Uses. Disposal of these signs is governed by United States Nuclear Regulatory Commission (NRC) regulations, 10

  8. Asset Management Equipment Disposal Form -Refrigerant Recovery

    E-Print Network [OSTI]

    Sin, Peter

    EPA's rule, equipment that is typically dismantled on site before disposal (e.g., retail food vacuum, and for small appliances the recover equipment performance requirements are 90 percent efficiency

  9. A disposable, self-administered electrolyte test

    E-Print Network [OSTI]

    Prince, Ryan, 1977-

    2003-01-01

    This thesis demonstrates the novel concept that it is possible to make a disposable, self-administered electrolyte test to be introduced to the general consumer market. Although ion specific electrodes have been used to ...

  10. Technical and philosophical aspects of ocean disposal 

    E-Print Network [OSTI]

    Zapatka, Marchi Charisse

    1976-01-01

    and demolition debris Solid wastes 26 26 30 30 31 32 lii 1 i tary wastes. Radioactive wastes Disposal Methods. 32 32 34 Harges Containerized methods. Submarine outfalls CHASE. Indirect discharge . 40 44 Transport Mechanisms of iiaste... disposal of wastes is not a new idea, although it is only in recent years that this issue has received considerable attention. Man is concerned about the condition of the ocean because i+ is a valuable source of many resources from the marine environment...

  11. Probabilistic Modeling of Settlement Risk at Land Disposal Facilities - 12304

    SciTech Connect (OSTI)

    Foye, Kevin C.; Soong, Te-Yang

    2012-07-01

    The long-term reliability of land disposal facility final cover systems - and therefore the overall waste containment - depends on the distortions imposed on these systems by differential settlement/subsidence. The evaluation of differential settlement is challenging because of the heterogeneity of the waste mass (caused by inconsistent compaction, void space distribution, debris-soil mix ratio, waste material stiffness, time-dependent primary compression of the fine-grained soil matrix, long-term creep settlement of the soil matrix and the debris, etc.) at most land disposal facilities. Deterministic approaches to long-term final cover settlement prediction are not able to capture the spatial variability in the waste mass and sub-grade properties which control differential settlement. An alternative, probabilistic solution is to use random fields to model the waste and sub-grade properties. The modeling effort informs the design, construction, operation, and maintenance of land disposal facilities. A probabilistic method to establish design criteria for waste placement and compaction is introduced using the model. Random fields are ideally suited to problems of differential settlement modeling of highly heterogeneous foundations, such as waste. Random fields model the seemingly random spatial distribution of a design parameter, such as compressibility. When used for design, the use of these models prompts the need for probabilistic design criteria. It also allows for a statistical approach to waste placement acceptance criteria. An example design evaluation was performed, illustrating the use of the probabilistic differential settlement simulation methodology to assemble a design guidance chart. The purpose of this design evaluation is to enable the designer to select optimal initial combinations of design slopes and quality control acceptance criteria that yield an acceptable proportion of post-settlement slopes meeting some design minimum. For this specific example, relative density, which can be determined through field measurements, was selected as the field quality control parameter for waste placement. This technique can be extended to include a rigorous performance-based methodology using other parameters (void space criteria, debris-soil mix ratio, pre-loading, etc.). As shown in this example, each parameter range, or sets of parameter ranges can be selected such that they can result in an acceptable, long-term differential settlement according to the probabilistic model. The methodology can also be used to re-evaluate the long-term differential settlement behavior at closed land disposal facilities to identify, if any, problematic facilities so that remedial action (e.g., reinforcement of upper and intermediate waste layers) can be implemented. Considering the inherent spatial variability in waste and earth materials and the need for engineers to apply sound quantitative practices to engineering analysis, it is important to apply the available probabilistic techniques to problems of differential settlement. One such method to implement probability-based differential settlement analyses for the design of landfill final covers has been presented. The design evaluation technique presented is one tool to bridge the gap from deterministic practice to probabilistic practice. (authors)

  12. Integrating Green Manufacturing in Sustainable Life Cycle Design: A Case Study on PEM Fuel Cells

    E-Print Network [OSTI]

    Chien, Joshua

    2013-01-01

    ISO14000 framework for life cycle assessment [158] b) InputsX. Li. “A preliminary life cycle assessment of PEM fuel cellManagement - Life Cycle Assessment - Principles and

  13. Numerical simulation: Toward the design of high-efficiency planar perovskite solar cells

    SciTech Connect (OSTI)

    Liu, Feng; Zhu, Jun E-mail: sydai@ipp.ac.cn; Wei, Junfeng; Li, Yi; Lv, Mei; Yang, Shangfeng; Zhang, Bing; Yao, Jianxi; Dai, Songyuan E-mail: sydai@ipp.ac.cn

    2014-06-23

    Organo-metal halide perovskite solar cells based on planar architecture have been reported to achieve remarkably high power conversion efficiency (PCE, >16%), rendering them highly competitive to the conventional silicon based solar cells. A thorough understanding of the role of each component in solar cells and their effects as a whole is still required for further improvement in PCE. In this work, the planar heterojunction-based perovskite solar cells were simulated with the program AMPS (analysis of microelectronic and photonic structures)-1D. Simulation results revealed a great dependence of PCE on the thickness and defect density of the perovskite layer. Meanwhile, parameters including the work function of the back contact as well as the hole mobility and acceptor density in hole transport materials were identified to significantly influence the performance of the device. Strikingly, an efficiency over 20% was obtained under the moderate simulation conditions.

  14. Design and Implementation of Functional Nanoelectronic Interfaces With Biomolecules, Cells, and Tissue Using Nanowire Device Arrays

    E-Print Network [OSTI]

    Timko, Brian P.

    Nanowire FETs (NWFETs) are promising building blocks for nanoscale bioelectronic interfaces with cells and tissue since they are known to exhibit exquisite sensitivity in the context of chemical and biological detection, ...

  15. Design of a cluster analysis heuristic for the configuration and capacity management of manufacturing cells 

    E-Print Network [OSTI]

    Shim, Young Hak

    2007-09-17

    , the machine capacity was first ensured, and then manufacturing cells were configured to minimize intercellular movements. In order to ensure the machine capacity, the duplication of machines and the split of operations are allowed and operations are assigned...

  16. Biomaterials Design for Control of Cell Behavior by Femtosecond Laser Processing

    E-Print Network [OSTI]

    Jeon, Hojeong

    2011-01-01

    a collagen-GAG matrix. Biomaterials. 2001;22:2883-91. [133]cell migration velocity. Biomaterials. 2006;27:5230-41. [5]of organic-inorganic hybrid biomaterials for microstructured

  17. High efficiency thin film silicon solar cells with novel light trapping : principle, design and processing

    E-Print Network [OSTI]

    Zeng, Lirong, Ph. D. Massachusetts Institute of Technology

    2008-01-01

    One major efficiency limiting factor in thin film solar cells is weak absorption of long wavelength photons due to the limited optical path length imposed by the thin film thickness. This is especially severe in Si because ...

  18. Special Analysis: Disposal Plan for Pit 38 at Technical Area 54, Area G

    SciTech Connect (OSTI)

    French, Sean B. [Los Alamos National Laboratory; Shuman, Rob [URS Coporation

    2012-06-26

    Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research; environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on- and off-site exposure scenarios. The assessments are based on existing site and disposal facility data, and on assumptions about future rates and methods of waste disposal. The Area G disposal facility consists of Material Disposal Area (MDA) G and the Zone 4 expansion area. To date, disposal operations have been confined to MDA G and are scheduled to continue in that region until MDA G undergoes final closure at the end of 2013. Given its impending closure, efforts have been made to utilize the remaining disposal capacity within MDA G to the greatest extent possible. One approach for doing this has been to dispose of low-activity waste from cleanup operations at LANL in the headspace of selected disposal pits. Waste acceptance criteria (WAC) for the material placed in the headspace of pits 15, 37, and 38 have been developed (LANL, 2010) and the impacts of placing waste in the headspace of these units has been evaluated (LANL, 2012a). The efforts to maximize disposal efficiency have taken on renewed importance because of the disposal demands placed on MDA G by the large volumes of waste that are being generated at LANL by cleanup efforts. For example, large quantities of waste were recently generated by the retrieval of waste formerly disposed of at TA-21, MDA B. A portion of this material has been disposed of in the headspace of pit 38 in compliance with the WAC developed for that disposal strategy; a large amount of waste has also been sent to off-site facilities for disposal. Nevertheless, large quantities of MDA B waste remain that require disposal. An extension of pit 38 was proposed to provide the disposal capacity that will be needed to dispose of institutional waste and MDA B waste through 2013. A special analysis was prepared to evaluate the impacts of the pit extension (LANL, 2012b). The analysis concluded that the disposal unit could be extended with modest increases in the exposures projected for the Area G performance assessment and composite analysis, as long as limits were placed on the radionuclide concentrations in the waste that is placed in the headspace of the pit. Based, in part, on the results of the special analysis, the extension of pit 38 was approved and excavation of the additional disposal capacity was started in May 2012. The special analysis presented here uses performance modeling to identify a disposal plan for the placement of waste in pit 38. The modeling uses a refined design of the disposal unit and updated radionuclide inventories to identify a disposal configuration that promotes efficie

  19. Improving the Performance of P3HT-Fullerene Solar Cells with Side-Chain-Functionalized Poly(thiophene) Additives: A New Paradigm for Polymer Design

    E-Print Network [OSTI]

    Lobez, Jose M.

    The motivation of this study is to determine if small amounts of designer additives placed at the polymer–fullerene interface in bulk heterojunction (BHJ) solar cells can influence their performance. A series of AB-alternating ...

  20. Optimization-based design of surface textures for thin-film Si solar cells

    E-Print Network [OSTI]

    Sheng, Xing

    We numerically investigate the light-absorption behavior of thin-film silicon for normal-incident light, using surface textures to enhance absorption. We consider a variety of texture designs, such as simple periodic ...

  1. Assembly cell layout and Kanban system design for an oilfield services company

    E-Print Network [OSTI]

    Liu, Junying, M. Eng. Massachusetts Institute of Technology

    2010-01-01

    The thesis describes the layout design of new gauge assembly lab for an oilfield services company. A relationship diagram was created to categorize all the workstations and activities in the assembly line. Three layouts ...

  2. Update on the CeC PoP 704 MHz 5-cell cavity cryomodule design and fabrication

    SciTech Connect (OSTI)

    Brutus, J. C.; Belomestnykh, S.; Ben-Zvi, I.; Grimm, T.; Huang, Y.; Jecks, R.; Kelly, M.; Litvinenko, V.; Pinayev, I.; Reid, T.; Skaritka, J.; Snydstrup, L.; Than, R.; Tuozzolo, J.; Xu, W.; Yancey, J.; Gerbick, S.

    2015-05-03

    A 5-cell SRF cavity operating at 704 MHz will be used for the Coherent Electron Cooling Proof of Principle (CeC PoP) system under development for the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. The CeC PoP experiment will demonstrate the new technique of cooling proton and ion beams that may increase the beam luminosity in certain cases, by as much as tenfold. The 704 MHz cavity will accelerate 2 MeV electrons from a 112 MHz SRF gun up to 22MeV. This paper provides an overview of the design, the project status and schedule of the 704 MHz 5-cell SRF for CeC PoP experiment.

  3. Device characterization for design optimization of 4 junction inverted metamorphic concentrator solar cells

    SciTech Connect (OSTI)

    Geisz, John F.; France, Ryan M.; Steiner, Myles A.; Friedman, Daniel J.; García, Iván

    2014-09-26

    Quantitative electroluminescence (EL) and luminescent coupling (LC) analysis, along with more conventional characterization techniques, are combined to completely characterize the subcell JV curves within a fourjunction (4J) inverted metamorphic solar cell (IMM). The 4J performance under arbitrary spectral conditions can be predicted from these subcell JV curves. The internal radiative efficiency (IRE) of each junction has been determined as a function of current density from the external radiative efficiency using optical modeling, but this required the accurate determination of the individual junction current densities during the EL measurement as affected by LC. These measurement and analysis techniques can be applied to any multijunction solar cell. The 4J IMM solar cell used to illustrate these techniques showed excellent junction quality as exhibited by high IRE and a one-sun AM1.5D efficiency of 36.3%. This device operates up to 1000 suns without limitations due to any of the three tunnel junctions.

  4. Optimal Design of a Stand-Alone Hybrid PV/Fuel Cell Power System for the City of Brest in France

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    cell power system without battery storage to supply the electric load demand of the city of Brest energy consumption depends on the "regional sidelines" by high-voltage transmission lines through highOptimal Design of a Stand-Alone Hybrid PV/Fuel Cell Power System for the City of Brest in France

  5. Idaho CERCLA Disposal Facility Complex Compliance Demonstration for DOE Order 435.1

    SciTech Connect (OSTI)

    J. Simonds

    2006-09-01

    This compliance demonstration document provides an analysis of the Idaho CERCLA Disposal Facility (ICDF) Complex compliance with DOE Order 435.1. The ICDF Complex includes the disposal facility (landfill), evaporation pond, admin facility, weigh scale, decon building, treatment systems, and various staging/storage areas. These facilities were designed and are being constructed to be compliant with DOE Order 435.1, Resource Conservation and Recovery Act Subtitle C, and Toxic Substances Control Act polychlorinated biphenyl design and construction standards. The ICDF Complex is designated as the central Idaho National Laboratory (INL) facilityyy for the receipt, staging/storage, treatment, and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) waste streams. This compliance demonstration document discusses the conceptual site model for the ICDF Complex area. Within this conceptual site model, the selection of the area for the ICDF Complex is discussed. Also, the subsurface stratigraphy in the ICDF Complex area is discussed along with the existing contamination beneath the ICDF Complex area. The designs for the various ICDF Complex facilities are also included in this compliance demonstration document. These design discussions are a summary of the design as presented in the Remedial Design/Construction Work Plans for the ICDF landfill and evaporation pond and the Staging, Storage, Sizing, and Treatment Facility. Each of the major facilities or systems is described including the design criteria.

  6. Biomaterials Design for Control of Cell Behavior by Femtosecond Laser Processing

    E-Print Network [OSTI]

    Jeon, Hojeong

    2011-01-01

    cell migration on patterns of 600/110 nm in diameter/depthmigration looks similar to that on patterns of 1000/30 nm in diameter/depth.migration was observed for the smallest patterns of 500/45 nm in diameter/depth.

  7. A design approach to a risk review for fuel cell-based distributed cogeneration systems 

    E-Print Network [OSTI]

    Luthringer, Kristin Lyn

    2004-09-30

    A risk review of a fuel cell-based distributed co-generation (FC-Based DCG) system was conducted to identify and quantify the major technological system risks in a worst-case scenario. A risk review entails both a risk assessment and a risk...

  8. Analysis and design of high frequency link power conversion systems for fuel cell power conditioning 

    E-Print Network [OSTI]

    Song, Yu Jin

    2005-11-01

    simulations and experiments, and their trade-offs are described in detail using mathematical evaluation approach. The third study proposes a current-fed high frequency link direct dc-ac converter suitable for residential fuel cell power systems. The high...

  9. Design of a system to measure light scattering from individual cells excited by an acoustic wave

    E-Print Network [OSTI]

    Bigio, Irving J.

    , and the detected frequencies are consistent with theoretical predictions. © 2008 Optical Society of America OCIS. Micheletto, and Y. Kawakami, "Acoustical nanometre-scale vibrations of live cells detected by a near ultrashort electric pulsing," Proc. 3rd Int'l. Workshop on Biological Effect of EMFs, 56-65 (2004). 14. D. B

  10. The IMM solar cell's advanced ultra-light, highly flexible design earned it a 2008 R&D 100 Award and a 2009 Award for Excellence in Technology Transfer by the Federal Laboratory

    E-Print Network [OSTI]

    --particularly for complex multijunction cells. These cells convert solar energy more efficiently than single- junction cells of the standard triple-junction cell, NREL scientists knew further success--and higher efficienciesinnovati n The IMM solar cell's advanced ultra-light, highly flexible design earned it a 2008 R

  11. Molten carbonate fuel cell product design and improvement. Quarterly report, December 1994--March 1995

    SciTech Connect (OSTI)

    1995-08-01

    Primary objective is to establish the commercial readiness of MW- class IMHEX {reg_sign} MCFC power plants for distributed generation, cogeneration, and compressor station applications. The following tasks are reported: product definition/planning, system design/analysis, manufacturing process development, packaging/assembly, test facilities, and technology development/improvement/verification.

  12. Optimized Design and Synthesis of Cell Permeable Biarsenical Cyanine Probe for Imaging Tagged Cytosolic Bacterial Proteins

    SciTech Connect (OSTI)

    Fu, Na; Xiong, Yijia; Squier, Thomas C.

    2013-02-01

    To optimize cellular delivery and specific labeling of tagged cytosolic proteins by biarsenical fluorescent probes build around a cyanine dye scaffold, we have systematically varied the polarity of the hydrophobic tails (i.e., 4-5 methylene groups appended by a sulfonate or methoxy ester moiety) and arsenic capping reagent (ethanedithiol versus benzenedithiol). Targeted labeling of the cytosolic proteins SlyD and the alpha subunit of RNA polymerase engineered with a tetracysteine tagging sequences demonstrate the utility of the newly synthesized probes for live-cell visualization, albeit with varying efficiencies and background intensities. Optimal routine labeling and visualization is apparent using the ethanedithiol capping reagent with the uncharged methoxy ester functionalized acyl chains. These measurements demonstrate the general utility of this class of photostable and highly fluorescent biarsenical reagents based on the cyanine scaffold for in vivo targeting of tagged cellular proteins for live cell measurements of protein dynamics.

  13. The Impacts of Dry-Storage Canister Designs on Spent Nuclear...

    Office of Environmental Management (EM)

    and Disposal in the U.S. The Impacts of Dry-Storage Canister Designs on Spent Nuclear Fuel Handling, Storage, Transportation, and Disposal in the U.S. More Documents &...

  14. Ethidium Bromide: Disposal, Decontamination, and Destruction

    E-Print Network [OSTI]

    Jia, Songtao

    of the environment. 4. Hazardous Chemicals/Wastes: For the purposes of this policy, a hazardous waste or chemical requirements for the safe storage, use, handling, and disposal of particularly hazardous substances, including and the environment, and to comply with OSHA regulations. 2. Additional safety requirements may apply, depending

  15. Land Disposal Restrictions (LDR) program overview

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    The Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation and Recovery Act (RCRA) enacted in 1984 required the Environmental Protection Agency (EPA) to evaluate all listed and characteristic hazardous wastes according to a strict schedule and to develop requirements by which disposal of these wastes would be protective of human health and the environment. The implementing regulations for accomplishing this statutory requirement are established within the Land Disposal Restrictions (LDR) program. The LDR regulations (40 CFR Part 268) impose significant requirements on waste management operations and environmental restoration activities at DOE sites. For hazardous wastes restricted by statute from land disposal, EPA is required to set levels or methods of treatment that substantially reduce the waste`s toxicity or the likelihood that the waste`s hazardous constituents will migrate. Upon the specified LDR effective dates, restricted wastes that do not meet treatment standards are prohibited from land disposal unless they qualify for certain variances or exemptions. This document provides an overview of the LDR Program.

  16. Description Disposable Membrane Chromatography Units for Scale-

    E-Print Network [OSTI]

    Lebendiker, Mario

    traceable to raw components. Constructed of component materials that meet United States Pharmacopeia (USP for a free product sample! Materials of Construction Membrane Bed Volume Device volume of chromatography systems. Disposable 25 mm units. Available in Q and S chemistries. Manufactured in accordance

  17. Environmental waste disposal contracts April 3, 2012

    E-Print Network [OSTI]

    and radioactive waste. The companies are · ARS Cavanagh Environmental Services, LLC · Portage, Inc. · Navarro of these materials may include trace or low levels of radioactive material. Waste materials also include transuranic the knowledge and experience to safely treat, package, and transport the waste for disposal in accordance

  18. Low level tank waste disposal study

    SciTech Connect (OSTI)

    Mullally, J.A.

    1994-09-29

    Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site.

  19. Solving the problems of infectious waste disposal

    SciTech Connect (OSTI)

    Hoffman, S.L.; Cabral, N.J. )

    1989-06-01

    Lawmakers are increasing pressures to ensure safe, appropriate disposal of infectious waste. This article discusses the problems, the regulatory climate, innovative approaches, and how to pay for them. The paper discusses the regulatory definition of infectious waste, federal and state regulations, and project finance.

  20. Design of Safer High-Energy Density Materials for Lithium-Ion Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 20153Danielthrough theKDesert Peakof EnergyofDesign

  1. Use and abandonment of surface impoundments for the disposal of oil-field produced waters

    SciTech Connect (OSTI)

    Johnson, D.S. (California Regional Water Quality Board, Fresno (USA))

    1990-05-01

    Surface impoundments, or sumps, are utilized for the disposal of oil-field produced water through percolation and evaporation in California's San Joaquin basin. Environmental concerns have resulted in increased regulation of sumps. Surface disposal of produced waters into unlined sumps is permitted where the quality of the produced water meets the stated criteria in the applicable basin plan as regulated by the local regional water quality control board. In the San Joaquin Basin, surface disposal is initially governed by the Tulare Lake basin plan (5D). A basin plan permits disposal into sumps of produced waters which do not exceed a maximum electrical conductivity, chlorides content, or boron content in areas which overlie useable groundwater. If the produced water exceeds any one of the maximum constituent levels, regulation of surface disposal passes to Title 23, California code of Regulations, sections 2,510-2,601 (subchapter 15). Subchapter 15 regulates the use and abandonment of lined surface impoundments designed to dispose of produced water through evaporation. Subchapter 15 requires the operator to conduct a site hydrogeologic characterization, install a groundwater monitoring system, and construct and enclose the surface impoundment in accordance with specified criteria. Sumps can be utilized in areas which do not meet the criteria of the appropriate basin plan, or subchapter 15, where the operator demonstrates that surface percolation of the produced waters will not degrade underlying useable groundwater. Abandonment of unlined sumps includes removal and disposal of all free liquids, analysis of sludges and soils beneath the sumps, removal of contaminated sludges and soils, analysis of soils after removal of contaminated sludges and soils, backfilling of the sump, and revegetation of the site.

  2. CONTAINMENT OF LOW-LEVEL RADIOACTIVE WASTE AT THE DOE SALTSTONE DISPOSAL FACILITY

    SciTech Connect (OSTI)

    Jordan, J.; Flach, G.

    2012-03-29

    As facilities look for permanent storage of toxic materials, they are forced to address the long-term impacts to the environment as well as any individuals living in affected area. As these materials are stored underground, modeling of the contaminant transport through the ground is an essential part of the evaluation. The contaminant transport model must address the long-term degradation of the containment system as well as any movement of the contaminant through the soil and into the groundwater. In order for disposal facilities to meet their performance objectives, engineered and natural barriers are relied upon. Engineered barriers include things like the design of the disposal unit, while natural barriers include things like the depth of soil between the disposal unit and the water table. The Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) in South Carolina is an example of a waste disposal unit that must be evaluated over a timeframe of thousands of years. The engineered and natural barriers for the SDF allow it to meet its performance objective over the long time frame. Some waste disposal facilities are required to meet certain standards to ensure public safety. These type of facilities require an engineered containment system to ensure that these requirements are met. The Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) is an example of this type of facility. The facility is evaluated based on a groundwater pathway analysis which considers long-term changes to material properties due to physical and chemical degradation processes. The facility is able to meet these performance objectives due to the multiple engineered and natural barriers to contaminant migration.

  3. MANAGING UNCERTAINTIES ASSOCIATED WITH RADIOACTIVE WASTE DISPOSAL: TASK GROUP 4 OF THE IAEA PRISM PROJECT

    SciTech Connect (OSTI)

    Seitz, R.

    2011-03-02

    It is widely recognized that the results of safety assessment calculations provide an important contribution to the safety arguments for a disposal facility, but cannot in themselves adequately demonstrate the safety of the disposal system. The safety assessment and a broader range of arguments and activities need to be considered holistically to justify radioactive waste disposal at any particular site. Many programs are therefore moving towards the production of what has become known as a Safety Case, which includes all of the different activities that are conducted to demonstrate the safety of a disposal concept. Recognizing the growing interest in the concept of a Safety Case, the International Atomic Energy Agency (IAEA) is undertaking an intercomparison and harmonization project called PRISM (Practical Illustration and use of the Safety Case Concept in the Management of Near-surface Disposal). The PRISM project is organized into four Task Groups that address key aspects of the Safety Case concept: Task Group 1 - Understanding the Safety Case; Task Group 2 - Disposal facility design; Task Group 3 - Managing waste acceptance; and Task Group 4 - Managing uncertainty. This paper addresses the work of Task Group 4, which is investigating approaches for managing the uncertainties associated with near-surface disposal of radioactive waste and their consideration in the context of the Safety Case. Emphasis is placed on identifying a wide variety of approaches that can and have been used to manage different types of uncertainties, especially non-quantitative approaches that have not received as much attention in previous IAEA projects. This paper includes discussions of the current results of work on the task on managing uncertainty, including: the different circumstances being considered, the sources/types of uncertainties being addressed and some initial proposals for approaches that can be used to manage different types of uncertainties.

  4. Design and implementation of a rapid-mixer flow cell for time-resolved infrared microspectroscopy

    SciTech Connect (OSTI)

    Marinkovic, Nebojsa S.; Adzic, Aleksandar R.; Sullivan, Michael; Kovacs, Kevin; Miller, Lisa M.; Rousseau, Denis L.; Yeh, Syun-Ru; Chance, Mark R.

    2000-11-01

    A rapid mixer for the analysis of reactions in the millisecond and submillisecond time domains by Fourier-transform infrared microspectroscopy has been constructed. The cell was tested by examination of cytochrome-c folding kinetics. The device allows collection of full infrared spectral data on millisecond and faster time scales subsequent to chemical jump reaction initiation. The data quality is sufficiently good such that spectral fitting techniques could be applied to analysis of the data. Thus, this method provides an advantage over kinetic measurements at single wavelengths using infrared laser or diode sources, particularly where band overlap exists.

  5. Long-term surveillance plan for the Mexican Hat Disposal Site, Mexican Hat, Utah

    SciTech Connect (OSTI)

    NONE

    1996-02-01

    This plan describes the long-term surveillance activities for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Mexican Hat, Utah. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This long-term surveillance plan (LTSP) was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive material (RRM). This LTSP (based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program), documents the land ownership interests and details how the long-term care of the disposal site will be accomplished.

  6. Use of depleted uranium metal as cask shielding in high-level waste storage, transport, and disposal systems

    SciTech Connect (OSTI)

    Yoshimura, H.R.; Ludwigsen, J.S.; McAllaster, M.E. [and others

    1996-09-01

    The US DOE has amassed over 555,000 metric tons of depleted uranium from its uranium enrichment operations. Rather than dispose of this depleted uranium as waste, this study explores a beneficial use of depleted uranium as metal shielding in casks designed to contain canisters of vitrified high-level waste. Two high-level waste storage, transport, and disposal shielded cask systems are analyzed. The first system employs a shielded storage and disposal cask having a separate reusable transportation overpack. The second system employs a shielded combined storage, transport, and disposal cask. Conceptual cask designs that hold 1, 3, 4 and 7 high-level waste canisters are described for both systems. In all cases, cask design feasibility was established and analyses indicate that these casks meet applicable thermal, structural, shielding, and contact-handled requirements. Depleted uranium metal casting, fabrication, environmental, and radiation compatibility considerations are discussed and found to pose no serious implementation problems. About one-fourth of the depleted uranium inventory would be used to produce the casks required to store and dispose of the nearly 15,400 high-level waste canisters that would be produced. This study estimates the total-system cost for the preferred 7-canister storage and disposal configuration having a separate transportation overpack would be $6.3 billion. When credits are taken for depleted uranium disposal cost, a cost that would be avoided if depleted uranium were used as cask shielding material rather than disposed of as waste, total system net costs are between $3.8 billion and $5.5 billion.

  7. Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part I of II, datum design conditions and approach.

    SciTech Connect (OSTI)

    Colella, Whitney G.

    2010-06-01

    Energy network optimization (ENO) models identify new strategies for designing, installing, and controlling stationary combined heat and power (CHP) fuel cell systems (FCSs) with the goals of (1) minimizing electricity and heating costs for building owners and (2) reducing emissions of the primary greenhouse gas (GHG) - carbon dioxide (CO{sub 2}). A goal of this work is to employ relatively inexpensive simulation studies to discover more financially and environmentally effective approaches for installing CHP FCSs. ENO models quantify the impact of different choices made by power generation operators, FCS manufacturers, building owners, and governments with respect to two primary goals - energy cost savings for building owners and CO{sub 2} emission reductions. These types of models are crucial for identifying cost and CO{sub 2} optima for particular installations. Optimal strategies change with varying economic and environmental conditions, FCS performance, the characteristics of building demand for electricity and heat, and many other factors. ENO models evaluate both 'business-as-usual' and novel FCS operating strategies. For the scenarios examined here, relative to a base case of no FCSs installed, model results indicate that novel strategies could reduce building energy costs by 25% and CO{sub 2} emissions by 80%. Part I of II articles discusses model assumptions and methodology. Part II of II articles illustrates model results for a university campus town and generalizes these results for diverse communities.

  8. Economics of a small-volume low-level radioactive waste disposal facility

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    This report was prepared by the US Department of Energy National Low-Level Waste Management Program to present the results of a life-cycle cost analysis of a low-level radioactive waste disposal facility, including all support facilities, beginning in the preoperational phase and continuing through post-closure care. The disposal technology selected for this report is earth-covered concrete vaults, which use reinforced concrete vaults constructed above grade and an earth cover constructed at the end of the operational period for permanent closure. The report develops a design, cost estimate, and schedule for the base case and eight alternative scenarios involving changes in total disposal capacity, operating life, annual disposal rate, source of financing and long-term interest rates. The purpose of this analysis of alternatives is to determine the sensitivity of cost to changes in key analytical or technical parameters, thereby evaluating the influence of a broad range of conditions. The total estimated cost of each alternative is estimated and a unit disposal charge is developed.

  9. Strategy for the Management and Disposal of Used Nuclear Fuel...

    Energy Savers [EERE]

    for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level...

  10. Z-Bed Recovery Water Disposal | Department of Energy

    Office of Environmental Management (EM)

    Z-Bed Recovery Water Disposal Z-Bed Recovery Water Disposal Presentation from the 33rd Tritium Focus Group Meeting held in Aiken, South Carolina on April 22-24, 2014. Z-Bed...

  11. TITLE: DISPOSAL OF PROTECTED HEALTH INFORMATION POLICY & PURPOSE

    E-Print Network [OSTI]

    Salzman, Daniel

    TITLE: DISPOSAL OF PROTECTED HEALTH INFORMATION POLICY & PURPOSE: To assure confidential information including patient and research information is disposed of in an appropriate manner. PROCEDURE patient and research information. 1. All staff must assure that paper containing confidential patient

  12. Grout treatment facility land disposal restriction management plan

    SciTech Connect (OSTI)

    Hendrickson, D.W.

    1991-04-04

    This document establishes management plans directed to result in the land disposal of grouted wastes at the Hanford Grout Facilities in compliance with Federal, State of Washington, and Department of Energy land disposal restrictions. 9 refs., 1 fig.

  13. Low-level radioactive waste disposal facility closure

    SciTech Connect (OSTI)

    White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1990-11-01

    Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs.

  14. Acceptance of Classified Excess Components for Disposal at Area 5

    SciTech Connect (OSTI)

    Poling, Jeanne [National Security Technologies, LLC (United States); Saad, Max [Sandia National Lab., NM (United States)

    2012-04-09

    This slide-show discusses weapons dismantlement and disposal, issues related to classified waste and their solutions.

  15. Architectures and criteria for the design of high efficiency organic photovoltaic cells

    DOE Patents [OSTI]

    Rand, Barry; Forrest, Stephen R; Pendergrast Burk, Diane

    2015-03-31

    A method for fabricating an organic photovoltaic cell includes providing a first electrode; depositing a series of at least seven layers onto the first electrode, each layer consisting essentially of a different organic semiconductor material, the organic semiconductor material of at least an intermediate layer of the sequence being a photoconductive material; and depositing a second electrode onto the sequence of at least seven layers. One of the first electrode and the second electrode is an anode and the other is a cathode. The organic semiconductor materials of the series of at least seven layers are arranged to provide a sequence of decreasing lowest unoccupied molecular orbitals (LUMOs) and a sequence of decreasing highest occupied molecular orbitals (HOMOs) across the series from the anode to the cathode.

  16. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    SciTech Connect (OSTI)

    Elcock, D.

    1998-03-10

    Salt caverns can be formed in underground salt formations incidentally as a result of mining or intentionally to create underground chambers for product storage or waste disposal. For more than 50 years, salt caverns have been used to store hydrocarbon products. Recently, concerns over the costs and environmental effects of land disposal and incineration have sparked interest in using salt caverns for waste disposal. Countries using or considering using salt caverns for waste disposal include Canada (oil-production wastes), Mexico (purged sulfates from salt evaporators), Germany (contaminated soils and ashes), the United Kingdom (organic residues), and the Netherlands (brine purification wastes). In the US, industry and the regulatory community are pursuing the use of salt caverns for disposal of oil-field wastes. In 1988, the US Environmental Protection Agency (EPA) issued a regulatory determination exempting wastes generated during oil and gas exploration and production (oil-field wastes) from federal hazardous waste regulations--even though such wastes may contain hazardous constituents. At the same time, EPA urged states to tighten their oil-field waste management regulations. The resulting restrictions have generated industry interest in the use of salt caverns for potentially economical and environmentally safe oil-field waste disposal. Before the practice can be implemented commercially, however, regulators need assurance that disposing of oil-field wastes in salt caverns is technically and legally feasible and that potential health effects associated with the practice are acceptable. In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. It investigated regulatory issues; the types of oil-field wastes suitable for cavern disposal; cavern design and location considerations; and disposal operations, closure and remediation issues. It determined that if caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they could, from technical and legal perspectives, be suitable for disposing of oil-field wastes. On the basis of these findings, ANL subsequently conducted a preliminary risk assessment on the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the NOW disposed of in salt caverns. The methodology for the risk assessment included the following steps: identifying potential contaminants of concern; determining how humans could be exposed to these contaminants; assessing contaminant toxicities; estimating contaminant intakes; and estimating human cancer and noncancer risks. To estimate exposure routes and pathways, four postclosure cavern release scenarios were assessed. These were inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks, failure of the cavern through leaky interbeds, and partial collapse of the cavern roof. Assuming a single, generic, salt cavern and generic oil-field wastes, potential human health effects associated with constituent hazardous substances (arsenic, benzene, cadmium, and chromium) were assessed under each of these scenarios. Preliminary results provided excess cancer risk and hazard index (for noncancer health effects) estimates that were well within the EPA target range for acceptable exposure risk levels. These results lead to the preliminary conclusion that from a human health perspective, salt caverns can provide an acceptable disposal method for nonhazardous oil-field wastes.

  17. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    SciTech Connect (OSTI)

    French, Sean B. [Los Alamos National Laboratory; Shuman, Rob [WPS: WASTE PROJECTS AND SERVICES

    2012-05-22

    As a condition to the Disposal Authorization Statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year 2011 annual review for Area G. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 and formally approved in 2009. These analyses are expected to provide reasonable estimates of the long-term performance of Area G and, hence, the disposal facility's ability to comply with Department of Energy (DOE) performance objectives. Annual disposal receipt reviews indicate that smaller volumes of waste will require disposal in the pits and shafts at Area G relative to what was projected for the performance assessment and composite analysis. The future inventories are projected to decrease modestly for the pits but increase substantially for the shafts due to an increase in the amount of tritium that is projected to require disposal. Overall, however, changes in the projected future inventories of waste are not expected to compromise the ability of Area G to satisfy DOE performance objectives. The Area G composite analysis addresses potential impacts from all waste disposed of at the facility, as well as other sources of radioactive material that may interact with releases from Area G. The level of knowledge about the other sources included in the composite analysis has not changed sufficiently to call into question the validity of that analysis. Ongoing environmental surveillance activities are conducted at, and in the vicinity of, Area G. However, the information generated by many of these activities cannot be used to evaluate the validity of the performance assessment and composite analysis models because the monitoring data collected are specific to operational releases or address receptors that are outside the domain of the performance assessment and composite analysis. In general, applicable monitoring data are supportive of some aspects of the performance assessment and composite analysis. Several research and development (R and D) efforts have been initiated under the performance assessment and composite analysis maintenance program. These investigations are designed to improve the current understanding of the disposal facility and site, thereby reducing the uncertainty associated with the projections of the long-term performance of Area G. The status and results of R and D activities that were undertaken in fiscal year 2011 are discussed in this report. Special analyses have been conducted to determine the feasibility of disposing of specific waste streams, to address proposed changes in disposal operations, and to consider the impacts of changes to the models used to conduct the performance assessment and composite analysis. These analyses are described and the results of the evaluations are summarized in this report. The Area G disposal facility consists of Material Disposal Area (MDA) G and the Zone 4 expansion area. To date, all disposal operations at Area G have been confined to MDA G. Material Disposal Area G is scheduled to undergo final closure in 2015; disposal of waste in the pits and shafts is scheduled to end in 2013. In anticipation of the closure of MDA G, plans are being made to ship the majority of the waste generated at LANL to off-site locations for disposal. It is not clear at this time if waste that will be disposed of at LANL will be placed in Zone 4 or if disposal operations will move to a new location at the Laboratory. Separately, efforts to optimize the final cover used in the closure of MDA G are underway; a final cover design different than that adopted for the performance assessment and composite analy

  18. New III-V cell design approaches for very high efficiency. Annual subcontract report, 1 August 1991--31 July 1992

    SciTech Connect (OSTI)

    Lundstrom, M.S.; Melloch, M.R.; Lush, G.B.; Patkar, M.P.; Young, M.P. [Purdue Univ., Lafayette, IN (United States)

    1993-04-01

    This report describes to examine new solar cell desip approaches for achieving very high conversion efficiencies. The program consists of two elements. The first centers on exploring new thin-film approaches specifically designed for M-III semiconductors. Substantial efficiency gains may be possible by employing light trapping techniques to confine the incident photons, as well as the photons emitted by radiative recombination. The thin-film approach is a promising route for achieving substantial performance improvements in the already high-efficiency, single-junction, III-V cell. The second element of the research involves exploring desip approaches for achieving high conversion efficiencies without requiring extremely high-quality material. This work has applications to multiple-junction cells, for which the selection of a component cell often involves a compromise between optimum band pp and optimum material quality. It could also be a benefit manufacturing environment by making the cell`s efficiency less dependent on materialquality.

  19. LANL completes excavation of 1940s waste disposal site

    E-Print Network [OSTI]

    - 1 - LANL completes excavation of 1940s waste disposal site September 30, 2011 Waste safely removed from 65-year-old site LANL completed excavation of its oldest waste disposal site, Material from the six-acre site. MDA-B was used from 1944-48 as a waste disposal site for the Manhattan Project

  20. Used Fuel Disposal in Crystalline Rocks. FY15 Progress Report

    SciTech Connect (OSTI)

    Wang, Yifeng

    2015-08-20

    The objective of the Crystalline Disposal R&D Work Package is to advance our understanding of longterm disposal of used fuel in crystalline rocks and to develop necessary experimental and computational capabilities to evaluate various disposal concepts in such media.

  1. CITY OF PRINCE GEORGE: SNOW DISPOSAL AT THE LANSDOWNE ROAD

    E-Print Network [OSTI]

    #12;CITY OF PRINCE GEORGE: SNOW DISPOSAL AT THE LANSDOWNE ROAD WASTEWATER TREATMENT CENTRE DOE FRAPH7 #12;Dayton & Knight Ltd. CITY OF PRINCE GEORGE SNOW DISPOSAL STUDY AT THE LANSDOWNE ROAD of Prince George. #12;CITY OF PRINCE GEORGE SNOW DISPOSAL STUDY AT THE LANSDOWNE ROAD WASTEWATER TREATMENT

  2. Field study of disposed solid wastes from advanced coal processes

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute's fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison's limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United's mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells.

  3. Recharge Data Package for the 2005 Integrated Disposal Facility Performance Assessment

    SciTech Connect (OSTI)

    Fayer, Michael J.; Szecsody, Jim E.

    2004-06-30

    Pacific Northwest National Laboratory assisted CH2M Hill Hanford Group, Inc., (CHG) by providing estimates of recharge rates for current conditions and long-term scenarios involving disposal in the Integrated Disposal Facility (IDF). The IDF will be located in the 200 East Area at the Hanford Site and will receive several types of waste including immobilized low-activity waste. The recharge estimates for each scenario were derived from lysimeter and tracer data collected by the IDF PA Project and from modeling studies conducted for the project. Recharge estimates were provided for three specific site features (the surface barrier; possible barrier side slopes; and the surrounding soil) and four specific time periods (pre-Hanford; Hanford operations; surface barrier design life; post-barrier design life). CHG plans to conduct a performance assessment of the latest IDF design and call it the IDF 2005 PA; this recharge data package supports the upcoming IDF 2005 PA.

  4. Architectures and criteria for the design of high efficiency organic photovoltaic cells

    DOE Patents [OSTI]

    Rand, Barry; Forrest, Stephen R; Burk, Diana Pendergrast

    2015-03-24

    An organic photovoltaic cell includes an anode and a cathode, and a plurality of organic semiconductor layers between the anode and the cathode. At least one of the anode and the cathode is transparent. Each two adjacent layers of the plurality of organic semiconductor layers are in direct contact. The plurality of organic semiconductor layers includes an intermediate layer consisting essentially of a photoconductive material, and two sets of at least three layers. A first set of at least three layers is between the intermediate layer and the anode. Each layer of the first set consists essentially of a different organic semiconductor material having a higher LUMO and a higher HOMO, relative to the material of an adjacent layer of the plurality of organic semiconductor layers closer to the cathode. A second set of at least three layers is between the intermediate layer and the cathode. Each layer of the second set consists essentially of a different organic semiconductor material having a lower LUMO and a lower HOMO, relative to the material of an adjacent layer of the plurality of organic semiconductor layers closer to the anode.

  5. Pesticide fate in an aboveground disposal system 

    E-Print Network [OSTI]

    Vanderglas, Brian Richard

    1988-01-01

    Major Subject: Soil Science PESTICIDE FATE IN AN ABOVEGROUND DISPOSAL SYSTEM A Thesis by BRIAN RICHARD VANDERGLAS Approved as to style and content by: K. W. Brown (Chair of Committee) John M. Sweeten (Member) Jack D. Price (Member) E. C. A.... Pesticides applied to digesters. . 3. Mass of active ingredient (A. l. ) per treatment. . . . 17 4. Mean efficiencies of pesticide extraction methods from the soil and water. 21 5. Optimal gas chromatograph conditions for analysis of pesticides extracted...

  6. Optical ordance system for use in explosive ordnance disposal activities

    SciTech Connect (OSTI)

    Merson, J.A.; Salas, F.J.; Helsel, F.M.

    1994-01-01

    A portable hand-held solid state rod laser system and an optically-ignited detonator have been developed for use in explosive ordnance disposal (EOD) activities. Laser prototypes from Whittaker Ordnance and Universal Propulsion have been tested and evaluated. The optical detonator contains 2-(5 cyanotetrazolato) pentaamine cobalt III perchlorate (CP) as the DDT column and the explosive Octahydro 1, 3, 5, 7 -- tetranitro -- 1, 3, 5, 7 -- tetrazocine (HMX) as the output charge. The laser is designed to have an output of 150 mJ in a 500 microsecond pulse. This output allows firing through 2000 meters of optical fiber. The detonator can also be ignited with a portable laser diode source through a shorter length of fiber.

  7. Significance of water fluxes in a deep arid-region vadose zone to waste disposal strategies

    SciTech Connect (OSTI)

    Johnejack, K.R.; Blout, D.O.; Sully, M.J.; Emer, D.F.; Hammermeister, D.P. [Reynolds Electrical and Engineering Co., Inc., Las Vegas, NV (United States); Dever, L.G.; O`Neill, L.J. [DOE Nevada Operations Office, Las Vegas, NV (United States). Waste Management Div.; Tyler, S.W. [Desert Research Institute, Reno, NV (United States). Water Resources Center; Chapman, J. [Desert Research Institute, Las Vegas, NV (United States). Water Resources Center

    1994-03-01

    Recently collected subsurface site characterization data have led to the development of a conceptual model of water movement beneath the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) that differs significantly from the conceptual model of water movement inherent in Resource Conservation and Recovery Act (RCRA) regulations. At the Area 5 RWMS, water fluxes in approximately the upper 75 m (250 ft) of the vadose zone point in the upward direction (rather than downward) which effectively isolates this region from the deep (approximately 250 m (820 ft)) uppermost aquifer. Standard RCRA approaches for detection and containment (groundwater monitoring and double liners/leachate collection/leak detection systems) are not able to fulfill their intended function in this rather unique hydrogeologic environment. In order to better fulfill the waste detection and containment intentions of RCRA for mixed waste disposal at the Area 5 RWMS, the Department of Energy, Nevada Operations Office (DOE/NV) is preparing a single petition for both a waiver from groundwater monitoring and an exemption from double liners with leachate collection/leak detection. DOE/NV proposes in this petition that the containment function of liners and leachate collection is better accomplished by the natural hydrogeologic processes operating in the upper vadose zone; and the detection function of groundwater monitoring and the leak detection system in liners is better fulfilled by an alternative vadose zone monitoring system. In addition, an alternative point of compliance is proposed that will aid in early detection, as well as limit the extent of potential contamination before detection. Finally, special cell design features and operation practices will be implemented to limit leachate formation, especially while the cell is open to the atmosphere during waste emplacement.

  8. High Level Waste Disposal System Optimization

    SciTech Connect (OSTI)

    Dirk Gombert; M. Connolly; J. Roach; W. Holtzscheiter

    2005-02-01

    The high level waste (HLW) disposal system consists of the Yucca Mountain Facility (YMF) and waste product (e.g. glass) generation facilities. Responsibility for management is shared between the U. S. Department of Energy (DOE) Offices of Civilian Radioactive Waste Management (DOE-RW) and Environmental Management (DOE-EM). The DOE-RW license application and the Waste Acceptance System Requirements Document (WASRD), as well as the DOE-EM Waste Acceptance Product Specification for Vitrified High Level Waste Forms (WAPS) govern the overall performance of the system. This basis for HLW disposal should be reassessed to consider waste form and process technology research and development (R&D), which have been conducted by DOE-EM, international agencies (i.e. ANSTO, CEA), and the private sector; as well as the technical bases for including additional waste forms in the final license application. This will yield a more optimized HLW disposal system to accelerate HLW disposition, more efficient utilization of the YMF, and overall system cost reduction.

  9. Optimization of Deep Borehole Systems for HLW Disposal

    SciTech Connect (OSTI)

    Driscoll, Michael; Baglietto, Emilio; Buongiorno, Jacopo; Lester, Richard; Brady, Patrick; Arnold, B. W.

    2015-09-09

    This is the final report on a project to update and improve the conceptual design of deep boreholes for high level nuclear waste disposal. The effort was concentrated on application to intact US legacy LWR fuel assemblies, but conducted in a way in which straightforward extension to other waste forms, host rock types and countries was preserved. The reference fuel design version consists of a vertical borehole drilled into granitic bedrock, with the uppermost kilometer serving as a caprock zone containing a diverse and redundant series of plugs. There follows a one to two kilometer waste canister emplacement zone having a hole diameter of approximately 40-50 cm. Individual holes are spaced 200-300 m apart to form a repository field. The choice of verticality and the use of a graphite based mud as filler between the waste canisters and the borehole wall liner was strongly influenced by the expectation that retrievability would continue to be emphasized in US and worldwide repository regulatory criteria. An advanced version was scoped out using zinc alloy cast in place to fill void space inside a disposal canister and its encapsulated fuel assembly. This excludes water and greatly improves both crush resistance and thermal conductivity. However the simpler option of using a sand fill was found adequate and is recommended for near-term use. Thermal-hydraulic modeling of the low permeability and porosity host rock and its small (? 1%) saline water content showed that vertical convection induced by the waste’s decay heat should not transport nuclides from the emplacement zone up to the biosphere atop the caprock. First order economic analysis indicated that borehole repositories should be cost-competitive with shallower mined repositories. It is concluded that proceeding with plans to drill a demonstration borehole to confirm expectations, and to carry out priority experiments, such as retention and replenishment of in-hole water is in order.

  10. Electrochemical cell stack assembly

    DOE Patents [OSTI]

    Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2010-06-22

    Multiple stacks of tubular electrochemical cells having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films arranged in parallel on stamped conductive interconnect sheets or ferrules. The stack allows one or more electrochemical cell to malfunction without disabling the entire stack. Stack efficiency is enhanced through simplified gas manifolding, gas recycling, reduced operating temperature and improved heat distribution.

  11. DOE - Office of Legacy Management -- Burro Canyon Disposal Cell - 007

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth Dakota Edgemont, SouthLaboratory - CT 06YorkBurro Canyon

  12. DOE - Office of Legacy Management -- Estes Gulch Disposal Cell - 010

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth Dakota Edgemont, SouthLaboratoryDiv - NYCorp -Era Tool andEstes

  13. Plant Encroachment on the Burrell, Pennsylvania, Disposal Cell: Evaluation

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuilding energy codesPhiladelhia GasDepartment ofN O R Tof Long-Term

  14. New Facility Will Test Disposal Cell Cover Renovation | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailable for Public Comment (March 2012)Energy

  15. International low level waste disposal practices and facilities

    SciTech Connect (OSTI)

    Nutt, W.M.

    2011-12-19

    The safe management of nuclear waste arising from nuclear activities is an issue of great importance for the protection of human health and the environment now and in the future. The primary goal of this report is to identify the current situation and practices being utilized across the globe to manage and store low and intermediate level radioactive waste. The countries included in this report were selected based on their nuclear power capabilities and involvement in the nuclear fuel cycle. This report highlights the nuclear waste management laws and regulations, current disposal practices, and future plans for facilities of the selected international nuclear countries. For each country presented, background information and the history of nuclear facilities are also summarized to frame the country's nuclear activities and set stage for the management practices employed. The production of nuclear energy, including all the steps in the nuclear fuel cycle, results in the generation of radioactive waste. However, radioactive waste may also be generated by other activities such as medical, laboratory, research institution, or industrial use of radioisotopes and sealed radiation sources, defense and weapons programs, and processing (mostly large scale) of mineral ores or other materials containing naturally occurring radionuclides. Radioactive waste also arises from intervention activities, which are necessary after accidents or to remediate areas affected by past practices. The radioactive waste generated arises in a wide range of physical, chemical, and radiological forms. It may be solid, liquid, or gaseous. Levels of activity concentration can vary from extremely high, such as levels associated with spent fuel and residues from fuel reprocessing, to very low, for instance those associated with radioisotope applications. Equally broad is the spectrum of half-lives of the radionuclides contained in the waste. These differences result in an equally wide variety of options for the management of radioactive waste. There is a variety of alternatives for processing waste and for short term or long term storage prior to disposal. Likewise, there are various alternatives currently in use across the globe for the safe disposal of waste, ranging from near surface to geological disposal, depending on the specific classification of the waste. At present, there appears to be a clear and unequivocal understanding that each country is ethically and legally responsible for its own wastes, in accordance with the provisions of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. Therefore the default position is that all nuclear wastes will be disposed of in each of the 40 or so countries concerned with nuclear power generation or part of the fuel cycle. To illustrate the global distribution of radioactive waste now and in the near future, Table 1 provides the regional breakdown, based on the UN classification of the world in regions illustrated in Figure 1, of nuclear power reactors in operation and under construction worldwide. In summary, 31 countries operate 433 plants, with a total capacity of more than 365 gigawatts of electrical energy (GW[e]). A further 65 units, totaling nearly 63 GW(e), are under construction across 15 of these nations. In addition, 65 countries are expressing new interest in, considering, or actively planning for nuclear power to help address growing energy demands to fuel economic growth and development, climate change concerns, and volatile fossil fuel prices. Of these 65 new countries, 21 are in Asia and the Pacific region, 21 are from the Africa region, 12 are in Europe (mostly Eastern Europe), and 11 in Central and South America. However, 31 of these 65 are not currently planning to build reactors, and 17 of those 31 have grids of less than 5 GW, which is said to be too small to accommodate most of the reactor designs available. For the remaining 34 countries actively planning reactors, as of September 2010: 14 indicate a strong intention to precede w

  16. Disposal R&D in the Used Fuel Disposition Campaign: A Discussion of Opportunities for Active International Collaboration

    E-Print Network [OSTI]

    Birkholzer, J.T.

    2012-01-01

    of direct collaboration with international disposal programsdirect access to information, data, and expertise on various disposal

  17. Design of hybrid nanoheterostructure systems for enhanced quantum and solar conversion efficiencies in dye-sensitized solar cells

    SciTech Connect (OSTI)

    K?l?ç, Bayram E-mail: kbayramkilic@gmail.com; Telli, Hakan; Ba?aran, Ali; Pirge, Gursev; Tüzemen, Sebahattin

    2015-04-07

    Dye sensitized solar cells (DSSCs) with an innovative design involving controlled-morphology vertically aligned (VA) ZnO nanowires within mesoporous TiO{sub 2} structures with ultrahigh surface area for implementation as photoanodes are herein reported. Although TiO{sub 2} nanostructures exhibit excellent power conversion efficiency, the electron transport rate is low owing to low electron mobility. To overcome this, ZnO nanowires with high electron mobility have been investigated as potential candidates for photoanodes. However, the power conversion efficiency of ZnO nanowires is still lower than that of TiO{sub 2} owing to their low internal surface area. Consequently, in this work, vertical growth of ZnO nanowires within mesoporous TiO{sub 2} structures is carried out to increase their solar power conversion efficiency. The photovoltaic performance of solar cells using ZnO nanowires, mesoporous TiO{sub 2}, and TiO{sub 2}/ZnO hybrid structures are compared. The VA TiO{sub 2}/ZnO hybrid structures are found to provide direct electron transfer compared with the tortuous pathway of zero-dimensional nanostructures, resulting in an increased conversion efficiency. It is demonstrated that the light scattering of the photoanode film is increased and electron recombination is decreased when an appropriate amount of mesoporous TiO{sub 2} is used as a substrate for ZnO nanowires. The DSSC fabricated with the TiO{sub 2}/ZnO hybrid photoanode prepared with 15.8?wt. % TiO{sub 2} showed the highest conversion efficiency of 7.30%, approximately 5%, 18%, and 40% higher than that of DSSCs fabricated with 3.99?wt. % TiO{sub 2}, pure TiO{sub 2}, and pure ZnO photoanodes, respectively.

  18. Review of Yucca Mountain Disposal Criticality Studies

    SciTech Connect (OSTI)

    Scaglione, John M [ORNL] [ORNL; Wagner, John C [ORNL] [ORNL

    2011-01-01

    The U.S. Department of Energy (DOE), Office of Civilian Radioactive Waste Management, submitted a license application for construction authorization of a deep geologic repository at Yucca Mountain, Nevada, in June of 2008. The license application is currently under review by the U.S. Nuclear Regulatory Commission. However,on March 3, 2010 the DOE filed a motion requesting withdrawal of the license application. With the withdrawal request and the development of the Blue Ribbon Commission to seek alternative strategies for disposing of spent fuel, the status of the proposed repository at Yucca Mountain is uncertain. What is certain is that spent nuclear fuel (SNF) will continue to be generated and some long-lived components of the SNF will eventually need a disposition path(s). Strategies for the back end of the fuel cycle will continue to be developed and need to include the insights from the experience gained during the development of the Yucca Mountain license application. Detailed studies were performed and considerable progress was made in many key areas in terms of increased understanding of relevant phenomena and issues regarding geologic disposal of SNF. This paper reviews selected technical studies performed in support of the disposal criticality analysis licensing basis and the use of burnup credit. Topics include assembly misload analysis, isotopic and criticality validation, commercial reactor critical analyses, loading curves, alternative waste package and criticality control studies, radial burnup data and effects, and implementation of a conservative application model in the criticality probabilistic evaluation as well as other information that is applicable to operations regarding spent fuel outside the reactor. This paper summarizes the work and significant accomplishments in these areas and provides a resource for future, related activities.

  19. Standard guide for characterization of spent nuclear fuel in support of geologic repository disposal

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This guide provides guidance for the types and extent of testing that would be involved in characterizing the physical and chemical nature of spent nuclear fuel (SNF) in support of its interim storage, transport, and disposal in a geologic repository. This guide applies primarily to commercial light water reactor (LWR) spent fuel and spent fuel from weapons production, although the individual tests/analyses may be used as applicable to other spent fuels such as those from research and test reactors. The testing is designed to provide information that supports the design, safety analysis, and performance assessment of a geologic repository for the ultimate disposal of the SNF. 1.2 The testing described includes characterization of such physical attributes as physical appearance, weight, density, shape/geometry, degree, and type of SNF cladding damage. The testing described also includes the measurement/examination of such chemical attributes as radionuclide content, microstructure, and corrosion product c...

  20. Disposal R&D in the Used Fuel Disposition Campaign: A Discussion of Opportunities for Active International Collaboration

    SciTech Connect (OSTI)

    Birkholzer, J.T.

    2011-06-01

    For DOE's Used Fuel Disposition Campaign (UFDC), international collaboration is a beneficial and cost-effective strategy for advancing disposal science with regards to multiple disposal options and different geologic environments. While the United States disposal program focused solely on Yucca Mountain tuff as host rock over the past decades, several international programs have made significant progress in the characterization and performance evaluation of other geologic repository options, most of which are very different from the Yucca Mountain site in design and host rock characteristics. Because Yucca Mountain was so unique (e.g., no backfill, unsaturated densely fractured tuff), areas of direct collaboration with international disposal programs were quite limited during that time. The decision by the U.S. Department of Energy to no longer pursue the disposal of high-level radioactive waste and spent fuel at Yucca Mountain has shifted UFDC's interest to disposal options and geologic environments similar to those being investigated by disposal programs in other nations. Much can be gained by close collaboration with these programs, including access to valuable experience and data collected over recent decades. Such collaboration can help to efficiently achieve UFDC's long-term goals of conducting 'experiments to fill data needs and confirm advanced modeling approaches' (by 2015) and of having a 'robust modeling and experimental basis for evaluation of multiple disposal system options' (by 2020). This report discusses selected opportunities of active international collaboration, with focus on both Natural Barrier System (NBS) and Engineered Barrier System (EBS) aspects and those opportunities that provide access to field data (and respective interpretation/modeling) or allow participation in ongoing field experiments. This discussion serves as a basis for the DOE/NE-53 and UFDC planning process for FY12 and beyond.

  1. Liquid cooled, linear focus solar cell receiver

    DOE Patents [OSTI]

    Kirpich, Aaron S. (Broomall, PA)

    1985-01-01

    Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.

  2. Liquid cooled, linear focus solar cell receiver

    DOE Patents [OSTI]

    Kirpich, A.S.

    1983-12-08

    Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.

  3. Waste Stream Disposal Pharmacy Quick Sheet (6/16/14) Also pharmacy employees must complete SABA "Medication Waste Stream Disposal" Non-hazardous Hazardous Additional Waste

    E-Print Network [OSTI]

    Oliver, Douglas L.

    Additional Waste Disposal Location Green Bins for Non-hazardous waste Black Bins must complete SABA "Medication Waste Stream Disposal" Non-hazardous Hazardous for Hazardous Waste Yellow Trace Chemo Disposal Bin Red Sharps Bins Red

  4. Electrochemical Behavior of Disposable Electrodes Prepared by Ion Beam Based Surface Modification for Biomolecular Recognition

    SciTech Connect (OSTI)

    Erdem, A.; Karadeniz, H.; Caliskan, A.; Urkac, E. Sokullu; Oztarhan, A.; Oks, E.; Nikolayev, A.

    2009-03-10

    Many important technological advances have been made in the development of technologies to monitor interactions and recognition events of biomolecules in solution and on solid substrates. The development of advanced biosensors could impact significantly the areas of genomics, proteomics, biomedical diagnostics and drug discovery. In the literature, there have recently appeared an impressive number of intensive designs for electrochemical monitoring of biomolecular recognition. Herein, the influence of ion implanted disposable graphite electrodes on biomolecular recognition and their electrochemical behaviour was investigated.

  5. Disposal Systems Evaluations and Tool Development - Engineered Barrier System Evaluation (Work Package LL1015080425)

    SciTech Connect (OSTI)

    Blink, J A; Buscheck, T A; Halsey, W G; Wolery, T

    2010-03-19

    The Disposal Systems Evaluation Framework (DSEF) will use a logical process for developing one or more disposal system concepts (also referred to as repository system in this report) for any given waste form and geologic setting combination. In the Features, Events, and Processes (FEPs) group of work packages, there are seven categories of waste forms and eight categories of geologic setting being studied. The DSEF will also establish a Used Fuel Disposition Campaign (UFDC) knowledge management system to organize high-level information, data, and assumptions, thereby facilitating consistency in high-level system simulation and economic analyses. This system likely will be housed with the INL-based documentation system. Attention is given to lessons oearned from the systems used at the Waste Isolation Pilot Plant (WIPP) and the Yucca Mountain Project (YMP). Where reference material from other programs (e.g., international) is used or cited, the knowledge-management system imports the reference material directly or refer to it in bibliography form. Alternative data sets (e.g., from other programs) will also be utilized to evaluate their influence on DSEF analyses for given waste form and disposal-system combinations. The knowledge-management system can also be used to maintain the results of DSEF realizations, enabling the comparison and ranking of various waste-form/disposal-system-environment/disposal-system-design options. Finally, the UFDC knowledge-management system will be able to provide a compendium of 'templates' that can be utilized, in a labor-efficient fashion, to build parallel DSEF analyses (e.g., 'one offs'). The DSEF will not be a stand-alone, push-the-button and wait for the results, item of software. it will use osftware (probably EXCEL, initially), to guide the team members through a logical process of evaluating combinations of waste-form, disposal-syste-environment, and disposal-system design. In later stages, it will utilize software developed in the field of knowledge engineering and knowledge-management systems (Umeki et al. 2009). At certain points in the logical process, the DSEF software will point the evaluate to other software tools to do analyses needed to move the process forward. In the development of the DSEF, they will be mindful to make it no more complex than necessary to evaluate the system being considered. The DSEF will organize and document the work such that multiple realizations for different combinations can be compared and contrasted.

  6. Bypass diode for a solar cell

    DOE Patents [OSTI]

    Rim, Seung Bum (Palo Alto, CA); Kim, Taeseok (San Jose, CA); Smith, David D. (Campbell, CA); Cousins, Peter J. (Menlo Park, CA)

    2012-03-13

    Bypass diodes for solar cells are described. In one embodiment, a bypass diode for a solar cell includes a substrate of the solar cell. A first conductive region is disposed above the substrate, the first conductive region of a first conductivity type. A second conductive region is disposed on the first conductive region, the second conductive region of a second conductivity type opposite the first conductivity type.

  7. Long-term surveillance plan for the Bodo Canyon Disposal Site, Durango, Colorado. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-11-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Act on (UMTRA) Project Bodo Canyon disposal site at Durango, Colorado, describes the surveillance activities for the disposal site. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal call continues to function as designed This LTSP was prepared as a requirement for DOE acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM) from processing uranium ore. This LTSP documents that the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a). Following the introduction, contents of this report include the following: site final condition; site drawings and photographs; permanent site surveillance features; ground water monitoring; annual site inspections; unscheduled inspections; custodial maintenance; corrective action; record keeping and reporting requirements; emergency notification and reporting; quality assurance; personal health and safety; list of contributions; and references.

  8. REGULATIONS ON PHOTOVOLTAIC MODULE DISPOSAL AND RECYCLING.

    SciTech Connect (OSTI)

    FTHENAKIS,V.

    2001-01-29

    Environmental regulations can have a significant impact on product use, disposal, and recycling. This report summarizes the basic aspects of current federal, state and international regulations which apply to end-of-life photovoltaic (PV) modules and PV manufacturing scrap destined for disposal or recycling. It also discusses proposed regulations for electronics that may set the ground of what is to be expected in this area in the near future. In the US, several states have started programs to support the recycling of electronic equipment, and materials destined for recycling often are excepted from solid waste regulations during the collection, transfer, storage and processing stages. California regulations are described separately because they are different from those of most other states. International agreements on the movement of waste between different countries may pose barriers to cross-border shipments. Currently waste moves freely among country members of the Organization of Economic Cooperation and Development (OECD), and between the US and the four countries with which the US has bilateral agreements. However, it is expected, that the US will adopt the rules of the Basel Convention (an agreement which currently applies to 128 countries but not the US) and that the Convection's waste classification system will influence the current OECD waste-handling system. Some countries adopting the Basel Convention consider end-of-life electronics to be hazardous waste, whereas the OECD countries consider them to be non-hazardous. Also, waste management regulations potentially affecting electronics in Germany and Japan are mentioned in this report.

  9. Transuranic waste disposal in the United State

    SciTech Connect (OSTI)

    Thompson, J.D.

    1986-01-01

    The US is unique in having created a special class of radioactive waste disposal based on the concentration of transuranic (TRU) elements in the waste. Since 1970, the US has been placing newly generated TRU waste in retrievable storage. It is intended that these wastes will be placed in a permanent deep geologic repository, the Waste Isolation Pilot Plant (WIPP). The WIPP opening for a demonstration emplacement period is set for October 1988. Transuranic wastes derive from some of the manufacturing and research activities carried out by the US Department of Energy (DOE). The bulk of this waste is generated in plutonium parts fabrication activities. A variety of plutonium-contaminated materials ranging from glove boxes, high-efficiency particulate air filters, and machine tools, to chemical sludges derived from plutonium recovery streams are stored as TRU wastes. Other processes that generate TRU waste are plutonium production operations, preparation for and cleanup from fuel reprocessing, manufacturing of plutonium heat sources, and nuclear fuel cycle research activities. Extensive procedures will be used to examine and prepare waste before it is placed in the WIPP for disposal. After the WIPP opens, certified waste will be transported to it and emplaced in the repository.

  10. Final disposal of VOCs from industrial wastewaters

    SciTech Connect (OSTI)

    Ying, W.; Bonk, R.R.; Hannam, S.C. (Occidential Chemical Corp., Grand Island, NY (United States)); Qi-dong Li (Fudan Univ., Shanghai (China))

    1994-08-01

    Vapor phase carbon adsorption followed by spent carbon regeneration and catalytic oxidation were evaluated as methods for disposal of volatile organic compounds (VOCs) released from industrial wastewaters during treatment operations such as aeration, air-stripping and aerobic biodegradation. Adsorptive capacities and breakthrough characteristics for eight VOCs found in many hazardous landfill leachates and contaminated groundwater were compared for selection of the best adsorbent and optimum treatment conditions. Coconut shell-based activated carbons exhibited higher VOC loading capacities than coal-based carbons, fiber carbon, molecular sieve and zeolite. Steam and hot nitrogen were both effective for regeneration of the spent carbon. A small quantity of adsorbates left in the regenerated carbon did not result in immediate VOC breakthrough in the next cycle adsorption treatment. Catalytic oxidation was found to be an attractive alternative for VOC disposal. Using a new commercial catalyst developed for destruction of halogenated organic compounds, even stable VOCs such as trichloroethylene and tetrachloroethylene were completely destroyed at <350[degrees]C when oxidation was conducted at a space velocity of 17000/hr. 25 refs., 10 figs., 10 tabs.

  11. Iraq nuclear facility dismantlement and disposal project

    SciTech Connect (OSTI)

    Cochran, J.R.; Danneels, J. [Sandia National Laboratories, Albuquerque, NM (United States); Kenagy, W.D. [U.S. Department of State, Bureau of International Security and Nonproliferation, Office of Nuclear Energy, Safety and Security, Washington, DC (United States); Phillips, C.J.; Chesser, R.K. [Center for Environmental Radiation Studies, Texas Tech University, Lubbock, TX (United States)

    2007-07-01

    The Al Tuwaitha nuclear complex near Baghdad contains a significant number of nuclear facilities from Saddam Hussein's dictatorship. Because of past military operations, lack of upkeep and looting there is now an enormous radioactive waste problem at Al Tuwaitha. Al Tuwaitha contains uncharacterised radioactive wastes, yellow cake, sealed radioactive sources, and contaminated metals. The current security situation in Iraq hampers all aspects of radioactive waste management. Further, Iraq has never had a radioactive waste disposal facility, which means that ever increasing quantities of radioactive waste and material must be held in guarded storage. The Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) has been initiated by the U.S. Department of State (DOS) to assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials, while building human capacities so that the GOI can manage other environmental cleanups in their country. The DOS has funded the International Atomic Energy Agency (IAEA) to provide technical assistance to the GOI via a Technical Cooperation Project. Program coordination will be provided by the DOS, consistent with U.S. and GOI policies, and Sandia National Laboratories will be responsible for coordination of participants and for providing waste management support. Texas Tech University will continue to provide in-country assistance, including radioactive waste characterization and the stand-up of the Iraq Nuclear Services Company. The GOI owns the problems in Iraq and will be responsible for the vast majority of the implementation of the NDs Program. (authors)

  12. FY 2006 ANNUAL REVIEW-SALTSTONE DISPOSAL FACILITY PERFORMANCE ASSESSMENT

    SciTech Connect (OSTI)

    Crapse, K; Benjamin Culbertson, B

    2007-03-15

    The Z-Area Saltstone Disposal Facility (SDF) consists of two disposal units, Vaults 1 and 4, described in the Performance Assessment (PA) (WSRC 1992). The FY06 PA Annual Review concludes that both vaults contain much lower levels of radionuclides (curies) than that allowed by the PA. The PA controls established to govern waste operations and monitor disposal facility performance are determined to be adequate.

  13. Will new disposal regulations undo decades of progress?

    SciTech Connect (OSTI)

    Ward, J. [John Ward Inc. (United States)

    2009-07-01

    In 1980, the Belville Amendments to RCRA instructed EPA to 'conduct a detailed and comprehensive study and submit a report' to Congress on the 'adverse effects on human health and the environment, if any, of the disposal and utilization' of coal ash. In both 1988 and 1999, EPA submitted reports to Congress and recommended coal ash should not be regulated as hazardous waste. After the failure of a Tennesse power plant's coal ash disposal facility, EPA will be proposing new disposal regulations.

  14. Deep Borehole Disposal Research: Geological Data Evaluation Alternativ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    much of the enhanced geothermal focus on stimulating fracture development (e.g., fracking) at depth is not directly relevant to deep borehole disposal. For deep borehole...

  15. Depleted uranium storage and disposal trade study: Summary report

    SciTech Connect (OSTI)

    Hightower, J.R.; Trabalka, J.R.

    2000-02-01

    The objectives of this study were to: identify the most desirable forms for conversion of depleted uranium hexafluoride (DUF6) for extended storage, identify the most desirable forms for conversion of DUF6 for disposal, evaluate the comparative costs for extended storage or disposal of the various forms, review benefits of the proposed plasma conversion process, estimate simplified life-cycle costs (LCCs) for five scenarios that entail either disposal or beneficial reuse, and determine whether an overall optimal form for conversion of DUF6 can be selected given current uncertainty about the endpoints (specific disposal site/technology or reuse options).

  16. Low-Level Waste Disposal Alternatives Analysis Report

    SciTech Connect (OSTI)

    Timothy Carlson; Kay Adler-Flitton; Roy Grant; Joan Connolly; Peggy Hinman; Charles Marcinkiewicz

    2006-09-01

    This report identifies and compares on-site and off-site disposal options for the disposal of contract-handled and remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Potential disposal options are screened for viability by waste type resulting in a short list of options for further consideration. The most crediable option are selected after systematic consideration of cost, schedule constraints, and risk. In order to holistically address the approach for low-level waste disposal, options are compiled into comprehensive disposal schemes, that is, alternative scenarios. Each alternative scenario addresses the disposal path for all low-level waste types over the period of interest. The alternative scenarios are compared and ranked using cost, risk and complexity to arrive at the recommended approach. Schedule alignment with disposal needs is addressed to ensure that all waste types are managed appropriately. The recommended alternative scenario for the disposal of low-level waste based on this analysis is to build a disposal facility at the Idaho National Laboratory Site.

  17. ORS 466 - Storage, Treatment, and Disposal of Hazardous Waste...

    Open Energy Info (EERE)

    Apps Datasets Community Login | Sign Up Search Page Edit with form History ORS 466 - Storage, Treatment, and Disposal of Hazardous Waste and Materials Jump to: navigation, search...

  18. Used Fuel Disposition Campaign Disposal Research and Development...

    Broader source: Energy.gov (indexed) [DOE]

    generated by existing and future nuclear fuel cycles. The disposal of SNF and HLW in a range of geologic media has been investigated internationally. Considerable progress has been...

  19. DESIGN, GROWTH, FABRICATION AND CHARACTERIZATION OF HIGH-BAND GAP InGaN/GaN SOLAR CELLS

    E-Print Network [OSTI]

    Honsberg, Christiana

    photovoltaic efficiency of 39% at 236 suns is achieved by a triple-junction GaInP- GaInAs-Ge tandem solar cell [1]. While the achievable efficiency of triple-junction tandem solar cells is restricted to about 40% [2], modeling results show that a tandem solar cell of five junctions or greater, or an equivalent

  20. Institute for sustainable mechanical designs Paul Dawson and Matt Miller, Sibley School of Mechanical Engineering

    E-Print Network [OSTI]

    Walter, M.Todd

    (cradle to cradle) · Energy usage: production, service and disposal · Cost considerations: sustainableInstitute for sustainable mechanical designs Paul Dawson and Matt Miller, Sibley School

  1. Heterojunction solar cell

    DOE Patents [OSTI]

    Olson, Jerry M. (Lakewood, CO)

    1994-01-01

    A high-efficiency single heterojunction solar cell wherein a thin emitter layer (preferably Ga.sub.0.52 In.sub.0.48 P) forms a heterojunction with a GaAs absorber layer. The conversion effiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the emitter layer.

  2. Heterojunction solar cell

    DOE Patents [OSTI]

    Olson, J.M.

    1994-08-30

    A high-efficiency single heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the emitter layer. 1 fig.

  3. Estimating costs of low-level radioactive waste disposal alternatives for the Commonwealth of Massachusetts

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    This report was prepared for the Commonwealth of Massachusetts by the Idaho National Engineering Laboratory, National Low-Level Waste Management Program. It presents planning life-cycle cost (PLCC) estimates for four sizes of in-state low-level radioactive waste (LLRW) disposal facilities. These PLCC estimates include preoperational and operational expenditures, all support facilities, materials, labor, closure costs, and long-term institutional care and monitoring costs. It is intended that this report bc used as a broad decision making tool for evaluating one of the several complex factors that must be examined when deciding between various LLRW management options -- relative costs. Because the underlying assumptions of these analyses will change as the Board decides how it will manage Massachusett`s waste and the specific characteristics any disposal facility will have, the results of this study are not absolute and should only be used to compare the relative costs of the options presented. The disposal technology selected for this analysis is aboveground earth-mounded vaults. These vaults are reinforced concrete structures where low-level waste is emplaced and later covered with a multi-layered earthen cap. The ``base case`` PLCC estimate was derived from a preliminary feasibility design developed for the Illinois Low-Level Radioactive Waste Disposal Facility. This PLCC report describes facility operations and details the procedure used to develop the base case PLCC estimate for each facility component and size. Sensitivity analyses were performed on the base case PLCC estimate by varying several factors to determine their influences upon the unit disposal costs. The report presents the results of the sensitivity analyses for the five most significant cost factors.

  4. Method for disposing of hazardous wastes

    DOE Patents [OSTI]

    Burton, Frederick G. (West Richland, WA); Cataldo, Dominic A. (Kennewick, WA); Cline, John F. (Prosser, WA); Skiens, W. Eugene (Richland, WA)

    1995-01-01

    A method and system for long-term control of root growth without killing the plants bearing those roots involves incorporating a 2,6-dinitroaniline in a polymer and disposing the polymer in an area in which root control is desired. This results in controlled release of the substituted aniline herbicide over a period of many years. Herbicides of this class have the property of preventing root elongation without translocating into other parts of the plant. The herbicide may be encapsulated in the polymer or mixed with it. The polymer-herbicide mixture may be formed into pellets, sheets, pipe gaskets, pipes for carrying water, or various other forms. The invention may be applied to other protection of buried hazardous wastes, protection of underground pipes, prevention of root intrusion beneath slabs, the dwarfing of trees or shrubs and other applications. The preferred herbicide is 4-difluoromethyl-N,N-dipropyl- 2,6-dinitro-aniline, commonly known as trifluralin.

  5. Transuranic waste disposal in the United States

    SciTech Connect (OSTI)

    Hoffman, R.B.

    1986-01-01

    The United States is unique in having created a special class of radioactive waste disposal based on the concentration of transuranic elements in the waste. Since 1970, the US has been placing newly generated transuranic waste in retrievable storage. It is intended that these wastes will be placed in a permanent deep geologic repository, the Waste Isolation Pilot Plant (WIPP). WIPP opening for a demonstration emplacement period is set for October, 1988. Transuranic wastes derive from some of the manufacturing and research activities carried out by DOE. The bulk of this waste is generated in plutonium parts fabrication activities. A variety of plutonium contaminated materials ranging from glove boxes, HEPA filters, and machine tools, to chemical sludges derived from plutonium recovery streams are stored as TRU wastes. Other processes that generate TRU waste are plutonium production operations, preparation for and cleanup from fuel reprocessing, manufacturing of plutonium heat sources, and nuclear fuel cycle research activities.

  6. Mixed waste characterization, treatment & disposal focus area

    SciTech Connect (OSTI)

    NONE

    1996-08-01

    The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.

  7. Disposable sludge dewatering container and method

    DOE Patents [OSTI]

    Cole, Clifford M. (1905 Cottonwood Dr., Aiken, SC 29803)

    1993-01-01

    A device and method for preparing sludge for disposal comprising a box with a thin layer of gravel on the bottom and a thin layer of sand on the gravel layer, an array of perforated piping deployed throughout the gravel layer, and a sump in the gravel layer below the perforated piping array. Standpipes connect the array and sump to an external ion exchanger/fine particulate filter and a pump. Sludge is deposited on the sand layer and dewatered using a pump connected to the piping array, topping up with more sludge as the aqueous component of the sludge is extracted. When the box is full and the free standing water content of the sludge is acceptable, the standpipes are cut and sealed and the lid secured to the box.

  8. Offsite source recovery project - ten years of sealed source recovery and disposal

    SciTech Connect (OSTI)

    Whitworth, Julia Rose [Los Alamos National Laboratory; Pearson, Mike [Los Alamos National Laboratory; Witkowski, Ioana [Los Alamos National Laboratory; Wald - Hopkins, Mark [Los Alamos National Laboratory; Cuthbertson, A [NNSA

    2010-01-01

    The Global Threat Reduction Initiative's (GTRI) Offsite Source Recovery Project (OSRP) has been recovering excess and unwanted radioactive sealed sources for ten years. In January 2009, GTRI announced that the project had recovered 20,000 sealed radioactive sources (this number has since increased to more than 23,000). This project grew out of early efforts at Los Alamos National Laboratory (LANL) to recover and disposition excess Plutonium-239 (Pu-239) sealed sources that were distributed in the 1960s and 1970s under the Atoms for Peace Program. Decades later, these sources began to exceed their special form certifications or fall out of regular use. As OSRP has collected and stored sealed sources, initially using 'No Path Forward' waste exemptions for storage within the Department of Energy (DOE) complex, it has consistently worked to create disposal pathways for the material it has recovered. The project was initially restricted to recovering sealed sources that would meet the definition of Greater-than-Class-C (GTCC) low-level radioactive waste, assisting DOE in meeting its obligations under the Low-level Radioactive Waste Policy Act Amendments (PL 99-240) to provide disposal for this type of waste. After being transferred from DOE-Environmental Management (EM) to the U.S. National Nuclear Security Administration (NNSA) to be part of GTRI, OSRP's mission was expanded to include not only material that would be classified as GTCC when it became waste, but also any other materials that might constitute a 'national security consideration.' It was recognized at the time that the GTCC category was a waste designation having to do with environmental consequence, rather than the threat posed by deliberate or accidental misuse. The project faces barriers to recovery in many areas, but disposal continues to be one of the more difficult to overcome. This paper discusses OSRP's disposal efforts over its 10-year history. For sources meeting the DOE definition of 'transuranic,' OSRP has achieved many milestones, including defense determinations for various isotopes, a WIPP RCRA permit modification to accommodate headspace gas sampling requirements, and approval of a peer-reviewed non-assay radiological characterization methodology. For non-transuranic sources, which OSRP began to recover in 2004, OSRP has achieved NEP A coverage for storage and implemented consolidated storage at both DOE and commercial locations, as well as completing several specific disposal operations. The closure of the Barnwell low-level waste disposal site in 2008 has left 36 states with absolutely no commercial disposal pathway for most sealed sources, increasing the demands on OSRP. This and other current challenges and future work will also be discussed.

  9. Navy explosive ordnance disposal project: Optical ordnance system development. Final report

    SciTech Connect (OSTI)

    Merson, J.A.; Salas, F.J.; Helsel, F.M.

    1996-03-01

    An optical ordnance firing system consisting of a portable hand held solid state rod laser and an optically ignited detonator has been developed for use in explosive ordnance disposal (EOD) activities. Solid state rod laser systems designed to have an output of 150 mJ in a 500 microsecond pulse have been produced and evaluated. A laser ignited detonator containing no primary explosives has been designed and fabricated. The detonator has the same functional output as an electrically fired blasting cap. The optical ordnance firing system has demonstrated the ability to reliably detonate Comp C-4 through 1000 meters of optical fiber.

  10. Solid oxide fuel cell with single material for electrodes and interconnect

    DOE Patents [OSTI]

    McPheeters, Charles C. (Naperville, IL); Nelson, Paul A. (Wheaton, IL); Dees, Dennis W. (Downers Grove, IL)

    1994-01-01

    A solid oxide fuel cell having a plurality of individual cells. A solid oxide fuel cell has an anode and a cathode with electrolyte disposed therebetween, and the anode, cathode and interconnect elements are comprised of substantially one material.

  11. Major Recovery Act Project Completed at Hanford: Two New Super Cells Go Into Service To Accept Contaminated Soil and Debris Months Ahead of Schedule and Millions Under Budget

    Office of Energy Efficiency and Renewable Energy (EERE)

    RICHLAND, WASH. – Two new super cells are going into service to expand disposal capacity for contaminated soil and debris at the Environmental Restoration Disposal Facility (ERDF), at the Department of Energy’s (DOE) Hanford Site in southeastern Washington State.

  12. 1 INSTRODUCTION In the concept of geological radioactive waste disposal,

    E-Print Network [OSTI]

    Boyer, Edmond

    1 INSTRODUCTION In the concept of geological radioactive waste disposal, argillite is being-hydro-mechanical characterization of Opalinus clay are presented. The material is one of the argillites being studied in several research projects in Europe in the context of geological radioactive waste disposal. 2 MATERIAL STUDIED

  13. Laboratory to demolish excavation enclosures at Material Disposal Area B

    E-Print Network [OSTI]

    of a decades-old waste disposal site at the historic Technical Area 21. Pre-demolition activities are beginning, federal project manager with the National Nuclear Security Administration's Los Alamos Site Office. "We requirements and shipped offsite to an approved waste disposal facility. MDA B was used from 1944 to 1948

  14. Procedure for the Recycling Material and Disposal of Waste from

    E-Print Network [OSTI]

    Guillas, Serge

    that waste is produced, stored, transported and disposed of without harming the environment. This is your, transport and disposal of wastes produced by UCL as requested by Facilities Services waste managers Clinical Wastes Radioactive Wastes Laboratory Wastes of Unknown Hazard Non-Hazardous Laboratory Wastes

  15. Paint and Paint Thinner Waste: Collection, Storage and Disposal

    E-Print Network [OSTI]

    Jia, Songtao

    Paint and Paint Thinner Waste: Collection, Storage and Disposal Procedure: 8.01 Created: 09 paint and paint thinner waste, including solvent contaminated rags, is collected and stored in a manner&S) employees who handle, store or dispose of paint and paint thinner materials. Paint and paint thinner waste

  16. Composite analysis E-area vaults and saltstone disposal facilities

    SciTech Connect (OSTI)

    Cook, J.R.

    1997-09-01

    This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potential sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public.

  17. Examination of eastern oil shale disposal problems - the Hope Creek field study

    SciTech Connect (OSTI)

    Koppenaal, D.W.; Kruspe, R.R.; Robl, T.L.; Cisler, K.; Allen, D.L.

    1985-02-01

    A field-based study of problems associated with the disposal of processed Eastern oil shale was initiated in mid-1983 at a private research site in Montgomery County, Kentucky. The study (known as the Hope Creek Spent Oil Shale Disposal Project) is designed to provide information on the geotechnical, revegetation/reclamation, and leachate generation and composition characteristics of processed Kentucky oil shales. The study utilizes processed oil shale materials (retorted oil shale and reject raw oil shale fines) obtained from a pilot plant run of Kentucky oil shale using the travelling grate retort technology. Approximately 1000 tons of processed oil shale were returned to Kentucky for the purpose of the study. The study, composed of three components, is described. The effort to date has concentrated on site preparation and the construction and implementation of the field study research facilities. These endeavors are described and the project direction in the future years is defined.

  18. Guidance for implementing the long-term surveillance program for UMTRA Project Title I Disposal Sites

    SciTech Connect (OSTI)

    1996-02-01

    This guidance document has two purposes: it provides guidance for writing site-specific long-term surveillance plans (LTSP) and it describes site surveillance, monitoring, and long-term care techniques for Title I disposal sites of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.). Long-term care includes monitoring, maintenance, and emergency measures needed to protect public health and safety and the environment after remedial action is completed. This document applies to the UMTRCA-designated Title I disposal sites. The requirements for long-term care of the Title I sites and the contents of the LTSPs are provided in U.S. Nuclear Regulatory Commission (NRC) regulations (10 CFR Section 40.27) provided in Attachment 1.

  19. DISPOSAL OF TRU WASTE FROM THE PLUTONIUM FINISHING PLANT IN PIPE OVERPACK CONTAINERS TO WIPP INCLUDING NEW SECURITY REQUIREMENTS

    SciTech Connect (OSTI)

    Hopkins, A.M.; Sutter, C.; Hulse, G.; Teal, J.

    2003-02-27

    The Department of Energy is responsible for the safe management and cleanup of the DOE complex. As part of the cleanup and closure of the Plutonium Finishing Plant (PFP) located on the Hanford site, the nuclear material inventory was reviewed to determine the appropriate disposition path. Based on the nuclear material characteristics, the material was designated for stabilization and packaging for long term storage and transfer to the Savannah River Site or, a decision for discard was made. The discarded material was designated as waste material and slated for disposal to the Waste Isolation Pilot Plant (WIPP). Prior to preparing any residue wastes for disposal at the WIPP, several major activities need to be completed. As detailed a processing history as possible of the material including origin of the waste must be researched and documented. A technical basis for termination of safeguards on the material must be prepared and approved. Utilizing process knowledge and processing history, the material must be characterized, sampling requirements determined, acceptable knowledge package and waste designation completed prior to disposal. All of these activities involve several organizations including the contractor, DOE, state representatives and other regulators such as EPA. At PFP, a process has been developed for meeting the many, varied requirements and successfully used to prepare several residue waste streams including Rocky Flats incinerator ash, Hanford incinerator ash and Sand, Slag and Crucible (SS&C) material for disposal. These waste residues are packed into Pipe Overpack Containers for shipment to the WIPP.

  20. RADIOACTIVE WASTE DISPOSAL PROCEDURES 1. Radioactive waste is accepted for disposal by Radiation Safety on Monday, Wednesday and

    E-Print Network [OSTI]

    Hammack, Richard

    attire including lab coats when transporting radioactive waste. LABS OUTSIDE SANGER HALL 1RADIOACTIVE WASTE DISPOSAL PROCEDURES 1. Radioactive waste is accepted for disposal by Radiation are required and may be scheduled by calling 8289131. 2. Segregate and package radioactive waste according

  1. The full fuel cycle of CO{sub 2} capture and disposal capture and disposal technology

    SciTech Connect (OSTI)

    Saroff, L.

    1995-12-31

    The overall objective of this study was to develop a methodology for the evaluation of the energy usage and cost both private and societal (external cost)for full fuel cycles. It was envisioned that other organizations could employ the methodology with minor alterations for a consistent means of evaluating full fuel cycles. The methodology has been applied to three fossil fuel electric generation processes each producing 500 MWe (net). These are: a Natural Gas Combined Cycle (NGCC) power plant burning natural gas with direct CO{sub 2} capture and disposal; an Integrated Gasification Combined Cycle (IGCC) power plant burning coal with direct CO{sub 2} capture and disposal; and a Pulverized Fuel (PC) power plant burning coal with a managed forest indirectly sequestering CO{sub 2}. The primary aim is to provide decision makers with information from which to derive policy. Thus, the evaluation reports total energy used, private costs to build the facility, emissions and burdens, and the valuation (externalities) of the impacts of the burdens. The energy usage, private costs including capture and disposal, and emissions are reported in this paper. The valuations and analysis of the impact of the plant on the environment are reported in the companion paper. The loss in efficiency (LHV) considering the full fuel cycle as opposed to the thermal efficiency of the power plant is; 0.9, 2.4, and 4.6 for the NGCC, IGCC, and PC+controls, respectively. Electricity cost, c/kWh, including capital, operating and fuel, at a 10% discount rate. ranges from 5.6 to 7.08 for NGCC and 7.24 to 8.61 for IGCC. The range is dependent on the mode of disposal, primarily due to the long pipeline to reach a site for the pope disposal in the ocean. For the PC+ controls then is a considerable range from 7.66 to over 16 c/kWh dependent on the size and cost of the managed forest.

  2. Summary of key directives governing permanent disposal in a geologic repository

    SciTech Connect (OSTI)

    Sands, S.C. III

    1993-11-01

    This document was developed in support of the Idaho National Engineering Laboratory (INEL) Spent Fuel and Waste Management Technology Development Program (SF&WMTDP). It is largely comprised of flow diagrams summarizing the key regulatory requirements which govern permanent disposal in a geologic repository. The key purposes are (1) to provide an easy and effective tool for referencing or cross referencing federal directives (i.e., regulations and orders), (2) to provide a method for examining the requirements in one directive category against the requirements in another, and (3) to list actions that must be taken to ensure directive compliance. The document is categorically broken down into a Transportation section and a Mined Geologic Disposal System (MGDS) section to ensure that the interrelationship of the entire disposal system is considered. The Transportation section describes the transportation packaging requirements, testing methods, and safety requirements imposed on fissile material shipments. The MGDS section encompasses technical aspects involved in siting, licensing, waste interaction with the container, container design features, physical characteristics of the surrounding environment, facility design features, barrier systems, safety features, criticality considerations, migration restrictions, implementation guidelines, and so forth. For purposes of illustration, the worst case scenario is outlined. It is important that the approaches and considerations contained in this document be integrated into the efforts of the SF&WMTDP so that every applicable aspect of the regulatory requirements can be evaluated to avoid investing large sums of money into projects that do not take into account all of the aspects of permanent waste disposal. Not until an overall picture and clear understanding of these regulations is established can a basis be developed to govern the direction of future activities of the SF&WMTDP.

  3. Addendum to the composite analysis for the E-Area Vaults and Saltstone Disposal Facilities

    SciTech Connect (OSTI)

    Cook, J.R.

    2000-03-13

    This report documents the composite analysis performed on the two active SRS low-level radioactive waste disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults Disposal Facility.

  4. A one-time excess inventory disposal decision under stochastic and price dependent demand 

    E-Print Network [OSTI]

    Zhu, Xiaoyan

    2002-01-01

    This thesis studies a one-time excess inventory disposal problem where the demand during the disposal period (DDDP) is stochastic and its distribution depends on the disposal price. More specifically, this thesis considers a periodic...

  5. Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems

    SciTech Connect (OSTI)

    Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

    2013-06-01

    This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

  6. Disposal Authorization Statement | Department of Energy

    Office of Environmental Management (EM)

    DAS requirements ensure the facility does not pose a threat to human health and the environment, defines the authorization for the design, construction, operation,...

  7. Fuel cell system with interconnect

    DOE Patents [OSTI]

    Goettler, Richard; Liu, Zhien

    2015-08-11

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  8. Fuel cell system with interconnect

    SciTech Connect (OSTI)

    Liu, Zhien; Goettler, Richard

    2015-09-29

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  9. Fuel cell system with interconnect

    DOE Patents [OSTI]

    Goettler, Richard; Liu, Zhien

    2015-03-10

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  10. Disposal of Rocky Flats residues as waste

    SciTech Connect (OSTI)

    Dustin, D.F.; Sendelweck, V.S. . Rocky Flats Plant); Rivera, M.A. )

    1993-01-01

    Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

  11. Disposal of Rocky Flats residues as waste

    SciTech Connect (OSTI)

    Dustin, D.F.; Sendelweck, V.S.; Rivera, M.A.

    1993-03-01

    Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

  12. Hazardous-Substance Generator, Transporter and Disposer Liability under the Federal and California Superfunds

    E-Print Network [OSTI]

    Vernon, James; Dennis, Patrick W.

    1981-01-01

    Carpenter-Presley-Tanner Hazardous Substance Account Act ofincluding spills and hazardous- waste disposal sites thatlabel for the disposal of hazardous wastes. Id. at 607. The

  13. Assessment of Disposal Options for DOE-Managed High-Level Radioactive...

    Energy Savers [EERE]

    of Options for Permanent Geologic Disposal of Spent NuclearFuel and High-Level Radioactive Waste Repository Reference Disposal Concepts and Thermal Load Management Analysis...

  14. Rational design and directed evolution of probe ligases for site-specific protein labeling and live-cell imaging

    E-Print Network [OSTI]

    White, Katharine Alice

    2012-01-01

    Chemical fluorophores have superior photophysical properties to fluorescent proteins and are much smaller. However, in order to use these probes for live-cell protein imaging, highly specific labeling methods are required. ...

  15. A Novel Design Testing the Effects of Static and Dynamic Equibiaxial Stretch Gradients on Fibroblast Cell Migration 

    E-Print Network [OSTI]

    Yazdani-Beioky, Shiva

    2011-02-22

    The study of mechanobiology and the cellular response to the mechanical environment plays a vital role in the understanding of the atherogenesis and the treatment of the disease state through interventions such as stent placement. Cell migration...

  16. Design, Syntheses and Biological Applications of Through-bond Energy Transfer Cassettes and Novel Non-covalently Cell Penetrating Peptides 

    E-Print Network [OSTI]

    Han, Junyan

    2012-02-14

    A xanthene-BODIPY cassette is used as a ratiometric intracellular pH reporter for imaging protein-dye conjugates in living cells. A model was hypothesized to explain the pH-dependent energy transfer efficiencies from the ...

  17. High-Efficiency Solar Cells for Large-Scale Electricity Generation & Design Considerations for the Related Optics (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Olson, J.; Geisz, J.; Friedman, D.; McMahon, W.; Ptak, A.; Wanlass, M.k; Kibbler, A.; Kramer, C.; Ward, S.; Duda, A.; Young, M.; Carapella, J.

    2007-09-17

    The photovoltaic industry has been growing exponentially at an average rate of about 35%/year since 1979. Recently, multijunction concentrator cell efficiencies have surpassed 40%. Combined with concentrating optics, these can be used for electricity generation.

  18. Shale disposal of U.S. high-level radioactive waste.

    SciTech Connect (OSTI)

    Sassani, David Carl; Stone, Charles Michael; Hansen, Francis D.; Hardin, Ernest L.; Dewers, Thomas A.; Martinez, Mario J.; Rechard, Robert Paul; Sobolik, Steven Ronald; Freeze, Geoffrey A.; Cygan, Randall Timothy; Gaither, Katherine N.; Holland, John Francis; Brady, Patrick Vane

    2010-05-01

    This report evaluates the feasibility of high-level radioactive waste disposal in shale within the United States. The U.S. has many possible clay/shale/argillite basins with positive attributes for permanent disposal. Similar geologic formations have been extensively studied by international programs with largely positive results, over significant ranges of the most important material characteristics including permeability, rheology, and sorptive potential. This report is enabled by the advanced work of the international community to establish functional and operational requirements for disposal of a range of waste forms in shale media. We develop scoping performance analyses, based on the applicable features, events, and processes identified by international investigators, to support a generic conclusion regarding post-closure safety. Requisite assumptions for these analyses include waste characteristics, disposal concepts, and important properties of the geologic formation. We then apply lessons learned from Sandia experience on the Waste Isolation Pilot Project and the Yucca Mountain Project to develop a disposal strategy should a shale repository be considered as an alternative disposal pathway in the U.S. Disposal of high-level radioactive waste in suitable shale formations is attractive because the material is essentially impermeable and self-sealing, conditions are chemically reducing, and sorption tends to prevent radionuclide transport. Vertically and laterally extensive shale and clay formations exist in multiple locations in the contiguous 48 states. Thermal-hydrologic-mechanical calculations indicate that temperatures near emplaced waste packages can be maintained below boiling and will decay to within a few degrees of the ambient temperature within a few decades (or longer depending on the waste form). Construction effects, ventilation, and the thermal pulse will lead to clay dehydration and deformation, confined to an excavation disturbed zone within a few meters of the repository, that can be reasonably characterized. Within a few centuries after waste emplacement, overburden pressures will seal fractures, resaturate the dehydrated zones, and provide a repository setting that strongly limits radionuclide movement to diffusive transport. Coupled hydrogeochemical transport calculations indicate maximum extents of radionuclide transport on the order of tens to hundreds of meters, or less, in a million years. Under the conditions modeled, a shale repository could achieve total containment, with no releases to the environment in undisturbed scenarios. The performance analyses described here are based on the assumption that long-term standards for disposal in clay/shale would be identical in the key aspects, to those prescribed for existing repository programs such as Yucca Mountain. This generic repository evaluation for shale is the first developed in the United States. Previous repository considerations have emphasized salt formations and volcanic rock formations. Much of the experience gained from U.S. repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, is applied here to scoping analyses for a shale repository. A contemporary understanding of clay mineralogy and attendant chemical environments has allowed identification of the appropriate features, events, and processes to be incorporated into the analysis. Advanced multi-physics modeling provides key support for understanding the effects from coupled processes. The results of the assessment show that shale formations provide a technically advanced, scientifically sound disposal option for the U.S.

  19. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    SciTech Connect (OSTI)

    Hladek, K.L.

    1997-10-07

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generating facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together) buried in three rows in the northeast comer. In addition, five eight-foot diameter caissons are located at the west end of the center row of the drum storage units. Initially, wastes disposed to the caissons and drum storage units were from the 325 and 327 building hot cells. Later, a small amount of remote-handled (RH) waste from the 309 building Plutonium Recycle Test Reactor (PRTR) cells, and the newly built 324 building hot cells, was disposed at the site.

  20. Encapsulant Material For Solar Cell Module And Laminated Glass Applications

    DOE Patents [OSTI]

    Hanoka, Jack I. (Brookline, MA); Klemchuk, Peter P. (Watertown, CT)

    2001-02-13

    An encapsulant material includes a layer of metallocene polyethylene disposed between two layers of an acid copolymer of polyethylene. More specifically, the layer of metallocene polyethylene is disposed adjacent a rear surface of the first layer of the acid copolymer of polyethylene, and a second layer of the acid copolymer of polyethlene is disposed adjacent a rear surface of the layer of metallocene polyethylene. The encapsulant material can be used in solar cell module and laminated glass applications.