Sample records for disk brakes rear

  1. Integrated vehicle dynamics control via coordination of active front steering and rear braking

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Integrated vehicle dynamics control via coordination of active front steering and rear brakingComputer and Automation Research Institue, Hungarian Academy of Sciences, Kende u. 13-17, H-1111, Budapest, Hungary, Email front steering and rear braking in a driver- assist system for vehicle yaw control. The proposed control

  2. Use of an auditory signal in a rear-end collision warning system: effects on braking force and reaction time

    E-Print Network [OSTI]

    Hopkins, Jennifer Susan

    1995-01-01T23:59:59.000Z

    driving game. Superimposed on the game screen was the image of a car which appeared to the driver to be ahead of him/her. The image enlarged in size, appearing to be a car applying its brakes. The participant was instructed to react as he would in a real...

  3. Braking system

    DOE Patents [OSTI]

    Norgren, D.U.

    1982-09-23T23:59:59.000Z

    A balanced braking system comprising a plurality of braking assemblies located about a member to be braked. Each of the braking assemblies consists of a spring biased piston of a first material fitted into a body of a different material which has a greater contraction upon cooling than the piston material. The piston is provided with a recessed head portion over which is positioned a diaphragm and forming a space therebetween to which is connected a pressurized fluid supply. The diaphragm is controlled by the fluid in the space to contact or withdraw from the member to be braked. A cooling means causes the body within which the piston is fitted to contract more than the piston, producing a tight shrink fit therebetween. The braking system is particularly applicable for selectively braking an arbor of an electron microscope which immobilizes, for example, a vertically adjustable low temperature specimen holder during observation. The system provides balanced braking forces which can be easily removed and re-established with minimal disturbance to arbor location.

  4. Observations of Infalling and Rotational Motions on a 1,000-AU Scale around 17 Class 0 and 0/I Protostars: Hints of Disk Growth and Magnetic Braking?

    E-Print Network [OSTI]

    Yen, Hsi-Wei; Takakuwa, Shigehisa; Ho, Paul T P; Ohashi, Nagayoshi; Tang, Ya-Wen

    2014-01-01T23:59:59.000Z

    We perform imaging and analyses of SMA 1.3 mm continuum, C18O (2-1) and 12CO (2-1) line data of 17 Class 0 and 0/I protostars to study their gas kinematics on a 1,000-AU scale. Continuum and C18O (2-1) emission are detected toward all the sample sources and show central primary components with sizes of ~600-1,500 AU associated with protostars. The velocity gradients in C18O (2-1) have wide ranges of orientations from parallel to perpendicular to the outflows, with magnitudes from ~1 to ~530 km/s/pc. We construct a simple kinematic model to reproduce the observed velocity gradients, estimate the infalling and rotational velocities, and infer the disk radii and the protostellar masses. The inferred disk radii range from 500 AU with estimated protostellar masses from 1 Msun. Our results hint that both large and small disks are possibly present around Class 0 protostars, which could be a sign of disk growth at the Class 0 stage. In addition, the directions of the overall velocity gradients in 7 out of the 17 sour...

  5. Vehicle brake testing system

    DOE Patents [OSTI]

    Stevens, Samuel S. (Harriman, TN); Hodgson, Jeffrey W. (Lenoir City, TN)

    2002-11-19T23:59:59.000Z

    This invention relates to a force measuring system capable of measuring forces associated with vehicle braking and of evaluating braking performance. The disclosure concerns an invention which comprises a first row of linearly aligned plates, a force bearing surface extending beneath and beside the plates, vertically oriented links and horizontally oriented links connecting each plate to a force bearing surface, a force measuring device in each link, a transducer coupled to each force measuring device, and a computing device coupled to receive an output signal from the transducer indicative of measured force in each force measuring device. The present invention may be used for testing vehicle brake systems.

  6. Development of Diagnostic Algorithms for Air Brakes in Trucks 

    E-Print Network [OSTI]

    Dhar, Sandeep

    2011-10-21T23:59:59.000Z

    and the rear brake chamber using the predicted primary circuit pressure : : : : : : : : : : : : : : : : : : : : 54 33 Simulated response of the hybrid system : : : : : : : : : : : : : : : : 64 34 Steady-state estimate of z1 of the pneumatic hybrid system... with massless piston : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 67 xii FIGURE Page 35 Steady-state estimates of z1 and z2 of the pneumatic hybrid system : 70 36 (a) Mechanical hybrid system, (b) non-hybrid counterpart : : : : : : 70 37...

  7. Heavy and Overweight Vehicle Brake Testing: Five-Axle Combination Tractor-Flatbed Final Report

    SciTech Connect (OSTI)

    Lascurain, Mary Beth [ORNL; Capps, Gary J [ORNL; Franzese, Oscar [ORNL

    2013-10-01T23:59:59.000Z

    The Federal Motor Carrier Safety Administration, in coordination with the Federal Highway Administration, sponsored the Heavy and Overweight Vehicle Brake Testing (HOVBT) program in order to provide information about the effect of gross vehicle weight (GVW) on braking performance. Because the Federal Motor Carrier Safety Regulations limit the number of braking system defects that may exist for a vehicle to be allowed to operate on the roadways, the examination of the effect of brake defects on brake performance for increased loads is also relevant. The HOVBT program seeks to provide relevant information to policy makers responsible for establishing load limits, beginning with providing test data for a combination tractor/trailer. This testing was conducted on a five-axle combination vehicle with tractor brakes meeting the Reduced Stopping Distance requirement rulemaking. This report provides a summary of the testing activities, the results of various analyses of the data, and recommendations for future research. Following a complete brake rebuild, instrumentation, and brake burnish, stopping tests were performed from 20 and 40 mph with various brake application pressures (15 psi, 25 psi, 35 psi, 45 psi, 55 psi, and full system pressure). These tests were conducted for various brake conditions at the following GVWs: 60,000, 80,000, 91,000, 97,000, 106,000, and 116,000 lb. The 80,000-lb GVWs included both balanced and unbalanced loads. The condition of the braking system was also varied. To introduce these defects, brakes (none, forward drive axle, or rear trailer axle) were made inoperative. In addition to the stopping tests, performance-based brake tests were conducted for the various loading and brake conditions. Analysis of the stopping test data showed the stopping distance to increase with load (as expected) and also showed that more braking force was generated by the drive axle brakes than the trailer axle brakes. The constant-pressure stopping test data revealed a linear relationship between brake application pressure and was used to develop an algorithm to normalize stopping data for weight and initial speed.

  8. Combined hydraulic and regenerative braking system

    DOE Patents [OSTI]

    Venkataperumal, Rama R. (Troy, MI); Mericle, Gerald E. (Mount Clemens, MI)

    1981-06-02T23:59:59.000Z

    A combined hydraulic and regenerative braking system and method for an electric vehicle, with the braking system being responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  9. Oxygen-Diffused Titanium as a Candidate Brake Rotor Material

    SciTech Connect (OSTI)

    Qu, Jun [ORNL; Blau, Peter Julian [ORNL; Jolly, Brian C [ORNL

    2009-01-01T23:59:59.000Z

    Titanium alloys are one of several candidate materials for the next generation of truck disk brake rotors. Despite their advantages of lightweight relative to cast iron and good strength and corrosion resistance, titanium alloys are unlikely to be satisfactory brake rotor materials unless their friction and wear behavior can be significantly improved. In this study, a surface engineering process oxygen diffusion was applied to titanium rotors and has shown very encouraging results. The oxygen diffused Ti-6Al-4V (OD-Ti) was tested on a sub-scale brake tester against a flat block of commercial brake lining material and benchmarked against several other Ti-based materials, including untreated Ti-6Al-4V, ceramic particle-reinforced Ti composites (MMCs), and a thermal-spray-coated Ti alloy. With respect to friction, the OD-Ti outperformed all other candidate materials under the imposed test conditions with the friction coefficient remaining within a desirable range of 0.35-0.50, even under the harshest conditions when the disk surface temperature reached nearly 600 ?C. In addition, the OD-Ti showed significantly improved wear-resistance over the non-treated one and was even better than the Ti-based composite materials.

  10. Solar tracker motor having a fixed caliper and a translating caliper each with an electromagnetic brake system

    DOE Patents [OSTI]

    Rau, Scott James

    2013-01-29T23:59:59.000Z

    Concepts and technologies described herein provide for an accurate and cost-effective method for rotating a solar array disk for tracking the movement of the sun. According to various aspects, a motor includes a fixed caliper and a translating caliper positioned adjacent to one another. Electromagnetically controlled brakes on the translating caliper grip the solar array disk while adjacent, but spaced apart, electromagnets on the fixed caliper and the translating caliper are energized to create an attractive force that pulls the translating caliper with the solar array disk toward the fixed caliper. After reaching the fixed caliper, brakes on the fixed caliper are engaged with the disk, brakes on the translating caliper are released from the disk, and the translating caliper is pushed back to the starting location where the process repeats until the desired rotation is completed.

  11. Speciation of Sb in airborne particulate matter, vehicle brake linings, and brake pad wear residues

    E-Print Network [OSTI]

    Short, Daniel

    Speciation of Sb in airborne particulate matter, vehicle brake linings, and brake pad wear residues: XAS XANES EXAFS Antimony Particulate matter Brake linings a b s t r a c t Insights into the speciation of Sb in samples of brake linings, brake pad wear residues, road dust, and atmospheric particulate

  12. Regenerative braking device

    DOE Patents [OSTI]

    Hoppie, Lyle O. (Birmingham, MI)

    1982-01-12T23:59:59.000Z

    Disclosed are several embodiments of a regenerative braking device for an automotive vehicle. The device includes a plurality of rubber rollers (24, 26) mounted for rotation between an input shaft (14) connectable to the vehicle drivetrain and an output shaft (16) which is drivingly connected to the input shaft by a variable ratio transmission (20). When the transmission ratio is such that the input shaft rotates faster than the output shaft, the rubber rollers are torsionally stressed to accumulate energy, thereby slowing the vehicle. When the transmission ratio is such that the output shaft rotates faster than the input shaft, the rubber rollers are torsionally relaxed to deliver accumulated energy, thereby accelerating or driving the vehicle.

  13. Variable ratio regenerative braking device

    DOE Patents [OSTI]

    Hoppie, Lyle O. (Birmingham, MI)

    1981-12-15T23:59:59.000Z

    Disclosed is a regenerative braking device (10) for an automotive vehicle. The device includes an energy storage assembly (12) having a plurality of rubber rollers (26, 28) mounted for rotation between an input shaft (36) and an output shaft (42), clutches (38, 46) and brakes (40, 48) associated with each shaft, and a continuously variable transmission (22) connectable to a vehicle drivetrain and to the input and output shafts by the respective clutches. The rubber rollers are torsionally stressed to accumulate energy from the vehicle when the input shaft is clutched to the transmission while the brake on the output shaft is applied, and are torsionally relaxed to deliver energy to the vehicle when the output shaft is clutched to the transmission while the brake on the input shaft is applied. The transmission ratio is varied to control the rate of energy accumulation and delivery for a given rotational speed of the vehicle drivetrain.

  14. Commercial Motor Vehicle Brake Assessment Tools

    E-Print Network [OSTI]

    Commercial Motor Vehicle Brake Assessment Tools Commercial Motor Vehicle Roadside Technology to deceleration in g's ­ Passing score: BE43.5 · Enforcement tool for only 3 years. · Based solely on brake Brake Research · CMVRTC research built on these enforcement tools ­ Correlation Study ­ Level-1 / PBBT

  15. Brake blending strategy for a hybrid vehicle

    DOE Patents [OSTI]

    Boberg, Evan S. (Hazel Park, MI)

    2000-12-05T23:59:59.000Z

    A hybrid electric powertrain system is provided including a transmission for driving a pair of wheels of a vehicle and a heat engine and an electric motor/generator coupled to the transmission. A friction brake system is provided for applying a braking torque to said vehicle. A controller unit generates control signals to the electric motor/generator and the friction brake system for controllably braking the vehicle in response to a drivers brake command. The controller unit determines and amount of regenerative torque available and compares this value to a determined amount of brake torque requested for determining the control signals to the electric motor/generator and the friction brake system.

  16. Disturbance Control of the Hydraulic Brake in a Wind Turbine

    E-Print Network [OSTI]

    Yang, Zhenyu

    Disturbance Control of the Hydraulic Brake in a Wind Turbine Frank Jepsen, Anders Søborg brake in a wind turbine. Brake torque is determined by friction coefficient and clamp force; the latter brake is one1 of the two independent brake systems in a wind turbine. As a consequence of the gearing

  17. Commercial Motor Vehicle Brake-Related Research

    E-Print Network [OSTI]

    Commercial Motor Vehicle Brake-Related Research Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor

  18. Throttle And Brake Control Systems For Automatic Vehicle Following

    E-Print Network [OSTI]

    Ioannou, P.; Xu, Z.

    1994-01-01T23:59:59.000Z

    and Brake Control Systems for Automatic Vehicle Following P.and Brake Control Systems for Automatic Vehicle Following *Transit Systems, Proceedings of 1977 Joint Automatic Control

  19. Brake Defect Causation and Abatement Study (BDCAS)

    E-Print Network [OSTI]

    on various lining materials for comparison study #12;Center for Transportation Analysis 2360 CherahalaBrake Defect Causation and Abatement Study (BDCAS) Oak Ridge National Laboratory managed by UT Based Brake Testers (PBBTs) part of the out-of- service criterion for commercial motor vehicles in 2007

  20. TMV Technology Capabilities Brake Stroke Monitor

    E-Print Network [OSTI]

    TMV Technology Capabilities Brake Stroke Monitor Brake monitoring systems are proactive maintenance This technology allows for CMV operators to have knowledge of their steer, drive, and tandem axle group weights setup is required. Current Safety/Enforcement Technologies EOBR (electronic on-board recorder) On

  1. Contactless magnetic brake for automotive applications

    E-Print Network [OSTI]

    Gay, Sebastien Emmanuel

    2009-05-15T23:59:59.000Z

    consumption due to power assistance, and requirement for anti-lock controls. To solve these problems, a contactless magnetic brake has been developed. This concept includes a novel flux-shunting structure to control the excitation flux generated by permanent...

  2. An engine air-brake integration study

    E-Print Network [OSTI]

    Mulchandani, Hiten

    2011-01-01T23:59:59.000Z

    The feasibility of operating an engine air-brake (EAB) integrated with a pylon duct bifurcation in a realistic aircraft engine environment has been analyzed. The EAB uses variable exit guide vanes downstream of a high ...

  3. Method and apparatus for wind turbine braking

    DOE Patents [OSTI]

    Barbu, Corneliu (Laguna Hills, CA); Teichmann, Ralph (Nishkayuna, NY); Avagliano, Aaron (Houston, TX); Kammer, Leonardo Cesar (Niskayuna, NY); Pierce, Kirk Gee (Simpsonville, SC); Pesetsky, David Samuel (Greenville, SC); Gauchel, Peter (Muenster, DE)

    2009-02-10T23:59:59.000Z

    A method for braking a wind turbine including at least one rotor blade coupled to a rotor. The method includes selectively controlling an angle of pitch of the at least one rotor blade with respect to a wind direction based on a design parameter of a component of the wind turbine to facilitate reducing a force induced into the wind turbine component as a result of braking.

  4. Constraining the Braking Indices of Magnetars

    E-Print Network [OSTI]

    Gao, Z F; Wang, N; Yuan, J P; Peng, Q H; Du, Y J

    2015-01-01T23:59:59.000Z

    Due to the lack of long term pulsed emission in quiescence and the strong timing noise, it is impossible to directly measure the braking index $n$ of a magnetar. Based on the estimated ages of their potentially associated supernova remnants (SNRs), we estimate the values of $n$ of nine magnetars with SNRs, and find that they cluster in a range of $1\\sim$41. Six magnetars have smaller braking indices of $13$ for other three magnetars are attributed to the decay of external braking torque, which might be caused by magnetic field decay. We estimate the possible wind luminosities for the magnetars with $13$ within the updated magneto-thermal evolution models. We point out that there could be some connections between the magnetar's anti-glitch event and its braking index, and the magnitude of $n$ should be taken into account when explaining the event. Although the constrained range of the magnetars' braking indices is tentative, our method provides an effective way to constrain the magnetars' braking indices if th...

  5. Adaptive controller for regenerative and friction braking system

    DOE Patents [OSTI]

    Davis, Roy I. (Ypsilanti, MI)

    1990-01-01T23:59:59.000Z

    A regenerative and friction braking system for a vehicle having one or more roadwheels driven by an electric traction motor includes a driver responsive device for producing a brake demand signal having a magnitude corresponding to the level of braking force selected by the driver and friction and regenerative brakes operatively connected with the roadwheels of the vehicle. A system according to this invention further includes control means for operating the friction and regenerative braking subsystems so that maximum brake torques sustainable by the roadwheels of the vehicle without skidding or slipping will not be exceeded.

  6. Adaptive controller for regenerative and friction braking system

    DOE Patents [OSTI]

    Davis, R.I.

    1990-10-16T23:59:59.000Z

    A regenerative and friction braking system for a vehicle having one or more road wheels driven by an electric traction motor includes a driver responsive device for producing a brake demand signal having a magnitude corresponding to the level of braking force selected by the driver and friction and regenerative brakes operatively connected with the road wheels of the vehicle. A system according to this invention further includes control means for operating the friction and regenerative braking subsystems so that maximum brake torques sustainable by the road wheels of the vehicle without skidding or slipping will not be exceeded. 8 figs.

  7. A diagnostic system for air brakes in commercial vehicles 

    E-Print Network [OSTI]

    Coimbatore Subramanian, Shankar Ram

    2007-09-17T23:59:59.000Z

    This dissertation deals with the development of a model-based diagnostic system for air brake systems that are widely used in commercial vehicles, such as trucks, tractor-trailers, buses, etc. The performance of these brake ...

  8. Electric vehicle regenerative antiskid braking and traction control system

    DOE Patents [OSTI]

    Cikanek, S.R.

    1995-09-12T23:59:59.000Z

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydraulic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control. 10 figs.

  9. Electric vehicle regenerative antiskid braking and traction control system

    DOE Patents [OSTI]

    Cikanek, Susan R. (Wixom, MI)

    1995-01-01T23:59:59.000Z

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydrualic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control.

  10. The effect of friction on drum brakes

    SciTech Connect (OSTI)

    Huang, Y.M.; Shyr, J.S. [National Taiwan Univ. (China)

    1995-12-31T23:59:59.000Z

    The boundary element method (BEM) has been developed for a long period of time. Cruse and Wilson developed an isoparametric quadratic element. Rizzo, Cruse, Rizzo and Shippy, and Swedlow and cruse applied the method to various problems. It shows that the BEM can provide a very good analytical result in the linear problem and it can reduce time in preparation of numerical data. Watson and Newcomb pointed out that the pressure distribution on the contact surface of the brake drum and the lining plate do not vary significantly along the axis. The deflection can be reduced by an appropriate design of the web; therefore, two dimensional analysis with the BEM is used in this analysis. Based on the authors` knowledge, this is the first paper to analyze the drum brake by using the BEM. The assumptions are the brake drum to be a rigid body, perfect interface contact between the drum and the shoe, the constant friction coefficient of the friction material and the thermal effect to be neglected. The two dimensional equations are derived based on the Somigliana`s identity. Since there is no shape function and no need of the Jacobin for the coordinate transform, to integrate numerically is easier and to write a computer code is simpler for the constant value element than the second order element. The linear element is inappropriate to treat the comer problem. Using the linear elements or second order elements creates discontinuous phenomena along the irregular boundary. The common nodal point has different normal vector and boundary conditions. It is necessary to have an extra equation to provide a unique solution for the final linear equation. Using the constant value element can get rid of this problem. The effect of the friction on the pressure distribution at the friction interface is studied. The calculated results of the pressure distribution are compared with the available data. The mathematical model can be used as a design tool to predict the performance of drum brakes.

  11. A diagnostic system for air brakes in commercial vehicles

    E-Print Network [OSTI]

    Coimbatore Subramanian, Shankar Ram

    2007-09-17T23:59:59.000Z

    ]. It is appropriate to point out that, in an appraisal of the future needs of the trucking industry [16], the authors, who represent a broad spectrum of the trucking industry, call for the development of improved methods of brake inspections. 6 B. Objectives... States railway industry, air brake systems were initially introduced during the nineteenth century. Before the introduction of the air brake system, railway cars were retarded mainly by mechanical means (for example, by levers, chains and other linkages...

  12. Design, Modeling And Control Of Steering And Braking For An Urban Electric Vehicle

    E-Print Network [OSTI]

    Maciua, Dragos

    1996-01-01T23:59:59.000Z

    Design, Modeling and Control of Steering and Braking for anDesign, Modeling and Control of Steering and Braking for anDesign, Modeling and Control of Steering and Braking for an

  13. Measurement and control of brake pedal feel quality in automobile manufacturing

    E-Print Network [OSTI]

    Cerilles, Jeffrey T. (Jeffrey Thomas)

    2005-01-01T23:59:59.000Z

    Customer perception of brake pedal feel quality, as related to the perception of the brake pedal feeling soft or mushy, depends on both the customer's subjective judgment of quality and the actual build quality of the brake ...

  14. Pneumatic brake control for precision stopping of heavy-duty vehicles

    E-Print Network [OSTI]

    Bu, Fanping; Tan, Han-Shue

    2007-01-01T23:59:59.000Z

    desirable that the automatic brake control system uses thesystems,” IEEE Transactions on Automatic Control, vol. 41,enables automatic control of the pneumatic brake system and

  15. Pulsar Braking Index and Mass Accretion

    E-Print Network [OSTI]

    P. D. Morley

    1993-11-15T23:59:59.000Z

    I show that the braking index, $N$, a fundamental pulsar experimental quantity, naturally differs from the canonical value of 3 by terms which involve mass accretion. Using the measured values of $N$ for PSR1509-58 and PSR0531+21, I determine that for constant density neutron stars their present mass accretion rates are $(3.10\\pm.51)\\times10^{-5}$ M year$^{-1}$ and $(9.946\\pm.089)\\times10^{-5}$ M year$^{-1}$ respectively, where M is the mass of each pulsar. Finally, I demonstrate that mass accretion removes the outstanding problem of the origin of the big glitches of the Vela Pulsar.

  16. Do Si stars undergo any magnetic braking?

    E-Print Network [OSTI]

    P. North

    1998-02-23T23:59:59.000Z

    The old question of rotational braking of Ap Si stars is revisited on the empirical side, taking advantage of the recent Hipparcos results. Field stars with various evolutionary states are considered, and it is shown that the loose correlation between their rotational period and their surface gravity is entirely compatible with conservation of angular momentum. No evidence is found for any loss of angular momentum on the Main Sequence, which confirms earlier results based on less reliable estimates of surface gravity. The importance of reliable, fundamental Teff determinations of Bp and Ap stars is emphasized.

  17. Development of Diagnostic Algorithms for Air Brakes in Trucks

    E-Print Network [OSTI]

    Dhar, Sandeep

    2011-10-21T23:59:59.000Z

    causes a reduction in the steady-state pressure in the brake chamber and an increase in the lag of the braking pressure response thereby increasing the stopping distance of the vehicle. Currently a presence of leak in the system is detected...

  18. Braking system for use with an arbor of a microscope

    DOE Patents [OSTI]

    Norgren, Duane U. (Orinda, CA)

    1984-01-01T23:59:59.000Z

    A balanced braking system comprising a plurality of braking assemblies located about a member to be braked. Each of the braking assemblies consists of a spring biased piston of a first material fitted into a body of a different material which has a greater contraction upon cooling than the piston material. The piston is provided with a recessed head portion over which is positioned a diaphragm and forming a space therebetween to which is connected a pressurized fluid supply. The diaphragm is controlled by the fluid in the space to contact or withdraw from the member to be braked. A cooling device causes the body within which the piston is fitted to contract more than the piston, producing a tight shrink fit therebetween. The braking system is particularly applicable for selectively braking an arbor of an electron microscope which immobilizes, for example, a vertically adjustable low temperature specimen holder during observation. The system provides balanced braking forces which can be easily removed and re-established with minimal disturbance to arbor location.

  19. Collapse of Magnetized Singular Isothermal Toroids: II. Rotation and Magnetic Braking

    E-Print Network [OSTI]

    A. Allen; Z. Y. Li; F. H. Shu

    2003-11-17T23:59:59.000Z

    We study numerically the collapse of rotating, magnetized molecular cloud cores, focusing on rotation and magnetic braking during the main accretion phase of isolated star formation. Motivated by previous numerical work and analytic considerations, we idealize the pre-collapse core as a magnetized singular isothermal toroid, with a constant rotational speed everywhere. The collapse starts from the center, and propagates outwards in an inside-out fashion, satisfying exact self-similarity in space and time. For rotation rates and field strengths typical of dense low-mass cores, the main feature remains the flattening of the mass distribution along field lines -- the formation of a pseudodisk, as in the nonrotating cases. The density distribution of the pseudodisk is little affected by rotation. On the other hand, the rotation rate is strongly modified by pseudodisk formation. Most of the centrally accreted material reaches the vicinity of the protostar through the pseudodisk. The specific angular momentum can be greatly reduced on the way, by an order of magnitude or more, even when the pre-collapse field strength is substantially below the critical value for dominant cloud support. The efficient magnetic braking is due to the pinched geometry of the magnetic field in the pseudodisk, which strengthens the magnetic field and lengthens the level arm for braking. Both effects enhance the magnetic transport of angular momentum from inside to outside. The excess angular momentum is carried away in a low-speed outflow that has, despite claims made by other workers, little in common with observed bipolar molecular outflows. We discuss the implications of our calculations for the formation of true disks that are supported against gravity by rotation.

  20. New Phase-coherent Measurements of Pulsar Braking Indices

    E-Print Network [OSTI]

    Margaret A. Livingstone; Victoria M. Kaspi; Fotis P. Gavriil; Richard N. Manchester; E. V. Gotthelf; Lucien Kuiper

    2007-02-07T23:59:59.000Z

    Pulsar braking indices offer insight into the physics that underlies pulsar spin-down. Only five braking indices have been measured via phase-coherent timing; all measured values are less than 3, the value expected from magnetic dipole radiation. Here we present new measurements for three of the five pulsar braking indices, obtained with phase-coherent timing for PSRs J1846-0258 (n=2.65+/-0.01), B1509-58 (n=2.839+/-0.001) and B0540-69 (n=2.140+/-0.009). We discuss the implications of these results and possible physical explanations for them.

  1. Regenerative braking on bicycles to power LED safety flashers

    E-Print Network [OSTI]

    Collier, Ian M

    2005-01-01T23:59:59.000Z

    This work develops a method for capturing some of the kinetic energy ordinarily lost during braking on bicycles to power LED safety flashers. The system is designed to eliminate: (a) battery changing in popular LED flashers, ...

  2. automotive drum brakes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    well-known phenomena of acoustics of friction as the squealing disc brake and the singing wine glass. Oleg N. Kirillov 2007-08-07 130 The Ultra-High Energy Cosmic Ray Spectrum...

  3. Adaptive Rollover Prevention for Automotive Vehicles with Differential Braking

    E-Print Network [OSTI]

    Duffy, Ken

    Adaptive Rollover Prevention for Automotive Vehicles with Differential Braking Selim Solmaz, switching, and tuning (MMST) paradigm [13, 14, 15] for preventing un­tripped rollover in automotive vehicles performance than its fixed robust counterpart. Keywords: Automotive control; Multiple models; Parameter

  4. Investigation of aerodynamic braking devices for wind turbine applications

    SciTech Connect (OSTI)

    Griffin, D.A. [R. Lynette & Associates, Seattle, WA (United States)

    1997-04-01T23:59:59.000Z

    This report documents the selection and preliminary design of a new aerodynamic braking system for use on the stall-regulated AWT-26/27 wind turbines. The goal was to identify and design a configuration that offered improvements over the existing tip brake used by Advanced Wind Turbines, Inc. (AWT). Although the design objectives and approach of this report are specific to aerodynamic braking of AWT-26/27 turbines, many of the issues addressed in this work are applicable to a wider class of turbines. The performance trends and design choices presented in this report should be of general use to wind turbine designers who are considering alternative aerodynamic braking methods. A literature search was combined with preliminary work on device sizing, loads and mechanical design. Candidate configurations were assessed on their potential for benefits in the areas of cost, weight, aerodynamic noise, reliability and performance under icing conditions. As a result, two configurations were identified for further study: the {open_quotes}spoiler-flap{close_quotes} and the {open_quotes}flip-tip.{close_quotes} Wind tunnel experiments were conducted at Wichita State University to evaluate the performance of the candidate aerodynamic brakes on an airfoil section representative of the AWT-26/27 blades. The wind tunnel data were used to predict the braking effectiveness and deployment characteristics of the candidate devices for a wide range of design parameters. The evaluation was iterative, with mechanical design and structural analysis being conducted in parallel with the braking performance studies. The preliminary estimate of the spoiler-flap system cost was $150 less than the production AWT-26/27 tip vanes. This represents a reduction of approximately 5 % in the cost of the aerodynamic braking system. In view of the preliminary nature of the design, it would be prudent to plan for contingencies in both cost and weight.

  5. Asbestos-free brake-lining materials for hydrogenerators

    SciTech Connect (OSTI)

    Lalonde, S.; Lanteigne, J. [Hydro-Quebec, Varennes, Quebec (Canada)

    1995-11-01T23:59:59.000Z

    Three different asbestos-free materials currently considered as new lining materials for hydrogenerator brakes were tested and compared to the original asbestos lining. Results show that these substitutes not only vary greatly from the original material in terms of mechanical properties and physical characteristics but also exhibit significantly different performances in braking tests. Consequently, these new materials are not entirely suitable for the intended application.

  6. Disk filter

    DOE Patents [OSTI]

    Bergman, W.

    1985-01-09T23:59:59.000Z

    An electric disk filter provides a high efficiency at high temperature. A hollow outer filter of fibrous stainless steel forms the ground electrode. A refractory filter material is placed between the outer electrode and the inner electrically isolated high voltage electrode. Air flows through the outer filter surfaces through the electrified refractory filter media and between the high voltage electrodes and is removed from a space in the high voltage electrode.

  7. MAGNETIZED ACCRETION-EJECTION STRUCTURES: 2.5-DIMENSIONAL MAGNETOHYDRODYNAMIC SIMULATIONS OF CONTINUOUS IDEAL JET LAUNCHING FROM RESISTIVE ACCRETION DISKS

    E-Print Network [OSTI]

    Casse, Fabien

    inside the disk brakes the matter azimuthally and allows for accre- tion, while it is responsible shell of dense material is the natural outcome of the inward advection of a primordial field. Subject optical forbidden lines emitted in the jets (see also Hartigan et al. 1995). In galactic systems

  8. Magnetic braking of T Tauri stars

    E-Print Network [OSTI]

    P. J. Armitage; C. J. Clarke

    1995-12-05T23:59:59.000Z

    We construct models for the rotation rates of T Tauri stars whose spin is regulated by magnetic linkage between the star and a surrounding accretion disc. Our models utilise a time-dependent disc code to follow the accretion process and include the effects of pre-main-sequence stellar evolution. We find that the initial disc mass controls the evolution of the star-disc system. For sufficiently massive discs, a stellar field of $\\sim$ 1 kG is able to regulate the spin rate to the observed values during the classical T Tauri phase. The field then acts to expel the disc and the star spins up at constant angular momentum as a weak-line system. Lower mass discs are ejected at an early epoch and fail to brake the star significantly. We extend the model to close binary systems, and find that the removal of angular momentum from the disc by the secondary significantly prolongs the inner disc lifetime. Such systems should therefore be relatively slow rotators. We also discuss the implications of our model for the spectral energy distributions and variability of T Tauri stars.

  9. How to play a disc brake

    E-Print Network [OSTI]

    Oleg N. Kirillov

    2007-08-22T23:59:59.000Z

    We consider a gyroscopic system under the action of small dissipative and non-conservative positional forces, which has its origin in the models of rotating bodies of revolution being in frictional contact. The spectrum of the unperturbed gyroscopic system forms a "spectral mesh" in the plane "frequency -gyroscopic parameter" with double semi-simple purely imaginary eigenvalues at zero value of the gyroscopic parameter. It is shown that dissipative forces lead to the splitting of the semi-simple eigenvalue with the creation of the so-called "bubble of instability" - a ring in the three-dimensional space of the gyroscopic parameter and real and imaginary parts of eigenvalues, which corresponds to complex eigenvalues. In case of full dissipation with a positive-definite damping matrix the eigenvalues of the ring have negative real parts making the bubble a latent source of instability because it can "emerge" to the region of eigenvalues with positive real parts due to action of both indefinite damping and non-conservative positional forces. In the paper, the instability mechanism is analytically described with the use of the perturbation theory of multiple eigenvalues. As an example stability of a rotating circular string constrained by a stationary load system is studied in detail. The theory developed seems to give a first clear explanation of the mechanism of self-excited vibrations in the rotating structures in frictional contact, that is responsible for such well-known phenomena of acoustics of friction as the squealing disc brake and the singing wine glass.

  10. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    DOE Patents [OSTI]

    Cikanek, S.R.

    1994-10-25T23:59:59.000Z

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control. 123 figs.

  11. Control Engineering Practice 11 (2003) 163170 A mechatronic conception of a new intelligent braking system

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , residual friction, noise, vibrations, a new brake has been designed according to a modular principle which describes a new intelligent braking system for motor vehicles. A mechatronic approach helped to avoid some

  12. Evaluation of driver braking performance to an unexpected object in the roadway 

    E-Print Network [OSTI]

    Picha, Dale Louis

    1994-01-01T23:59:59.000Z

    components, specifically whether the equation accurately reflects driver and vehicle behaviors during a braking maneuver. This research evaluated the two components of the SSD equation. Four field studies were conducted that evaluated driver braking...

  13. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    DOE Patents [OSTI]

    Cikanek, Susan R. (Wixom, MI)

    1994-01-01T23:59:59.000Z

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control.

  14. Evaluation of driver braking performance to an unexpected object in the roadway

    E-Print Network [OSTI]

    Picha, Dale Louis

    1994-01-01T23:59:59.000Z

    components, specifically whether the equation accurately reflects driver and vehicle behaviors during a braking maneuver. This research evaluated the two components of the SSD equation. Four field studies were conducted that evaluated driver braking...

  15. The expandable network disk

    E-Print Network [OSTI]

    Muthitacharoen, Athicha, 1976-

    2008-01-01T23:59:59.000Z

    This thesis presents a virtual disk cluster called END, the Expandable Network Disk. END aggregates storage on a cluster of servers into a single virtual disk. END's main goals are to offer good performance during normal ...

  16. Regenerative braking device with rotationally mounted energy storage means

    DOE Patents [OSTI]

    Hoppie, Lyle O. (Birmingham, MI)

    1982-03-16T23:59:59.000Z

    A regenerative braking device for an automotive vehicle includes an energy storage assembly (12) having a plurality of rubber rollers (26, 28) mounted for rotation between an input shaft (30) and an output shaft (32), clutches (50, 56) and brakes (52, 58) associated with each shaft, and a continuously variable transmission (22) connectable to a vehicle drivetrain and to the input and output shafts by the respective clutches. In a second embodiment the clutches and brakes are dispensed with and the variable ratio transmission is connected directly across the input and output shafts. In both embodiments the rubber rollers are torsionally stressed to accumulate energy from the vehicle when the input shaft rotates faster or relative to the output shaft and are torsionally relaxed to deliver energy to the vehicle when the output shaft rotates faster or relative to the input shaft.

  17. Evaluation of Corrosion Failure in Tractor-Trailer Brake System

    SciTech Connect (OSTI)

    Wilson, DF

    2002-10-22T23:59:59.000Z

    As reported to ORNL, concomitant with the introduction of different deicing and anti-icing compounds, there was an increase in the brake failure rate of tractor-trailer trucks. A forensic evaluation of a failed brake system was performed. Optical and scanning electron microscopic evaluation showed corrosion to be mostly confined to the brake table/lining interface. The corrosion is non-uniform as is to be expected for plain carbon steel in chloride environments. This initial analysis found no evidence for the chlorides of calcium and magnesium, which are the newly introduced deicing and antiicing compounds and are less soluble in water than the identified chlorides of sodium and potassium, in the scale. The result could be as a result of non-exposure of the examined brake table to calcium and magnesium chloride. The mechanisms for the increased failure rate are postulated as being an increased rate of corrosion due to positive shifts in the corrosion potential, and an increased amount of corrosion due to an increased ''time of wetness'' that results from the presence of hygroscopic salts. Laboratory scale evaluation of the corrosion of plain carbon steel in simulated deicing and anti-icing solutions need to be performed to determine corrosion rates and morphological development of corrosion product, to compare laboratory data to in-service data, and to rank economically feasible replacement materials for low carbon steel. In addition, the mechanical behavior of the lining attached to the brake shoe table needs to be assessed. It is opined that an appropriate adjustment of materials could easily allow for a doubling of a brake table/lining lifetime. Suggestions for additional work, to clarify the mechanisms of rust jacking and to develop possible solutions, are described.

  18. Calibration, Information, and Control Strategies for Braking to Avoid a Collision

    E-Print Network [OSTI]

    effect. A new model is introduced according to which braking is controlled by keeping the perceived idealCalibration, Information, and Control Strategies for Braking to Avoid a Collision Brett R. Fajen Rensselaer Polytechnic Institute This study explored visual control strategies for braking to avoid collision

  19. Airbus A320 Braking as Predicate-Action Peter B. Ladkin

    E-Print Network [OSTI]

    Ladkin, Peter B.

    Airbus A320 Braking as Predicate-Action Diagrams Peter B. Ladkin Universit¨at Bielefeld, Technische of the Airbus A320 braking systems contained in the Flight Crew Operating Manual. This helps identify to interest us and others in the design of the A320 braking system [FI.93a, FI.93b, FI.93c]. This paper

  20. automotive brake materials: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    brake materials First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Multidisciplinary design optimization...

  1. aircraft brake materials: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    brake materials First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 26 REDUCTION OF CADMTUM PLATING ON...

  2. Brake Wear and Performance Test Final December 2009

    E-Print Network [OSTI]

    Brake Wear and Performance Test Final Report December 2009 #12;FOREWORD This study focuses on using with assisting the State of Tennessee in identifying suitable PBBT machines, procuring a PBBT machine, installing the PBBT machine to be used in this research, and training Tennessee Department of Safety (TDOS) Staff

  3. Many applications require brakes, for instance to decelerate or to

    E-Print Network [OSTI]

    an error occurs in the process of a robotic arm. The energy consumption and actuation force of these brakes is very high. A team of TU Delft scientists developed a method to reduce the energy consumption. The energy consumption is high because an actuator has to generate a normal force between two friction

  4. Braking index of isolated pulsars: open questions and ways forward

    E-Print Network [OSTI]

    Hamil, Oliver

    2015-01-01T23:59:59.000Z

    Isolated pulsars are rotating neutron stars with accurately measured angular velocities $\\Omega$, and their time derivatives which show unambiguously that the pulsars are slowing down. Although the exact mechanism of the spin-down is a question of debate, the commonly accepted view is that it arises either through emission of magnetic dipole radiation (MDR) from a rotating magnetized body, through emission of a relativistic particle wind, or via higher order magnetic multipole or gravitational quadrupole radiation. The calculated energy loss by a rotating pulsar is model dependent and leads to the power law $\\dot{\\Omega}$ = -K $\\Omega^{\\rm n}$ where $n$ is called the braking index. The theoretical value for braking index is $n = 1, 3, 5$ for wind, MDR, quadrupole radiation respectively. The accepted view is that pulsar braking is strongly dominated by MDR. Highly precise observations of isolated pulsars yield braking index values in the range $1 < n < 2.8$ which are consistently less than the value pred...

  5. TOWARDS GLOBAL CHASSIS CONTROL BY INTEGRATING THE BRAKE AND

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . Szab´o*, J. Bokor*, C. Poussot-Vassal**, O. Sename**, L. Dugard** *Computer and Automation Research active suspensions and an active brake is proposed to improve the safety of vehicles. The design is based of the method is demonstrated through a complex simulation example containing vehicle maneuvers. Keywords: LPV

  6. Catalog of Waters Important for the Spawning, Rearing or Migration...

    Open Energy Info (EERE)

    Spawning, Rearing or Migration of Anadromous Fishes Organization Alaska Department of Fish and Game Published Divisions of Sport Fish and Habitat, 2012 Report Number 12-05 DOI...

  7. Energy Efficiency in Heavy Vehicle Tires, Drivetrains, and Braking Systems

    SciTech Connect (OSTI)

    Peter J. Blau

    2000-04-26T23:59:59.000Z

    This document was prepared to support the primary goals of the Department of Energy, Office of Heavy Vehicle Technologies. These were recently stated as follows: ''Develop by 2004 the enabling technologies for a class 7-8 truck with a fuel efficiency of 10 mpg (at 65 mph) which will meet prevailing emission standards. For Class 3-6 trucks operating on an urban driving cycle, develop by 2004 commercially viable vehicles that achieve at least double the fuel economy of comparable current vehicles (1999), and as a research goal, reduce criteria pollutants to 30% below EPA standards. Develop by 2004 the diesel engine enabling technologies to support large-scale industry dieselization of Class 1 and 2 trucks, achieving a 35 % fuel efficiency improvement over comparable gasoline-fueled trucks, while meeting applicable emissions standards.'' The enabling technologies for improving the fuel efficiency of trucks, include not only engine technologies but also technologies involved with lowering the rolling resistance of tires, reducing vehicle aerodynamic drag, improving thermal management, and reducing parasitic frictional losses in drive train components. Opportunities also exist for making better use of the energy that might ordinarily be dissipated during vehicle braking. Braking systems must be included in this evaluation since safety in truck operations is vital, and braking requirements are greater for vehicles having lowered resistance to rolling. The Office of Heavy Vehicle Technologies has initiated a program to improve the aerodynamics of heavy vehicles through wind tunnel testing, computational modeling, and on-road evaluations. That activity is described in a separate multi-year plan; therefore, emphasis in this document will be on tires, drive trains, and braking systems. Recent, dramatic fluctuations in diesel fuel prices have emphasized the importance of effecting savings in truck fuel economy by implementing new component designs and materials.

  8. HOUSING AND ENVIRONMENT Rearing houses for early weaned piglets. Realization,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    !'II. - HOUSING AND ENVIRONMENT Rearing houses for early weaned piglets. Realization, controlevage des Povcs, I. N. 7!. A., C. lV. R. Z., 78350 Jouy en Josas Rearing houses for piglets weaned at 12 days and placed by litter in batteries (3 tiers with 3 cages each) were constructed for housing

  9. Rearing of boll weevils on artificial diets

    E-Print Network [OSTI]

    Raven B., Klaus Gustav

    1959-01-01T23:59:59.000Z

    OF PHILOSOPHY AINIGOF BLWL VSTRC DIiTseOr taORoRnRNb REARING OF BOLL WEEVILS ON ARTIFICIAL DIETS A Dissertation by Klaus Gustav Raven B. Approved aa to style and content by: ^ C L ^ ? 'airman of Conmittee Hear of Department August 1959 yEK AU...Cs GIiosCNsq ra qrGOrnnsq MSOsC RC S GRnIOrRa RE HReeSn ERC 8SCrRIG psCrRqG RE Oros SG raqreSOsqK 5SK A8sCSNs aIoisC RE sNNG gSOegsq SEOsC raeIiSOrRa psCrRqG RE ?( Saq ?? gRICG ra Ogs ? OsGOG MrOg ? nrzIrqG SG raqreSOsqK WiK A8sCSNs aIoisC RE sNNG g...

  10. A mathematical model for air brake systems in the presence of leaks

    E-Print Network [OSTI]

    Ramaratham, Srivatsan

    2008-10-10T23:59:59.000Z

    of the pneumatic subsystem. . . . . . . . . . . . . . . . . . 20 16 Pressure transients at 722 kPa (90 psi) supply pressure with no leak. 22 17 Schematic of the setup for leak corroboration tests. . . . . . . . . . . 27 18 Comparison of measured and predicted mass... of detecting and locating leaks[6]. Most of the performance tests and visual based inspection tests of the air brake system indirectly correlate pressure in the brake chamber with the torque output, brake pad temperature, push rod strokes etc[7], [8]. More...

  11. Real-Time Dynamic Brake Assessment Proof of Concept Final Report

    SciTech Connect (OSTI)

    Lascurain, Mary Beth [ORNL; Franzese, Oscar [ORNL; Capps, Gary J [ORNL

    2011-11-01T23:59:59.000Z

    This proof-of-concept research was performed to explore the feasibility of using real-world braking data from commercial motor vehicles to make a diagnosis of brake condition similar to that of the performance-based brake tester (PBBT). This was done by determining the relationship between pressure and brake force (P-BF), compensating for the gross vehicle weight (GVW). The nature of this P-BF relationship (e.g., low braking force for a given brake application pressure) may indicate brake system problems. In order to determine the relationship between brake force and brake application pressure, a few key parameters of duty cycle information were collected. Because braking events are often brief, spanning only a few seconds, a sample rate of 10 Hz was needed. The algorithm under development required brake application pressure and speed (from which deceleration was calculated). Accurate weight estimation was also needed to properly derive the braking force from the deceleration. In order to ensure that braking force was the predominant factor in deceleration for the segments of data used in analysis, the data was screened for grade as well. Also, the analysis needed to be based on pressures above the crack pressure. The crack pressure is the pressure below which the individual brakes are not applied due the nature of the mechanical system. This value, which may vary somewhat from one wheel end to another, is approximately 10 psi. Therefore, only pressures 15 psi and above were used in the analysis. The Department of Energy s Medium Truck Duty Cycle research has indicated that under the real-world circumstances of the test vehicle brake pressures of up to approximately 30 psi can be expected. Several different types of data were collected during the testing task of this project. Constant-pressure stopping tests were conducted at several combinations of brake application pressure (15, 20, 25, and 30 psi), load conditions (moderately and fully laden), and speeds (20 and 30 mph). Data was collected at 10 Hz. Standard and stepped-pressure performance-based brake tests with brake pressure transducers were performed for each loading condition. The stepped-pressure test included the constant-pressure intervals of brake application at 15, 20, 25, and 30 psi. The PBBT data files included 10 Hz streaming data collected during the testing of each axle. Two weeks of real-world duty cycle (driving and braking) data was also collected at 10 Hz. Initial analysis of the data revealed that the data collected in the field (i.e., day-to-day operations) provided the same information as that obtained from the controlled tests. Analysis of the data collected revealed a strong linear relationship between brake application pressure and deceleration for given GVWs. As anticipated, initial speed was not found to be a significant factor in the deceleration-pressure relationship, unlike GVW. The positive results obtained from this proof of concept test point to the need for further research to expand this concept. A second phase should include testing over a wider range of speeds and include medium brake application pressures in addition to the low pressures tested in this research. Testing on multiple vehicles would also be of value. This future phase should involve testing to determine how degradation of braking performance affects the pressure-deceleration relationship.

  12. Vehicle yaw control via coordinated use of steering/braking systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Vehicle yaw control via coordinated use of steering/braking systems M. Doumiati, O. Sename, J.sename@gipsa-lab.grenoble-inp.fr) Computer and Automation Research Institute, Hungarian Academy of Sciences, Kende u. 13-17, H-1111, Budapest with steer- ing/braking coordination task for vehicle yaw control. For steerability enhancement, only active

  13. Modeling the pneumatic subsystem of a S-cam air brake system 

    E-Print Network [OSTI]

    Coimbatore Subramanian, Shankar

    2004-09-30T23:59:59.000Z

    The air brake system is one of the critical components in ensuring the safe operation of any commercial vehicle. This work is directed towards the development of a fault-free model of the pneumatic subsystem of the air brake system. This model can...

  14. Modeling the pneumatic relay valve of an s-cam air brake 

    E-Print Network [OSTI]

    Vilayannur Natarajan, Shankar

    2005-08-29T23:59:59.000Z

    by the driver, when there are no faults or defects in the brake system. This thesis is aimed at modeling and experimentally corroborating a subsystem of an air brake system, namely the pneumatic relay valve. The pneumatic relay valve takes a input signal from...

  15. Fault tolerant control of automatically controlled vehicles in response to brake system failures 

    E-Print Network [OSTI]

    Hsien, Li-Wei

    1998-01-01T23:59:59.000Z

    in the brake system is vital. In this thesis, nonlinear failure detection filters are used for fault detection of sensors and actuators in a class of nonlinear systems. In this thesis, the effects of brake system failures in an AHS where the vehicle steering...

  16. Fault tolerant control of automatically controlled vehicles in response to brake system failures

    E-Print Network [OSTI]

    Hsien, Li-Wei

    1998-01-01T23:59:59.000Z

    in the brake system is vital. In this thesis, nonlinear failure detection filters are used for fault detection of sensors and actuators in a class of nonlinear systems. In this thesis, the effects of brake system failures in an AHS where the vehicle steering...

  17. Emission Factor for Antimony in Brake Abrasion Dusts as One of the

    E-Print Network [OSTI]

    Short, Daniel

    originating from automobiles. Abrasion dusts from commercially available brake pads (nonasbestos organic type factors originating from automobiles were approximately 32 µg Sb/braking/car for PM10 and 22 µg Sb of automobiles to the atmospheric Sb concen- tration. The emission factors of pollutants from automobiles have

  18. EA-1111: K Pool Fish Rearing, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to enter into a use permit or lease agreement with the Yakama Indian Nation or other parties who would rear fish in the 100-K Area Pools.

  19. Constraints on the Formation and Evolution of Circumstellar Disks in Rotating Magnetized Cloud Cores

    E-Print Network [OSTI]

    Shantanu Basu

    1998-08-13T23:59:59.000Z

    We use magnetic collapse models to place some constraints on the formation and angular momentum evolution of circumstellar disks which are embedded in magnetized cloud cores. Previous models have shown that the early evolution of a magnetized cloud core is governed by ambipolar diffusion and magnetic braking, and that the core takes the form of a nonequilibrium flattened envelope which ultimately collapses dynamically to form a protostar. In this paper, we focus on the inner centrifugally-supported disk, which is formed only after a central protostar exists, and grows by dynamical accretion from the flattened envelope. We estimate a centrifugal radius for the collapse of mass shells within a rotating, magnetized cloud core. The centrifugal radius of the inner disk is related to its mass through the two important parameters characterizing the background medium: the background rotation rate $\\Omb$ and the background magnetic field strength $\\Bref$. We also revisit the issue of how rapidly mass is deposited onto the disk (the mass accretion rate) and use several recent models to comment upon the likely outcome in magnetized cores. Our model predicts that a significant centrifugal disk (much larger than a stellar radius) will be present in the very early (Class 0) stage of protostellar evolution. Additionally, we derive an upper limit for the disk radius as it evolves due to internal torques, under the assumption that the star-disk system conserves its mass and angular momentum even while most of the mass is transferred to a central star.

  20. Wind turbine trailing-edge aerodynamic brake design

    SciTech Connect (OSTI)

    Quandt, G.

    1996-01-01T23:59:59.000Z

    This report describes the design of a centrifugally actuated aerodynamic-overspeed device for a horizontal-axis wind turbine. The device will meet the following criteria; (1) It will be effective for airfoil angles of attack 0{degrees} to 45{degrees}. (2) It will be stowed inside the blade profile prior to deployment. (3) It will be capable of offsetting the positive torque produced by the overall blade. (4) Hinge moments will be minimized to lower actuator loads and cost. (5) It will be evaluated as a potential power modulating active rotor-control system. A literature review of aerodynamic braking devices was conducted. Information from the literature review was used to conceptualize the most effective devices for subsequent testing and design. Wind-tunnel test data for several braking devices are presented in this report. Using the data for the most promising configuration, a preliminary design was developed for a MICON 65/13 wind turbine with Phoenix 7.9-m rotor blades.

  1. Preliminary survey report: control technology for brake lining at Northwest Local School District, Cincinnati, Ohio

    SciTech Connect (OSTI)

    Cooper, T.C.; McGlothlin, J.D.; Godbey, F.W.; Sheehy, J.W.; O'Brien, D.M.

    1986-05-01T23:59:59.000Z

    A walk-through survey of control technology for reducing asbestos exposure during maintenance and repair of vehicular brakes was conducted at Northwest Local School District, Cincinnati, Ohio in January, 1986. The primary method for controlling and collecting dust during brake servicing was a wet-washing technique and good work practices, ensuring that exposure to hazardous physical or chemical agents was reduced or eliminated. Also available was an enclosed-type brake assembly cleaner designed to be connected to the shop air and a vacuum system. The brake assembly cleaner did not have a viewing port to examine the area being cleaned. The operator had to remove the unit to inspect the cleaned area potentially exposing himself to any dust remaining on the brake shoes or hub. The unit itself was a potential dust source as it was designed to fit 16-inch wheels and did not form a tight seal on the smaller 15-inch wheels of the newer buses. The authors conclude that the wet wash technique is an excellent method for controlling asbestos emissions during brake maintenance. The vacuum brake-assembly cleaner is inadequate and potentially hazardous. An in-depth survey of the wet technique is recommended.

  2. Effect of rearing and laying house environments on performance of incross egg production type pullets

    E-Print Network [OSTI]

    Shupe, William Dale

    1960-01-01T23:59:59.000Z

    and 1n conf1nement dur1ng the age per1od of 9 20 weeks. During the laying period the range reared pullets laid at a rate of 41. 5 per cent while the confinement reared pullets laid at a rate of 36. 6 per cent. The eggs from the range reared pullets... feed efficiency of range reared pullets to be significantly better than that of pullets reared 1n conf1nement. Johnson and Davidson (1957)~ Pepper, et al. (1959)~ snd Minter (1957) found that range reared. pullets laid st a slightly higher rate than...

  3. Effect of rearing and laying house environments on performance of incross egg production type pullets 

    E-Print Network [OSTI]

    Shupe, William Dale

    1960-01-01T23:59:59.000Z

    and 1n conf1nement dur1ng the age per1od of 9 20 weeks. During the laying period the range reared pullets laid at a rate of 41. 5 per cent while the confinement reared pullets laid at a rate of 36. 6 per cent. The eggs from the range reared pullets... feed efficiency of range reared pullets to be significantly better than that of pullets reared 1n conf1nement. Johnson and Davidson (1957)~ Pepper, et al. (1959)~ snd Minter (1957) found that range reared. pullets laid st a slightly higher rate than...

  4. Laboratory rearing of the cottonwood twig borer on artificial diets

    E-Print Network [OSTI]

    Mastro, Victory Carl

    1973-01-01T23:59:59.000Z

    LABORATORY REARING OF THE COTTONWOOD TWIG BORER ON ARTIFICIAL DIETS A Thesis VICTOR CARL MASTRO Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August... 1973 Ma)or Sub)ect: Entomology LABORATORY REARING OF THE COTTONWOOD TWIG BORER ON ARTIFICIAL DIETS A Thesis by VICTOR CARL MASTRO Approved as to style and conte by (Cha rman of Committee) Head De artment) (He er) ( mber) mber) August 1973...

  5. Estimating Rear-End Accident Probabilities at Signalized Intersections: An Occurrence-Mechanism Approach

    E-Print Network [OSTI]

    Wang, Yinhai

    Estimating Rear-End Accident Probabilities at Signalized Intersections: An Occurrence intersections, rear-end accidents are frequently the predominant accident type. These accidents result from to this deceleration. This paper mathematically represents this process, by expressing accident probability

  6. Silica in Protoplanetary Disks

    E-Print Network [OSTI]

    B. A. Sargent; W. J. Forrest; C. Tayrien; M. K. McClure; A. Li; A. R. Basu; P. Manoj; D. M. Watson; C. J. Bohac; E. Furlan; K. H. Kim; J. D. Green; G. C. Sloan

    2008-11-21T23:59:59.000Z

    Mid-infrared spectra of a few T Tauri stars (TTS) taken with the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope show prominent narrow emission features indicating silica (crystalline silicon dioxide). Silica is not a major constituent of the interstellar medium; therefore, any silica present in the circumstellar protoplanetary disks of TTS must be largely the result of processing of primitive dust material in the disks surrouding these stars. We model the silica emission features in our spectra using the opacities of various polymorphs of silica and their amorphous versions computed from earth-based laboratory measurements. This modeling indicates that the two polymorphs of silica, tridymite and cristobalite, which form at successively higher temperatures and low pressures, are the dominant forms of silica in the TTS of our sample. These high temperature, low pressure polymorphs of silica present in protoplanetary disks are consistent with a grain composed mostly of tridymite named Ada found in the cometary dust samples collected from the STARDUST mission to Comet 81P/Wild 2. The silica in these protoplanetary disks may arise from incongruent melting of enstatite or from incongruent melting of amorphous pyroxene, the latter being analogous to the former. The high temperatures of 1200K-1300K and rapid cooling required to crystallize tridymite or cristobalite set constraints on the mechanisms that could have formed the silica in these protoplanetary disks, suggestive of processing of these grains during the transient heating events hypothesized to create chondrules.

  7. PLANETESIMAL DISK MICROLENSING

    SciTech Connect (OSTI)

    Heng, Kevin; Keeton, Charles R., E-mail: heng@ias.ed, E-mail: keeton@physics.rutgers.ed [Institute for Advanced Study, School of Natural Sciences, Einstein Drive, Princeton, NJ 08540 (United States)

    2009-12-10T23:59:59.000Z

    Motivated by debris disk studies, we investigate the gravitational microlensing of background starlight by a planetesimal disk around a foreground star. We use dynamical survival models to construct a plausible example of a planetesimal disk and study its microlensing properties using established ideas of microlensing by small bodies. When a solar-type source star passes behind a planetesimal disk, the microlensing light curve may exhibit short-term, low-amplitude residuals caused by planetesimals several orders of magnitude below Earth mass. The minimum planetesimal mass probed depends on the photometric sensitivity and the size of the source star, and is lower when the planetesimal lens is located closer to us. Planetesimal lenses may be found more nearby than stellar lenses because the steepness of the planetesimal mass distribution changes how the microlensing signal depends on the lens/source distance ratio. Microlensing searches for planetesimals require essentially continuous monitoring programs that are already feasible and can potentially set constraints on models of debris disks, the progeny of the supposed extrasolar analogues of Kuiper Belts.

  8. Braking index of isolated uniformly rotating magnetized pulsars

    E-Print Network [OSTI]

    Hamil, Oliver; Urbanec, Martin; Urbancova, Gabriela

    2015-01-01T23:59:59.000Z

    Isolated pulsars are rotating neutron stars with accurately measured angular velocities $\\Omega$, and their time derivatives which show unambiguously that the pulsars are slowing down. Although the exact mechanism of the spin-down is a question of debate in detail, the commonly accepted view is that it arises through emission of magnetic dipole radiation (MDR) from a rotating magnetized body. Other processes, including the emission of gravitational radiation, and of relativistic particles (pulsar wind), are also being considered. The calculated energy loss by a rotating pulsar with a constant moment of inertia is assumed proportional to a model dependent power of $\\Omega$. This relation leads to the power law $\\dot{\\Omega}$ = -K $\\Omega^{\\rm n}$ where $n$ is called the braking index. The MDR model predicts $n$ exactly equal to 3. Selected observations of isolated pulsars provide rather precise values of $n$, individually accurate to a few percent or better, in the range 1$ <$ n $ < $ 2.8, which is consi...

  9. Premixed direct injection disk

    DOE Patents [OSTI]

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho

    2013-04-23T23:59:59.000Z

    A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  10. Fuel for Galaxy Disks

    E-Print Network [OSTI]

    M. E. Putman; J. Grcevich; J. E. G. Peek

    2008-04-04T23:59:59.000Z

    Halo clouds have been found about the three largest galaxies of the Local Group and in the halos of nearby spirals. This suggests they are a relatively generic feature of the galaxy evolution process and a source of fuel for galaxy disks. In this review, two main sources of disk star formation fuel, satellite material and clouds condensing from the hot halo medium, are discussed and their contribution to fueling the Galaxy quantified. The origin of the halo gas of M31 and M33 is also discussed.

  11. Preliminary survey report: evaluation of brake-drum service controls at Pennsylvania Bureau of Vehicle Management, Vehicle Maintenance Division, Harrisburg, Pennsylvania

    SciTech Connect (OSTI)

    Van Wagenen, H.D.

    1987-03-01T23:59:59.000Z

    Exposure to asbestos during the servicing of brakes on state-owned vehicles at the Bureau of Vehicle Management Maintenance Division, Harrisburg, Pennsylvania, was investigated as part of a study of control technologies. Brakes had been serviced at this garage facility for the previous year using a BCE-1000 Clayton brake-cleaning unit, sized for cars, vans, and pickups. The brake-cleaning unit consisted of a transparent enclosure hood and a HEPA vacuum filter dust collector, designed to contain and collect all brake-lining dust during vehicular brake maintenance and replacement. The authors conclude that the Clayton BCE-1000 dust-control unit appeared to be effective in containing and collecting brake dust during all vehicular brake maintenance and replacement jobs in this situation.

  12. Design of an Anti-Lock Regenerative Braking System for a ...14 International Journal of Automotive Engineering Vol. 1, Number 2, June 2011

    E-Print Network [OSTI]

    Vaziri, Ashkan

    energy storage system and subsequently used for the propulsion, significantly reducing the vehicle the brake of a vehicle [1]. The total energy dissipated through braking during a typical urban area drive

  13. On The Use of Eddy Current Brakes as Tunable, Fast Turn-On Viscous Dampers For Haptic Rendering

    E-Print Network [OSTI]

    Hayward, Vincent

    On The Use of Eddy Current Brakes as Tunable, Fast Turn-On Viscous Dampers For Haptic Rendering, linear dampers for haptic rendering using a prototype haptic device outfitted with eddy current brakes discuss the results from haptic experiments for rendering viscosity, virtual walls and virtual friction

  14. Initial results using Eddy Current Brakes as Fast Turn-on, Programmable Physical Dampers for Haptic Rendering

    E-Print Network [OSTI]

    Hayward, Vincent

    Initial results using Eddy Current Brakes as Fast Turn-on, Programmable Physical Dampers for Haptic Machines McGill University, Montr´eal, Qu´ebec, Canada ABSTRACT We demonstrate the use of eddy current propose an alternate method to create damping in a haptic interface that uses eddy current brakes. 2 EDDY

  15. Flight characteristics of pen-reared and wild prairie-chickens and an evaluation of a greenhouse to rear prairie-chickens 

    E-Print Network [OSTI]

    Hess, Marc Frederick

    2004-09-30T23:59:59.000Z

    and predator avoidance behavior of pen-reared APC's was compared to wild greater prairie-chickens (GPC, T. c. pinnatus) in Minnesota and Kansas using a radar gun and a trained dog. There was no difference (P = 0.134) in flight speed for pen-reared APC and wild...

  16. Recycled brake linings as partial aggregate substitute in asphalt paving. Construction and final report. Report for July 1992-August 1996

    SciTech Connect (OSTI)

    Miller, P.A.; Sukley, R.

    1996-09-01T23:59:59.000Z

    The purpose of this project was to evaluate the performance of asphalt containing various percentages of brake lining as an aggregate, and compare its performance to that of normal asphalt containing natural aggregate. This project is an effort to explore alternate ways to use waste product. Four test section of FB-2 Modified mix containing brake lining materials were placed in July 1992 along with one control section on SR 3022 in Mercer county. To date all sections are performing satisfactory, and Brake linings should be recommended as a viable partial replacement of aggregate in bituminous materials. This study only considered the performance of only off-spec brake linings, therefore, any performance data or enviromental effects of placement of used brake material should be addressed.

  17. REPORT on the TRUCK BRAKE LINING WORKSHOP and FLEET OPERATORS' SURVEY

    SciTech Connect (OSTI)

    Blau, P.J.

    2003-02-03T23:59:59.000Z

    The report summarizes what transpired during brake linings-related workshop held at the Fall 2003 meeting of the Technology and Maintenance Council (TMC) in Charlotte, NC. The title of the workshop was ''Developing a Useful Friction Material Rating System''. It was organized by a team consisting of Peter Blau (Oak Ridge National Laboratory), Jim Britell (National Highway Traffic Safety Administration), and Jim Lawrence (Motor and Equipment Manufacturers Association). The workshop was held under the auspices of TMC Task Force S6 (Chassis), chaired by Joseph Stianche (Sanderson Farms, Inc.). Six invited speakers during the morning session provided varied perspectives on testing and rating aftermarket automotive and truck brake linings. They were: James R. Clark, Chief Engineer, Foundation Brakes and Wheel Equipment, Dana Corporation, Spicer Heavy Axle and Brake Division; Charles W. Greening, Jr, President, Greening Test Labs; Tim Duncan, General Manager, Link Testing Services;Dennis J. McNichol, President, Dennis NationaLease; Jim Fajerski, Business Manager, OE Sales and Applications Engineering, Federal Mogul Corporation; and Peter J. Blau, Senior Materials Development Engineer, Oak Ridge National Laboratory. The afternoon break-out sessions addressed nine questions concerning such issues as: ''Should the federal government regulate aftermarket lining quality?''; ''How many operators use RP 628, and if so, what's good or bad about it?''; and ''Would there be any value to you of a vocation-specific rating system?'' The opinions of each discussion group, consisting of 7-9 participants, were reported and consolidated in summary findings on each question. Some questions produced a greater degree of agreement than others. In general, the industry seems eager for more information that would allow those who are responsible for maintaining truck brakes to make better, more informed choices on aftermarket linings. A written fleet operator survey was also conducted during the TMC meeting. Twenty-one responses were received, spanning fleet sizes between 12 and 170,000 vehicles. Responses are summarized in a series of tables separated into responses from small (100 or fewer powered vehicles), medium (101-1000 vehicles), and large fleets (>1000 vehicles). The vast majority of fleets do their own brake maintenance, relying primarily on experience and lining manufactures to select aftermarket linings. At least half of the responders are familiar to some extent with TMC Recommended Practice 628 on brake linings, but most do not use this source of test data as the sole criterion to select linings. Significant shortfalls in the applicability of TMC RP 628 to certain types of brake systems were noted.

  18. Neutron scattering residual stress measurements on gray cast iron brake discs

    SciTech Connect (OSTI)

    Spooner, S.; Payzant, E.A.; Hubbard, C.R. [and others

    1996-11-01T23:59:59.000Z

    Neutron diffraction was used to investigate the effects of a heat treatment designed to remove internal residual stresses in brake discs. It is believed that residual stresses may change the rate of deformation of the discs during severe braking conditions when the disc temperature is increased significantly. Neutron diffraction was used to map out residual strain distributions in a production disc before and after a stress-relieving heat treatment. Results from these neutron diffraction experiments show that some residual strains were reduced by as much as 400 microstrain by stress relieving. 5 refs., 5 figs., 1 tab.

  19. Classical and quantum Big Brake cosmology for scalar field and tachyonic models

    SciTech Connect (OSTI)

    Kamenshchik, A. Yu. [Dipartimento di Fisica e Astronomia and INFN, Via Irnerio 46, 40126 Bologna (Italy) and L.D. Landau Institute for Theoretical Physics of the Russian Academy of Sciences, Kosygin str. 2, 119334 Moscow (Russian Federation); Manti, S. [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy)

    2013-02-21T23:59:59.000Z

    We study a relation between the cosmological singularities in classical and quantum theory, comparing the classical and quantum dynamics in some models possessing the Big Brake singularity - the model based on a scalar field and two models based on a tachyon-pseudo-tachyon field . It is shown that the effect of quantum avoidance is absent for the soft singularities of the Big Brake type while it is present for the Big Bang and Big Crunch singularities. Thus, there is some kind of a classical - quantum correspondence, because soft singularities are traversable in classical cosmology, while the strong Big Bang and Big Crunch singularities are not traversable.

  20. Volatiles in protoplanetary disks

    E-Print Network [OSTI]

    Pontoppidan, Klaus M; Bergin, Edwin A; Brittain, Sean; Marty, Bernard; Mousis, Olvier; Oberg, Karin L

    2014-01-01T23:59:59.000Z

    Volatiles are compounds with low sublimation temperatures, and they make up most of the condensible mass in typical planet-forming environments. They consist of relatively small, often hydrogenated, molecules based on the abundant elements carbon, nitrogen and oxygen. Volatiles are central to the process of planet formation, forming the backbone of a rich chemistry that sets the initial conditions for the formation of planetary atmospheres, and act as a solid mass reservoir catalyzing the formation of planets and planetesimals. This growth has been driven by rapid advances in observations and models of protoplanetary disks, and by a deepening understanding of the cosmochemistry of the solar system. Indeed, it is only in the past few years that representative samples of molecules have been discovered in great abundance throughout protoplanetary disks - enough to begin building a complete budget for the most abundant elements after hydrogen and helium. The spatial distributions of key volatiles are being mapped...

  1. Achieving Consistent Maximum Brake Torque with Varied Injection Timing in a DI Diesel Engine

    E-Print Network [OSTI]

    Kroeger, Timothy H

    2013-09-19T23:59:59.000Z

    The brake torque of a direct-injection diesel engine is known to plateau over a range of injection timings. Injection timing affects the engine’s ignition delay and the fractions of fuel which burn in premixed and diffusion modes. Therefore...

  2. Regenerative Braking for an Electric Vehicle Using Ultracapacitors and a Buck-Boost Converter

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    Regenerative Braking for an Electric Vehicle Using Ultracapacitors and a Buck-Boost Converter Juan for an Electric Vehicle has been simulated. The purpose of this device is to allow higher accelerations, similar in shape and size to a Chevrolet S-10. This vehicle was already converted to an electric car

  3. A study of factors affecting foot movement time in a braking maneuver

    E-Print Network [OSTI]

    Berman, Andrea Helene

    1994-01-01T23:59:59.000Z

    The nature of foot movement time (MT) in an actual braking maneuver and in a stationary vehicle was investigated regarding the effects of age and gender of the driver and nature of the stimulus to which the driver was responding. ANOVAs showed...

  4. PRE-TRANSITIONAL DISK NATURE OF THE AB Aur DISK

    SciTech Connect (OSTI)

    Honda, M. [Department of Information Sciences, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293 (Japan); Inoue, A. K. [College of General Education, Osaka Sangyo University, 3-1-1 Nakagaito, Daito, Osaka 574-8530 (Japan); Okamoto, Y. K. [Institute of Astrophysics and Planetary Sciences, Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 (Japan); Kataza, H.; Fujiwara, H.; Kamizuka, T. [Department of Infrared Astrophysics, Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Fukagawa, M. [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Yamashita, T.; Tamura, M.; Hashimoto, J. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Fujiyoshi, T. [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A'ohoku Place, Hilo, HI 96720 (United States); Miyata, T.; Sako, S. [Institute of Astronomy, School of Science, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Sakon, I.; Onaka, T. [Department of Astronomy, School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2010-08-01T23:59:59.000Z

    The disk around AB Aur was imaged and resolved at 24.6 {mu}m using the Cooled Mid-infrared Camera and Spectrometer on the 8.2 m Subaru Telescope. The Gaussian full width at half-maximum of the source size is estimated to be 90 {+-} 6 AU, indicating that the disk extends further out at 24.6 {mu}m than at shorter wavelengths. In order to interpret the extended 24.6 {mu}m image, we consider a disk with a reduced surface density within a boundary radius R{sub c} , which is motivated by radio observations that suggest a reduced inner region within about 100 AU from the star. Introducing the surface density reduction factor f{sub c} for the inner disk, we determine that the best match with the observed radial intensity profile at 24.6 {mu}m is achieved with R{sub c} = 88 AU and f{sub c} = 0.01. We suggest that the extended emission at 24.6 {mu}m is due to the enhanced emission from a wall-like structure at the boundary radius (the inner edge of the outer disk), which is caused by a jump in the surface density at R{sub c} . Such a reduced inner disk and geometrically thick outer disk structure can also explain the more point-like nature at shorter wavelengths. We also note that this disk geometry is qualitatively similar to a pre-transitional disk, suggesting that the AB Aur disk is in a pre-transitional disk phase.

  5. Disk Quota Increase Request

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscovering How Muscles Really Work Disk Quota Increase

  6. CONSTRAINTS ON ACCRETION DISK LIFETIMES

    E-Print Network [OSTI]

    Hillenbrand, Lynne

    of stellar mass. #12; METHODOLOGY Constraining disk lifetimes means measuring infrared excesses and stellar ages and masses for large samples of young stellar objects. #12; Infrared excesses: #15; A combination of stellar irradiative and viscous heating in circumstellar disks produces ux excesses at micro

  7. Houses for early weaned piglets : influence of rearing on the floor or in batteries,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Houses for early weaned piglets : influence of rearing on the floor or in batteries, temperature groups in order to determine the influence of rearing conditions (housing, room temperature) and feeding on the animals performances between weaning at 36 ± 3 days and 70 days of age. Housing characteristics were

  8. Nonlinear analysis of time series of vibration data from a friction brake: SSA, PCA, and MFDFA

    E-Print Network [OSTI]

    Nikolay K. Vitanov; Norbert P. Hoffmann; Boris Wernitz

    2014-10-23T23:59:59.000Z

    We use the methodology of singular spectrum analysis (SSA), principal component analysis (PCA), and multi-fractal detrended fluctuation analysis (MFDFA), for investigating characteristics of vibration time series data from a friction brake. SSA and PCA are used to study the long time-scale characteristics of the time series. MFDFA is applied for investigating all time scales up to the smallest recorded one. It turns out that the majority of the long time-scale dynamics, that is presumably dominated by the structural dynamics of the brake system, is dominated by very few active dimensions only and can well be understood in terms of low dimensional chaotic attractors. The multi-fractal analysis shows that the fast dynamical processes originating in the friction interface are in turn truly multi-scale in nature.

  9. 19.4% -EFFICIENT LARGE AREA REAR-PASSIVATED SCREEN-PRINTED SILICON SOLAR CELLS T. Dullweber*1

    E-Print Network [OSTI]

    be reduced by applying the PERC (passivated emitter and rear cell) solar cell design [8]. The following19.4% -EFFICIENT LARGE AREA REAR-PASSIVATED SCREEN-PRINTED SILICON SOLAR CELLS T. Dullweber*1 , S% in the near future. Keywords: Silicon Solar Cell, Screen Printing, Rear Passivation 1 Introduction About 80

  10. Modeling the pneumatic relay valve of an s-cam air brake

    E-Print Network [OSTI]

    Vilayannur Natarajan, Shankar

    2005-08-29T23:59:59.000Z

    inspections. For example, defects like chafed hoses do not show pronounced effect in performance based tests. In the past only a few cases of air leak violations have been detected by the conventional performance based testers namely roller dynamometer... detected by the performance based system since they had a pronounced effect on the brake force. Reference [6] emphasizes on the need for a standardized, hand held diagnostic tool for improving the existing inspections. A model based, performance based diag...

  11. Variations in gear fatigue life for different wind turbine braking strategies

    SciTech Connect (OSTI)

    McNiff, B.P. (Second Wind, Inc., Somerville, MA (USA)); Musial, W.D. (Solar Energy Research Inst., Golden, CO (USA)); Errichello, R. (GEARTECH, Albany, CA (USA))

    1991-06-01T23:59:59.000Z

    A large number of gearbox failures have occurred in the wind industry in a relatively short period, many because service loads were underestimated. High-torque transients that occur during starting and stopping are difficult to predict and may be overlooked in specifying gearbox design. Although these events comprise a small portion of total load cycles, they can be the most damaging. The severity of these loads varies dramatically with the specific configuration of the wind turbine. The large number of failures in Danish-designed Micon 65 wind turbines prompted this investigation. The high-speed and low-speed shaft torques were measured on a two-stage helical gearbox of a single Micon 65 turbine. Transient events and normal running loads were combined statistically to obtain a typical annual load spectrum. The pitting and bending fatigue lives of the gear teeth were calculated by using Miner's rule for four different high-speed shaft brake configurations. Each breaking scenario was run for both a high- and a low-turbulence normal operating load spectrum. The analysis showed increases in gear life by up to a factor of 25 when the standard high-speed shaft brake is replaced with a dynamic brake or modified with a damper. 9 refs., 9 figs., 3 tabs.

  12. E-Print Network 3.0 - adult rearing diet Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    55:153168 (2004) 2004 Wiley-Liss, Inc. Summary: . The one study employing natural diets (Smith, 1960) used plants reared from seed on media vary- ing... controlled conditions,...

  13. Design and manufacture of a rear driveline package including limited slip differential for Formula SAE applications

    E-Print Network [OSTI]

    Yazicioglu, Tolga T

    2008-01-01T23:59:59.000Z

    This document describes the design and manufacture of a lightweight rear driveline package for a Formula SAE race car. The design focuses on all components needed to transfer power from the chain driven Honda CBR600 F4i ...

  14. Flight characteristics of pen-reared and wild prairie-chickens and an evaluation of a greenhouse to rear prairie-chickens

    E-Print Network [OSTI]

    Hess, Marc Frederick

    2004-09-30T23:59:59.000Z

    , Krauss et al. 1987, Roseberry et al. 1987, Leif 1994) have 4 shown that pen-reared birds had less fear of humans, were more approachable, and displayed improper hiding behavior (were more often seen in open areas) than their wild counterparts..., Hessler et al. 1970, Krauss et al. 1987, Roseberry et al. 1987, Leif 1994) have shown that pen-reared birds had less fear of humans, were more approachable, and displayed improper hiding behavior (were more often seen in open areas) than their wild...

  15. Probability of failure of the waste hoist brake system at the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    Greenfield, M.A. [Univ. of California, Los Angeles, CA (United States); Sargent, T.J. [Univ. of Chicago, IL (United States)]|[Stanford Univ., CA (United States). Hoover Institution

    1998-01-01T23:59:59.000Z

    In its most recent report on the annual probability of failure of the waste hoist brake system at the Waste Isolation Pilot Plant (WIPP), the annual failure rate is calculated to be 1.3E({minus}7)(1/yr), rounded off from 1.32E({minus}7). A calculation by the Environmental Evaluation Group (EEG) produces a result that is about 4% higher, namely 1.37E({minus}7)(1/yr). The difference is due to a minor error in the US Department of Energy (DOE) calculations in the Westinghouse 1996 report. WIPP`s hoist safety relies on a braking system consisting of a number of components including two crucial valves. The failure rate of the system needs to be recalculated periodically to accommodate new information on component failure, changes in maintenance and inspection schedules, occasional incidents such as a hoist traveling out-of-control, either up or down, and changes in the design of the brake system. This report examines DOE`s last two reports on the redesigned waste hoist system. In its calculations, the DOE has accepted one EEG recommendation and is using more current information about the component failures rates, the Nonelectronic Parts Reliability Data (NPRD). However, the DOE calculations fail to include the data uncertainties which are described in detail in the NPRD reports. The US Nuclear Regulatory Commission recommended that a system evaluation include mean estimates of component failure rates and take into account the potential uncertainties that exist so that an estimate can be made on the confidence level to be ascribed to the quantitative results. EEG has made this suggestion previously and the DOE has indicated why it does not accept the NRC recommendation. Hence, this EEG report illustrates the importance of including data uncertainty using a simple statistical example.

  16. Hybrid Braking System for Non-Drive Axles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e pShade YourHybirdBraking System for

  17. Why Do Disks Form Jets?

    E-Print Network [OSTI]

    D Lynden-Bell

    2002-03-27T23:59:59.000Z

    It is argued that jet modelers have given insufficient study to the natural magneto-static configurations of field wound up in the presence of a confining general pressure. Such fields form towers whose height grows with each twist at a velocity comparable to the circular velocity of the accretion disk that turns them. A discussion of the generation of such towers is preceded by a brief history of the idea that quasars, active galaxies, and galactic nuclei contain giant black holes with accretion disks.

  18. Thermal radiation from an accretion disk

    E-Print Network [OSTI]

    F. V. Prigara

    2004-01-20T23:59:59.000Z

    An effect of stimulated radiation processes on thermal radiation from an accretion disk is considered. The radial density waves triggering flare emission and producing quasi-periodic oscillations in radiation from an accretion disk are discussed. It is argued that the observational data suggest the existence of the weak laser sources in a two-temperature plasma of an accretion disk.

  19. Development of a Natural Rearing System to Improve Supplemental Fish Quality, 1996-1998 Progress Report.

    SciTech Connect (OSTI)

    Maynard, Desmond J.

    2001-09-13T23:59:59.000Z

    This report covers the 1996-1998 Natural Rearing Enhancement System (NATURES) research for increasing hatchery salmon postrelease survival and producing fish with more wild-like behavior, physiology, and morphology prior to release. Experiments were conducted evaluating automatic subsurface feeders; natural diets; exercise systems; seminatural raceway habitat enriched with cover, structure, and substrate; and predator avoidance conditioning for hatchery salmonids. Automatic subsurface feed delivery systems did not affect chinook salmon depth distribution or vulnerability to avian predators. Live-food diets only marginally improved the ability of chinook salmon to capture prey in stream enclosures. A prototype exercise system that can be retrofitted to raceways was developed, however, initial testing indicated that severe amounts of exercise may increase in culture mortality. Rearing chinook salmon in seminatural raceway habitat with gravel substrate, woody debris structure, and overhead cover improved coloration and postrelease survival without impacting in-culture health or survival. Steelhead fry reared in enriched environments with structure, cover, and point source feeders dominated and outcompeted conventionally reared fish. Exposing chinook salmon to caged predators increased their postrelease survival. Chinook salmon showed an antipredator response to chemical stimuli from injured conspecifics and exhibited acquired predator recognition following exposure to paired predator-prey stimuli. The report also includes the 1997 Natural Rearing System Workshop proceedings.

  20. CityCarControl : an electric vehicle drive-by-wire solution for distributed steering, braking and throttle control

    E-Print Network [OSTI]

    Brown, Thomas B., M. Eng. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    In this paper, we propose CityCarControl, a system to manage the steering, braking, and throttle of a new class of intra-city electric vehicles. These vehicles have a focus on extreme light-weight and a small parking ...

  1. Uncertainty-Enabled Design of a Rocket Sled Track Switch Drs. Jordan E. Massad and Matthew R. Brake

    E-Print Network [OSTI]

    Uncertainty-Enabled Design of a Rocket Sled Track Switch Drs. Jordan E. Massad and Matthew R. Brake Sandia National Laboratories, New Mexico Rocket sled tracks provide a dynamically rich environment acceleration profile, the switch closes to complete a circuit for instrument activation. Preliminary tests

  2. Hybrid: Braking

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCalifornia State0

  3. Hybrid: Braking

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCalifornia State0Button Stopped button

  4. Hybrid: Braking

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate -

  5. automobile foundry workers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robert J. 8 Automatic Foundry Brake Disk Inspection through CiteSeer Summary: We present a fully automated raw foundry brake disk visual inspection system in which three...

  6. Collapse of Magnetized Singular Isothermal Toroids: II. Rotation and Magnetic Braking

    E-Print Network [OSTI]

    Allen, A; Shu, F H

    2003-01-01T23:59:59.000Z

    We study numerically the collapse of rotating, magnetized molecular cloud cores, focusing on rotation and magnetic braking during the main accretion phase of isolated star formation. Motivated by previous numerical work and analytic considerations, we idealize the pre-collapse core as a magnetized singular isothermal toroid, with a constant rotational speed everywhere. The collapse starts from the center, and propagates outwards in an inside-out fashion, satisfying exact self-similarity in space and time. For rotation rates and field strengths typical of dense low-mass cores, the main feature remains the flattening of the mass distribution along field lines -- the formation of a pseudodisk, as in the nonrotating cases. The density distribution of the pseudodisk is little affected by rotation. On the other hand, the rotation rate is strongly modified by pseudodisk formation. Most of the centrally accreted material reaches the vicinity of the protostar through the pseudodisk. The specific angular momentum can b...

  7. Improvements in in vitro rearing methods of Toxoneuron nigriceps (viereck) (Hymenoptera:Braconidae), a larval endoparasitoid of Heliothis virescens (Lepidoptera: Noctuidae)

    E-Print Network [OSTI]

    Kuriachan, Indira

    2006-08-16T23:59:59.000Z

    were incubated in the artificial rearing media. The growth (increase in length and width), development (molting), and survival of the incubated larvae were observed. Changes in osmotic pressure of the rearing media before and after incubation were...

  8. Research Report Long lasting effects of rearing by an ethanol-consuming dam

    E-Print Network [OSTI]

    Galef Jr., Bennett G.

    Research Report Long lasting effects of rearing by an ethanol-consuming dam on voluntary ethanol rats as subjects, we examined effects of exposure during weaning to a dam consuming ethanol on adolescents' later affinity for ethanol. In a preliminary experiment, we offered rat pups a choice between 8

  9. Diet-induced phenotypic plasticity in the skull morphology of hatchery-reared Florida

    E-Print Network [OSTI]

    Motta, Philip J.

    for many fish species, Florida largemouth bass, Micropterus salmoides flor- idanus (LeSeuer), reared, was retarded at this size. Post-release, the skulls of hatchery fish converged towards those of wild bass bass, Micropterus salmoides floridanus Un resumen en espan~ol se incluye detra´s del texto principal de

  10. Development of a Natural Rearing System to Improve Supplemental Fish Quality, 1991-1995 Progress Report.

    SciTech Connect (OSTI)

    Maynard, Desmond J.; Flagg, Thomas A.; Mahnken, Conrad V.W.

    1996-08-01T23:59:59.000Z

    In this report, the National Marine Fisheries Service (NMFS), in collaboration with the Bonneville Power Administration (BPA), the Washington State Department of Fish and Wildlife (WDFW), and the US Fish and Wildlife Service (USFWS), presents research findings and guidelines for development and evaluation of innovative culture techniques to increase postrelease survival of hatchery fish. The Natural Rearing Enhancement System (NATURES) described in this report is a collection of experimental approaches designed to produce hatchery-reared chinook salmon (Oncorhynchus tshawytscha) that exhibit wild-like behavior, physiology, and morphology. The NATURES culture research for salmonids included multiple tests to develop techniques such as: raceways equipped with cover, structure, and natural substrates to promote development of proper body camouflage coloration; feed-delivery systems that condition fish to orient to the bottom rather than the surface of the rearing vessel; predator conditioning of fish to train them to avoid predators; and supplementing diets with natural live foods to improve foraging ability. The underlying assumptions are that NATURES will: (1) promote the development of natural cryptic coloration and antipredator behavior; (2) increase postrelease foraging efficiency; (3) improve fish health and condition by alleviating chronic, artificial rearing habitat-induced stress; and (4) reduce potential genetic selection pressures induced by the conventional salmon culture environment. A goal in using NATURES is to provide quality fish for rebuilding depleted natural runs.

  11. Quantitative Measures of Rearing And Spawning Habitat Characteristics For Stream-Dwelling Salmonids

    E-Print Network [OSTI]

    Keeley, Ernest R.

    for stream-dwelling salmonids: guidelines for habitat restoration. Province of British Columbia, MinistryQuantitative Measures of Rearing And Spawning Habitat Characteristics For Stream-Dwelling Salmonids: Guidelines For Habitat Restoration by E.R. Keeley and P.A. Slaney Watershed Restoration Project Report No. 4

  12. Does Pathogen Spillover from Commercially Reared Bumble Bees Threaten Wild Pollinators?

    E-Print Network [OSTI]

    Thomson, James D.

    Does Pathogen Spillover from Commercially Reared Bumble Bees Threaten Wild Pollinators? Michael C'); yet, we still have little understanding of the cause(s) of bee declines. Wild bumble bees (Bombus spp pathogen commonly found in commercial Bombus. We also monitored wild bumble bee populations near

  13. Design Principles of a flywheel Regenerative Braking System (f-RBS) for Formula SAE type racecar and system testing on a Virtual Test Rig modeled on MSC ADAMS

    E-Print Network [OSTI]

    Pochiraju, Anirudh

    2012-08-31T23:59:59.000Z

    This thesis presents a flywheel based mechanical regenerative braking system (RBS) concept for a Formula SAE type race car application, to improve the performance and/or efficiency of the racecar. A mechanical system is chosen to eliminate losses...

  14. HEATING AND COOLING PROTOSTELLAR DISKS

    SciTech Connect (OSTI)

    Hirose, S. [Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showamachi, Kanazawa-ku, Yokohama, Kanagawa 236-0001 (Japan); Turner, N. J., E-mail: shirose@jamstec.go.jp, E-mail: neal.turner@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2011-05-10T23:59:59.000Z

    We examine heating and cooling in protostellar disks using three-dimensional radiation-MHD calculations of a patch of the Solar nebula at 1 AU, employing the shearing-box and flux-limited radiation diffusion approximations. The disk atmosphere is ionized by stellar X-rays, well coupled to magnetic fields, and sustains a turbulent accretion flow driven by magnetorotational instability, while the interior is resistive and magnetically dead. The turbulent layers are heated by absorbing the light from the central star and by dissipating the magnetic fields. They are optically thin to their own radiation and cool inefficiently. The optically thick interior in contrast is heated only weakly, by re-emission from the atmosphere. The interior is colder than a classical viscous model and isothermal. The magnetic fields support an extended atmosphere that absorbs the starlight 1.5 times higher than the hydrostatic viscous model. The disk thickness thus measures not the internal temperature, but the magnetic field strength. Fluctuations in the fields move the starlight-absorbing surface up and down. The height ranges between 13% and 24% of the radius over timescales of several orbits, with implications for infrared variability. The fields are buoyant, so the accretion heating occurs higher in the atmosphere than the stresses. The heating is localized around current sheets, caused by magnetorotational instability at lower elevations and by Parker instability at higher elevations. Gas in the sheets is heated above the stellar irradiation temperature, even though accretion is much less than irradiation power when volume averaged. The hot optically thin current sheets might be detectable through their line emission.

  15. Stellar-Mass-Dependent Disk Structure in Coeval Planet-Forming Disks

    E-Print Network [OSTI]

    Sz?cs, László; Pascucci, Ilaria; Dullemond, Cornelis P

    2010-01-01T23:59:59.000Z

    Previous studies suggest that the planet-forming disks around very-low-mass stars/brown dwarfs may be flatter than those around more massive stars, in contrast to model predictions of larger scale heights for gas-disks around lower-mass stars. We conducted a statistically robust study to determine whether there is evidence for stellar-mass-dependent disk structure in planet-forming disks. We find a statistically significant difference in the Spitzer/IRAC color distributions of disks around very-low-mass and low-mass stars all belonging to the same star-forming region, the Chamaeleon I star-forming region. We show that self consistently calculated disk models cannot fit the median spectral energy distributions (SEDs) of the two groups. These SEDs can be only explained by flatter disk models, consistent with the effect of dust settling in disks. We find that relative to the disk structure predicted for flared disks the required reduction in disk scale height is anti-correlated with the stellar mass, i.e. disks ...

  16. Disk Accretion Onto High-Mass Planets

    E-Print Network [OSTI]

    S. H. Lubow; M. Seibert; P. Artymowicz

    1999-10-21T23:59:59.000Z

    We analyze the nonlinear, two-dimensional response of a gaseous, viscous protoplanetary disk to the presence of a planet of one Jupiter mass (1 M_J) and greater that orbits a 1 solar mass star by using the ZEUS hydrodynamics code with high resolution near the planet's Roche lobe. The planet is assumed to be in a circular orbit about the central star and is not allowed to migrate. A gap is formed about the orbit of the planet, but there is a nonaxisymmetric flow through the gap and onto the planet. The gap partitions the disk into an inner (outer) disk that extends inside (outside) the planet's orbit. For a 1 M_J planet and typical disk parameters, the accretion through the gap onto the planet is highly efficient. For typical disk parameters, the mass doubling time scale is less than 10^5 years, considerably shorter than the disk lifetime. Following shocks near the L1 and L2 Lagrange points, disk material enters the Roche lobe in the form of two gas streams. Shocks occur within the Roche lobe as the gas streams collide, and shocks lead to rapid inflow towards the planet within much of planet's Roche lobe. Shocks also propagate in the inner and outer disks that orbit the star. For higher mass planets (of order 6 M_J), the flow rate onto the planet is considerably reduced, which suggests an upper mass limit to planets in the range of 10 M_J. This rate reduction is related to the fact that the gap width increases relative to the Roche (Hill sphere) radius with increasing planetary mass. The flow in the gap affects planetary migration. For the 1 M_J planet case, mass can penetrate from the outer disk to the inner disk, so that the inner disk is not depleted. The results suggest that most of the mass in gas giant planets is acquired by flows through gaps.

  17. COBE's Galactic Bar and Disk

    E-Print Network [OSTI]

    H. T. Freudenreich

    1997-08-04T23:59:59.000Z

    A model of the bar and old stellar disk of the Galaxy has been derived from the survey of the Diffuse Infrared Background Experiment (DIRBE) of the Cosmic Background Explorer at wavelengths of 1.25, 2.2, 3.5, and 4.9 microns. It agrees very well with the data, except in directions in which the near- infrared optical depth is high. Among the conclusions drawn from the model: The Sun is located approximately 16.5 pc above the midpoint of the Galactic plane. The disk has an outer edge four kpc from the Sun, and is warped like the HI layer. It has a central hole roughly the diameter of the inner edge of the "three-kiloparsec" molecular cloud ring, and within that hole lies a bright, strong, "early-type" bar, tilted approximately 14 degrees from the Sun-Galactic center line. The model has 47 free parameters. The model is discussed in detail and contour plots and images of the residuals presented.

  18. GLOBAL LINE PROFILE ASYMMETRIES IN DISK GALAXIES

    E-Print Network [OSTI]

    Bershady, Matthew A.

    GLOBAL LINE PROFILE ASYMMETRIES IN DISK GALAXIES David R. Andersen1, Matthew A. Bershady2 1NRC profiles of 39 disk galaxies with H i and H ii data. We find good agreement between the first and second mo- ments of the profiles and recession and rotation velocities, respectively. The shapes of H i and H ii

  19. VISCOSITY IN ACCRETION DISKS PAUL J. WIITA

    E-Print Network [OSTI]

    Wiita, Paul J.

    VISCOSITY IN ACCRETION DISKS PAUL J. WIITA Department of Physics & Astronomy, Georgia State University Atlanta, Georgia, USA Abstract. Various proposals and prescriptions for the viscosity in accretion a solution to this difficult problem. 1. Introduction The nature of the viscosity within accretion disks

  20. A Braking Index for the Young, High-Magnetic-Field, Rotation-Powered Pulsar in Kes 75

    E-Print Network [OSTI]

    Margaret A. Livingstone; Victoria M. Kaspi; E. V. Gotthelf; Lucien Kuiper

    2006-04-21T23:59:59.000Z

    We present the first phase-coherent measurement of a braking index for the young, energetic rotation-powered pulsar PSR J1846-0258. This 324 ms pulsar is located at the center of the supernova remnant Kes 75 and has a characteristic age of tau_c = 723 years, a spin-down energy of 8.3x10^{36}erg/s, and inferred magnetic field of 4.9x10^{13} G. Two independent phase-coherent timing solutions are derived which together span 5.5 yr of data obtained with the Rossi X-ray Timing Explorer. In addition, a partially phase-coherent timing analysis confirms the fully phase-coherent result. The measured value of the braking index, n=2.65+/-0.01, is significantly less than 3, the value expected from magnetic dipole radiation, implying another physical process must contribute to the pulsar's rotational evolution. Assuming the braking index has been constant since birth, we place an upper limit on the spin-down age of J1846-0258 of 884 yr, the smallest age estimate of any rotation-powered pulsar.

  1. Turbine inter-disk cavity cooling air compressor

    DOE Patents [OSTI]

    Chupp, Raymond E. (Oviedo, FL); Little, David A. (Oviedo, FL)

    1998-01-01T23:59:59.000Z

    The inter-disk cavity between turbine rotor disks is used to pressurize cooling air. A plurality of ridges extend radially outwardly over the face of the rotor disks. When the rotor disks are rotated, the ridges cause the inter-disk cavity to compress air coolant flowing through the inter-disk cavity en route to the rotor blades. The ridges eliminate the need for an external compressor to pressurize the air coolant.

  2. Turbine inter-disk cavity cooling air compressor

    DOE Patents [OSTI]

    Chupp, R.E.; Little, D.A.

    1998-01-06T23:59:59.000Z

    The inter-disk cavity between turbine rotor disks is used to pressurize cooling air. A plurality of ridges extend radially outwardly over the face of the rotor disks. When the rotor disks are rotated, the ridges cause the inter-disk cavity to compress air coolant flowing through the inter-disk cavity en route to the rotor blades. The ridges eliminate the need for an external compressor to pressurize the air coolant. 5 figs.

  3. BACKPRESSURE TESTING OF ROTARY MICROFILTER DISKS

    SciTech Connect (OSTI)

    Fowley, M.; Herman, D.

    2011-04-14T23:59:59.000Z

    The Savannah River National Laboratory (SRNL), under the Department of Energy (DOE) Office of Environmental Management (EM), is modifying and testing the SpinTek{trademark} rotary microfilter (RMF) for radioactive filtration service in the Department of Energy (DOE) complex. The RMF has been shown to improve filtration throughput when compared to other conventional methods such as cross-flow filtration. A concern with the RMF was that backpressure, or reverse flow through the disk, would damage the filter membranes. Reverse flow might happen as a result of an inadvertent valve alignment during flushing. Testing was completed in the Engineering Development Laboratory (EDL) located in SRNL to study the physical effects of backpressure as well as to determine the maximum allowable back-pressure for RMF disks. The RMF disks tested at the EDL were manufactured by SpinTek{trademark} Filtration and used a Pall Corporation PMM050 filter membrane (0.5 micron nominal pore size) made from 316L stainless steel. Early versions of the RMF disks were made from synthetic materials that were incompatible with caustic solutions and radioactive service as well as being susceptible to delaminating when subjected to backpressure. Figure 1-1 shows the essential components of the RMF; 3 rotating disks and 3 stationary turbulence promoters (or shear elements) are shown. Figure 1-2 show the assembly view of a 25 disk RMF proposed for use at the Savannah River Site (SRS) and at the Hanford Facility. The purpose of the testing discussed in this report was to determine the allowable backpressure for RMF disks as well as study the physical effects of backpressure on RMF disks made with the Pall PMM050 membrane. This was accomplished by pressurizing the disks in the reverse flow direction (backpressure) until the test limit was reached or until membrane failure occurred. Backpressure was applied to the disks with air while submerged in deionized (DI) water. This method provided a visual representation of membrane integrity via bubble flow patterns. Membrane failure was defined as the inability to filter effectively at the nominal filter pore size. Effective filtration was determined by turbidity measurements of filtrate that was produced by applying forward-pressure to the disks while submerged in a representative simulant. The representative simulant was Tank 8F simulated sludge produced for SRNL by Optima Chemical. Two disks were tested. Disk 1 was tested primarily to determine approximate levels of backpressure where membrane failure occurred. These levels were then used to define the strategy for testing the Disk 2; a strategy that would better define and quantify the mode of failure.

  4. Head/disk interface tribology in the nanometer regime

    E-Print Network [OSTI]

    Xu, Jianfeng

    2008-01-01T23:59:59.000Z

    disks with different surface topography. No single transferFigure 7.5 Disk surface topography measured using atomicwith different surface topography. Thus, surface topography

  5. "By the hundred's of thousand's, these unlikely transportation revolutionaries are forgoing the safety of a steel cage with airbags and anti-lock brakes for a wispy two-wheeled exoskeleton as they make their way to work,

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    the safety of a steel cage with airbags and anti-lock brakes for a wispy two-wheeled exoskeleton as they make

  6. Investigations into the reproductive performance and larval rearing of the Brown shrimp, Farfantepenaeus aztecus, using closed recirculating systems

    E-Print Network [OSTI]

    Gandy, Ryan Leighton

    2005-02-17T23:59:59.000Z

    demonstrate maturation and larval rearing of F. aztecus is feasible in closed recirculating systems. Implementation of these systems in hatcheries bolsters biosecurity while reducing the environmental impact of hatchery effluent. Recirculating and re...

  7. MPEG-aware disk storage system

    E-Print Network [OSTI]

    Ren, Qian

    2000-01-01T23:59:59.000Z

    Disks. Digital Video Standards Multi-ported Disk Storage System. . . . . 3 . 4 . 4 . 5 III MPEG-A WARE DISK STORAGE SYSTEM. IV IMPLEMENTATION BACKGROUND. . . 10 4. 1 ISO 11172 Standard 4. 2 ISO 11172 System. 4. 2. 1 Overview . 4. 2. 2 Start... Code 4. 2. 3 System Bitstream Overview 4. 3 ISO 11172 Video. . 10 . 10 . 10 . 12 . 14 . 16 V IMPLEMENTATION DETAIL 18 5. 1 Software Structure 5. 2 Processing Center. 5. 3 Implemented Modules. 5. 3. 1 Fast-forwarding 5. 3. 2 Quality...

  8. Molecular Hydrogen Emission from Protoplanetary Disks

    E-Print Network [OSTI]

    H. Nomura; T. J. Millar

    2005-05-06T23:59:59.000Z

    We have modeled self-consistently the density and temperature profiles of gas and dust in protoplanetary disks, taking into account irradiation from a central star. Making use of this physical structure, we have calculated the level populations of molecular hydrogen and the line emission from the disks. As a result, we can reproduce the observed strong line spectra of molecular hydrogen from protoplanetary disks, both in the ultraviolet (UV) and the near-infrared, but only if the central star has a strong UV excess radiation.

  9. Gas Phase diagnostics of Protoplanetary disk extension

    E-Print Network [OSTI]

    B. Ercolano; J. J. Drake; C. J. Clarke

    2008-11-21T23:59:59.000Z

    We investigate the potential of using ratios of fine structure and near-infrared forbidden line transitions of atomic carbon to diagnose protoplanetary disk extension. Using results from 2D photoionisation and radiative transfer modeling of a realistic protoplanetary disk structure irradiated by X-rays from a T Tauri star, we obtain theoretical emission maps from which we construct radial distributions of the strongest emission lines produced in the disk. We show that ratios of fine structure to near-infrared forbidden line emission of atomic carbon are especially promising to constrain the minimum size of gaseous protoplanetary disks. While theoretically viable, the method presents a number of observational difficulties that are also discussed here.

  10. Hydraulic/Shock-Jumps in Protoplanetary Disks

    E-Print Network [OSTI]

    A. C. Boley; R. H. Durisen

    2006-03-10T23:59:59.000Z

    In this paper, we describe the nonlinear outcome of spiral shocks in protoplanetary disks. Spiral shocks, for most protoplanetary disk conditions, create a loss of vertical force balance in the post-shock region and result in rapid expansion of the gas perpendicular to the disk midplane. This expansion has characteristics similar to hydraulic jumps, which occur in incompressible fluids. We present a theory to describe the behavior of these hybrids between shocks and hydraulic jumps (shock bores) and then compare the theory to three-dimensional hydrodynamics simulations. We discuss the fully three-dimensional shock structures that shock bores produce and discuss possible consequences for disk mixing, turbulence, and evolution of solids.

  11. Disk Galaxy Evolution Along the Hubble Sequence

    E-Print Network [OSTI]

    Marios Kampakoglou; Joseph Silk

    2007-03-13T23:59:59.000Z

    Galaxy disks are characterised by star formation histories that vary systematically along the Hubble sequence. We study global star formation, incorporating supernova feedback, gas accretion and enriched outflows in disks modelled by a multiphase interstellar medium in a fixed gravitational potential. The star formation histories, gas distributions and chemical evolution can be explained in a simple sequence of models which are primarily regulated by the cold gas accretion history.

  12. Signpost of Multiple Planets in Debris Disks

    E-Print Network [OSTI]

    Su, Kate Y L

    2013-01-01T23:59:59.000Z

    We review the nearby debris disk structures revealed by multi-wavelength images from Spitzer and Herschel, and complemented with detailed spectral energy distribution modeling. Similar to the definition of habitable zones around stars, debris disk structures should be identified and characterized in terms of dust temperatures rather than physical distances so that the heating power of different spectral type of stars is taken into account and common features in disks can be discussed and compared directly. Common features, such as warm (~150 K) dust belts near the water-ice line and cold (~50 K) Kuiper-belt analogs, give rise to our emerging understanding of the levels of order in debris disk structures and illuminate various processes about the formation and evolution of exoplanetary systems. In light of the disk structures in the debris disk twins (Vega and Fomalhaut), and the current limits on the masses of planetary objects, we suggest that the large gap between the warm and cold dust belts is the best si...

  13. Dynamics of the Disks of Nearby Galaxies

    E-Print Network [OSTI]

    B. Fuchs

    2008-10-20T23:59:59.000Z

    I describe how the dynamics of galactic disks can be inferred by imaging and spectroscopy. Next I demonstrate that the decomposition of the rotation curves of spiral galaxies into the contributions by the various components of the galaxies is highly degenerate. Constraints on the decomposition can be found by considering implications for the dynamics of the galactic disks. An important diagnostic is the Toomre Q stability parameter which controls the stability of a galactic disk against local Jeans collapse. I also show how the density wave theory of galactic spiral arms can be employed to constrain the mass of a galactic disk. Applying both diagnostics to the example of NGC 2985 and discussing also the implied mass-to-light ratio I demonstrate that the inner parts of the galaxy, where the optical disk resides, are dominated by baryons. When I apply this method to the disks of low surface brightness galaxies, I find unexpectedly high mass-to light ratios. These could be explained by population synthesis models which assume a bottom heavy initial mass function similar to the recently proposed `integrated galactic initial mass function'.

  14. Criticality and Big Brake singularities in the tachyonic evolutions of closed Friedmann universes with cold dark matter

    E-Print Network [OSTI]

    Horváth, Zsolt; Kamenshchik, Alexander Yu; Gergely, László Á

    2015-01-01T23:59:59.000Z

    The evolution of a closed Friedmann universe filled by a tachyon scalar field with a trigonometric potential and cold dark matter (CDM) is investigated. A subset of the evolutions consistent to 1$\\sigma $ confidence level with the Union 2.1 supernova data set is identified. The evolutions of the tachyon field are classified. Some of them evolve into a de Sitter attractor, while others proceed through a pseudo-tachyonic regime into a sudden future singularity. Critical evolutions leading to Big Brake singularities in the presence of CDM are found and a new type of cosmological evolution characterized by singularity avoidance in the pseudo-tachyon regime is presented.

  15. A closed-loop quasi-optimal dynamic braking resistor and shunt reactor control strategy for transient stability

    SciTech Connect (OSTI)

    Rahim, A.H.M.A.; Alamgir, D.A.H.

    1988-08-01T23:59:59.000Z

    A control strategy for dynamic braking resistor and shunt reactor is proposed for stabilization of power systems when subject to large disturbances. The time optimal control is derived as a function of synchronous machine power, its rotor angular position and speed deviation. The response for a single machine system with the proposed control has been compared with that from the time optimal solution obtained through the steepest descent method. The strategy has also been tested on two multimachine systems. Results indicate that the proposed strategy provides a simple and effective method of stabilization under transient emergency conditions.

  16. Captive Rearing Program for Salmon River Chinook Salmon, 2000 Project Progress Report.

    SciTech Connect (OSTI)

    Venditti, David A.

    2002-04-01T23:59:59.000Z

    During 2000, the Idaho Department of Fish and Game (IDFG) continued to develop techniques to rear chinook salmon Oncorhynchus tshawytscha to sexual maturity in captivity and to monitor their reproductive performance under natural conditions. Eyed-eggs were collected to establish captive cohorts from three study streams and included 503 eyed-eggs from East Fork Salmon River (EFSR), 250 from the Yankee Fork Salmon River, and 304 from the West Fork Yankee Fork Salmon River (WFYF). After collection, the eyed-eggs were immediately transferred to the Eagle Fish Hatchery, where they were incubated and reared by family group. Juveniles collected the previous summer were PIT and elastomer tagged and vaccinated against vibrio Vibrio spp. and bacterial kidney disease before the majority (approximately 75%) were transferred to the National Marine Fisheries Service, Manchester Marine Experimental Station for saltwater rearing through sexual maturity. Smolt transfers included 158 individuals from the Lemhi River (LEM), 193 from the WFYF, and 372 from the EFSR. Maturing fish transfers from the Manchester facility to the Eagle Fish Hatchery included 77 individuals from the LEM, 45 from the WFYF, and 11 from the EFSR. Two mature females from the WFYF were spawned in captivity with four males in 2000. Only one of the females produced viable eggs (N = 1,266), which were placed in in-stream incubators by personnel from the Shoshone-Bannock Tribe. Mature adults (N = 70) from the Lemhi River were released into Big Springs Creek to evaluate their reproductive performance. After release, fish distributed themselves throughout the study section and displayed a progression of habitat associations and behavior consistent with progressing maturation and the onset of spawning. Fifteen of the 17 suspected redds spawned by captive-reared parents in Big Springs Creek were hydraulically sampled to assess survival to the eyed stage of development. Eyed-eggs were collected from 13 of these, and survival ranged from 0% to 96%, although there was evidence that some eggs had died after reaching the eyed stage. Six redds were capped in an attempt to document fry emergence, but none were collected. A final hydraulic sampling of the capped redds yielded nothing from five of the six, but 75 dead eggs and one dead fry were found in the sixth. Smothering by fine sediment is the suspected cause of the observed mortality between the eyed stage and fry emergence.

  17. Disk-cylinder and disk-sphere nanoparticles from block copolymer blend solution construction

    SciTech Connect (OSTI)

    Zhu, Jiahua [ORNL] [ORNL; Zhang, Shiyi [Texas A& M University] [Texas A& M University; Zhang, Ke [Northeastern University] [Northeastern University; Wang, Xiaojun [ORNL] [ORNL; Mays, Jimmy [ORNL] [ORNL; Wooley, Karen L [ORNL] [ORNL; Pochan, Darrin [University of Delaware] [University of Delaware

    2013-01-01T23:59:59.000Z

    Researchers strive to produce nanoparticles with complexity in composition and structure. Although traditional spherical, cylindrical and membranous, or planar, nanostructures are ubiquitous, scientists seek more complicated geometries for potential functionality. Here we report the simple solution construction of multigeometry nanoparticles, disk-sphere and diskcylinder, through a straightforward, molecular-level, blending strategy with binary mixtures of block copolymers. The multigeometry nanoparticles contain disk geometry in the core with either spherical patches along the disk periphery in the case of disk-sphere particles or cylindrical edges and handles in the case of the disk-cylinder particles. The portions of different geometry in the same nanoparticles contain different core block chemistry, thus also defining multicompartments in the nanoparticles. Although the block copolymers chosen for the blends are important for the definition of the final hybrid particles, the control of the kinetic pathway of assembly is critical for successful multigeometry particle construction.

  18. The Galactic thick and thin disks: differences in evolution

    E-Print Network [OSTI]

    T. V. Nykytyuk; T. V. Mishenina

    2006-05-26T23:59:59.000Z

    Recent observations demonstrate that the thin and thick disks of the Galaxy have different chemical abundance trends and evolution timescales. The relative abundances of $\\alpha$-elements in the thick Galactic disk are increased relative to the thin disk. Our goal is to investigate the cause of such differences in thick and thin disk abundances. We investigate the chemical evolution of the Galactic disk in the framework of the open two-zone model with gas inflow. The Galactic abundance trends for $\\alpha$-elements (Mg, Si, O) and Fe are predicted for the thin and thick Galactic disks. The star formation histories of the thin and thick disks must have been different and the gas infall must have been more intense during the thick disk evolution that the thin disk evolution.

  19. Signatures of Planets in Spatially Unresolved Disks

    E-Print Network [OSTI]

    A. Moro-Martin; S. Wolf; R. Malhotra

    2005-06-27T23:59:59.000Z

    Main sequence stars are commonly surrounded by debris disks, composed of cold dust continuously replenished by a reservoir of undetected dust-producing planetesimals. In a planetary system with a belt of planetesimals (like the Solar System's Kuiper Belt) and one or more interior giant planets, the trapping of dust particles in the mean motion resonances with the planets can create structure in the dust disk, as the particles accumulate at certain semimajor axes. Sufficiently massive planets may also scatter and eject dust particles out of a planetary system, creating a dust depleted region inside the orbit of the planet. In anticipation of future observations of spatially unresolved debris disks with the Spitzer Space Telescope, we are interested in studying how the structure carved by planets affects the shape of the disk's spectral energy distribution (SED), and consequently if the SED can be used to infer the presence of planets. We numerically calculate the equilibrium spatial density distributions and SEDs of dust disks originated by a belt of planetesimals in the presence of interior giant planets in different planetary configurations, and for a representative sample of chemical compositions. The dynamical models are necessary to estimate the enhancement of particles near the mean motion resonances with the planets, and to determine how many particles drift inside the planet's orbit. Based on the SEDs and predicted $\\it{Spitzer}$ colors we discuss what types of planetary systems can be distinguishable from one another and the main parameter degeneracies in the model SEDs.

  20. Efficient proton acceleration and focusing by an ultraintense laser interacting with a parabolic double concave target with an extended rear

    SciTech Connect (OSTI)

    Bake, Muhammad Ali; Xie, Bai-Song; Aimidula, Aimierding [Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China)] [Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Wang, Hong-Yu [Department of Physics, Anshan Normal University, Anshan 114005 (China) [Department of Physics, Anshan Normal University, Anshan 114005 (China); Shanghai Bright-Tech Information Technology Co. Ltd., Shanghai 200136 (China)

    2013-07-15T23:59:59.000Z

    A new scheme for acceleration and focusing of protons via an improved parabolic double concave target irradiated by an ultraintense laser pulse is proposed. When an intense laser pulse illuminates a concave target, the hot electrons are concentrated on the focal region of the rear cavity and they form a strong space-charge-separation field, which accelerates the protons. For a simple concave target, the proton energy spectrum becomes very broad outside the rear cavity because of transverse divergence of the electromagnetic fields. However, particle-in-cell simulations show that, when the concave target has an extended rear, the hot electrons along the wall surface induce a transverse focusing sheath field, resulting in a clear enhancement of proton focusing, which makes the lower proton energy spread, while, leads to a little reduction of the proton bunch peak energy.

  1. Captive Rearing Program for Salmon River Chinook Salmon, 2002 Annual Report.

    SciTech Connect (OSTI)

    Venditti, David; Willard, Catherine; James, Chris

    2003-11-01T23:59:59.000Z

    During 2002, the Idaho Department of Fish and Game continued to develop techniques to rear Chinook salmon Oncorhynchus tshawytscha to sexual maturity in captivity and to monitor their reproductive performance under natural conditions. Eyed-eggs were hydraulically collected from redds in the East Fork Salmon River (EFSR; N = 328) and the West Fork Yankee Fork Salmon River (WFYF; N = 308) to establish brood year 2002 culture cohorts. The eyed-eggs were incubated and reared at the Eagle Fish Hatchery, Eagle, Idaho (Eagle). Juveniles collected in 2000 were PIT and elastomer tagged and vaccinated against vibrio Vibrio spp. and bacterial kidney disease prior to being transferred to the NOAA Fisheries, Manchester Marine Experimental Station, Manchester, Washington (Manchester) for saltwater rearing through maturity. Smolt transfers included 203 individuals from the WFYF and 379 from the EFSR. Maturing fish transfers from Manchester to Eagle included 107 individuals from the LEM, 167 from the WFYF, and 82 from the EFSR. This was the second year maturing adults were held on chilled water at Eagle to test if water temperature manipulations could advance spawn timing. Adults from the LEM and WFYF were divided into chilled ({approx} 9 C) and ambient ({approx} 13.5 C) temperature groups while at Eagle. Forty-seven mature females from the LEM (19 chilled, 16 ambient, and 12 ambient not included in the temperature study) were spawned at Eagle with 42 males in 2002. Water temperature group was not shown to affect the spawn timing of these females, but males did mature earlier. Egg survival to the eyed stage averaged 66.5% and did not differ significantly between the temperature groups. Personnel from the Shoshone-Bannock Tribe placed a total of 47,977 eyed-eggs from these crosses in in-stream incubators. Mature adults (N = 215 including 56 precocial males) were released into the WFYF to evaluate their reproductive performance. After release, fish distributed themselves throughout the study section and displayed a progression of habitat associations and behavior consistent with progressing maturation and the onset of spawning. Twenty-six captive-reared females constructed 33 redds in the WFYF in 2002. Eighteen of these were hydraulically sampled, and eggs were collected from 17. The percentage of live eggs ranged from 0-100% and averaged 34.6%. No live eggs were found in redds spawned by brood year 1997 females. Expanding these results to the remaining redds gives an estimate of 22,900 eyed-eggs being produced by captive-reared fish in the WFYF. Additionally, 130 mature adults (including 41 precocial males) were released into the EFSR. Almost all of these fish moved out of the areas shoreline observers had access to, so no spawning behavior was observed. Radio-telemetry indicated that most of these fish initially moved downstream (although three females moved upstream as far as 7 km) and then held position.

  2. Dynamics of Line-Driven Disk Winds in Active Galactic Nuclei II: Effects of Disk Radiation

    E-Print Network [OSTI]

    D. Proga; T. R. Kallman

    2004-08-16T23:59:59.000Z

    We explore consequences of a radiation driven disk wind model for mass outflows from active galactic nuclei (AGN). We performed axisymmetric time-dependent hydrodynamic calculations using the same computational technique as Proga, Stone and Kallman (2000). We test the robustness of radiation launching and acceleration of the wind for relatively unfavorable conditions. In particular, we take into account the central engine radiation as a source of ionizing photons but neglect its contribution to the radiation force. Additionally, we account for the attenuation of the X-ray radiation by computing the X-ray optical depth in the radial direction assuming that only electron scattering contributes to the opacity. Our new simulations confirm the main result from our previous work: the disk atmosphere can 'shield' itself from external X-rays so that the local disk radiation can launch gas off the disk photosphere. We also find that the local disk force suffices to accelerate the disk wind to high velocities in the radial direction. This is true provided the wind does not change significantly the geometry of the disk radiation by continuum scattering and absorption processes; we discuss plausibility of this requirement. Synthetic profiles of a typical resonance ultraviolet line predicted by our models are consistent with observations of broad absorption line (BAL) QSOs.

  3. The orbital evolution of planets in disks

    E-Print Network [OSTI]

    Wilhelm Kley

    2000-04-04T23:59:59.000Z

    The orbital parameters of the observed extrasolar planets differ strongly from those of our own solar system. The differences include planets with high masses, small semi-major axis and large eccentricities. We performed numerical computations of embedded planets in disks and follow their mass growth and orbital evolution over several thousand periods. We find that planets do migrate inwards on timescales of about $10^5$ years on nearly circular orbits, during which they may grow up to about 5 Jupiter masses. The interaction of the disk with several planets may halt the migration process and lead to a system similar to the solar planetary system.

  4. Variational thermodynamics of relativistic thin disks

    E-Print Network [OSTI]

    A C Gutiérrez-Piñeres; C S Lopez-Monsalvo; H Quevedo

    2014-08-18T23:59:59.000Z

    We present a relativistic model describing a thin disk system composed of two fluids. The system is surrounded by a halo in the presence of a non-trivial electromagnetic field. We show that the model is compatible with the variational multi-fluid thermodynamics formalism, allowing us to determine all the thermodynamic variables associated with the matter content of the disk. The asymptotic behaviour of these quantities indicates that the single fluid interpretation should be abandoned in favour of a two-fluid model.

  5. Hydraulic Drivetrain and Regenerative Braking Team 13: Andrew Brown, Karan Desai, Andrew McGrath, Hurst Nuckols, Grant Wilson Adviser: Dr. Andrew Jackson

    E-Print Network [OSTI]

    Carpick, Robert W.

    Hydraulic Drivetrain and Regenerative Braking Team 13: Andrew Brown, Karan Desai, Andrew Mc Pressure Reservior Filter Variable Vane Pump Motor/Pump Hydraulic Accumulators Solenoid Valve Relief Valve Suction Line Since their development in 2006, hydraulic drivetrain systems have gained considerable

  6. Finite element analysis of the effect of up-armouring on the off-road braking and sharp-turn performance

    E-Print Network [OSTI]

    Grujicic, Mica

    Finite element analysis of the effect of up-armouring on the off-road braking and sharp-mobility multi-purpose wheeled vehicle, off-road vehicle performance, finite element modelling and simulations revision for publication on 15 June 2009. DOI: 10.1243/09544070JAUTO1187 Abstract: A comprehensive finite

  7. artemis disk global: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: Numerical simulations of planet-disk interactions are usually performed with hydro-codes that -- because they consider only an annulus of the disk, over a 2D grid -- can...

  8. Nuclear kpc-sized disks of spiral galaxies

    E-Print Network [OSTI]

    A. V. Zasov; A. V. Moiseev

    1998-12-07T23:59:59.000Z

    A comlex structure of nuclear disks of normal spiral galaxies was illustrated on the example of five galaxies, observed at 6m telescope. A problem of gravitational stability of nuclear disks is shortly discussed.

  9. accretion disk surrounding: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on the ratio of the mass flow rates of disk wind and stellar wind. The maximum speed of the outflow is about the Keplerian speed at the inner disk radius. An axial jet...

  10. An analysis of the annual probability of failure of the waste hoist brake system at the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    Greenfield, M.A. [Univ. of California, Los Angeles, CA (United States); Sargent, T.J.

    1995-11-01T23:59:59.000Z

    The Environmental Evaluation Group (EEG) previously analyzed the probability of a catastrophic accident in the waste hoist of the Waste Isolation Pilot Plant (WIPP) and published the results in Greenfield (1990; EEG-44) and Greenfield and Sargent (1993; EEG-53). The most significant safety element in the waste hoist is the hydraulic brake system, whose possible failure was identified in these studies as the most important contributor in accident scenarios. Westinghouse Electric Corporation, Waste Isolation Division has calculated the probability of an accident involving the brake system based on studies utilizing extensive fault tree analyses. This analysis conducted for the U.S. Department of Energy (DOE) used point estimates to describe the probability of failure and includes failure rates for the various components comprising the brake system. An additional controlling factor in the DOE calculations is the mode of operation of the brake system. This factor enters for the following reason. The basic failure rate per annum of any individual element is called the Event Probability (EP), and is expressed as the probability of failure per annum. The EP in turn is the product of two factors. One is the {open_quotes}reported{close_quotes} failure rate, usually expressed as the probability of failure per hour and the other is the expected number of hours that the element is in use, called the {open_quotes}mission time{close_quotes}. In many instances the {open_quotes}mission time{close_quotes} will be the number of operating hours of the brake system per annum. However since the operation of the waste hoist system includes regular {open_quotes}reoperational check{close_quotes} tests, the {open_quotes}mission time{close_quotes} for standby components is reduced in accordance with the specifics of the operational time table.

  11. Radiative Flow in a Luminous Disk II

    E-Print Network [OSTI]

    Jun Fukue

    2006-01-07T23:59:59.000Z

    Radiatively-driven transfer flow perpendicular to a luminous disk is examined in the subrelativistic regime of $(v/c)^1$, taking into account the gravity of the central object. The flow is assumed to be vertical, and the gas pressure is ignored, while internal heating is assumed to be proportional to the gas density. The basic equations were numerically solved as a function of the optical depth, and the flow velocity, the height, the radiative flux, and the radiation pressure were obtained for a given radius, an initial optical depth, and initial conditions at the flow base (disk ``inside''), whereas the mass-loss rate was determined as an eigenvalue of the boundary condition at the flow top (disk ``surface''). For sufficiently luminous cases, the flow resembles the case without gravity. For less-luminous cases, however, the flow velocity decreases, and the flow would be impossible due to the existence of gravity in the case that the radiative flux is sufficiently small. Application to a supercritical accretion disk with mass loss is briefly discussed.

  12. Coefficient of restitution for viscoelastic disks

    E-Print Network [OSTI]

    Thomas Schwager

    2007-01-08T23:59:59.000Z

    The dissipative collision of two identical viscoelastic disks is studied. By using a known law for the elastic part of the interaction force and the viscoelastic damping model an analytical solution for the coefficient of restitution shall be given. The coefficient of restitution depends significantly on the impact velocity. It approaches one for small velocities and decreases for increasing velocities.

  13. Patterned Magnetic Nanostructures and Quantized Magnetic Disks

    E-Print Network [OSTI]

    -increasing demands in data storage and to new applications of magnetic devices in the field of sensors. NewPatterned Magnetic Nanostructures and Quantized Magnetic Disks STEPHEN Y. CHOU Invited Paper, opens up new opportunities for engineering innovative magnetic materials and devices, developing ultra

  14. Dual Accretion Disks in Alternate Gravity Theories

    E-Print Network [OSTI]

    James S. Graber

    1997-12-15T23:59:59.000Z

    The interior of gravitationally collapsed objects in alternate theories of gravity in which event horizons and singularities do not occur in strong field gravity were generically investigated. These objects, called red holes, were found to contain dynamic configurations of matter, radiation and spacetime similar to inside out accretion disks well inside the photon orbit. Applications to astrophysical phenomena are briefly described.

  15. On the Solar System-Debris Disk Connecction

    E-Print Network [OSTI]

    Amaya Moro-Martin

    2007-12-14T23:59:59.000Z

    This paper emphasizes the connection between solar and extra-solar debris disks: how models and observations of the Solar System are helping us understand the debris disk phenomenon, and vice versa, how debris disks are helping us place our Solar System into context.

  16. Evolution of Giant Planets in Eccentric Disks

    E-Print Network [OSTI]

    Gennaro D'Angelo; Stephen H. Lubow; Matthew R. Bate

    2006-08-17T23:59:59.000Z

    We investigate the interaction between a giant planet and a viscous circumstellar disk by means of high-resolution, two-dimensional hydrodynamical simulations. We consider planet masses that range from 1 to 3 Jupiter masses (Mjup) and initial orbital eccentricities that range from 0 to 0.4. We find that a planet can cause eccentricity growth in a disk region adjacent to the planet's orbit, even if the planet's orbit is circular. Disk-planet interactions lead to growth in a planet's orbital eccentricity. The orbital eccentricities of a 2 Mjup and a 3 Mjup planet increase from 0 to 0.11 within about 3000 orbits. Over a similar time period, the orbital eccentricity of a 1 Mjup planet grows from 0 to 0.02. For a case of a 1 Mjup planet with an initial eccentricity of 0.01, the orbital eccentricity grows to 0.09 over 4000 orbits. Radial migration is directed inwards, but slows considerably as a planet's orbit becomes eccentric. If a planet's orbital eccentricity becomes sufficiently large, e > ~0.2, migration can reverse and so be directed outwards. The accretion rate towards a planet depends on both the disk and the planet orbital eccentricity and is pulsed over the orbital period. Planet mass growth rates increase with planet orbital eccentricity. For e~0.2 the mass growth rate of a planet increases by approximately 30% above the value for e=0. For e > ~0.1, most of the accretion within the planet's Roche lobe occurs when the planet is near the apocenter. Similar accretion modulation occurs for flow at the inner disk boundary which represents accretion toward the star.

  17. Why Disks Shine: the Transport of Angular Momentum in Hot, Thin Disks

    E-Print Network [OSTI]

    E. T. Vishniac

    1993-09-28T23:59:59.000Z

    I review recent work on the radial transport of angular momentum in ionized, Keplerian accretion disks. Proposed mechanisms include hydrodynamic and MHD local instabilities and long range effects mediated by wave transport. The most promising models incorporate the Velikhov-Chandrasekhar instability, caused by an instability of the magnetic field embedded in a differentially rotating disk. This has the important feature that the induced turbulent motions necessarily transport angular momentum outward. By contrast, convective modes may transport angular momentum in either direction. Combining the magnetic field instability with an $\\alpha-\\Omega$ dynamo driven by internal waves leads to a model in which the dimensionless viscosity scales as $(H/r)^{4/3}$. However, this model has a phenomenology which is quite different from the $\\alpha$ disk model. For example, an active disk implies some source of excitation for the internal waves. In binary systems with a mass ratio of order unity the most likely exciting mechanism is a parametric instability due to tidal forces. This implies that in systems where the accretion stream is intermittent, like MV Lyrae or TT Ari, epochs when the mass flow is absent or very small will be epochs in which the disk shrinks and becomes relatively inactive and dark. This model also implies that forced vertical mixing is important, even in convectively stable disks. I discuss various observational tests of this model and the focus of current theoretical work.

  18. Wavenumber-frequency analysis of the wall pressure fluctuations in the wake of a rear view mirror using a

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    problems leading to expensive late design changes, together with the high cost of wind tunnel sessionsWavenumber-frequency analysis of the wall pressure fluctuations in the wake of a rear view mirror method for the numerical prediction of the wind noise inside a car is the coupling of an unsteady

  19. Paru dans Child Abuse and Neglect, 1997, 21, (10):911-927. ADULT OUTCOME OF CHILDREN REARED

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Paru dans Child Abuse and Neglect, 1997, 21, (10):911-927. ADULT OUTCOME OF CHILDREN REARED manuscript, published in "Child Abuse & Neglect 1997;21(10):911-927" #12;2 Abstract : Objective: To study with a stable care environment. An other aim was to determine predictive factors for maladjusted psycho

  20. A numerical simulation study of gallium-phosphide/silicon heterojunction passivated emitter and rear solar cells

    SciTech Connect (OSTI)

    Wagner, Hannes [Department of Solar Energy, Institute Solid-State Physics, Leibniz University of Hannover, Appelstr. 2, 30167 Hannover (Germany); ARC Photovoltaics Centre of Excellence, University of New South Wales (UNSW), Sydney, NSW 2052 (Australia); Ohrdes, Tobias [Institute for Solar Energy Research Hamelin (ISFH), 31860 Emmerthal (Germany); Dastgheib-Shirazi, Amir [Div. Photovoltaics, Department of Physics, University of Konstanz, 78457 Konstanz (Germany); Puthen-Veettil, Binesh; König, Dirk [ARC Photovoltaics Centre of Excellence, University of New South Wales (UNSW), Sydney, NSW 2052 (Australia); Altermatt, Pietro P. [Department of Solar Energy, Institute Solid-State Physics, Leibniz University of Hannover, Appelstr. 2, 30167 Hannover (Germany)

    2014-01-28T23:59:59.000Z

    The performance of passivated emitter and rear (PERC) solar cells made of p-type Si wafers is often limited by recombination in the phosphorus-doped emitter. To overcome this limitation, a realistic PERC solar cell is simulated, whereby the conventional phosphorus-doped emitter is replaced by a thin, crystalline gallium phosphide (GaP) layer. The resulting GaP/Si PERC cell is compared to Si PERC cells, which have (i) a standard POCl{sub 3} diffused emitter, (ii) a solid-state diffused emitter, or (iii) a high efficiency ion-implanted emitter. The maximum efficiencies for these realistic PERC cells are between 20.5% and 21.2% for the phosphorus-doped emitters (i)–(iii), and up to 21.6% for the GaP emitter. The major advantage of this GaP hetero-emitter is a significantly reduced recombination loss, resulting in a higher V{sub oc}. This is so because the high valence band offset between GaP and Si acts as a nearly ideal minority carrier blocker. This effect is comparable to amorphous Si. However, the GaP layer can be contacted with metal fingers like crystalline Si, so no conductive oxide is necessary. Compared to the conventional PERC structure, the GaP/Si PERC cell requires a lower Si base doping density, which reduces the impact of the boron-oxygen complexes. Despite the lower base doping, fewer rear local contacts are necessary. This is so because the GaP emitter shows reduced recombination, leading to a higher minority electron density in the base and, in turn, to a higher base conductivity.

  1. Rings in the Planetesimal Disk of Beta Pic

    E-Print Network [OSTI]

    P. Kalas; J. Larwood; B. A. Smith; A. Schultz

    2000-01-13T23:59:59.000Z

    The nearby main sequence star Beta Pictoris is surrounded by an edge-on disk of dust produced by the collisional erosion of larger planetesimals. Here we report the discovery of substructure within the northeast extension of the disk midplane that may represent an asymmetric ring system around Beta Pic. We present a dynamical model showing that a close stellar flyby with a quiescient disk of planetesimals can create such rings, along with previously unexplained disk asymmetries. Thus we infer that Beta Pic's planetesimal disk was highly disrupted by a stellar encounter in the last hundred thousand years.

  2. Disk Evolution in Young Binaries: from Observations to Theory

    E-Print Network [OSTI]

    J. -L. Monin; C. J. Clarke; L. Prato; C. McCabe

    2006-04-03T23:59:59.000Z

    The formation of a binary system surrounded by disks is the most common outcome of stellar formation. Hence studying and understanding the formation and the evolution of binary systems and associated disks is a cornerstone of star formation science. Moreover, since the components within binary systems are coeval and the sizes of their disks are fixed by the tidal truncation of their companion, binary systems provide an ideal "laboratory" in which to study disk evolution under well defined boundary conditions. In this paper, we review observations of several inner disk diagnostics in multiple systems, including hydrogen emission lines (indicative of ongoing accretion), $K-L$ and $K-N$ color excesses (evidence of warm inner disks), and polarization (indicative of the relative orientations of the disks around each component). We examine to what degree these properties are correlated within binary systems and how this degree of correlation depends on parameters such as separation and binary mass ratio. These findings will be interpreted both in terms of models that treat each disk as an isolated reservoir and those in which the disks are subject to re-supply from some form of circumbinary reservoir, the observational evidence for which we will also critically review. The planet forming potential of multiple star systems is discussed in terms of the relative lifetimes of disks around single stars, binary primaries and binary secondaries. Finally, we summarize several potentially revealing observational problems and future projects that could provide further insight into disk evolution in the coming decade

  3. Turbulent Angular Momentum Transport in Weakly-Ionized Accretion Disks

    E-Print Network [OSTI]

    Bryan Mark Johnson

    2005-09-13T23:59:59.000Z

    Understanding the mechanism that drives accretion has been the primary challenge in accretion disk theory. Turbulence provides a natural means of dissipation and the removal of angular momentum, but firmly establishing its presence in disks proved for many years to be difficult. The realization in the 1990s that a weak magnetic field will destabilize a disk and result in a vigorous turbulent transport of angular momentum has revolutionized the field. Much of accretion disk research now focuses on understanding the implications of this mechanism for astrophysical observations. At the same time, the success of this mechanism depends upon a sufficient ionization level in the disk for the flow to be well-coupled to the magnetic field. Many disks, such as disks around young stars and disks in binary systems that are in quiescence, are too cold to be sufficiently ionized, and so efforts to establish the presence of turbulence in these disks continues. This dissertation focuses on several possible mechanisms for the turbulent transport of angular momentum in weakly-ionized accretion disks: gravitational instability, radial convection and vortices driving compressive motions. It appears that none of these mechanisms are very robust in driving accretion. A discussion is given, based on these results, as to the most promising directions to take in the search for a turbulent transport mechanism that does not require magnetic fields. Also discussed are the implications of assuming that no turbulent transport mechanism exists for weakly-ionized disks.

  4. Turbulence driven diffusion in protoplanetary disks - chemical effects in the outer disk

    E-Print Network [OSTI]

    K. Willacy; W. D. Langer; M. Allen; G. Bryden

    2006-03-03T23:59:59.000Z

    The dynamics and chemistry of protostellar disks are likely to be intricately linked, with dynamical processes altering the chemical composition, and chemistry, in turn, controlling the ionization structure and hence the ability of the magneto-rotational instability to drive the disk turbulence. Here we present the results from the first chemical models of the outer regions (R > 100 AU) of protoplanetary disks to consider the effects of turbulence driven diffusive mixing in the vertical direction. We show that vertical diffusion can greatly affect the column densities of many species, increasing them by factors of up to two orders of magnitude. Previous disk models have shown that disks can be divided into three chemically distinct layers, with the bulk of the observed molecular emission coming from a region between an atomic/ionic layer on the surface of the disk and the midplane regoin where the bulk of molecules are frozen onto grains. Diffusion retains this three layer structure, but increases the depth of the molecular layer by bringing atoms and atomic ions form by photodissociation in the surface layers into the shielded molecular layer where molecules can reform. For other species, notably NH3 and N2H+, the column densities are relatively unaffected by diffusion. These species peak in abundance near the midplane where most other molecules are heavily depleted, rather than in the molecular layer above. Diffusion only affects the abundances of those molecules with peak abundances in the molecular layer. We find that diffusion does not affect the ionization fraction of the disk. We compare the calculated column densities to observations of DM Tau, LkCa 15 and TW Hya and find good agreement for many molecules with a diffusion coefficient of 1e18 cm^2 s^-1.

  5. SPH simulations of tidally unstable accretion disks in cataclysmic variables

    E-Print Network [OSTI]

    James R. Murray

    1995-11-08T23:59:59.000Z

    We numerically study the precessing disk model for superhump in the SU~UMa subclass of cataclysmic variables, using a two dimensional SPH code specifically designed for thin disk problems. Two disk simulations for a binary with mass ratio $q=\\frac{3}{17}$ (similar to OY~Car) are performed, in order to investigate the Lubow (1991 a,b) tidal resonance instability mechanism. In the first calculation, a disk evolves under steady mass transfer from $L_1$. In the second simulation, mass is added in Keplerian orbit to the inner disk. The two disks follow similar evolutionary paths. However the $L_1$ stream-disk interaction is found to slow the disk's radial expansion and to circularise gas orbits. The initial eccentricity growth in our simulations is exponential at a rate slightly less than predicted by Lubow (1991a). We do not observe a clearing of material from the resonance region via the disk's tidal response to the $m=2$ component of the binary potential as was described in Lubow (1992). Instead the $m=2$ response weakens as the disk eccentricty increases. Both disks reach an eccentric equilibrium state, in which they undergo prograde precession. The rate of viscous energy dissipation in the disks has a periodic excess with a period matching the disk's rotation. The source is identified as a large region in the outer disk, and the mechanism by which it is produced is identified. The time taken for the periodic excess to develop is consistent with the first appearance of superhumps in a superoutburst.

  6. Terabyte IDE RAID-5 Disk Arrays

    E-Print Network [OSTI]

    D. A. Sanders; L. M. Cremaldi; V. Eschenburg; R. Godang; C. N. Lawrence; C. Riley; D. J. Summers; D. L. Petravick

    2003-06-04T23:59:59.000Z

    High energy physics experiments are currently recording large amounts of data and in a few years will be recording prodigious quantities of data. New methods must be developed to handle this data and make analysis at universities possible. We examine some techniques that exploit recent developments in commodity hardware. We report on tests of redundant arrays of integrated drive electronics (IDE) disk drives for use in offline high energy physics data analysis. IDE redundant array of inexpensive disks (RAID) prices now are less than the cost per terabyte of million-dollar tape robots! The arrays can be scaled to sizes affordable to institutions without robots and used when fast random access at low cost is important.

  7. Massive Disks in Low Surface Brightness Galaxies

    E-Print Network [OSTI]

    B. Fuchs

    2002-09-09T23:59:59.000Z

    An update of the set of low surface brightness galaxies is presented which can be used to set constraints on the otherwise ambiguous decompositions of their rotation curves into contributions due to the various components of the galaxies. The selected galaxies show all clear spiral structure and arguments of density wave theory of galactic spiral arms are used to estimate the masses of the galactic disks. Again these estimates seem to indicate that the disks of low surface brightness galaxies might be much more massive than currently thought. This puzzling result contradicts stellar population synthesis models. This would mean also that low surface brightness galaxies are not dominated by dark matter in their inner parts.

  8. Secular Evolution of the Galactic Disk

    E-Print Network [OSTI]

    James Binney

    2000-09-20T23:59:59.000Z

    In the solar-neighbourhood, older stars have larger random velocities than younger ones. It is argued that the increase in velocity dispersion with time is predominantly a gradual process rather than one induced by discrete events such as minor mergers. Ephemeral spiral arms seem to be the fundamental drivers of disk heating, although scattering by giant molecular clouds plays an important moderating role. In addition to heating the disk, spiral arms cause stars' guiding centres to diffuse radially. The speed of this diffusion is currently controversial. Data from the Hipparcos satellite has made it clear that the Galaxy is by no means in a steady state. This development enormously increases the complexity of the models required to account for the data. There are preliminary indications that we see in the local phase-space distribution the dynamical footprints of long-dissolved spiral waves.

  9. Collective Motion of Vibrated Polar Disks

    E-Print Network [OSTI]

    Julien Deseigne; Olivier Dauchot; Hugues Chatè

    2010-04-09T23:59:59.000Z

    We experimentally study a monolayer of vibrated disks with a built-in polar asymmetry which enables them to move quasi-balistically on a large persistence length. Alignment occurs during collisions as a result of self-propulsion and hard core repulsion. Varying the amplitude of the vibration, we observe the onset of large-scale collective motion and the existence of giant number fluctuations with a scaling exponent in agreement with the predicted theoretical value.

  10. Dynamical Constraints on Disk Galaxy Formation

    E-Print Network [OSTI]

    Stacy McGaugh

    1999-09-27T23:59:59.000Z

    The rotation curves of disk galaxies exhibit a number of striking regularities. The amplitude of the rotation is correlated with luminosity (Tully-Fisher), the shape of the rotation curve is well predicted by the luminous mass distribution, and the magnitude of the mass discrepancy increases systematically with decreasing centripetal acceleration. These properties indicate a tight connection between light and mass, and impose strong constraints on theories of galaxy formation.

  11. Galactosynthesis: Halo Histories, Star Formation, and Disks

    E-Print Network [OSTI]

    Ari Buchalter; Raul Jimenez; Marc Kamionkowski

    2000-06-01T23:59:59.000Z

    We investigate the effects of a variety of ingredients that must enter into a realistic model for disk-galaxy formation, focusing primarily on the Tully-Fisher (TF) relation and its scatter in several wavebands. Our main findings are: (a) the slope, normalization, and scatter of the TF relation across various wavebands is determined {\\em both} by halo properties and star formation in the disk; (b) TF scatter owes primarily to the spread in formation redshifts. The scatter can be measurably reduced by chemical evolution, and also in some cases by the weak anti-correlation between peak height and spin; (c) multi-wavelength constraints can be important in distinguishing between models which appear to fit the TF relation in I or K; (d) successful models seem to require that the bulk of disk formation cannot occur too early (z>2) or too late (z<0.5), and are inconsistent with high values of $\\Omega_0$; (e) a realistic model with the above ingredients can reasonably reproduce the observed z=0 TF relation in {\\em all} bands (B, R, I, and K). It can also account for the z=1 B-band TF relation and yield rough agreement with the local B and K luminosity functions and B-band surface-brightness--magnitude relation. The remarkable agreement with observations suggests that the amount of gas that is expelled or poured into a disk galaxy must be small, and that the specific angular momentum of the baryons must roughly equal that of the halo; there is little room for angular momentum transfer. In an appendix we present analytic fits to stellar-population synthesis models.

  12. Disk-Planet Interactions During Planet Formation

    E-Print Network [OSTI]

    J. C. B. Papaloizou; R. P. Nelson; W. Kley; F. S. Masset; P. Artymowicz

    2006-03-08T23:59:59.000Z

    The discovery of close orbiting extrasolar giant planets led to extensive studies of disk planet interactions and the forms of migration that can result as a means of accounting for their location. Early work established the type I and type II migration regimes for low mass embedded planets and high mass gap forming planets respectively. While providing an attractive means of accounting for close orbiting planets intially formed at several AU, inward migration times for objects in the earth mass range were found to be disturbingly short, making the survival of giant planet cores an issue. Recent progress in this area has come from the application of modern numerical techniques which make use of up to date supercomputer resources. These have enabled higher resolution studies of the regions close to the planet and the initiation of studies of planets interacting with disks undergoing MHD turbulence. This work has led to indications of how the inward migration of low to intermediate mass planets could be slowed down or reversed. In addition, the possibility of a new very fast type III migration regime, that can be directed inwards or outwards, that is relevant to partial gap forming planets in massive disks has been investigated.

  13. The Differential Lifetimes of Protostellar Gas and Dust Disks

    E-Print Network [OSTI]

    Taku Takeuchi; C. J. Clarke; D. N. C. Lin

    2005-03-22T23:59:59.000Z

    We construct a protostellar disk model that takes into account the combined effect of viscous evolution, photoevaporation and the differential radial motion of dust grains and gas. For T Tauri disks, the lifetimes of dust disks that are mainly composed of millimeter sized grains are always shorter than the gas disks' lifetimes, and become similar only when the grains are fluffy (density 10 AU), without strong signs of gas accretion nor of millimeter thermal emission from the dust. For Herbig AeBe stars, the strong photoevaporation clears the inner disks in 10^6 yr, before the dust grains in the outer disk migrate to the inner region. In this case, the grains left behind in the outer gas disk accumulate at the disk inner edge (at 10-100 AU from the star). The dust grains remain there even after the entire gas disk has been photoevaporated, and form a gas-poor dust ring similar to that observed around HR 4796A. Hence, depending on the strength of the stellar ionizing flux, our model predicts opposite types of products around young stars. For low mass stars with a low photoevaporation rate, dust-poor gas disks with an inner hole would form, whereas for high mass stars with a high photoevaporation rate, gas-poor dust rings would form. This prediction should be examined by observations of gas and dust around weak line T Tauri stars and evolved Herbig AeBe stars.

  14. Nucleosynthesis in the accretion disks of Type II collapsars

    E-Print Network [OSTI]

    Indrani Banerjee; Banibrata Mukhopadhyay

    2013-05-08T23:59:59.000Z

    We investigate nucleosynthesis inside the gamma-ray burst (GRB) accretion disks formed by the Type II collapsars. In these collapsars, the core collapse of massive stars first leads to the formation of a proto-neutron star and a mild supernova explosion is driven. However, this supernova ejecta lack momentum and falls back onto the neutron star which gets transformed to a stellar mass black hole. In order to study the hydrodynamics and nucleosynthesis of such an accretion disk formed from the fallback material of the supernova ejecta, we use the well established hydrodynamic models. In such a disk neutrino cooling becomes important in the inner disk where the temperature and density are higher. Higher the accretion rate (dot{M}), higher is the density and temperature in the disks. In this work we deal with accretion disks with relatively low accretion rates: 0.001 M_sun s^{-1} \\lesssim dot{M} \\lesssim 0.01 M_sun s^{-1} and hence these disks are predominantly advection dominated. We use He-rich and Si-rich abundances as the initial condition of nucleosynthesis at the outer disk, and being equipped with the disk hydrodynamics and the nuclear network code, we study the abundance evolution as matter inflows and falls into the central object. We investigate the variation in the nucleosynthesis products in the disk with the change in the initial abundance at the outer disk and also with the change in the mass accretion rate. We report the synthesis of several unusual nuclei like {31}P, {39}K, {43}Sc, {35}Cl, and various isotopes of titanium, vanadium, chromium, manganese and copper. We also confirm that isotopes of iron, cobalt, nickel, argon, calcium, sulphur and silicon get synthesized in the disk, as shown by previous authors. Much of these heavy elements thus synthesized are ejected from the disk via outflows and hence they should leave their signature in observed data.

  15. Angular Momentum Transport in Simulations of Accretion Disks

    E-Print Network [OSTI]

    James Rhys Murray

    1997-03-10T23:59:59.000Z

    In this paper we briefly discuss the ways in which angular momentum transport is included in simulations of non-self-gravitating accretion disks, concentrating on disks in close binaries. Numerical approaches fall in two basic categories; particle based Lagrangian schemes, and grid based Eulerian techniques. Underlying the choice of numerical technique are assumptions that are made about disk physics, in particular about the angular momentum transport mechanism. Grid-based simulations have generally been of hot, relatively inviscid disks whereas particle-based simulations are more commonly of cool, viscous disks. Calculations of the latter type have been instrumental in developing a model for the superhump phenomenon. We describe how we use an artificial viscosity term to introduce angular momentum transport into our smoothed particle hydrodynamics (SPH) disk code.

  16. Feasibility study 100 K East Area water purification pools fish-rearing program

    SciTech Connect (OSTI)

    Betsch, M.D., Westinghouse Hanford

    1996-07-03T23:59:59.000Z

    As part of the feasibility study, a design analysis was conducted to determine the usefulness of the existing sand filters and associated media for reuse. The sand filters which were studied for potential reuse are located on the northern end of the 100-K East Area water filtration plant on the Hanford Site. This plant is located about one- half mile from the Columbia River. The sand filters were originally part of a system which was used to provide cooling water to the nearby plutonium production K Reactors. This Cold War operation took place until 1971, at which time the K Reactors were closed for eventual decontamination and decommissioning. Recently, it was decided to study the concept of putting the sand filter structures back into use for fish-rearing purposes. Because the water that circulated through the water purification pools (K Pools) and associated sand filters was clean river water, there is little chance of the structures being radioactively contaminated. To date, separate K Pools have been used for raising a variety of cold water fish species, including white sturgeon and fall chinook salmon, as well as for providing potable water to the 100 K Area of the Hanford Site for fire and service water purposes.

  17. MEASURING PROTOPLANETARY DISK ACCRETION WITH H I PFUND {beta}

    SciTech Connect (OSTI)

    Salyk, Colette [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Herczeg, Gregory J. [Kavli Institute for Astronomy and Astrophysics at Peking University, Yi He Yuan Lu 5, Hai Dian Qu, Beijing 100871 (China); Brown, Joanna M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Blake, Geoffrey A. [Division of Geological and Planetary Sciences, Mail Code 150-21, California Institute of Technology, Pasadena, CA 91125 (United States); Pontoppidan, Klaus M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Van Dishoeck, Ewine F., E-mail: csalyk@noao.edu [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)

    2013-05-20T23:59:59.000Z

    In this work, we introduce the use of H I Pfund {beta} (Pf{beta}; 4.6538 {mu}m) as a tracer of mass accretion from protoplanetary disks onto young stars. Pf{beta} was serendipitously observed in NIRSPEC and CRIRES surveys of CO fundamental emission, amounting to a sample size of 120 young stars with detected Pf{beta} emission. Using a subsample of disks with previously measured accretion luminosities, we show that Pf{beta} line luminosity is well correlated with accretion luminosity over a range of at least three orders of magnitude. We use this correlation to derive accretion luminosities for all 120 targets, 65 of which are previously unreported in the literature. The conversion from accretion luminosity to accretion rate is limited by the availability of stellar mass and radius measurements; nevertheless, we also report accretion rates for 67 targets, 16 previously unmeasured. Our large sample size and our ability to probe high extinction values allow for relatively unbiased comparisons between different types of disks. We find that the transitional disks in our sample have lower than average Pf{beta} line luminosities, and thus accretion luminosities, at a marginally significant level. We also show that high Pf{beta} equivalent width is a signature of transitional disks with high inner disk gas/dust ratios. In contrast, we find that disks with signatures of slow disk winds have Pf{beta} luminosities comparable to those of other disks in our sample. Finally, we investigate accretion rates for stage I disks, including significantly embedded targets. We find that stage I and stage II disks have statistically indistinguishable Pf{beta} line luminosities, implying similar accretion rates, and that the accretion rates of stage I disks are too low to be consistent with quiescent accretion. Our results are instead consistent with both observational and theoretical evidence that stage I objects experience episodic, rather than quiescent, accretion.

  18. Research Associate Rearing and Identification of Wood-boring Beetles Intercepted in US Ports Xavier University & USDA APHIS PPQ CPHST Otis Laboratory

    E-Print Network [OSTI]

    Ferrara, Katherine W.

    intercepted insects from ports, and rearing insects in host wood or artificial diets. Identification at Buzzards Bay, Massachusetts. This job requires fine motor skills, and the ability to lift up to 20 pounds

  19. The 22nd International Photovoltaic Science and Engineering Conference, November 05-09, 2012, Hangzhou, China Front side degradation of silicon solar cells by rear side laser

    E-Print Network [OSTI]

    wafers without bow for further processing and module integration. [1,2] In this contribution we recombination rate beneath the contacts. A thermal oxide with a thickness of 150 nm serves as a rear side

  20. ae protoplanetary disks: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    these protoplanetary disks, suggestive of processing of these grains during the transient heating events hypothesized to create chondrules. B. A. Sargent; W. J. Forrest; C....

  1. accretion disk properties: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution and equilibrium radiation spectrum) are different for the... Harko, Tiberiu; Lobo,...

  2. Testing Disk Instability Models for Giant Planet Formation

    E-Print Network [OSTI]

    Alan P. Boss

    2007-04-09T23:59:59.000Z

    Disk instability is an attractive yet controversial means for the rapid formation of giant planets in our solar system and elsewhere. Recent concerns regarding the first adiabatic exponent of molecular hydrogen gas are addressed and shown not to lead to spurious clump formation in the author's disk instability models. A number of disk instability models have been calculated in order to further test the robustness of the mechanism, exploring the effects of changing the pressure equation of state, the vertical temperature profile, and other parameters affecting the temperature distribution. Possible reasons for differences in results obtained by other workers are discussed. Disk instability remains as a plausible formation mechanism for giant planets.

  3. Working with Arrays of Inexpensive EIDE Disk Drives

    E-Print Network [OSTI]

    David Sanders; Chris Riley; Lucien Cremaldi; Don Summers; Don Petravick

    2006-09-09T23:59:59.000Z

    In today's marketplace, the cost per Terabyte of disks with EIDE interfaces is about a third that of disks with SCSI. Hence, three times as many particle physics events could be put online with EIDE. The modern EIDE interface includes many of the performance features that appeared earlier in SCSI. EIDE bus speeds approach 33 Megabytes/s and need only be shared between two disks rather than seven disks. The internal I/O rate of very fast (and expensive) SCSI disks is only 50 per cent greater than EIDE disks. Hence, two EIDE disks whose combined cost is much less than one very fast SCSI disk can actually give more data throughput due to the advantage of multiple spindles and head actuators. We explore the use of 12 and 16 Gigabyte EIDE disks with motherboard and PCI bus card interfaces on a number of operating systems and CPUs. These include Red Hat Linux and Windows 95/98 on a Pentium, MacOS and Apple's Rhapsody/NeXT/UNIX on a PowerPC, and Sun Solaris on a UltraSparc 10 workstation.

  4. accretion disk emission: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that different mass concentrations around the accretion disk formed by a dusty wind may lead to the disparate ratios of the blue peak strength to the red counterpart...

  5. accretion disk winds: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and can obtain radiatively driven winds accelerated up to the it relativistic speed. For less luminous cases, disk winds are transonic types passing through saddle type...

  6. accretion disk size: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accretion axis breaks down; the accretion radius Racc generally depends on an inclination angle i between the accretion axis and the symmetry axis of the disk and the...

  7. accretion disk wind: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and can obtain radiatively driven winds accelerated up to the it relativistic speed. For less luminous cases, disk winds are transonic types passing through saddle type...

  8. Planet Shadows in Protoplanetary Disks. I: Temperature Perturbations

    E-Print Network [OSTI]

    H. Jang-Condell

    2008-01-29T23:59:59.000Z

    Planets embedded in optically thick passive accretion disks are expected to produce perturbations in the density and temperature structure of the disk. We calculate the magnitudes of these perturbations for a range of planet masses and distances. The model predicts the formation of a shadow at the position of the planet paired with a brightening just beyond the shadow. We improve on previous work on the subject by self-consistently calculating the temperature and density structures under the assumption of hydrostatic equilibrium and taking the full three-dimensional shape of the disk into account rather than assuming a plane-parallel disk. While the excursion in temperatures is less than in previous models, the spatial size of the perturbation is larger. We demonstrate that a self-consistent calculation of the density and temperature structure of the disk has a large effect on the disk model. In addition, the temperature structure in the disk is highly sensitive to the angle of incidence of stellar irradition at the surface, so accurately calculating the shape of the disk surface is crucial for modeling the thermal structure of the disk.

  9. Debris Disk Radiative Transfer Simulation Tool (DDS)

    E-Print Network [OSTI]

    S. Wolf; L. A. Hillenbrand

    2005-06-17T23:59:59.000Z

    A WWW interface for the simulation of spectral energy distributions of optically thin dust configurations with an embedded radiative source is presented. The density distribution, radiative source, and dust parameters can be selected either from an internal database or defined by the user. This tool is optimized for studying circumstellar debris disks where large grains are expected to determine the far-infrared through millimeter dust reemission spectral energy distribution. The tool is available at http://aida28.mpia-hd.mpg.de/~swolf/dds

  10. TIDAL DISRUPTION FLARES: THE ACCRETION DISK PHASE

    SciTech Connect (OSTI)

    Montesinos Armijo, Matias; De Freitas Pacheco, Jose A. [Observatoire de la Cote d'Azur, Laboratoire Cassiopee, Universite de Nice Sophia-Antipolis Bd de l'Observatoire, BP 4229, 06304 Nice Cedex 4 (France)

    2011-08-01T23:59:59.000Z

    The evolution of an accretion disk, formed as a consequence of the disruption of a star by a black hole, is followed by solving numerically hydrodynamic equations. The present investigation aims to study the dependence of resulting light curves on dynamical and physical properties of such a transient disk during its existence. One of the main results derived from our simulations is that blackbody fits of X-ray data tend to overestimate the true mean disk temperature. In fact, the temperature derived from blackbody fits should be identified with the color X-ray temperature rather than the average value derived from the true temperature distribution along the disk. The time interval between the beginning of the circularization of the bound debris and the beginning of the accretion process by the black hole is determined by the viscous (or accretion) timescale, which also fixes the rising part of the resulting light curve. The luminosity peak coincides with the beginning of matter accretion by the black hole and the late evolution of the light curve depends on the evolution of the debris fallback rate. Peak bolometric luminosities are in the range 10{sup 45}-10{sup 46} erg s{sup -1}, whereas peak luminosities in soft X-rays (0.2-2.0 keV) are typically one order of magnitude lower. The typical timescale derived from our preferred models for the flare luminosity to decay by two orders of magnitude is about 3-4 yr. Predicted soft X-ray light curves reproduce quite well data on galaxies in which a variable X-ray emission possibly related to a tidal event was detected. In the cases of NGC 3599 and IC 3599, data are reproduced well by models defined by a black hole with mass {approx}10{sup 7} M{sub sun} and a disrupted star of about 1 solar mass. The X-ray variation observed in XMMSL1 is consistent with a model defined by a black hole with mass {approx}3 x 10{sup 6} M{sub sun} and a disrupted star of 1 solar mass, while that observed in the galaxy situated in the cluster A1689 is consistent with a model including a black hole of {approx}10{sup 7} M{sub sun} and a disrupted star of {approx}0.5 M{sub sun}.

  11. Disk Quota | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA : Papers Subfolders inDiscovery BG/Q File Systems Disk

  12. PLANETESIMAL AND PROTOPLANET DYNAMICS IN A TURBULENT PROTOPLANETARY DISK: IDEAL STRATIFIED DISKS

    SciTech Connect (OSTI)

    Yang, Chao-Chin [Department of Astronomy, University of Illinois, Urbana, IL 61801 (United States); Mac Low, Mordecai-Mark [Department of Astrophysics, American Museum of Natural History, New York, NY 10024 (United States); Menou, Kristen, E-mail: ccyang@ucolick.org, E-mail: mordecai@amnh.org, E-mail: kristen@astro.columbia.edu [Department of Astronomy, Columbia University, New York, NY 10027 (United States)

    2012-04-01T23:59:59.000Z

    Due to the gravitational influence of density fluctuations driven by magneto-rotational instability in the gas disk, planetesimals and protoplanets undergo diffusive radial migration as well as changes in other orbital properties. The magnitude of the effect on particle orbits can have important consequences for planet formation scenarios. We use the local-shearing-box approximation to simulate an ideal, isothermal, magnetized gas disk with vertical density stratification and simultaneously evolve numerous massless particles moving under the gravitational field of the gas and the host star. We measure the evolution of the particle orbital properties, including mean radius, eccentricity, inclination, and velocity dispersion, and its dependence on the disk properties and the particle initial conditions. Although the results converge with resolution for fixed box dimensions, we find the response of the particles to the gravity of the turbulent gas correlates with the horizontal box size, up to 16 disk scale heights. This correlation indicates that caution should be exercised when interpreting local-shearing-box models involving gravitational physics of magneto-rotational turbulence. Based on heuristic arguments, nevertheless, the criterion L{sub h} /R {approx} O(1), where L{sub h} is the horizontal box size and R is the distance to the host star, is proposed to possibly circumvent this conundrum. If this criterion holds, we can still conclude that magneto-rotational turbulence seems likely to be ineffective at driving either diffusive migration or collisional erosion under most circumstances.

  13. Competitive Parallel Disk Prefetching and Buffer Management

    E-Print Network [OSTI]

    Barve, Rakesh; Kallahalla, Mahesh; Varman, Peter J.; Vitter, Jeffrey Scott

    2000-01-01T23:59:59.000Z

    across the set a167 of a24 disks. A bad phase,a130a137a131a137a133a140a135a120a136a134a54a10a141a61a56 , with bad disk parameter a149a66a28 consists of blocks a142a72a68a50a143a51a144 , a141a61a25a146a145a97a147a102a148a124a54a61a141a34a94a168a104a39a56a...43a25 , laid out such that the first a25a169a163a15a25a170a81a66a64a51a55 a24 blocks a142a78a68 a143 a144 , where a141a61a25a146a145a97a147a102a148a124a54a10a141a80a94a69a104a19a56a153a25a171a163a172a25a170a81a66a64a51a55 a24 , are striped in a round...

  14. Kinematic Density Waves in Accretion Disks

    E-Print Network [OSTI]

    Svetlin Tassev; Edmund Bertschinger

    2008-10-14T23:59:59.000Z

    When thin accretion disks around black holes are perturbed, the main restoring force is gravity. If gas pressure, magnetic stresses, and radiation pressure are neglected, the disk remains thin as long as orbits do not intersect. Intersections would result in pressure forces which limit the growth of perturbations. We find that a discrete set of perturbations is possible for which orbits remain non-intersecting for arbitrarily long times. These modes define a discrete set of frequencies. We classify all long-lived perturbations for arbitrary potentials and show how their mode frequencies are related to pattern speeds computed from the azimuthal and epicyclic frequencies. We show that modes are concentrated near radii where the pattern speed has vanishing radial derivative. We explore these modes around Kerr black holes as a possible explanation for the high-frequency quasi-periodic oscillations of black hole binaries such as GRO J1655-40. The long-lived modes are shown to coincide with diskoseismic waves in the limit of small sound speed. While the waves have long lifetime, they have the wrong frequencies to explain the pairs of high-frequency quasi-periodic oscillations observed in black hole binaries.

  15. Snake River Spring/Summer Chinook Captive Broodstock Rearing and Research, 2002 Annual Report.

    SciTech Connect (OSTI)

    McAuley, W. Carlin; Maynard, Desmond J. (National Marine Fishereis Service, Northwest Fisheries Science Center, Seattle, WA)

    2003-03-01T23:59:59.000Z

    In 1995, the National Marine Fisheries Service (NMFS), in cooperation with the Idaho Department of Fish and Game (IDFG), the Oregon Department of Fish and Wildlife (ODFW), and the Bonneville Power Administration (BPA) established captive broodstock programs to aid in the recovery of Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha) listed as endangered under the U.S. Endangered Species Act (ESA). These programs were intended to provide safety nets for Salmon and Grande Ronde River Basins spring/summer chinook salmon stocks. They also provide a basis of examining the efficacy of captive rearing and captive breeding programs as tools for recovering listed salmonid populations. In years when no or few naturally produced fish return from the sea, captive fish and their progeny can be used to maintain populations in these two Snake River Basin tributaries. The NMFS facility at Manchester, WA, provides the crucial seawater environment needed to culture anadromous salmonids during the marine phase of their life cycle. At the Manchester Research Station, the fish are cultured in 6.1m diameter circular tanks housed in a fully enclosed and secure building. The tanks are supplied with seawater that has been processed to eliminate most marine pathogens. The fish are fed a commercially prepared diet and held at densities and loading rates designed to maximize fish quality. When fish begin to mature, they are transferred to ODFW or IDFG freshwater facilities in Oregon and Idaho for final maturation. The states then release the mature fish (Idaho) or their progeny (Oregon) back into their native Snake River tributary waters in restoration efforts. In FY 2002, NMFS cultured 1996, 1997, 1998, 1999, and 2000 broodyear fish at its Manchester Facility. This report addresses program activities from September 1, 2001 to August 31, 2002.

  16. Snake River Spring/Summer Chinook Captive Broodstock Rearing and Research, 2003 Annual Report.

    SciTech Connect (OSTI)

    Maynard, Desmond J.; McAuley, W. Carlin (National Marine Fisheries Service, Northwest Fisheries Science Center, Resource Enhancement and Utilization, Seattle, WA)

    2004-08-01T23:59:59.000Z

    In 1995, the National Marine Fisheries Service (NMFS), in cooperation with the Idaho Department of Fish and Game (IDFG), the Oregon Department of Fish and Wildlife (ODFW), and the Bonneville Power Administration (BPA) established captive broodstock programs to aid in the recovery of Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha) listed as endangered under the U.S. Endangered Species Act (ESA). These programs are intended to provide safety nets for Salmon and Grande Ronde River Basins spring/summer chinook salmon stocks. They also provide a basis of examining the efficacy of captive rearing and captive breeding programs as tools for recovering listed salmonid populations. In years when no or few naturally produced fish return from the sea, captive fish and their progeny can be used to maintain populations in these two Snake River Basin tributaries. The NMFS facility at Manchester, WA provides the crucial seawater environment needed to culture anadromous salmonids during the marine phase of their life cycle. At the Manchester Research Station, the fish are cultured in 6.1m diameter circular tanks housed in a fully enclosed and secure building. The tanks are supplied with seawater that has been processed to eliminate most marine pathogens. The fish are fed a commercially prepared diet and held at densities and loading rates intended to maximize fish quality. When fish begin to mature, they are transferred to ODFW or IDFG freshwater facilities in Oregon and Idaho for final maturation. The states then release the mature fish (Idaho) or their progeny (Oregon) back into their native Snake River tributary waters in restoration efforts. In FY 2003, NMFS cultured 1998, 1999, 2000, and 2001 broodyear fish at its Manchester Facility. This report addresses program activities from September 1, 2002 to August 31, 2003.

  17. Author Retrospective for Energy Conservation Techniques for Disk

    E-Print Network [OSTI]

    Bianchini, Ricardo

    Author Retrospective for Energy Conservation Techniques for Disk Array-based Servers Eduardo original paper ti- tled "Energy Conservation Techniques for Disk Array-based Servers", which was published.1145/2591635.2591666 Categories and Subject Descriptors D.4 [Operating systems]: Storage management Keywords Energy conservation

  18. THE SPHERICALIZATION OF DARK MATTER HALOS BY GALAXY DISKS

    SciTech Connect (OSTI)

    Kazantzidis, Stelios [Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Abadi, Mario G. [Instituto de Astronomia Teorica y Experimental (IATE), Observatorio Astronomico de Cordoba and CONICET, Laprida 854 X5000BGR Cordoba (Argentina); Navarro, Julio F., E-mail: stelios@mps.ohio-state.ed, E-mail: mario@oac.uncor.ed, E-mail: jfn@uvic.c [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2 (Canada)

    2010-09-01T23:59:59.000Z

    Cosmological simulations indicate that cold dark matter (CDM) halos should be triaxial. Validating this theoretical prediction is, however, less than straightforward because the assembly of galaxies is expected to modify halo shapes and to render them more axisymmetric. We use a suite of N-body simulations to quantitatively investigate the effect of the growth of a central disk galaxy on the shape of triaxial dark matter halos. In most circumstances, the halo responds to the presence of the disk by becoming more spherical. The net effect depends weakly on the timescale of the disk assembly but noticeably on the orientation of the disk relative to the halo principal axes, and it is maximal when the disk symmetry axis is aligned with the major axis of the halo. The effect depends most sensitively on the overall gravitational importance of the disk. Our results indicate that exponential disks whose contribution peaks at less than {approx}50% of their circular velocity are unable to noticeably modify the shape of the gravitational potential of their surrounding halos. Many dwarf and low surface brightness galaxies are expected to be in this regime, and therefore their detailed kinematics could be used to probe halo triaxiality, one of the basic predictions of the CDM paradigm. We argue that the complex disk kinematics of the dwarf galaxy NGC 2976 might be the reflection of a triaxial halo. Such signatures of halo triaxiality should be common in galaxies where the luminous component is subdominant.

  19. Neutrinos and Nucleosynthesis in Gamma-Ray Burst Accretion Disks

    E-Print Network [OSTI]

    R. Surman; G. C. McLaughlin

    2003-11-24T23:59:59.000Z

    We calculate the nuclear composition of matter in accretion disks surrounding stellar mass black holes as are thought to accompany gamma-ray bursts (GRBs). We follow a mass element in the accretion disk starting at the point of nuclear dissociation and calculate the evolution of the electron fraction due to electron, positron, electron neutrino and electron antineutrino captures. We find that the neutronization of the disk material by electron capture can be reversed by neutrino interactions in the inner regions of disks with accretion rates of 1 M_solar/s and higher. For these cases the inner disk regions are optically thick to neutrinos, and so to estimate the emitted neutrino fluxes we find the surface of last scattering for the neutrinos (the equivalent of the proto-neutron star neutrinosphere) for each optically thick disk model. We also estimate the influence of neutrino interactions on the neutron-to-proton ratio in outflows from GRB accretion disks, and find it can be significant even when the disk is optically thin to neutrinos.

  20. Energy Efficient Prefetching with Buffer Disks for Cluster File Systems

    E-Print Network [OSTI]

    Qin, Xiao

    Energy Efficient Prefetching with Buffer Disks for Cluster File Systems Adam Manzanares, Xiaojun the energy- efficiency of large scale parallel storage systems. To address these issues we introduce EEVFS (Energy Efficient Virtual File System), which is able to manage data placement and disk states to help

  1. Bridge Creek Watershed Volunteer Lake Secchi Disk Monitoring Program

    E-Print Network [OSTI]

    #12;Bridge Creek Watershed Volunteer Lake Secchi Disk Monitoring Program 1996 DOE FRAP 1996-13 Ryan Creek Watershed Volunteer Lake Monitoring Program. Using a Secchi disk, volunteers collected water transparency data from 22 lakes in the Bridge Creek watershed. Secchi depth readings were collected between May

  2. Performance Directed Energy Management for Main Memory and Disks #

    E-Print Network [OSTI]

    Zhou, Yuanyuan

    in the design of computing systems. For battery­operated mobile devices, energy consumption directly affects]. The storage hierarchy, which includes memory and disks, is a major energy consumer in computer systemsPerformance Directed Energy Management for Main Memory and Disks # Xiaodong Li, Zhenmin Li, Francis

  3. Spectral modeling of gaseous metal disks around DAZ white dwarfs

    E-Print Network [OSTI]

    Barnstedt, Jürgen

    been found at G29-38, the hypothesis was put forward that a dust cloud around the white dwarf causesSpectral modeling of gaseous metal disks around DAZ white dwarfs Klaus Werner, Thorsten Nagel for the first non-LTE modeling of gaseous metal disks around single DAZ white dwarfs recently discovered by G

  4. Cooling Requirements for the Vertical Shear Instability in Protoplanetary Disks

    E-Print Network [OSTI]

    Lin, Min-Kai

    2015-01-01T23:59:59.000Z

    It is difficult to understand how cold circumstellar disks accrete onto their central stars. A hydrodynamic mechanism, the vertical shear instability (VSI), offers a means to drive angular momentum transport in cold accretion disks such as protoplanetary disks (PPDs). The VSI is driven by a weak vertical gradient in the disk's orbital motion. In order to grow, the VSI must overcome vertical buoyancy, a strongly stabilizing influence in cold disks, where heating is dominated by external irradiation. Rapid cooling, via radiative losses, reduces the effective buoyancy and allows the VSI to operate. In this paper, we quantify the cooling timescale, $t_c$, needed for growth of the VSI. We perform a linear analysis of the VSI with cooling in vertically global and radially local disk models. For irradiated disks, we find that the VSI is most vigorous for rapid cooling with $t_c < \\Omega_\\mathrm{K}^{-1} h |q| / (\\gamma -1)$ in terms of the Keplerian orbital frequency, $\\Omega_\\mathrm{K}$, the disk's aspect ratio, ...

  5. Energy Conservation Techniques for Disk Array-Based Servers

    E-Print Network [OSTI]

    Bianchini, Ricardo

    , we introduce a new conser- vation technique, called Popular Data Concentration (PDC), that migrates that takes advantage of PDC. In the context of this server, we compare PDC to the Massive Array of Idle Disks and a wide range of parame- ters. Our results for conventional disks show that PDC and MAID can only conserve

  6. Energy Conservation Techniques for Disk ArrayBased Servers

    E-Print Network [OSTI]

    Bianchini, Ricardo

    , we introduce a new conser­ vation technique, called Popular Data Concentration (PDC), that migrates that takes advantage of PDC. In the context of this server, we compare PDC to the Massive Array of Idle Disks and a wide range of parame­ ters. Our results for conventional disks show that PDC and MAID can only conserve

  7. DEUTERIUM CHEMISTRY IN PROTOPLANETARY DISKS. II. THE INNER 30 AU

    SciTech Connect (OSTI)

    Willacy, K. [Jet Propulsion Laboratory, California Institute of Technology, MS 169-506, Pasadena, CA 91109 (United States); Woods, P. M., E-mail: Karen.Willacy@jpl.nasa.go, E-mail: Paul.Woods@manchester.ac.u [Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)

    2009-09-20T23:59:59.000Z

    We present the results of models of the chemistry, including deuterium, in the inner regions of protostellar disks. We find good agreement with recent gas-phase observations of several (non-deuterated) species. We also compare our results with observations of comets and find that in the absence of other processing, e.g., in the accretion shock at the surface of the disk, or by mixing in the disk, the calculated D/H ratios in ices are higher than measured and reflect the D/H ratio set in the molecular cloud phase. Our models give quite different abundances and molecular distributions to other inner disk models because of the differences in physical conditions in the model disk. This emphasizes how changes in the assumptions about the density and temperature distribution can radically affect the results of chemical models.

  8. On the stability of a galactic disk in modified gravity

    E-Print Network [OSTI]

    Roshan, Mahmood

    2015-01-01T23:59:59.000Z

    We find the dispersion relation for tightly wound spiral density waves in the surface of rotating, self-gravitating disks in the framework of Modified Gravity (MOG). Also, the Toomre-like stability criterion for differentially rotating disks has been derived for both fluid and stellar disks. More specifically, the stability criterion can be expressed in terms of a matter density threshold over which the instability occurs. In other words the local stability criterion can be written as $\\Sigma_0sound speed), $\\kappa$ (epicycle frequency) and $\\alpha$ and $\\mu_0$ are the free parameters of the theory. In the case of a stellar disk the radial velocity dispersion $\\sigma_r$ appears in $\\Sigma_{\\text{crit}}$ instead of $v_s$. We find the exact form of the function $\\Sigma_{\\text{crit}}$ for both stellar and fluid self-gravitating disks. Also, we use a sub-sample of THINGS catalog of spiral galaxies in order to ...

  9. The role of an accretion disk in AGN variability

    E-Print Network [OSTI]

    B. Czerny

    2004-09-10T23:59:59.000Z

    Optically thick accretion disks are considered to be important ingredients of luminous AGN. The claim of their existence is well supported by observations and recent years brought some progress in understanding of their dynamics. However, the role of accretion disks in optical/UV/X-ray variability of AGN is not quite clear. Most probably, in short timescales the disk reprocesses the variable X-ray flux but at longer timescales the variations of the disk structure lead directly to optical/UV variations as well as affect, or even create, the X-ray variability pattern. We urgently need a considerable progress in time-dependent disk models to close the gap between the theory and the stream of data coming from the AGN monitoring.

  10. Numerical Models of Galaxy Evolution: Black Hole Feedback and Disk Heating

    E-Print Network [OSTI]

    DeBuhr, Jackson Eugene

    2012-01-01T23:59:59.000Z

    5.4.3 Disk Heating and Velocity Profiles . . . . . . 5.4.41.3 Disk Heating . . . . . . . . . 1.3.1active galactic nuclei heating in elliptical galaxies.

  11. PHOTOEVAPORATION OF CIRCUMSTELLAR DISKS REVISITED: THE DUST-FREE CASE

    SciTech Connect (OSTI)

    Tanaka, Kei E. I.; Omukai, Kazuyuki [Astronomical Institute, Tohoku University, Sendai 980-8578 (Japan); Nakamoto, Taishi, E-mail: ktanaka@astr.tohoku.ac.jp [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551 (Japan)

    2013-08-20T23:59:59.000Z

    Photoevaporation by stellar ionizing radiation is believed to play an important role in the dispersal of disks around young stars. The mass-loss model for dust-free disks developed by Hollenbach et al. is currently regarded as the conventional one and has been used in a wide variety of studies. However, the rate in this model was derived using the crude so-called 1+1D approximation of ionizing radiation transfer, which assumes that diffuse radiation propagates in a direction vertical to the disk. In this study, we revisit the photoevaporation of dust-free disks by solving the two-dimensional axisymmetric radiative transfer for steady-state disks. Unlike that solved by the conventional model, we determine that direct stellar radiation is more important than the diffuse field at the disk surface. The radial density distribution at the ionization boundary is represented by a single power law with index -3/2 in contrast to the conventional double power law. For this distribution, the photoevaporation rate from the entire disk can be written as a function of the ionizing photon emissivity {Phi}{sub EUV} from the central star and the disk outer radius r{sub d} as follows: M-dot{sub PE} = 5.4 x 10{sup -5} ({Phi}{sub EUV}/10{sup 49} s{sup -1}){sup 1/2} (r{sub d}/1000 AU){sup 1/2} M{sub Sun} yr{sup -1}. This new rate depends on the outer disk radius rather than on the gravitational radius as in the conventional model, because of the enhanced contribution to the mass loss from the outer disk annuli. In addition, we discuss its applications to present-day as well as primordial star formation.

  12. The Cosmic Battery in Astrophysical Accretion Disks

    E-Print Network [OSTI]

    Contopoulos, Ioannis; Katsanikas, Matthaios

    2015-01-01T23:59:59.000Z

    The aberrated radiation pressure at the inner edge of the accretion disk around an astrophysical black hole imparts a relative azimuthal velocity on the electrons with respect to the ions which gives rise to a ring electric current that generates large scale poloidal magnetic field loops. This is the Cosmic Battery established by Contopoulos and Kazanas in 1998. In the present work we perform realistic numerical simulations of this important astrophysical mechanism in advection-dominated accretion flows-ADAF. We confirm the original prediction that the inner parts of the loops are continuously advected toward the central black hole and contribute to the growth of the large scale magnetic field, whereas the outer parts of the loops are continuously diffusing outward through the turbulent accretion flow. This process of inward advection of the axial field and outward diffusion of the return field proceeds all the way to equipartition, thus generating astrophysically significant magnetic fields on astrophysicall...

  13. Covariant Lyapunov vectors for rigid disk systems

    E-Print Network [OSTI]

    Hadrien Bosetti; Harald A. Posch

    2010-06-30T23:59:59.000Z

    We carry out extensive computer simulations to study the Lyapunov instability of a two-dimensional hard disk system in a rectangular box with periodic boundary conditions. The system is large enough to allow the formation of Lyapunov modes parallel to the x axis of the box. The Oseledec splitting into covariant subspaces of the tangent space is considered by computing the full set of covariant perturbation vectors co-moving with the flow in tangent-space. These vectors are shown to be transversal, but generally not orthogonal to each other. Only the angle between covariant vectors associated with immediate adjacent Lyapunov exponents in the Lyapunov spectrum may become small, but the probability of this angle to vanish approaches zero. The stable and unstable manifolds are transverse to each other and the system is hyperbolic.

  14. FORMING AN O STAR VIA DISK ACCRETION?

    SciTech Connect (OSTI)

    Qiu Keping [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Zhang Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Beuther, Henrik; Fallscheer, Cassandra, E-mail: kqiu@mpifr-bonn.mpg.de [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany)

    2012-09-10T23:59:59.000Z

    We present a study of outflow, infall, and rotation in a {approx}10{sup 5} L{sub Sun} star-forming region, IRAS 18360-0537, with Submillimeter Array and IRAM 30 m observations. The 1.3 mm continuum map shows a 0.5 pc dust ridge, of which the central compact part has a mass of {approx}80 M{sub Sun} and harbors two condensations, MM1 and MM2. The CO (2-1) and SiO (5-4) maps reveal a biconical outflow centered at MM1, which is a hot molecular core (HMC) with a gas temperature of 320 {+-} 50 K and a mass of {approx}13 M{sub Sun }. The outflow has a gas mass of 54 M{sub Sun} and a dynamical timescale of 8 Multiplication-Sign 10{sup 3} yr. The kinematics of the HMC are probed by high-excitation CH{sub 3}OH and CH{sub 3}CN lines, which are detected at subarcsecond resolution and unveil a velocity gradient perpendicular to the outflow axis, suggesting a disk-like rotation of the HMC. An infalling envelope around the HMC is evidenced by CN lines exhibiting a profound inverse P Cygni profile, and the estimated mass infall rate, 1.5 Multiplication-Sign 10{sup -3} M{sub Sun} yr{sup -1}, is well comparable to that inferred from the mass outflow rate. A more detailed investigation of the kinematics of the dense gas around the HMC is obtained from the {sup 13}CO and C{sup 18}O (2-1) lines; the position-velocity diagrams of the two lines are consistent with the model of a free-falling and Keplerian-like rotating envelope. The observations suggest that the protostar of a current mass {approx}10 M{sub Sun} embedded within MM1 will develop into an O star via disk accretion and envelope infall.

  15. The OGLE-II event sc5_2859 -- An example of disk-disk microlensing

    E-Print Network [OSTI]

    M. C. Smith

    2003-06-10T23:59:59.000Z

    We present a new long-duration parallax event from the OGLE-II database, sc5_2859, which has the second longest time-scale ever identified (tE = 547.6{+22.6}{-7.8} days). We argue that both the lens and source reside in the Galactic disk, making event sc5_2859 one of the first confirmed examples of so-called disk-disk microlensing. We find that the source star is most probably located at a distance of D_S ~ 2 kpc, and from this we conclude that the lens is unlikely to be a main-sequence star due to the strict limits that can be placed on the lens brightness. A simple likelihood analysis is carried out on the lens mass, which indicates that the lens could be another candidate stellar mass black hole. We recommend that spectroscopic observations of the source be carried out in order to constrain the source distance, since this is the main source of uncertainty in our analysis. In addition, we briefly discuss whether there appears to be an excess of long duration microlensing events in the OGLE-II catalogue.

  16. Identification of the Spawning, Rearing and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1992.

    SciTech Connect (OSTI)

    Rondorf, Dennis W.; Miller, William H.

    1994-03-01T23:59:59.000Z

    This document is the 1992 annual progress report for selected studies of fall chinook Salmon Oncorhynchus tshawytscha conducted by the National Biological Survey (NBS) and the US Fish and Wildlife Service. The decline in abundance of fall chinook salmon in the Snake River basin has become a growing concern. Effective recovery efforts for fall chinook salmon cannot be developed until we increase our knowledge of the factors that are limiting the various life history stages. This study attempts to identify those physical and biological factors which influence spawning of fall chinook salmon in the free-flowing Snake River and their rearing and seaward migration through Columbia River basin reservoirs.

  17. The microbial flora of pond-reared shrimp (Penaeus stylirostris, P. setiferus, P. vannamei, and Macrobrachium rosenbergii)

    E-Print Network [OSTI]

    Christopher, Frank Mitchell

    1976-01-01T23:59:59.000Z

    methods, None of these organisms were detected in the shrimp or pond waters. A CKN 0WLEDGENEN T S The author wishes to express his appreciation to Dr. Carl Vanderzant for his help and guidance in the organization of this study and the writing... of these technological changes. MATERIALS AND METHODS P ond. 0 on s true ti on and Nana e ment The rearing of shrimp in artificial ponds is a unique aspect of mariculture research on the Gulf Coast. In Louisiana, ponds have been in operation since the early 1960's...

  18. The Impact of Dust Evolution and Photoevaporation on Disk Dispersal

    E-Print Network [OSTI]

    Gorti, Uma; Dullemond, Cornelis

    2015-01-01T23:59:59.000Z

    Protoplanetary disks are dispersed by viscous evolution and photoevaporation in a few million years; in the interim small, sub-micron sized dust grains must grow and form planets. The time-varying abundance of small grains in an evolving disk directly affects gas heating by far-ultraviolet photons, while dust evolution affects photoevaporation by changing the disk opacity and resulting penetration of FUV photons in the disk. Photoevaporative flows, in turn, selectively carry small dust grains leaving the larger particles---which decouple from the gas---behind in the disk. We study these effects by investigating the evolution of a disk subject to viscosity, photoevaporation by EUV, FUV and X-rays, dust evolution, and radial drift using a 1-D multi-fluid approach (gas + different dust grain sizes) to solve for the evolving surface density distributions. The 1-D evolution is augmented by 1+1D models constructed at each epoch to obtain the instantaneous disk structure and determine photoevaporation rates. The imp...

  19. Multi-Terabyte EIDE Disk Arrays running Linux RAID5

    E-Print Network [OSTI]

    D. A. Sanders; L. M. Cremaldi; V. Eschenburg; R. Godang; M. D. Joy; D. J. Summers; D. L. Petravick

    2004-11-19T23:59:59.000Z

    High-energy physics experiments are currently recording large amounts of data and in a few years will be recording prodigious quantities of data. New methods must be developed to handle this data and make analysis at universities possible. Grid Computing is one method; however, the data must be cached at the various Grid nodes. We examine some storage techniques that exploit recent developments in commodity hardware. Disk arrays using RAID level 5 (RAID-5) include both parity and striping. The striping improves access speed. The parity protects data in the event of a single disk failure, but not in the case of multiple disk failures. We report on tests of dual-processor Linux Software RAID-5 arrays and Hardware RAID-5 arrays using a 12-disk 3ware controller, in conjunction with 250 and 300 GB disks, for use in offline high-energy physics data analysis. The price of IDE disks is now less than $1/GB. These RAID-5 disk arrays can be scaled to sizes affordable to small institutions and used when fast random access at low cost is important.

  20. Nucleosynthesis in the Outflow from Gamma Ray Burst Accretion Disks

    E-Print Network [OSTI]

    R. Surman; G. C. McLaughlin; W. R. Hix

    2005-09-13T23:59:59.000Z

    We examine the nucleosynthesis products that are produced in the outflow from rapidly accreting disks. We find that the type of element synthesis varies dramatically with the degree of neutrino trapping in the disk and therefore the accretion rate of the disk. Disks with relatively high accretion rates such as 10 M_solar/s can produce very neutron rich nuclei that are found in the r process. Disks with more moderate accretion rates can produce copious amounts of Nickel as well as the light elements such as Lithium and Boron. Disks with lower accretion rates such as 0.1 M_solar/s produce large amounts of Nickel as well as some unusual nuclei such as Ti-49, Sc-45, Zn-64, and Mo-92. This wide array of potential nucleosynthesis products is due to the varying influence of electron neutrinos and antineutrinos emitted from the disk on the neutron-to-proton ratio in the outflow. We use a parameterization for the outflow and discuss our results in terms of entropy and outflow acceleration.

  1. Type I planet migration in nearly laminar disks

    SciTech Connect (OSTI)

    Li, Hui [Los Alamos National Laboratory; Li, Shengtai [Los Alamos National Laboratory; Lubow, S H [STSI; Lin, D [UCSC

    2008-01-01T23:59:59.000Z

    We describe two-dimensional hydrodynamic simulations of the migration of low-mass planets ({<=}30 M{sub {circle_plus}}) in nearly laminar disks (viscosity parameter {alpha} < 10{sup -3}) over timescales of several thousand orbit periods. We consider disk masses of 1, 2, and 5 times the minimum mass solar nebula, disk thickness parameters of H/r = 0.035 and 0.05, and a variety of {alpha} values and planet masses. Disk self-gravity is fully included. Previous analytic work has suggested that Type I planet migration can be halted in disks of sufficiently low turbulent viscosity, for {alpha} {approx} 10{sup -4}. The halting is due to a feedback effect of breaking density waves that results in a slight mass redistribution and consequently an increased outward torque contribution. The simulations confirm the existence of a critical mass (M{sub {alpha}} {approx} 10M{sub {circle_plus}}) beyond which migration halts in nearly laminar disks. For {alpha} {approx}> 10{sup -3}, density feedback effects are washed out and Type I migration persists. The critical masses are in good agreement with the analytic model of Rafikov. In addition, for {alpha} {approx}> 10{sup -4} steep density gradients produce a vortex instability, resulting in a small time-varying eccentricity in the planet's orbit and a slight outward migration. Migration in nearly laminar disks may be sufficiently slow to reconcile the timescales of migration theory with those of giant planet formation in the core accretion model.

  2. Simple Models for Turbulent Self-Regulation in Galaxy Disks

    E-Print Network [OSTI]

    Curtis Struck; Daniel C. Smith

    1999-07-29T23:59:59.000Z

    We propose that turbulent heating, wave pressure and gas exchanges between different regions of disks play a dominant role in determining the preferred, quasi-equilibrium, self-similar states of gas disks on large-scales. We present simple families of analytic, thermohydrodynamic models for these global states, which include terms for turbulent pressure and Reynolds stresses. Star formation rates, phase balances, and hydrodynamic forces are all tightly coupled and balanced. The models have stratified radial flows, with the cold gas slowly flowing inward in the midplane of the disk, and with the warm/hot phases that surround the midplane flowing outward. The models suggest a number of results that are in accord with observation, as well as some novel predictions, including the following. 1) The large-scale gas density and thermal phase distributions in galaxy disks can be explained as the result of turbulent heating and spatial couplings. 2) The turbulent pressures and stresses that drive radial outflows in the warm gas also allow a reduced circular velocity there. This effect was observed by Swaters, Sancisi and van der Hulst in NGC 891, a particularly turbulent edge-on disk. The models predict that the effect should be universal in such disks. 3) They suggest that a star formation rate like the phenomenological Schmidt Law is the natural result of global thermohydrodynamical balance, and may not obtain in disks far from equilibrium. (Abridged)

  3. Thermal stability of thin disk with magnetically driven winds

    E-Print Network [OSTI]

    Li, Shuang-Liang

    2014-01-01T23:59:59.000Z

    The absence of thermal instability in the high/soft state of black hole X-ray binaries, in disagreement with the standard thin disk theory, is a long-standing riddle for theoretical astronomers. We have tried to resolve this question by studying the thermal stability of a thin disk with magnetically driven winds in the $\\dot{M}- \\Sigma$ plane. It is found that disk winds can greatly decrease the disk temperature and thus help the disk become more stable at a given accretion rate. The critical accretion rate $\\dot{M}_{\\rm crit}$ corresponding to the thermal instability threshold is increased significantly in the presence of disk winds. For $\\alpha=0.01$ and $B_{\\rm \\phi}=10B_{\\rm _p}$, the disk is quite stable even for a very weak initial poloidal magnetic field [$\\beta_{\\rm p,0}\\sim 2000, \\beta_{\\rm p}=(P_{\\rm {gas}}+P_{\\rm rad})/(B_{\\rm p}^2/8\\pi)$]. But when $B_{\\rm \\phi}=B_{\\rm _p}$ or $B_{\\rm \\phi}=0.1B_{\\rm _p}$, a somewhat stronger (but still weak) field ($\\beta_{\\rm p,0}\\sim 200$ or $\\beta_{\\rm p,0}\\si...

  4. Planet Shadows in Protoplanetary Disks. I: Temperature Perturbations

    E-Print Network [OSTI]

    Jang-Condell, H

    2008-01-01T23:59:59.000Z

    Planets embedded in optically thick passive accretion disks are expected to produce perturbations in the density and temperature structure of the disk. We calculate the magnitudes of these perturbations for a range of planet masses and distances. The model predicts the formation of a shadow at the position of the planet paired with a brightening just beyond the shadow. We improve on previous work on the subject by self-consistently calculating the temperature and density structures under the assumption of hydrostatic equilibrium and taking the full three-dimensional shape of the disk into account rather than assuming a plane-parallel disk. While the excursion in temperatures is less than in previous models, the spatial size of the perturbation is larger. We demonstrate that a self-consistent calculation of the density and temperature structure of the disk has a large effect on the disk model. In addition, the temperature structure in the disk is highly sensitive to the angle of incidence of stellar irradition...

  5. Theory of self-assembled smectic-A "crenellated disks"

    E-Print Network [OSTI]

    Hao Tu; Robert A. Pelcovits

    2013-01-09T23:59:59.000Z

    Smectic-A monolayers self-assembled in aqueous solutions of chiral fd viruses and a polymer depletant have been shown to exhibit a variety of structures including large, flat disks and twisted ribbons. The virus particles twist near the edge of the structure in a direction determined by the chirality of the viruses. When fd viruses and their mutants of opposite chirality are mixed together in nearly equal amounts unusual structures referred to as "crenellated disks" can appear. These disks are achiral overall but the twist at the edge alternates between left- and right-handedness. To minimize the mismatch where the two regions of opposing twist meet, the "crenellated" structure exhibits cusps rising out of the plane of the monolayer. We use a phenomenological elastic theory previously applied to flat disks and twisted ribbons to analyze an analytic model proposed to describe the "crenellated" structure . When compared with flat, circular disks, we find that the model "crenellated disks" are stable or at least metastable in a wide region of the phase diagram spanned by the Gaussian curvature modulus and the edge energy modulus, with a large energy barrier separating the two structures. The director pattern and geometric parameters of the "crenellated disks" are found to be in qualitative agreement with experimental observations.

  6. LOCAL STUDY OF ACCRETION DISKS WITH A STRONG VERTICAL MAGNETIC FIELD: MAGNETOROTATIONAL INSTABILITY AND DISK OUTFLOW

    SciTech Connect (OSTI)

    Bai, Xue-Ning; Stone, James M., E-mail: xbai@cfa.harvard.edu [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States)

    2013-04-10T23:59:59.000Z

    We perform three-dimensional, vertically-stratified, local shearing-box ideal MHD simulations of the magnetorotational instability (MRI) that include a net vertical magnetic flux, which is characterized by midplane plasma {beta}{sub 0} (ratio of gas to magnetic pressure). We have considered {beta}{sub 0} = 10{sup 2}, 10{sup 3}, and 10{sup 4}, and in the first two cases the most unstable linear MRI modes are well resolved in the simulations. We find that the behavior of the MRI turbulence strongly depends on {beta}{sub 0}: the radial transport of angular momentum increases with net vertical flux, achieving {alpha} {approx} 0.08 for {beta} = 10{sup 4} and {alpha} {approx}> 1.0 for {beta}{sub 0} = 100, where {alpha} is the height-integrated and mass-weighted Shakura-Sunyaev parameter. A critical value lies at {beta}{sub 0} {approx} 10{sup 3}: for {beta}{sub 0} {approx}> 10{sup 3}, the disk consists of a gas pressure dominated midplane and a magnetically dominated corona. The turbulent strength increases with net flux, and angular momentum transport is dominated by turbulent fluctuations. The magnetic dynamo that leads to cyclic flips of large-scale fields still exists, but becomes more sporadic as net flux increases. For {beta}{sub 0} {approx}< 10{sup 3}, the entire disk becomes magnetically dominated. The turbulent strength saturates, and the magnetic dynamo is fully quenched. Stronger large-scale fields are generated with increasing net flux, which dominates angular momentum transport. A strong outflow is launched from the disk by the magnetocentrifugal mechanism, and the mass flux increases linearly with net vertical flux and shows sign of saturation at {beta}{sub 0} {approx}< 10{sup 2}. However, the outflow is unlikely to be directly connected to a global wind: for {beta}{sub 0} {approx}> 10{sup 3}, the large-scale field has no permanent bending direction due to dynamo activities, while for {beta}{sub 0} {approx}< 10{sup 3}, the outflows from the top and bottom sides of the disk bend towards opposite directions, inconsistent with a physical disk wind geometry. Global simulations are needed to address the fate of the outflow.

  7. Chemo -- Dynamical evolution of disk galaxies, smoothed particles hydrodynamics approach

    E-Print Network [OSTI]

    Peter Berczik

    1998-10-20T23:59:59.000Z

    A new Chemo -- Dynamical Smoothed Particle Hydrodynamic (CD -- SPH) code is presented. The disk galaxy is described as a multi -- fragmented gas and star system, embedded into the cold dark matter halo. The star formation (SF) process, SNII, SNIa and PN events as well as chemical enrichment of gas have been considered within the framework of standard SPH model. Using this model we try to describe the dynamical and chemical evolution of triaxial disk -- like galaxies. It is found that such approach provides a realistic description of the process of formation, chemical and dynamical evolution of disk galaxies over the cosmological timescale.

  8. An accretion disk and radio spectra of pulsars

    E-Print Network [OSTI]

    F. V. Prigara

    2003-07-25T23:59:59.000Z

    On the basis of the unified model of compact radio sources, the dependence of a turnover frequency in the smoothed radio spectrum of a pulsar upon the ratio of the dispersion measure to the period of a pulsar is obtained. This relation is produced by the radial density wave in the accretion disk surrounding a pulsar. The unified model of compact radio sources gives also the smoothed spectral indices of radio emission from pulsars as $\\alpha=2$ for the gaseous disk with the temperature profile T=const and $\\alpha=3$ for the gaseous disk with the pressure profile P=const ($F_{\

  9. ames disk galaxies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pressure, from both direct opticalUV radiation and multi-scattered, re-processed infrared (IR) radiation. Photo-heating smooths and thickens the disks and suppresses star...

  10. Disk storage management for LHCb based on Data Popularity estimator

    E-Print Network [OSTI]

    Hushchyn, Mikhail; Ustyuzhanin, Andrey

    2015-01-01T23:59:59.000Z

    This paper presents a system providing recommendations for optimizing the LHCb data storage. The LHCb data storage system is a hybrid system. All datasets are kept as archives on magnetic tapes. The most popular datasets are kept on disks. The recommendation system takes the dataset usage history and metadata (size, type, configuration etc.) to generate a recommendation report. In this article present how we use machine learning algorithms to predict future data popularity. Using these predictions it is possible to estimate which datasets should be removed from disk. We use regression algorithms and time series analysis to find the optimal number of replicas for datasets that are kept on disk. Based on the data popularity and the number of replicas optimization, the recommendation system minimizes a loss function to find the optimal data distribution. The loss function represents all requirements for data distribution in the data storage system. We demonstrate how the recommendation system helps to save disk ...

  11. A Simple Analytical Model for Gaps in Protoplanetary Disks

    E-Print Network [OSTI]

    Duffell, Paul C

    2015-01-01T23:59:59.000Z

    An analytical model is presented for calculating the surface density as a function of radius $\\Sigma(r)$ in protoplanetary disks in which a planet has opened a gap. This model is also applicable to circumbinary disks with extreme binary mass ratios. The gap profile can be solved for algebraically, without performing any numerical integrals. In contrast with previous one-dimensional gap models, this model correctly predicts that low-mass (sub-Jupiter) planets can open gaps in sufficiently low-viscosity disks, and it correctly recovers the power-law dependence of gap depth on planet-to-star mass ratio $q$, disk aspect ratio $h/r$, and dimensionless viscosity $\\alpha$ found in previous numerical studies. Analytical gap profiles are compared with numerical calculations over a range of parameter space in $q$, $h/r$, and $\\alpha$, demonstrating accurate reproduction of the "partial gap" regime, and general agreement over a wide range of parameter space.

  12. astroloy turbine disk: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    velocity dispersion of the disk stars, sigma(z,R0), is related to the maximum rotation speed (Vmax) as sigma(z,R0) 0.26 Vmax, consistent with previous measurements for edge-on...

  13. accretion disk structure: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the surface. We determine how the rate of mass loss varies with the strength and inclination of the magnetic field. In particular, we find that for disks in which the mean...

  14. Innovation incentives and competition in the hard disk drive industry

    E-Print Network [OSTI]

    Wu, Xiaohua Sherry

    2011-01-01T23:59:59.000Z

    Firms in the hard disk drive industry are continually engaging in R & D and improving the quality of their products. We explore various determinants of the product innovation incentives for firms concerned with both their ...

  15. Protoplanetary disks including radiative feedback from accreting planets

    E-Print Network [OSTI]

    Montesinos, Matias; Perez, Sebastian; Baruteau, Clement; Casassus, Simon

    2015-01-01T23:59:59.000Z

    While recent observational progress is converging on the detection of compact regions of thermal emission due to embedded protoplanets, further theoretical predictions are needed to understand the response of a protoplanetary disk to the planet formation radiative feedback. This is particularly important to make predictions for the observability of circumplanetary regions. In this work we use 2D hydrodynamical simulations to examine the evolution of a viscous protoplanetary disk in which a luminous Jupiter-mass planet is embedded. We use an energy equation which includes the radiative heating of the planet as an additional mechanism for planet formation feedback. Several models are computed for planet luminosities ranging from $10^{-5}$ to $10^{-3}$ Solar luminosities. We find that the planet radiative feedback enhances the disk's accretion rate at the planet's orbital radius, producing a hotter and more luminous environement around the planet, independently of the prescription used to model the disk's turbul...

  16. Near-Infrared Bulge-Disk Correlations of Lenticular Galaxies

    E-Print Network [OSTI]

    Barway, Sudhanshu; Kembhavi, Ajit K; Mayya, Y D

    2008-01-01T23:59:59.000Z

    We consider the luminosity and environmental dependence of structural parameters of lenticular galaxies in the near-infrared K band. Using a two-dimensional galaxy image decomposition technique, we extract bulge and disk structural parameters for a sample of 36 lenticular galaxies observed by us in the K band. By combining data from the literature for field and cluster lenticulars with our data, we study correlations between parameters that characterise the bulge and the disk as a function of luminosity and environment. We find that scaling relations such as the Kormendy relation, photometric plane and other correlations involving bulge and disk parameters show a luminosity dependence. This dependence can be explained in terms of galaxy formation models in which faint lenticulars (M_T > -24.5) formed via secular formation processes that likely formed the pseudobulges of late-type disk galaxies, while brighter lenticulars (M_T < -24.5) formed through a different formation mechanism most likely involving maj...

  17. Destruction of protoplanetary disks in the Orion Nebula Cluster

    E-Print Network [OSTI]

    Aylwyn Scally; Cathie Clarke

    2000-12-05T23:59:59.000Z

    We use numerical N-body simulations of the Orion Nebula Cluster (ONC) to investigate the destruction of protoplanetary disks by close stellar encounters and UV radiation from massive stars. The simulations model a cluster of 4000 stars, and we consider separately cases in which the disks have fixed radii of 100 AU and 10 AU. In the former case, depending on a star's position and orbit in the cluster over 10^7 years, UV photoevaporation removes at least 0.01 Msol from its disk, and can remove up to 1 Msol. We find no dynamical models of the ONC consistent with the suggestion of Storzer and Hollenbach that the observed distribution and abundance of proplyds could be explained by a population of stars on radial orbits which spend relatively little time near Theta 1C Ori (the most massive star in the ONC). Instead the observations require either massive disks (e.g. a typical initial disk mass of 0.4 Msol) or a very recent birth for Theta 1C Ori. When we consider the photoevaporation of the inner 10 AU of disks in the ONC, we find that planet formation would be hardly affected. Outside that region, planets would be prevented from forming in about half the systems, unless either the initial disk masses were very high or they formed in less than ~ 2 Myr and Theta 1C Ori has only very recently appeared. We also present statistics on the distribution of minimum stellar encounter separations. This peaks at 1000 AU, with less than 10% of stars having had an encounter closer than 100 AU after 10^7 years. We conclude that stellar encounters are unlikely to play a significant role in destroying protoplanetary disks. In the absence of any disruption mechanism other than those considered here, we would thus predict planetary systems like our own to be common amongst stars forming in ONC-like environments.

  18. FORMATION OF ORGANIC MOLECULES AND WATER IN WARM DISK ATMOSPHERES

    SciTech Connect (OSTI)

    Najita, Joan R. [National Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Adamkovics, Mate; Glassgold, Alfred E. [Astronomy Department, University of California, Berkeley, CA 94720 (United States)

    2011-12-20T23:59:59.000Z

    Observations from Spitzer and ground-based infrared spectroscopy reveal significant diversity in the molecular emission from the inner few AU of T Tauri disks. We explore theoretically the possible origin of this diversity by expanding on our earlier thermal-chemical model of disk atmospheres. We consider how variations in grain settling, X-ray irradiation, accretion-related mechanical heating, and the oxygen-to-carbon ratio can affect the thermal and chemical properties of the atmosphere at 0.25-40 AU. We find that these model parameters can account for many properties of the detected molecular emission. The column density of the warm (200-2000 K) molecular atmosphere is sensitive to grain settling and the efficiency of accretion-related heating, which may account, at least in part, for the large range in molecular emission fluxes that have been observed. The dependence of the atmospheric properties on the model parameters may also help to explain trends that have been reported in the literature between molecular emission strength and mid-infrared color, stellar accretion rate, and disk mass. We discuss whether some of the differences between our model results and the observations (e.g., for water) indicate a role for vertical transport and freezeout in the disk midplane. We also discuss how planetesimal formation in the outer disk (beyond the snowline) may imprint a chemical signature on the inner few AU of the disk and speculate on possible observational tracers of this process.

  19. Mark 5A DiskModule Assembly, Test and Conditioning Alan R. Whitney

    E-Print Network [OSTI]

    be of the same capacity; if disks are not of the same capacity, the effective capacity of the module becomes (number of disks)*(capacity of the smallest disk). 2. All disks must be configured for `Cable Select positions are 0M, 0S, 1M, 1S, 2M, 2S, 3M, 3S. 4. If fewer than 8 disks are installed, the data

  20. THE PROTOPLANETARY DISK AROUND THE M4 STAR RECX 5: WITNESSING THE INFLUENCE OF PLANET FORMATION?

    SciTech Connect (OSTI)

    Bouwman, J.; Juhasz, A.; Henning, Th. [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Lawson, W. A. [School of Physical, Environmental and Mathematical Sciences, University of New South Wales, Australian Defence Force Academy, Canberra ACT 2600 (Australia); Dominik, C.; Waters, L. B. F. M. [Astronomical Institute 'Anton Pannekoek', University of Amsterdam, Kruislaan 403 NL-1098 SJ Amsterdam (Netherlands); Feigelson, E. D. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park PA 16802 (United States); Tielens, A. G. G. M. [Leiden Observatory, P.O. Box 9513, 2300 RA Leiden (Netherlands)

    2010-11-10T23:59:59.000Z

    We present Spitzer Space Telescope low-resolution spectroscopy of the protoplanetary disk around the M4 star RECX 5, a low-mass member of the {approx}8 Myr old {eta} Chamaeleontis star cluster. Two features of the disk around RECX 5 set it apart from other young, low-mass stars with protoplanetary disks: its mineralogy and its disk geometry. Band strengths of the crystalline silicate forsterite are a factor of two higher than that typically observed in T Tauri star disks, indicative of a high forsterite mass fraction. Continuum fluxes of the disk are inconsistent with either a flaring or flattened structure, suggesting a complex disk geometry. Radiative transfer modeling of the spectrum suggests that the disk has a gap at a radius of r = 0.6 AU, and that the disk density at r < 33 AU is a factor of 100 lower than that of a continuous disk. A second disk gap might be centered at r = 24 AU. The RECX 5 disk has properties that are remarkably similar to the disk surrounding the Herbig Be star HD 100546, which is noted for having extreme mineralogy and geometry among Herbig star disks. Similar to a solution proposed for HD 100546, we speculate that the clearance of the RECX 5 disk at r < 33 AU is a consequence of the formation of a Saturn-mass planet, with the planet being responsible for the striking difference in both the spectral energy distribution and chemical composition of the dust around RECX 5.

  1. Vertical Structure of Neutrino Dominated Accretion Disks and Neutrino Transport in the disks

    E-Print Network [OSTI]

    Zhen Pan; Ye-Fei Yuan

    2012-09-06T23:59:59.000Z

    We investigate the vertical structure of neutrino dominated accretion disks by self-consistently considering the detailed microphysics, such as the neutrino transport, vertical hydrostatic equilibrium, the conservation of lepton number, as well as the balance between neutrino cooling, advection cooling and viscosity heating. After obtaining the emitting spectra of neutrinos and antineutrinos by solving the one dimensional Boltzmann equation of neutrino and antineutrino transport in the disk, we calculate the neutrino/antineutrino luminosity and their annihilation luminosity. We find that the total neutrino and antineutrino luminosity is about $10^{54}$ ergs/s and their annihilation luminosity is about $5\\times10^{51}$ ergs/s with an extreme accretion rate $10 M_{\\rm {sun}}$/s and an alpha viscosity $\\alpha=0.1$. In addition, we find that the annihilation luminosity is sensitive to the accretion rate and will not exceed $10^{50}$ ergs/s which is not sufficient to power the most fireball of GRBs, if the accretion rate is lower than $1 M_{\\rm {sun}}$/s. Therefore, the effects of the spin of black hole or/and the magnetic field in the accretion flow might be introduced to power the central engine of GRBs.

  2. Color Profiles of Disk Galaxies since z~1: Probing Outer Disk Formation Scenarios

    E-Print Network [OSTI]

    Ruyman Azzollini; Ignacio Trujillo; John E. Beckman

    2008-04-15T23:59:59.000Z

    We present deep color profiles for a sample of 415 disk galaxies within the redshift range 0.1disk (Type II objects) usually show a minimum in their color profile at the break, or very near to it, with a maximum to minimum amplitude in color of <~0.2 mag/arcsec^2, a feature which is persistent through the explored range of redshifts (i.e. in the last ~8 Gyr). This color structure is in qualitative agreement with recent model expectations (Roskar et al. 2008) where the break of the surface brightness profiles is the result of the interplay between a radial star formation cut-off and a redistribution of stellar mass by secular processes.

  3. Full Hybrid: Braking

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWPPublicE85 RetailNREL

  4. Silicate Dust in Evolved Protoplanetary Disks: Growth, Sedimentation, and Accretion

    E-Print Network [OSTI]

    Aurora Sicilia-Aguilar; L. W. Hartmann; Dan Watson; Chris Bohac; Thomas Henning; Jeroen Bouwman

    2007-01-11T23:59:59.000Z

    We present the Spitzer IRS spectra for 33 young stars in Tr 37 and NGC 7160. The sample includes the high- and intermediate-mass stars with MIPS 24 microns excess, the only known active accretor in the 12 Myr-old cluster NGC 7160, and 19 low-mass stars with disks in the 4 Myr-old cluster Tr 37. We examine the 10 microns silicate feature, present in the whole sample of low-mass star and in 3 of the high- and intermediate-mass targets, and we find that PAH emission is detectable only in the Herbig Be star. We analyze the composition and size of the warm photospheric silicate grains by fitting the 10 microns silicate feature, and study the possible correlations between the silicate characteristics and the stellar and disk properties (age, SED slope, accretion rate, spectral type). We find indications of dust settling with age and of the effect of turbulent enrichment of the disk atmosphere with large grains. Crystalline grains are only small contributors to the total silicate mass in all disks, and do not seem to correlate with any other property, except maybe binarity. We also observe that spectra with very weak silicate emission are at least 3 times more frequent among M stars than among earlier spectral types, which may be an evidence of inner disk evolution. Finally, we find that 5 of the high- and intermediate-mass stars have SEDs and IRS spectra consistent with debris disk models involving planet formation, which could indicate debris disk formation at ages as early as 4 Myr.

  5. Radiation Pressure Supported Starburst Disks and AGN Fueling

    E-Print Network [OSTI]

    Todd A. Thompson; Eliot Quataert; Norm Murray

    2005-05-19T23:59:59.000Z

    We consider the structure of marginally Toomre-stable starburst disks under the assumption that radiation pressure on dust grains provides the dominant vertical support against gravity. This is particularly appropriate when the disk is optically thick to its own IR radiation, as in the central regions of ULIRGs. Because the disk radiates at its Eddington limit, the Schmidt-law for star formation changes in the optically-thick limit, with the star formation rate per unit area scaling as Sigma_g/kappa, where Sigma_g is the gas surface density and kappa is the mean opacity. We show that optically thick starburst disks have a characteristic flux and dust effective temperature of F ~ 10^{13} L_sun/kpc^2 and T_eff ~ 90K, respectively. We compare our predictions with observations and find good agreement. We extend our model from many-hundred parsec scales to sub-parsec scales and address the problem of fueling AGN. We assume that angular momentum transport proceeds via global torques rather than a local viscosity. We account for the radial depletion of gas due to star formation and find a strong bifurcation between two classes of disk models: (1) solutions with a starburst on large scales that consumes all of the gas with little fueling of a central AGN and (2) models with an outer large-scale starburst accompanied by a more compact starburst on 1-10 pc scales and a bright central AGN. The luminosity of the latter models is in many cases dominated by the AGN. We show that the vertical thickness of the starburst disk on pc scales can approach h ~ r, perhaps accounting for the nuclear obscuration in some Type 2 AGN. We also argue that the disk of young stars in the Galactic Center may be the remnant of such a compact nuclear starburst.

  6. THE TRANSITIONAL PROTOPLANETARY DISK FREQUENCY AS A FUNCTION OF AGE: DISK EVOLUTION IN THE CORONET CLUSTER, TAURUS, AND OTHER 1-8 Myr OLD REGIONS

    SciTech Connect (OSTI)

    Currie, Thayne [NASA-Goddard Space Flight Center, Greenbelt, MD (United States); Sicilia-Aguilar, Aurora [Max-Planck-Institute for Astronomy, Koenigstuhl 17, 69117 Heidelberg (Germany)

    2011-05-01T23:59:59.000Z

    We present Spitzer 3.6-24 {mu}m photometry and spectroscopy for stars in the 1-3 Myr old Coronet Cluster, expanding upon the survey of Sicilia-Aguilar et al. Using sophisticated radiative transfer models, we analyze these new data and those from Sicilia-Aguilar et al. to identify disks with evidence for substantial dust evolution consistent with disk clearing: transitional disks. We then analyze data in Taurus and others young clusters-IC 348, NGC 2362, and {eta} Cha-to constrain the transitional disk frequency as a function of time. Our analysis confirms previous results finding evidence for two types of transitional disks-those with inner holes and those that are homologously depleted. The percentage of disks in the transitional phase increases from {approx}15%-20% at 1-2 Myr to {>=}50% at 5-8 Myr; the mean transitional disk lifetime is closer to {approx}1 Myr than 0.1-0.5 Myr, consistent with previous studies by Currie et al. and Sicilia-Aguilar et al. In the Coronet Cluster and IC 348, transitional disks are more numerous for very low mass M3-M6 stars than for more massive K5-M2 stars, while Taurus lacks a strong spectral-type-dependent frequency. Assuming standard values for the gas-to-dust ratio and other disk properties, the lower limit for the masses of optically thick primordial disks is M{sub disk} {approx} 0.001-0.003 M{sub *}. We find that single color-color diagrams do not by themselves uniquely identify transitional disks or primordial disks. Full spectral energy distribution modeling is required to accurately assess disk evolution for individual sources and inform statistical estimates of the transitional disk population in large samples using mid-IR colors.

  7. On the stability of a galactic disk in modified gravity

    E-Print Network [OSTI]

    Mahmood Roshan; Shahram Abbassi

    2015-03-14T23:59:59.000Z

    We find the dispersion relation for tightly wound spiral density waves in the surface of rotating, self-gravitating disks in the framework of Modified Gravity (MOG). Also, the Toomre-like stability criterion for differentially rotating disks has been derived for both fluid and stellar disks. More specifically, the stability criterion can be expressed in terms of a matter density threshold over which the instability occurs. In other words the local stability criterion can be written as $\\Sigma_0sound speed), $\\kappa$ (epicycle frequency) and $\\alpha$ and $\\mu_0$ are the free parameters of the theory. In the case of a stellar disk the radial velocity dispersion $\\sigma_r$ appears in $\\Sigma_{\\text{crit}}$ instead of $v_s$. We find the exact form of the function $\\Sigma_{\\text{crit}}$ for both stellar and fluid self-gravitating disks. Also, we use a sub-sample of THINGS catalog of spiral galaxies in order to compare the local stability criteria. In this perspective, we have compared MOG with Newtonian gravity and investigated the possible and detectable differences between these theories.

  8. RELAXATION OF WARPED DISKS: THE CASE OF PURE HYDRODYNAMICS

    SciTech Connect (OSTI)

    Sorathia, Kareem A.; Krolik, Julian H. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Hawley, John F. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States)

    2013-05-10T23:59:59.000Z

    Orbiting disks may exhibit bends due to a misalignment between the angular momentum of the inner and outer regions of the disk. We begin a systematic simulational inquiry into the physics of warped disks with the simplest case: the relaxation of an unforced warp under pure fluid dynamics, i.e., with no internal stresses other than Reynolds stress. We focus on the nonlinear regime in which the bend rate is large compared to the disk aspect ratio. When warps are nonlinear, strong radial pressure gradients drive transonic radial motions along the disk's top and bottom surfaces that efficiently mix angular momentum. The resulting nonlinear decay rate of the warp increases with the warp rate and the warp width, but, at least in the parameter regime studied here, is independent of the sound speed. The characteristic magnitude of the associated angular momentum fluxes likewise increases with both the local warp rate and the radial range over which the warp extends; it also increases with increasing sound speed, but more slowly than linearly. The angular momentum fluxes respond to the warp rate after a delay that scales with the square root of the time for sound waves to cross the radial extent of the warp. These behaviors are at variance with a number of the assumptions commonly used in analytic models to describe linear warp dynamics.

  9. The Mass Dependence Between Protoplanetary Disks and their Stellar Hosts

    E-Print Network [OSTI]

    Andrews, Sean M; Kraus, Adam L; Wilner, David J

    2013-01-01T23:59:59.000Z

    We present a substantial extension of the mm-wave continuum photometry catalog for Taurus circumstellar dust disks. Combining new Submillimeter Array data with measurements in the literature, we construct a mm-wave luminosity distribution for Class II disks that is statistically complete for stellar hosts with spectral types earlier than M8.5 and has a (3-sigma) depth of ~3 mJy. The resulting census eliminates a longstanding bias against disks with late-type hosts, and thereby reveals a strong correlation between L_mm and the host spectral type. We confirm that this corresponds to a statistically robust relationship between the masses of dust disks and the stars that host them. A Bayesian regression technique is used to characterize these relationships: the results indicate a typical 1.3 mm flux density of 25 mJy for solar mass hosts and a power-law scaling L_mm \\propto M_star^1.5-2.0. We suggest that a reasonable treatment of dust temperature in the conversion from L_mm to M_disk favors an inherently linear ...

  10. Massive disk outflows mediated by extreme magnetic fields

    E-Print Network [OSTI]

    Shiber, Sagiv; Soker, Noam

    2015-01-01T23:59:59.000Z

    We argue that magnetic fields amplified within a very high accretion-rate disk around main sequence stars can lead to the formation of massive bipolar outflows that can remove most of the disk's mass and energy. This efficient directional removal of energy and mass allows the high accretion-rate disk to be built. We construct thick disks where the magnetic fields are amplified by an Alpha-Omega dynamo in the disk, bringing the fluctuating components of the magnetic field to be much stronger than the large-scale component. By examining the possible activity of the magnetic fields we conclude that main sequence stars can accrete mass at very high rates, up to 0.01Mo/yr for solar type stars, and up to 1Mo/yr for very massive stars. Such energetic outflows can account for the powering of some eruptive objects, such as merging main sequence stars, major eruptions of luminous blue variables, such as the Great Eruption of Eta Carinae, and other intermediate luminosity optical transients (ILOTs; Red Novae; Red Transi...

  11. An Old Disk That Can Still Form a Planetary System

    E-Print Network [OSTI]

    Bergin, Edwin A; Gorti, Uma; Zhang, Ke; Blake, Geoffrey A; Green, Joel D; Andrews, Sean M; Evans, Neal J; Henning, Thomas; Oberg, Karin; Pontoppidan, Klaus; Qi, Chunhua; Salyk, Colette; van Dishoeck, Ewine F

    2013-01-01T23:59:59.000Z

    From the masses of planets orbiting our Sun, and relative elemental abundances, it is estimated that at birth our Solar System required a minimum disk mass of ~0.01 solar masses within ~100 AU of the star. The main constituent, gaseous molecular hydrogen, does not emit from the disk mass reservoir, so the most common measure of the disk mass is dust thermal emission and lines of gaseous carbon monoxide. Carbon monoxide emission generally probes the disk surface, while the conversion from dust emission to gas mass requires knowledge of the grain properties and gas-to-dust mass ratio, which likely differ from their interstellar values. Thus, mass estimates vary by orders of magnitude, as exemplified by the relatively old (3--10 Myr) star TW Hya, with estimates ranging from 0.0005 to 0.06 solar masses. Here we report the detection the fundamental rotational transition of hydrogen deuteride, HD, toward TW Hya. HD is a good tracer of disk gas because it follows the distribution of molecular hydrogen and its emissi...

  12. Non-LTE modeling of supernova-fallback disks

    E-Print Network [OSTI]

    K. Werner; T. Nagel; T. Rauch

    2006-08-24T23:59:59.000Z

    We present a first detailed spectrum synthesis calculation of a supernova-fallback disk composed of iron. We assume a geometrically thin disk with a radial structure described by the classical alpha-disk model. The disk is represented by concentric rings radiating as plane-parallel slabs. The vertical structure and emission spectrum of each ring is computed in a fully self-consistent manner by solving the structure equations simultaneously with the radiation transfer equations under non-LTE conditions. We describe the properties of a specific disk model and discuss various effects on the emergent UV/optical spectrum. We find that strong iron-line blanketing causes broad absorption features over the whole spectral range. Limb darkening changes the spectral distribution up to a factor of four depending on the inclination angle. Consequently, such differences also occur between a blackbody spectrum and our model. The overall spectral shape is independent of the exact chemical composition as long as iron is the dominant species. A pure iron composition cannot be distinguished from silicon-burning ash. Non-LTE effects are small and restricted to few spectral features.

  13. Chemistry and line emission from evolving Herbig Ae disks

    E-Print Network [OSTI]

    B. Jonkheid; C. P. Dullemond; M. R. Hogerheijde; E. F. van Dishoeck

    2006-11-07T23:59:59.000Z

    Aims: To calculate chemistry and gas temperature of evolving protoplanetary disks with decreasing mass or dust settling, and to explore the sensitivity of gas-phase tracers. Methods: The density and dust temperature profiles for a range of models of flaring and self-shadowed disks around a typical Herbig Ae star are used together with 2-dimensional ultraviolet (UV) radiative transfer to calculate the chemistry and gas temperature. In each model the line profiles and intensities for the fine structure lines of [O I], [C II] and [C I] and the pure rotational lines of CO, CN, HCN and HCO+ are determined. Results: The chemistry shows a strong correlation with disk mass. Molecules that are easily dissociated, like HCN, require high densities and large extinctions before they can become abundant. The products of photodissociation, like CN and C2H, become abundant in models with lower masses. Dust settling mainly affects the gas temperature, and thus high temperature tracers like the O and C+ fine structure lines. The carbon chemistry is found to be very sensitive to the adopted PAH abundance. The line ratios CO/13CO, CO/HCO+ and [O I] 63 um/146 um can be used to distinguish between disks where dust growth and settling takes place, and disks that undergo overall mass loss.

  14. Giant disk galaxies : Where environment trumps mass in galaxy evolution

    E-Print Network [OSTI]

    Courtois, H M; Sorce, J G; Pomarede, D

    2015-01-01T23:59:59.000Z

    We identify some of the most HI massive and fastest rotating disk galaxies in the local universe with the aim of probing the processes that drive the formation of these extreme disk galaxies. By combining data from the Cosmic Flows project, which has consistently reanalyzed archival galaxy HI profiles, and 3.6$\\mu$m photometry obtained with the Spitzer Space Telescope, with which we can measure stellar mass, we use the baryonic Tully-Fisher (BTF) relationship to explore whether these massive galaxies are distinct. We discuss several results, but the most striking is the systematic offset of the HI-massive sample above the BTF. These galaxies have both more gas and more stars in their disks than the typical disk galaxy of similar rotational velocity. The "condensed" baryon fraction, $f_C$, the fraction of the baryons in a dark matter halo that settle either as cold gas or stars into the disk, is twice as high in the HI-massive sample than typical, and almost reaches the universal baryon fraction in some cases,...

  15. Evolution of stellar disk truncations since z=1

    E-Print Network [OSTI]

    Ignacio Trujillo; Ruyman Azzollini; Judit Bakos; John Beckman; Michael Pohlen

    2008-07-26T23:59:59.000Z

    We present our recent results on the cosmic evolution of the outskirst of disk galaxies. In particular we focus on disk-like galaxies with stellar disk truncations. Using UDF, GOODS and SDSS data we show how the position of the break (i.e. a direct estimator of the size of the stellar disk) evolves with time since z~1. Our findings agree with an evolution on the radial position of the break by a factor of 1.3+-0.1 in the last 8 Gyr for galaxies with similar stellar masses. We also present radial color gradients and how they evolve with time. At all redshift we find a radial inside-out bluing reaching a minimum at the position of the break radius, this minimum is followed by a reddening outwards. Our results constraint several galaxy disk formation models and favour a scenario where stars are formed inside the break radius and are relocated in the outskirts of galaxies through secular processes.

  16. Modeling the Infrared Emission from the Epsilon Eridani Disk

    E-Print Network [OSTI]

    Li, A; Bendo, G J; Li, Aigen

    2003-01-01T23:59:59.000Z

    We model the infrared (IR) emission from the ring-like dust disk around the main-sequence (MS) star Epsilon Eridani, a young analog to our solar system, in terms of a porous dust model previously developed for the extended wedge-shaped disk around the MS star $\\beta$ Pictoris and the sharply truncated ring-like disks around the Herbig Ae/Be stars HR 4796A and HD 141569A. It is shown that the porous dust model with a porosity of $\\simali$90% is also successful in reproducing the IR to submillimeter dust emission spectral energy distribution as well as the 850$\\mum$ flux radial profile of the dust ring around the more evolved MS star Epsilon Eridani. Predictions are made for future {\\it SIRTF} observations which may allow a direct test of the porous dust model.

  17. Spectral modeling of gaseous metal disks around DAZ white dwarfs

    E-Print Network [OSTI]

    K. Werner; T. Nagel; T. Rauch

    2008-09-30T23:59:59.000Z

    We report on our attempt for the first non-LTE modeling of gaseous metal disks around single DAZ white dwarfs recently discovered by Gaensicke et al. and thought to originate from a disrupted asteroid. We assume a Keplerian rotating viscous disk ring composed of calcium and hydrogen and compute the detailed vertical structure and emergent spectrum. We find that the observed infrared CaII emission triplet can be modeled with a hydrogen-deficient gas ring located at R=1.2 R_sun, inside of the tidal disruption radius, with Teff about 6000 K and a low surface mass density of about 0.3 g/cm**2. A disk having this density and reaching from the central white dwarf out to R=1.2 R_sun would have a total mass of 7 10**21 g, corresponding to an asteroid with about 160 km diameter.

  18. Does Dissipation in AGN Disks Couple to the Total Pressure?

    E-Print Network [OSTI]

    E. T. Vishniac

    1993-08-12T23:59:59.000Z

    Recent work on the transport of angular momentum in accretion disks suggests that the Velikhov-Chandrasekhar instability, in which a large scale magnetic field generates small scale eddys in a shearing environment, may be ultimately responsible for this process. Although there is considerable controversy about the origin and maintenance of this field in accretion disks, it turns out that it is possible to argue, quite generally, using scaling arguments, that this process is sensitive to the total pressure in an AGN disk, rather than the pressure contributed by gas alone. We conclude that the resolution of the conceptual difficulties implied by the presence of strong thermal and viscous instabilities in radiation pressure and electron scattering dominated does not lie in models that couple the total dissipation rate to the gas pressure alone, or to some weighted mean of the gas and radiation pressures.

  19. ENERGETIC PROTONS, RADIONUCLIDES, AND MAGNETIC ACTIVITY IN PROTOSTELLAR DISKS

    SciTech Connect (OSTI)

    Turner, N. J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Drake, J. F., E-mail: neal.turner@jpl.nasa.go [Department of Physics, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States)

    2009-10-01T23:59:59.000Z

    We calculate the location of the magnetically inactive dead zone in the minimum-mass protosolar disk, under ionization scenarios including stellar X-rays, long- or short-lived radionuclide decay, and energetic protons arriving from the general interstellar medium, from a nearby supernova explosion, from the disk corona, or from the corona of the young star. The disk contains a dead zone in all scenarios except those with small dust grains removed and a fraction of the short-lived radionuclides remaining in the gas. All the cases without exception have an 'undead zone' where intermediate resistivities prevent magneto-rotational turbulence while allowing shear-generated large-scale magnetic fields. The mass column in the undead zone is typically greater than the column in the turbulent surface layers. The results support the idea that the dead and undead zones are robust consequences of cold, dusty gas with mass columns exceeding 1000 g cm{sup -2}.

  20. POLARIMETRIC IMAGING OF LARGE CAVITY STRUCTURES IN THE PRE-TRANSITIONAL PROTOPLANETARY DISK AROUND PDS 70: OBSERVATIONS OF THE DISK

    SciTech Connect (OSTI)

    Hashimoto, J.; Hayashi, M. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Dong, R.; Zhu, Z.; Brandt, T. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Kudo, T.; Egner, S.; Guyon, O.; Hayano, Y. [Subaru Telescope, 650 North A'ohoku Place, Hilo, HI 96720 (United States); Honda, M. [Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293 (Japan); McClure, M. K. [Department of Astronomy, University of Michigan, 500 Church Street, 830 Dennison Building, Ann Arbor, MI 48109 (United States); Muto, T. [Division of Liberal Arts, Kogakuin University, 1-24-2, Nishi-Shinjuku, Shinjuku-ku, Tokyo 163-8677 (Japan); Wisniewski, J. [University of Washington, Seattle, WA 98195 (United States); Abe, L. [Laboratoire Hippolyte Fizeau, UMR6525, Universite de Nice Sophia-Antipolis, 28, avenue Valrose, F-06108 Nice Cedex 02 (France); Brandner, W.; Carson, J.; Feldt, M. [Max Planck Institute for Astronomy, D-69117 Heidelberg (Germany); Fukagawa, M. [Osaka University, 1-1, Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Goto, M. [Universitaets-Sternwarte Muenchen, Scheinerstr. 1, D-81679 Munich (Germany); Grady, C. A., E-mail: jun.hashimoto@nao.ac.jp [Exoplanets and Stellar Astrophysics Laboratory, Code 667, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); and others

    2012-10-10T23:59:59.000Z

    We present high-resolution H-band polarized intensity (FWHM = 0.''1: 14 AU) and L'-band imaging data (FWHM = 0.''11: 15 AU) of the circumstellar disk around the weak-lined T Tauri star PDS 70 in Centaurus at a radial distance of 28 AU (0.''2) up to 210 AU (1.''5). In both images, a giant inner gap is clearly resolved for the first time, and the radius of the gap is {approx}70 AU. Our data show that the geometric center of the disk shifts by {approx}6 AU toward the minor axis. We confirm that the brown dwarf companion candidate to the north of PDS 70 is a background star based on its proper motion. As a result of spectral energy distribution fitting by Monte Carlo radiative transfer modeling, we infer the existence of an optically thick inner disk at a few AU. Combining our observations and modeling, we classify the disk of PDS 70 as a pre-transitional disk. Furthermore, based on the analysis of L'-band imaging data, we put an upper limit of {approx}30 to {approx}50 M{sub J} on the mass of companions within the gap. Taking into account the presence of the large and sharp gap, we suggest that the gap could be formed by dynamical interactions of sub-stellar companions or multiple unseen giant planets in the gap.

  1. Dissipation and Rheology of Sheared Soft-Core Frictionless Disks

    E-Print Network [OSTI]

    Daniel Vågberg; Peter Olsson; S. Teitel

    2014-09-17T23:59:59.000Z

    We use numerical simulations to investigate the effect of different dissipative models on the shearing rheology of massive soft-core frictionless disks in two dimensions. We show that the presence of Newtonian (overdamped) vs Bagnoldian (inertial) rheology is related to the formation of large connected clusters of disks, and that sharp transitions may exist between the two as system parameters vary. In the limit of strongly inelastic collisions, we find that rheological curves collapse to a well-defined limit when plotted against an appropriate dimensionless strain rate.

  2. Kinematic segregation of nearby disk stars from the Hipparcos database

    E-Print Network [OSTI]

    R. E. de Souza; R. Teixeira

    2007-04-25T23:59:59.000Z

    To better understand our Galaxy, we investigate the pertinency of describing the sys tem of nearby disk stars in terms of a two-components Schwarzschild velocity distributio n.Using the proper motion and parallax information of Hipparcos database, we determine t he parameters characterizing the local stellar velocity field of a sample of 22000 disk stars. The sample we use is essentially the same as the one described by the criteria ad opted to study the LSR and the stream motion of the nearby stellar population

  3. NGC2613, 3198, 6503, 7184: Case studies against `maximum' disks

    E-Print Network [OSTI]

    B. Fuchs

    1998-12-02T23:59:59.000Z

    Decompositions of the rotation curves of NGC2613, 3198, 6505, and 7184 are analysed. For these galaxies the radial velocity dispersions of the stars have been measured and their morphology is clearly discernible. If the parameters of the decompositions are chosen according to the `maximum' disk hypothesis, the Toomre Q stability parameter is systematically less than one and the multiplicities of the spiral arms as expected from density wave theory are inconsitent with the observed morphologies of the galaxies. The apparent Q<1 instability, in particular, is a strong argument against the `maximum' disk hypothesis.

  4. Dim Matter in the Disks of Low Surface Brightness Galaxies

    E-Print Network [OSTI]

    B. Fuchs

    2002-04-23T23:59:59.000Z

    An attempt is made to set constraints on the otherwise ambiguous decomposition of the rotation curves of low surface brightness galaxies into contributions due to the various components of the galaxies. For this purpose galaxies are selected which show clear spiral structure. Arguments of density wave theory of galactic spiral arms are then used to estimate the masses of the galactic disks. These estimates seem to indicate that the disks of low surface brightness galaxies might be much more massive than currently thought. This unexpected result contradicts stellar population synthesis models. This would also mean that low surface brightness galaxies are not dominated by dark matter in their inner parts.

  5. agn accretion-disk outflows: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    initial dipole, the field direction in the stellar wind is opposite to that in the disk wind. The maximum speed of the outflow is about the Keplerian speed at the inner disk...

  6. accretion-disk outflows ii: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    field direction in the stellar wind is opposite to that in the disk wind. The maximum speed of the outflow is about the Keplerian speed at the inner disk radius. With the chosen...

  7. The Evolution of Debris Disk Systems: Constraints from Theory and Observation 

    E-Print Network [OSTI]

    Smith, Rachel

    2008-01-01T23:59:59.000Z

    Debris disks are believed to be the remnants of planet formation; a disk of solid bodies called planetesimals that did not get incorporated into planets. They provide an ideal opportunity for studying the outcome of ...

  8. Workload-Adaptive Management of Energy-Smart Disk Storage Systems

    E-Print Network [OSTI]

    Otoo, Ekow

    2010-01-01T23:59:59.000Z

    of disks to save power. Figure 12: Power saving ratio ofsavings from DPM, the other 14 disks are still too busy to savesave 75% of power while DPM or CACHE only provide about 15% of power saving

  9. Sexual performance of mass reared and wild Mediterranean fruit flies (Diptera: Tephritidae) from various origins of the Madeira Islands

    SciTech Connect (OSTI)

    Pereira, R.; Silva, N.; Quintal, C.; Abreu, R.; Andrade, J.; Dantas, L. [Programa Madeira-Med, Estrada Eng. Abel Vieira 262, 9135-260 Camacha, Madeira (Portugal)

    2007-03-15T23:59:59.000Z

    The success of Mediterranean fruit fly (medfly) Ceratitis capitata (Wiedemann) control programs integrating the sterile insect technique (SIT) is based on the capacity of released the sterile males to compete in the field for mates. The Islands of Madeira are composed of 2 populated islands (Madeira and Porto Santo) where the medfly is present. To evaluate the compatibility and sexual performance of sterile flies we conducted a series of field cage tests. At same time, the process of laboratory domestication was evaluated. 3 wild populations, one semi-wild strain, and 1 mass reared strain were evaluated: the wild populations of (1) Madeira Island (north coast), (2) Madeira Island (south coast), and (3) Porto Santo Island; (4) the semi-wild population after 7 to 10 generations of domestication in the laboratory (respectively, for first and second experiment); and (5) the genetic sexing strain in use at Madeira medfly facility (VIENNA 7mix2000). Field cage experiments showed that populations of all origins are mostly compatible. There were no significant differences among wild populations in sexual competitiveness. Semi-wild and mass-reared males performed significantly poorer in both experiments than wild males in achieving matings with wild females. The study indicates that there is no significant isolation among strains tested, although mating performance is reduced in mass-reared and semi-wild flies after 7 to 10 generations in the laboratory. (author) [Spanish] El exito de los programas de control de la mosca mediterranea de la fruta (Ceratitis capitata (Wiedemann) que integran la tecnica del insecto esteril (TIE) esta basado en la capacidad de machos esteriles para competir en el campo por sus parejas. Las Islas de Madeira consisten de 2 islas pobladas (Madeira y Porto Santo) donde la mosca mediterranea de la fruta esta presente. Para evaluar la compatibilidad y el funcionamiento sexual de moscas esteriles nosotros realizamos una serie de pruebas de jaula en el campo. Al mismo tiempo, el proceso de la domesticacion en el laboratorio fue evaluado. Tres poblaciones naturales, una poblacion semi-natural y una poblacion criada en masa fueron evaluadas: las poblaciones natural de (1) Isla de Madeira (costa norte), (2) Isla de Madeira (costa sur) y (3) Isla de Porto Santo; (4) una poblacion semi-natural despues de 7 a 10 generaciones de domesticacion en el laboratorio (respectivamente, para el primero y segundo experimento); y (5) la raza para separar sexos geneticamente que es usada en el laboratorio de la mosca mediterranea de Madeira (VIENNA 7mix2000). Los experimentos usando jaulas en el campo mostraron que las poblaciones de diferentes origines fueron en su mayor parte compatibles. No hubo diferencias significativas en la capacidad para competir sexualmente entre las poblaciones naturales. Los machos semi-naturales y los machos criados en masa mostraron un desempeno significativamente bajo en ambos experimentos que los machos naturales en el logro de copula con las hembras naturales. Este estudio indica que no hay un aislamiento significativo entre las razas probadas, aunque el desempeno en el apareamiento fue reducido en las moscas criadas en masa y semi-naturales despues de 7 a 10 generaciones en el laboratorio. (author)

  10. Turbulence in Global Simulations of Magnetized Thin Accretion Disks

    E-Print Network [OSTI]

    Beckwith, Kris; Simon, Jacob B

    2011-01-01T23:59:59.000Z

    We use a global magnetohydrodynamic simulation of a geometrically thin accretion disk to investigate the locality and detailed structure of turbulence driven by the magnetorotational instability (MRI). The model disk has an aspect ratio $H / R \\simeq 0.07$, and is computed using a higher-order Godunov MHD scheme with accurate fluxes. We focus the analysis on late times after the system has lost direct memory of its initial magnetic flux state. The disk enters a saturated turbulent state in which the fastest growing modes of the MRI are well-resolved, with a relatively high efficiency of angular momentum transport $ > \\approx 2.5 \\times 10^{-2}$. The accretion stress peaks at the disk midplane, above and below which exists a moderately magnetized corona with patches of superthermal field. By analyzing the spatial and temporal correlations of the turbulent fields, we find that the spatial structure of the magnetic and kinetic energy is moderately well-localized (with correlation lengths along the major axis of ...

  11. The gas temperature in circumstellar disks: effects of dust settling

    E-Print Network [OSTI]

    Zadelhoff, Gerd-Jan van

    Example of the cooling and heating terms for a model with dust depletion in the surface Work in progress systems. One of the central questions concerning these disks are their density and temperature temperature is calculated solving the heating-cooling balance. Dust temperature Density distribution [cm ] -3

  12. Ultrasonic detection of residual stress in a turbine disk

    E-Print Network [OSTI]

    Pathak, Nitin

    1992-01-01T23:59:59.000Z

    technique measured stresses within one standard deviation of 5000 psi. Further, the technique showed that in the as-received condstion stresses in the narrow and broad sides of the turbine disk rim were above 5500 psi tensile and above 20, 000 psi...

  13. Synthesis and Liquid Crystal Phase Transitions of Zirconium Phosphate Disks 

    E-Print Network [OSTI]

    Shuai, Min

    2013-05-07T23:59:59.000Z

    .3.1 Preparation of ?-ZrP Disks .................................................................... 17 2.3.2 Characterization .................................................................................... 18 2.4 Traditional Hydrothermal Method... products. Mostly with flask shape, the particles made up the clay which is abundant in the earth covering our planet. Like graphene, some inorganic layered compounds, such as MoS2, Niobium layered oxide (Niobates), and ?-Zirconium phosphates (?-Zr...

  14. Disk-shaped Compact Tension Test for Asphalt Concrete Fracture

    E-Print Network [OSTI]

    Paulino, Glaucio H.

    Disk-shaped Compact Tension Test for Asphalt Concrete Fracture by M.P.Wagoner, W.G. Buttlar and G geometry is the ability to test cylindrical cores obtained from in-place asphalt concrete pavements finalizing the specimen geometry, a typical asphalt concrete surface mixture was tested at various

  15. Vortex generation in protoplanetary disks with an embedded giant planet

    E-Print Network [OSTI]

    M. de Val-Borro; P. Artymowicz; G. D'Angelo; A. Peplinski

    2007-06-21T23:59:59.000Z

    Vortices in protoplanetary disks can capture solid particles and form planetary cores within shorter timescales than those involved in the standard core-accretion model. We investigate vortex generation in thin unmagnetized protoplanetary disks with an embedded giant planet with planet to star mass ratio $10^{-4}$ and $10^{-3}$. Two-dimensional hydrodynamical simulations of a protoplanetary disk with a planet are performed using two different numerical methods. The results of the non-linear simulations are compared with a time-resolved modal analysis of the azimuthally averaged surface density profiles using linear perturbation theory. Finite-difference methods implemented in polar coordinates generate vortices moving along the gap created by Neptune-mass to Jupiter-mass planets. The modal analysis shows that unstable modes are generated with growth rate of order $0.3 \\Omega_K$ for azimuthal numbers m=4,5,6, where $\\Omega_K$ is the local Keplerian frequency. Shock-capturing Cartesian-grid codes do not generate very much vorticity around a giant planet in a standard protoplanetary disk. Modal calculations confirm that the obtained radial profiles of density are less susceptible to the growth of linear modes on timescales of several hundreds of orbital periods. Navier-Stokes viscosity of the order $\

  16. Improving Energy Efficiency and Security for Disk Systems

    E-Print Network [OSTI]

    Qin, Xiao

    Improving Energy Efficiency and Security for Disk Systems Shu Yin1 , Mohammed I. Alghamdi2 been focused on data security and energy efficiency, most of the existing approaches have concentrated optimization with security services to enhance the security of energy-efficient large- scale storage systems

  17. Performance Directed Energy Management for Main Memory and Disks

    E-Print Network [OSTI]

    Zhou, Yuanyuan

    grant, a gift from Intel Corp., and the National Science Foundation under Grant No. CCR-0096126, EIA in the design of computing systems. For battery-operated mobile devices, energy consumption directly affects]. The storage hierarchy, which includes memory and disks, is a major energy consumer in computer systems

  18. Thermal Issues in Disk Drive Design: Challenges and Possible Solutions

    E-Print Network [OSTI]

    Gurumurthi, Sudhanva

    are to adhere to the thermal design envelope. We motivate the need for continued improvements in IDR by showing throttles its activities to remain within the thermal envelope. Categories and Subject Descriptors: B.4Thermal Issues in Disk Drive Design: Challenges and Possible Solutions SUDHANVA GURUMURTHI

  19. Finite viscous disks with time-independent viscosity

    E-Print Network [OSTI]

    Lipunova, Galina V

    2015-01-01T23:59:59.000Z

    We find the Green's functions for the accretion disk with the fixed outer radius and time-independent viscosity. With the Green's functions, a viscous evolution of the disk with any initial conditions can be described. Two types of the inner boundary conditions are considered: the zero stress tensor and the zero accretion rate. The variable mass inflow at the outer radius can also be included. The well-known exponential decline of the accretion rate is a part of the solution with the inner zero stress tensor. The solution with the zero central accretion rate is applicable to the disks around stars with the magnetosphere's boundary exceeding the corotation radius. Using the solution, the viscous evolution of disks in some binary systems can be studied. We apply the solution with zero inner stress tensor to outbursts of short-period X-ray transients during the time around the peak. It is found that for the Kramers' regime of opacity and the initial surface density proportional to the radius, the rise time to th...

  20. Periodicity of the solar full-disk magnetic fields

    SciTech Connect (OSTI)

    Xiang, N. B.; Qu, Z. N.; Zhai, Q. [National Astronomical Observatories/Yunnan Observatory, CAS, Kunming 650011 (China)

    2014-07-01T23:59:59.000Z

    A full-disk solar magnetogram has been measured each day since 1970 January 19, and the daily Magnetic Plage Strength Index (MPSI) and the daily Mount Wilson Sunspot Index (MWSI) were calculated for each magnetogram at the Mount Wilson Observatory. The MPSI and MWSI are used to investigate the periodicity of the solar full-disk magnetic activity through autocorrelation analyses. Just two periods, the solar cycle and the rotation cycle, are determined in both the MPSI (the solar full-disk weak magnetic field activity) and MWSI (the solar full-disk strong magnetic field activity) with no annual signal found. The solar cycle for MPSI (10.83 yr) is found to be obviously longer than that for MWSI (9.77 yr). The rotation cycle is determined to be 26.8 ± 0.63 sidereal days for MPSI and 27.4 ± 2.4 sidereal days for MWSI. The rotation cycle length for MPSI is found to fluctuate around 27 days within a very small amplitude, but for MWSI it obviously temporally varies with a rather large amplitude. The rotation cycle for MWSI seems longer near solar minimum than at solar maximum. Cross-correlation analyses of daily MPSI and MWSI are carried out, and it is inferred that the MPSI components partly come from relatively early MWSI measurements.

  1. Covariant Lyapunov Vectors for Rigid Disk Systems Hadrien Bosetti

    E-Print Network [OSTI]

    Posch, Harald A.

    Covariant Lyapunov Vectors for Rigid Disk Systems Hadrien Bosetti and Harald A. Posch Computational: October 17, 2010) We carry out extensive computer simulations to study the Lyapunov instability of a two enough to allow the formation of Lyapunov modes parallel to the x-axis of the box. The Oseledec splitting

  2. Lyapunov Modes in HardDisk Systems April 2, 2004

    E-Print Network [OSTI]

    Lyapunov Modes in Hard­Disk Systems April 2, 2004 Jean­Pierre Eckmann 1,2 , Christina Forster 3 the Lyapunov spectrum near the vanishing Lyapunov exponents. To this spectrum are associated ``eigen­directions'', called Lyapunov modes. We carefully analyze these modes and show how they are naturally associated

  3. Caching for Bursts (C-Burst): Let Hard Disks Sleep Well and Work Energetically

    E-Print Network [OSTI]

    {fchen,zhang}@cse.ohio-state.edu ABSTRACT High energy consumption has become a critical challenge in all and Xiaodong Zhang Dept. of Computer Science & Engineering The Ohio State University Columbus, OH 43210, USA to save disk energy by transitioning an idle disk to a low-power mode. However, the achievable disk energy

  4. Preprint typeset using LATEX style emulateapj "PROPELLER" REGIME OF DISK ACCRETION TO RAPIDLY ROTATING STARS

    E-Print Network [OSTI]

    propellers are char- acterized by a powerful disk wind and a collimated magnetically dominated outflow or jet-averaged characteristics of the interaction between the main elements of the system, the star, the disk, the wind from to be expelled from the disk if the centrifu- gal force is sufficiently larger than the gravitational force

  5. Adaptive Quality of Security Control in Networked Parallel Disk Systems Mais Nijim, Xiao Qin

    E-Print Network [OSTI]

    Qin, Xiao

    , and Tao Xie Department of Computer Science New Mexico Institute of Mining and Technology Soccoro, New Mexico 87801 {mais, xqin, xietao}@cs.nmt.edu Abstract Parallel disk systems, which have been widely used and can alleviate the problem of disk I/O bottleneck. To exploit I/O parallelism in parallel disk systems

  6. Disk Drive Roadmap from the Thermal Perspective: A Case for Dynamic Thermal Management

    E-Print Network [OSTI]

    Sivasubramaniam, Anand

    the thermal envelope, and employs dynamic throttling of disk drive activities to remain within this envelopeDisk Drive Roadmap from the Thermal Perspective: A Case for Dynamic Thermal Management Sudhanva The importance of pushing the performance envelope of disk drives continues to grow, not just in the server

  7. Turbulence in Global Simulations of Magnetized Thin Accretion Disks

    E-Print Network [OSTI]

    Kris Beckwith; Philip J. Armitage; Jacob B. Simon

    2011-05-09T23:59:59.000Z

    We use a global magnetohydrodynamic simulation of a geometrically thin accretion disk to investigate the locality and detailed structure of turbulence driven by the magnetorotational instability (MRI). The model disk has an aspect ratio $H / R \\simeq 0.07$, and is computed using a higher-order Godunov MHD scheme with accurate fluxes. We focus the analysis on late times after the system has lost direct memory of its initial magnetic flux state. The disk enters a saturated turbulent state in which the fastest growing modes of the MRI are well-resolved, with a relatively high efficiency of angular momentum transport $ > \\approx 2.5 \\times 10^{-2}$. The accretion stress peaks at the disk midplane, above and below which exists a moderately magnetized corona with patches of superthermal field. By analyzing the spatial and temporal correlations of the turbulent fields, we find that the spatial structure of the magnetic and kinetic energy is moderately well-localized (with correlation lengths along the major axis of $2.5H$ and $1.5H$ respectively), and generally consistent with that expected from homogenous incompressible turbulence. The density field, conversely, exhibits both a longer correlation length and a long correlation time, results which we ascribe to the importance of spiral density waves within the flow. Consistent with prior results, we show that the mean local stress displays a well-defined correlation with the local vertical flux, and that this relation is apparently causal (in the sense of the flux stimulating the stress) during portions of a global dynamo cycle. We argue that the observed flux-stress relation supports dynamo models in which the structure of coronal magnetic fields plays a central role in determining the dynamics of thin-disk accretion.

  8. MINERAL PROCESSING BY SHORT CIRCUITS IN PROTOPLANETARY DISKS

    SciTech Connect (OSTI)

    McNally, Colin P. [Niels Bohr International Academy, Niels Bohr Institute, DK-2100 Copenhagen (Denmark); Hubbard, Alexander; Mac Low, Mordecai-Mark [Department of Astrophysics, American Museum of Natural History, New York, NY 10024-5192 (United States); Ebel, Denton S. [Department of Earth and Planetary Sciences, American Museum of Natural History, New York, NY 10024-5192 (United States); D'Alessio, Paola, E-mail: cmcnally@nbi.dk, E-mail: ahubbard@amnh.org, E-mail: mordecai@amnh.org, E-mail: debel@amnh.org, E-mail: p.dalessio@crya.unam.mx [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, 58089 Morelia, MICH (Mexico)

    2013-04-10T23:59:59.000Z

    Meteoritic chondrules were formed in the early solar system by brief heating of silicate dust to melting temperatures. Some highly refractory grains (Type B calcium-aluminum-rich inclusions, CAIs) also show signs of transient heating. A similar process may occur in other protoplanetary disks, as evidenced by observations of spectra characteristic of crystalline silicates. One possible environment for this process is the turbulent magnetohydrodynamic flow thought to drive accretion in these disks. Such flows generally form thin current sheets, which are sites of magnetic reconnection, and dissipate the magnetic fields amplified by a disk dynamo. We suggest that it is possible to heat precursor grains for chondrules and other high-temperature minerals in current sheets that have been concentrated by our recently described short-circuit instability. We extend our work on this process by including the effects of radiative cooling, taking into account the temperature dependence of the opacity; and by examining current sheet geometry in three-dimensional, global models of magnetorotational instability. We find that temperatures above 1600 K can be reached for favorable parameters that match the ideal global models. This mechanism could provide an efficient means of tapping the gravitational potential energy of the protoplanetary disk to heat grains strongly enough to form high-temperature minerals. The volume-filling nature of turbulent magnetic reconnection is compatible with constraints from chondrule-matrix complementarity, chondrule-chondrule complementarity, the occurrence of igneous rims, and compound chondrules. The same short-circuit mechanism may perform other high-temperature mineral processing in protoplanetary disks such as the production of crystalline silicates and CAIs.

  9. Dynamics of Circumstellar Disks II: Heating and Cooling

    E-Print Network [OSTI]

    Andrew F. Nelson; Willy Benz; Tamara Ruzmaikina

    1999-08-13T23:59:59.000Z

    We present a series of 2-d ($r,\\phi$) hydrodynamic simulations of marginally self gravitating disks around protostars using an SPH code. We implement simple dynamical heating and we cool each location as a black body, using a photosphere temperature obtained from the local vertical structure. We synthesize SEDs from our simulations and compare them to fiducial SEDs derived from observed systems. These simulations produce less distinct spiral structure than isothermally evolved systems, especially in the inner third of the disk. Pattern are similar further from the star but do not collapse into condensed objects. The photosphere temperature is well fit to a power law in radius with index $q\\sim1.1$, which is very steep. Far from the star, internal heating ($PdV$ work and shocks) are not responsible for generating a large fraction of the thermal energy contained in the disk matter. Gravitational torques responsible for such shocks cannot transport mass and angular momentum efficiently in the outer disk. Within $\\sim$5--10 AU of the star, rapid break up and reformation of spiral structure causes shocks, which provide sufficient dissipation to power a larger fraction of the near IR energy output. The spatial and size distribution of grains can have marked consequences on the observed near IR SED and can lead to increased emission and variability on $\\lesssim 10$ year time scales. When grains are vaporized they do not reform into a size distribution similar to that from which most opacity calculations are based. With rapid grain reformation into the original size distribution, the disk does not emit near infrared photons. With a plausible modification to the opacity, it contributes much more.

  10. The ATLAS FTK Auxiliary Card: A Highly Functional VME Rear Transition Module for a Hardware Track Finding Processing Unit

    E-Print Network [OSTI]

    Alison, John; The ATLAS collaboration; Bogdan, Mircea; Bryant, Patrick; Cheng, Yangyang; Krizka, Karol; Shochet, Mel; Tompkins, Lauren; Webster, Jordan S

    2014-01-01T23:59:59.000Z

    The ATLAS Fast TracKer is a hardware-based charged particle track finder for the High Level Trigger system of the ATLAS Experiment at the LHC. Using a multi-component system, it finds charged particle trajectories of 1 GeV/c and greater using data from the full ATLAS silicon tracking detectors at a rate of 100 kHz. Pattern recognition and preliminary track fitting are performed by VME Processing Units consisting of an Associative Memory Board containing custom associative memory chips for pattern recognition, and the Auxiliary Card (AUX), a powerful rear transition module which formats the data for pattern recognition and performs linearized fits on track candidates. We report on the design and testing of the AUX, which utilizes six FPGAs to process up to 32 Gbps of hit data, as well as fit the helical trajectory of one track candidate per nanosecond through a highly parallel track fitting architecture. Both the board and firmware design will be discussed, as well as the performance observed in tests at CERN ...

  11. Why we need survey-styleWhy we need survey-style bulge-disk decompositionbulge-disk decomposition

    E-Print Network [OSTI]

    Liske, Jochen

    Why we need survey-styleWhy we need survey-style bulge-disk decompositionbulge. Using our calibrated dust model we can also compute the photon escape fractions of galaxies at any other of the nearby Universe before (orange) and after (black) correction for the effects of dust. The energy absorbed

  12. THE PHYSICAL STRUCTURE OF PROTOPLANETARY DISKS: THE SERPENS CLUSTER COMPARED WITH OTHER REGIONS

    SciTech Connect (OSTI)

    Oliveira, Isa; Van Dishoeck, Ewine F. [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands)] [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Merin, Bruno [Herschel Science Center, European Space Astronomy Centre (ESA), P.O. Box 78, E-28691 Villanueva de la Canada (Madrid) (Spain)] [Herschel Science Center, European Space Astronomy Centre (ESA), P.O. Box 78, E-28691 Villanueva de la Canada (Madrid) (Spain); Pontoppidan, Klaus M., E-mail: oliveira@astro.as.utexas.edu [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

    2013-01-10T23:59:59.000Z

    Spectral energy distributions are presented for 94 young stars surrounded by disks in the Serpens Molecular Cloud, based on photometry and Spitzer/IRS spectra. Most of the stars have spectroscopically determined spectral types. Taking a distance to the cloud of 415 pc rather than 259 pc, the distribution of ages is shifted to lower values, in the 1-3 Myr range, with a tail up to 10 Myr. The mass distribution spans 0.2-1.2 M {sub Sun }, with median mass of 0.7 M {sub Sun }. The distribution of fractional disk luminosities in Serpens resembles that of the young Taurus Molecular Cloud, with most disks consistent with optically thick, passively irradiated disks in a variety of disk geometries (L {sub disk}/L {sub star} {approx} 0.1). In contrast, the distributions for the older Upper Scorpius and {eta} Chamaeleontis clusters are dominated by optically thin lower luminosity disks (L {sub disk}/L {sub star} {approx} 0.02). This evolution in fractional disk luminosities is concurrent with that of disk fractions: with time disks become fainter and the disk fractions decrease. The actively accreting and non-accreting stars (based on H{alpha} data) in Serpens show very similar distributions in fractional disk luminosities, differing only in the brighter tail dominated by strongly accreting stars. In contrast with a sample of Herbig Ae/Be stars, the T Tauri stars in Serpens do not have a clear separation in fractional disk luminosities for different disk geometries: both flared and flat disks present wider, overlapping distributions. This result is consistent with previous suggestions of a faster evolution for disks around Herbig Ae/Be stars. Furthermore, the results for the mineralogy of the dust in the disk surface (grain sizes, temperatures and crystallinity fractions, as derived from Spitzer/IRS spectra) do not show any correlation to either stellar and disk characteristics or mean cluster age in the 1-10 Myr range probed here. A possible explanation for the lack of correlation is that the processes affecting the dust within disks have short timescales, happening repeatedly, making it difficult to distinguish long-lasting evolutionary effects.

  13. Limits on iron-dominated fallback disk in SN 1987A

    E-Print Network [OSTI]

    K. Werner; T. Nagel; T. Rauch

    2007-03-20T23:59:59.000Z

    The non-detection of a point source in SN1987A imposes an upper limit for the optical luminosity of L=2L_sun. This limits the size of a possible fallback disk around the stellar remnant. Assuming a steady-state thin disk with blackbody emission requires a disk smaller than 100,000 km if the accretion rate is at 30% of the Eddington rate (Graves et al. 2005). We have performed detailed non-LTE radiation transfer calculations to model the disk spectrum more realistically. It turns out that the observational limit on the disk extension becomes even tighter, namely 70,000 km.

  14. High-resolution 25 \\mu m imaging of the disks around Herbig Ae/Be stars

    E-Print Network [OSTI]

    Honda, M; Okamoto, Y K; Kataza, H; Yamashita, T; Miyata, T; Sako, S; Fujiyoshi, T; Sakon, I; Fujiwara, H; Kamizuka, T; Mulders, G D; Lopez-Rodriguez, E; Packham, C; Onaka, T

    2015-01-01T23:59:59.000Z

    We imaged circumstellar disks around 22 Herbig Ae/Be stars at 25 \\mu m using Subaru/COMICS and Gemini/T-ReCS. Our sample consists of equal numbers of objects belonging to the two categories defined by Meeus et al. (2001); 11 group I (flaring disk) and II (at disk) sources. We find that group I sources tend to show more extended emission than group II sources. Previous studies have shown that the continuous disk is hard to be resolved with 8 meter class telescopes in Q-band due to the strong emission from the unresolved innermost region of the disk. It indicates that the resolved Q-band sources require a hole or gap in the disk material distribution to suppress the contribution from the innermost region of the disk. As many group I sources are resolved at 25 \\mu m, we suggest that many, not all, group I Herbig Ae/Be disks have a hole or gap and are (pre-)transitional disks. On the other hand, the unresolved nature of many group II sources at 25 \\mu m supports that group II disks have continuous at disk geometr...

  15. Neutrino Interactions in the Outflow from Gamma-Ray Burst Accretion Disks

    E-Print Network [OSTI]

    R. Surman; G. C. McLaughlin

    2004-07-09T23:59:59.000Z

    We examine the composition of matter as it flows away from gamma ray burst accretion disks, in order to determine what sort of nucleosynthesis may occur. Since there is a large flux of neutrinos leaving the surface of the disk, the electron fraction of the outflowing material will change due to charged current neutrino interactions. We calculate the electron fraction in the wind using detailed neutrino fluxes from every point on the disk and study a range of trajectories and outflow conditions for several different accretion disk models. We find that low electron fractions, conducive to making r-process elements, only appear in outflows from disks with high accretion rates that have a significant region both of trapped neutrinos and antineutrinos. Disks with lower accretion rates that have only a significant region of trapped neutrinos can have outflows with very high electron fractions, whereas the lowest accretion rate disks with little trapping have outflow electrons fractions of closer to one half.

  16. A Thickness of Stellar Disks of Edge-on Galaxies and Position of Their Truncation Radii

    E-Print Network [OSTI]

    A. V. Zasov; D. V. Bizyaev

    2002-12-13T23:59:59.000Z

    The relationship between the geometrical properties of stellar disks (a flatness and truncation radius) and the disk kinematics are considered for edge-on galaxies. It is shown that the observed thickness of the disks and the approximate constancy of their thickness along the radius well agrees with the condition of their marginal local gravitational stability. As a consequence, those galaxies whose disks are thinner should harbor more massive dark haloes. The correlation between the de-projeced central brightness of the disks and their flatness is found (the low surface brightness disks tend to be the thinniest ones). We also show that positions of observed photometrically determined truncation radii $R_{cut}$ for the stellar disks support the idea of marginal local gravitational stability of gaseous protodisks at $R =R_{cut}$, and hence the steepening of photometric profiles may be a result of too inefficient star formation beyond $R_{cut}$.

  17. Warping and tearing of misaligned circumbinary disks around eccentric SMBH binaries

    E-Print Network [OSTI]

    Hayasaki, Kimitake; Okazaki, Atsuo T; Jung, Taehyun; Zhao, Guangyao; Naito, Tsuguya

    2015-01-01T23:59:59.000Z

    We study the warping and tearing of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on an eccentric orbit. The circumbinary disk is significantly misaligned with the binary orbital plane, and is subject to the time-dependent tidal torques. In principle, such a disk is warped and precesses, and is torn into mutually misaligned rings in the region, where the tidal precession torques are stronger than the local viscous torques. We derive the tidal-warp and tearing radii of the misaligned circumbinary disks around eccentric SMBH binaries. We find that in disks with the viscosity parameter, alpha, larger than a critical value depending on the disk aspect ratio, the disk warping appears outside the tearing radius. This condition is expressed as alpha > sqrt{H/3r} for H/r ~material is likely to rapi...

  18. Multiple hot images from an obscuration in an intense laser beam through cascaded Kerr medium disks

    SciTech Connect (OSTI)

    Wang Youwen; Wen Shuangchun; You Kaiming; Tang Zhixiang; Deng Jianqin; Zhang Lifu; Fan Dianyuan

    2008-10-20T23:59:59.000Z

    We present a theoretical investigation on the formation of hot images in an intense laser beam through cascaded Kerr medium disks, to disclose the distribution and intensity of hot images in high-power disk amplifiers. It is shown that multiple hot images from an obscuration may be formed, instead of one hot image as reported previously in the literature. This gives a clear explanation for the curious damage pattern of hot images, namely, damage sites appearing on alternating optics in periodic trains. Further analysis demonstrates that the distribution and intensity of hot images depend closely on the number of Kerr medium disks, the distance from the obscuration to the front of the first disk downstream, the space between two neighboring disks, and the thickness and B integral of each disk. Moreover, we take two cascaded Kerr medium disks for example to detail multiple hot images from an obscuration and confirm the theoretical results by numerical simulations.

  19. Merger Histories of Galaxy Halos and Implications for Disk Survival

    SciTech Connect (OSTI)

    Stewart, Kyle R.; Bullock, James S.; Wechsler, Risa H.; Maller, Ariyeh H.; Zentner, Andrew R.

    2008-05-16T23:59:59.000Z

    The authors study the merger histories of galaxy dark matter halos using a high resolution {Lambda}CDM N-body simulation. The merger trees follow {approx} 17,000 halos with masses M{sub 0} = (10{sup 11} - 10{sup 13})h{sup -1}M{sub {circle_dot}} at z = 0 and track accretion events involving objects as small as m {approx_equal} 10{sup 10} h{sup -1}M{sub {circle_dot}}. They find that mass assembly is remarkably self-similar in m/M{sub 0}, and dominated by mergers that are {approx}10% of the final halo mass. While very large mergers, m {approx}> 0.4 M{sub 0}, are quite rare, sizeable accretion events, m {approx} 0.1 M{sub 0}, are common. Over the last {approx} 10 Gyr, an overwhelming majority ({approx} 95%) of Milky Way-sized halos with M{sub 0} = 10{sup 12} h{sup -1}M{sub {circle_dot}} have accreted at least one object with greater total mass than the Milky Way disk (m > 5 x 10{sup 10} h{sup -1}M{sub {circle_dot}}), and approximately 70% have accreted an object with more than twice that mass (m > 10{sup 11} h{sup -1}M{sub {circle_dot}}). The results raise serious concerns about the survival of thin-disk dominated galaxies within the current paradigm for galaxy formation in a {Lambda}CDM universe. in order to achieve a {approx} 70% disk-dominated fraction in Milky Way-sized {Lambda}CDM halos, mergers involving m {approx_equal} 2 x 10{sup 11} h{sup -1}M{sub {circle_dot}} objects must not destroy disks. Considering that most thick disks and bulges contain old stellar populations, the situation is even more restrictive: these mergers must not heat disks or drive gas into their centers to create young bulges.

  20. ORIGIN OF CHEMICAL AND DYNAMICAL PROPERTIES OF THE GALACTIC THICK DISK

    SciTech Connect (OSTI)

    Bekki, Kenji [ICRAR, M468, University of Western Australia, Crawley, Western Australia, 6009 (Australia); Tsujimoto, Takuji [National Astronomical Observatory, Mitaka-shi, Tokyo 181-8588 (Japan)

    2011-09-01T23:59:59.000Z

    We adopt a scenario in which the Galactic thick disk was formed by minor merging between the first generation of the Galactic thin disk (FGTD) and a dwarf galaxy about {approx}9 Gyr ago and thereby investigate chemical and dynamical properties of the Galactic thick disk. In this scenario, the dynamical properties of the thick disk have long been influenced both by the mass growth of the second generation of the Galactic thin disk (i.e., the present thin disk) and by its non-axisymmetric structures. On the other hand, the early star formation history and chemical evolution of the thin disk was influenced by the remaining gas of the thick disk. Based on N-body simulations and chemical evolution models, we investigate the radial metallicity gradient, structural and kinematical properties, and detailed chemical abundance patterns of the thick disk. Our numerical simulations show that the ancient minor merger event can significantly flatten the original radial metallicity gradient of the FGTD, in particular, in the outer part, and also can be responsible for migration of inner metal-rich stars into the outer part (R > 10 kpc). The simulations show that the central region of the thick disk can develop a bar due to dynamical effects of a separate bar in the thin disk. Whether or not rotational velocities (V{sub {phi}}) can correlate with metallicities ([Fe/H]) for the simulated thick disks depends on the initial metallicity gradients of the FGTDs. The simulated orbital eccentricity distributions in the thick disk for models with higher mass ratios ({approx}0.2) and lower orbital eccentricities ({approx}0.5) of minor mergers are in good agreement with the corresponding observations. The simulated V{sub {phi}}-|z| relation of the thick disk in models with low orbital inclination angles of mergers are also in good agreement with the latest observational results. The vertical metallicity gradient of the simulated thick disk is rather flat or very weakly negative in the solar neighborhood. Our Galactic chemical evolution models show that if we choose two distinctive timescales for star formation in the thin and thick disks, then the models can explain both the observed metallicity distribution functions and correlations between [Mg/Fe] and [Fe/H] for the two disks in a self-consistent manner. We discuss how the early star formation history and chemical evolution of the Galactic thin disk can be influenced by the pre-existing thick disk.

  1. RAID0.5: Active Data Replication for Low Cost Disk Array Data Protection John A. Chandy

    E-Print Network [OSTI]

    Chandy, John A.

    RAID0.5: Active Data Replication for Low Cost Disk Array Data Protection John A. Chandy Department-performance disk subsystems. However, reliability in RAID systems comes at the cost of extra disks. In this paper, we describe a mechanism that we have termed RAID0.5 that enables striped disks with very high data

  2. Proceedings of the ACM Sigmetrics Conference, May 1995. On-Line Extraction of SCSI Disk Drive Parameters

    E-Print Network [OSTI]

    Ganger, Greg

    Proceedings of the ACM Sigmetrics Conference, May 1995. On-Line Extraction of SCSI Disk Drive@hpl.hp.com Abstract Sophisticated disk scheduling algorithms require accu- rate, detailed disk drive speci cations for acquiring the necessary information from a SCSI disk drive. Using only the ANSI-standard interface, we

  3. DEVELOPMENT OF A LAMINATED DISK FOR THE SPIN TEK ROTARY MICROFILTER

    SciTech Connect (OSTI)

    Herman, D.

    2011-06-03T23:59:59.000Z

    Funded by the Department of Energy Office of Environmental Management, EM-31, the Savannah River National Laboratory (SRNL) partnered with SpinTek Filtration{trademark} to develop a filter disk that would withstand a reverse pressure or flow during operation of the rotary microfilter. The ability to withstand a reverse pressure and flow eliminates a potential accident scenario that could have resulted in damage to the filter membranes. While the original welded filter disks have been shown to withstand and reverse pressure/flow in the static condition, the filter disk design discussed in this report will allow a reverse pressure/flow while the disks are rotating. In addition, the laminated disk increases the flexibility during filter startup and cleaning operations. The new filter disk developed by SRNL and SpinTek is manufactured with a more open structure significantly reducing internal flow restrictions in the disk. The prototype was tested at the University of Maryland and demonstrated to withstand the reverse pressure due to the centrifugal action of the rotary filter. The tested water flux of the disk was demonstrated to be 1.34 gpm in a single disk test. By comparison, the water flux of the current disk was 0.49 gpm per disk during a 25 disk test. The disk also demonstrated rejection of solids by filtering a 5 wt % Strontium Carbonate slurry with a filtrate clarity of less the 1.4 Nephelometric Turbidity Units (NTU) throughout the two hour test. The Savannah River National Laboratory (SRNL) has been working with SpinTek Filtration{trademark} to adapt the rotary microfilter for radioactive service in the Department of Energy (DOE) Complex. One potential weakness is the loose nature of the membrane on the filter disks. The current disk is constructed by welding the membrane at the outer edge of the disk. The seal for the center of the membrane is accomplished by an o-ring in compression for the assembled stack. The remainder of the membrane is free floating on the disk. This construction requires that a positive pressure be applied to the rotary filter tank to prevent the membrane from rising from the disk structure and potentially contacting the filter turbulence promoter. In addition, one accident scenario is a reverse flow through the filtrate line due to mis-alignment of valves resulting in the membrane rising from the disk structure. The structural integrity of the current disk has been investigated, and shown that the disk can withstand a significant reverse pressure in a static condition. However, the disk will likely incur damage if the filter stack is rotated during a reverse pressure. The development of a laminated disk would have several significant benefits for the operation of the rotary filter including the prevention of a compromise in filter disk integrity during a reverse flow accident, increasing operational flexibility, and increasing the self cleaning ability of the filter. A laminated disk would allow the filter rotor operation prior to a positive pressure in the filter tank. This would prevent the initial dead-head of the filter and prevent the resulting initial filter cake buildup. The laminated disk would allow rotor operation with cleaning fluid, eliminating the need for a recirculation pump. Additionally, a laminated disk would allow a reverse flow of fluid through the membrane pores removing trapped particles.

  4. Galaxies that Shine: radiation-hydrodynamical simulations of disk galaxies

    E-Print Network [OSTI]

    Rosdahl, Joakim; Teyssier, Romain; Agertz, Oscar

    2015-01-01T23:59:59.000Z

    Radiation feedback is typically implemented using subgrid recipes in hydrodynamical simulations of galaxies. Very little work has so far been performed using radiation-hydrodynamics (RHD), and there is no consensus on the importance of radiation feedback in galaxy evolution. We present RHD simulations of isolated galaxy disks of different masses with a resolution of 18 pc. Besides accounting for supernova feedback, our simulations are the first galaxy-scale simulations to include RHD treatments of photo-ionisation heating and radiation pressure, from both direct optical/UV radiation and multi-scattered, re-processed infrared (IR) radiation. Photo-heating smooths and thickens the disks and suppresses star formation about as much as the inclusion of ("thermal dump") supernova feedback does. These effects decrease with galaxy mass and are mainly due to the prevention of the formation of dense clouds, as opposed to their destruction. Radiation pressure, whether from direct or IR radiation, has little effect, but ...

  5. SUBSTRUCTURE IN BULK VELOCITIES OF MILKY WAY DISK STARS

    SciTech Connect (OSTI)

    Carlin, Jeffrey L.; DeLaunay, James; Newberg, Heidi Jo; Gole, Daniel; Grabowski, Kathleen [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)] [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Deng, Licai; Liu, Chao; Luo, A-Li; Zhang, Haotong; Zhao, Gang; Zhao, Yongheng [Key Lab for Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)] [Key Lab for Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Jin, Ge [University of Science and Technology of China, Hefei 230026 (China)] [University of Science and Technology of China, Hefei 230026 (China); Liu, Xiaowei; Yuan, Haibo, E-mail: carlij@rpi.edu [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China)] [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China)

    2013-11-01T23:59:59.000Z

    We find that Galactic disk stars near the anticenter exhibit velocity asymmetries in both the Galactocentric radial and vertical components across the midplane as well as azimuthally. These findings are based on Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) spectroscopic velocities for a sample of ?400, 000 F-type stars, combined with proper motions from the PPMXL catalog for which we have derived corrections to the zero points based in part on spectroscopically discovered galaxies and QSOs from LAMOST. In the region within 2 kpc outside the Sun's radius and ±2 kpc from the Galactic midplane, we show that stars above the plane exhibit net outward radial motions with downward vertical velocities, while stars below the plane have roughly the opposite behavior. We discuss this in the context of other recent findings, and conclude that we are likely seeing the signature of vertical disturbances to the disk due to an external perturbation.

  6. 3-D Simulations of Ergospheric Disk Driven Poynting Jets

    E-Print Network [OSTI]

    Brian Punsly

    2007-04-05T23:59:59.000Z

    This Letter reports on 3-dimensional simulations of Kerr black hole magnetospheres that obey the general relativistic equations of perfect magnetohydrodynamics (MHD). In particular, we study powerful Poynting flux dominated jets that are driven from dense gas in the equatorial plane in the ergosphere. The physics of which has been previously studied in the simplified limit of an ergopsheric disk. For high spin black holes, $a/M > 0.95$, the ergospheric disk is prominent in the 3-D simulations and is responsible for greatly enhanced Poynting flux emission. Any large scale poloidal magnetic flux that is trapped in the equatorial region leads to an enormous release of electromagnetic energy that dwarfs the jet energy produced by magnetic flux threading the event horizon. The implication is that magnetic flux threading the equatorial plane of the ergosphere is a likely prerequisite for the central engine of powerful FRII quasars.

  7. THE MASS DEPENDENCE BETWEEN PROTOPLANETARY DISKS AND THEIR STELLAR HOSTS

    SciTech Connect (OSTI)

    Andrews, Sean M.; Rosenfeld, Katherine A.; Kraus, Adam L.; Wilner, David J., E-mail: sandrews@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-07-10T23:59:59.000Z

    We present a substantial extension of the millimeter (mm) wave continuum photometry catalog for circumstellar dust disks in the Taurus star-forming region, based on a new ''snapshot'' {lambda} = 1.3 mm survey with the Submillimeter Array. Combining these new data with measurements in the literature, we construct a mm-wave luminosity distribution, f(L{sub mm}), for Class II disks that is statistically complete for stellar hosts with spectral types earlier than M8.5 and has a 3{sigma} depth of roughly 3 mJy. The resulting census eliminates a longstanding selection bias against disks with late-type hosts, and thereby demonstrates that there is a strong correlation between L{sub mm} and the host spectral type. By translating the locations of individual stars in the Hertzsprung-Russell diagram into masses and ages, and adopting a simple conversion between L{sub mm} and the disk mass, M{sub d} , we confirm that this correlation corresponds to a statistically robust relationship between the masses of dust disks and the stars that host them. A Bayesian regression technique is used to characterize these relationships in the presence of measurement errors, data censoring, and significant intrinsic scatter: the best-fit results indicate a typical 1.3 mm flux density of {approx}25 mJy for 1 M{sub Sun} hosts and a power-law scaling L{sub mm}{proportional_to}M{sub *}{sup 1.5-2.0}. We suggest that a reasonable treatment of dust temperature in the conversion from L{sub mm} to M{sub d} favors an inherently linear M{sub d} {proportional_to}M{sub *} scaling, with a typical disk-to-star mass ratio of {approx}0.2%-0.6%. The measured rms dispersion around this regression curve is {+-}0.7 dex, suggesting that the combined effects of diverse evolutionary states, dust opacities, and temperatures in these disks imprint a full width at half-maximum range of a factor of {approx}40 on the inferred M{sub d} (or L{sub mm}) at any given host mass. We argue that this relationship between M{sub d} and M{sub *} likely represents the origin of the inferred correlation between giant planet frequency and host star mass in the exoplanet population, and provides some basic support for the core accretion model for planet formation. Moreover, we caution that the effects of incompleteness and selection bias must be considered in comparative studies of disk evolution, and illustrate that fact with statistical comparisons of f(L{sub mm}) between the Taurus catalog presented here and incomplete subsamples in the Ophiuchus, IC 348, and Upper Sco young clusters.

  8. Relativistic Radiative Flow in a Luminous Disk II

    E-Print Network [OSTI]

    Jun Fukue; Chizuru Akizuki

    2007-11-03T23:59:59.000Z

    Radiatively-driven transfer flow perpendicular to a luminous disk is examined in the relativistic regime of $(v/c)^2$, taking into account the gravity of the central object. The flow is assumed to be vertical, and the gas pressure as well as the magnetic field are ignored. Using a velocity-dependent variable Eddington factor, we can solve the rigorous equations of the relativistic radiative flow accelerated up to the {\\it relativistic} speed. For sufficiently luminous cases, the flow resembles the case without gravity. For less-luminous or small initial radius cases, however, the flow velocity decreases due to gravity. Application to a supercritical accretion disk with mass loss is briefly discussed.

  9. Adaptor assembly for coupling turbine blades to rotor disks

    DOE Patents [OSTI]

    Garcia-Crespo, Andres Jose; Delvaux, John McConnell

    2014-09-23T23:59:59.000Z

    An adaptor assembly for coupling a blade root of a turbine blade to a root slot of a rotor disk is described. The adaptor assembly includes a turbine blade having a blade root and an adaptor body having an adaptor root. The adaptor body defines a slot having an open end configured to receive the blade root of the turbine blade such that the adaptor root of the adaptor body and the blade root of the turbine blade are adjacent to one another when the blade root of the turbine blade is positioned within the slot. Both the adaptor root of the adaptor body and the blade root of the turbine blade are configured to be received within the root slot of the rotor disk.

  10. Controllable stacked disk morphologies of charged diblock copolymers

    SciTech Connect (OSTI)

    Goswami, Monojoy [ORNL; Sumpter, Bobby G [ORNL; Mays, Jimmy [ORNL

    2010-01-01T23:59:59.000Z

    Monte Carlo simulations are used to demonstrate the controlled stacking of charged block copolymer disk morphologies that can be obtained under certain thermodynamic conditions. We examine a partially charged block copolymer where 75% of the blocks are neutral and 25% of the blocks are charged. The presence of strong electrostatic interactions promotes charge agglomeration thereby changing morphologies in these systems. This study relates different thermodynamic quantities for which disk-like stackings can be obtained. The long-range order can be sustained even if hydrophobicity is increased albeit with lower dimensional structures. Our simulation results agree very well with recent experiments and are consistent with theoretical observations of counterion adsorption on flexible polyelectrolytes.

  11. Maximally Helicity Violating Disk Amplitudes, Twistors and Transcendental Integrals

    E-Print Network [OSTI]

    Stephan Stieberger; Tomasz R. Taylor

    2012-04-17T23:59:59.000Z

    We obtain simple expressions for tree-level maximally helicity violating amplitudes of N gauge bosons from disk world-sheets of open superstrings. The amplitudes are written in terms of (N-3)! hypergeometric integrals depending on kinematic parameters, weighted by certain kinematic factors. The integrals are transcendental in a strict sense defined in this work. The respective kinematic factors can be succinctly written in terms of "dual" momentum twistors. The amplitudes are computed by using the prescription proposed by Berkovits and Maldacena.

  12. Theory of bending waves with applications to disk galaxies

    SciTech Connect (OSTI)

    Mark, J.W.K.

    1982-01-01T23:59:59.000Z

    A theory of bending waves is surveyed which provides an explanation for the required amplification of the warp in the Milky Way. It also provides for self-generated warps in isolated external galaxies. The shape of observed warps and partly their existence in isolated galaxies are indicative of substantial spheroidal components. The theory also provides a plausible explanation for the bending of the inner disk (<2 kpc) of the Milky Way.

  13. DYNAMICS OF NON-STEADY SPIRAL ARMS IN DISK GALAXIES

    SciTech Connect (OSTI)

    Baba, Junichi; Saitoh, Takayuki R. [Interactive Research Center of Science, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8551 (Japan)] [Interactive Research Center of Science, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8551 (Japan); Wada, Keiichi, E-mail: babajn@geo.titech.ac.jp [Graduate School of Science and Engineering, Kagoshima University, 1-21-30 Korimoto, Kagoshima, Kagoshima 890-8580 (Japan)] [Graduate School of Science and Engineering, Kagoshima University, 1-21-30 Korimoto, Kagoshima, Kagoshima 890-8580 (Japan)

    2013-01-20T23:59:59.000Z

    In order to understand the physical mechanisms underlying non-steady stellar spiral arms in disk galaxies, we analyzed the growing and damping phases of their spiral arms using three-dimensional N-body simulations. We confirmed that the spiral arms are formed due to a swing amplification mechanism that reinforces density enhancement as a seeded wake. In the damping phase, the Coriolis force exerted on a portion of the arm surpasses the gravitational force that acts to shrink the portion. Consequently, the stars in the portion escape from the arm, and subsequently they form a new arm at a different location. The time-dependent nature of the spiral arms originates in the continual repetition of this nonlinear phenomenon. Since a spiral arm does not rigidly rotate, but follows the galactic differential rotation, the stars in the arm rotate at almost the same rate as the arm. In other words, every single position in the arm can be regarded as the corotation point. Due to interaction with their host arms, the energy and angular momentum of the stars change, thereby causing radial migration of the stars. During this process, the kinetic energy of random motion (random energy) of the stars does not significantly increase, and the disk remains dynamically cold. Owing to this low degree of disk heating, short-lived spiral arms can recurrently develop over many rotational periods. The resultant structure of the spiral arms in the N-body simulations is consistent with the observational nature of spiral galaxies. We conclude that the formation and structure of spiral arms in isolated disk galaxies can be reasonably understood by nonlinear interactions between a spiral arm and its constituent stars.

  14. On the generation of asymmetric warps in disk galaxies

    E-Print Network [OSTI]

    Kanak Saha; Chanda J. Jog

    2005-10-28T23:59:59.000Z

    The warps in many spiral galaxies are now known to asymmetric. Recent sensitive observations have revealed that asymmetry of warps may be the norm rather than exception. However there exists no generic mechanism to generate these asymmetries in warps. We have derived the dispersion relation in a compact form for the S-shaped warps(described by the m=1 mode) and the bowl-shaped distribution(described by the m=0 mode) in galactic disk embedded in a dark matter halo. We then performed the numerical modal analysis and used the linear and time-dependent superposition principle to generate asymmetric warps in the disk. On doing the modal analysis we find the frequency of the $m=0$ mode is much larger than that of the $m=1$ mode. The linear and time-dependent superposition of these modes with their unmodulated amplitudes(that is, the coefficients of superposition being unity) results in an asymmetry in warps of ~ 20 - 40 %, whereas a smaller coefficient for the m=0 mode results in a smaller asymmetry. The resulting values agree well with the recent observations. We study the dependence of the asymmetry index on the dark matter halo parameters. This approach can also naturally produce U-shaped warps and L-shaped warps. We show that a rich variety of possible asymmetries in the z-distribution of the spiral galaxies can naturally arise due to a dynamical wave interference between the first two bending modes(i.e. m=0 and m=1) in the disk. This is a simple but general method for generating asymmetric warps that is independent of how the individual modes arise in the disk.

  15. Biochemical and photochemical control of leaf disk expansion

    E-Print Network [OSTI]

    Scott, Ralph A.

    1957-01-01T23:59:59.000Z

    promotive effect with kin ins .............. ................ k9 f. Relation of kinetin added to its analogs... .. 51 (1) Effect of kinin-KEN combinations on the relative amount of leaf expansion with red light versus darkness....... .. 53 (2) Effect...-naphthalene acetic acid,..... ,,??? 87 (4) Effect of X-irradiation on leaf disk expansion with kin ins, IAA, and low intensity light.................... 9^ b. Response of X-irradiated intact plants to kinins, IAA, and low intensity light... ?????? 101 LIST...

  16. Ultrasonic detection of residual stress in a turbine disk 

    E-Print Network [OSTI]

    Pathak, Nitin

    1992-01-01T23:59:59.000Z

    in temperature and stresses during welding. Adapted from [4] . . Cracked steam turbine rotor disk segments. Adapted from [6] . . . . 5 Electrical block diagram of Barkhausen apparatus. Adapted from [11] 10 Snell's Law. 15 Stress field and speeds of plane... International B. Effects in Engineering Design Residual stresses may be introduced into materials in a variety of ways, e. g. , in manu- facturing and repairing processes such as casting, machining, or welding. The casting process has a high probability...

  17. Controlling the collimation and rotation of hydromagnetic disk winds

    E-Print Network [OSTI]

    Ralph E. Pudritz; Conrad Rogers; Rachid Ouyed

    2005-08-12T23:59:59.000Z

    (Abriged) We present a comprehensive set of axisymmetric, time-dependent simulations of jets from Keplerian disks whose mass loading as a function of disk radius is systematically changed. For a reasonable model for the density structure and injection speed of the underlying accretion disk, mass loading is determined by the radial structure of the disk's magnetic field structure. We vary this structure by using four different magnetic field configurations, ranging from the "potential" configuration (Ouyed&Pudritz 1997), to the increasingly more steeply falling Blandford&Payne (1982) and Pelletier&Pudritz (1992) models, and ending with a quite steeply raked configuration that bears similarities to the Shu X-wind model. We find that the radial distribution of the mass load has a profound effect on both the rotational profile of the underlying jet as well as the degree of collimation of its outflow velocity and magnetic field lines. We show analytically, and confirm by our simulations, that the collimation of a jet depends on its radial current distribution, which in turn is prescribed by the mass load. Models with steeply descending mass loads have strong toroidal fields, and these collimate to cylinders (this includes the Ouyed-Pudritz and Blandford-Payne outflows). On the other hand, the more gradually descending mass load profiles (the PP92 and monopolar distributions) have weaker toroidal fields, and these result in wide-angle outflows with parabolic collimation. We also present detailed structural information about jets such as their radial profiles of jet density, toroidal magnetic field, and poloidal jet speed, as well as an analysis of the bulk energetics of our different simulations.

  18. Wet-steam erosion of steam turbine disks and shafts

    SciTech Connect (OSTI)

    Averkina, N. V. [JSC 'NPO TsKTI' (Russian Federation); Zheleznyak, I. V. [Leningradskaya AES branch of JSC 'Kontsern Rosenergoatom' (Russian Federation); Kachuriner, Yu. Ya.; Nosovitskii, I. A.; Orlik, V. G., E-mail: orlikvg@mail.ru [JSC 'NPO TsKTI' (Russian Federation); Shishkin, V. I. [Leningradskaya AES branch of JSC 'Kontsern Rosenergoatom' (Russian Federation)

    2011-01-15T23:59:59.000Z

    A study of wet-steam erosion of the disks and the rotor bosses or housings of turbines in thermal and nuclear power plants shows that the rate of wear does not depend on the diagrammed degree of moisture, but is determined by moisture condensing on the surfaces of the diaphragms and steam inlet components. Renovating the diaphragm seals as an assembly with condensate removal provides a manifold reduction in the erosion.

  19. Europium abundances in F and G disk dwarfs

    E-Print Network [OSTI]

    A. Koch; B. Edvardsson

    2001-11-06T23:59:59.000Z

    Europium abundances for 74 F and G dwarf stars of the galactic disk have been determined from the 4129.7 A Eu II line. The stars were selected from the sample of Edvardsson et al. (1993) and [Eu/Fe] shows a smaller scatter and a slightly weaker trend with [Fe/H] than found by Woolf et al. (1995). The data of the two analyses are homogenized and merged. We also discuss the adopted effective temperature scale.

  20. Interplay between Stellar Spirals and the ISM in Galactic Disks

    E-Print Network [OSTI]

    Wada, Keiichi; Saitoh, Takayuki R

    2011-01-01T23:59:59.000Z

    We propose a new dynamical picture of galactic stellar and gas spirals, based on hydrodynamic simulations in a `live' stellar disk. We focus especially on spiral structures excited in a isolated galactic disk without a stellar bar. Using high-resolution, 3-dimensional N-body/SPH simulations, we found that the spiral features of the gas in galactic disks are formed by essentially different mechanisms from the galactic shock in stellar density waves. The stellar spiral arms and the interstellar matter on average corotate in a galactic potential at any radii. Unlike the stream motions in the galactic shock, the interstellar matter flows into the local potential minima with irregular motions. The flows converge to form dense gas clouds/filaments near the bottom of the stellar spirals, whose global structures resemble dust-lanes seen in late-type spiral galaxies. The stellar arms are non-steady; they are wound and stretched by the galactic shear, and thus local densities of the arm change on a time scale of ~ 100 ...

  1. Molecules in the Circumstellar Disk Orbiting BP Piscium

    E-Print Network [OSTI]

    Kastner, Joel H; Forveille, Thierry

    2008-01-01T23:59:59.000Z

    BP Psc is a puzzling late-type, emission-line field star with large infrared excess. The star is encircled and enshrouded by a nearly edge-on, dust circumstellar disk, and displays an extensive jet system similar to those associated with pre-main sequence (pre-MS) stars. We conducted a mm-wave molecular line survey of BP Psc with the 30 m telescope of the Institut de Radio Astronomie Millimetrique (IRAM). We detected lines of 12CO and 13CO and, possibly, very weak emission from HCO+ and CN; HCN, H2CO, and SiO are not detected. The CO line profiles of BP Psc are well fit by a model invoking a disk in Keplerian rotation. The mimumum disk gas mass, inferred from the 12CO line intensity and 13CO/12CO line ratio, is ~0.1 Jupiter masses. The weakness of HCO+ and CN (relative to 13CO) stands in sharp contrast to the strong HCO+ and CN emission that characterizes most low-mass, pre-main sequence stars that have been the subjects of molecular emission-line surveys, and is suggestive of a very low level of X-ray-induce...

  2. The formation of planetary disks and winds: an ultraviolet view

    E-Print Network [OSTI]

    Ana I. Gomez de Castro

    2008-09-02T23:59:59.000Z

    Planetary systems are angular momentum reservoirs generated during star formation. This accretion process produces very powerful engines able to drive the optical jets and the molecular outflows. A fraction of the engine energy is released into heating thus the temperature of the engine ranges from the 3000K of the inner disk material to the 10MK in the areas where magnetic reconnection occurs. There are important unsolved problems concerning the nature of the engine, its evolution and the impact of the engine in the chemical evolution of the inner disk. Of special relevance is the understanding of the shear layer between the stellar photosphere and the disk; this layer controls a significant fraction of the magnetic field building up and the subsequent dissipative processes ougth to be studied in the UV. This contribution focus on describing the connections between 1 Myr old suns and the Sun and the requirements for new UV instrumentation to address their evolution during this period. Two types of observations are shown to be needed: monitoring programmes and high resolution imaging down to, at least, milliarsecond scales.

  3. Laser illuminator and optical system for disk patterning

    DOE Patents [OSTI]

    Hackel, Lloyd A. (Livermore, CA); Dane, C. Brent (Livermore, CA); Dixit, Shamasundar N. (Livermore, CA); Everett, Mathew (Pleasanton, CA); Honig, John (Livermore, CA)

    2000-01-01T23:59:59.000Z

    Magnetic recording media are textured over areas designated for contact in order to minimize friction with data transducing heads. In fabricating a hard disk, an aluminum nickel-phosphorous substrate is polished to a specular finish. A mechanical means is then used to roughen an annular area intended to be the head contact band. An optical and mechanical system allows thousands of spots to be generated with each laser pulse, allowing the textured pattern to be rapidly generated with a low repetition rate laser and an uncomplicated mechanical system. The system uses a low power laser, a beam expander, a specially designed phase plate, a prism to deflect the beam, a lens to transmit the diffraction pattern to the far field, a mechanical means to rotate the pattern and a trigger system to fire the laser when sections of the pattern are precisely aligned. The system generates an annular segment of the desired pattern with which the total pattern is generated by rotating the optical system about its optic axis, sensing the rotational position and firing the laser as the annular segment rotates into the next appropriate position. This marking system can be integrated into a disk sputtering system for manufacturing magnetic disks, allowing for a very streamlined manufacturing process.

  4. Terrestrial Planet Formation in Disks with Varying Surface Density Profiles

    E-Print Network [OSTI]

    Sean N. Raymond; Thomas Quinn; Jonathan I. Lunine

    2005-06-30T23:59:59.000Z

    The ``minimum-mass solar nebula'' (MMSN) model estimates the surface density distribution of the protoplanetary disk by assuming the planets to have formed in situ. However, significant radial migration of the giant planets likely occurred in the Solar system, implying a distortion in the values derived by the MMSN method. The true density profiles of protoplanetary disks is therefore uncertain. Here we present results of simulations of late-stage terrestrial accretion, each starting from a disk of planetary embryos. We assume a power-law surface density profile that varies with heliocentric distance r as r^-alpha, and vary alpha between 1/2 and 5/2 (alpha = 3/2 for the MMSN model). We find that for steeper profiles (higher values of alpha), the terrestrial planets (i) are more numerous, (ii) form more quickly, (iii) form closer to the star, (iv) are more massive, (v) have higher iron contents, and (vi) have lower water contents. However, the possibility of forming potentially habitable planets does not appear to vary strongly with alpha.

  5. Thermo-Rotational Instability in Plasma Disks Around Compact Objects

    E-Print Network [OSTI]

    Bruno Coppi

    2008-02-12T23:59:59.000Z

    Differentially rotating plasma disks, around compact objects, that are imbedded in a ``seed'' magnetic field are shown to develop vertically localized ballooning modes that are driven by the combined radial gradient of the rotation frequency and vertical gradients of the plasma density and temperature. When the electron mean free path is shorter than the disk height and the relevant thermal conductivity can be neglected, the vertical particle flows produced by of these modes have the effect to drive the density and temperature profiles toward the ``adiabatic condition'' where $\\eta_{T}\\equiv(dlnT/dz)/(dlnn/dz)=2/3$. Here $T$ is the plasma temperature and $n$ the particle density. The faster growth rates correspond to steeper temperature profiles $(\\eta_{T}>2/3)$ such as those produced by an internal (e.g., viscous) heating process. In the end, ballooning modes excited for various values of $\\eta_{T}$ can lead to the evolution of the disk into a different current carrying configuration such as a sequence of plasma rings.

  6. Lithium in very metal poor thick disk stars

    E-Print Network [OSTI]

    P. Molaro; P. Bonifacio; L. Pasquini

    1997-09-25T23:59:59.000Z

    A search for lithium is performed on seven metal poor dwarfs with metallicities ranging from [Fe/H]=-1.5 down to [Fe/H]=-3.0 but showing disk-like kinematics. These stars belong to the metal poor tail of the Galactic thick disk and they may be also the result of an accretion event (Beers and Sommer-Larsen 1995). The Li 6707.8 A line is present in all the seven dwarfs. The weighted average of the Li abundance for the stars is A(Li)=2.20 (+/-0.06) and is consistent within the errors with the plateau Li abundance of A(Li)=2.24(+/- 0.012) found in genuine halo stars in the same range of metallicities (Bonifacio and Molaro 1997). One of the stars, CS 22182-24, shows somewhat lower Li abundance (A(Li)=1.6(+/-0.40)) and is a candidate to being a Li-poor star. Whether this group of stars belongs to the oldest stars in the disk or to the old population of an external galaxy accreted by the Milky Way, the present observations provide support to the universality of a pre-Galactic Li abundance as is observed in the Galactic halo stars.

  7. Neutrino and anti-neutrino transport in accretion disks

    E-Print Network [OSTI]

    Zhen Pan; Ye-Fei Yuan

    2012-02-09T23:59:59.000Z

    We numerically solve the one dimensional Boltzmann equation of the neutrino and anti-neutrino transport in accretion disks and obtain the fully energy dependent and direction dependent neutrino and anti-neutrino emitting spectra, under condition that the distribution of the mass density,temperature and chemical components are given. Then, we apply the resulting neutrino and anti-neutrino emitting spectra to calculate the corresponding annihilation rate of neutrino pairs above the neutrino dominated accretion disk and find that the released energy resulting from the annihilation of neutrino pairs can not provide sufficient energy for the most energetic short gamma ray bursts whose isotropic luminosity can be as high as $10^{52}$ ergs/s unless the high temperature zone where the temperature is beyond 10 MeV can stretch over 200 km in the disk. We also compare the resulting luminosity of neutrinos and anti-neutrinos with the results from the two commonly used approximate treatment of the neutrino and anti-neutrino luminosity: the Fermi-Dirac black body limit and a simplified model of neutrino transport, i.e., the gray body model, and find that both of them overestimate the neutrino/anti-neutrino luminosity and their annihilation rate greatly. Additionally, as did in Sawyer (2003), we also check the validity of the two stream approximation, and find that it is a good approximation to high accuracy.

  8. THE DEBRIS DISK AROUND {gamma} DORADUS RESOLVED WITH HERSCHEL

    SciTech Connect (OSTI)

    Broekhoven-Fiene, Hannah; Matthews, Brenda C.; Booth, Mark; Kavelaars, J. J.; Koning, Alice [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8W 3P6 (Canada)] [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8W 3P6 (Canada); Kennedy, Grant M.; Wyatt, Mark C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom)] [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Sibthorpe, Bruce [UK Astronomy Technology Center, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom)] [UK Astronomy Technology Center, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Lawler, Samantha M. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada)] [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Qi, Chenruo [Herzberg Institute of Astrophysics, National Research Council of Canada, Victoria, BC V9E 2E7 (Canada)] [Herzberg Institute of Astrophysics, National Research Council of Canada, Victoria, BC V9E 2E7 (Canada); Su, Kate Y. L.; Rieke, George H. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)] [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Wilner, David J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)] [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Greaves, Jane S. [School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS (United Kingdom)] [School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS (United Kingdom)

    2013-01-01T23:59:59.000Z

    We present observations of the debris disk around {gamma} Doradus, an F1V star, from the Herschel Key Programme DEBRIS (Disc Emission via Bias-free Reconnaissance in the Infrared/Submillimetre). The disk is well resolved at 70, 100, and 160 {mu}m, resolved along its major axis at 250 {mu}m, detected but not resolved at 350 {mu}m, and confused with a background source at 500 {mu}m. It is one of our best resolved targets and we find it to have a radially broad dust distribution. The modeling of the resolved images cannot distinguish between two configurations: an arrangement of a warm inner ring at several AU (best fit 4 AU) and a cool outer belt extending from {approx}55 to 400 AU or an arrangement of two cool, narrow rings at {approx}70 AU and {approx}190 AU. This suggests that any configuration between these two is also possible. Both models have a total fractional luminosity of {approx}10{sup -5} and are consistent with the disk being aligned with the stellar equator. The inner edge of either possible configuration suggests that the most likely region to find planets in this system would be within {approx}55 AU of the star. A transient event is not needed to explain the warm dust's fractional luminosity.

  9. Stationary Nonaxisymmetric Configurations of Magnetized Singular Isothermal Disks

    E-Print Network [OSTI]

    Yu-qing Lou

    2003-01-01T23:59:59.000Z

    Accepted.... Received...; in original form... We construct both aligned and unaligned (logarithmic spiral) stationary configurations of nonaxisymmetric magnetohydrodynamic (MHD) disks from either a full or a partial razor-thin power-law axisymmetric magnetized singular isothermal disk (MSID) that is embedded with a coplanar azimuthal magnetic field B? of a non-force-free radial scaling r?1/2 and that rotates differentially with a flat rotation curve of speed aD, where a is the isothermal sound speed and D is the dimensionless rotation parameter. Analytical solutions and stability criteria for determining D2 are derived. For aligned nonaxisymmetric MSIDs, eccentric m = 1 displacements may occur at arbitrary D2 in a full MSID but are allowed only with a2D2 = C2 A /2 in a partial MSID (CA is the Alfvén speed), while each case of |m | ? 1 gives two possible values of D2 for purely azimuthal propagations of fast and slow MHD density waves (FMDWs and SMDWs) that appear stationary in an inertial frame of reference. For disk galaxies modeled by a partial MSID resulting from a massive dark-matter halo with a flat rotation curve and a2D2 ? C2 A, stationary aligned perturbations of m = 1 are not allowed. For

  10. Massive Pellet and Rupture Disk Testing for Disruption Mitigation Applications

    SciTech Connect (OSTI)

    Combs, Stephen Kirk [ORNL] [ORNL; Meitner, Steven J [ORNL] [ORNL; Baylor, Larry R [ORNL] [ORNL; Caughman, John B [ORNL] [ORNL; Commaux, Nicolas JC [ORNL] [ORNL; Fehling, Dan T [ORNL] [ORNL; Foust, Charles R [ORNL] [ORNL; Jernigan, Thomas C [ORNL] [ORNL; McGill, James M [ORNL] [ORNL; Parks, P. B. [General Atomics] [General Atomics; Rasmussen, David A [ORNL] [ORNL

    2009-01-01T23:59:59.000Z

    Injection of massive quantities of noble gases or D2 has proven to be effective at mitigating some of the deleterious effects of disruptions in tokamaks. Two alternative methods that might offer some advantages over the present technique for massive gas injection are shattering massive pellets and employing close-coupled rupture disks. Laboratory testing has been carried out to evaluate their feasibility. For the study of massive pellets, a pipe gun pellet injector cooled with a cryogenic refrigerator was fitted with a relatively large barrel (16.5 mm bore), and D2 and Ne pellets were made and were accelerated to speeds of ~600 and 300 m/s, respectively. Based on the successful proof-of-principle testing with the injector and a special double-impact target to shatter pellets, a similar system has been prepared and installed on DIII-D and should be ready for experiments later this year. To study the applicability of rupture disks for disruption mitigation, a simple test apparatus was assembled in the lab. Commercially available rupture disks of 1 in. nominal diameter were tested at conditions relevant for the application on tokamaks, including tests with Ar and He gases and rupture pressures of ~54 bar. Some technical and practical issues of implementing this technique on a tokamak are discussed.

  11. The chemical evolution of self-gravitating primordial disks

    E-Print Network [OSTI]

    Schleicher, Dominik R G; Latif, Muhammad A; Ferrara, Andrea; Grassi, Tommaso

    2015-01-01T23:59:59.000Z

    Numerical simulations show the formation of self-gravitating primordial disks during the assembly of the first structures in the Universe, in particular during the formation of Pop. III and supermassive stars. Their subsequent evolution is expected to be crucial to determine the mass scale of the first cosmological objects, which depends on the temperature of the gas and the dominant cooling mechanism. Here, we derive a one-zone framework to explore the chemical evolution of such disks and show that viscous heating leads to the collisional dissociation of an initially molecular gas. The effect is relevant on scales of 10 AU (1000 AU) for a central mass of 10 M_solar (10^4 M_solar) at an accretion rate of 0.1 M_solar/yr, and provides a substantial heat input to stabilize the disk. If the gas is initially atomic, it remains atomic during the further evolution, and the effect of viscous heating is less significant. The additional thermal support is particularly relevant for the formation of very massive objects,...

  12. Testing the Disk Regulation Paradigm with Spitzer Observations. II. A Clear Signature of Star-Disk Interaction in NGC 2264 and the Orion Nebula Cluster

    E-Print Network [OSTI]

    L. Cieza; N. Baliber

    2007-07-31T23:59:59.000Z

    Observations of PMS star rotation periods reveal slow rotators in young clusters of various ages, indicating that angular momentum is somehow removed from these rotating masses. The mechanism by which spin-up is regulated as young stars contract has been one of the longest-standing problems in star formation. Attempts to observationally confirm the prevailing theory that magnetic interaction between the star and its circumstellar disk regulates these rotation periods have produced mixed results. In this paper, we use the unprecedented disk identification capability of the Spitzer Space Telescope to test the star-disk interaction paradigm in two young clusters, NGC 2264 and the Orion Nebula Cluster (ONC). We show that once mass effects and sensitivity biases are removed, a clear increase in the disk fraction with period can be observed in both clusters across the entire period range populated by cluster members. We also show that the long-period peak (P $\\sim$8 days) of the bimodal distribution observed for high-mass stars in the ONC is dominated by a population of stars possessing a disk, while the short-period peak (P $\\sim$2 days) is dominated by a population of stars without a disk. Our results represent the strongest evidence to date that star-disk interaction regulates the angular momentum of these young stars. This study will make possible quantitative comparisons between the observed period distributions of stars with and without a disk and numerical models of the angular momentum evolution of young stars.

  13. The Quiescent Accretion Disk in IP Peg at Near-Infrared Wavelengths

    E-Print Network [OSTI]

    C. S. Froning; E. L. Robinson; William F. Welsh; Janet H. Wood

    1999-07-07T23:59:59.000Z

    We present near-infrared, H-band (1.45-1.85 microns) observations of the eclipsing dwarf nova, IP Peg, in quiescence. The light curves are composed of ellipsoidal variations from the late-type secondary star and emission from the accretion disk and the bright spot. The light curves have two eclipses: a primary eclipse of the accretion disk and the bright spot by the companion star, and a secondary eclipse of the companion star by the disk. The ellipsoidal variations of the secondary star were modeled and subtracted from the data. The resulting light curve shows a pronounced double-hump variation. The double-hump profile resembles those seen in the light curves of WZ Sge and AL Com and likely originates in the accretion disk. The primary eclipse was modeled using maximum entropy disk mapping techniques. The accretion disk has a flat intensity distribution and a cool brightness temperature (Tbr=3000 K) in the near-infrared. Superimposed on the face of the disk is the bright spot (Tbr=10,000 K); the position of the bright spot is different from the observed range of visible bright spot positions. The near-infrared accretion disk flux is dominated by optically thin emission. The secondary eclipse indicates the presence of some occulting medium in the disk, but the eclipse depth is too shallow to be caused by a fully opaque accretion disk.

  14. Accretion disks around Black Holes with Advection and Optical Depth Transition

    E-Print Network [OSTI]

    Yu. V. Artemova; G. S. Bisnovatyi-Kogan; I. V. Igumenshchev; I. D. Novikov

    2004-10-10T23:59:59.000Z

    We consider the effects of advection and radial gradients of pressure and radial drift velocity on the structure of accretion disks around black holes with proper description of optically thick/thin transitions. We concentrated our efforts on the models with large accretion rate. Contrary to disk models neglecting advection, we find that continuous solutions extending from the outer disk regions to the inner edge exist for all accretion rates we have considered. We show that the sonic point moves outward with increasing accretion rate, and that in the innermost disk region advection acts as a heating process that may even dominate over dissipative heating. Despite the importance of advection on it's structure, the disk remains geometrically thin. Global solutions of advective accretion disks, which describe continuously the transition between optically thick outer region and optically thin inner region are constructed and analyzed.

  15. Searching for Planets in Holey Debris Disks with the Apodizing Phase Plate

    E-Print Network [OSTI]

    Meshkat, Tiffany; Su, Kate Y L; Kenworthy, Matthew A; Mamajek, Eric E; Hinz, Philip M; Smith, Paul S

    2014-01-01T23:59:59.000Z

    We present our first results from a high-contrast imaging search for planetary mass companions around stars with gapped debris disks, as inferred from the stars' bright infrared excesses. For the six considered stars, we model the disks' unresolved infrared spectral energy distributions (SEDs) in order to derive the temperature and location of the disk components. With VLT/NaCo Apodizing Phase Plate coronagraphic L'-band imaging, we search for planetary mass companions that may be sculpting the disks. We detect neither disks nor companions in this sample, confirmed by comparing plausible point sources with archival data. In order to calculate our mass sensitivity limit, we revisit the stellar age estimates. One target, HD 17848, at 540$\\pm$100 Myr old is significantly older than previously estimated. We then discuss our high-contrast imaging results with respect to the disk properties.

  16. OUTER-DISK POPULATIONS IN NGC 7793: EVIDENCE FOR STELLAR RADIAL MIGRATION

    SciTech Connect (OSTI)

    Radburn-Smith, David J.; Dalcanton, Julianne J. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Roskar, Rok [Institut fuer Theoretische Physik, Universitaet Zuerich (Switzerland); Debattista, Victor P. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Streich, David; De Jong, Roelof S.; Vlajic, Marija [Leibniz-Institut fuer Astrophysik Potsdam, D-14482 Potsdam (Germany); Holwerda, Benne W. [European Space Agency, ESTEC, 2200 AG Noordwijk (Netherlands); Purcell, Chris W. [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Dolphin, Andrew E. [Raytheon, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Zucker, Daniel B. [Department of Physics and Astronomy, Macquarie University, NSW 2109 (Australia)

    2012-07-10T23:59:59.000Z

    We analyzed the radial surface brightness profile of the spiral galaxy NGC 7793 using HST/ACS images from the GHOSTS survey and a new HST/WFC3 image across the disk break. We used the photometry of resolved stars to select distinct populations covering a wide range of stellar ages. We found breaks in the radial profiles of all stellar populations at 280'' ({approx}5.1 kpc). Beyond this disk break, the profiles become steeper for younger populations. This same trend is seen in numerical simulations where the outer disk is formed almost entirely by radial migration. We also found that the older stars of NGC 7793 extend significantly farther than the underlying H I disk. They are thus unlikely to have formed entirely at their current radii, unless the gas disk was substantially larger in the past. These observations thus provide evidence for substantial stellar radial migration in late-type disks.

  17. Winds from accretion disks driven by the radiation and magnetocentrifugal force

    E-Print Network [OSTI]

    D. Proga

    2000-02-23T23:59:59.000Z

    We study the 2-D, time-dependent hydrodynamics of radiation-driven winds from luminous accretion disks threaded by a strong, large-scale, ordered magnetic field. The radiation force is due to spectral lines and is calculated using a generalized multidimensional formulation of the Sobolev approximation. The effects of the magnetic field are approximated by adding a force that emulates a magnetocentrifugal force. Our approach allows us to calculate disk winds when the magnetic field controls the flow geometry, forces the flow to corotate with the disk, or both. In particular, we calculate models where the lines of the poloidal component of the field are straight and inclined to the disk at a fixed angle. Our numerical calculations show that flows which corotate with the disk have a larger mass loss rate than their counterparts which conserve specific angular momentum. The difference in the mass loss rate between these two types of winds can be several orders of magnitude for low disk luminosities but vanishes for high disk luminosities. Winds which corotate with the disk have much higher velocities than angular momentum conserving winds. Fixing the wind geometry stabilizes winds which are unsteady when the geometry is derived self-consistently. The inclination angle between the poloidal velocity and the normal to the disk midplane is important. Non-zero inclination angles allow the magnetocentrifugal force to increase the mass loss rate for low luminosities, and increase the wind velocity for all luminosities. Our calculations also show that the radiation force can launch winds from magnetized disks. The line force can be essential in producing MHD winds from disks where the thermal energy is too low to launch winds or where the field lines make an angle of < 30^o with respect to the normal to the disk.

  18. Oxygen Abundances in Nearby Stars. Clues to the formation and evolution of the Galactic disk

    E-Print Network [OSTI]

    I. Ramirez; C. Allende Prieto; D. L. Lambert

    2007-01-12T23:59:59.000Z

    The abundances of iron and oxygen are homogeneously determined in a sample of 523 nearby (d-0.3, we find no obvious indication of a sudden decrease (i.e., a 'knee') in the [O/Fe] vs. [Fe/H] pattern of thick-disk stars that would connect the thick and thin disk trends at a high metallicity. We conclude that Type Ia supernovae (SN Ia) did not contribute significantly to the chemical enrichment of the thick disk. [Abridged

  19. Coding Techniques for Handling Failures in Large Disk Arrays 1 Lisa Hellerstein, 2 Garth A. Gibson, 3 Richard M. Karp, 4

    E-Print Network [OSTI]

    Coding Techniques for Handling Failures in Large Disk Arrays 1 Lisa Hellerstein, 2 Garth A. Gibson in the design of very large disk arrays is the protection of data against catastrophic disk failures. Although failures in large disk arrays. We describe how such codes can be used to encode data in disk arrays

  20. Radiation-induced solitary waves in hot plasmas of accretion disks

    E-Print Network [OSTI]

    Fedor V. Prigara

    2005-07-08T23:59:59.000Z

    It is shown that the existence of radiation-induced solitary waves in hot plasmas of accretion disks depends on the radial temperature profile.

  1. The Thermal Regulation of Gravitational Instabilities in Protoplanetary Disks. IV. Simulations with Envelope Irradiation

    E-Print Network [OSTI]

    Kai Cai; Richard H. Durisen; Aaron C. Boley; Megan K. Pickett; Annie C. Mejia

    2007-10-17T23:59:59.000Z

    It is generally thought that protoplanetary disks embedded in envelopes are more massive and thus more susceptible to gravitational instabilities (GIs) than exposed disks. We present three-dimensional radiative hydrodynamics simulations of protoplanetary disks with the presence of envelope irradiation. For a disk with a radius of 40 AU and a mass of 0.07 Msun around a young star of 0.5 Msun, envelope irradiation tends to weaken and even suppress GIs as the irradiating flux is increased. The global mass transport induced by GIs is dominated by lower-order modes, and irradiation preferentially suppresses higher-order modes. As a result, gravitational torques and mass inflow rates are actually increased by mild irradiation. None of the simulations produce dense clumps or rapid cooling by convection, arguing against direct formation of giant planets by disk instability, at least in irradiated disks. However, dense gas rings and radial mass concentrations are produced, and these might be conducive to accelerated planetary core formation. Preliminary results from a simulation of a massive embedded disk with physical characteristics similar to one of the disks in the embedded source L1551 IRS5 indicate a long radiative cooling time and no fragmentation. The GIs in this disk are dominated by global two and three-armed modes.

  2. Discovery of a large dust disk around the nearby star AU Microscopium

    E-Print Network [OSTI]

    Paul Kalas; Michael C. Liu; Brenda C. Matthews

    2004-03-05T23:59:59.000Z

    We present the discovery of a circumstellar dust disk surrounding AU Microscopium (AU Mic, GJ 803, HD 197481). This young M star at 10 parsec has the same age and origin as beta Pictoris, another nearby star surrounded by a dust disk. The AU Mic disk is detected between 50 AU and 210 AU radius, a region where dust lifetimes exceed the present stellar age. Thus, AU Mic is the nearest star where we directly observe the solid material required for planet formation. Since 85% of stars are M-type, the AU Mic disk provides new clues on how the majority of planetary systems might form and evolve.

  3. Correlations among Jet, Accretion Disk, and Broad Line Region of Flat Spectrum Radio Quasars

    E-Print Network [OSTI]

    Zhang, Jin; He, Jian-Jian; Liang, En-Wei; Zhang, Shuang-Nan

    2015-01-01T23:59:59.000Z

    The SEDs of 18 GeV FSRQs are collected and compiled from literature, in which both the jet emission and the accretion disk radiation can be observed, in order to investigate the correlations among their jet power (P_jet), accretion disk luminosity (L_disk), and luminosity of broad line region (BLR, L_BLR). On the basis of the SED fits with the jet radiation and accretion disk radiation models, we calculate P_jet and L_disk. No correlation between P_jet with either L_disk or L_BLR is found. With a sub-sample of L_BLR for 13 GeV FSRQs, it is observed that L_BLR is strongly correlated with their L_disk. We also study the BLR covering factors of the GeV FSRQs in our sample, averagely which are smaller than that of the large samples of radio-loud and radio-quiet quasars. P_jet of some GeV FSRQs is higher than L_disk, but P_jet of all the GeV FSRQs is lower than the accretion power of black hole (BH), which is estimated by \\dot{M}c^2=L_disk/0.1, indicating that the total accretion power of BH is sufficient to drive...

  4. The Inner Boundary Condition for a Thin Disk Accreting Into a Black Hole

    E-Print Network [OSTI]

    B. Paczy?ski

    2000-04-10T23:59:59.000Z

    Contrary to some recent claims the `no torque inner boundary condition' as applied at the marginally stable orbit is correct for geometrically thin disks accreting into black holes.

  5. Primary, secondary instabilities and control of the rotating-disk boundary layer

    E-Print Network [OSTI]

    ;Typical 3D boundary layers rotating disk swept wing Common features: · crossflow component near the wall · inflection point · strong inviscid instability · secondary instabilities ; growth and saturation of crossflow

  6. Stellar disk truncations at high-z: probing inside-out galaxy formation

    E-Print Network [OSTI]

    Ignacio Trujillo; Michael Pohlen

    2005-07-22T23:59:59.000Z

    We have conducted a systematic search for stellar disk truncations in disk-like galaxies at intermediate redshift (z<1.1) using the Hubble Ultra Deep Field (UDF) data. We use the position of the truncation as a direct estimator of the size of the stellar disk. After accounting for the surface brightness evolution of the galaxies, our results suggest that the radial position of the truncations has increased with cosmic time by ~1-3 kpc in the last ~8 Gyr. This result indicates a small to moderate (~25%) inside-out growth of the disk galaxies since z~1.

  7. Structure and Evolution of Circumstellar Disks Around Young Stars: New Views from ISO

    E-Print Network [OSTI]

    Michael R. Meyer; Steven V. W. Beckwith

    2000-01-31T23:59:59.000Z

    A question central to understanding the origin of our solar system is: how do planets form in circumstellar disks around young stars? Because of the complex nature of the physical processes involved, multi-wavelength observations of large samples will be required in order to obtain a complete answer to this question. Surveys undertaken with ISO have helped to solve pieces of this puzzle in addition to uncovering new mysteries. We review a variety of studies aimed at understanding; i) the physical structure and composition of circumstellar disks commonly found surrounding young stellar objects; and ii) the evolution of circumstellar disks from the active accretion phase to post-planet building debris disks.

  8. Upper and lower limits on the Crab pulsar's astrophysical parameters set from gravitational wave observations by LIGO: braking index and energy considerations

    E-Print Network [OSTI]

    Giovanni Santostasi

    2008-07-16T23:59:59.000Z

    The Laser Interferometer Gravitational Observatory (LIGO) has recently reached the end of its fifth science run (S5), having collected more than a year worth of data. Analysis of the data is still ongoing but a positive detection of gravitational waves, while possible, is not realistically expected for most likely sources. This is particularly true for what concerns gravitational waves from known pulsars. In fact, even under the most optimistic (and not very realistic) assumption that all the pulsar's observed spin-down is due to gravitational waves, the gravitational wave strain at earth from all the known isolated pulsars (with the only notable exception of the Crab pulsar) would not be strong enough to be detectable by existing detectors. By August 2006, LIGO had produced enough data for a coherent integration capable to extract signal from noise that was weaker than the one expected from the Crab pulsar's spin-down limit. No signal was detected, but beating the spin-down limit is a considerable achievement for the LIGO Scientific Collaboration (LSC). It is customary to translate the upper limit on strain from a pulsar into a more astrophysically significant upper limit on ellipticity. Once the spin-down limit has been beaten, it is possible to release the constraint that all the spin-down is due to gravitational wave emission. A more complete model with diverse braking mechanisms can be used to set limits on several astrophysical parameters of the pulsar. This paper shows possible values of such parameters for the Crab pulsar given the current limit on gravitational waves from this neutron star.

  9. Cloud and Star Formation in Disk Galaxy Models with Feedback

    E-Print Network [OSTI]

    Rahul Shetty; Eve C. Ostriker

    2008-05-26T23:59:59.000Z

    We include feedback in global hydrodynamic simulations in order to study the star formation properties, and gas structure and dynamics, in models of galactic disks. We extend previous models by implementing feedback in gravitationally bound clouds: momentum is injected at a rate proportional to the star formation rate. This mechanical energy disperses cloud gas back into the surrounding ISM, truncating star formation in a given cloud, and raising the overall level of ambient turbulence. Propagating star formation can however occur as expanding shells collide, enhancing the density and triggering new cloud and star formation. By controlling the momentum injection per massive star and the specific star formation rate in dense gas, we find that the negative effects of high turbulence outweigh the positive ones, and in net feedback reduces the fraction of dense gas and thus the overall star formation rate. The properties of the large clouds that form are not, however, very sensitive to feedback, with cutoff masses of a few million solar masses, similar to observations. We find a relationship between the star formation rate surface density and the gas surface density with a power law index ~2 for our models with the largest dynamic range, consistent with theoretical expectations for our model of disk flaring. We point out that the value of the "Kennicutt-Schmidt" index depends on the thickness of the disk. With our simple feedback prescription (a single combined star formation event per cloud), we find that global spiral patterns are not sustained; less correlated feedback and smaller scale turbulence appear to be necessary for spiral patterns to persist.

  10. EVIDENCE FOR MAGNESIUM ISOTOPE HETEROGENEITY IN THE SOLAR PROTOPLANETARY DISK

    SciTech Connect (OSTI)

    Larsen, Kirsten K.; Trinquier, Anne; Paton, Chad; Schiller, Martin; Wielandt, Daniel; Connelly, James N.; Nordlund, Ake; Krot, Alexander N.; Bizzarro, Martin [Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, Copenhagen DK-1350 (Denmark); Ivanova, Marina A. [Vernadsky Institute of Geochemistry and Analytical Chemistry, Moscow 119991 (Russian Federation)

    2011-07-10T23:59:59.000Z

    With a half-life of 0.73 Myr, the {sup 26}Al-to-{sup 26}Mg decay system is the most widely used short-lived chronometer for understanding the formation and earliest evolution of the solar protoplanetary disk. However, the validity of {sup 26}Al-{sup 26}Mg ages of meteorites and their components relies on the critical assumption that the canonical {sup 26}Al/{sup 27}Al ratio of {approx}5 x 10{sup -5} recorded by the oldest dated solids, calcium-aluminium-rich inclusions (CAIs), represents the initial abundance of {sup 26}Al for the solar system as a whole. Here, we report high-precision Mg-isotope measurements of inner solar system solids, asteroids, and planets demonstrating the existence of widespread heterogeneity in the mass-independent {sup 26}Mg composition ({mu}{sup 26}Mg*) of bulk solar system reservoirs with solar or near-solar Al/Mg ratios. This variability may represent heterogeneity in the initial abundance of {sup 26}Al across the solar protoplanetary disk at the time of CAI formation and/or Mg-isotope heterogeneity. By comparing the U-Pb and {sup 26}Al-{sup 26}Mg ages of pristine solar system materials, we infer that the bulk of the {mu}{sup 26}Mg* variability reflects heterogeneity in the initial abundance of {sup 26}Al across the solar protoplanetary disk. We conclude that the canonical value of {approx}5 x 10{sup -5} represents the average initial abundance of {sup 26}Al only in the CAI-forming region, and that large-scale heterogeneity-perhaps up to 80% of the canonical value-may have existed throughout the inner solar system. If correct, our interpretation of the Mg-isotope composition of inner solar system objects precludes the use of the {sup 26}Al-{sup 26}Mg system as an accurate early solar system chronometer.

  11. On the Fractal Distribution of HII Regions in Disk Galaxies

    E-Print Network [OSTI]

    Nestor Sanchez; Emilio J. Alfaro

    2008-10-02T23:59:59.000Z

    In this work we quantify the degree to which star-forming events are clumped. We apply a precise and accurate technique to calculate the correlation dimension Dc of the distribution of HII regions in a sample of disk galaxies. Our reliable results are distributed in the range 1.5fractal dimension among galaxies, contrary to a universal picture sometimes claimed in literature. The faintest galaxies tend to distribute their HII regions in more clustered (less uniform) patterns. Moreover, the fractal dimension for the brightest HII regions within the same galaxy seems to be smaller than for the faintest ones suggesting some kind of evolutionary effect.

  12. Five steps in the evolution from protoplanetary to debris disk

    E-Print Network [OSTI]

    Wyatt, M. C.; Paníc, O.; Kennedy, G. M.; Matrà, L.

    2015-05-13T23:59:59.000Z

    picture of debris disks is that the dust we see is continually replenished by collisions between planetesi- mals in orbit around the star. Thus they are considered to be analogous to the asteroid and Kuiper belts in the Solar System... was estimated from a photosphere model fit to shorter wavelength data. Filled blue circles are detections; open light blue circles are upper limits. HR4796A, ? Tel and HD21997 are upper limits in the top left panel. The (Bottom right) panel shows 12µm versus 70...

  13. Radial gradients and metallicities in the galactic disk

    E-Print Network [OSTI]

    W. J. Maciel

    2000-12-08T23:59:59.000Z

    Radial O/H abundance gradients derived from HII regions, hot stars and planetary nebulae are combined with [Fe/H] gradients from open cluster stars in order to derive an independent [O/Fe] x [Fe/H] relation for the galactic disk. A comparison of the obtained relation with recent observational data and theoretical models suggests that the [O/Fe] ratio is not higher than [O/Fe] ~ 0.4, at least within the metallicity range of the considered samples.

  14. Rapidity gap survival in the black-disk regime

    SciTech Connect (OSTI)

    Leonid Frankfurt; Charles Hyde; Mark Strikman; Christian Weiss

    2007-04-16T23:59:59.000Z

    We summarize how the approach to the black-disk regime (BDR) of strong interactions at TeV energies influences rapidity gap survival in exclusive hard diffraction pp -> p + H + p (H = dijet, Qbar Q, Higgs). Employing a recently developed partonic description of such processes, we discuss (a) the suppression of diffraction at small impact parameters by soft spectator interactions in the BDR; (b) further suppression by inelastic interactions of hard spectator partons in the BDR; (c) correlations between hard and soft interactions. Hard spectator interactions substantially reduce the rapidity gap survival probability at LHC energies compared to previously reported estimates.

  15. Benzene formation in the inner regions of protostellar disks

    E-Print Network [OSTI]

    Paul M. Woods; Karen Willacy

    2006-12-08T23:59:59.000Z

    Benzene (c-C6H6) formation in the inner 3 AU of a protostellar disk can be efficient, resulting in high abundances of benzene in the midplane region. The formation mechanism is different to that found in interstellar clouds and in protoplanetary nebulae, and proceeds mainly through the reaction between allene (C3H4) and its ion. This has implications for PAH formation, in that some fraction of PAHs seen in the solar system could be native rather than inherited from the interstellar medium.

  16. Disk Space Quota Management | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscovering How Muscles Really Work Disk Quota Increase

  17. Molecular Hydrogen Emission from Protoplanetary Disks II. Effects of X-ray Irradiation and Dust Evolution

    E-Print Network [OSTI]

    H. Nomura; Y. Aikawa; M. Tsujimoto; Y. Nakagawa; T. J. Millar

    2007-02-01T23:59:59.000Z

    Detailed models for the density and temperature profiles of gas and dust in protoplanetary disks are constructed by taking into account X-ray and ultraviolet (UV) irradiation from a central T Tauri star, as well as dust size growth and settling toward the disk midplane. The spatial and size distributions of dust grains in the disks are numerically computed by solving the coagulation equation for settling dust particles. The level populations and line emission of molecular hydrogen are calculated using the derived physical structure of the disks. X-ray irradiation is the dominant heating source of the gas in the inner disk region and in the surface layer, while the far UV heating dominates otherwise. If the central star has strong X-ray and weak UV radiation, the H2 level populations are controlled by X-ray pumping, and the X-ray induced transition lines could be observable. If the UV irradiation is strong, the level populations are controlled by thermal collisions or UV pumping, depending on the properties of the dust grains in the disks. As the dust particles evolve in the disks, the gas temperature at the disk surface drops because the grain photoelectric heating becomes less efficient, while the UV radiation fields become stronger due to the decrease of grain opacity. This makes the H2 level populations change from local thermodynamic equilibrium (LTE) to non-LTE distributions, which results in changes to the line ratios of H2 emission. Our results suggest that dust evolution in protoplanetary disks could be observable through the H2 line ratios. The emission lines are strong from disks irradiated by strong UV and X-rays and possessing small dust grains; such disks will be good targets in which to observe H2 emission.

  18. Warping and tearing of misaligned circumbinary disks around eccentric SMBH binaries

    E-Print Network [OSTI]

    Kimitake Hayasaki; Bong Won Sohn; Atsuo T. Okazaki; Taehyun Jung; Guangyao Zhao; Tsuguya Naito

    2015-02-01T23:59:59.000Z

    We study the warping and tearing of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on an eccentric orbit. The circumbinary disk is significantly misaligned with the binary orbital plane, and is subject to the time-dependent tidal torques. In principle, such a disk is warped and precesses, and is torn into mutually misaligned rings in the region, where the tidal precession torques are stronger than the local viscous torques. We derive the tidal-warp and tearing radii of the misaligned circumbinary disks around eccentric SMBH binaries. We find that in disks with the viscosity parameter, alpha, larger than a critical value depending on the disk aspect ratio, the disk warping appears outside the tearing radius. This condition is expressed as alpha > sqrt{H/3r} for H/r ~material is likely to rapidly accrete onto SMBHs. In warped and torn disks, both the tidal-warp and the tearing radii most strongly depend on the binary semi-major axis, although they also mildly depend on the other orbital and disk parameters. This strong dependence enables us to estimate the semi-major axis, once the tidal warp or tearing radius is determined observationally: For the tidal warp radius of 0.1 pc, the semi-major axis is estimated to be ~10^{-2} pc for 10^7 Msun black hole with typical orbital and disk parameters. We also briefly discuss the possibility that central objects of observed warped maser disks in active galactic nuclei are supermassive black hole binaries.

  19. THE STRUCTURE OF THE {beta} LEONIS DEBRIS DISK

    SciTech Connect (OSTI)

    Stock, Nathan D.; Su, Kate Y. L.; Hinz, Phil M.; Rieke, George H. [Steward Observatory, University of Arizona, 933 N Cherry Avenue, Tucson, AZ 85721 (United States); Liu, Wilson [Infrared Processing and Analysis Center, California Institute of Technology, Mail Code 100-22, Pasadena, CA 91125 (United States); Marengo, Massimo [Department of Physics and Astronomy, Iowa State University, Ames, IA 50010 (United States); Stapelfeldt, Karl R. [JPL/Caltech, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Hines, Dean C. [Space Science Institute, 4750 Walnut Street, Suite 205 Boulder, CO 80301 (United States); Trilling, David E., E-mail: nstock@as.arizona.ed [Department of Physics and Astronomy, Northern Arizona University, 602 S Humphreys Street, Flagstaff, AZ 86011 (United States)

    2010-12-01T23:59:59.000Z

    We combine nulling interferometry at 10 {mu}m using the MMT and Keck Telescopes with spectroscopy, imaging, and photometry from 3 to 100 {mu}m using Spitzer to study the debris disk around {beta} Leo over a broad range of spatial scales, corresponding to radii of 0.1 to {approx}100 AU. We have also measured the close binary star o Leo with both Keck and MMT interferometers to verify our procedures with these instruments. The {beta} Leo debris system has a complex structure: (1) relatively little material within 1 AU; (2) an inner component with a color temperature of {approx}600 K, fitted by a dusty ring from about 2-3 AU; and (3) a second component with a color temperature of {approx}120 K fitted by a broad dusty emission zone extending from about {approx}5 AU to {approx}55 AU. Unlike many other A-type stars with debris disks, {beta} Leo lacks a dominant outer belt near 100 AU.

  20. Weighing Galaxy Disks with the Baryonic Tully-Fisher Relation

    E-Print Network [OSTI]

    McGaugh, Stacy

    2015-01-01T23:59:59.000Z

    We estimate the stellar masses of disk galaxies with two independent methods: a photometrically self-consistent color$-$mass-to-light ratio relation (CMLR) from population synthesis models, and the Baryonic Tully-Fisher relation (BTFR) calibrated by gas rich galaxies. These two methods give consistent results. The CMLR correctly converts distinct Tully-Fisher relations in different bands into the same BTFR. The BTFR is consistent with $M_b \\propto V_f^4$ over nearly six decades in mass, with no hint of a change in slope over that range. The intrinsic scatter in the BTFR is negligible, implying that the IMF of disk galaxies is effectively universal. The gas rich BTFR suggests an absolute calibration of the stellar mass scale that yields nearly constant mass-to-light ratios in the near-infrared (NIR): $0.57\\;M_{\\odot}/L_{\\odot}$ in $K_s$ and $0.45\\;M_{\\odot}/L_{\\odot}$ at $3.6\\mu$. There is only modest intrinsic scatter ($\\sim 0.12$ dex) about these typical values. There is no discernible variation with color o...

  1. Testing Horava-Lifshitz gravity using thin accretion disk properties

    SciTech Connect (OSTI)

    Harko, Tiberiu; Kovacs, Zoltan; Lobo, Francisco S. N. [Department of Physics and Center for Theoretical and Computational Physics, University of Hong Kong, Pok Fu Lam Road (Hong Kong); Centro de Fisica Teorica e Computacional, Faculdade de Ciencias da Universidade de Lisboa, Avenida Professor Gama Pinto 2, P-1649-003 Lisboa (Portugal)

    2009-08-15T23:59:59.000Z

    Recently, a renormalizable gravity theory with higher spatial derivatives in four dimensions was proposed by Horava. The theory reduces to Einstein gravity with a nonvanishing cosmological constant in IR, but it has improved UV behaviors. The spherically symmetric black hole solutions for an arbitrary cosmological constant, which represent the generalization of the standard Schwarzschild-(anti) de Sitter solution, have also been obtained for the Horava-Lifshitz theory. The exact asymptotically flat Schwarzschild-type solution of the gravitational field equations in Horava gravity contains a quadratic increasing term, as well as the square root of a fourth order polynomial in the radial coordinate, and it depends on one arbitrary integration constant. The IR-modified Horava gravity seems to be consistent with the current observational data, but in order to test its viability more observational constraints are necessary. In the present paper we consider the possibility of observationally testing Horava gravity by using the accretion disk properties around black holes. The energy flux, the temperature distribution, the emission spectrum, as well as the energy conversion efficiency are obtained, and compared to the standard general relativistic case. Particular signatures can appear in the electromagnetic spectrum, thus leading to the possibility of directly testing Horava gravity models by using astrophysical observations of the emission spectra from accretion disks.

  2. DUST PROPERTIES AND DISK STRUCTURE OF EVOLVED PROTOPLANETARY DISKS IN Cep OB2: GRAIN GROWTH, SETTLING, GAS AND DUST MASS, AND INSIDE-OUT EVOLUTION

    SciTech Connect (OSTI)

    Sicilia-Aguilar, Aurora; Henning, Thomas; Dullemond, Cornelis P.; Bouwman, Jeroen; Sturm, Bernhard [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, 69117 Heidelberg (Germany); Patel, Nimesh [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Juhasz, Attila, E-mail: sicilia@mpia.de, E-mail: aurora.sicilia@uam.es [Leiden Observatory, Niels Bohrweg 2, NL-2333 CA Leiden (Netherlands)

    2011-11-20T23:59:59.000Z

    We present Spitzer/Infrared Spectrograph spectra of 31 T Tauri stars (TTS) and IRAM/1.3 mm observations for 34 low- and intermediate-mass stars in the Cep OB2 region. Including our previously published data, we analyze 56 TTS and 3 intermediate-mass stars with silicate features in Tr 37 ({approx}4 Myr) and NGC 7160 ({approx}12 Myr). The silicate emission features are well reproduced with a mixture of amorphous (with olivine, forsterite, and silica stoichiometry) and crystalline grains (forsterite, enstatite). We explore grain size and disk structure using radiative transfer disk models, finding that most objects have suffered substantial evolution (grain growth, settling). About half of the disks show inside-out evolution, with either dust-cleared inner holes or a radially dependent dust distribution, typically with larger grains and more settling in the innermost disk. The typical strong silicate features nevertheless require the presence of small dust grains, and could be explained by differential settling according to grain size, anomalous dust distributions, and/or optically thin dust populations within disk gaps. M-type stars tend to have weaker silicate emission and steeper spectral energy distributions than K-type objects. The inferred low dust masses are in a strong contrast with the relatively high gas accretion rates, suggesting global grain growth and/or an anomalous gas-to-dust ratio. Transition disks in the Cep OB2 region display strongly processed grains, suggesting that they are dominated by dust evolution and settling. Finally, the presence of rare but remarkable disks with strong accretion at old ages reveals that some very massive disks may still survive to grain growth, gravitational instabilities, and planet formation.

  3. Nano-compact disks with 400 Gbit/in2 storage density fabricated

    E-Print Network [OSTI]

    Nano-compact disks with 400 Gbit/in2 storage density fabricated using nanoimprint lithography and read with proximal probe Peter R. Kraussa) and Stephen Y. Choub) NanoStructure Laboratory, Department for publication 30 September 1997 Nano-compact disks Nano-CDs with 400 Gbit/in2 topographical bit density nearly

  4. Formation of Sets and Subsets of Informative Features of Information Carriers with Magnetic Hard Disks*

    E-Print Network [OSTI]

    Borissova, Daniela

    . Regardless of the type of the information carrier with hard magnetic disks, the main and most important137 Formation of Sets and Subsets of Informative Features of Information Carriers with Magnetic magnetic disk, new informative features are presented, which form a substantial subset of the informative

  5. VERTICAL STRUCTURE AND CORONAL POWER OF ACCRETION DISKS POWERED BY MAGNETOROTATIONAL-INSTABILITY TURBULENCE

    SciTech Connect (OSTI)

    Uzdensky, Dmitri A., E-mail: uzdensky@colorado.edu [Center for Integrated Plasma Studies, Physics Department, University of Colorado, Boulder, CO 80309 (United States)

    2013-10-01T23:59:59.000Z

    In this paper, we consider two outstanding intertwined problems in modern high-energy astrophysics: (1) the vertical-thermal structure of an optically thick accretion disk heated by the dissipation of magnetohydrodynamic turbulence driven by the magnetorotational instability (MRI), and (2) determining the fraction of the accretion power released in the corona above the disk. For simplicity, we consider a gas-pressure-dominated disk and assume a constant opacity. We argue that the local turbulent dissipation rate due to the disruption of the MRI channel flows by secondary parasitic instabilities should be uniform across most of the disk, almost up to the disk photosphere. We then obtain a self-consistent analytical solution for the vertical thermal structure of the disk, governed by the balance between the heating by MRI turbulence and the cooling by radiative diffusion. Next, we argue that the coronal power fraction is determined by the competition between the Parker instability, viewed as a parasitic instability feeding off of MRI channel flows, and other parasitic instabilities. We show that the Parker instability inevitably becomes important near the disk surface, leading to a certain lower limit on the coronal power. While most of the analysis in this paper focuses on the case of a disk threaded by an externally imposed vertical magnetic field, we also discuss the zero net flux case, in which the magnetic field is produced by the MRI dynamo itself, and show that most of our arguments and conclusions should be valid in this case as well.

  6. Modelling and Analysis of Multi-Stage Systems of Mistuned Bladed Disks

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    uncertainty may be due to numerous factors such as material inho- mogeneity, manufacturing processes of uncertainties in complex computational models. In turbine engines rotating components (bladed disks), one of mistuning phenomena in multi- stage systems of bladed disks. Indeed, in modern turbine engines, which

  7. Disk-shaped Compact Tension Test for Plain Concrete A. Amirkhanian1

    E-Print Network [OSTI]

    Paulino, Glaucio H.

    Disk-shaped Compact Tension Test for Plain Concrete A. Amirkhanian1 , D. Spring1 , J. Roesler1 , K cracking prediction of concrete pavement systems. The single-edge notched beam test has been used energy in asphalt concrete using the disk-shaped compact tension (DCT) test. The benefit of this specimen

  8. Model Predictive Tracking Control for a Head-Positioning in a Hard-Disk-Drive

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Model Predictive Tracking Control for a Head-Positioning in a Hard-Disk-Drive M. Taktak-Meziou, A generated from Model Predictive Control (MPC). The first approach consists of a classical linear MPC without/Write (R/W) head of a Hard-Disk-Drive (HDD) servo-system, which is resolved with two control algorithms

  9. Suction disk performance of echeneid fishes B.A. Fulcher and P.J. Motta

    E-Print Network [OSTI]

    Motta, Philip J.

    ) involves the formation of a laminated adhesive suction disk from the first dorsal fin. This disk is usedPa, with no significant difference between Plexiglas® and shark skin surfaces. With a force applied to their caudal while attached to Plexiglas. On shark skin, the use of spinules increased friction and reduced the maxi

  10. DESIGN AND IMPLEMENTATION OF DUAL-STAGE TRACK-FOLLOWING CONTROL FOR HARD DISK DRIVES

    E-Print Network [OSTI]

    Horowitz, Roberto

    [1], and spindle motor vibration and is hence synchronous with the disk rotation speed. All other categorized into torque disturbance, windage, non-repeatable disk motions and measurement noises. The torque-turbulence impinging on the voice coil motor (VCM), is typically a low frequency disturbance. Windage, which is mainly

  11. HUBBLE SPACE TELESCOPE ADVANCED CAMERA FOR SURVEYS CORONAGRAPHIC IMAGING OF THE AU MICROSCOPII DEBRIS DISK

    E-Print Network [OSTI]

    the midplane is straight and aligned with the star, and beyond that it deviates by $3 , resulting in a bowed . The inclination of the outer disk and moderate forward scattering (g % 0:4) can explain the apparent bow, creating a debris disk that can be detected in thermal emission and scattered light. Without the continual

  12. Probing Protoplanetary Disks with Silicate Emission: Where is the silicate emission zone?

    E-Print Network [OSTI]

    J. E. Kessler-Silacci; C. P. Dullemond; J. -C. Augereau; B. Merin; V. C. Geers; E. F. van Dishoeck; N. J. Evans II; G. A. Blake; J. M. Brown

    2006-12-15T23:59:59.000Z

    Recent results indicate that the grain size and crystallinity inferred from observations of silicate features may be correlated with spectral type of the central star and/or disk geometry. In this paper, we show that grain size, as probed by the 10 um silicate feature peak-to-continuum and 11.3-to-9.8 um flux ratios, is inversely proportional to log L_star. These trends can be understood using a simple two-layer disk model for passive irradiated flaring disks, CGPLUS. We find that the radius, R_10, of the 10 um silicate emission zone in the disk goes as (L_star/L_sun)^0.56, with slight variations depending on disk geometry (flaring angle, inner disk radius). The observed correlations, combined with simulated emission spectra of olivine and pyroxene mixtures, imply a grain size dependence on luminosity. Combined with the fact that R_10 is smaller for less luminous stars, this implies that the apparent grain size of the emitting dust is larger for low-luminositysources. In contrast, our models suggest that the crystallinity is only marginally affected, because for increasing luminosity, the zone for thermal annealing (assumed to be at T>800 K) is enlarged by roughly the same factor as the silicate emission zone. The observed crystallinity is affected by disk geometry, however, with increased crystallinity in flat disks. The apparent crystallinity may also increase with grain growth due to a corresponding increase in contrast between crystalline and amorphous silicate emission bands.

  13. The JCMT Gould Belt Survey: SCUBA-2 observations of circumstellar disks in L 1495

    E-Print Network [OSTI]

    Buckle, J V; Greaves, J; Richer, J S; Matthews, B C; Johnstone, D; Kirk, H; Beaulieu, S F; Berry, D S; Broekhoven-Fiene, H; Currie, M J; Fich, M; Hatchell, J; Jenness, T; Mottram, J C; Nutter, D; Pattle, K; Pineda, J E; Salji, C; Tisi, S; Di Francesco, J; Hogerheijde, M R; Ward-Thompson, D; Bastien, P; Butner, H; Chen, M; Chrysostomou, A; Coude, S; Davis, C J; Duarte-Cabral, A; Friberg, P; Friesen, R; Fuller, G A; Graves, S; Gregson, J; Holland, W; Joncas, G; Kirk, J M; Knee, L B G; Mairs, S; Marsh, K; Moriarty-Schieven, G; Rawlings, J; Rosolowsky, E; Rumble, D; Sadavoy, S; Thomas, H; Tothill, N; Viti, S; White, G J; Wilson, C D; Wouterloot, J; Yates, J; Zhu, M

    2015-01-01T23:59:59.000Z

    We present 850$\\mu$m and 450$\\mu$m data from the JCMT Gould Belt Survey obtained with SCUBA-2 and characterise the dust attributes of Class I, Class II and Class III disk sources in L1495. We detect 23% of the sample at both wavelengths, with the detection rate decreasing through the Classes from I--III. The median disk mask is 1.6$\\times 10^{-3}$M$_{\\odot}$, and only 7% of Class II sources have disk masses larger than 20 Jupiter masses. We detect a higher proportion of disks towards sources with stellar hosts of spectral type K than spectral type M. Class II disks with single stellar hosts of spectral type K have higher masses than those of spectral type M, supporting the hypothesis that higher mass stars have more massive disks. Variations in disk masses calculated at the two wavelengths suggests there may be differences in dust opacity and/or dust temperature between disks with hosts of spectral types K to those with spectral type M.

  14. Extraplanar Dust: a Tracer of Cold Dense Gas in the Thick Disks of Spiral Galaxies

    E-Print Network [OSTI]

    J. Christopher Howk

    2004-10-15T23:59:59.000Z

    The interstellar thick disks of galaxies contain not only gas, but significant quantities of dust. Most of our knowledge of extraplanar dust in disk galaxies comes from direct broadband optical imaging of these systems, wherein the dust is identified due to the irregular extinction it produces against the thick disk and bulge stars. This observational technique is sensitive to only the most dense material, and we argue much of the material identified in this way traces a cold phase of the interstellar thick disks in galaxies. The presence of a cold, dense phase likely implies the interstellar pressures in the thick disks of spiral galaxies can be quite high. This dense phase of the interstellar medium may also fueling thick disk star formation, and H-alpha observations are now revealing H II regions around newly-formed OB stars associations in several galaxies. We argue that the large quantities of dust and the morphologies of the structures traced by the dust imply that much of the extraplanar material in disk galaxies must have been expelled from the underlying thin disk.

  15. A Quantitative Analysis of Disk Drive Power Management in Portable Computers

    E-Print Network [OSTI]

    Anderson, Tom

    A Quantitative Analysis of Disk Drive Power Management in Portable Computers Kester Li, Roger Kumpf Abstract With the advent and subsequent popularity of portable computers, power management of system half of the potential benefit of spinning down a disk. 1 Introduction Power management has become

  16. Probing the electronic structure and optical response of a graphene quantum disk supported on monolayer graphene

    E-Print Network [OSTI]

    Pennycook, Steve

    Probing the electronic structure and optical response of a graphene quantum disk supported on monolayer graphene This article has been downloaded from IOPscience. Please scroll down to see the full text.1088/0953-8984/24/31/314213 Probing the electronic structure and optical response of a graphene quantum disk supported on monolayer

  17. Disk Drive Roadmap from the Thermal Perspective: A Case for Dynamic Thermal Management

    E-Print Network [OSTI]

    Gurumurthi, Sudhanva

    to the thermal envelope of drive design. We present two mechanisms for buying back some of this IDR loss allowing higher RPMs than the thermal envelope, and employs dynamic throttling of disk drive activities to remain within this envelope. Keywords: Disk Drives, Thermal Management, Technology Scaling. 1

  18. Understanding the Performance-Temperature Interactions in Disk I/O of Server Youngjae Kim

    E-Print Network [OSTI]

    Gurumurthi, Sudhanva

    , this study showed that such aggressive scaling of the RPM cannot be sustained within the thermal envelope the first infrastructure for integrated stud- ies of the performance and thermal behavior of storage systems disks. We then analyze the thermal profiles of real workloads that use such disk drives in their storage

  19. HIGH-CONTRAST NEAR-INFRARED IMAGING POLARIMETRY OF THE PROTOPLANETARY DISK AROUND RY TAU

    SciTech Connect (OSTI)

    Takami, Michihiro; Karr, Jennifer L.; Kim, Hyosun; Chou, Mei-Yin [Institute of Astronomy and Astrophysics, Academia Sinica. P.O. Box 23-141, Taipei 10617, Taiwan (China); Hashimoto, Jun; Kandori, Ryo; Kusakabe, Nobuhiko; Kwon, Jungmi [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Wisniewski, John [H. L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States); Henning, Thomas; Brandner, Wolfgang [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Grady, Carol A. [Eureka Scientific, 2452 Delmer, Suite 100, Oakland, CA 96002 (United States); Hodapp, Klaus W. [Institute for Astronomy, University of Hawaii, 640 North A'ohoku Place, Hilo, HI 96720 (United States); Kudo, Tomoyuki [Subaru Telescope, 650 North A'ohoku Place, Hilo, HI 96720 (United States); Itoh, Yoichi [Nishi-Harima Astronomical Observatory, Center for Astronomy, University of Hyogo, 407-2 Nishigaichi, Sayo, Hyogo 679-5313 (Japan); Momose, Munetake [College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 (Japan); Mayama, Satoshi [The Center for the Promotion of Integrated Sciences, The Graduate University for Advanced Studies (SOKENDAI), Shonan International Village, Hayama-cho, Miura-gun, Kanagawa 240-0193 (Japan); Currie, Thayne [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON (Canada); Follette, Katherine B. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson AZ 85721 (United States); Abe, Lyu, E-mail: hiro@asiaa.sinica.edu.tw [Laboratoire Lagrange (UMR 7293), Universite de Nice-Sophia Antipolis, CNRS, Observatoire de la Cote d'Azur, 28 Avenue Valrose, F-06108 Nice Cedex 2 (France); and others

    2013-08-01T23:59:59.000Z

    We present near-infrared coronagraphic imaging polarimetry of RY Tau. The scattered light in the circumstellar environment was imaged at the H band at a high resolution ({approx}0.''05) for the first time, using Subaru/HiCIAO. The observed polarized intensity (PI) distribution shows a butterfly-like distribution of bright emission with an angular scale similar to the disk observed at millimeter wavelengths. This distribution is offset toward the blueshifted jet, indicating the presence of a geometrically thick disk or a remnant envelope, and therefore the earliest stage of the Class II evolutionary phase. We perform comparisons between the observed PI distribution and disk models with (1) full radiative transfer code, using the spectral energy distribution (SED) to constrain the disk parameters; and (2) monochromatic simulations of scattered light which explore a wide range of parameters space to constrain the disk and dust parameters. We show that these models cannot consistently explain the observed PI distribution, SED, and the viewing angle inferred by millimeter interferometry. We suggest that the scattered light in the near-infrared is associated with an optically thin and geometrically thick layer above the disk surface, with the surface responsible for the infrared SED. Half of the scattered light and thermal radiation in this layer illuminates the disk surface, and this process may significantly affect the thermal structure of the disk.

  20. The Carbon-Rich Gas in the Beta Pictoris Circumstellar Disk

    E-Print Network [OSTI]

    Aki Roberge; Paul D. Feldman; Alycia J. Weinberger; Magali Deleuil; Jean-Claude Bouret

    2006-04-20T23:59:59.000Z

    The edge-on disk surrounding the nearby young star Beta Pictoris is the archetype of the "debris disks", which are composed of dust and gas produced by collisions and evaporation of planetesimals, analogues of Solar System comets and asteroids. These disks provide a window on the formation and early evolution of terrestrial planets. Previous observations of Beta Pic concluded that the disk gas has roughly solar abundances of elements [1], but this poses a problem because such gas should be rapidly blown away from the star, contrary to observations of a stable gas disk in Keplerian rotation [1, 2]. Here we report the detection of singly and doubly ionized carbon (CII, CIII) and neutral atomic oxygen (OI) gas in the Beta Pic disk; measurement of these abundant volatile species permits a much more complete gas inventory. Carbon is extremely overabundant relative to every other measured element. This appears to solve the problem of the stable gas disk, since the carbon overabundance should keep the gas disk in Keplerian rotation [3]. New questions arise, however, since the overabundance may indicate the gas is produced from material more carbon-rich than the expected Solar System analogues.

  1. March 24, 2008 ADBS: Storage 1 Disk Storage, Basic File Structures, and

    E-Print Network [OSTI]

    Adam, Salah

    March 24, 2008 ADBS: Storage 1 Disk Storage, Basic File Structures, and Hashing. #12;March 24, 2008 ADBS: Storage 2 Chapter Outline The Storage Hierarchy How Far is Your Data Disk Storage Devices Records Blocking Files of Records Unordered Files Ordered Files Hashed Files RAID Technology Storage Area Network

  2. Growth and Destruction of Disks: Combined H I and H II View

    E-Print Network [OSTI]

    Bershady, Matthew A.

    properties with regions of most intense star-formation, and the gas reservoir to the consumption rate. We in the coming decade. H I and optical data combined can sample outer and inner disk dynamics to connect halo): Disks are fragile, destroyed in major mergers, and heated in minor mergers. It has been suggested

  3. A Comparison of Alternative Continuous Display Techniques with Heterogeneous Multi-Zone Disks *

    E-Print Network [OSTI]

    Kim, Seon Ho

    are expected to play an important role in applications such as video-on-demand, digital library, news with the intro- duction of 50 gigabyte disk drives, a video library consisting of 1000 MPEG-2 titles (with administrator is forced to buy new disk drives over time and *This research was supported by the National

  4. Summary of poster at VSS 2002: The vanishing disk; a revealing quirk of the scintillating grid

    E-Print Network [OSTI]

    Levine, Michael

    Summary of poster at VSS 2002: The vanishing disk; a revealing quirk of the scintillating grid, IL ABSTRACT Take a Hermann grid of gray alleys on a black background and place white disks of repeating patterns. To assess the importance of a repeating pattern, we tested a Hermann grid with a single

  5. Covariant Lyapunov vectors for rigid disk systems Hadrien Bosetti, Harald A. Posch *

    E-Print Network [OSTI]

    Dellago, Christoph

    Covariant Lyapunov vectors for rigid disk systems Hadrien Bosetti, Harald A. Posch * Computational l e i n f o Article history: Available online 10 June 2010 Keywords: Lyapunov instability Hard disks Covariant vectors Statistical mechanics Computer simulation Fluids Lyapunov modes a b s t r a c t We carry

  6. Lyapunov instability of rough hard-disk fluids Jacobus A. van Meel*

    E-Print Network [OSTI]

    Posch, Harald A.

    Lyapunov instability of rough hard-disk fluids Jacobus A. van Meel* FOM Institute for Atomic The dynamical instability of rough hard-disk fluids in two dimensions is characterized through the Lyapunov, measured by the maximum Lyapunov exponent, is only enhanced by the rotational degrees of freedom for high

  7. An interferometric study of the Fomalhaut inner debris disk. III. Detailed models of the exozodiacal disk and its origin

    E-Print Network [OSTI]

    Lebreton, J; Augereau, J -C; Absil, O; Mennesson, B; Kama, M; Dominik, C; Bonsor, A; Vandeportal, J; Beust, H; Defrère, D; Ertel, S; Faramaz, V; Hinz, P; Kral, Q; Lagrange, A -M; Liu, W; Thébault, P

    2013-01-01T23:59:59.000Z

    [Abridged] Debris disks are extrasolar analogs to the solar system planetesimal belts. The star Fomalhaut harbors a cold debris belt at 140 AU as well as evidence of a warm dust component, which is suspected of being a bright analog to the solar system's zodiacal dust. Interferometric observations obtained with the VLTI and the KIN have identified near- and mid-infrared excesses attributed to hot and warm exozodiacal dust in the inner few AU of the star. We performed parametric modeling of the exozodiacal disk using the GRaTeR radiative transfer code to reproduce the interferometric data, complemented by mid- to far-infrared measurements. A detailed treatment of sublimation temperatures was introduced to explore the hot population at the sublimation rim. We then used an analytical approach to successively testing several source mechanisms. A good fit to the data is found by two distinct dust populations: (1) very small, hence unbound, hot dust grains confined in a narrow region at the sublimation rim of carbo...

  8. Mass accretion rates in self-regulated disks of T Tauri stars

    E-Print Network [OSTI]

    E. I. Vorobyov; Shantanu Basu

    2008-02-15T23:59:59.000Z

    We have studied numerically the evolution of protostellar disks around intermediate and upper mass T Tauri stars (0.25 M_sun < M_st < 3.0 M_sun) that have formed self-consistently from the collapse of molecular cloud cores. In the T Tauri phase, disks settle into a self-regulated state, with low-amplitude nonaxisymmetric density perturbations persisting for at least several million years. Our main finding is that the global effect of gravitational torques due to these perturbations is to produce disk accretion rates that are of the correct magnitude to explain observed accretion onto T Tauri stars. Our models yield a correlation between accretion rate M_dot and stellar mass M_st that has a best fit M_dot \\propto M_st^{1.7}, in good agreement with recent observations. We also predict a near-linear correlation between the disk accretion rate and the disk mass.

  9. Can black-hole neutrino-cooled disks power short gamma-ray bursts?

    E-Print Network [OSTI]

    Liu, Tong; Hou, Shu-Jin; Gu, Wei-Min

    2015-01-01T23:59:59.000Z

    Stellar-mass black holes (BHs) surrounded by neutrino-dominated accretion flows (NDAFs) are the plausible candidates to power gamma-ray bursts (GRBs) via neutrinos emission and their annihilation. The progenitors of short-duration GRBs (SGRBs) are generally considered to be compact binaries mergers. According to the simulation results, the disk mass of the NDAF has been limited after merger events. We can estimate such disk mass by using the current SGRB observational data and fireball model. The results show that the disk mass of a certain SGRB mainly depends on its output energy, jet opening angle, and central BH characteristics. Even for the extreme BH parameters, some SGRBs require massive disks, which approach or exceed the limits in simulations. We suggest that there may exist alternative magnetohydrodynamic processes or some mechanisms increasing the neutrino emission to produce SGRBs with the reasonable BH parameters and disk mass.

  10. Precession of neutrino-cooled accretion disks in gamma-ray burst engines

    E-Print Network [OSTI]

    Matias M. Reynoso; Gustavo E. Romero; Oscar A. Sampayo

    2006-07-14T23:59:59.000Z

    We study the precession of accretion disks in the context of gamma-ray burst inner engines. With an accretion disk model that allows for neutrino cooling, we evaluate the possible periods of disk precession and nutation due to the Lense-Thirring effect. Assuming jet ejection perpendicular to the disk midplane and a typical intrinsic time dependence for the burst, we find possible gamma-ray light curves with temporal microstructure similar to what is observed in some subsamples. We conclude that the precession and nutation of a neutrino-cooled accretion disk in the burst engine might be responsible for some events, especially those with a slow rise and a fast decay.

  11. Thermal Effects of Circumplanetary Disk Formation around Proto-Gas Giant Planets

    E-Print Network [OSTI]

    Machida, Masahiro N

    2008-01-01T23:59:59.000Z

    The formation of a circumplanetary disk and accretion of angular momentum onto a protoplanetary system are investigated using 3D hydrodynamical simulations. The local region around a protoplanet in a protoplanetary disk is considered with sufficient spatial resolution: the region from outside the Hill sphere to the Jovian radius is covered by the nested-grid method. To investigate the thermal effects of the circumplanetary disk, various equations of state are adopted. Large thermal energy around the protoplanet slightly changes the structure of the circumplanetary disk. Compared with a model adopting an isothermal equation of state, in a model with an adiabatic equation of state, the protoplanet's gas envelope extends farther, and a slightly thick disk appears near the protoplanet. However, different equations of state do not affect the acquisition process of angular momentum for the protoplanetary system. Thus, the specific angular momentum acquired by the system is fitted as a function only of the protoplan...

  12. Detection of Keplerian dynamics in a disk around the post-AGB star AC Her

    E-Print Network [OSTI]

    Bujarrabal, V; Alcolea, J; Van Winckel, H

    2015-01-01T23:59:59.000Z

    So far, only one rotating disk has been clearly identified and studied in AGB or post-AGB objects (in the Red Rectangle), by means of observations with high spectral and spatial resolution. However, disks are thought to play a key role in the late stellar evolution and are suspected to surround many evolved stars. We aim to extend our knowledge on these structures. We present interferometric observations of CO J=2-1 emission from the nebula surrounding the post-AGB star AC Her, a source belonging to a class of objects that share properties with the Red Rectangle and show hints of Keplerian disks. We clearly detect the Keplerian dynamics of a second disk orbiting an evolved star. Its main properties (size, temperature, central mass) are derived from direct interpretation of the data and model fitting. With this we confirm that there are disks orbiting the stars of this relatively wide class of post-AGB objects

  13. Power Management in RAID Server Disk System Using Multiple Idle States Hogil Kim, Eun Jung Kim and Rabi N. Mahapatra

    E-Print Network [OSTI]

    Mahapatra, Rabinarayan

    }@cs.tamu.edu Abstract Energy efficient design for disk devices has become a very important issue, because ever

  14. Origin of the Metallicity Dependence of Exoplanet Host Stars in the Protoplanetary Disk Mass Distribution

    E-Print Network [OSTI]

    M. C. Wyatt; C. J. Clarke; J. S. Greaves

    2007-07-18T23:59:59.000Z

    The probability of a star hosting a planet that is detectable in radial velocity surveys increases Ppl(Z) oc 10^2Z, where Z is metallicity. Core accretion models reproduce this trend, since the protoplanetary disk of a high metallicity star has a high density of solids and so forms cores which accrete gas before the primordial gas disk dissipates. This paper considers the origin of the form of Ppl(Z). We introduce a simple model in which detectable planets form when the mass of solids in the protoplanetary disk, Ms, exceeds a critical value. In this model the form of Ppl(Z) is a direct reflection of the distribution of protoplanetary disk masses, Mg, and the observed Ppl(Z) is reproduced if P(Mg>Mg') oc 1/Mg'^2. We argue that a protoplanetary disk's sub-mm dust mass is a pristine indicator of the mass available for planet-building and find the observed sub-mm disk mass distribution is consistent with the observed Ppl(Z) if Ms>0.5M_J is required to form detectable planets. Any planet formation model which imposes a critical solid mass for planet formation would reproduce the observed Ppl(Z), and core accretion models are empirically consistent with a threshold criterion. We identify 7 protoplanetary disks which, by rigid application of this criterion, would be expected to form detectable planets. A testable prediction is that Ppl(Z) should flatten both for Z>0.5dex and as more distant and lower mass planets are discovered. Further, combining this model with one in which the evolution of a star's debris disk is also influenced by the solid mass in its protoplanetary disk, results in the prediction that debris disks detected around stars with planets should be more infrared luminous than those around stars without planets in tentative agreement with recent observations.

  15. ON THE EVOLUTION OF DUST MINERALOGY, FROM PROTOPLANETARY DISKS TO PLANETARY SYSTEMS

    SciTech Connect (OSTI)

    Oliveira, Isa; Van Dishoeck, Ewine F. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Olofsson, Johan [Max-Planck Institut fuer Astronomie, Koenigstuhl 17, 69117 Heidelberg (Germany); Pontoppidan, Klaus M. [California Institute of Technology, Division for Geological and Planetary Sciences, MS 150-21, Pasadena, CA 91125 (United States); Augereau, Jean-Charles [UJF-Grenoble 1/CNRS-INSU, Institut de Planetologie et d'Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble, F-38041 (France); MerIn, Bruno, E-mail: oliveira@strw.leidenuniv.nl [Herschel Science Center, European Space Agency (ESA), P.O. Box 78, 28691 Villanueva de la Canada (Madrid) (Spain)

    2011-06-10T23:59:59.000Z

    Mineralogical studies of silicate features emitted by dust grains in protoplanetary disks and solar system bodies can shed light on the progress of planet formation. The significant fraction of crystalline material in comets, chondritic meteorites, and interplanetary dust particles indicates a modification of the almost completely amorphous interstellar medium dust from which they formed. The production of crystalline silicates, thus, must happen in protoplanetary disks, where dust evolves to build planets and planetesimals. Different scenarios have been proposed, but it is still unclear how and when this happens. This paper presents dust grain mineralogy (composition, crystallinity, and grain size distribution) of a complete sample of protoplanetary disks in the young Serpens cluster. These results are compared to those in the young Taurus region and to sources that have retained their protoplanetary disks in the older Upper Scorpius and {eta} Chamaeleontis stellar clusters, using the same analysis technique for all samples. This comparison allows an investigation of the grain mineralogy evolution with time for a total sample of 139 disks. The mean cluster age and disk fraction are used as indicators of the evolutionary stage of the different populations. Our results show that the disks in the different regions have similar distributions of mean grain sizes and crystallinity fractions ({approx}10%-20%) despite the spread in mean ages. Furthermore, there is no evidence of preferential grain sizes for any given disk geometry nor for the mean cluster crystallinity fraction to increase with mean age in the 1-8 Myr range. The main implication is that a modest level of crystallinity is established in the disk surface early on ({<=}1 Myr), reaching an equilibrium that is independent of what may be happening in the disk midplane. These results are discussed in the context of planet formation, in comparison with mineralogical results from small bodies in our own solar system.

  16. The Origin of Jovian Planets in Protostellar Disks: The Role of Dead Zones

    E-Print Network [OSTI]

    Soko Matsumura; Ralph E. Pudritz

    2003-08-03T23:59:59.000Z

    The final masses of Jovian planets are attained when the tidal torques that they exert on their surrounding protostellar disks are sufficient to open gaps in the face of disk viscosity, thereby shutting off any further accretion. In sufficiently well-ionized disks, the predominant form of disk viscosity originates from the Magneto-Rotational Instability (MRI) that drives hydromagnetic disk turbulence. In the region of sufficiently low ionization rate -- the so-called dead zone -- turbulence is damped and we show that lower mass planets will be formed. We considered three ionization sources (X-rays, cosmic rays, and radioactive elements) and determined the size of a dead zone for the total ionization rate by using a radiative, hydrostatic equilibrium disk model developed by Chiang et al. (2001). We studied a range of surface mass density (Sigma_{0}=10^3 - 10^5 g cm^{-2}) and X-ray energy (kT_{x}=1 - 10 keV). We also compared the ionization rate of such a disk by X-rays with cosmic rays and find that the latter dominate X-rays in ionizing protostellar disks unless the X-ray energy is very high (5 - 10 keV). Among our major conclusions are that for typical conditions, dead zones encompass a region extending out to several AU -- the region in which terrestrial planets are found in our solar system. Our results suggest that the division between low and high mass planets in exosolar planetary systems is a consequence of the presence of a dead zone in their natal protoplanetary disks. We also find that the extent of a dead zone is mainly dependent on the disk's surface mass density. Our results provide further support for the idea that Jovian planets in exosolar systems must have migrated substantially inwards from their points of origin.

  17. Thermal Effects of Circumplanetary Disk Formation around Proto-Gas Giant Planets

    E-Print Network [OSTI]

    Masahiro N. Machida

    2008-10-15T23:59:59.000Z

    The formation of a circumplanetary disk and accretion of angular momentum onto a protoplanetary system are investigated using 3D hydrodynamical simulations. The local region around a protoplanet in a protoplanetary disk is considered with sufficient spatial resolution: the region from outside the Hill sphere to the Jovian radius is covered by the nested-grid method. To investigate the thermal effects of the circumplanetary disk, various equations of state are adopted. Large thermal energy around the protoplanet slightly changes the structure of the circumplanetary disk. Compared with a model adopting an isothermal equation of state, in a model with an adiabatic equation of state, the protoplanet's gas envelope extends farther, and a slightly thick disk appears near the protoplanet. However, different equations of state do not affect the acquisition process of angular momentum for the protoplanetary system. Thus, the specific angular momentum acquired by the system is fitted as a function only of the protoplanet's mass. A large fraction of the total angular momentum contributes to the formation of the circumplanetary disk. The disk forms only in a compact region in very close proximity to the protoplanet. Adapting the results to the solar system, the proto-Jupiter and Saturn have compact disks in the region of r < 21 r_J (r < 0.028 r_HJ) and r < 66 r_S (r < 0.061 r_HS), respectively, where r_J (r_HJ) and r_S (r_HS) are the Jovian and Saturnian (Hill) radius, respectively. The surface density has a peak in these regions due to the balance between centrifugal force and gravity of the protoplanet. The size of these disks corresponds well to the outermost orbit of regular satellites around Jupiter and Saturn. Regular satellites may form in such compact disks around proto-gas giant planets.

  18. Ruiz-Ponte, C., Cilia, V., Lambert, C., Nicolas, J.L., 1998. Roseobacter gallaeciensis sp. nov., a new marine bacterium isolated from rearings and collectors of the scallop Pecten maximus. International Journal of Systematic Bacteriology 48 Pt 2, 537-542.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ., a new marine bacterium isolated from rearings and collectors of the scallop Pecten maximus marine bacterium isolated from rearings and collectors of the scallop Pecten maximus. C. Ruiz-Ponte1 , V were isolated from larval cultures and collectors of the scallop Pecten maximus. They showed a high

  19. Carbon, nitrogen and $\\alpha$-element abundances determine the formation sequence of the Galactic thick and thin disks

    E-Print Network [OSTI]

    Masseron, T

    2015-01-01T23:59:59.000Z

    Using the DR12 public release of APOGEE data, we show that thin and thick disk separate very well in the space defined by [$\\alpha$/Fe], [Fe/H] and [C/N]. Thick disk giants have both higher [C/N] and higher [$\\alpha$/Fe] than do thin disk stars with similar [Fe/H]. We deduce that the thick disk is composed of lower mass stars than the thin disk. Considering the fact that at a given metallicity there is a one-to-one relation between stellar mass and age, we are then able to infer the chronology of disk formation. Both the thick and the thin disks - defined by [$\\alpha$/Fe] -- converge in their dependance on [C/N] and [C+N/Fe] at [Fe/H]$\\approx$-0.7. We conclude that 1) the majority of thick disk stars formed earlier than did the thin disk stars 2) the formation histories of the thin and thick disks diverged early on, even when the [Fe/H] abundances are similar 3) that the star formation rate in the thin disk has been lower than in the thick disk, at all metallicities. Although these general conclusions remain ...

  20. High frequency nano-optomechanical disk resonators in liquids

    E-Print Network [OSTI]

    Gil-Santos, E; Nguyen, D T; Hease, W; Lemaître, A; Ducci, S; Leo, G; Favero, I

    2015-01-01T23:59:59.000Z

    Vibrating nano- and micromechanical resonators have been the subject of research aiming at ultrasensitive mass sensors for mass spectrometry, chemical analysis and biomedical diagnosis. Unfortunately, their merits diminish dramatically in liquids due to dissipative mechanisms like viscosity and acoustic losses. A push towards faster and lighter miniaturized nanodevices would enable improved performances, provided dissipation was controlled and novel techniques were available to efficiently drive and read-out their minute displacement. Here we report on a nano-optomechanical approach to this problem using miniature semiconductor disks. These devices combine mechanical motion at high frequency above the GHz, ultra-low mass of a few picograms, and moderate dissipation in liquids. We show that high-sensitivity optical measurements allow to direct resolve their thermally driven Brownian vibrations, even in the most dissipative liquids. Thanks to this novel technique, we experimentally, numerically and analytically...

  1. Spectral Energy Distributions for Disk and Halo M--Dwarfs

    E-Print Network [OSTI]

    S. K. Leggett; F. Allard; Conard Dahn; P. H. Hauschildt; T. H. Kerr; J. Rayner

    2000-01-07T23:59:59.000Z

    We have obtained infrared (1 to 2.5 micron) spectroscopy for 42 halo and disk dwarfs with spectral type M1 to M6.5. These data are compared to synthetic spectra generated by the latest model atmospheres of Allard & Hauschildt. Photospheric parameters metallicity, effective temperature and radius are determined for the sample. We find good agreement between observation and theory except for known problems due to incomplete molecular data for metal hydrides and water. The metal-poor M subdwarfs are well matched by the models as oxide opacity sources are less important in this case. The derived effective temperatures for the sample range from 3600K to 2600K; at these temperatures grain formation and extinction are not significant in the photosphere. The derived metallicities range from solar to one-tenth solar. The radii and effective temperatures derived agree well with recent models of low mass stars.

  2. Modeling Dynamics in the Central Regions of Disk Galaxies

    E-Print Network [OSTI]

    Isaac Shlosman

    2004-12-07T23:59:59.000Z

    The central regions of disk galaxies are hosts to supermassive black holes whose masses show a tight correlation with the properties of surrounding stellar bulges. While the exact origin of this dependency is not clear, it can be related to the very basic properties of dark matter halos and the associated gas and stellar dynamics in the central kpc of host galaxies. In this review we discuss some of the recent developments in modeling the wide spectrum of dynamical processes which can be affiliated with the above phenomena, such as the structure of molecular tori in AGN, structure formation in triaxial halos, and dissipative and non-dissipative dynamics in nested bar systems, with a particular emphasis on decoupling of gaseous nuclear bars. We also briefly touch on the subject of fueling the nuclear starbursts and AGN.

  3. Adaptor assembly for coupling turbine blades to rotor disks

    SciTech Connect (OSTI)

    Delvaux, John McConnel; Garcia-Crespo, Andres Jose; Joyce, Kilmer Joseph; Tindell, Allan Randall

    2014-06-03T23:59:59.000Z

    An adaptor assembly for coupling a blade root of a turbine blade to a root slot of a rotor disk is disclosed. The adaptor assembly may generally include an adaptor body having a root configured to be received within the root slot. The adaptor body may also define a slot having an open end configured to receive the blade root. The adaptor body may further define a channel. The adaptor assembly may also include a plate having an outwardly extending foot. The foot may be configured to be received within the channel. Additionally, the plate may be configured to cover at least a portion of the open end of the slot when the foot is received within the channel.

  4. Lyapunov Mode Dynamics in Hard-Disk Systems

    E-Print Network [OSTI]

    D. J. Robinson; G. P. Morriss

    2007-09-20T23:59:59.000Z

    The tangent dynamics of the Lyapunov modes and their dynamics as generated numerically - {\\it the numerical dynamics} - is considered. We present a new phenomenological description of the numerical dynamical structure that accurately reproduces the experimental data for the quasi-one-dimensional hard-disk system, and shows that the Lyapunov mode numerical dynamics is linear and separate from the rest of the tangent space. Moreover, we propose a new, detailed structure for the Lyapunov mode tangent dynamics, which implies that the Lyapunov modes have well-defined (in)stability in either direction of time. We test this tangent dynamics and its derivative properties numerically with partial success. The phenomenological description involves a time-modal linear combination of all other Lyapunov modes on the same polarization branch and our proposed Lyapunov mode tangent dynamics is based upon the form of the tangent dynamics for the zero modes.

  5. From Lyapunov modes to the exponents for hard disk systems

    E-Print Network [OSTI]

    Tony Chung; Daniel Truant; Gary P. Morriss

    2009-04-08T23:59:59.000Z

    We demonstrate the preservation of the Lyapunov modes by the underlying tangent space dynamics of hard disks. This result is exact for the zero modes and correct to order $\\epsilon$ for the transverse and LP modes where $\\epsilon$ is linear in the mode number. For sufficiently large mode numbers the dynamics no longer preserves the mode structure. We propose a Gram-Schmidt procedure based on orthogonality with respect to the centre space that determines the values of the Lyapunov exponents for the modes. This assumes a detailed knowledge of the modes, but from that predicts the values of the exponents from the modes. Thus the modes and the exponents contain the same information.

  6. Disk heating by more than one spiral density wave

    E-Print Network [OSTI]

    I. Minchev; A. C. Quillen

    2005-11-01T23:59:59.000Z

    We consider a differentially rotating, 2D stellar disk perturbed by two steady state spiral density waves moving at different patterns speeds. Our investigation is based on direct numerical integration of initially circular test-particle orbits. We examine a range of spiral strengths and spiral speeds and show that stars in this time dependent gravitational field can be heated (their random motions increased).This is particularly noticeable in the simultaneous propagation of a 2-armed spiral density wave near the corotation resonance (CR), and a weak 4-armed one near the inner and outer 4:1 Lindblad resonances. In simulations with 2 spiral waves moving at different pattern speeds we find: (1) the variance of the radial velocity, sigma_R^2, exceeds the sum of the variances measured from simulations with each individual pattern; (2) sigma_R^2 can grow with time throughout the entire simulation; (3) sigma_R^2 is increased over a wider range of radii compared to that seen with one spiral pattern; (4) particles diffuse radially in real space whereas they don't when only one spiral density wave is present. Near the CR with the stronger, 2-armed pattern, test particles are observed to migrate radially. These effects take place at or near resonances of both spirals so we interpret them as the result of stochastic motions. This provides a possible new mechanism for increasing the stellar velocity dispersion in galactic disks. If multiple spiral patterns are present in the Galaxy we predict that there should be large variations in the stellar velocity dispersion as a function of radius.

  7. Radial disk heating by more than one spiral density wave

    E-Print Network [OSTI]

    I. Minchev; A. C. Quillen

    2005-10-28T23:59:59.000Z

    We consider a differentially rotating, 2D stellar disk perturbed by two steady state spiral density waves moving at different patterns speeds. Our investigation is based on direct numerical integration of initially circular test-particle orbits. We examine a range of spiral strengths and spiral speeds and show that stars in this time dependent gravitational field can be heated (their random motions increased). This is particularly noticeable in the simultaneous propagation of a 2-armed spiral density wave near the corotation resonance (CR), and a weak 4-armed one near the inner and outer 4:1 Lindblad resonances. In simulations with 2 spiral waves moving at different pattern speeds we find: (1) the variance of the radial velocity, sigma_R^2, exceeds the sum of the variances measured from simulations with each individual pattern; (2) sigma_R^2 can grow with time throughout the entire simulation; (3) sigma_R^2 is increased over a wider range of radii compared to that seen with one spiral pattern; (4) particles diffuse radially in real space whereas they don't when only one spiral density wave is present. Near the CR with the stronger, 2-armed pattern, test particles are observed to migrate radially. These effects take place at or near resonances of both spirals so we interpret them as the result of stochastic motions. This provides a possible new mechanism for increasing the stellar velocity dispersion in galactic disks. If multiple spiral patterns are present in the Galaxy we predict that there should be large variations in the stellar velocity dispersion as a function of radius.

  8. Lithium Abundances of the Local Thin Disk Stars

    E-Print Network [OSTI]

    David L. Lambert; Bacham E. Reddy

    2004-01-14T23:59:59.000Z

    Lithium abundances are presented for a sample of 181 nearby F and G dwarfs with accurate {\\it Hipparcos} parallaxes. The stars are on circular orbits about the Galactic centre and, hence, are identified as belonging to the thin disk. This sample is combined with two published surveys to provide a catalogue of lithium abundances, metallicities ([Fe/H]), masses, and ages for 451 F-G dwarfs, almost all belonging to the thin disk. The lithium abundances are compared and contrasted with published lithium abundances for F and G stars in local open clusters. The field stars span a larger range in [Fe/H] than the clusters for which [Fe/H] $\\simeq 0.0\\pm0.2$. The initial (i.e., interstellar) lithium abundance of the solar neighborhood, as derived from stars for which astration of lithium is believed to be unimportant, is traced from $\\log\\epsilon$(Li) = 2.2 at [Fe/H] = -1 to $\\log\\epsilon$(Li) = 3.2 at $+0.1$. This form for the evolution is dependent on the assumption that astration of lit hium is negligible for the stars defining the relation. An argument is advanced that this latter assumption may not be entirely correct, and, the evolution of lithium with [Fe/H] may be flatter than previously supposed. A sharp Hyades-like Li-dip is not seen among the field stars and appears to be replaced by a large spread among lithium abundances of stars more massive than the lower mass limit of the dip. Astration of lithium by stars of masses too low to participate in the Li-dip is discussed. These stars show little to no spread in lithium abundance at a given [Fe/H] and mass.

  9. The SEEDS Direct Imaging Survey for Planets and Scattered Dust Emission in Debris Disk Systems

    E-Print Network [OSTI]

    Janson, Markus; Moro-Martin, Amaya; Usuda, Tomonori; Thalmann, Christian; Carson, Joseph C; Goto, Miwa; Currie, Thayne; McElwain, M W; Itoh, Yoichi; Fukagawa, Misato; Crepp, Justin; Kuzuhara, Masayuki; Hashimoto, Jun; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Abe, Lyu; Brandner, Wolfgang; Egner, Sebastian; Feldt, Markus; Grady, Carol A; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiro; Hayashi, Saeko; Henning, Thomas; Hodapp, Klaus W; Ishii, Miki; Iye, Masanori; Kandori, Ryo; Knapp, Gillian R; Kwon, Jungmi; Matsuo, Taro; Miyama, Shoken; Morino, Jun-Ichi; Nishimura, Tetsuro; Pyo, Tae-Soo; Serabyn, Eugene; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takahashi, Yasuhiro; Takami, Michihiro; Takato, Naruhisa; Terada, Hiroshi; Tomono, Daego; Turner, Edwin L; Watanabe, Makoto; Wisniewski, John; Yamada, Toru; Takami, Hideki; Tamura, Motohide

    2013-01-01T23:59:59.000Z

    Debris disks around young main-sequence stars often have gaps and cavities which for a long time have been interpreted as possibly being caused by planets. In recent years, several giant planet discoveries have been made in systems hosting disks of precisely this nature, further implying that interactions with planets could be a common cause of such disk structures. As part of the SEEDS high-contrast imaging survey, we are surveying a population of debris disk-hosting stars with gaps and cavities implied by their spectral energy distributions, in order to attempt to spatially resolve the disk as well as to detect any planets that may be responsible for the disk structure. Here we report on intermediate results from this survey. Five debris disks have been spatially resolved, and a number of faint point sources have been discovered, most of which have been tested for common proper motion, which in each case has excluded physical companionship with the target stars. From the detection limits of the 50 targets t...

  10. Evidence for a Snow Line Beyond the Transitional Radius in the TW Hya Protoplanetary Disk

    E-Print Network [OSTI]

    Zhang, K; Salyk, C; Blake, G A

    2013-01-01T23:59:59.000Z

    We present an observational reconstruction of the radial water vapor content near the surface of the TW Hya transitional protoplanetary disk, and report the first localization of the snow line during this phase of disk evolution. The observations are comprised of Spitzer-IRS, Herschel-PACS, and Herschel-HIFI archival spectra. The abundance structure is retrieved by fitting a two-dimensional disk model to the available star+disk photometry and all observed H2O lines, using a simple step-function parameterization of the water vapor content near the disk surface. We find that water vapor is abundant (~10^{-4} per H2) in a narrow ring, located at the disk transition radius some 4AU from the central star, but drops rapidly by several orders of magnitude beyond 4.2 AU over a scale length of no more than 0.5AU. The inner disk (0.5-4AU) is also dry, with an upper limit on the vertically averaged water abundance of 10^{-6} per H2. The water vapor peak occurs at a radius significantly more distant than that expected fo...

  11. A Survey for Massive Giant Planets in Debris Disks with Evacuated Inner Cavities

    E-Print Network [OSTI]

    D. Apai; M. Janson; A. Moro-Martin; M. R. Meyer; E. E. Mamajek; E. Masciadri; Th. Henning; I. Pascucci; J. S. Kim; L. A. Hillenbrand; M. Kasper; B. Biller

    2007-10-01T23:59:59.000Z

    The commonality of collisionally replenished debris around main sequence stars suggests that minor bodies are frequent around Sun-like stars. Whether or not debris disks in general are accompanied by planets is yet unknown, but debris disks with large inner cavities - perhaps dynamically cleared - are considered to be prime candidates for hosting large-separation massive giant planets. We present here a high-contrast VLT/NACO angular differential imaging survey for eight such cold debris disks. We investigated the presence of massive giant planets in the range of orbital radii where the inner edge of the dust debris is expected. Our observations are sensitive to planets and brown dwarfs with masses >3 to 7 Jupiter mass, depending on the age and distance of the target star. Our observations did not identify any planet candidates. We compare the derived planet mass upper limits to the minimum planet mass required to dynamically clear the inner disks. While we cannot exclude that single giant planets are responsible for clearing out the inner debris disks, our observations constrain the parameter space available for such planets. The non-detection of massive planets in these evacuated debris disks further reinforces the notion that the giant planet population is confined to the inner disk (<15 AU).

  12. Flux-Limited Diffusion Approximation Models of Giant Planet Formation by Disk Instability

    E-Print Network [OSTI]

    Alan P. Boss

    2008-01-28T23:59:59.000Z

    Both core accretion and disk instability appear to be required as formation mechanisms in order to explain the entire range of giant planets found in extrasolar planetary systems. Disk instability is based on the formation of clumps in a marginally-gravitationally unstable protoplanetary disk. These clumps can only be expected to contract and survive to become protoplanets if they are able to lose thermal energy through a combination of convection and radiative cooling. Here we present several new three dimensional, radiative hydrodynamics models of self-gravitating protoplanetary disks, where radiative transfer is handled in the flux-limited diffusion approximation. We show that while the flux-limited models lead to higher midplane temperatures than in a diffusion approximation model without the flux-limiter, the difference in temperatures does not appear to be sufficiently high to have any significant effect on the formation of self-gravitating clumps. Self-gravitating clumps form rapidly in the models both with and without the flux-limiter. These models suggest that the reason for the different outcomes of numerical models of disk instability by different groups cannot be attributed solely to the handling of radiative transfer, but rather appears to be caused by a range of numerical effects and assumptions. Given the observational imperative to have disk instability form at least some extrasolar planets, these models imply that disk instability remains as a viable giant planet formation mechanism.

  13. THE SEEDS DIRECT IMAGING SURVEY FOR PLANETS AND SCATTERED DUST EMISSION IN DEBRIS DISK SYSTEMS

    SciTech Connect (OSTI)

    Janson, Markus; Brandt, Timothy D. [Department of Astrophysical Sciences, Princeton University, NJ 08544 (United States); Moro-Martin, Amaya [Department of Astrophysics, CAB (INTA-CSIC), Instituto Nacional de Tecnica Aerospacial, Torrejonde Ardoz, E-28850 Madrid (Spain); Usuda, Tomonori; Kudo, Tomoyuki; Egner, Sebastian [Subaru Telescope, 650 North Aohoku Place, Hilo, HI 96720 (United States); Thalmann, Christian [Astronomical Institute ''Anton Pannekoek'', University of Amsterdam, Science Park 904, 1098-XH Amsterdam (Netherlands); Carson, Joseph C. [Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston, SC 29424 (United States); Goto, Miwa [Universitaets-Sternwarte Muenchen, Ludwig-Maximilians-Universitaet, Scheinerstr. 1, D-81679 Munich (Germany); Currie, Thayne [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, M5S 3H4 Toronto, ON (Canada); McElwain, M. W. [Exoplanets and Stellar Astrophysics Laboratory, Code 667, Goddard Space Flight Center, Greenbelt, MD 2071 (United States); Itoh, Yoichi [Nishi-Harima Astronomical Observatory, Center for Astronomy, University of Hyogo, 407-2 Nishigaichi, Sayo, Hyogo 679-5313 (Japan); Fukagawa, Misato [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Crepp, Justin [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Kuzuhara, Masayuki; Hashimoto, Jun; Kusakabe, Nobuhiko [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Abe, Lyu [Laboratoire Lagrange, UMR7239, University of Nice-Sophia Antipolis, CNRS, Observatoire de la Cote d'Azur, F-06300 Nice (France); Brandner, Wolfgang; Feldt, Markus, E-mail: janson@astro.princeton.edu [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); and others

    2013-08-10T23:59:59.000Z

    Debris disks around young main-sequence stars often have gaps and cavities which for a long time have been interpreted as possibly being caused by planets. In recent years, several giant planet discoveries have been made in systems hosting disks of precisely this nature, further implying that interactions with planets could be a common cause of such disk structures. As part of the SEEDS high-contrast imaging survey, we are surveying a population of debris-disk-hosting stars with gaps and cavities implied by their spectral energy distributions, in order to attempt to spatially resolve the disk as well as to detect any planets that may be responsible for the disk structure. Here, we report on intermediate results from this survey. Five debris disks have been spatially resolved, and a number of faint point sources have been discovered, most of which have been tested for common proper motion, which in each case has excluded physical companionship with the target stars. From the detection limits of the 50 targets that have been observed, we find that {beta} Pic b-like planets ({approx}10 M{sub jup} planets around G-A-type stars) near the gap edges are less frequent than 15%-30%, implying that if giant planets are the dominant cause of these wide (27 AU on average) gaps, they are generally less massive than {beta} Pic b.

  14. Implications of modes of star formation for the overall dynamics of galactic disks

    E-Print Network [OSTI]

    B. Fuchs

    2001-03-22T23:59:59.000Z

    One of the present concepts for the onset of massive star formation is the Kennicutt criterion. This relates the onset of massive star formation to a general gravitational instability of the gas disks of spiral galaxies. It is often overlooked, however that such gravitational instabilities of the gas disks have severe implications for the overall stability of the gas and star disks of spiral galaxies. I show by numerical simulations of the evolution of a combined gas and star disk that the violation of the stability condition induces violent dynamical evolution of the combined system. In particular the star disk heats up on time scales less than a Gyr to unrealistic high values of the Toomre stability parameter Q. The morphologies of both the star and gas disk resemble then no longer observed morphologies of spiral galaxies. Star formation of stars on low velocity dispersion orbits would lead to dynamical cooling of the disks to more realistic states. However, the required star formation rate is extremely high.

  15. 27th European Photovoltaic Solar Energy Conference, Frankfurt, Germany, 24-28 September 2012, 2AO.1.5 IMPACT OF THE REAR SURFACE ROUGHNESS ON INDUSTRIAL-TYPE PERC SOLAR CELLS

    E-Print Network [OSTI]

    -generation industrial solar cells as stated in the International Technology Roadmap [3]. An industrial PERC process flow27th European Photovoltaic Solar Energy Conference, Frankfurt, Germany, 24-28 September 2012, 2AO.1.5 IMPACT OF THE REAR SURFACE ROUGHNESS ON INDUSTRIAL-TYPE PERC SOLAR CELLS C.Kranz1 , S. Wyczanowski1 , S

  16. THE BURST MODE OF ACCRETION AND DISK FRAGMENTATION IN THE EARLY EMBEDDED STAGES OF STAR FORMATION

    SciTech Connect (OSTI)

    Vorobyov, Eduard I. [Institute for Computational Astrophysics, Saint Mary's University, Halifax, NS B3H 3C3 (Canada); Basu, Shantanu, E-mail: vorobyov@ap.smu.c, E-mail: basu@uwo.c [Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7 (Canada)

    2010-08-20T23:59:59.000Z

    We revisit our original papers on the burst mode of accretion by incorporating a detailed energy balance equation into a thin-disk model for the formation and evolution of circumstellar disks around low-mass protostars. Our model includes the effect of radiative cooling, viscous and shock heating, and heating due to stellar and background irradiation. Following the collapse from the prestellar phase allows us to model the early embedded phase of disk formation and evolution. During this time, the disk is susceptible to fragmentation, depending upon the properties of the initial prestellar core. Globally, we find that higher initial core angular momentum and mass content favors more fragmentation, but higher levels of background radiation can moderate the tendency to fragment. A higher rate of mass infall onto the disk than that onto the star is a necessary but not a sufficient condition for disk fragmentation. More locally, both the Toomre Q-parameter needs to be below a critical value and the local cooling time needs to be shorter than a few times the local dynamical time. Fragments that form during the early embedded phase tend to be driven into the inner disk regions and likely trigger mass accretion and luminosity bursts that are similar in magnitude to FU-Orionis-type or EX-Lupi-like events. Disk accretion is shown to be an intrinsically variable process, thanks to disk fragmentation, nonaxisymmetric structure, and the effect of gravitational torques. The additional effect of a generic {alpha}-type viscosity acts to reduce burst frequency and accretion variability, and is likely to not be viable for values of {alpha} significantly greater than 0.01.

  17. Nucleosynthesis in the outflows associated with accretion disks of Type II collapsars

    E-Print Network [OSTI]

    Indrani Banerjee; Banibrata Mukhopadhyay

    2013-09-04T23:59:59.000Z

    We investigate nucleosynthesis inside the outflows from gamma-ray burst (GRB) accretion disks formed by the Type II collapsars. In these collapsars, massive stars undergo core collapse to form a proto-neutron star initially and a mild supernova explosion is driven. The supernova ejecta lack momentum and subsequently this newly formed neutron star gets transformed to a stellar mass black hole via massive fallback. The hydrodynamics and the nucleosynthesis in these accretion disks has been studied extensively in the past. Several heavy elements are synthesized in the disk and much of these heavy elements are ejected from the disk via winds and outflows. We study nucleosynthesis in the outflows launched from these disks by using an adiabatic, spherically expanding outflow model, to understand which of these elements thus synthesized in the disk survive in the outflow. While studying this we find that many new elements like isotopes of titanium, copper, zinc etc. are present in the outflows. 56Ni is abundantly synthesized in most of the cases in the outflow which implies that the outflows from these disks in a majority of cases will lead to an observable supernova explosion. It is mainly present when outflow is considered from the He-rich, 56Ni/54Fe rich zones of the disks. However, outflow from the Si-rich zone of the disk remains rich in silicon. Although, emission lines of many of these heavy elements have been observed in the X-ray afterglows of several GRBs by Chandra, BeppoSAX, XMM-Newton etc., Swift seems to have not detected these lines yet.

  18. ON THE POSSIBILITY OF ENRICHMENT AND DIFFERENTIATION IN GAS GIANTS DURING BIRTH BY DISK INSTABILITY

    SciTech Connect (OSTI)

    Boley, Aaron C. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Durisen, Richard H., E-mail: aaron.boley@gmail.co [Department of Astronomy, Indiana University, 727 East 3rd Street, Swain West 319, Bloomington, IN 47405 (United States)

    2010-11-20T23:59:59.000Z

    We investigate the coupling between rock-size solids and gas during the formation of gas giant planets by disk fragmentation in the outer regions of massive disks. In this study, we use three-dimensional radiative hydrodynamic simulations and model solids as a spatial distribution of particles. We assume that half of the total solid fraction is in small grains and half in large solids. The former are perfectly entrained with the gas and set the opacity in the disk, while the latter are allowed to respond to gas drag forces, with the back reaction on the gas taken into account. To explore the maximum effects of gas-solid interactions, we first consider 10 cm size particles. We then compare these results to a simulation with 1 km size particles, which explores the low-drag regime. We show that (1) disk instability planets have the potential to form large cores due to aerodynamic capturing of rock-size solids in spiral arms before fragmentation; (2) temporary clumps can concentrate tens of M{sub +} of solids in very localized regions before clump disruption; (3) the formation of permanent clumps, even in the outer disk, is dependent on the grain-size distribution, i.e., the opacity; (4) nonaxisymmetric structure in the disk can create disk regions that have a solids-to-gas ratio greater than unity; (5) the solid distribution may affect the fragmentation process; (6) proto-gas giants and proto-brown dwarfs can start as differentiated objects prior to the H{sub 2} collapse phase; (7) spiral arms in a gravitationally unstable disk are able to stop the inward drift of rock-size solids, even redistributing them to larger radii; and (8) large solids can form spiral arms that are offset from the gaseous spiral arms. We conclude that planet embryo formation can be strongly affected by the growth of solids during the earliest stages of disk accretion.

  19. Doppler-Shift Asymmetry in High-Velocity Maser Emission from Shocks in Circumnuclear Disks

    E-Print Network [OSTI]

    Eyal Maoz; Christopher F. McKee

    1997-04-04T23:59:59.000Z

    SHORT VERSION: The rapidly rotating, masing circumnuclear disk in the central sub-parsec region of the galaxy NGC 4258 is remarkably circular and Keplerian, yet a striking asymmetry appears in the maser spectrum: the red-shifted, high- velocity sources are much more numerous and significantly more intense than the blue-shifted ones. A similar strong asymmetry appears also in the recently discovered, masing, circumnuclear disks in NGC 1068 and NGC 4945, thus suggesting it may be a general phenomenon. We show that the observed Doppler-shift asymmetry can naturally arise due to spiral shocks in circumnuclear disks, independent of the existence of a warp in the disk or the azimuthal direction to the observer. The high velocities of these features reflect the rotational velocities in the disk, and have nothing to do with the shock speed. In NGC 4258 - the currently most well-defined masing disk - the proposed scenario can also account for the intriguing clustering of the high-velocity maser spots in distinct clumps, the restricted spatial distribution of the low-velocity sources, and the dip in the maser spectrum at the systemic velocity of the disk. In this case we infer a disk mass of ~10E4 M_sun and a mass accretion rate of order ~7E-3 M_sun/year, which may be consistent with an advection-dominated accretion flow. The model is consistent with the observed Keplerian rotation, and introduces only negligible corrections to the previously derived black hole mass and galaxy distance. Predictions include slow systematic drifts in the velocity and position of all the high-velocity features, and the existence of circumnuclear disks which are delineated only by high-velocity maser emission.

  20. METALLICITY GRADIENTS IN THE MILKY WAY DISK AS OBSERVED BY THE SEGUE SURVEY

    SciTech Connect (OSTI)

    Cheng, Judy Y. [Department of Astronomy and Astrophysics, University of California Santa Cruz, Santa Cruz, CA 95064 (United States); Rockosi, Constance M. [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Morrison, Heather L. [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106 (United States); Schoenrich, Ralph A. [Max-Planck-Institute fuer Astrophysik, Karl-Schwarzschild-Str. 1, D-85741 Garching (Germany); Lee, Young Sun; Beers, Timothy C. [Department of Physics and Astronomy and JINA (Joint Institute for Nuclear Astrophysics), Michigan State University, East Lansing, MI 48824 (United States); Bizyaev, Dmitry; Pan, Kaike [Apache Point Observatory, Sunspot, NM 88349 (United States); Schneider, Donald P., E-mail: jyc@ucolick.org [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)

    2012-02-20T23:59:59.000Z

    The observed radial and vertical metallicity distribution of old stars in the Milky Way disk provides a powerful constraint on the chemical enrichment and dynamical history of the disk system. We present the radial metallicity gradient, {Delta}[Fe/H]/{Delta}R, as a function of height above the plane, |Z|, using 7010 main-sequence turnoff stars observed by the Sloan Extension for Galactic Understanding and Exploration survey. The sample consists of mostly old thin and thick disk stars, with a minimal contribution from the stellar halo, in the region 6 kpc < R < 16 kpc, 0.15 kpc < |Z| < 1.5 kpc. The data reveal that the radial metallicity gradient becomes flat at heights |Z| > 1 kpc. The median metallicity at large |Z| is consistent with the metallicities seen in outer disk open clusters, which exhibit a flat radial gradient at [Fe/H] {approx}-0.5. We note that the outer disk clusters are also located at large |Z|; because the flat gradient extends to small R for our sample, there is some ambiguity in whether the observed trends for clusters are due to a change in R or |Z|. We therefore stress the importance of considering both the radial and vertical directions when measuring spatial abundance trends in the disk. The flattening of the gradient at high |Z| also has implications on thick disk formation scenarios, which predict different metallicity patterns in the thick disk. A flat gradient, such as we observe, is predicted by a turbulent disk at high redshift, but may also be consistent with radial migration, as long as mixing is strong. We test our analysis methods using a mock catalog based on the model of Schoenrich and Binney, and we estimate our distance errors to be {approx}25%. We also show that we can properly correct for selection biases by assigning weights to our targets.

  1. The Formation and Structure of a Strongly Magnetized Corona above Weakly Magnetized Accretion Disks

    E-Print Network [OSTI]

    K. A. Miller; J. M. Stone

    1999-12-07T23:59:59.000Z

    We use three-dimensional magnetohydrodynamical (MHD) simulations to study the formation of a corona above an initially weakly magnetized, isothermal accretion disk. We also describe a modification to time-explicit numerical algorithms for MHD which enables us to evolve highly stratified disks for many orbital times. We find that MHD turbulence driven by the magnetorotational instability (MRI) produces strong amplification of weak fields within two scale heights of the disk midplane in a few orbital times. About 25 % of the magnetic energy generated by the MRI within two scale heights escapes due to buoyancy, producing a strongly magnetized corona above the disk. Most of the buoyantly rising magnetic energy is dissipated between 3 and 5 scale heights, suggesting the corona will also be hot. The average vertical disk structure consists of a weakly magnetized turbulent core below a strongly magnetized corona which is stable to the MRI. The largescale field structure in both the disk and corona is toroidal. The functional form of the stress is flat within two scale heights, but proportional to the density above two scale heights. For initially weak uniform vertical fields, we find the exponential growth of magnetic field via axisymmetric vertical modes of the MRI produces strongly buoyant sheets of magnetic energy which break the disk apart into horizontal channels. These channels rise several scale heights vertically before the onset of the Parker instability distorts the sheets and allows matter to flow back towards the midplane and reform a disk. We suggest this evolution may be relevant to the dynamical processes which disrupt the inner regions of a disk when it interacts with a strongly magnetized central object.

  2. NUCLEOSYNTHESIS IN THE OUTFLOWS ASSOCIATED WITH ACCRETION DISKS OF TYPE II COLLAPSARS

    SciTech Connect (OSTI)

    Banerjee, Indrani; Mukhopadhyay, Banibrata, E-mail: indrani@physics.iisc.ernet.in, E-mail: bm@physics.iisc.ernet.in [Department of Physics, Indian Institute of Science, Bangalore 560 012 (India)

    2013-11-20T23:59:59.000Z

    We investigate nucleosynthesis inside the outflows from gamma-ray burst (GRB) accretion disks formed by the Type II collapsars. In these collapsars, massive stars undergo core collapse to form a proto-neutron star initially, and a mild supernova (SN) explosion is driven. The SN ejecta lack momentum, and subsequently this newly formed neutron star gets transformed to a stellar mass black hole via massive fallback. The hydrodynamics and the nucleosynthesis in these accretion disks have been studied extensively in the past. Several heavy elements are synthesized in the disk, and much of these heavy elements are ejected from the disk via winds and outflows. We study nucleosynthesis in the outflows launched from these disks by using an adiabatic, spherically expanding outflow model, to understand which of these elements thus synthesized in the disk survive in the outflow. While studying this, we find that many new elements like isotopes of titanium, copper, zinc, etc., are present in the outflows. {sup 56}Ni is abundantly synthesized in most of the cases in the outflow, which implies that the outflows from these disks in a majority of cases will lead to an observable SN explosion. It is mainly present when outflow is considered from the He-rich, {sup 56}Ni/{sup 54}Fe-rich zones of the disks. However, outflow from the Si-rich zone of the disk remains rich in silicon. Although emission lines of many of these heavy elements have been observed in the X-ray afterglows of several GRBs by Chandra, BeppoSAX, XMM-Newton, etc., Swift seems to have not yet detected these lines.

  3. Svendborg Brakes | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector:Shrenik IndustriesState of

  4. Chemo-Dynamical SPH code for evolution of star forming disk galaxies

    E-Print Network [OSTI]

    Peter Berczik

    1999-07-27T23:59:59.000Z

    A new Chemo-Dynamical Smoothed Particle Hydrodynamic (CD-SPH) code is presented. The disk galaxy is described as a multi-fragmented gas and star system, embedded in a cold dark matter halo with a rigid potential field. The star formation (SF) process, SNII, SNIa and PN events, and the chemical enrichment of gas, have all been considered within the framework of the standard SPH model, which we use to describe the dynamical and chemical evolution of triaxial disk-like galaxies. It is found that such approach provides a realistic description of the process of formation, chemical and dynamical evolution of disk galaxies over a cosmological timescale.

  5. Magnetic shear-driven instability and turbulent mixing in magnetized protostellar disks

    E-Print Network [OSTI]

    Bonanno, Alfio

    2008-01-01T23:59:59.000Z

    Observations of protostellar disks indicate the presence of the magnetic field of thermal (or superthermal) strength. In such a strong magnetic field, many MHD instabilities responsible for turbulent transport of the angular momentum are suppressed. We consider the shear-driven instability that can occur in protostellar disks even if the field is superthermal. This instability is caused by the combined influence of shear and compressibility in a magnetized gas and can be an efficient mechanism to generate turbulence in disks. The typical growth time is of the order of several rotation periods.

  6. Magnetic shear-driven instability and turbulent mixing in magnetized protostellar disks

    E-Print Network [OSTI]

    Alfio Bonanno; Vadim Urpin

    2008-01-13T23:59:59.000Z

    Observations of protostellar disks indicate the presence of the magnetic field of thermal (or superthermal) strength. In such a strong magnetic field, many MHD instabilities responsible for turbulent transport of the angular momentum are suppressed. We consider the shear-driven instability that can occur in protostellar disks even if the field is superthermal. This instability is caused by the combined influence of shear and compressibility in a magnetized gas and can be an efficient mechanism to generate turbulence in disks. The typical growth time is of the order of several rotation periods.

  7. Dark Matter and Stellar Mass in the Luminous Regions of Disk Galaxies

    E-Print Network [OSTI]

    James Pizagno; Francisco Prada; David H. Weinberg; Hans-Walter Rix; Daniel Harbeck; Eva K. Grebel; Eric Bell; Jon Brinkmann; Jon Holtzman; Andrew West

    2005-11-02T23:59:59.000Z

    We investigate the correlations among stellar mass (M_*), disk scale length (R_d), and rotation velocity at 2.2 disk scale lengths (V_2.2) for a sample of 81 disk-dominated galaxies (disk/total >= 0.9) selected from the SDSS. We measure V_2.2 from long-slit H-alpha rotation curves and infer M_* from galaxy i-band luminosities (L_i) and g-r colors. We find logarithmic slopes of 2.60+/-0.13 and 3.05+/-0.12 for the L_i-V_2.2 and M_*-V_2.2 relations, somewhat shallower than most previous studies, with intrinsic scatter of 0.13 dex and 0.16 dex. Our direct estimates of the total-to-stellar mass ratio within 2.2R_d, assuming a Kroupa IMF, yield a median ratio of 2.4 for M_*>10^10 Msun and 4.4 for M_*=10^9-10^10 Msun, with large scatter at a given M_* and R_d. The typical ratio of the rotation speed predicted for the stellar disk alone to the observed rotation speed at 2.2R_d is ~0.65. The distribution of R_d at fixed M_* is broad, but we find no correlation between disk size and the residual from the M_*-V_2.2 relation, implying that this relation is an approximately edge-on view of the disk galaxy fundamental plane. Independent of the assumed IMF, this result implies that stellar disks do not, on average, dominate the mass within 2.2R_d. We discuss our results in the context of infall models of disk formation in cold dark matter halos. A model with a disk-to-halo mass ratio m_d=0.05 provides a reasonable match to the R_d-M_* distribution for spin parameters \\lambda ranging from ~0.04-0.08, and it yields a reasonable match to the mean M_*-V_2.2 relation. A model with m_d=0.1 predicts overly strong correlations between disk size and M_*-V_2.2 residual. Explaining the wide range of halo-to-disk mass ratios within 2.2R_d requires significant scatter in m_d values, with systematically lower m_d for galaxies with lower $M_*$.

  8. Method and apparatus for bistable optical information storage for erasable optical disks

    DOE Patents [OSTI]

    Land, C.E.; McKinney, I.D.

    1988-05-31T23:59:59.000Z

    A method and an optical device for bistable storage of optical information, together with reading and erasure of the optical information, using a photoactivated shift in a field dependent phase transition between a metastable or a bias-stabilized ferroelectric (FE) phase and a stable antiferroelectric (AFE) phase in a lead lanthanum zirconate titanate (PLZT). An optical disk contains the PLZT. Writing and erasing of optical information can be accomplished by a light beam normal to the disk. Reading of optical information can be accomplished by a light beam at an incidence angle of 15 to 60 degrees to the normal of the disk. 10 figs.

  9. Method and apparatus for bistable optical information storage for erasable optical disks

    DOE Patents [OSTI]

    Land, Cecil E. (Albuquerque, NM); McKinney, Ira D. (Albuquerque, NM)

    1990-01-01T23:59:59.000Z

    A method and an optical device for bistable storage of optical information, together with reading and erasure of the optical information, using a photoactivated shift in a field dependent phase transition between a metastable or a bias-stabilized ferroelectric (FE) phase and a stable antiferroelectric (AFE) phase in an lead lanthanum zirconate titanate (PLZT). An optical disk contains the PLZT. Writing and erasing of optical information can be accomplished by a light beam normal to the disk. Reading of optical information can be accomplished by a light beam at an incidence angle of 15 to 60 degrees to the normal of the disk.

  10. Star Formation in Isolated Disk Galaxies. II. Schmidt Laws and Efficiency of Gravitational Collapse

    E-Print Network [OSTI]

    Yuexing Li; Mordecai-Mark Mac Low; Ralf S. Klessen

    2006-02-21T23:59:59.000Z

    (Abridged). We model gravitational instability in a wide range of isolated disk galaxies, using GADGET, a three-dimensional, smoothed particle hydrodynamics code. The model galaxies include a dark matter halo and a disk of stars and isothermal gas. The global Schmidt law observed in disk galaxies is quantitatively reproduced by our models. We find that the surface density of star formation rate directly correlates with the strength of local gravitational instability. The local Schmidt laws of individual galaxies in our models show clear evidence of star formation thresholds. Our results suggest that the non-linear development of gravitational instability determines the local and global Schmidt laws, and the star formation thresholds.

  11. air coupled ultrasonic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ultrasonic testing (ACUT) setup for the inspection of commercial carbon-carbon composite aircraft brake disks was developed in Intelligent Measurement and Evaluation...

  12. THE STABILITY OF LOW SURFACE BRIGHTNESS DISKS BASED ON MULTI-WAVELENGTH MODELING

    E-Print Network [OSTI]

    MacLachlan, J. M.

    To investigate the structure and composition of the dusty interstellar medium (ISM) of low surface brightness (LSB) disk galaxies, we have used multi-wavelength photometry to construct spectral energy distributions for ...

  13. Prospects for obtaining an r-process from Gamma Ray Burst Disk Winds

    E-Print Network [OSTI]

    G. C. McLaughlin; R. Surman

    2004-07-27T23:59:59.000Z

    We discuss the possibility that r-process nucleosynthesis may occur in the winds from gamma ray burst accretion disks. This can happen if the temperature of the disk is sufficiently high that electron antineutrinos are trapped as well as neutrinos. This implies accretion disks with greater than a solar mass per second accretion rate, although lower accretion rates with higher black hole spin parameters may provide viable environments as well. Additionally, the outflow from the disk must either have relatively low entropy, e.g. around s = 10, or the initial acceleration of the wind must be slow enough that it is neutrino and antineutrino capture as opposed to electron and positron capture that sets the electron fraction.

  14. Nucleosynthesis of Nickel-56 from Gamma-Ray Burst Accretion Disks

    E-Print Network [OSTI]

    R. Surman; G. C. McLaughlin; N. Sabbatino

    2011-12-12T23:59:59.000Z

    We examine the prospects for producing Nickel-56 from black hole accretion disks, by examining a range of steady state disk models. We focus on relatively slowly accreting disks in the range of 0.05 - 1 solar masses per second, as are thought to be appropriate for the central engines of long-duration gamma-ray bursts. We find that significant amounts of Nickel-56 are produced over a wide range of parameter space. We discuss the influence of entropy, outflow timescale and initial disk position on mass fraction of Nickel-56 which is produced. We keep careful track of the weak interactions to ensure reliable calculations of the electron fraction, and discuss the role of the neutrinos.

  15. On the Evolution of Dust Mineralogy, From Protoplanetary Disks to Planetary Systems

    E-Print Network [OSTI]

    Oliveira, Isa; Pontoppidan, Klaus M; van Dishoeck, Ewine F; Augereau, Jean-Charles; Merin, Bruno

    2011-01-01T23:59:59.000Z

    Mineralogical studies of silicate features emitted by dust grains in protoplanetary disks and Solar System bodies can shed light on the progress of planet formation. The significant fraction of crystalline material in comets, chondritic meteorites and interplanetary dust particles indicates a modification of the almost completely amorphous ISM dust from which they formed. The production of crystalline silicates thus must happen in protoplanetary disks, where dust evolves to build planets and planetesimals. Different scenarios have been proposed, but it is still unclear how and when this happens. This paper presents dust grain mineralogy of a complete sample of protoplanetary disks in the young Serpens cluster. These results are compared to those in the young Taurus region and to sources that have retained their protoplanetary disks in the older Upper Scorpius and Eta Chamaeleontis stellar clusters, using the same analysis technique for all samples. This comparison allows an investigation of the grain mineralo...

  16. Flux-Limited Diffusion Approximation Models of Giant Planet Formation by Disk Instability

    E-Print Network [OSTI]

    Boss, Alan P

    2008-01-01T23:59:59.000Z

    Both core accretion and disk instability appear to be required as formation mechanisms in order to explain the entire range of giant planets found in extrasolar planetary systems. Disk instability is based on the formation of clumps in a marginally-gravitationally unstable protoplanetary disk. These clumps can only be expected to contract and survive to become protoplanets if they are able to lose thermal energy through a combination of convection and radiative cooling. Here we present several new three dimensional, radiative hydrodynamics models of self-gravitating protoplanetary disks, where radiative transfer is handled in the flux-limited diffusion approximation. We show that while the flux-limited models lead to higher midplane temperatures than in a diffusion approximation model without the flux-limiter, the difference in temperatures does not appear to be sufficiently high to have any significant effect on the formation of self-gravitating clumps. Self-gravitating clumps form rapidly in the models both...

  17. Does the Collapse of a Supramassive Neutron Star Leave a Debris Disk?

    E-Print Network [OSTI]

    Margalit, Ben; Beloborodov, Andrei M

    2015-01-01T23:59:59.000Z

    One possible channel for black hole formation is the collapse of a rigidly rotating massive neutron star as it loses its angular momentum or gains excessive mass through accretion. It was proposed that part of the neutron star may form a debris disk around the black hole. Such short-lived massive disks could be the sources of powerful jets emitting cosmological gamma-ray bursts. Whether the collapse creates a disk depends on the equation of state of the neutron star. We survey a wide range of equations of states allowed by observations and find that disk formation is unfeasible. We conclude that this channel of black hole formation is incapable of producing powerful jets, and discuss implications for models of gamma-ray bursts.

  18. First optical images of circumstellar dust surrounding the debris disk candidate HD 32297

    E-Print Network [OSTI]

    P. Kalas

    2005-11-08T23:59:59.000Z

    Near-infrared imaging with the Hubble Space Telescope recently revealed a circumstellar dust disk around the A star HD 32297. Dust scattered light is detected as far as 400 AU radius and the linear morphology is consistent with a disk ~10 degrees away from an edge-on orientation. Here we present the first optical images that show the dust scattered light morphology from 560 to 1680 AU radius. The position angle of the putative disk midplane diverges by 31 degrees and the color of dust scattering is most likely blue. We associate HD 32297 with a wall of interstellar gas and the enigmatic region south of the Taurus molecular cloud. We propose that the extreme asymmetries and blue disk color originate from a collision with a clump of interstellar material as HD 32297 moves southward, and discuss evidence consistent with an age of 30 Myr or younger.

  19. Phase behavior of disk-coil molecules : from bulk thermodynamics to blends with block copolymers

    E-Print Network [OSTI]

    Kim, Yong-ju

    2013-01-01T23:59:59.000Z

    In this thesis, we explore the phase behavior of discotic molecules in various circumstances. We first study the thermodynamics of disk-coil molecules. The system shows rich phase behavior as a function of the relative ...

  20. Three Dimensional MHD Simulation of Circumbinary Accretion Disks -2. Net Accretion Rate

    E-Print Network [OSTI]

    Shi, Ji-Ming

    2015-01-01T23:59:59.000Z

    When an accretion disk surrounds a binary rotating in the same sense, the binary exerts strong torques on the gas. Analytic work in the 1D approximation indicated that these torques sharply diminish or even eliminate accretion from the disk onto the binary. However, recent 2D and 3D simulational work has shown at most modest diminution. We present new MHD simulations demonstrating that for binaries with mass ratios of 1 and 0.1 there is essentially no difference between the accretion rate at large radius in the disk and the accretion rate onto the binary. To resolve the discrepancy with earlier analytic estimates, we identify the small subset of gas trajectories traveling from the inner edge of the disk to the binary and show how the full accretion rate is concentrated onto them.

  1. Is a co-rotating Dark Disk a threat to Dark Matter Directional Detection ?

    E-Print Network [OSTI]

    Billard, J; Mayet, F; Santos, D

    2012-01-01T23:59:59.000Z

    Recent N-Body simulations are in favor of the presence of a co-rotating Dark Disk that might contribute significantly (10%-50%) to the local Dark Matter density. Such substructure could have dramatic effect on directional detection. Indeed, in the case of a null lag velocity, one expects an isotropic WIMP velocity distribution arising from the Dark Disk contribution, which might weaken the strong angular signature expected in directional detection. For a wide range of Dark Disk parameters, we evaluate in this Letter the effect of such dark component on the discovery potential of upcoming directional detectors. As a conclusion of our study, using only the angular distribution of nuclear recoils, we show that Dark Disk models as suggested by recent N-Body simulations will not affect significantly the Dark Matter reach of directional detection, even in extreme configurations.

  2. Slit disk for modified faraday cup diagnostic for determining power density of electron and ion beams

    DOE Patents [OSTI]

    Teruya, Alan T. (Livermore, CA); Elmer; John W. (Danville, CA); Palmer, Todd A. (State College, PA)

    2011-03-08T23:59:59.000Z

    A diagnostic system for characterization of an electron beam or an ion beam includes an electrical conducting disk of refractory material having a circumference, a center, and a Faraday cup assembly positioned to receive the electron beam or ion beam. At least one slit in the disk provides diagnostic characterization of the electron beam or ion beam. The at least one slit is located between the circumference and the center of the disk and includes a radial portion that is in radial alignment with the center and a portion that deviates from radial alignment with the center. The electron beam or ion beam is directed onto the disk and translated to the at least one slit wherein the electron beam or ion beam enters the at least one slit for providing diagnostic characterization of the electron beam or ion beam.

  3. An Old Disk That Can Still Form a Planetary System Edwin A. Bergin1

    E-Print Network [OSTI]

    Henning, Thomas

    transition of hydrogen deuteride, HD, toward TW Hya. HD is a good tracer of disk gas because it follows detected (9) the lowest rotational transition, J = 1 0, of hydrogen deuteride (HD) in the closest (D 55

  4. Microwave whirlpools in a rectangular-waveguide cavity with a thin ferrite disk

    E-Print Network [OSTI]

    E. O. Kamenetskii; Michael Sigalov; Reuven Shavit

    2007-07-09T23:59:59.000Z

    We study a three dimensional system of a rectangular-waveguide resonator with an inserted thin ferrite disk. The interplay of reflection and transmission at the disk interfaces together with material gyrotropy effect, gives rise to a rich variety of wave phenomena. We analyze the wave propagation based on full Maxwell-equation numerical solutions of the problem. We show that the power-flow lines of the microwave-cavity field interacting with a ferrite disk, in the proximity of its ferromagnetic resonance, form whirlpool-like electromagnetic vortices. Such vortices are characterized by the dynamical symmetry breaking. The role of ohmic losses in waveguide walls and dielectric and magnetic losses in a disk is a subject of our investigations.

  5. HIDING IN THE SHADOWS: SEARCHING FOR PLANETS IN PRE-TRANSITIONAL AND TRANSITIONAL DISKS

    SciTech Connect (OSTI)

    Dobinson, Jack; Leinhardt, Zoë M. [School of Physics, H. H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL (United Kingdom)] [School of Physics, H. H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL (United Kingdom); Dodson-Robinson, Sarah E. [Astronomy Department, University of Texas at Austin, Austin, TX 78712 (United States)] [Astronomy Department, University of Texas at Austin, Austin, TX 78712 (United States); Teanby, Nick A. [School of Earth Sciences, Wills Memorial Building, University of Bristol, Bristol, BS8 1RJ (United Kingdom)] [School of Earth Sciences, Wills Memorial Building, University of Bristol, Bristol, BS8 1RJ (United Kingdom)

    2013-11-10T23:59:59.000Z

    Transitional and pre-transitional disks can be explained by a number of mechanisms. This work aims to find a single observationally detectable marker that would imply a planetary origin for the gap and, therefore, indirectly indicate the presence of a young planet. N-body simulations were conducted to investigate the effect of an embedded planet of one Jupiter mass on the production of instantaneous collisional dust derived from a background planetesimal disk. Our new model allows us to predict the dust distribution and resulting observable markers with greater accuracy than previous works. Dynamical influences from a planet on a circular orbit are shown to enhance dust production in the disk interior and exterior to the planet orbit, while removing planetesimals from the orbit itself, creating a clearly defined gap. In the case of an eccentric planet, the gap opened by the planet is not as clear as the circular case, but there is a detectable asymmetry in the dust disk.

  6. Dynamics and Stability of Thermal Flying-height Control Sliders in Hard Disk Drives

    E-Print Network [OSTI]

    Zheng, Jinglin

    2012-01-01T23:59:59.000Z

    D. B. Bogy, "A heat transfer model for thermal fluctuationsA phenomenological heat transfer model for the molecular gas11-15]. The first heat transfer model for the head disk

  7. Augmentation of Power Output of Axisymmetric Ducted Wind Turbines by Porous Trailing Edge Disks

    E-Print Network [OSTI]

    widnall, sheila

    2014-06-30T23:59:59.000Z

    This paper presents analytical and experimental results that demonstrated that the power output from a ducted wind turbine can be dramatically increased by the addition of a trailing edge device such as a porous disk. In ...

  8. Imprint of Accretion Disk-Induced Migration on Gravitational Waves from Extreme Mass Ratio Inspirals

    E-Print Network [OSTI]

    Yunes, Nicolas

    We study the effects of a thin gaseous accretion disk on the inspiral of a stellar-mass black hole into a supermassive black hole. We construct a phenomenological angular momentum transport equation that reproduces known ...

  9. iSAX: disk-aware mining and indexing of massive time series datasets

    E-Print Network [OSTI]

    Shieh, Jin; Keogh, Eamonn

    2009-01-01T23:59:59.000Z

    on both indexing and data mining problems. Finally, in Sect.0125-6 iSAX: disk-aware mining and indexing of massive timeCurrent research in indexing and mining time series data has

  10. Role of bit patterned media in future of hard disk drives

    E-Print Network [OSTI]

    Aravindakshan, Vibin

    2007-01-01T23:59:59.000Z

    The hard disk industry has traditionally stayed competitive by competing on the means of price alone by cutting down aggressively on cost via increase of areal density. Continuing increases in the areal density of hard ...

  11. Numerical relativity simulations of thick accretion disks around tilted Kerr black holes

    E-Print Network [OSTI]

    Vassilios Mewes; José A. Font; Filippo Galeazzi; Pedro J. Montero; Nikolaos Stergioulas

    2015-06-12T23:59:59.000Z

    In this work we present 3D numerical relativity simulations of thick accretion disks around {\\it tilted} Kerr black holes. We investigate the evolution of three different initial disk models with a range of initial black hole spin magnitudes and tilt angles. For all the disk-to-black hole mass ratios considered ($0.044-0.16$) we observe significant black hole precession and nutation during the evolution. This indicates that for such mass ratios, neglecting the self-gravity of the disks by evolving them in a fixed background black hole spacetime is not justified. We find that the two more massive models are unstable against the Papaloizou-Pringle (PP) instability and that those PP-unstable models remain unstable for all initial spins and tilt angles considered, showing that the development of the instability is a very robust feature of such PP-unstable disks. The tilt between the black hole spin and the disk is strongly modulated during the growth of the PP instability, causing a partial global realignment of black hole spin and disk angular momentum in the most massive model with constant specific angular momentum $l$. For the model with non-constant $l$-profile we observe a long-lived $m=1$ non-axisymmetric structure which shows strong oscillations of the tilt angle in the inner regions of the disk. We attribute this effect to the development of Kozai-Lidov oscillations. Our simulations also confirm earlier findings that the development of the PP instability causes the long-term emission of large amplitude gravitational waves, predominantly for the $l=m=2$ multipole mode. The imprint of the BH precession on the gravitational waves from tilted BH-torus systems remains an interesting open issue that would require significantly longer simulations than those presented in this work.

  12. IMAGING DISK DISTORTION OF BE BINARY SYSTEM {delta} SCORPII NEAR PERIASTRON

    SciTech Connect (OSTI)

    Che, X.; Monnier, J. D.; Kraus, S.; Baron, F. [Astronomy Department, University of Michigan, 1034 Dennison Bldg, Ann Arbor, MI 48109-1090 (United States); Tycner, C. [Department of Physics, Central Michigan University, Mount Pleasant, MI 48859 (United States); Zavala, R. T. [US Naval Observatory, Flagstaff Station, 10391 West Naval Observatory Road, Flagstaff, AZ 86001 (United States); Pedretti, E. [European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching bei Muenchen (Germany); Ten Brummelaar, T.; McAlister, H.; Sturmann, J.; Sturmann, L.; Turner, N. [CHARA Array of Georgia State University, Mount Wilson, CA 91023 (United States); Ridgway, S. T., E-mail: xche@umich.edu [National Optical Astronomy Observatory, NOAO, Tucson, AZ (United States)

    2012-09-20T23:59:59.000Z

    The highly eccentric Be binary system {delta} Sco reached periastron during early 2011 July, when the distance between the primary and secondary was a few times the size of the primary disk in the H band. This opened a window of opportunity to study how the gaseous disks around Be stars respond to gravitational disturbance. We first refine the binary parameters with the best orbital phase coverage data from the Navy Precision Optical Interferometer. Then we present the first imaging results of the disk after the periastron, based on seven nights of five telescope observations with the MIRC combiner at the CHARA array. We found that the disk was inclined 27.{sup 0}6 {+-} 6.{sup 0}0 from the plane of the sky, had a half-light radius of 0.49 mas (2.2 stellar radii), and consistently contributed 71.4% {+-} 2.7% of the total flux in the H band from night to night, suggesting no ongoing transfer of material into the disk during the periastron. The new estimation of the periastron passage is UT 2011 July 3 07:00 {+-} 4:30. Re-analysis of archival VLTI-AMBER interferometry data allowed us to determine the rotation direction of the primary disk, constraining it to be inclined either {approx}119 Degree-Sign or {approx}171 Degree-Sign relative to the orbital plane of the binary system. We also detect inner disk asymmetries that could be explained by spot-like emission with a few percent of the disk total flux moving in Keplerian orbits, although we lack sufficient angular resolution to be sure of this interpretation and cannot yet rule out spiral density waves or other more complicated geometries.

  13. Extrasolar Planet Eccentricities from Scattering in the Presence of Residual Gas Disks

    E-Print Network [OSTI]

    Nickolas Moeckel; Sean N. Raymond; Philip J. Armitage

    2008-07-25T23:59:59.000Z

    Gravitational scattering between massive planets has been invoked to explain the eccentricity distribution of extrasolar planets. For scattering to occur, the planets must either form in -- or migrate into -- an unstable configuration. In either case, it is likely that a residual gas disk, with a mass comparable to that of the planets, will be present when scattering occurs. Using explicit hydrodynamic simulations, we study the impact of gas disks on the outcome of two-planet scattering. We assume a specific model in which the planets are driven toward instability by gravitational torques from an outer low mass disk. We find that the accretion of mass and angular momentum that occurs when a scattered planet impacts the disk can strongly influence the subsequent dynamics by reducing the number of close encounters. The eccentricity of the innermost surviving planet at the epoch when the system becomes Hill stable is not substantially altered from the gas-free case, but the outer planet is circularized by its interaction with the disk. The signature of scattering initiated by gas disk migration is thus a high fraction of low eccentricity planets at larger radii accompanying known eccentric planets. Subsequent secular evolution of the two planets in the presence of damping can further damp both eccentricities, and tends to push systems away from apsidal alignment and toward anti-alignment. We note that the late burst of accretion when the outer planet impacts the disk is in principle observable, probably via detection of a strong near-IR excess in systems with otherwise weak disk and stellar accretion signatures.

  14. A mathematical model for the electrodeposition of amorphous alloys on a rotating disk electrode

    E-Print Network [OSTI]

    Chen, Shiuan

    1986-01-01T23:59:59.000Z

    A MATHEMATICAL MODEL FOR THE ELECTRODEPOSITION OF AMORPHOUS ALLOYS ON A ROTATING DISK ELECTRODE A Thesis by SHIUAN CHEN Submitted to the Graduate College of Texas AAcM University in partial fulfillment of the requirement, for the degree... of MASTER OF SCIENCE December 19B6 Major Subject: Chemical Engineering A MATHEMATICAL MODEL FOR THE ELECTRODEPOSITION OF AMORPHOUS ALLOYS ON A ROTATING DISK ELECTRODE A Thesis by SHIUAN CHEN Approved as to style and content by: alph E. White...

  15. MAPPING H-BAND SCATTERED LIGHT EMISSION IN THE MYSTERIOUS SR21 TRANSITIONAL DISK

    SciTech Connect (OSTI)

    Follette, Katherine B.; Close, Laird [Steward Observatory, The University of Arizona, 933 N Cherry Ave, Tucson, AZ 85721 (United States)] [Steward Observatory, The University of Arizona, 933 N Cherry Ave, Tucson, AZ 85721 (United States); Tamura, Motohide; Hashimoto, Jun; Kwon, Jungmi; Kandori, Ryo [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)] [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Whitney, Barbara [Astronomy Department, University of Wisconsin-Madison, 475 N. Charter Street, Madison, WI 53706 (United States)] [Astronomy Department, University of Wisconsin-Madison, 475 N. Charter Street, Madison, WI 53706 (United States); Grady, Carol [Eureka Scientific, 2452 Delmer, Suite 100, Oakland, CA 96002 (United States)] [Eureka Scientific, 2452 Delmer, Suite 100, Oakland, CA 96002 (United States); Andrews, Sean M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)] [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Wisniewski, John [H.L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W Brooks St Norman, OK 73019 (United States)] [H.L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W Brooks St Norman, OK 73019 (United States); Brandt, Timothy D.; Dong, Ruobing [Department of Astrophysical Sciences, Princeton University, NJ 08544 (United States)] [Department of Astrophysical Sciences, Princeton University, NJ 08544 (United States); Mayama, Satoshi [The Center for the Promotion of Integrated Sciences, The Graduate University for Advanced Studies (Sokendai), Shonan International Village, Hayama-cho, Miura-gun, Kanagawa 240-0193 (Japan)] [The Center for the Promotion of Integrated Sciences, The Graduate University for Advanced Studies (Sokendai), Shonan International Village, Hayama-cho, Miura-gun, Kanagawa 240-0193 (Japan); Abe, Lyu [Laboratoire Lagrange, UMR7293, Universite de Nice-Sophia Antipolis, CNRS, Observatoire de la Cote d'Azur, F-06300 Nice (France)] [Laboratoire Lagrange, UMR7293, Universite de Nice-Sophia Antipolis, CNRS, Observatoire de la Cote d'Azur, F-06300 Nice (France); Brandner, Wolfgang; Feldt, Markus [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany)] [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Carson, Joseph [Department of Physics and Astronomy, College of Charleston, 58 Coming St., Charleston, SC 29424 (United States)] [Department of Physics and Astronomy, College of Charleston, 58 Coming St., Charleston, SC 29424 (United States); Currie, Thayne [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street M5S 3H4, Toronto Ontario (Canada)] [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street M5S 3H4, Toronto Ontario (Canada); Egner, Sebastian E. [Subaru Telescope, 650 North Aohoku Place, Hilo, HI 96720 (United States)] [Subaru Telescope, 650 North Aohoku Place, Hilo, HI 96720 (United States); Goto, Miwa, E-mail: kfollette@as.arizona.edu [Universitats-Sternwarte Munchen, Ludwig-Maximilians-Universitat, Scheinerstr. 1, D-81679 Munchen (Germany)] [Universitats-Sternwarte Munchen, Ludwig-Maximilians-Universitat, Scheinerstr. 1, D-81679 Munchen (Germany); and others

    2013-04-10T23:59:59.000Z

    We present the first near infrared (NIR) spatially resolved images of the circumstellar transitional disk around SR21. These images were obtained with the Subaru HiCIAO camera, adaptive optics, and the polarized differential imaging technique. We resolve the disk in scattered light at H-band for stellocentric 0.''1 {<=} r {<=} 0.''6 (12 {approx}< r {approx}< 75 AU). We compare our results with previously published spatially resolved 880 {mu}m continuum Submillimeter Array images that show an inner r {approx}< 36 AU cavity in SR21. Radiative transfer models reveal that the large disk depletion factor invoked to explain SR21's sub-mm cavity cannot be 'universal' for all grain sizes. Even significantly more moderate depletions ({delta} = 0.1, 0.01 relative to an undepleted disk) than those that reproduce the sub-mm cavity ({delta} {approx} 10{sup -6}) are inconsistent with our H-band images when they are assumed to carry over to small grains, suggesting that surface grains scattering in the NIR either survive or are generated by whatever mechanism is clearing the disk midplane. In fact, the radial polarized intensity profile of our H-band observations is smooth and steeply inwardly-increasing (r {sup -3}), with no evidence of a break at the 36 AU sub-mm cavity wall. We hypothesize that this profile is dominated by an optically thin disk envelope or atmosphere component. We also discuss the compatibility of our data with the previously postulated existence of a sub-stellar companion to SR21 at r {approx} 10-20 AU, and find that we can neither exclude nor verify this scenario. This study demonstrates the power of multiwavelength imaging of transitional disks to inform modeling efforts, including the debate over precisely what physical mechanism is responsible for clearing these disks of their large midplane grains.

  16. Investigating Cell Adhesion via Parallel Disk Rotational Flow: A Biocompatibility Study

    E-Print Network [OSTI]

    Rocha, Aracely

    2011-08-08T23:59:59.000Z

    INVESTIGATING CELL ADHESION VIA PARALLEL DISK ROTATIONAL FLOW: A BIOCOMPATIBILITY STUDY A Thesis by ARACELY ROCHA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 2008 Major Subject: Mechanical Engineering INVESTIGATING CELL ADHESION VIA PARALLEL DISK ROTATIONAL FLOW: A BIOCOMPATIBILITY STUDY A Thesis by ARACELY ROCHA Submitted to the Office...

  17. The Fractal Distribution of HII Regions in Disk Galaxies

    E-Print Network [OSTI]

    Nestor Sanchez; Emilio J. Alfaro

    2008-04-29T23:59:59.000Z

    It is known that the gas has a fractal structure in a wide range of spatial scales with a fractal dimension that seems to be a constant around Df = 2.7. It is expected that stars forming from this fractal medium exhibit similar fractal patterns. Here we address this issue by quantifying the degree to which star-forming events are clumped. We develop, test, and apply a precise and accurate technique to calculate the correlation dimension Dc of the distribution of HII regions in a sample of disk galaxies. We find that the determination of Dc is limited by the number of HII regions, since if there are fractal dimension among galaxies, contrary to a universal picture sometimes claimed in literature. The fractal dimension exhibits a weak but significant correlation with the absolute magnitude and, to a lesser extent, with the galactic radius. The faintest galaxies tend to distribute their HII regions in more clustered (less uniform) patterns. The fractal dimension for the brightest HII regions within the same galaxy seems to be smaller than for the faintest ones suggesting some kind of evolutionary efffect, but the obtained correlation remains unchanged if only the brightest regions are taken into account.

  18. Angle-resolved effective potentials for disk-shaped molecules

    E-Print Network [OSTI]

    Thomas Heinemann; Karol Palczynski; Joachim Dzubiella; Sabine H. L. Klapp

    2014-10-22T23:59:59.000Z

    We present an approach for calculating coarse-grained angle-resolved effective pair potentials for uniaxial molecules. For integrating out the intramolecular degrees of freedom we apply umbrella sampling and steered dynamics techniques in atomistically-resolved molecular dynamics (MD) computer simulations. Throughout this study we focus on disk-like molecules such as coronene. To develop the methods we focus on integrating out the van-der-Waals and intramolecular interactions, while electrostatic charge contributions are neglected. The resulting coarse-grained pair potential reveals a strong temperature and angle dependence. In the next step we fit the numerical data with various Gay-Berne-like potentials to be used in more efficient simulations on larger scales. The quality of the resulting coarse-grained results is evaluated by comparing their pair and many-body structure as well as some thermodynamic quantities self-consistently to the outcome of atomistic MD simulations of many particle systems. We find that angle-resolved potentials are essential not only to accurately describe crystal structures but also for fluid systems where simple isotropic potentials start to fail already for low to moderate packing fractions. Further, in describing these states it is crucial to take into account the pronounced temperature dependence arising in selected pair configurations due to bending fluctuations.

  19. Lyapunov instability of rough hard-disk fluids

    E-Print Network [OSTI]

    Jacobus A. van Meel; Harald A. Posch

    2009-04-02T23:59:59.000Z

    The dynamical instability of rough hard-disk fluids in two dimensions is characterized through the Lyapunov spectrum and the Kolmogorov-Sinai entropy, $h_{KS}$, for a wide range of densities and moments of inertia $I$. For small $I$ the spectrum separates into translation-dominated and rotation-dominated parts. With increasing $I$ the rotation-dominated part is gradually filled in at the expense of translation, until such a separation becomes meaningless. At any density, the rate of phase-space mixing, given by $h_{KS}$, becomes less and less effective the more the rotation affects the dynamics. However, the degree of dynamical chaos, measured by the maximum Lyapunov exponent, is only enhanced by the rotational degrees of freedom for high-density gases, but is diminished for lower densities. Surprisingly, no traces of Lyapunov modes were found in the spectrum for larger moments of inertia. The spatial localization of the perturbation vector associated with the maximum exponent however persists for any $I$.

  20. X-RAY IRRADIATION OF THE LkCa 15 PROTOPLANETARY DISK

    SciTech Connect (OSTI)

    Skinner, Stephen L. [CASA, University of Colorado, Boulder, CO 80309-0389 (United States)] [CASA, University of Colorado, Boulder, CO 80309-0389 (United States); Guedel, Manuel, E-mail: stephen.skinner@colorado.edu, E-mail: manuel.guedel@univie.ac.at [Department of Astronomy, University of Vienna, Tuerkenschanzstr. 17, A-1180 Vienna (Austria)] [Department of Astronomy, University of Vienna, Tuerkenschanzstr. 17, A-1180 Vienna (Austria)

    2013-03-01T23:59:59.000Z

    LkCa 15 in the Taurus star-forming region has recently gained attention as the first accreting T Tauri star likely to host a young protoplanet. High spatial resolution infrared observations have detected the suspected protoplanet within a dust-depleted inner gap of the LkCa 15 transition disk at a distance of {approx}15 AU from the star. If this object's status as a protoplanet is confirmed, then LkCa 15 will serve as a unique laboratory for constraining physical conditions within a planet-forming disk. Previous models of the LkCa 15 disk have accounted for disk heating by the stellar photosphere but have ignored the potential importance of X-ray ionization and heating. We report here the detection of LkCa 15 as a bright X-ray source with Chandra. The X-ray emission is characterized by a cool, heavily absorbed plasma component at kT {sub cool} Almost-Equal-To 0.3 keV and a harder component at kT {sub hot} Almost-Equal-To 5 keV. We use the observed X-ray properties to provide initial estimates of the X-ray ionization and heating rates within the tenuous inner disk. These estimates and the observed X-ray properties of LkCa 15 can be used as a starting point for developing more realistic disk models of this benchmark system.

  1. DISK EVOLUTION IN OB ASSOCIATIONS: DEEP SPITZER/IRAC OBSERVATIONS OF IC 1795

    SciTech Connect (OSTI)

    Roccatagliata, Veronica; Bouwman, Jeroen; Henning, Thomas; Gennaro, Mario; Sicilia-Aguilar, Aurora [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Feigelson, Eric [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Kim, Jinyoung Serena [Steward Observatory, University of Arizona, 933 N. Cherry Ave. Tucson, AZ 85721-0065 (United States); Lawson, Warrick A. [School of Physical, Environmental, and Mathematical Sciences, University of New South Wales, Australian Defence Force Academy, Canberra, ACT 2600 (Australia)

    2011-06-01T23:59:59.000Z

    We present a deep Spitzer/Infrared Array Camera (IRAC) survey of the OB association IC 1795 carried out to investigate the evolution of protoplanetary disks in regions of massive star formation. Combining Spitzer/IRAC data with Chandra/Advanced CCD Imaging Spectrometer observations, we find 289 cluster members. An additional 340 sources with an infrared excess, but without X-ray counterpart, are classified as cluster member candidates. Both surveys are complete down to stellar masses of about 1 M{sub sun}. We present pre-main-sequence isochrones computed for the first time in the Spitzer/IRAC colors. The age of the cluster, determined via the location of the Class III sources in the [3.6]-[4.5]/[3.6] color-magnitude diagram, is in the range of 3-5 Myr. As theoretically expected, we do not find any systematic variation in the spatial distribution of disks within 0.6 pc of either O-type star in the association. However, the disk fraction in IC 1795 does depend on the stellar mass: sources with masses >2 M{sub sun} have a disk fraction of {approx}20%, while lower mass objects (2-0.8 M{sub sun}) have a disk fraction of {approx}50%. This implies that disks around massive stars have a shorter dissipation timescale.

  2. Design, testing and two-dimensional flow modeling of a multiple-disk fan

    SciTech Connect (OSTI)

    Engin, Tahsin; Oezdemir, Mustafa; Cesmeci, Sevki [Department of Mechanical Engineering, The University of Sakarya, Esentepe Campus, 54187 Sakarya (Turkey)

    2009-11-15T23:59:59.000Z

    A multiple-disk Tesla type fan has been designed, tested and analyzed two-dimensionally using the conservation of angular momentum principle. Experimental results showed that such multiple-disk fans exhibited exceptionally low performance characteristics, which could be attributed to the low viscosity, tangential nature of the flow, and large mechanical energy losses at both suction and discharge sections that are comparable to the total input power. By means of theoretical analysis, local and overall shearing stresses on the disk surfaces have been determined based on tangential and radial velocity distributions of the air flow of different volume flow rates at prescribed disk spaces and rotational speeds. Then the total power transmitted by rotating disks to air flow, and the power acquired by the air flow in the gap due to transfer of angular momentum have been obtained by numerically integrating shearing stresses over the disk surfaces. Using the measured shaft and hydraulic powers, these quantities were utilized to evaluate mechanical energy losses associated with the suction and discharge sections of the fan. (author)

  3. Origin of the Metallicity Dependence of Exoplanet Host Stars in the Protoplanetary Disk Mass Distribution

    E-Print Network [OSTI]

    Wyatt, M C; Greaves, J S

    2007-01-01T23:59:59.000Z

    The probability of a star hosting a planet that is detectable in radial velocity surveys increases Ppl(Z) oc 10^2Z, where Z is metallicity. Core accretion models reproduce this trend, since the protoplanetary disk of a high metallicity star has a high density of solids and so forms cores which accrete gas before the primordial gas disk dissipates. This paper considers the origin of the form of Ppl(Z). We introduce a simple model in which detectable planets form when the mass of solids in the protoplanetary disk, Ms, exceeds a critical value. In this model the form of Ppl(Z) is a direct reflection of the distribution of protoplanetary disk masses, Mg, and the observed Ppl(Z) is reproduced if P(Mg>Mg') oc 1/Mg'^2. We argue that a protoplanetary disk's sub-mm dust mass is a pristine indicator of the mass available for planet-building and find the observed sub-mm disk mass distribution is consistent with the observed Ppl(Z) if Ms>0.5M_J is required to form detectable planets. Any planet formation model which impo...

  4. Emission Lines from the Gas Disk around TW Hydra and the Origin of the Inner Hole

    E-Print Network [OSTI]

    Gorti, Uma; Najita, Joan; Pascucci, Ilaria

    2011-01-01T23:59:59.000Z

    We compare line emission calculated from theoretical disk models with optical to sub-millimeter wavelength observational data of the gas disk surrounding TW Hya and infer the spatial distribution of mass in the gas disk. The model disk that best matches observations has a gas mass ranging from $\\sim10^{-4}-10^{-5}$\\ms\\ for $0.06{\\rm AU} 13.6$eV) flux from TW Hya. H$_2$ pure rotational line emission comes primarily from $r\\sim 1-30$AU. [OI]63$\\mu$m, HCO$^+$ and CO pure rotational lines all arise from the outer disk at $r\\sim30-120$AU. We discuss planet formation and photoevaporation as causes for the decrease in surface density of gas and dust inside 4 AU. If a planet is present, our results suggest a planet mass $\\sim 4-7$M$_J$ situated at $\\sim 3$AU. Using our photoevaporation models and the best surface density profile match to observations, we estimate a current photoevaporative mass loss rate of $4\\times10^{-9}$\\ms\\ yr$^{-1}$ and a remaining disk lifetime of $\\sim 5$ million years.

  5. Warm Gas in the Inner Disks around Young Intermediate Mass Stars

    E-Print Network [OSTI]

    Sean Brittain; Theodore Simon; Joan Najita; Terrence Rettig

    2006-12-08T23:59:59.000Z

    The characterization of gas in the inner disks around young stars is of particular interest because of its connection to planet formation. In order to study the gas in inner disks, we have obtained high-resolution K-band and M-band spectroscopy of 14 intermediate mass young stars. In sources that have optically thick inner disks, i.e. E(K-L)>1, our detection rate of the ro-vibrational CO transitions is 100% and the gas is thermally excited. Of the five sources that do not have optically thick inner disks, we only detect the ro-vibrational CO transitions from HD 141569. In this case, we show that the gas is excited by UV fluorescence and that the inner disk is devoid of gas and dust. We discuss the plausibility of the various scenarios for forming this inner hole. Our modeling of the UV fluoresced gas suggests an additional method by which to search for and/or place stringent limits on gas in dust depleted regions in disks around Herbig Ae/Be stars.

  6. On the Location of the Snow Line in a Protoplanetary Disk

    E-Print Network [OSTI]

    M. Lecar; M. Podolak; D. Sasselov; E. Chiang

    2006-02-09T23:59:59.000Z

    In a protoplanetary disk, the inner edge of the region where the temperature falls below the condensation temperature of water is referred to as the 'snow line'. Outside the snow line, water ice increases the surface density of solids by a factor of 4. The mass of the fastest growing planetesimal (the 'isolation mass') scales as the surface density to the 3/2 power. It is thought that ice-enhanced surface densities are required to make the cores of the gas giants (Jupiter and Saturn) before the disk gas dissipates. Observations of the Solar System's asteroid belt suggest that the snow line occurred near 2.7 AU. In this paper we revisit the theoretical determination of the snow line. In a minimum-mass disk characterized by conventional opacities and a mass accretion rate of 10^-8 solar masses per year, the snow line lies at 1.6-1.8 AU, just past the orbit of Mars. The minimum-mass disk, with a mass of 0.02 solar, has a life time of 2 million years with the assumed accretion rate. Moving the snow line past 2.7 AU requires that we increase the disk opacity, accretion rate, and/or disk mass by factors ranging up to an order of magnitude above our assumed baseline values.

  7. Dark Matter and Stellar Mass in the Luminous Regions of Disk Galaxies

    E-Print Network [OSTI]

    Pizagno, J; Weinberg, D H; Rix, H W; Harbeck, D; Grebel, E K; Bell, E; Brinkmann, J; Holtzman, J; West, A; Pizagno, James; Prada, Francisco; Weinberg, David H.; Rix, Hans-Walter; Harbek, Daniel; Grebel, Eva K.; Bell, Eric; Brinkmann, Jon; Holtzman, Jon; West, Andrew

    2005-01-01T23:59:59.000Z

    We investigate the correlations among stellar mass (M_*), disk scale length (R_d), and rotation velocity at 2.2 disk scale lengths (V_2.2) for a sample of 81 disk-dominated galaxies (disk/total >= 0.9) selected from the SDSS. We measure V_2.2 from long-slit H-alpha rotation curves and infer M_* from galaxy i-band luminosities (L_i) and g-r colors. We find logarithmic slopes of 2.60+/-0.13 and 3.05+/-0.12 for the L_i-V_2.2 and M_*-V_2.2 relations, somewhat shallower than most previous studies, with intrinsic scatter of 0.13 dex and 0.16 dex. Our direct estimates of the total-to-stellar mass ratio within 2.2R_d, assuming a Kroupa IMF, yield a median ratio of 2.4 for M_*>10^10 Msun and 4.4 for M_*=10^9-10^10 Msun, with large scatter at a given M_* and R_d. The typical ratio of the rotation speed predicted for the stellar disk alone to the observed rotation speed at 2.2R_d is ~0.65. The distribution of R_d at fixed M_* is broad, but we find no correlation between disk size and the residual from the M_*-V_2.2 rela...

  8. Analytical Solutions for Radiative Transfer: Implications for Giant Planet Formation by Disk Instability

    E-Print Network [OSTI]

    Alan P. Boss

    2008-12-12T23:59:59.000Z

    The disk instability mechanism for giant planet formation is based on the formation of clumps in a marginally-gravitationally unstable protoplanetary disk, which must lose thermal energy through a combination of convection and radiative cooling if they are to survive and contract to become giant protoplanets. While there is good observational support for forming at least some giant planets by disk instability, the mechanism has become theoretically contentious, with different three dimensional radiative hydrodynamics codes often yielding different results. Rigorous code testing is required to make further progress. Here we present two new analytical solutions for radiative transfer in spherical coordinates, suitable for testing the code employed in all of the Boss disk instability calculations. The testing shows that the Boss code radiative transfer routines do an excellent job of relaxing to and maintaining the analytical results for the radial temperature and radiative flux profiles for a spherical cloud with high or moderate optical depths, including the transition from optically thick to optically thin regions. These radial test results are independent of whether the Eddington approximation, diffusion approximation, or flux-limited diffusion approximation routines are employed. The Boss code does an equally excellent job of relaxing to and maintaining the analytical results for the vertical (theta) temperature and radiative flux profiles for a disk with a height proportional to the radial distance. These tests strongly support the disk instability mechanism for forming giant planets.

  9. The Total Number of Giant Planets in Debris Disks with Central Clearings

    E-Print Network [OSTI]

    Peter Faber; Alice C. Quillen

    2007-06-12T23:59:59.000Z

    Infrared spectra from the Spitzer Space Telescope (SSC) of many debris disks are well fit with a single black body temperature which suggest clearings within the disk. We assume that inside the clearing orbital instability due to planets removes dust generating planetesimal belts and dust generated by the outer disk that is scattered or drifts into the clearing. From numerical integrations we estimate a minimum planet spacing required for orbital instability (and so planetesimal and dust removal) as a function of system age and planet mass. We estimate that a 10^8 year old debris disk with a dust disk edge at a radius of 50 AU hosted by an A star must contain approximately 5 Neptune mass planets between the clearing radius and the iceline in order to remove all primordial objects within it. We infer that known debris disk systems contain at least a fifth of a Jupiter mass in massive planets. The number of planets and spacing required is insensitive to the assumed planet mass. However an order of magnitude higher total mass in planets could reside in these systems if the planets are more massive.

  10. Shocks and a Giant Planet in the Disk Orbiting BP Piscium?

    E-Print Network [OSTI]

    Melis, C; Chen, C H; Rhee, Joseph H; Song, Inseok; Zuckerman, B

    2010-01-01T23:59:59.000Z

    Spitzer IRS spectroscopy supports the interpretation that BP Piscium, a gas and dust enshrouded star residing at high Galactic latitude, is a first-ascent giant rather than a classical T Tauri star. Our analysis suggests that BP Piscium's spectral energy distribution can be modeled as a disk with a gap that is opened by a giant planet. Modeling the rich mid-infrared emission line spectrum indicates that the solid-state emitting grains orbiting BP Piscium are primarily composed of ~75 K crystalline, magnesium-rich olivine; ~75 K crystalline, magnesium-rich pyroxene; ~200 K amorphous, magnesium-rich pyroxene; and ~200 K annealed silica ('cristobalite'). These dust grains are all sub-micron sized. The giant planet and gap model also naturally explains the location and mineralogy of the small dust grains in the disk. Disk shocks that result from disk-planet interaction generate the highly crystalline dust which is subsequently blown out of the disk mid-plane and into the disk atmosphere.

  11. Discovery of a candidate protoplanetary disk around the embedded source IRc9 in Orion

    E-Print Network [OSTI]

    Nathan Smith; John Bally

    2005-02-08T23:59:59.000Z

    We report the detection of spatially-extended mid-infrared emission around the luminous embedded star IRc9 in OMC-1, as seen in 8.8, 11.7, and 18.3 micron images obtained with T-ReCS on Gemini South. The extended emission is asymmetric, and the morphology is reminiscent of warm dust disks around other young stars. The putative disk has a radius of roughly 1.5 arcsec (700 AU), and a likely dust mass of almost 10 Earth masses. The infrared spectral energy distribution of IRc9 indicates a total luminosity of about 100 Lsun, implying that it shall become an early A-type star when it reaches the main sequence. Thus, the candidate disk around IRc9 may be a young analog of the planetary debris disks around Vega-like stars and the disks of Herbig Ae stars, and may provide a laboratory in which to study the earliest phases of planet formation. A disk around IRc9 may also add weight to the hypothesis that an enhanced T Tauri-like wind from this star has influenced the molecular outflow from the OMC-1 core.

  12. The Signature of Primordial Grain Growth in the Polarized Light of the AU Mic Debris Disk

    E-Print Network [OSTI]

    James R. Graham; Paul G. Kalas; Brenda C. Matthews

    2006-09-12T23:59:59.000Z

    We have used the Hubble Space Telescope/ACS coronagraph to make polarization maps of the AU Mic debris disk. The fractional linear polarization rises monotonically from about 0.05 to 0.4 between 20 and 80 AU. The polarization is perpendicular to the disk, indicating that the scattered light originates from micron sized grains in an optically thin disk. Disk models, which simultaneously fit the surface brightness and polarization, show that the inner disk (< 40-50 AU) is depleted of micron-sized dust by a factor of more than 300, which means that the disk is collision dominated. The grains have high maximum linear polarization and strong forward scattering. Spherical grains composed of conventional materials cannot reproduce these optical properties. A Mie/Maxwell-Garnett analysis implicates highly porous (91-94%) particles. In the inner Solar System, porous particles form in cometary dust, where the sublimation of ices leaves a "bird's nest" of refractory organic and silicate material. In AU Mic, the grain porosity may be primordial, because the dust "birth ring" lies beyond the ice sublimation point. The observed porosities span the range of values implied by laboratory studies of particle coagulation by ballistic cluster-cluster aggregation. To avoid compactification, the upper size limit for the parent bodies is in the decimeter range, in agreement with theoretical predictions based on collisional lifetime arguments. Consequently, AU Mic may exhibit the signature of the primordial agglomeration process whereby interstellar grains first assembled to form macroscopic objects.

  13. Magnetohydrodynamic Simulations of Disk Galaxy Formation: the Magnetization of The Cold and Warm Medium

    E-Print Network [OSTI]

    Peng Wang; Tom Abel

    2007-12-06T23:59:59.000Z

    Using magnetohydrodynamic (MHD) adaptive mesh refinement simulations, we study the formation and early evolution of disk galaxies with a magnetized interstellar medium. For a $10^{10}$ \\msun halo with initial NFW dark matter and gas profiles, we impose a uniform $10^{-9}$ G magnetic field and follow its collapse, disk formation and evolution up to 1 Gyr. Comparing to a purely hydrodynamic simulation with the same initial condition, we find that a protogalactic field of this strength does not significantly influence the global disk properties. At the same time, the initial magnetic fields are quickly amplified by the differentially rotating turbulent disk. After the initial rapid amplification lasting $\\sim500$ Myr, subsequent field amplification appears self-regulated. As a result, highly magnetized material begin to form above and below the disk. Interestingly, the field strengths in the self-regulated regime agrees well with the observed fields in the Milky Way galaxy both in the warm and the cold HI phase and do not change appreciably with time. Most of the cold phase shows a dispersion of order ten in the magnetic field strength. The global azimuthal magnetic fields reverse at different radii and the amplitude declines as a function of radius of the disk. By comparing the estimated star formation rate (SFR) in hydrodynamic and MHD simulations, we find that after the magnetic field strength saturates, magnetic forces provide further support in the cold gas and lead to a decline of the SFR.

  14. Evolutionary Stages and Disk Properties of Young Stellar Objects in the Perseus Cloud

    E-Print Network [OSTI]

    Zhang, Hong-Xin; Fang, Min; Yuan, Hai-Bo; Zhao, Yinghe; Chang, Ruixiang; Jiang, Xuejian; Liu, Xiao-Wei; Luo, A-Li; Ma, Hongjun; Shao, Zhengyi; Wang, Xiaolong

    2015-01-01T23:59:59.000Z

    We investigated the evolutionary stages and disk properties of 211 Young stellar objects (YSOs) across the Perseus cloud by modeling the broadband optical to mid-infrared (IR) spectral energy distribution (SED). By exploring the relationships among the turnoff wave bands lambda_turnoff (longward of which significant IR excesses above the stellar photosphere are observed), the excess spectral index alpha_excess at lambda = 5.8 microns, whereas the median fractional dust luminosities L_dust/L_star tend to decrease with lambda_turnoff. This points to an inside-out disk clearing of small dust grains. Moreover, a positive correlation between alpha_excess and R_in was found at alpha_excess > ~0 and R_in > ~10 $\\times$ the dust sublimation radius R_sub, irrespective of lambda_turnoff, L_dust/L_star and disk flaring. This suggests that the outer disk flaring either does not evolve synchronously with the inside-out disk clearing or has little influence on alpha_excess shortward of 24 microns. About 23% of our YSO disk...

  15. Eclipsing Broad Emission Lines in Hercules X-1: Evidence for a Disk Wind?

    E-Print Network [OSTI]

    James Chiang

    2000-11-05T23:59:59.000Z

    We present disk wind model calculations for the broad emission lines seen in the ultraviolet spectra of the X-ray binary Hercules X-1. Recent HST/STIS observations of these lines suggest that they are kinematically linked to the orbital motion of the neutron star and exhibit a red-shifted to blue-shifted evolution of the line shape during the progression of the eclipse from ingress to egress which is indicative of disk emission. Furthermore, these lines are single-peaked which implies that they may be formed in a disk wind similar to those we have proposed as producing the broad emission lines seen in the UV spectra of active galactic nuclei. We compute line profiles as a function of eclipse phase and compare them to the observed line profiles. Various effects may modify the appearance of the lines including resonant scattering in the wind itself, self-shadowing of the warped disk from the central continuum, and self-obscuration of parts of the disk along the observer's line-of-sight. These latter two effects can cause orbital and precessional phase dependent variations in the emission lines. Hence, examination of the line profiles as a function of these phases can, in principle, provide additional information on the characteristics of the disk warp.

  16. The evolution of stellar metallicity gradients of the Milky Way disk from LSS-GAC main sequence turn-off stars: a two-phase disk formation history?

    E-Print Network [OSTI]

    Xiang, M -S; Yuan, H -B; Huang, Y; Wang, C; Ren, J -J; Chen, B -Q; Sun, N -C; Zhang, H -W; Huo, Z -Y; Rebassa-Mansergas, A

    2015-01-01T23:59:59.000Z

    We use 297 042 main sequence turn-off stars selected from the LSS-GAC to determine the radial and vertical gradients of stellar metallicity of the Galactic disk in the anti-center direction. We determine ages of those turn-off stars by isochrone fitting and measure the temporal variations of metallicity gradients. Our results show that the gradients, both in the radial and vertical directions, exhibit significant spatial and temporal variations. The radial gradients yielded by stars of oldest ages (>11 Gyr) are essentially zero at all heights from the disk midplane, while those given by younger stars are always negative. The vertical gradients deduced from stars of oldest ages (>11Gyr) are negative and show only very weak variations with the Galactocentric distance in the disk plane, $R$, while those yielded by younger stars show strong variations with $R$. After being essentially flat at the earliest epochs of disk formation, the radial gradients steepen as age decreases, reaching a maxima (steepest) at age ...

  17. GRAVITATIONAL INSTABILITY OF ROTATING, PRESSURE-CONFINED, POLYTROPIC GAS DISKS WITH VERTICAL STRATIFICATION

    SciTech Connect (OSTI)

    Kim, Jeong-Gyu; Kim, Woong-Tae [Center for the Exploration of the Origin of the Universe (CEOU), Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Seo, Young Min; Hong, Seung Soo, E-mail: jgkim@astro.snu.ac.kr, E-mail: wkim@astro.snu.ac.kr, E-mail: seo3919@email.arizona.edu, E-mail: sshong@astro.snu.ac.kr [FPRD, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2012-12-20T23:59:59.000Z

    We investigate the gravitational instability (GI) of rotating, vertically stratified, pressure-confined, polytropic gas disks using a linear stability analysis as well as analytic approximations. The disks are initially in vertical hydrostatic equilibrium and bounded by a constant external pressure. We find that the GI of a pressure-confined disk is in general a mixed mode of the conventional Jeans and distortional instabilities, and is thus an unstable version of acoustic-surface-gravity waves. The Jeans mode dominates in weakly confined disks or disks with rigid boundaries. On the other hand, when the disk has free boundaries and is strongly pressure confined, the mixed GI is dominated by the distortional mode that is surface-gravity waves driven unstable under their own gravity and thus incompressible. We demonstrate that the Jeans mode is gravity-modified acoustic waves rather than inertial waves and that inertial waves are almost unaffected by self-gravity. We derive an analytic expression for the effective sound speed c{sub eff} of acoustic-surface-gravity waves. We also find expressions for the gravity reduction factors relative to a razor-thin counterpart that are appropriate for the Jeans and distortional modes. The usual razor-thin dispersion relation, after correcting for c{sub eff} and the reduction factors, closely matches the numerical results obtained by solving a full set of linearized equations. The effective sound speed generalizes the Toomre stability parameter of the Jeans mode to allow for the mixed GI of vertically stratified, pressure-confined disks.

  18. Resolved debris disk emission around eta Tel: a young Solar System or ongoing planet formation?

    E-Print Network [OSTI]

    R. Smith; L. J. Churcher; M. C. Wyatt; M. M. Moerchen; C. M. Telesco

    2008-10-28T23:59:59.000Z

    60% of the A star members of the 12 Myr old beta Pictoris moving group (BPMG) show significant excess emission in the mid-infrared, several million years after the proto-planetary disk is thought to disperse. Theoretical models suggest this peak may coincide with the formation of Pluto-sized planetesimals in the disk, stirring smaller bodies into collisional destruction. Here we present resolved mid-infrared imaging of the disk of eta Tel (A0V in the BPMG) and consider its implications for the state of planet formation in this system. eta Tel was observed at 11.7 and 18.3um using T-ReCS on Gemini South. The resulting images were compared to simple disk models to constrain the radial distribution of the emitting material. The emission observed at 18.3um is shown to be significantly extended beyond the PSF along a position angle 8 degrees. This is the first time dust emission has been resolved around eta Tel. Modelling indicates that the extension arises from an edge-on disk of radius 0.5 arcsec (~24 AU). Combining the spatial constraints from the imaging with those from the spectral energy distribution shows that >50% of the 18um emission comes from an unresolved dust component at ~4 AU. The radial structure of the eta Tel debris disk is reminiscent of the Solar System, suggesting that this is a young Solar System analogue. For an age of 12Myr, both the radius and dust level of the extended cooler component are consistent with self-stirring models for a protoplanetary disk of 0.7 times minimum mass solar nebula. The origin of the hot dust component may arise in an asteroid belt undergoing collisional destruction, or in massive collisions in ongoing terrestrial planet formation.

  19. Hard Disk/Solid State Drive Synergy in Support of Data-Intensive Computing

    SciTech Connect (OSTI)

    Liu,Ke [Los Alamos National Laboratory; Jiang, Song [Los Alamos National Laboratory; Davis, Kei [Los Alamos National Laboratory

    2012-07-19T23:59:59.000Z

    Data-intensive applications are becoming increasingly common in high-performance computing. Examples include combustion simulation, human genome analysis, and satellite image processing. Efficient access of data sets is critical to the performance of these applications. Because of the size of the data today's economically feasible approach is to store the data files on an array of hard disks or data servers equipped with hard disks and managed by a parallel file system such as PVFS or Lustre wherein the data is striped over a (large) number of disks for high aggregate I/O throughout. With file striping, a request for a segment of logically contiguous file space is decomposed into multiple sub-requests, each to a different server. While the data unit for this striping is usually reasonably large to benefit disk efficiency, the first and/or last sub-requests can be much smaller than the striping unit if the request does not align with the striping pattern, severely compromising hard disk efficiency and thus application performance. We propose to exploit solid state drives (SSD), whose efficiency is much less sensitive to small random accesses, to enable the alignment of requests to disk with the data striping pattern. In this scheme hard disks mainly serve large, aligned, sequential requests, with SSDs serving small or unaligned requests, thus respecting the relative cost, performance, and durability characteristics of the two media, and thereby achieving synergy in performance/cost. We will describe the design of the proposed scheme, its implementation on CCS-7's Darwin cluster, and performance results.

  20. CHEMISTRY OF IMPACT-GENERATED SILICATE MELT-VAPOR DEBRIS DISKS

    SciTech Connect (OSTI)

    Visscher, Channon [Department of Space Studies, Southwest Research Institute, Boulder, CO 80302 (United States); Fegley, Bruce Jr. [Planetary Chemistry Laboratory, Department of Earth and Planetary Sciences and McDonnell Center for Space Sciences, Washington University in St. Louis, St. Louis, MO 63130 (United States)

    2013-04-10T23:59:59.000Z

    In the giant impact theory for lunar origin, the Moon forms from material ejected by the impact into an Earth-orbiting disk. Here we report the initial results from a silicate melt-vapor equilibrium chemistry model for such impact-generated planetary debris disks. In order to simulate the chemical behavior of a two-phase (melt+vapor) disk, we calculate the temperature-dependent pressure and chemical composition of vapor in equilibrium with molten silicate from 2000 to 4000 K. We consider the elements O, Na, K, Fe, Si, Mg, Ca, Al, Ti, and Zn for a range of bulk silicate compositions (Earth, Moon, Mars, eucrite parent body, angrites, and ureilites). In general, the disk atmosphere is dominated by Na, Zn, and O{sub 2} at lower temperatures (<3000 K) and SiO, O{sub 2}, and O at higher temperatures. The high-temperature chemistry is consistent for any silicate melt composition, and we thus expect abundant SiO, O{sub 2}, and O to be a common feature of hot, impact-generated debris disks. In addition, the saturated silicate vapor is highly oxidizing, with oxygen fugacity (f{sub O{sub 2}}) values (and hence H{sub 2}O/H{sub 2} and CO{sub 2}/CO ratios) several orders of magnitude higher than those in a solar-composition gas. High f{sub O{sub 2}} values in the disk atmosphere are found for any silicate composition because oxygen is the most abundant element in rock. We thus expect high oxygen fugacity to be a ubiquitous feature of any silicate melt-vapor disk produced via collisions between rocky planets.