Sample records for discussions awa safety

  1. Recent Experiment on Wakefield Transformer Ratio Enhancement at AWA

    SciTech Connect (OSTI)

    Jing, C.; Kanareykin, A. [Euclid Techlabs, LLC, 5900 Harper Rd, Solon, OH 44139 (United States); High Energy Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Power, J. G.; Conde, M.; Liu, W.; Yusof, Z.; Gai, W. [High Energy Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2010-11-04T23:59:59.000Z

    One technique to enhance the transformer ratio beyond the ordinary limit of 2 in a collinear wakefield acceleration scheme is to use a ramped bunched train (RBT). The first experimental demonstration has been reported in [1]. However, due to the mismatch between the beam bunch length and frequency of the accelerating structure, the observed transformer ratio was only marginally above 2 in the earlier experiment. We recently revisited this experiment with an optimized bunch length using the laser stacking technique at Argonne Wakefield Accelerator (AWA) facility. A transformer ratio of 3.4 has been measured using two drive bunches. Attempting to use four drive bunches met with major challenges. In this article, measurement results and data analysis from these experiments are presented in detail.

  2. Natelson Lab abbreviated safety procedures For full, detailed discussion of lab safety, see Natelson Lab Safety Manual and Chemical Hygiene Plan.

    E-Print Network [OSTI]

    Natelson, Douglas

    Natelson Lab Safety Manual and Chemical Hygiene Plan. An additional resource is "Prudent Practices-348-2485 (Based in part on 2012 Tour Lab chemical hygiene plan) Updated, September, 2013 #12;Major Medical

  3. Upgrade of the Drive LINAC for the AWA Facility Dielectric Two-Beam Accelerator

    SciTech Connect (OSTI)

    Power, John; /Argonne; Conde, Manoel; /Argonne; Gai, Wei; /Argonne; Li, Zenghai; /SLAC; Mihalcea, Daniel; /Northern Illinois U.

    2012-07-02T23:59:59.000Z

    We report on the design of a seven-cell, standing-wave, 1.3-GHz rf cavity and the associated beam dynamics studies for the upgrade of the drive beamline LINAC at the Argonne Wakefield Accelerator (AWA) facility. The LINAC design is a compromise between single-bunch operation (100 nC {at} 75 MeV) and minimization of the energy droop along the bunch train during bunch-train operation. The 1.3-GHz drive bunch-train target parameters are 75 MeV, 10-20-ns macropulse duration, and 16 x 60 nC microbunches; this is equivalent to a macropulse current and beam power of 80 A and 6 GW, respectively. Each LINAC structure accelerates approximately 1000 nC in 10 ns by a voltage of 11 MV at an rf power of 10 MW. Due to the short bunch-train duration desired ({approx}10 ns) and the existing frequency (1.3 GHz), compensation of the energy droop along the bunch train is difficult to accomplish by means of the two standard techniques: time-domain or frequency-domain beam loading compensation. Therefore, to minimize the energy droop, our design is based on a large stored energy rf cavity. In this paper, we present our rf cavity optimization method, detailed rf cavity design, and beam dynamics studies of the drive beamline.

  4. DiscussionPaper|DiscussionPaper|DiscussionPaper|DiscussionPaper| The Cryosphere Discuss., 7, 20292060, 2013

    E-Print Network [OSTI]

    Stocker, Thomas

    Attribution 3.0 License. Solid Earth penAccess penAccess Solid Earth Discussions The Cryosphere Open of N2, O2 and CO2 mixing ratios in a 1.5 million years old ice core B. Bereiter1,2 , H. Fischer1,2 , J of the International Partnerships in Ice Core Sciences (IPICS), one target is to retrieve an ice core reaching back

  5. Faraday Discuss., 1998, 109, 493516 General Discussion

    E-Print Network [OSTI]

    Kaiser, Ralf I.

    the extra- terrestrial origin of PAHs in the Martian meteorite ALH84001 has been extensively discussed against terrestrial contami- nation and how is this result connected to the origin of the PAHs? 1 J. L responded: Recent measurement of water-soluble amino acids by Bada et al.1 in ALH84001 demonstrated

  6. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-24T23:59:59.000Z

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  7. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-16T23:59:59.000Z

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  8. Carbon Additionality: Discussion Paper

    E-Print Network [OSTI]

    Carbon Additionality: A review Discussion Paper Gregory Valatin November 2009 Forest Research. Voluntary Carbon Standards American Carbon Registry Forest Carbon Project Standard (ACRFCPS) 27 CarbonFix Standard (CFS) 28 Climate, Community and Biodiversity Standard (CCBS) 28 Forest Carbon Standard (FCS) 28

  9. RESEARCH SAFETY RADIATION SAFETY

    E-Print Network [OSTI]

    and Communications Manager (951) 827-6303 janette.ducut@ucr.edu Beiwei Tu, MS, CIH, CSP Safety and Industrial Hygiene

  10. Deputy Secretary Poneman Discusses Nuclear Safety at the IAEA | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrack graphics4 VolumeAgua Caliente(DNFSB)ofSelected toof

  11. Superconducting x-ray lithography source Phase 1 (XLS) safety analysis report

    SciTech Connect (OSTI)

    Blumberg, L. (ed.)

    1990-07-01T23:59:59.000Z

    This paper discusses safety aspects associated with the superconducting x-ray lithography source. The policy, building systems safety and storage ring systems safety are specifically addressed. (LSP)

  12. Discussions

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro SiteDaytonDestilariaDirectDirect Global

  13. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20T23:59:59.000Z

    The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

  14. achieving industrial safety: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety culture refers to the attitudes, behaviors, and conditions that affect safety performance and often arises in discussions following incidents at nuclear power plants. As it...

  15. An overview of software safety standards

    SciTech Connect (OSTI)

    Lawrence, J.D.

    1995-10-01T23:59:59.000Z

    The writing of standards for software safety is an increasingly important activity. This essay briefly describes the two primary standards-writing organizations, IEEE and IEC, and provides a discussion of some of the more interesting software safety standards.

  16. Fire Safety Committee Meeting Minutes- May 2014

    Broader source: Energy.gov [DOE]

    DOE Fire Safety Committee Meeting Minutes, May, 2014 Topics included discussions on Fire modeling, revisions to DOE regulations and other important items relating to DOE and Fire Safety Community.

  17. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22T23:59:59.000Z

    The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

  18. Biological Safety

    Broader source: Energy.gov [DOE]

    The DOE's Biological Safety Program provides a forum for the exchange of best practices, lessons learned, and guidance in the area of biological safety. This content is supported by the Biosurety Executive Team. The Biosurety Executive Team is a DOE-chartered group. The DOE Office of Worker Safety and Health Policy provides administrative support for this group. The group identifies biological safety-related issues of concern to the DOE and pursues solutions to issues identified.

  19. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-13T23:59:59.000Z

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

  20. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22T23:59:59.000Z

    This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

  1. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04T23:59:59.000Z

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

  2. DISCUSSIONS AND CLOSURES Discussion of "1907 Static Liquefaction

    E-Print Network [OSTI]

    from the north dike failure of the Wachu sett Dam by force matching the postfailure geometry. The post-------------- DISCUSSIONS AND CLOSURES Discussion of "1907 Static Liquefaction Flow Failure of North Dike of Wachusett Dam" by Scott M. Olson, Timothy D. Stark, William H. Walton, and Gonzalo Castro

  3. Safety study application guide. Safety Analysis Report Update Program

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    Martin Marietta Energy Systems, Inc., (Energy Systems) is committed to performing and documenting safety analyses for facilities it manages for the Department of Energy (DOE). Included are analyses of existing facilities done under the aegis of the Safety Analysis Report Upgrade Program, and analyses of new and modified facilities. A graded approach is used wherein the level of analysis and documentation for each facility is commensurate with the magnitude of the hazard(s), the complexity of the facility and the stage of the facility life cycle. Safety analysis reports (SARs) for hazard Category 1 and 2 facilities are usually detailed and extensive because these categories are associated with public health and safety risk. SARs for Category 3 are normally much less extensive because the risk to public health and safety is slight. At Energy Systems, safety studies are the name given to SARs for Category 3 (formerly {open_quotes}low{close_quotes}) facilities. Safety studies are the appropriate instrument when on-site risks are limited to irreversible consequences to a few people, and off-site consequences are limited to reversible consequences to a few people. This application guide provides detailed instructions for performing safety studies that meet the requirements of DOE Orders 5480.22, {open_quotes}Technical Safety Requirements,{close_quotes} and 5480.23, {open_quotes}Nuclear Safety Analysis Reports.{close_quotes} A seven-chapter format has been adopted for safety studies. This format allows for discussion of all the items required by DOE Order 5480.23 and for the discussions to be readily traceable to the listing in the order. The chapter titles are: (1) Introduction and Summary, (2) Site, (3) Facility Description, (4) Safety Basis, (5) Hazardous Material Management, (6) Management, Organization, and Institutional Safety Provisions, and (7) Accident Analysis.

  4. Free Energy Code Online Discussion

    E-Print Network [OSTI]

    Free Energy Code Online Discussion for Building Department Personnel Join us for this FREE 90 Bruce Cheney from Anchors Aweigh Energy, LLC want to hear from YOU on residential HVAC changeout issues of the California Energy Commission. Date: 3 dates currently offered, choose the one that works for you

  5. Conclusions 7.1 Discussion

    E-Print Network [OSTI]

    Rodríguez, Inmaculada

    the movement of human characters. In addition to realistic appearance, a virtual human should exhibit realisticChapter 7 Conclusions 7.1 Discussion During the last years, the evolution of realistic animation of virtual characters has been tackled from two directions of research. The first one involves facial

  6. WTP Communications Strategy Discussion Topics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOE Awards ContractRebuttalCaseDiscussion Topics

  7. LASER SAFETY POLICY MANUAL ENVIRONMENTAL HEALTH & SAFETY

    E-Print Network [OSTI]

    Houston, Paul L.

    LASER SAFETY POLICY MANUAL ISSUED BY ENVIRONMENTAL HEALTH & SAFETY OFFICE OF RADIOLOGICAL SAFETY and GEORGIA TECH LASER SAFETY COMMITTEE July 1, 2010 Revised July 31, 2012 #12;Laser Safety Program 1-1 #12;Laser Safety Policy Manual TABLE OF CONTENTS 1. POLICY AND SCOPE

  8. ENVIRONMENTAL HEALTH AND SAFETY GENERAL SAFETY MANUAL

    E-Print Network [OSTI]

    Maroncelli, Mark

    ENVIRONMENTAL HEALTH AND SAFETY GENERAL SAFETY MANUAL May 10, 2002 #12;i Acknowledgements Environmental Health and Safety gratefully acknowledges the assistance provided by the University Safety Council extremely helpful. #12;ii Environmental Health and Safety General Safety Manual Table of Contents Section

  9. Safety Bulletin

    Broader source: Energy.gov (indexed) [DOE]

    in the documented safety analysis. BACKGROUND On March 11 , 2011 , the Fukushima Daiichi nuclear power station in Japan was damaged by a magnitude 9.0 earthquake and the...

  10. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-20T23:59:59.000Z

    To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

  11. Review of light water reactor safety

    SciTech Connect (OSTI)

    Cheng, H.S.

    1980-12-01T23:59:59.000Z

    A review of the present status of light water reactor (LWR) safety is presented. The review starts with a brief discussion of the outstanding accident scenarios concerning LWRs. Where possible the areas of present technological uncertainties are stressed. To provide a better perspective of reactor safety, it then reviews the probabilistic assessment of the outstanding LWR accidents considered in the Reactor Safety Study (WASH-1400) and discusses the potential impact of the present technological uncertainties on WASH-1400.

  12. Toolbox Safety Talk Ladder Safety

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Health & Safety for recordkeeping. Slips, trips, and falls constitute the majority of general industry and construction worker injuries. Falls cause 15% of all accidental deaths, and are second only to motor vehicle

  13. To discuss illicit nuclear trafficking

    SciTech Connect (OSTI)

    Balatsky, Galya I [Los Alamos National Laboratory; Severe, William R [Los Alamos National Laboratory; Wallace, Richard K [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    The Illicit nuclear trafficking panel was conducted at the 4th Annual INMM workshop on Reducing the Risk from Radioactive and Nuclear Materials on February 2-3, 2010 in Washington DC. While the workshop occurred prior to the Nuclear Security Summit, April 12-13 2010 in Washington DC, some of the summit issues were raised during the workshop. The Communique of the Washington Nuclear Security Summit stated that 'Nuclear terrorism is one of the most challenging threats to international security, and strong nuclear security measures are the most effective means to prevent terrorists, criminals, or other unauthorized actors from acquiring nuclear materials.' The Illicit Trafficking panel is one means to strengthen nuclear security and cooperation at bilateral, regional and multilateral levels. Such a panel promotes nuclear security culture through technology development, human resources development, education and training. It is a tool which stresses the importance of international cooperation and coordination of assistance to improve efforts to prevent and respond to incidents of illicit nuclear trafficking. Illicit trafficking panel included representatives from US government, an international organization (IAEA), private industry and a non-governmental organization to discuss illicit nuclear trafficking issues. The focus of discussions was on best practices and challenges for addressing illicit nuclear trafficking. Terrorism connection. Workshop discussions pointed out the identification of terrorist connections with several trafficking incidents. Several trafficking cases involved real buyers (as opposed to undercover law enforcement agents) and there have been reports identifying individuals associated with terrorist organizations as prospective plutonium buyers. Some specific groups have been identified that consistently search for materials to buy on the black market, but no criminal groups were identified that specialize in nuclear materials or isotope smuggling. In most cases, sellers do not find legitimate buyers; however, there have been specific cases where sellers did find actual terrorist group representatives. There appears to be a connection between terrorist groups engaged in trafficking conventional arms and explosives components that are also looking for both nuclear materials and radioisotopes. Sale opportunities may create additional demand for such materials. As we can observe from Figure 1, many cases in the mid-90s involved kilogram quantities of material. There were smaller amounts of material moved in 2001, 2003 and 2006. While we have seen less trafficking cases involving PujHEU in recent years, the fact that it continues at all is troubling. The trafficking cases can be presented through their life cycle: Diversion of materials leads to Trafficker and then to Terrorist/Proliferator. Most of the information we have in trafficking cases is on the Trafficker. In 16 cases reported by the IAEA, there are 10 prosecutions of the involved trafficker. However, there are no confirmed diversions of material recorded in any of the 18 seizures. Most seizures were sting operations performed by law enforcement or security agents with no actual illicit end-user involved.

  14. Safety program considerations for space nuclear reactor systems

    SciTech Connect (OSTI)

    Cropp, L.O.

    1984-08-01T23:59:59.000Z

    This report discusses the necessity for in-depth safety program planning for space nuclear reactor systems. The objectives of the safety program and a proposed task structure is presented for meeting those objectives. A proposed working relationship between the design and independent safety groups is suggested. Examples of safety-related design philosophies are given.

  15. Health and safety

    SciTech Connect (OSTI)

    Snyder, K. (Mine Safety and Health Administration (US))

    1990-05-01T23:59:59.000Z

    This article discusses health and safety in coal mines and the primary issues in this area during 1989. Particular attention is given to the employment figures as well as the fatality statistics. According to this article, employment was up during 1989 to approximately 164,000 workers as compared to 136,000 in 1969. Attention is also given to dealing with coal mining regulations as well as a crackdown on illegal operators in the industry.

  16. Toolbox Safety Talk Welding & Metal Work Safety

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Toolbox Safety Talk Welding & Metal Work Safety Environmental Health & Safety Facilities Safety or harmful emission giving metals. Welding Safety When welding outside of a designated welding booth, ensure injury. Avoid welding on materials such as galvanized or stainless steel in order to minimize toxic fume

  17. DOE Hydrogen Transition Analysis Workshop Discussion Comments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop Discussion Comments, Questions, and Action Items DOE Hydrogen Transition Analysis Workshop Discussion Comments, Questions, and Action Items Discussion comments, questions,...

  18. Occupational Safety Review of High Technology Facilities

    SciTech Connect (OSTI)

    Lee Cadwallader

    2005-01-31T23:59:59.000Z

    This report contains reviews of operating experiences, selected accident events, and industrial safety performance indicators that document the performance of the major US DOE magnetic fusion experiments and particle accelerators. These data are useful to form a basis for the occupational safety level at matured research facilities with known sets of safety rules and regulations. Some of the issues discussed are radiation safety, electromagnetic energy exposure events, and some of the more widespread issues of working at height, equipment fires, confined space work, electrical work, and other industrial hazards. Nuclear power plant industrial safety data are also included for comparison.

  19. Nuclear Safety Regulatory Framework

    Broader source: Energy.gov (indexed) [DOE]

    overall Nuclear Safety Policy & ESH Goals Safety Basis Review and Approval In the DOE governance model, contractors responsible for the facility develop the safety basis and...

  20. Gas Pipeline Safety (Indiana)

    Broader source: Energy.gov [DOE]

    This section establishes the Pipeline Safety Division within the Utility Regulatory Commission to administer federal pipeline safety standards and establish minimum state safety standards for...

  1. IMPORTANCE OF SAFETY CULTURE ASSESSMENT

    SciTech Connect (OSTI)

    Spitalnik, J.

    2004-10-06T23:59:59.000Z

    Safety Management has lately been considered by some Nuclear Regulatory agencies as the tool on which to concentrate their efforts to implement modern regulation structures, because Safety Culture was said to be difficult to monitor. However, Safety Culture can be assessed and monitored even if it is problematical to make Safety Culture the object of regulation. This paper stresses the feasibility and importance of Safety Culture Assessment based on self-assessment applications performed in several nuclear organizations in Latin America. Reasons and ownership for assessing Safety Culture are discussed, and relevant aspects considered for setting up and programming such an assessment are shown. Basic principles that were taken into account, as well as financial and human resources used in actual self-assessments are reviewed, including the importance of adequate statistical analyses and the necessity of proper feed-back of results. The setting up of action plans to enhance Safety Culture is the final step of the assessment program that once implemented will enable to establish a Safety Culture monitoring process within the organization.

  2. Japanese Computing Center Discusses Potential Collaborations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Japanese Computing Center Discusses Potential Collaborations Japanese Computing Center Discusses Potential Collaborations February 26, 2011 Representatives from Japan's Tsukuba...

  3. Laser Safety Introduction

    E-Print Network [OSTI]

    McQuade, D. Tyler

    use Integrated Safety Management here at the lab to reduce risk and work to improve the quality and safety of the work? #12;Integrated Safety Management Use (greater in size than wavelength) #12;Integrated Safety Management Remember, we

  4. Visite du navire ocanographique Bilan de la campagne scientifique AWA

    E-Print Network [OSTI]

    du Maroc. Les scientifiques issus de ces pays données à bord du navire. La visite guidée du navire Sénégal, en présence d d'Allemagne, de la Belgique, du Cap-Vert, de la Guinée Bissau, du Royaume du Maroc

  5. Safety review advisor

    SciTech Connect (OSTI)

    Boshers, J.A.; Alguindigue, I.E.; Uhrig, R.E. (Tennessee Univ., Knoxville, TN (USA). Dept. of Nuclear Engineering); Burnett, C.G. (Tennessee Valley Authority, Knoxville, TN (USA))

    1989-01-01T23:59:59.000Z

    The University of Tennessee's Nuclear Engineering Department, in cooperation with the Tennessee Valley Authority (TVA), is evaluating the feasibility of utilizing an expert system to aid in 10CFR50.59 evaluations. This paper discusses the history of 10CFR50.59 reviews, and details the development approach used in the construction of a prototype Safety Review Advisor (SRA). The goals for this expert system prototype are to (1) aid the engineer in the evaluation process by directing his attention to the appropriate critical issues, (2) increase the efficiency, consistency, and thoroughness of the evaluation process, and (3) provide a foundation of appropriate Safety Analysis Report (SAR) references for the reviewer. 6 refs., 2 figs.

  6. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-06-21T23:59:59.000Z

    DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

  7. Safety valve

    DOE Patents [OSTI]

    Bergman, Ulf C. (Malmoe, SE)

    1984-01-01T23:59:59.000Z

    The safety valve contains a resilient gland to be held between a valve seat and a valve member and is secured to the valve member by a sleeve surrounding the end of the valve member adjacent to the valve seat. The sleeve is movable relative to the valve member through a limited axial distance and a gap exists between said valve member and said sleeve.

  8. Safety Share from National Safety Council

    Broader source: Energy.gov [DOE]

    Slide Presentation by Joe Yanek, Fluor Government Group. National Safety Council Safety Share. The Campbell Institute is the “Environmental, Health and Safety (EHS) Center of Excellence” at the National Safety Council and provides a Forum for Leaders in EHS to exchange ideas and collaborate across industry sectors and organizational types.

  9. Delivering safety

    SciTech Connect (OSTI)

    Baldwin, N.D.; Spooner, K.G.; Walkden, P. [British Nuclear Group Ltd, Daresbury, Warrington (United Kingdom)

    2007-07-01T23:59:59.000Z

    In the United Kingdom there have been significant recent changes to the management of civil nuclear liabilities. With the formation in April 2005 of the Nuclear Decommissioning Authority (NDA), ownership of the civil nuclear licensed sites in the UK, including the Magnox Reactor Stations, passed to this new organisation. The NDAs mission is to seek acceleration of the nuclear clean up programme and deliver increased value for money and, consequently, are driving their contractors to seek more innovative ways of performing work. British Nuclear Group manages the UK Magnox stations under contract to the NDA. This paper summarises the approach being taken within its Reactor Sites business to work with suppliers to enhance working arrangements at sites, improve the delivery of decommissioning programmes and deliver improvements in safety and environmental performance. The UK Magnox stations are 1. generation gas-graphite reactors, constructed in the 1950's and 1960's. Two stations are currently still operating, three are shut-down undergoing defueling and the other five are being decommissioned. Despite the distractions of industry restructuring, an uncompromising policy of demanding improved performance in conjunction with improved safety and environmental standards has been adopted. Over the past 5 years, this policy has resulted in step-changes in performance at Reactor Sites, with increased electrical output and accelerated defueling and decommissioning. The improvements in performance have been mirrored by improvements in safety (DACR of 0 at 5 sites); environmental standards (reductions in energy and water consumption, increased waste recycling) and the overall health of the workforce (20% reduction in sickness absence). These achievements have, in turn, been recognised by external bodies, resulting in several awards, including: the world's first ISRS and IERS level 10 awards (Sizewell, 2006), the NUMEX plant maintenance award (Bradwell, 2006), numerous RoSPA awards at site and sector level and nomination, at Company level, for the RoSPA George Earle trophy for outstanding performance in Health and Safety (Reactor Sites, 2006). After 'setting the scene' and describing the challenges that the company has had to respond to, the paper explains how these improvements have been delivered. Specifically it explains the process that has been followed and the parts played by sites and suppliers to deliver improved performance. With the experience of already having transitioned several Magnox stations from operations to defueling and then to decommissioning, the paper describes the valuable experience that has been gained in achieving an optimum change process and maintaining momentum. (authors)

  10. Safety, Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly throughR EMaterialsSafety, Security

  11. The safety valve and climate policy

    E-Print Network [OSTI]

    Jacoby, Henry D.; Ellerman, A. Denny.

    In discussions of a cap-and-trade system for implementation of Kyoto Protocol-type quantity targets, a "safety valve" was proposed where, by government sales of emissions permits at a fixed price, the marginal cost of the ...

  12. CRAD, Nuclear Safety Delegations for Documented Safety Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety Delegations for Documented Safety Analysis Approval - January 8, 2015 (EA CRAD 31-09, Rev. 0) CRAD, Nuclear Safety Delegations for Documented Safety Analysis Approval -...

  13. ATV Safety 

    E-Print Network [OSTI]

    Smith, David

    2004-09-16T23:59:59.000Z

    All-terrain vehicles are very popular for off-road recreation. However, the number of injuries and deaths from ATV accidents is growing rapidly. This publication lists the causes of injuries and fatalities, discusses Texas ATV laws, and provides...

  14. ATV Safety

    E-Print Network [OSTI]

    Smith, David

    2004-09-16T23:59:59.000Z

    All-terrain vehicles are very popular for off-road recreation. However, the number of injuries and deaths from ATV accidents is growing rapidly. This publication lists the causes of injuries and fatalities, discusses Texas ATV laws, and provides...

  15. Current Status of DiscussionCurrent Status of DiscussionCurrent Status of DiscussionCurrent Status of Discussion on Roadmap of Fusion Energyon Roadmap of Fusion Energy

    E-Print Network [OSTI]

    of fusion has dramatically changed since the accident of the Fukushima Dai-ichi nuclear power stationnuclear-ichi accident Exploration of ocean, telecommunication, space transportation and satellite, new energy atomic after the Fukushima Dai-ichi accident R&D for safety, prevention of disaster, proliferation and nuclear

  16. Acceptable NSLS Safety Documentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acceptable NSLS Safety Documentation Print NSLS users who have completed NSLS Safety Module must present a copy of one of the following documents to receive ALS 1001: Safety at the...

  17. Assistant Secretary Hoffman Discusses Grid Modernization with...

    Broader source: Energy.gov (indexed) [DOE]

    Assistant Secretary Hoffman Discusses Grid Modernization with the New York Times and E&E TV Assistant Secretary Hoffman Discusses Grid Modernization with the New York Times and E&E...

  18. RADIATION SAFETY TRAINING MANUAL Radiation Safety Office

    E-Print Network [OSTI]

    Sibille, Etienne

    protection and the potential risks of ionizing radiation. Radiation Safety Office personnel provide.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. OVERVIEW OF REGULATIONS, PROTECTION STANDARDS, AND RADIATION SAFETY ORGANIZATION.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 V. BASIC RADIATION PROTECTION PRINCIPLES

  19. Budget Discussion OHEP May 12, 2008

    E-Print Network [OSTI]

    Wechsler, Risa H.

    Budget Discussion OHEP May 12, 2008 Page 1 SLAC PPA Budget Discussion: FY09 Allocations Among BNR Directorate #12;Budget Discussion OHEP May 12, 2008 Page 2 Purpose of This Meeting * In February, we presented our budget plans for FY09 and beyond, guided by the future scientific program that we laid out

  20. Dam Safety (Pennsylvania)

    Broader source: Energy.gov [DOE]

    The Pennsylvania Department of Environmental Protection's Division of Dam Safety provides for the regulation and safety of dams and reservoirs throughout the Commonwealth in order to protect the...

  1. Pipeline Safety (Pennsylvania)

    Broader source: Energy.gov [DOE]

    The Pennsylvania legislature has empowered the Public Utility Commission to direct and enforce safety standards for pipeline facilities and to regulate safety practices of certificated utilities...

  2. SHSD Manager Safety Engineering Group Manager

    E-Print Network [OSTI]

    Safety, Machine Shop Safety, Tier I Program, Traffic Safety S. Moss: Nuclear Criticality Safety G. Shepherd: Explosives Safety, Facility Authorization Basis, Nuclear Safety R. Travis: Readiness Evaluations

  3. TA-55 Final Safety Analysis Report Comparison Document and DOE Safety Evaluation Report Requirements

    SciTech Connect (OSTI)

    Alan Bond

    2001-04-01T23:59:59.000Z

    This document provides an overview of changes to the currently approved TA-55 Final Safety Analysis Report (FSAR) that are included in the upgraded FSAR. The DOE Safety Evaluation Report (SER) requirements that are incorporated into the upgraded FSAR are briefly discussed to provide the starting point in the FSAR with respect to the SER requirements.

  4. Environmental Health and Safety Fire and Life Safety Laboratory Assessment

    E-Print Network [OSTI]

    Environmental Health and Safety Fire and Life Safety Laboratory Assessment PI or environmental concerns were identified. B. Items of safety or environmental concerns were identified. C. Uncorrected repeated safety or environmental items were identified. Safety Equipment # Compliance Items

  5. Canada's Arctic Gateway: Discussion Paper Summary

    E-Print Network [OSTI]

    Martin, Jeff

    Canada's Arctic Gateway: Discussion Paper Summary September 2010 The following summarizes key Canada's Arctic Gateway a reality in terms of both national public policy and international presence the Government of Canada's national gateway policy framework. This discussion paper's use of the term "Arctic

  6. For discussion only Phase Two Process

    E-Print Network [OSTI]

    Sheridan, Jennifer

    For discussion only 1 Phase Two Process 1 Revised per Advisory Committee 10/20/11Advisory Reviews Input on Select Opportunities and Charges AE to Begin Solution Development Process Organizes Work, Identifies Business Process Owners and Affected Constituent, and Refines Data Analysis #12;For discussion

  7. Status of Safety and Environmental Activities in the US Fusion Program

    SciTech Connect (OSTI)

    David A. Petti; Susana Reyes; Lee C. Cadwallader; Jeffery F. Latkowski

    2004-09-01T23:59:59.000Z

    This paper presents an overview of recent safety efforts in both magnetic and inertial fusion energy. Safety has been a part of fusion design and operations since the inception of fusion research. Safety research and safety design support have been provided for a variety of experiments in both the magnetic and inertial fusion programs. The main safety issues are reviewed, some recent safety highlights are discussed and the programmatic impacts that safety research has had are presented. Future directions in the safety and environmental area are proposed.

  8. Status of Safety and Environmental Activities in the U.S. Fusion Program

    SciTech Connect (OSTI)

    Petti, D.A. [Idaho National Engineering and Environmental Laboratory (United States); Reyes, S. [Lawrence Livermore National Laboratory (United States); Cadwallader, L.C. [Idaho National Engineering and Environmental Laboratory (United States); Latkowski, J.F. [Lawrence Livermore National Laboratory (United States)

    2005-05-15T23:59:59.000Z

    This paper presents an overview of recent safety efforts in both magnetic and inertial fusion energy. Safety has been a part of fusion design and operations since the inception of fusion research. Safety research and safety design support have been provided for a variety of experiments in both the magnetic and inertial fusion programs. The main safety issues are reviewed, some recent safety highlights are discussed and the programmatic impacts that safety research has had are presented. Future directions in the safety and environmental area are proposed.

  9. Status of Safety and Environmental Activities in the US Fusion Program

    SciTech Connect (OSTI)

    Petti, D A; Reyes, S; Cadwallader, L C; Latkowski, J F

    2004-09-02T23:59:59.000Z

    This paper presents an overview of recent safety efforts in both magnetic and inertial fusion energy. Safety has been a part of fusion design and operations since the inception of fusion research. Safety research and safety design support have been provided for a variety of experiments in both the magnetic and inertial fusion programs. The main safety issues are reviewed, some recent safety highlights are discussed and the programmatic impacts that safety research has had are presented. Future directions in the safety and environmental area are proposed.

  10. TWRS safety program plan

    SciTech Connect (OSTI)

    Calderon, L.M., Westinghouse Hanford

    1996-08-01T23:59:59.000Z

    Management of Nuclear Safety, Industrial Safety, Industrial Hygiene, and Fire Protection programs, functions, and field support resources for Tank Waste Remediation Systems (TWRS) has, until recently, been centralized in TWRS Safety, under the Emergency, Safety, and Quality organization. Industrial hygiene technician services were also provided to support operational needs related to safety basis compliance. Due to WHC decentralization of safety and reengineering efforts in West Tank Farms, staffing and safety responsibilities have been transferred to the facilities. Under the new structure, safety personnel for TWRS are assigned directly to East Tank Farms, West Tank Farms, and a core Safety Group in TWRS Engineering. The Characterization Project Operations (CPO) safety organization will remain in tact as it currently exists. Personnel assigned to East Tank Farms, West Tank Farms, and CPO will perform facility-specific or project-specific duties and provide field implementation of programs. Those assigned to the core group will focus on activities having a TWRS-wide or programmatic focus. Hanford-wide activities will be the responsibility of the Safety Center of Expertise. In order to ensure an effective and consistent safety program for TWRS under the new organization program functions, goals, organizational structure, roles, responsibilities, and path forward must be clearly established. The purpose of the TWRS Safety Program Plan is to define the overall safety program, responsibilities, relationships, and communication linkages for safety personnel under the new structure. In addition, issues associated with reorganization transition are addressed, including training, project ownership, records management, and dissemination of equipment. For the purpose of this document ``TWRS Safety`` refers to all safety professionals and technicians (Industrial Safety, Industrial Hygiene, Fire Protection, and Nuclear Safety) within the TWRS organization, regardless of their location in the organization.

  11. Safety Culture And Best Practices At Japan's Fusion Research Facilities

    SciTech Connect (OSTI)

    Rule, K. [Princeton Plasma Physics Lab., Princeton, NJ (United States); King, M. [General Atomics, San Diego, CA (United States); Takase, Y. [Univ. of Tokyo (Japan); Oshima, Y. [Univ. of Tokyo (Japan); Nishimura, K. [National Institute for Fusion Science, Toki (Japan); Sukegawa, A. [Japan Atomic Energy Agency, Naka (Japan)

    2014-04-01T23:59:59.000Z

    The Safety Monitor Joint Working Group (JWG) is one of the magnetic fusion research collaborations between the US Department of Energy and the government of Japan. Visits by occupational safety personnel are made to participating institutions on a biennial basis. In the 2013 JWG visit of US representatives to Japan, the JWG members noted a number of good safety practices in the safety walkthroughs. These good practices and safety culture topics are discussed in this paper. The JWG hopes that these practices for worker safety can be adopted at other facilities. It is a well-known, but unquantified, safety principle that well run, safe facilities are more productive and efficient than other facilities (Rule, 2009). Worker safety, worker productivity, and high quality in facility operation all complement each other (Mottel, 1995).

  12. Safety Culture and Best Practices at Japan's Fusion Research Facilities

    SciTech Connect (OSTI)

    Rule, Keith [PPPL

    2014-05-01T23:59:59.000Z

    The Safety Monitor Joint Working Group (JWG) is one of the magnetic fusion research collaborations between the US Department of Energy and the government of Japan. Visits by occupational safety personnel are made to participating institutions on a biennial basis. In the 2013 JWG visit of US representatives to Japan, the JWG members noted a number of good safety practices in the safety walkthroughs. These good practices and safety culture topics are discussed in this paper. The JWG hopes that these practices for worker safety can be adopted at other facilities. It is a well-known, but unquantified, safety principle that well run, safe facilities are more productive and efficient than other facilities (Rule, 2009). Worker safety, worker productivity, and high quality in facility operation all complement each other (Mottel, 1995).

  13. Using Addenda in Documented Safety Analysis Reports

    SciTech Connect (OSTI)

    Douglas S. Swanson; Michael A. Thieme

    2003-06-01T23:59:59.000Z

    This paper discusses the use of addenda to the Radioactive Waste Management Complex (RWMC) Documented Safety Analysis (DSA) located at the Idaho National Engineering and Environmental Laboratory (INEEL). Addenda were prepared for several systems and processes at the facility that lacked adequate descriptive information and hazard analysis in the DSA. They were also prepared for several new activities involving unreviewed safety questions (USQs). Ten addenda to the RWMC DSA have been prepared since the last annual update.

  14. Using Addenda in Documented Safety Analysis Reports

    SciTech Connect (OSTI)

    Swanson, D.S.; Thieme, M.A.

    2003-06-16T23:59:59.000Z

    This paper discusses the use of addenda to the Radioactive Waste Management Complex (RWMC) Documented Safety Analysis (DSA) located at the Idaho National Engineering and Environmental Laboratory (INEEL). Addenda were prepared for several systems and processes at the facility that lacked adequate descriptive information and hazard analysis in the DSA. They were also prepared for several new activities involving unreviewed safety questions (USQs). Ten addenda to the RWMC DSA have been prepared since the last annual update.

  15. 1 | Forestry, sustainable behaviours and behaviour change: Discussion paper |2012| Discussion Paper: Behaviour Change

    E-Print Network [OSTI]

    1 | Forestry, sustainable behaviours and behaviour change: Discussion paper |2012| Discussion Paper: Behaviour Change Forestry, sustainable behaviours and behaviour change ­ a discussion paper1 Introduction This discussion paper explores what the current focus on behaviour means for the forestry sector, using evidence

  16. What Does Self-Assessment of Safety Culture Look Like? Discussion from the Pantex Plant Perspective

    Broader source: Energy.gov [DOE]

    Presenter: Dr. Suzanne Helfinstine, Staff Engineer High Reliability Operations B&W Pantex Pantex Plant

  17. August 15, 2013 Bargaining Update 7: UC, Nurses' Union discuss benefits, workplace safety

    E-Print Network [OSTI]

    Leistikow, Bruce N.

    . · Revised eligibility rules for retiree health care Even with these changes, UC's retirement benefits organizations do not offer a pension plan and very few offer retiree health benefits. #12; These reforms key issues such as health benefits and post-employment benefits. In addition to providing employees

  18. Coal Mine Safety Act (Virginia)

    Broader source: Energy.gov [DOE]

    This Act is the primary legislation pertaining to coal mine safety in Virginia. It contains information on safety rules, safety standards and required certifications for mine workers, prohibited...

  19. Nuclear Safety Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Safety Research and Development Proposal Review and Prioritization Process and Criteria Nuclear Safety Research and Development Program Office of Nuclear Safety Office of...

  20. Magnetic Field Safety Magnetic Field Safety

    E-Print Network [OSTI]

    McQuade, D. Tyler

    Magnetic Field Safety Training #12;Magnetic Field Safety Strong Magnetic Fields exist around energized magnets. High magnetic fields alone are a recognized hazard only for personnel with certain medical conditions such as pacemakers, magnetic implants, or embedded shrapnel. In addition, high magnetic

  1. Conference Discussion of the Nuclear Force

    SciTech Connect (OSTI)

    Franz Gross,Thomas D. Cohen,Evgeny Epelbaum,R. Machleidt

    2010-12-01T23:59:59.000Z

    Discussion of the nuclear force, lead by a round table consisting of T. Cohen, E. Epelbaum, R. Machleidt, and F. Gross (chair). After an invited talk by Machleidt, published elsewhere in these proceedings, brief remarks are made by Epelbaum, Cohen, and Gross, followed by discussion from the floor moderated by the chair. The chair asked the round table and the participants to focus on the following issues: (1)What does each approach (chiral effective field theory, large Nc, and relativistic phenomenology) contribute to our knowledge of the nuclear force? Do we need them all? Is any one transcendent? (2) How important for applications (few body, nuclear structure, EMC effect, for example) are precise fits to the NN data below 350 MeV? How precise do these fits have to be? (3) Can we learn anything about nonperturbative QCD from these studies of the nuclear force? The discussion presented here is based on a video recording made at the conference and transcribed afterward.

  2. Safety Issues Chemical Storage

    E-Print Network [OSTI]

    Cohen, Robert E.

    Safety Issues · Chemical Storage ·Store in compatible containers that are in good condition to store separately. #12;Safety Issues · Flammable liquid storage -Store bulk quantities in flammable storage cabinets -UL approved Flammable Storage Refrigerators are required for cold storage · Provide

  3. Office of Nuclear Safety

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Safety establishes nuclear safety requirements and expectations for the Department to ensure protection of workers and the public from the hazards associated with nuclear operations with all Department operations.

  4. Pipeline Safety Rule (Tennessee)

    Broader source: Energy.gov [DOE]

    The Pipeline Safety Rule simply states, "The Minimum Federal Safety Standards for the transportation of natural and other gas by pipeline (Title 49, Chapter 1, Part 192) as published in the Federal...

  5. Dam Safety Program (Maryland)

    Broader source: Energy.gov [DOE]

    The Dam Safety Division within the Department of the Environment is responsible for administering a dam safety program to regulate the construction, operation, and maintenance of dams to prevent...

  6. Dam Safety (Delaware)

    Broader source: Energy.gov [DOE]

    The Delaware Dam Safety Law was adopted in 2004 and provides the framework for proper design, construction, operation, maintenance, and inspection of dams in the interest of public health, safety,...

  7. Safety culture in the nuclear power industry : attributes for regulatory assessment

    E-Print Network [OSTI]

    Alexander, Erin L

    2004-01-01T23:59:59.000Z

    Safety culture refers to the attitudes, behaviors, and conditions that affect safety performance and often arises in discussions following incidents at nuclear power plants. As it involves both operational and management ...

  8. Nuclear Explosive Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Manual provides supplemental details to support the requirements of DOE O 452.2D, Nuclear Explosive Safety.

  9. DOE handbook electrical safety

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    Electrical Safety Handbook presents the Department of Energy (DOE) safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety guidance and information for DOE installations to effect a reduction or elimination of risks associated with the use of electrical energy. The objectives of this handbook are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  10. Electrical safety guidelines

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The Electrical Safety Guidelines prescribes the DOE safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety standards and guidance for DOE installations in order to affect a reduction or elimination of risks associated with the use of electrical energy. The objectives of these guidelines are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  11. Department of Environmental Health & Safety Emergency Management

    E-Print Network [OSTI]

    O'Toole, Alice J.

    Management Fire & Life Safety Industrial Hygiene Laboratory Safety Occupational & General Safety Management Environmental Management Fire & Life Safety Industrial Hygiene Laboratory Safety Occupational Values A Note from the Director Environmental Management Fire & Life Safety Lab Safety & Industrial

  12. Consulting Assistance on Economic Discussion Papers

    E-Print Network [OSTI]

    Consulting Assistance on Economic Reform II Discussion Papers The objectives of the Consulting Assistance on Economic Reform (CAER II) project are to contribute to broad-based and sustainable economic, Bureau for Global Programs, Field Support and Research, Center for Economic Growth and Agricultural

  13. Earth: The Early Years We discuss ...

    E-Print Network [OSTI]

    Earth: The Early Years We discuss ... · What happened to the Earth during the first few billion)? · What is the relationship to (early) life? #12;Age of Earth James Ussher (17th C) biblical account: 6: 20-40 m.y. (million years!) Charles Darwin evolution >300 m.y. Lord Kelvin (1880's) cooling Earth: 50

  14. Discussion Papers in Economics Department of Economics

    E-Print Network [OSTI]

    Doran, Simon J.

    Discussion Papers in Economics Department of Economics University of Surrey Guildford Surrey GU2 7 participants at Aberdeen, Essex, LSE, UCL, the Paris School of Economics and from participants in the 2007 Royal Economic Society annual conference held in Warwick, the 2007 American Law and Economics

  15. --Discussion Paper--ORGANIC AND CONVENTIONAL POTATOES

    E-Print Network [OSTI]

    Radeloff, Volker C.

    1 --Discussion Paper-- ORGANIC AND CONVENTIONAL POTATOES: PRICING AND DEMAND, 2000-2005 I. ORGANICS). Among fresh vegetables, the top organic purchases are lettuce, tomatoes, broccoli, onions, and potatoes. Among selected vegetables, a recent US study found the largest organic premium was for potatoes (Zhang

  16. Environmental Health & Safety

    E-Print Network [OSTI]

    Environmental Health & Safety Sub Department Name 480 Oak Rd, Stanford, CA 94305 T 650.723.0448 F 650.725.3468 DEPUTY DIRECTOR, ENVIRONMENTAL HEALTH AND SAFETY Exempt, Full-Time (100% FTE) Posted May 1, 2014 The Department of Environmental Health and Safety (EH&S) at Stanford University seeks

  17. Earth Sciences Safety Handbook

    E-Print Network [OSTI]

    Cambridge, University of

    Report of Earth Sciences Departmental Safety Committee 2011 - 12 5 Chemical Safety 21 - 22 Chemical Waste Assessment Hire Vehicle Checklist Department Driving Protocol: Bullard vehicles 38 - 48 Electrical Safety 24 and outside adjacent to areas which present a particular fire hazard. Persons wishing to smoke are asked to do

  18. Earth Sciences Safety Handbook

    E-Print Network [OSTI]

    Cambridge, University of

    Report of Earth Sciences Departmental Safety Committee 2012 - 13 5 Chemical Safety 21 - 22 Chemical Waste Assessment Hire Vehicle Checklist Department Driving Protocol: Bullard vehicles 38 - 48 Electrical Safety 24 and outside adjacent to areas which present a particular fire hazard. Persons wishing to smoke are asked to do

  19. September 2013 Laboratory Safety Manual Section 7 -Safety Training

    E-Print Network [OSTI]

    Wilcock, William

    September 2013 Laboratory Safety Manual Section 7 - Safety Training UW Environmental Health and Safety Page 7-1 Section 7 - Safety Training Contents A. SAFETY TRAINING REQUIREMENTS ......................................................7-1 B. EH&S SAFETY TRAINING AND RECORDS ..............................................7-1 C

  20. Center for Intermodal Transportation Safety

    E-Print Network [OSTI]

    Fernandez, Eduardo

    Center for Intermodal Transportation Safety and Security Panagiotis Scarlatos, Ph.D., Director Transportation Safety and Security #12;Center for Intermodal Transportation Safety and Security Partners #12 evacuations · Tracking systems for hazardous materials Center for Intermodal Transportation Safety

  1. Safety Manual Prepared by the

    E-Print Network [OSTI]

    Alpay, S. Pamir

    -3113 Emergency maintenance to report a water leak, electrical outage, non-working fume hood, etc. after normal Radiation and Laser Safety 19 Laser Safety 21 Compressed Gas and Cryogenic Safety 22 Electrical Safety 24

  2. Sandia National Laboratories: Transportation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Testing Phenomenological Modeling Risk and Safety Assessment Cyber-Based Vulnerability Assessments Uncertainty Analysis Transportation Safety Fire Science Human...

  3. Safety Issues with Hydrogen as a Vehicle Fuel

    SciTech Connect (OSTI)

    Cadwallader, Lee Charles; Herring, James Stephen

    1999-10-01T23:59:59.000Z

    This report is an initial effort to identify and evaluate safety issues associated with the use of hydrogen as a vehicle fuel in automobiles. Several forms of hydrogen have been considered: gas, liquid, slush, and hydrides. The safety issues have been discussed, beginning with properties of hydrogen and the phenomenology of hydrogen combustion. Safety-related operating experiences with hydrogen vehicles have been summarized to identify concerns that must be addressed in future design activities and to support probabilistic risk assessment. Also, applicable codes, standards, and regulations pertaining to hydrogen usage and refueling have been identified and are briefly discussed. This report serves as a safety foundation for any future hydrogen safety work, such as a safety analysis or a probabilistic risk assessment.

  4. Safety Issues with Hydrogen as a Vehicle Fuel

    SciTech Connect (OSTI)

    L. C. Cadwallader; J. S. Herring

    1999-09-01T23:59:59.000Z

    This report is an initial effort to identify and evaluate safety issues associated with the use of hydrogen as a vehicle fuel in automobiles. Several forms of hydrogen have been considered: gas, liquid, slush, and hydrides. The safety issues have been discussed, beginning with properties of hydrogen and the phenomenology of hydrogen combustion. Safety-related operating experiences with hydrogen vehicles have been summarized to identify concerns that must be addressed in future design activities and to support probabilistic risk assessment. Also, applicable codes, standards, and regulations pertaining to hydrogen usage and refueling have been identified and are briefly discussed. This report serves as a safety foundation for any future hydrogen safety work, such as a safety analysis or a probabilistic risk assessment.

  5. Total safety: A new safety culture to integrate nuclear safety and operational safety

    SciTech Connect (OSTI)

    Saji, G. [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan); Murphy, G.A. [ed.

    1991-07-01T23:59:59.000Z

    The creation of a complete and thorough safety culture is proposed for the purpose of providing additional assurance about nuclear safety and improving the performance of nuclear power plants. The safety philosophy developed a combination of the former hardware-oriented nuclear safety approach and recent operational safety concepts. The improvement of the latter, after TMI-2 and Chernobyl, has been proven very effective in reducing the total risk associated with nuclear power plants. The first part of this article introduces a {open_quotes}total safety{close_quotes} concept. This extends the concept of {open_quotes}nuclear safety{close_quotes} and makes it closer to the public perception of safety. This concept is defined by means of a taxonomy of total safety. The second part of the article shows that total safety can be achieved by integrating it into a modern quality assurance (QA) system since it is tailored to make implementation into a framework of QA easier. The author believes that the outstanding success experienced by various industries as a result of introducing the modern QA system should lead to its application for ensuring the safety and performance of nuclear facilities. 15 refs., 3 figs.

  6. TIBER II/ETR final design report: Volume 3, 5. 0 Radiation safety and environment; 6. 0 Physics and technology R and D needs

    SciTech Connect (OSTI)

    Lee, J.D. (ed.)

    1987-09-01T23:59:59.000Z

    This paper discusses the design of the TIBER II Tokamak. This particular volume discusses: safety and environmental requirements and design targets; accident analyses; personnel safety and maintenance exposure; effluent control; waste management and decommissioning; safety considerations in building design; and safety and environmental conclusions and recommendations. (LSP)

  7. Electrical Safety and Arc Flash Protections

    SciTech Connect (OSTI)

    R. Camp

    2008-03-04T23:59:59.000Z

    Over the past four years, the Electrical Safety Program at PPPL has evolved in addressing changing regulatory requirements and lessons learned from accident events, particularly in regards to arc flash hazards and implementing NFPA 70E requirements. This presentation will discuss PPPL's approaches to the areas of electrical hazards evaluation, both shock and arc flash; engineered solutions for hazards mitigation such as remote racking of medium voltage breakers, operational changes for hazards avoidance, targeted personnel training and hazard appropriate personal protective equipment. Practical solutions for nominal voltage identification and zero voltage checks for lockout/tagout will also be covered. Finally, we will review the value of a comprehensive electrical drawing program, employee attitudes expressed as a personal safety work ethic, integrated safety management, and sustained management support for continuous safety improvement.

  8. Discussion of EIA-411 Data Files

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear21CompanySFoot)YearD e sDiscussion

  9. Hydrogen Pipeline Discussion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e&FundingDiscussion Hydrogen Pipeline

  10. Health and safety plan for operations performed for the Environmental Restoration Program

    SciTech Connect (OSTI)

    Trippet, W.A. II (IT Corp., (United States)); Reneau, M.; Morton, S.L. (EG and G Idaho, Inc., Idaho Falls, ID (United States))

    1992-04-01T23:59:59.000Z

    This document constitutes the generic health and safety plan for the Environmental Restoration Program (ERP). It addresses the health and safety requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); Occupational Safety and Health Administration (OSHA) 29 CFR 1910.120 standard; and EG G Idaho, Inc. This plan is a guide to individuals who must complete a health and safety plan for a task performed for the EPR. It contains a task specific addendum that, when completed, specifically addresses task specific health and safety issues. This health and safety plan reduces the time it takes to write a task specific health and safety plan by providing discussions of requirements, guidance on where specific information is located, and specific topics in the Addendum that must be discussed at a task level. This format encourages a complete task specific health and safety plan and a standard for all health and safety plans written for ERP.

  11. Carbon Cycle Discussion After the warm-up quiz, discuss the carbon cycle.

    E-Print Network [OSTI]

    Carrington, Emily

    Carbon Cycle Discussion After the warm-up quiz, discuss the carbon cycle. Carbon is one is without carbon. Where else is carbon on our Earth? In rocks, living organisms, the atmosphere, oceans Does carbon stay in one place? What processes include moving carbon? Introduce residence time: How long does

  12. EM Health and Safety Plan Guidelines

    SciTech Connect (OSTI)

    Not Available

    1994-12-01T23:59:59.000Z

    This document contains information about the Health and Safety Plan Guidelines. Topics discussed include: Regulatory framework; key personnel; hazard assessment; training requirements; personal protective equipment; extreme temperature disorders or conditions; medical surveillance; exposure monitoring/air sampling; site control; decontamination; emergency response/contingency plan; emergency action plan; confined space entry; and spill containment.

  13. Hydrogen Technologies Safety Guide

    SciTech Connect (OSTI)

    Rivkin, C.; Burgess, R.; Buttner, W.

    2015-01-01T23:59:59.000Z

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  14. Thermal reactor safety

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport.

  15. Tank safety screening data quality objective. Revision 1

    SciTech Connect (OSTI)

    Hunt, J.W.

    1995-04-27T23:59:59.000Z

    The Tank Safety Screening Data Quality Objective (DQO) will be used to classify 149 single shell tanks and 28 double shell tanks containing high-level radioactive waste into safety categories for safety issues dealing with the presence of ferrocyanide, organics, flammable gases, and criticality. Decision rules used to classify a tank as ``safe`` or ``not safe`` are presented. Primary and secondary decision variables used for safety status classification are discussed. The number and type of samples required are presented. A tabular identification of each analyte to be measured to support the safety classification, the analytical method to be used, the type of sample, the decision threshold for each analyte that would, if violated, place the tank on the safety issue watch list, and the assumed (desired) analytical uncertainty are provided. This is a living document that should be evaluated for updates on a semiannual basis. Evaluation areas consist of: identification of tanks that have been added or deleted from the specific safety issue watch lists, changes in primary and secondary decision variables, changes in decision rules used for the safety status classification, and changes in analytical requirements. This document directly supports all safety issue specific DQOs and additional characterization DQO efforts associated with pretreatment and retrieval. Additionally, information obtained during implementation can assist in resolving assumptions for revised safety strategies, and in addition, obtaining information which will support the determination of error tolerances, confidence levels, and optimization schemes for later revised safety strategy documentation.

  16. Aviation Management and Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-15T23:59:59.000Z

    To establish a policy framework that will ensure safety, efficiency and effectiveness of government or contractor aviation operations. Cancels DOE O 440.2B.

  17. Dam Safety Program (Florida)

    Broader source: Energy.gov [DOE]

    Dam safety in Florida is a shared responsibility among the Florida Department of Environmental Protection (FDEP), the regional water management districts, the United States Army Corps of Engineers ...

  18. Battery Safety Testing

    Broader source: Energy.gov (indexed) [DOE]

    Battery Safety Testing Christopher J. Orendorff, Leigh Anna M. Steele, Josh Lamb, and Scott Spangler Sandia National Laboratories 2014 Energy Storage Annual Merit Review...

  19. BNL | ATF Laser Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    be continuously escorted by someone who has such training: The training consists of an eye exam, BNL general laser safety lecture, and formal ATF laser familiarization. Untrained...

  20. Coiled Tubing Safety Manual

    SciTech Connect (OSTI)

    Crow, W.

    1999-04-06T23:59:59.000Z

    This document addresses safety concerns regarding the use of coiled tubing as it pertains to the preservation of personnel, environment and the wellbore.

  1. Safety Hazards of Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Hazards of Batteries Battery technology is at the heart of much of our technological revolution. One of the most prevalent rechargeable batteries in use today is the...

  2. Pipeline Safety (Maryland)

    Broader source: Energy.gov [DOE]

    The Public Service Commission has the authority enact regulations pertaining to pipeline safety. These regulations address pipeline monitoring, inspections, enforcement, and penalties.

  3. Intrastate Pipeline Safety (Minnesota)

    Broader source: Energy.gov [DOE]

    These regulations provide standards for gas and liquid pipeline maintenance and operating procedures, per the Federal Hazardous Liquid and Natural Gas Pipeline Safety Acts, and give the...

  4. Pipeline Safety (South Dakota)

    Broader source: Energy.gov [DOE]

    The South Dakota Pipeline Safety Program, administered by the Public Utilities Commission, is responsible for regulating hazardous gas intrastate pipelines. Relevant legislation and regulations...

  5. Gas Safety Law (Florida)

    Broader source: Energy.gov [DOE]

    This law authorizes the establishment of rules and regulations covering the design, fabrication, installation, inspection, testing and safety standards for installation, operation and maintenance...

  6. DOE Explosives Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-03-29T23:59:59.000Z

    This Manual describes DOE's explosives safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives.

  7. Summary Notes from 28 May 2008 Generic Technical Issue Discussion...

    Office of Environmental Management (EM)

    radionuclide inventories for which the primary purpose is safety concerns such as corrosion, flammability or criticality as opposed to performance assessment may not provide...

  8. Occupational Hygiene & Chemical Safety Division Department of Environmental Health & Safety

    E-Print Network [OSTI]

    Machel, Hans

    Occupational Hygiene & Chemical Safety Division Department of Environmental Health & Safety Risk all connections and fittings prior to start of anesthesia. Carefully pour Isoflurane from Environmental Health & Safety before re-entering the laboratory. REFERENCES 1. Procedure

  9. Sandia Energy - Risk and Safety Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Risk and Safety Assessment Home Stationary Power Nuclear Fuel Cycle Nuclear Energy Safety Technologies Risk and Safety Assessment Risk and Safety AssessmentTara...

  10. Office of Nuclear Facility Safety Programs

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Facility Safety Programs establishes nuclear safety requirements related to safety management programs that are essential to the safety of DOE nuclear facilities.

  11. Facility Safety - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Change, Safety, The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety,...

  12. Integrated Safety Management Policy

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-04-25T23:59:59.000Z

    The policy establishes DOE's expectation for safety, including integrated safety management that will enable the Department’s mission goals to be accomplished efficiently while ensuring safe operations at all departmental facilities and activities. Cancels DOE P 411.1, DOE P 441.1, DOE P 450.2A, DOE P 450.4, and DOE P 450.7

  13. SECURITY AND FIRE SAFETY

    E-Print Network [OSTI]

    Barrash, Warren

    ANNUAL SECURITY AND FIRE SAFETY REPORT 2014 #12;2 Boise State University 2014 Annual Security and Fire Safety Report From the Vice President for Campus Operations and General Counsel At Boise State University, we are committed to providing a safe and secure environment for students, staff

  14. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-07-23T23:59:59.000Z

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2A. Certified 5-13-08. Canceled by DOE O 420.2C.

  15. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-07-21T23:59:59.000Z

    The order defines accelerators and establishes accelerator specific safety requirements and approval authorities which, when supplemented by other applicable safety and health requirements, promote safe operations to ensure protection of workers, the public, and the environment. Cancels DOE O 420.2B.

  16. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08T23:59:59.000Z

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2. Canceled by DOE O 420.2B.

  17. K Basin safety analysis

    SciTech Connect (OSTI)

    Porten, D.R.; Crowe, R.D.

    1994-12-16T23:59:59.000Z

    The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall.

  18. Occupational Hygiene & Chemical Safety Division Department of Environmental Health & Safety

    E-Print Network [OSTI]

    Machel, Hans

    Occupational Hygiene & Chemical Safety Division Department of Environmental Health & Safety Risk (most common ­ personal hygiene very important); d) storage ­ leaks; and e) waste ­ storage and disposal

  19. CRAD, Facility Safety- Nuclear Facility Safety Basis

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis.

  20. CRAD, Facility Safety- Technical Safety Requirements

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Technical Safety Requirments (TSA).

  1. COLUMBIA UNIVERSITY Radiation Safety Program

    E-Print Network [OSTI]

    Jia, Songtao

    COLUMBIA UNIVERSITY Radiation Safety Program Medical Center - T: 212-305-0303 F: 212 Psychiatric Institute Radiation Safety Office (Please complete this form within 24 hours and send a copy to your supervisor and The Radiation Safety Office) Your Name

  2. Normalization of Process Safety Metrics

    E-Print Network [OSTI]

    Wang, Mengtian

    2012-10-19T23:59:59.000Z

    and organizational risks, there is an emerging need to evaluate the process safety implementation across an organization through measurements. Thus, the process safety metric is applied as a powerful tool that measures safety activities, status, and performance...

  3. INL Director Discusses Lessons Learned from TMI, Fukushima

    ScienceCinema (OSTI)

    Grossenbacher, John

    2013-05-28T23:59:59.000Z

    Idaho National Laboratory's Director John Grossenbacher explains how the U.S. nuclear industry has boosted its safety procedures as a result of the Three Mile Island (TMI) accident in 1979 and how the industry plans to use current events at Japan's Fukushima nuclear plants to further enhance safety. For more information about INL's nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  4. INL Director Discusses Lessons Learned from TMI, Fukushima

    SciTech Connect (OSTI)

    Grossenbacher, John

    2011-01-01T23:59:59.000Z

    Idaho National Laboratory's Director John Grossenbacher explains how the U.S. nuclear industry has boosted its safety procedures as a result of the Three Mile Island (TMI) accident in 1979 and how the industry plans to use current events at Japan's Fukushima nuclear plants to further enhance safety. For more information about INL's nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  5. EERE Leadership Discusses Energy Innovation in Midwest | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EERE Leadership Discusses Energy Innovation in Midwest EERE Leadership Discusses Energy Innovation in Midwest October 28, 2014 - 3:06pm Addthis EERE Leadership Discusses Energy...

  6. Environmental Health and Safety Department

    E-Print Network [OSTI]

    . Fire Safety, Radiation Safety and Hazardous Materials Facility are at other locations on campus Training Requirements If you work with: · Biological Materials · Chemical Agents · Radiological Materials

  7. Safety Culture in Nuclear Installations

    Broader source: Energy.gov [DOE]

    IAEA-TECDOC-1329 Safety Culture in Nuclear Installations, Guidance for use in the Enhancement of Safety Culture, International Atomic Energy Agency IAEA, December 2002.

  8. Industrial Safety | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    such as machine guarding, personal protective equipment (PPE), electrical safety, accident prevention and investigation, building design and code review, fire safety, and...

  9. Gordon wins NNSA Safety Professional

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in electrical safety at the Laboratory and across the DOE complex," said Industrial Hygiene and Safety manager Theresa Cull. "I am very pleased that NNSA has recognized Lloyd's...

  10. Developed 2007 _____________________________ Environment, Health, & Safety _________ __________________

    E-Print Network [OSTI]

    Eisen, Michael

    _________ __________________ Training Program EHS 300~ Fiber optic Safety Course Syllabus Subject Category: Industrial Hygiene Course Alignment EH&S Website: Industrial Hygiene/Laser Safety Group - http

  11. NSPWG-recommended safety requirements and guidelines for SEI nuclear propulsion

    SciTech Connect (OSTI)

    Marshall, A.C.; Sawyer, J.C. Jr.; Bari, R.A.; Brown, N.W.; Cullingford, H.S.; Hardy, A.C.; Lee, J.H.; Mcculloch, W.H.; Niederauer, G.F.; Remp, K. (Sandia National Laboratories, Albuquerque, NM (United States) NASA, Washington (United States) Brookhaven National Laboratory, Upton, NY (United States) General Electric Co., San Jose, CA (United States) NASA, Johnson Space Center, Houston, Tn (United States) L

    1992-07-01T23:59:59.000Z

    An interagency Nuclear Safety Policy Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative (SEI) nuclear propulsion program to facilitate the implementation of mission planning and conceptual design studies. The NSPWG developed a top-level policy to provide the guiding principles for the development and implementation of the nuclear propulsion safety program and the development of safety functional requirements. In addition, the NSPWG reviewed safety issues for nuclear propulsion and recommended top-level safety requirements and guidelines to address these issues. Safety requirements were developed for reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, and safeguards. Guidelines were recommended for risk/reliability, operational safety, flight trajectory and mission abort, space debris and meteoroids, and ground test safety. In this paper the specific requirements and guidelines will be discussed. 9 refs.

  12. NSPWG-recommended safety requirements and guidelines for SEI nuclear propulsion

    SciTech Connect (OSTI)

    Marshall, A.C.; Lee, J.H.; McCulloch, W.H. (Sandia National Labs., Albuquerque, NM (United States)); Sawyer, J.C. Jr. (National Aeronautics and Space Administration, Washington, DC (United States)); Bari, R.A. (Brookhaven National Lab., Upton, NY (United States)); Brown, N.W. (General Electric Co., San Jose, CA (United States)); Cullingford, H.S.; Hardy, A.C. (National Aeronautics and Space Administ

    1992-01-01T23:59:59.000Z

    An Interagency Nuclear Safety Policy Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative (SEI) nuclear propulsion program to facilitate the implementation of mission planning and conceptual design studies. The NSPWG developed a top- level policy to provide the guiding principles for the development and implementation of the nuclear propulsion safety program and the development of Safety Functional Requirements. In addition the NSPWG reviewed safety issues for nuclear propulsion and recommended top-level safety requirements and guidelines to address these issues. Safety requirements were developed for reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, and safeguards. Guidelines were recommended for risk/reliability, operational safety, flight trajectory and mission abort, space debris and meteoroids, and ground test safety. In this paper the specific requirements and guidelines will be discussed.

  13. NSPWG-recommended safety requirements and guidelines for SEI nuclear propulsion

    SciTech Connect (OSTI)

    Marshall, A.C.; Lee, J.H.; McCulloch, W.H. [Sandia National Labs., Albuquerque, NM (United States); Sawyer, J.C. Jr. [National Aeronautics and Space Administration, Washington, DC (United States); Bari, R.A. [Brookhaven National Lab., Upton, NY (United States); Brown, N.W. [General Electric Co., San Jose, CA (United States); Cullingford, H.S.; Hardy, A.C. [National Aeronautics and Space Administration, Houston, TX (United States). Lyndon B. Johnson Space Center; Niederauer, G.F. [Los Alamos National Lab., NM (United States); Remp, K. [National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center; Rice, J.W. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Sholtis, J.A. [Department of the Air Force, Kirtland AFB, NM (United States)

    1992-09-01T23:59:59.000Z

    An Interagency Nuclear Safety Policy Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative (SEI) nuclear propulsion program to facilitate the implementation of mission planning and conceptual design studies. The NSPWG developed a top- level policy to provide the guiding principles for the development and implementation of the nuclear propulsion safety program and the development of Safety Functional Requirements. In addition the NSPWG reviewed safety issues for nuclear propulsion and recommended top-level safety requirements and guidelines to address these issues. Safety requirements were developed for reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, and safeguards. Guidelines were recommended for risk/reliability, operational safety, flight trajectory and mission abort, space debris and meteoroids, and ground test safety. In this paper the specific requirements and guidelines will be discussed.

  14. Lecture notes for criticality safety

    SciTech Connect (OSTI)

    Fullwood, R.

    1992-03-01T23:59:59.000Z

    These lecture notes for criticality safety are prepared for the training of Department of Energy supervisory, project management, and administrative staff. Technical training and basic mathematics are assumed. The notes are designed for a two-day course, taught by two lecturers. Video tapes may be used at the options of the instructors. The notes provide all the materials that are necessary but outside reading will assist in the fullest understanding. The course begins with a nuclear physics overview. The reader is led from the macroscopic world into the microscopic world of atoms and the elementary particles that constitute atoms. The particles, their masses and sizes and properties associated with radioactive decay and fission are introduced along with Einstein's mass-energy equivalence. Radioactive decay, nuclear reactions, radiation penetration, shielding and health-effects are discussed to understand protection in case of a criticality accident. Fission, the fission products, particles and energy released are presented to appreciate the dangers of criticality. Nuclear cross sections are introduced to understand the effectiveness of slow neutrons to produce fission. Chain reactors are presented as an economy; effective use of the neutrons from fission leads to more fission resulting in a power reactor or a criticality excursion. The six-factor formula is presented for managing the neutron budget. This leads to concepts of material and geometric buckling which are used in simple calculations to assure safety from criticality. Experimental measurements and computer code calculations of criticality are discussed. To emphasize the reality, historical criticality accidents are presented in a table with major ones discussed to provide lessons-learned. Finally, standards, NRC guides and regulations, and DOE orders relating to criticality protection are presented.

  15. Radiation Safety Training Basic Radiation Safety Training for

    E-Print Network [OSTI]

    Dai, Pengcheng

    Radiation Safety Training Basic Radiation Safety Training for X-ray Users for Physics 461 & 462 Protocol Title: Basic Radiation Safety Training for X-ray Users Drafted By: Chris Millsaps, RSS Reviewers: ZB, TU, GS Purpose: To provide basic radiation safety training to the users of x-ray producing

  16. Safety Criteria and Safety Lifecycle for Artificial Neural Networks

    E-Print Network [OSTI]

    Kelly, Tim

    Safety Criteria and Safety Lifecycle for Artificial Neural Networks Zeshan Kurd, Tim Kelly and Jim. The paper also presents a safety lifecycle for artificial neural networks. This lifecycle focuses, knowledge. INTRODUCTION Artificial neural networks (ANNs) are used in many safety-related applications

  17. Laser Safety Management Policy Statement ............................................................................................................1

    E-Print Network [OSTI]

    Davidson, Fordyce A.

    Laser Safety Management Policy Statement...........................................................2 Laser Users.............................................................................................................2 Unit Laser Safety Officer (ULSO

  18. East Carolina University ENVIRONMENTAL SAFETY COMMITTEE

    E-Print Network [OSTI]

    as workers' compensation, accident prevention, industrial hygiene, occupational safety, fire and life safety

  19. Aviation Management and Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-15T23:59:59.000Z

    To establish a policy framework that will ensure safety, efficiency and effectiveness of government or contractor aviation operations. Cancels DOE O 440.2B. Admin Chg 1, dated 6-22-11, cancels DOE O 440.2C.

  20. Carbon Monoxide Safety Tips

    E-Print Network [OSTI]

    Shaw, Bryan W.; Garcia, Monica L.

    1999-07-26T23:59:59.000Z

    Protect yourself and your family from the deadly effects of carbon monoxide--a colorless, odorless poisonous gas. This publication describes the warning signs of carbon monoxide exposure and includes a home safety checklist....

  1. Dam Safety Regulation (Mississippi)

    Broader source: Energy.gov [DOE]

    The purpose of the Dam Safety Regulation is to ensure that all dams constructed in the state of Mississippi are permitted and thus do not potentially harm wildlife, water supplies and property. ...

  2. High Voltage Safety Act

    Broader source: Energy.gov [DOE]

    The purpose of the High Voltage Safety Act is to prevent injury to persons and property and interruptions of utility service resulting from accidental or inadvertent contact with high-voltage...

  3. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27T23:59:59.000Z

    Establishes safety requirements for the proper packaging and transportation of offsite shipments and onsite transfers of hazardous materials andor modal transport. Cancels DOE 1540.2 and DOE 5480.3

  4. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27T23:59:59.000Z

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Canceled by DOE 460.1A

  5. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-02T23:59:59.000Z

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1.

  6. Promulgating Nuclear Safety Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-05-15T23:59:59.000Z

    Applies to all Nuclear Safety Requirements Adopted by the Department to Govern the Conduct of its Nuclear Activities. Cancels DOE P 410.1. Canceled by DOE N 251.85.

  7. Reliability and Safety

    Broader source: Energy.gov [DOE]

    DOE solar reliability and safety research and development (R&D) focuses on testing photovoltaic (PV) modules, inverters, and systems for long-term performance, and helping investors, consumers,...

  8. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-26T23:59:59.000Z

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, or successor directive, for routine and planned nuclear explosive operations (NEOs).

  9. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-07-10T23:59:59.000Z

    The Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs).

  10. Complete Experiment Safety Documentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Sheet If you did not submit a General User Proposal, you must submit an ESS one month prior to arrival at the ALS. 2. Biological, Radioactive, and Hazardous...

  11. Dam Safety (North Carolina)

    Broader source: Energy.gov [DOE]

    North Carolina Administrative Code Title 15A, Subchapter 2K lays out further regulations for the design, approval, construction, maintenance, and inspection of dams to ensure public safety and...

  12. Safety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Argonne National Laboratory and the U.S. Department of Energy (DOE) are very concerned about the well-being of all employees. Students at the undergraduate and graduate...

  13. Safety in Buildings 

    E-Print Network [OSTI]

    Hutcheon, N. B.

    Building codes are essentially sets of safety regulations in respect of structure, fire, and health. They were originally developed in response to frequently demonstrated hazards of structural collapse, catastrophic fires, ...

  14. Nuclear Safety (Pennsylvania)

    Broader source: Energy.gov [DOE]

    The Nuclear Safety Division conducts a comprehensive nuclear power plant oversight review program of the nine reactors at the five nuclear power sites in Pennsylvania. It also monitors the...

  15. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-06-12T23:59:59.000Z

    The directive provides supplemental details to support the requirements of DOE O 452.2C, Nuclear Explosive Safety, dated 6-12-06. Canceled by DOE M 452.2-1A.

  16. Environmental Health and Safety's Laboratory Safety Trainings Title of Training Description Required Training

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    and chemical safety are discussed. You work in a laboratory that has chemical, biological, radiological work in a laboratory that generates chemical, biological, radiological or physical hazards. Yes in a facility that uses radioactive material, x-ray analytical equipment and/or lasers. Not required

  17. Rice University Environmental Health and Safety Laboratory-Specific Radiological Safety Training Attendance Record

    E-Print Network [OSTI]

    Natelson, Douglas

    . [ ] Radioactive material waste segregation and disposal forms and inventory forms properly signed and dated. [ ] Review of written protocols involving radioactive material. [ ] Radiological safety considerations with the material. Such training shall include: 1. A brief discussion of the hazards of radiation and radioactive

  18. Safety Basis Report

    SciTech Connect (OSTI)

    R.J. Garrett

    2002-01-14T23:59:59.000Z

    As part of the internal Integrated Safety Management Assessment verification process, it was determined that there was a lack of documentation that summarizes the safety basis of the current Yucca Mountain Project (YMP) site characterization activities. It was noted that a safety basis would make it possible to establish a technically justifiable graded approach to the implementation of the requirements identified in the Standards/Requirements Identification Document. The Standards/Requirements Identification Documents commit a facility to compliance with specific requirements and, together with the hazard baseline documentation, provide a technical basis for ensuring that the public and workers are protected. This Safety Basis Report has been developed to establish and document the safety basis of the current site characterization activities, establish and document the hazard baseline, and provide the technical basis for identifying structures, systems, and components (SSCs) that perform functions necessary to protect the public, the worker, and the environment from hazards unique to the YMP site characterization activities. This technical basis for identifying SSCs serves as a grading process for the implementation of programs such as Conduct of Operations (DOE Order 5480.19) and the Suspect/Counterfeit Items Program. In addition, this report provides a consolidated summary of the hazards analyses processes developed to support the design, construction, and operation of the YMP site characterization facilities and, therefore, provides a tool for evaluating the safety impacts of changes to the design and operation of the YMP site characterization activities.

  19. Radiation Safety Annual Refresher Training

    E-Print Network [OSTI]

    Thomas, David D.

    Radiation Safety Annual Refresher Training Radiation Protection Division Department of Environmental Health & Safety #12;Topics in Radiation Safety (applicable RPD Manual sections indicated) User;Topics in Radiation Safety (applicable RPD Manual sections indicated) User and Non-user topics Types

  20. Toolbox Safety Talk Lead Awareness

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Toolbox Safety Talk Lead Awareness Environmental Health & Safety Facilities Safety & Health Section Health & Safety for recordkeeping. Lead based paint is commonly found in homes built before 1978 and many industrial paints today still contain lead. Lead overexposure is one of the leading causes of workplace

  1. School of Forest Safety Training

    E-Print Network [OSTI]

    Thomas, Andrew

    ) · Laboratories: ­ Material Safety Data Sheets (MSDS) for chemicals ­ Chemical hygiene plan (CHP) manual

  2. SAFEGUARDS AND SECURITY INTEGRATION WITH SAFETY ANALYSIS

    SciTech Connect (OSTI)

    Hearn, J; James Lightner, J

    2007-04-13T23:59:59.000Z

    The objective of this paper is to share the Savannah River Site lessons learned on Safeguards and Security (S&S) program integration with K-Area Complex (KAC) safety basis. The KAC Documented Safety Analysis (DSA), is managed by the Washington Savannah River Company (WSRC), and the S&S program, managed by Wackenhut Services, Incorporated--Savannah River Site (WSI-SRS). WSRC and WSI-SRS developed a contractual arrangement to recognize WSI-SRS requirements in the KAC safety analysis. Design Basis Threat 2003 (DBT03) security upgrades required physical modifications and operational changes which included the availability of weapons which could potentially impact the facility safety analysis. The KAC DSA did not previously require explicit linkage to the S&S program to satisfy the safety analysis. WSI-SRS have contractual requirements with the Department of Energy (DOE) which are separate from WSRC contract requirements. The lessons learned will include a discussion on planning, analysis, approval of the controls and implementation issues.

  3. Revised GCFR safety program plan

    SciTech Connect (OSTI)

    Kelley, A.P.; Boyack, B.E.; Torri, A.

    1980-05-01T23:59:59.000Z

    This paper presents a summary of the recently revised gas-cooled fast breeder reactor (GCFR) safety program plan. The activities under this plan are organized to support six lines of protection (LOPs) for protection of the public from postulated GCFR accidents. Each LOP provides an independent, sequential, quantifiable risk barrier between the public and the radiological hazards associated with postulated GCFR accidents. To implement a quantitative risk-based approach in identifying the important technology requirements for each LOP, frequency and consequence-limiting goals are allocated to each. To ensure that all necessary tasks are covered to achieve these goals, the program plan is broken into a work breakdown structure (WBS). Finally, the means by which the plan is being implemented are discussed.

  4. Environment/Health/Safety (EHS): Laser Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000ConsumptionInnovationEnvironment, Safety andBerkeley LabERPEHS

  5. ADVANCED REACTOR SAFETY PROGRAM – STAKEHOLDER INTERACTION AND FEEDBACK

    SciTech Connect (OSTI)

    Spencer, Benjamin W; Huang, Hai

    2014-08-01T23:59:59.000Z

    In the Spring of 2013, we began discussions with our industry stakeholders on how to upgrade our safety analysis capabilities. The focus of these improvements would primarily be on advanced safety analysis capabilities that could help the nuclear industry analyze, understand, and better predict complex safety problems. The current environment in the DOE complex is such that recent successes in high performance computer modeling could lead the nuclear industry to benefit from these advances, as long as an effort to translate these advances into realistic applications is made. Upgrading the nuclear industry modeling analysis capabilities is a significant effort that would require substantial participation and coordination from all industry segments: research, engineering, vendors, and operations. We focus here on interactions with industry stakeholders to develop sound advanced safety analysis applications propositions that could have a positive impact on industry long term operation, hence advancing the state of nuclear safety.

  6. DOE explosives safety manual

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    The Department of Energy (DOE) policy requires that all DOE activities be conducted in a manner that protects the safety of the public and provides a safe and healthful workplace for employees. DOE has also prescribed that all personnel be protected in any explosives operation undertaken. The level of safety provided shall be at least equivalent to that of the best industrial practice. The risk of death or serious injury shall be limited to the lowest practicable minimum. DOE and contractors shall continually review their explosives operations with the aim of achieving further refinements and improvements in safety practices and protective features. This manual describes the Department's explosive safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives. It is intended to reflect the state-of-the-art in explosives safety. In addition, it is essential that applicable criteria and requirements for implementing this policy be readily available and known to those responsible for conducting DOE programs.

  7. DOE Hydrogen and Fuel Cell Activities Panel Discussion: 2010...

    Broader source: Energy.gov (indexed) [DOE]

    DOE Hydrogen and Fuel Cell Activities Panel Discussion: 2010 SAE World Congress DOE Hydrogen and Fuel Cell Activities Panel Discussion: 2010 SAE World Congress Presentation by...

  8. Energy Secretary Bodman Travels to Moscow, Baku, Kiev to Discuss...

    Office of Environmental Management (EM)

    Energy Secretary Bodman Travels to Moscow, Baku, Kiev to Discuss Energy and Nuclear Security Energy Secretary Bodman Travels to Moscow, Baku, Kiev to Discuss Energy and Nuclear...

  9. Secretary Chu to Discuss Importance of Electric Grid Modernization...

    Energy Savers [EERE]

    Discuss Importance of Electric Grid Modernization to U.S. Competitiveness at Gridwise Global Forum Secretary Chu to Discuss Importance of Electric Grid Modernization to U.S....

  10. Discussion on a Code Comparison Effort for the Geothermal Technologies...

    Office of Environmental Management (EM)

    Discussion on a Code Comparison Effort for the Geothermal Technologies Program Discussion on a Code Comparison Effort for the Geothermal Technologies Program Code comparison...

  11. DOE Hydrogen and Fuel Cell Activities Panel Discussion: 2010...

    Energy Savers [EERE]

    Activities Panel Discussion: 2010 SAE World Congress DOE Hydrogen and Fuel Cell Activities Panel Discussion: 2010 SAE World Congress Presentation by Sunita Satyapal at the 2010...

  12. Nuclear power safety in central and eastern Europe

    SciTech Connect (OSTI)

    Wilson, R. [Harvard Univ., Cambridge, MA (United States)

    1995-01-01T23:59:59.000Z

    The Chernobyl accident showed the weaknesses in the Soviet approach to safety, particularly of nuclear reactors. Until recently, Western governments, scientists, and engineers did not understand how to help their Russian colleagues make a greater society. This article discusses the two main types of Soviet reactors, their safety problems, and the help Westerners are giving to make them safer. 35 refs., 1 fig., 4 tabs.

  13. Seismic Safety Guide

    SciTech Connect (OSTI)

    Eagling, D.G. (ed.)

    1983-09-01T23:59:59.000Z

    This guide provides managers with practical guidelines for administering a comprehensive earthquake safety program. The Guide is comprehensive with respect to earthquakes in that it covers the most important aspects of natural hazards, site planning, evaluation and rehabilitation of existing buildings, design of new facilities, operational safety, emergency planning, special considerations related to shielding blocks, non-structural elements, lifelines, fire protection and emergency facilities. Management of risk and liabilities is also covered. Nuclear facilities per se are not dealt with specifically. The principles covered also apply generally to nuclear facilities but the design and construction of such structures are subject to special regulations and legal controls.

  14. Safety for Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton nSafeguardsUpdates >-SafetySafety

  15. Safety in Numbers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly throughR EMaterials (CRM)SafetySafety

  16. Nuclear Plant/Hydrogen Plant Safety: Issues and Approaches

    SciTech Connect (OSTI)

    Steven R. Sherman

    2007-06-01T23:59:59.000Z

    The U.S. Department of Energy, through its agents the Next Generation Nuclear Plant Project and the Nuclear Hydrogen Initiative, is working on developing the technologies to enable the large scale production of hydrogen using nuclear power. A very important consideration in the design of a co-located and connected nuclear plant/hydrogen plant facility is safety. This study provides an overview of the safety issues associated with a combined plant and discusses approaches for categorizing, quantifying, and addressing the safety risks.

  17. Management of National Nuclear Power Programs for assured safety

    SciTech Connect (OSTI)

    Connolly, T.J. (ed.)

    1985-01-01T23:59:59.000Z

    Topics discussed in this report include: nuclear utility organization; before the Florida Public Service Commission in re: St. Lucie Unit No. 2 cost recovery; nuclear reliability improvement and safety operations; nuclear utility management; training of nuclear facility personnel; US experience in key areas of nuclear safety; the US Nuclear Regulatory Commission - function and process; regulatory considerations of the risk of nuclear power plants; overview of the processes of reliability and risk management; management significance of risk analysis; international and domestic institutional issues for peaceful nuclear uses; the role of the Institute of Nuclear Power Operations (INPO); and nuclear safety activities of the International Atomic Energy Agency (IAEA).

  18. Safety aspects of EB melting

    SciTech Connect (OSTI)

    Hainz, L.C. [Hainz Engineering Services, Inc., Albany, OR (United States)

    1994-12-31T23:59:59.000Z

    Electron Beam melting technology, along with other vacuum metallurgical technologies, requires special attention to safety involving operation and maintenance of the EB furnace and systems. Although the EB industry has been relatively accident free, the importance of safety awareness and compliance becomes increasingly important. It is very important to provide a safe work environment for employees and economically important to protect the equipment from damage and potential downtime. Safety and accident prevention directly affects overhead costs by keeping accident insurance rates at a minimum. Routine safety requirements will be reviewed and safety aspects requiring extra attention will be addressed. Safety improvements and experiences of furnace users will be shared as examples.

  19. Ethanol Production, Distribution, and Use: Discussions on Key Issues (Presentation)

    SciTech Connect (OSTI)

    Harrow, G.

    2008-05-14T23:59:59.000Z

    From production to the environment, presentation discusses issues surrounding ethanol as a transportation fuel.

  20. Nuclear Safety Information Dashboard | Department of Energy

    Office of Environmental Management (EM)

    Nuclear Safety Information Dashboard Nuclear Safety Information Dashboard The Nuclear Safety Information (NSI) Dashboard provides a new user interface to the Occurrence Reporting...

  1. Safety Interlocks Group - Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Info APS Safety Page ESH Safety Manual Safety Interlocks Systems ACIS PSS FEEPS BLEPS UPS Division Links APS Organization Chart Beamlines Directory APS Engineering Support...

  2. Nuclear Explosive Safety Manual - DOE Directives, Delegations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1A Admin Chg 1, Nuclear Explosive Safety Manual by Carl Sykes Functional areas: Administrative Change, Defense Nuclear Facility Safety and Health Requirement, Nuclear Safety,...

  3. Radiation Safety Training Basic Radiation Safety Training for

    E-Print Network [OSTI]

    Dai, Pengcheng

    Radiation Safety Training Basic Radiation Safety Training for Sealed Source Users for Physics 461 Protocol Title: Training for Sealed Source Users Drafted By: Chris Millsaps, RSS Reviewers: ZB, TU, GS Purpose: To provide basic radiation safety training to the users of sealed sources located

  4. SAFETY PROCEDURE & GUIDELINES SUBJECT: Health and Safety Training

    E-Print Network [OSTI]

    Sinnamon, Gordon J.

    SAFETY PROCEDURE & GUIDELINES SUBJECT: Health and Safety Training APPLIES TO: All Departments that the health and safety training program is effective and is in compliance with the applicable federal for conducting training Establish who is responsible for determining the level and type of training required

  5. Radiation Safety Manual Dec 2012 Page 1 RADIATION SAFETY

    E-Print Network [OSTI]

    Grishok, Alla

    of External and Internal Doses E. Reports and Notices to Workers Chapter VII: Radiation ProtectionRadiation Safety Manual ­ Dec 2012 Page 1 RADIATION SAFETY MANUAL For Columbia University NewYork-Presbyterian Hospital New York State Psychiatric Institute Barnard College December 2012 #12;Radiation Safety Manual

  6. Safety and Security What do Safety/Security work with?

    E-Print Network [OSTI]

    Safety and Security on campus #12;Agenda · What do Safety/Security work with? · If something happens · Opening hours · Remember · Website · How to find us #12;The Section for Safety and Security work with; · Security revolving work environment · Handle locks, keys, alarms, surveillance · Responsible

  7. Software Safety Tutorial Status Update 1 Software Safety Tutorial

    E-Print Network [OSTI]

    Tian, Jeff

    Software Safety Tutorial Status Update 1 Software Safety Tutorial (Status Update) Jeff Tian, tian@engr.smu.edu CSE, SMU, Dallas, TX 75275 Topics · Project Overview · Software Safety Overview · Project Tasks competency for real-time software engineers. · Project team: Jeff Tian (SMU): Basics of SSE D.T. Huynh

  8. Safety Lifecycle for Developing Safety Critical Artificial Neural Networks

    E-Print Network [OSTI]

    Kelly, Tim

    Safety Lifecycle for Developing Safety Critical Artificial Neural Networks Zeshan Kurd, Tim Kelly.kelly}@cs.york.ac.uk Abstract. Artificial neural networks are employed in many areas of industry such as medicine and defence a safety lifecycle for artificial neural networks. The lifecycle fo- cuses on managing behaviour

  9. Local Safety Committee Engineering

    E-Print Network [OSTI]

    Saskatchewan, University of

    Minutes Local Safety Committee Name of Committee Engineering Worksite Mailing Address & Postal Code. Ventilation fume hoods V. Bendig and FMD report that an uninterrupted power supply will be attached to the ventilation control panel the week of Dec. 9. Action: T. Zintel and L. Harder will conduct a test the first

  10. Integrated Safety Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-04-25T23:59:59.000Z

    The order ensures that DOE/NNSA, systematically integrates safety into management and work practices at all levels, so that missions are accomplished efficiently while protecting the workers, the public, and the environment. Cancels DOE M 450.4-1 and DOE M 411.1-1C

  11. Nuclear Explosive Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Department of Energy (DOE) Manual provides supplemental details on selected topics to support the requirements of DOE O 452.2D, Nuclear Explosive Safety, dated 4/14/09. Cancels DOE M 452.2-1. Admin Chg 1, dated 7-10-13, cancels DOE M 452.2-1A.

  12. Safety & Environmental Protection Services

    E-Print Network [OSTI]

    Glasgow, University of

    of care in waste storage and disposal is available on Safety and Environmental Protection Service's (SEPS sustainably and to protect the environment and, in line with this, recycles waste wherever practicable to biological properties). In addition some activities produce radioactive waste. Radioactive waste

  13. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-04-04T23:59:59.000Z

    To establish safety requirements for the proper packaging and transportation of Department of Energy (DOE)/National Nuclear Security Administration (NNSA) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1A. Canceled by DOE O 460.1C.

  14. DOE Explosives Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-01-09T23:59:59.000Z

    The Manual describes the Departments explosive safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives. Cancels DOE M 440.1-1. Canceled by DOE O 440.1B Chg 1.

  15. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-05-14T23:59:59.000Z

    The order establishes safety requirements for the proper packaging and transportation of DOE, including NNSA, offsite shipments and onsite transfers of radioactive and other hazardous materials and for modal transportation. Cancels DOE O 460.1B, 5-14-10

  16. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-06-12T23:59:59.000Z

    The directive establishes specific nuclear explosive safety (NES) program requirements to implement the DOE NES standards and other NES criteria for routine and planned nuclear explosive operations. Cancels DOE O 452.2B. Canceled by DOE O 452.2D.

  17. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Order establishes requirements to implement the nuclear explosive safety elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations. Cancels DOE O 452.2C. Admin Chg 1, 7-10-13

  18. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs). Cancels DOE O 452.2C. Admin Chg 1, dated 7-10-13, cancels DOE O 452.2D.

  19. Reactor safety method

    DOE Patents [OSTI]

    Vachon, Lawrence J. (Clairton, PA)

    1980-03-11T23:59:59.000Z

    This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature.

  20. Module Safety Issues (Presentation)

    SciTech Connect (OSTI)

    Wohlgemuth, J.

    2012-02-01T23:59:59.000Z

    Description of how to make PV modules so that they are less likely to turn into safety hazards. Making modules inherently safer with minimum additional cost is the preferred approach for PV. Safety starts with module design to ensure redundancy within the electrical circuitry to minimize open circuits and proper mounting instructions to prevent installation related ground faults. Module manufacturers must control the raw materials and processes to ensure that that every module is built like those qualified through the safety tests. This is the reason behind the QA task force effort to develop a 'Guideline for PV Module Manufacturing QA'. Periodic accelerated stress testing of production products is critical to validate the safety of the product. Combining safer PV modules with better systems designs is the ultimate goal. This should be especially true for PV arrays on buildings. Use of lower voltage dc circuits - AC modules, DC-DC converters. Use of arc detectors and interrupters to detect arcs and open the circuits to extinguish the arcs.

  1. Nuclear Explosive Safety Evaluation Processes

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Manual provides supplemental details to support the nuclear explosive safety evaluation requirement of DOE O 452.2D, Nuclear Explosive Safety. Does not cancel other directives. Admin Chg 1, 7-10-13.

  2. Gas Pipeline Safety (West Virginia)

    Broader source: Energy.gov [DOE]

    The Gas Pipeline Safety Section of the Engineering Division is responsible for the application and enforcement of pipeline safety regulations under Chapter 24B of the West Virginia Code and 49 U.S...

  3. Nuclear Engineering Nuclear Criticality Safety

    E-Print Network [OSTI]

    Kemner, Ken

    development, Nuclear Operations Division (NOD) waste management and storage activities and other laboratoryNuclear Engineering Nuclear Criticality Safety The Nuclear Engineering Division (NE) of Argonne National Laboratory is experienced in performing criticality safety and shielding evaluations for nuclear

  4. COLUMBIA UNIVERSITY Radiation Safety Program

    E-Print Network [OSTI]

    Jia, Songtao

    COLUMBIA UNIVERSITY Radiation Safety Program Medical Center - T: 212-305-0303 F: 212: _______________ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Radiation Safety Office Approval: ______________________ Date: ________________________ Waste containers in place: Yes ___ No ___ Radiation signage on door: Yes ___ No ___ Room monitoring: Dates

  5. Radiation Safety (Revised March 2010)

    E-Print Network [OSTI]

    Kay, Mark A.

    to Workers; Inspections 27 10 CFR Part 20Standards for Protection Against Radiation 28 10 CFR Part 35Radiation Safety Manual (Revised March 2010) Updated December 2012 Stanford University, Stanford California #12; #12; Radiation Safety Manual (Revised March 2010) Updated

  6. ANNUAL SECURITY FIRE SAFETY REPORT

    E-Print Network [OSTI]

    ANNUAL SECURITY AND FIRE SAFETY REPORT OCTOBER 1, 2013 DARTMOUTH COLLEGE http://www.dartmouth.edu/~security/ #12;1 Table of Contents MESSAGE FROM THE DIRECTOR OF SAFETY AND SECURITY................................................................................................................................................................... 7 ANNUAL SECURITY REPORT

  7. TUFTS UNIVERSITY LASER SAFETY PROGRAM

    E-Print Network [OSTI]

    Dennett, Daniel

    with laser safety regulations promulgated by state, federal, and local agencies. The LSO administers and Maximum Permissible Exposures 12 X. Electrical Hazards 12 XI. General Safety Procedures 13 XII. Laser

  8. FLUOR HANFORD SAFETY MANAGEMENT PROGRAMS

    SciTech Connect (OSTI)

    GARVIN, L J; JENSEN, M A

    2004-04-13T23:59:59.000Z

    This document summarizes safety management programs used within the scope of the ''Project Hanford Management Contract''. The document has been developed to meet the format and content requirements of DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses''. This document provides summary descriptions of Fluor Hanford safety management programs, which Fluor Hanford nuclear facilities may reference and incorporate into their safety basis when producing facility- or activity-specific documented safety analyses (DSA). Facility- or activity-specific DSAs will identify any variances to the safety management programs described in this document and any specific attributes of these safety management programs that are important for controlling potentially hazardous conditions. In addition, facility- or activity-specific DSAs may identify unique additions to the safety management programs that are needed to control potentially hazardous conditions.

  9. HHS Advisory Committee on Blood Safety and Availability On June 10-11, 2010, the HHS Advisory Committee on Blood Safety and Availability

    E-Print Network [OSTI]

    Khan, Javed I.

    HHS Advisory Committee on Blood Safety and Availability On June 10-11, 2010, the HHS Advisory Committee on Blood Safety and Availability (ACBSA) met to discuss the current Food and Drug Administration had sex with other men at any time since 1977 are currently deferred as blood donors. The ACBSA

  10. M & S Discussion 2 Crowd Behavior M & S

    E-Print Network [OSTI]

    Hu, Xiaolin

    slows down. · It is "impossible" to simulate 50,000 agents (which is about the capacity of the Turner into cells · Individuals on a grid · Series of timesteps · Tracking the movement of individuals #12 perform actions (individual/group) ­ Occupants can make decisions ­ Occupants move towards safety

  11. BURNING PLASMA NEXT STEPS: DISCUSSION OF KEY DEVELOPMENTS

    E-Print Network [OSTI]

    , and boundary physics in the regime of dominant self-heating. ­ TECHNOLOGY · 2. Plasma support technologies (heating, fuel delivery, exhaust, plasma- facing components, and magnets) will benefit most because technologies (remote handling, vacuum vessel, blankets, safety and materials) will advance as a result

  12. CONSTRUCTION SAFETY MANUAL ADMINISTRATIVE POLICIES

    E-Print Network [OSTI]

    Knowles, David William

    Revised 06/10 10.1 Subcontractor Safety Policy 10.2 Scope 10.2.1 General 10.2.2 Department of Energy 10 the integration of safety management into all construction processes. Project managers, construction managers.7 Engineered Protective Systems 10.8 Procurement of Hazardous Material 10.9 Safety Training and Education 10

  13. Toolbox Safety Talk Heat Stress

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Toolbox Safety Talk Heat Stress Environmental Health & Safety Facilities Safety & Health Section for inducing heat stress. When the body is unable to cool itself by sweating, several heat-induced illnesses Stress · Know signs/symptoms of heat-related illnesses; monitor yourself and coworkers. · Block out

  14. COLUMBIA UNIVERSITY Radiation Safety Program

    E-Print Network [OSTI]

    Jia, Songtao

    COLUMBIA UNIVERSITY Radiation Safety Program Medical Center - T: 212-305-0303 F: 212-305-0318 rso-clinical@columbia by more than 50 percent. #12;COLUMBIA UNIVERSITY Radiation Safety Program Medical Center - T: 212 ________________________________________________________ ________________________________________________________ #12;COLUMBIA UNIVERSITY Radiation Safety Program Medical Center - T: 212-305-0303 F: 212-305-0318 rso-clinical@columbia

  15. pamphlet04.doc SAFETY INFORMATION

    E-Print Network [OSTI]

    Oliver, Douglas L.

    to emergencies such as fire, chemical spill, electrical outage, communication system failure, etc. 2. RESEARCH Drugs 8 Communication Systems 9 Compliance Issues 10 Compressed Gas Cylinders 11 Electrical Safety 12 Electrical Power Failure 13 Emergency Procedures 14 Fire Safety 15 Hazard Reporting 16 Laser Safety 17

  16. Health and Safety Training Reciprocity

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-04-14T23:59:59.000Z

    Establishes a policy for reciprocity of employee health and safety training among DOE entities responsible for employee health and safety at DOE sites and facilities to increase efficiency and effectiveness of Departmental operations while meeting established health and safety requirements. Does not cancel other directives.

  17. Jefferson Lab IEC 61508/61511 Safety PLC Based Safety System

    SciTech Connect (OSTI)

    Kelly Mahoney, Henry Robertson

    2009-10-01T23:59:59.000Z

    This paper describes the design of the new 12 GeV Upgrade Personnel Safety System (PSS) at the Thomas Jefferson National Accelerator Facility (TJNAF). The new PSS design is based on the implementation of systems designed to meet international standards IEC61508 and IEC 61511 for programmable safety systems. In order to meet the IEC standards, TJNAF engineers evaluated several SIL 3 Safety PLCs before deciding on an optimal architecture. In addition to hardware considerations, software quality standards and practices must also be considered. Finally, we will discuss R&D that may lead to both high safety reliability and high machine availability that may be applicable to future accelerators such as the ILC. Key words: PLC, Safety, TJNAF, SIL, PSS, PPS, Software, ILC Notice: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes.

  18. Events Beyond Design Safety Basis Analysis

    Broader source: Energy.gov [DOE]

    This Safety Alert provides information on a safety concern related to the identification and mitigation of events that may fall outside those analyzed in the documented safety analysis. [Safety Bulletin 2011-01

  19. UNECE TIMBER COMMITTEE Market Discussions, 3-4 October 2006

    E-Print Network [OSTI]

    , carbon and climate change #12;UNECE TIMBER COMMITTEE Market Discussions, 3-4 October 2006 Photo: NTC · Executive summaries available in English and Russia #12;UNECE TIMBER COMMITTEE Market Discussions, 3

  20. Enhancing Railroad Hazardous Materials Transportation Safety...

    Office of Environmental Management (EM)

    Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing Presentation made by Kevin...

  1. Independent Oversight Focused Safety Management Evaluation, Idaho...

    Office of Environmental Management (EM)

    Focused Safety Management Evaluation, Idaho National Engineering and Environmental Laboratory - January 2001 Independent Oversight Focused Safety Management Evaluation, Idaho...

  2. Unreviewed Safety Question Determination - Processing Waste in...

    Office of Environmental Management (EM)

    Unreviewed Safety Question Determination - Processing Waste in the Waste Characterization Glovebox Unreviewed Safety Question Determination - Processing Waste in the Waste...

  3. The Front Lines of Patient Safety

    E-Print Network [OSTI]

    Soloveichik, David

    patient safety · Incident Reporting · Root Cause Analysis · FMEA · Culture of Patient Safety Survey

  4. PNNL Expert Alan Zacher Discusses Bio-Based Fuels

    SciTech Connect (OSTI)

    Alan Zacher

    2011-10-01T23:59:59.000Z

    Chemical Engineer Alan Zacher discusses the process for creating fuels from renewable sources in an efficient manner.

  5. PNNL Expert Alan Zacher Discusses Bio-Based Fuels

    ScienceCinema (OSTI)

    Alan Zacher

    2012-12-31T23:59:59.000Z

    Chemical Engineer Alan Zacher discusses the process for creating fuels from renewable sources in an efficient manner.

  6. Final Discussion | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Final Discussion Scientific User Facilities (SUF) Division SUF Home About User Facilities Projects Accelerator & Detector Research Science Highlights Principal Investigators'...

  7. LOCH: Planning for Open Access in REF - Discussion Points 

    E-Print Network [OSTI]

    Tate, Dominic; Aucock, Janet

    2015-03-19T23:59:59.000Z

    Slides and checklist from facilitated discussion session from ARMA Open Access Good Practice event (London 19-03-2015)....

  8. Safety First Safety Last Safety Always Summer in Minnesota means high humidity and sunny, hot

    E-Print Network [OSTI]

    Minnesota, University of

    Safety First Safety Last Safety Always Summer in Minnesota means high humidity and sunny, hot days. · Heat stroke is life threatening! Symptoms include high body temperature, red and dry skin, rapid before you get thirsty. Adequate fluid intake is the biggest key. Cool (not ice cold) water is the best

  9. Nuclear reactor safety device

    DOE Patents [OSTI]

    Hutter, Ernest (Wilmette, IL)

    1986-01-01T23:59:59.000Z

    A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.

  10. Radioisotope thermoelectric generator reliability and safety

    SciTech Connect (OSTI)

    Campbell, R.; Klein, J.

    1989-01-01T23:59:59.000Z

    There are numerous occasions when a planetary mission requires energy in remote areas of the solar system. Anytime power is required much beyond Mars or the Asteroid Belts, solar power is not an option. The radioisotope thermoelectric generator (RTG) was developed for such a mission requirement. It is a relatively small and lightweight power source that can produce power under adverse conditions. Just this type of source has become the backbone of the power system for far outer plant exploration. Voyagers I and II are utilizing RTGs, which will soon power the Galileo spacecraft to Jupiter and the Ulysses spacecraft to study the solar poles. The paper discusses RTG operation including thermoelectric design, converter design, general-purpose heat source; RTG reliability including design, testing, experience, and launch approval; and RTG safety issues and methods of ensuring safety.

  11. Mars mission safety

    SciTech Connect (OSTI)

    Buden, D. (EG G Idaho, Idaho Falls (USA))

    1989-06-01T23:59:59.000Z

    Precautions that need to be taken to assure safety on a manned Mars mission with nuclear thermal propulsion are briefly considered. What has been learned from the 1955 SNAP-10A operation of a nuclear reactor in space and from the Rover/NERVA project is reviewed. The ways that radiation hazards can be dealt with at various stages of a Mars mission are examined.

  12. Safety program of the Oak Ridge National Laboratory: a different approach

    SciTech Connect (OSTI)

    Burger, G.H.

    1981-01-01T23:59:59.000Z

    The uniqueness and therefore different approach to Oak Ridge National Laboratory's safety program is not a result of elimination of the usual industrial safety organization, but results from the three organizations which supplement it and the areas of safety concerns that they cover. While industrial safety is primarily concerned with day-to-day routine worker activities (wearing of safety glasses and hard hats, adherence to electrical safety work procedures, proper safety lockout and tagout of equipment for maintenance activities, etc.), the other organizations, the Office of Operational Safety, Division Safety Officers and Radiation Control Officers, and the Laboratory director's Review Committees, are concerned with themuch broader spectrum of the total work environment. These organizations are concerned not only with the day-to-day worker activities but the design and conduction of all operations from a process viewpoint. The emphasis of these groups is assuring first that operations, experiments, facilities, etc., are designed properly and then secondly operated properly to assure safety of the operators, Laboratory population, and the public. Responsibilities of the three safety organizations constituting operational or process safety are described and discussed.

  13. Transactions of the nineteenth water reactor safety information meeting

    SciTech Connect (OSTI)

    Weiss, A.J. (comp.)

    1991-10-01T23:59:59.000Z

    This report contains summaries of papers on reactor safety research to be presented at the 19th Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel in Bethesda, Maryland, October 28--30, 1991. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory Research, USNRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the Electric Power Research Institute (EPRI), the nuclear industry, and from the governments and industry in Europe and Japan are also included. The summaries have been compiled in one report to provide a basis for meaningful discussion and information exchange during the course of the meeting, and are given in the order of their presentation in each session. The individual summaries have been cataloged separately.

  14. Software reliability and safety in nuclear reactor protection systems

    SciTech Connect (OSTI)

    Lawrence, J.D. [Lawrence Livermore National Lab., CA (United States)

    1993-11-01T23:59:59.000Z

    Planning the development, use and regulation of computer systems in nuclear reactor protection systems in such a way as to enhance reliability and safety is a complex issue. This report is one of a series of reports from the Computer Safety and Reliability Group, Lawrence Livermore that investigates different aspects of computer software in reactor National Laboratory, that investigates different aspects of computer software in reactor protection systems. There are two central themes in the report, First, software considerations cannot be fully understood in isolation from computer hardware and application considerations. Second, the process of engineering reliability and safety into a computer system requires activities to be carried out throughout the software life cycle. The report discusses the many activities that can be carried out during the software life cycle to improve the safety and reliability of the resulting product. The viewpoint is primarily that of the assessor, or auditor.

  15. Health and safety plan for operations performed for the Environmental Restoration Program. Task, OU 1-03 and OU 4-10 Track 2 investigations

    SciTech Connect (OSTI)

    Trippet, W.A. II [IT Corp., (United States); Reneau, M.; Morton, S.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1992-04-01T23:59:59.000Z

    This document constitutes the generic health and safety plan for the Environmental Restoration Program (ERP). It addresses the health and safety requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); Occupational Safety and Health Administration (OSHA) 29 CFR 1910.120 standard; and EG&G Idaho, Inc. This plan is a guide to individuals who must complete a health and safety plan for a task performed for the EPR. It contains a task specific addendum that, when completed, specifically addresses task specific health and safety issues. This health and safety plan reduces the time it takes to write a task specific health and safety plan by providing discussions of requirements, guidance on where specific information is located, and specific topics in the Addendum that must be discussed at a task level. This format encourages a complete task specific health and safety plan and a standard for all health and safety plans written for ERP.

  16. Proving Safety Properties of the Steam Boiler Controller G. Leeb, N. Lynch Page 1 of 20

    E-Print Network [OSTI]

    Lynch, Nancy

    Proving Safety Properties of the Steam Boiler Controller G. Leeb, N. Lynch Page 1 of 20 Proving Safety Properties of the Steam Boiler Controller Formal Methods for Industrial Applications: A Case Study problem is the Steam Boiler Controller problem discussed in this paper. Another representative

  17. Proving Safety Properties of the Steam Boiler Controller G. Leeb, N. Lynch Page 1 of 37

    E-Print Network [OSTI]

    Lynch, Nancy

    Proving Safety Properties of the Steam Boiler Controller G. Leeb, N. Lynch Page 1 of 37 Proving Safety Properties of the Steam Boiler Controller Formal Methods for Industrial Applications: A Case Study problem is the Steam Boiler Controller problem discussed in this paper. Another representative

  18. Walking and Climbing Service Robots for Safety Inspection of Nuclear Reactor Pressure Vessels

    E-Print Network [OSTI]

    Chen, Sheng

    Walking and Climbing Service Robots for Safety Inspection of Nuclear Reactor Pressure Vessels B of Electronics and Computer Science, University of Southampton, Southampton, UK Abstract: Nuclear reactor and the usefulness of these robots for improving safety inspection of nuclear reactors in general are discussed

  19. Policies,Safety&U Annual Security and Fire Safety Report

    E-Print Network [OSTI]

    Lee, Dongwon

    ................................................................................ 5 ABOUT THE PENN STATE HARRISBURG SAFETY AND POLICE SERVICES ..... 5 Role, Authority, and Training .................................................................... 7 SECURITY OF and ACCESS TO PENN STATE HARRISBURG FACILITIES ........ 8 Special Considerations

  20. US, UK, France Discuss Stockpile Stewardship, Arms Control and...

    National Nuclear Security Administration (NNSA)

    UK, France Discuss Stockpile Stewardship, Arms Control and Nonproliferation and Visit the Nevada National Security Site | National Nuclear Security Administration Facebook Twitter...

  1. What's Next for Nuclear Energy? MIT Students Discuss Path Forward

    Broader source: Energy.gov [DOE]

    Students at Massachusetts Institute of Technology (MIT) gathered Friday to have a casual discussion with the U.S. government’s foremost expert on nuclear energy

  2. Deputy Secretary Elizabeth Sherwood-Randall Discusses Importance...

    Office of Environmental Management (EM)

    Jeh Johnson, Deputy Secretary Sherwood-Randall discussed building upon the work of the Electricity Sub-Sector Coordinating Council (ESCC), and the importance of expanding and...

  3. Session 6 - Environmentally Concerned Public Sector Panel Discussion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "The Light-Duty Diesel In America?" Session 6 - Environmentally Concerned Public Sector Panel Discussion "The Light-Duty Diesel In America?" 2003 DEER Conference...

  4. TODAY: Senior Obama Administration Officials to Discuss Progress...

    Energy Savers [EERE]

    Wakarusa, Indiana, factory and is powered by an advanced battery manufactured in Michigan by another Recovery Act recipient, A123 Systems. WHAT: Conference call to discuss...

  5. NIST Privacy Engineering Objectives and Risk Model Discussion Draft Introduction

    E-Print Network [OSTI]

    liberties.1 Workshop discussions assessed models provided by other disciplines such as cybersecurity sectors and disciplines. Some key considerations that emerged from the workshop included: 1

  6. Lawn Maintenance Safety

    E-Print Network [OSTI]

    Smith, David

    2005-07-12T23:59:59.000Z

    debris and noise. ? Allow the engine to cool before returning it to a storage shed. ? Turn the power off and disconnect the spark plug wire before cleaning, inspecting, adjusting or repairing the cutting blade. Lawn Maintenance Safety ? Don?t run a... as possible to avoid being hit by passing vehicles. ? Never leave an electric- or gas-powered edger plugged in or running while unattended. ? Unplug or turn off an electric or gas-powered edger before inspecting, cleaning, adjusting or replacing the blade...

  7. Perspectives on reactor safety

    SciTech Connect (OSTI)

    Haskin, F.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Camp, A.L. [Sandia National Labs., Albuquerque, NM (United States)

    1994-03-01T23:59:59.000Z

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

  8. Complete Safety Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting theCommercialization and Innovation2010 2010AboutComplete Safety Training

  9. Complete Safety Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting theCommercialization and Innovation2010 2010AboutComplete Safety

  10. Nuclear Safety Regulatory Framework

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthBDepartment of Energy Nuclear Safety

  11. Safety for Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton nSafeguardsUpdates >-Safety for

  12. Safety for Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton nSafeguardsUpdates >-Safety

  13. Safety | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton nSafeguardsUpdatesis the FirstSafety

  14. Sandia Energy - Transportation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home DistributionTransportation Safety Home Stationary Power Nuclear Fuel Cycle

  15. Integrated Safety Management Policy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732on ArmedManufacturing | DepartmentINTEGRATED SAFETY MANAGEMENT

  16. Safety for Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn theTreatmentSRSSafety The NuclearSafety for

  17. Safety for Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn theTreatmentSRSSafety The NuclearSafety for

  18. Complete Safety Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submit the followingthMeasurements |CompetitiveComplete Safety

  19. SSRL Safety Office Memo

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly throughR E Q U E N C4Safety Office SSO

  20. Safety Staff Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly throughR EMaterials (CRM) | U.S.Safety

  1. Safety for Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly throughR EMaterials (CRM)Safety for

  2. Safety for Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly throughR EMaterials (CRM)Safety

  3. ARM - ARM Safety Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearchSOLICITATIONIMODI FICATION OF CONTRACTOperationsYearSafety Policy About

  4. Health & Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanford LEED&soilASTI-SORTIHealth & Safety Health

  5. Material Safety Data Sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a New 183-GHzMAR Os2010Material Safety Data Sheet

  6. Nuclear explosive safety study process

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    Nuclear explosives by their design and intended use require collocation of high explosives and fissile material. The design agencies are responsible for designing safety into the nuclear explosive and processes involving the nuclear explosive. The methodology for ensuring safety consists of independent review processes that include the national laboratories, Operations Offices, Headquarters, and responsible Area Offices and operating contractors with expertise in nuclear explosive safety. A NES Study is an evaluation of the adequacy of positive measures to minimize the possibility of an inadvertent or deliberate unauthorized nuclear detonation, high explosive detonation or deflagration, fire, or fissile material dispersal from the pit. The Nuclear Explosive Safety Study Group (NESSG) evaluates nuclear explosive operations against the Nuclear Explosive Safety Standards specified in DOE O 452.2 using systematic evaluation techniques. These Safety Standards must be satisfied for nuclear explosive operations.

  7. Organizational analysis and safety for utilities with nuclear power plants: perspectives for organizational assessment. Volume 2. [PWR; BWR

    SciTech Connect (OSTI)

    Osborn, R.N.; Olson, J.; Sommers, P.E.; McLaughlin, S.D.; Jackson, M.S.; Nadel, M.V.; Scott, W.G.; Connor, P.E.; Kerwin, N.; Kennedy, J.K. Jr.

    1983-08-01T23:59:59.000Z

    This two-volume report presents the results of initial research on the feasibility of applying organizational factors in nuclear power plant (NPP) safety assessment. Volume 1 of this report contains an overview of the literature, a discussion of available safety indicators, and a series of recommendations for more systematically incorporating organizational analysis into investigations of nuclear power plant safety. The six chapters of this volume discuss the major elements in our general approach to safety in the nuclear industry. The chapters include information on organizational design and safety; organizational governance; utility environment and safety related outcomes; assessments by selected federal agencies; review of data sources in the nuclear power industry; and existing safety indicators.

  8. awa-muatan pijar glow: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    examined through the so called thermoluminescent Glow Curve, evidences chaotic and fractal regimes. Phase space reconstruction, Correlation Dimension, largest Lyapunov...

  9. Skid-Steer Loader Safety

    E-Print Network [OSTI]

    Smith, David

    2005-06-28T23:59:59.000Z

    -steer loaders have been used in the construc- tion and landscaping industry for years. They are also common on dairy, beef and swine operations. Unlike conventional tractors, these compact and maneuverable machines allow farmers to enter narrow alleyways... the automatic safety switches. Machine Safeguards Using and maintaining manufacturer-installed safety devices will eliminate many skid-loader injuries and fatalities. Occupational Safety and Health Administration (OSHA) regulations and industry standards...

  10. Health and Safety Research Division progress report, May 1, 1978-September 30, 1979

    SciTech Connect (OSTI)

    Kaye, S.V.

    1980-01-01T23:59:59.000Z

    Research activities of the Health and Safety Research Division for the period May 1978 through September 1979 are discussed. Abstracts of five individual items were prepared for the data base. (GHT)

  11. Applications of nuclear data covariances to criticality safety and spent fuel characterization

    SciTech Connect (OSTI)

    Williams, Mark L [ORNL] [ORNL; Ilas, Germina [ORNL] [ORNL; Marshall, William BJ J [ORNL] [ORNL; Rearden, Bradley T [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Covariance data computational methods and data used for sensitivity and uncertainty analysis within the SCALE nuclear analysis code system are presented. Applications in criticality safety calculations and used nuclear fuel analysis are discussed.

  12. Discussion Paper No. 2013-12 Maria Montero, Alex

    E-Print Network [OSTI]

    Aickelin, Uwe

    Discussion Paper No. 2013-12 Maria Montero, Alex Possajennikov, Martin Sefton and Theodore Turocy.nottingham.ac.uk/cedex/publications/discussion-papers/index.aspx #12;1 Majoritarian Contests with Asymmetric Battlefields: An Experiment1 Maria Montero2 University at the University of East Anglia. 2 Corresponding author. Contact details: maria.montero@nottingham.ac.uk 3 Contact

  13. 7Emissions Trading Workshop Summary Report Discussion Synthesis

    E-Print Network [OSTI]

    7Emissions Trading Workshop Summary Report Discussion Synthesis Background On April 30, 2010, more than 70 people gathered for an all-day workshop on emissions trading at Purdue University's Discovery of different emission trading proposals. The need for such discussion is great. Pollution trading is a high

  14. For discussion purposes only Biofuel and Poverty Nexus

    E-Print Network [OSTI]

    For discussion purposes only Biofuel and Poverty Nexus in Asia 13th Poverty and Environment Partnership Meeting Myo Thant Manila, 11 June 2008 #12;For discussion purposes only Interest in Biofuels has and policies · Number of countries · Different biofuel feedstock · Research on second generation technology #12

  15. Discussion of ``Atmospheric Momentum Roughness Applied to Stage-Discharge

    E-Print Network [OSTI]

    the Darcy-Weisbach equation and conventional log law and derive an alternative log law equation to calculate discussion. Concerning the resistance equations, if their Eq. 2 holds, the Darcy-Weisbach friction factor f equation and the selection of appropriate roughness param- eters. They discuss the merits of different

  16. HH IRP Discussion Paper No. 1419-14

    E-Print Network [OSTI]

    Schulte, Mike

    HH IRP Discussion Paper No. 1419-14 Post-1970 Trends in Within-Country Inequality and Poverty: Rich of a particular area of research. We examine the literature on post-1970 trends in poverty and income inequality of these areas, as well as an integrated discussion of empirical choices made in the measurement of poverty

  17. Jitter-based analysis and discussion of burst assembly algorithms

    E-Print Network [OSTI]

    Aracil, Javier

    Jitter-based analysis and discussion of burst assembly algorithms Javier Aracil, Jos´e Alberto Hern a jitter analysis of size-based burst assembly algorithms and also discusses other burst assem- bly algorithms that use the packet delay as the assembly threshold to provide a bound on jitter. Index Terms

  18. Security Issues in Data Warehousing and Data Mining: Panel Discussion

    E-Print Network [OSTI]

    Lin, Tsau Young

    and mining. Position by Linda Schlipper For most enterprises there is no shortage of data. Operational dataSecurity Issues in Data Warehousing and Data Mining: Panel Discussion Bhavani Thuraisingham Corporation Abstract This paper describes the panel discussion on data warehousing, data mining and security

  19. Radiation Safety Work Control Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Safety Work Control Form (see instructions on pg-3) Rev. May 2014 Area: Form : Date: Preliminary Applicability Screen: (a) Will closing the beam line injection stoppers...

  20. Sandia National Laboratories: Hydrogen Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Safety Solar Thermochemical Hydrogen Production On June 13, 2014, in SNL maintains the equipment, experts, and partnerships required to develop technology for solar...

  1. APS Safety Guidelines for Beamlines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Guidelines for Beamlines Accident Investigations LOM Shop Usage User Shop Access - Policies and Procedures User Shop Orientation User Shop Authorization Certification Form...

  2. APS Experiment Safety Review Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    participates in project reviews as requested, recommends laser safety policy, reviews accident investigation conclusions, and evaluates plans to protect personnel where laser...

  3. Fermilab | Traffic Safety at Fermilab |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Submit a SuggestionQuestion Fermilab traffic rules (FESHM 9010) Fermilab traffic accident statistics Traffic safety awareness training Resources Texting While Driving...

  4. Natural Gas Pipeline Safety (Kansas)

    Broader source: Energy.gov [DOE]

    This article states minimum safety standards for the transportation of natural gas by pipeline and reporting requirements for operators of pipelines.

  5. Lessons Learned from Safety Events

    SciTech Connect (OSTI)

    Weiner, Steven C.; Fassbender, Linda L.

    2012-11-01T23:59:59.000Z

    The Hydrogen Incident Reporting and Lessons Learned website (www.h2incidents.org) was launched in 2006 as a database-driven resource for sharing lessons learned from hydrogen-related safety events to raise safety awareness and encourage knowledge-sharing. The development of this database, its first uses and subsequent enhancements have been described at the Second and Third International Conferences on Hydrogen Safety. [1,2] Since 2009, continuing work has not only highlighted the value of safety lessons learned, but enhanced how the database provides access to another safety knowledge tool, Hydrogen Safety Best Practices (http://h2bestpractices.org). Collaborations with the International Energy Agency (IEA) Hydrogen Implementing Agreement (HIA) Task 19 – Hydrogen Safety and others have enabled the database to capture safety event learnings from around the world. This paper updates recent progress, highlights the new “Lessons Learned Corner” as one means for knowledge-sharing and examines the broader potential for collecting, analyzing and using safety event information.

  6. Safety-Oriented Design of Component Assemblies using Safety Interfaces

    E-Print Network [OSTI]

    for upgrades at a later stage of the system life cycle. Thus, support for rigorous, compositional analysis from-based development. Keywords: Component-based system development, safety, component assemblies, safety interfaces as a promising approach for developing complex software systems by composing smaller indepen- dently developed

  7. General Safety Office of Environmental Health and Safety

    E-Print Network [OSTI]

    General Safety Web Manual Office of Environmental Health and Safety April 2010 #12;#12;Contents Emergency Telephone Numbers and Procedures............................(Click for web link) - How to Report............................................(Click for web link) - Chancellor - Vice Chancellors - Department Heads - Supervisors, Foreman and Managers

  8. Safety and Health Policy and Procedure Manual Biological Safety Manual

    E-Print Network [OSTI]

    Saidak, Filip

    Biological Safety Association (ABSA) best practices as well as all federal, state, and local regulations. IISafety and Health Policy and Procedure Manual Biological Safety Manual Section 280 INDEX I. Policy space suitable for work being conducted · Under the Office of Research Compliance, establish and manage

  9. National Transportation Safety Board Office of Aviation Safety

    E-Print Network [OSTI]

    Droegemeier, Kelvin K.

    NWS and Federal Aviation Administration (FAA) Advisory Circular "Aviation Weather Services", AC 00 Electronics Engineer Federal Aviation Administration 1 UTC ­ is an abbreviation for Coordinated Universal Time1 National Transportation Safety Board Office of Aviation Safety Washington, D.C. 20594

  10. INTEGRATED SAFETY MANAGEMENT SYSTEM SAFETY CULTURE IMPROVEMENT INITIATIVE

    SciTech Connect (OSTI)

    MCDONALD JA JR

    2009-01-16T23:59:59.000Z

    In 2007, the Department of Energy (DOE) identified safety culture as one of their top Integrated Safety Management System (ISMS) related priorities. A team was formed to address this issue. The team identified a consensus set of safety culture principles, along with implementation practices that could be used by DOE, NNSA, and their contractors. Documented improvement tools were identified and communicated to contractors participating in a year long pilot project. After a year, lessons learned will be collected and a path forward determined. The goal of this effort was to achieve improved safety and mission performance through ISMS continuous improvement. The focus of ISMS improvement was safety culture improvement building on operating experience from similar industries such as the domestic and international commercial nuclear and chemical industry.

  11. LASER SAFETY MANUAL 2014 RICE UNIVERSITY 1

    E-Print Network [OSTI]

    Natelson, Douglas

    LASER SAFETY MANUAL 2014 RICE UNIVERSITY 1 Rice University Laser Safety Manual Environmental Health and Safety MS 123 P.O. Box 1892 Houston, TX 77251-1892 January 2014 #12;LASER SAFETY MANUAL 2014 RICE UNIVERSITY 2 Introduction The objective of the Rice University Laser Safety program is to assist all levels

  12. LASER SAFETY COMMITTEE CHARTER November, 2005

    E-Print Network [OSTI]

    Knowles, David William

    LASER SAFETY COMMITTEE CHARTER November, 2005 Function The Safety Review Committee (SRC) performs-committees to address specific health and safety matters. The Laser Safety Committee (LSC) is one of the SRC expert sub-committees. The Laser SafetyCommittee recommends policies and practices regarding the conduct and regulatory compliance

  13. LASER SAFETY MANUAL POLICIES AND PROCEDURES

    E-Print Network [OSTI]

    Zhang, Yuanlin

    LASER SAFETY MANUAL POLICIES AND PROCEDURES FOR LASER SAFETY AT TEXAS TECH UNIVERSITY LUBBOCK, TEXAS September 2002 #12;V-1 TEXAS TECH UNIVERSITY LASER SAFETY MANUAL TABLE OF CONTENTS SECTION I ­ MANAGEMENT OF LASER LICENSE Introduction A. Laser Safety Program I - 1 B. Radiation Laser Safety Committee I

  14. Health and Safety Handbook UPDATED: June 27, 2012

    E-Print Network [OSTI]

    Roy, Subrata

    .......................................................................................................5 Material Safety Data Sheets/ Chemical Inventories

  15. The safety implications of emerging software paradigms

    SciTech Connect (OSTI)

    Suski, G.J.; Persons, W.L.; Johnson, G.L.

    1994-10-01T23:59:59.000Z

    This paper addresses some of the emerging software paradigms that may be used in developing safety-critical software applications. Paradigms considered in this paper include knowledge-based systems, neural networks, genetic algorithms, and fuzzy systems. It presents one view of the software verification and validation activities that should be associated with each paradigm. The paper begins with a discussion of the historical evolution of software verification and validation. Next, a comparison is made between the verification and validation processes used for conventional and emerging software systems. Several verification and validation issues for the emerging paradigms are discussed and some specific research topics are identified. This work is relevant for monitoring and control at nuclear power plants.

  16. Preliminary safety evaluation of the advanced burner test reactor.

    SciTech Connect (OSTI)

    Dunn, F. E.; Fanning, T. H.; Cahalan, J. E.; Nuclear Engineering Division

    2006-09-15T23:59:59.000Z

    Results of a preliminary safety evaluation of the Advanced Burner Test Reactor (ABTR) pre-conceptual design are reported. The ABTR safety design approach is described. Traditional defense-in-depth design features are supplemented with passive safety performance characteristics that include natural circulation emergency decay heat removal and reactor power reduction by inherent reactivity feedbacks in accidents. ABTR safety performance in design-basis and beyond-design-basis accident sequences is estimated based on analyses. Modeling assumptions and input data for safety analyses are presented. Analysis results for simulation of simultaneous loss of coolant pumping power and normal heat rejection are presented and discussed, both for the case with reactor scram and the case without reactor scram. The analysis results indicate that the ABTR pre-conceptual design is capable of undergoing bounding design-basis and beyond-design-basis accidents without fuel cladding failures. The first line of defense for protection of the public against release of radioactivity in accidents remains intact with significant margin. A comparison and evaluation of general safety design criteria for the ABTR conceptual design phase are presented in an appendix. A second appendix presents SASSYS-1 computer code capabilities and modeling enhancements implemented for ABTR analyses.

  17. Nuclear Explosive Safety Evaluation Processes

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Manual provides supplemental details to support the nuclear explosive safety (NES) evaluation requirement of Department of Energy (DOE) Order (O) 452.2D, Nuclear Explosive Safety, dated 4/14/09. Admin Chg 1, dated 7-10-13, cancels DOE M 452.2-2.

  18. Physics Safety Induction OCTOBER 2012

    E-Print Network [OSTI]

    Tobar, Michael

    Physics Safety Induction OCTOBER 2012 FACULTY OF SCIENCES #12;The University of Western Australia · Be safe · Report anything unsafe #12;The University of Western Australia Physics Occupational Safety Sharma ­ ICRAR · Nikita Kostylev ­ Student Representative #12;The University of Western Australia School

  19. Environmental Health and Safety Assessment

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Environmental Health and Safety Assessment Program Manual 7/15/2013 #12;Environmental Health/26/2013. The most recent version of this document is available electronically at: http://sp.ehs.cornell.edu/env/general-environmental-management/environmental.........................................................................................................................4 #12;Environmental Health and Safety Assessment Program Manual Approved by: (Barb English) Last

  20. ANNUAL SECURITY & FIRE SAFETY REPORT

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    ANNUAL SECURITY & FIRE SAFETY REPORT 2014 A guide to policies, procedures, practices, and programs implemented to keep students, faculty, and staff safe and facilities secure. www.montana.edu/reports/security.pdf #12;Inside this Report 2014 Annual Security and Fire Safety Report for Reporting Year 2013

  1. FAQS Qualification Card – Criticality Safety

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  2. University of Pittsburgh Safety Manual

    E-Print Network [OSTI]

    Sibille, Etienne

    and the reaction vessel is a glass vial, flask or bottle; H2 Rx conducted with a H-Cube Continuous is a glass flask or bottle contained within a Parr shaker or comparable equipment. 2.3 Level 3 ­ H2 Rx blast rooms, and removing reaction vessels. 4.2 Safety goggles or safety glasses with side impact

  3. _____________________________ Environment, Health, & Safety _________ __________________ Training Program

    E-Print Network [OSTI]

    for LBNL guests and employees. All employees of the lab, participating guests, students and subcontractors at LBNL. Course Objectives: · Acknowledge the policies and programs applicable to electrical safety at LBNL. · Define roles and responsibilities related to electrical safety at LBNL. · Recognize Stop Work

  4. LASER SAFETY POLICY Policy Statement

    E-Print Network [OSTI]

    Vertes, Akos

    LASER SAFETY POLICY Policy Statement Each department that acquires or operates lasers for use in the university's Laser Safety Manual. Reason for Policy/Purpose If improperly used or controlled, lasers can produce multiple injuries, including burns, blindness, and electrocution. This policy and the university

  5. Nuclear Reactor Safety Design Criteria

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1993-01-19T23:59:59.000Z

    The order establishes nuclear safety criteria applicable to the design, fabrication, construction, testing, and performance requirements of nuclear reactor facilities and safety class structures, systems, and components (SSCs) within these facilities. Cancels paragraphs 8a and 8b of DOE 5480.6. Cancels DOE O 5480.6 in part. Certified 11-18-10.

  6. PNNL Expert Doug McMakin Discusses Millimeter Wave Technology

    ScienceCinema (OSTI)

    Doug McMakin

    2012-12-31T23:59:59.000Z

    Electrical Engineer Doug McMakin discusses Millimeter Wave Holographic technology, which uses non-harmful, ultrahigh-frequency radio waves to penetrate clothing to detect and identify concealed objects, as well as obtain accurate body measurements.

  7. GE Software Expert Julian Keith Loren Discusses Innovation and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GE Software Expert Julian Keith Loren Discusses Innovation and the Industrial Internet Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window)...

  8. Panel Discussion: Career Paths in Energy & Sustainability: Perspective...

    Broader source: Energy.gov (indexed) [DOE]

    a.m.-7 p.m. The events include: 11:30 a.m.-2 p.m. Panel Discussion "Career Paths in Energy & Sustainability: Perspectives from Successful Women Professionals," including Dr....

  9. Nuclear reactor safety device

    DOE Patents [OSTI]

    Hutter, E.

    1983-08-15T23:59:59.000Z

    A safety device is described for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of a thermal excursion. It comprises a laminated strip helically configured to form a tube, said tube being in operative relation to said control rod. The laminated strip is formed of at least two materials having different thermal coefficients of expansion, and is helically configured such that the material forming the outer lamina of the tube has a greater thermal coefficient of expansion than the material forming the inner lamina of said tube. In the event of a thermal excursion the laminated strip will tend to curl inwardly so that said tube will increase in length, whereby as said tube increases in length it exerts a force on said control rod to axially reposition said control rod with respect to said core.

  10. Electrical safety device

    DOE Patents [OSTI]

    White, David B. (Greenock, PA)

    1991-01-01T23:59:59.000Z

    An electrical safety device for use in power tools that is designed to automatically discontinue operation of the power tool upon physical contact of the tool with a concealed conductive material. A step down transformer is used to supply the operating power for a disconnect relay and a reset relay. When physical contact is made between the power tool and the conductive material, an electrical circuit through the disconnect relay is completed and the operation of the power tool is automatically interrupted. Once the contact between the tool and conductive material is broken, the power tool can be quickly and easily reactivated by a reset push button activating the reset relay. A remote reset is provided for convenience and efficiency of operation.

  11. Health, Safety, and Environment Division

    SciTech Connect (OSTI)

    Wade, C [comp.] [comp.

    1992-01-01T23:59:59.000Z

    The primary responsibility of the Health, Safety, and Environmental (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environmental protection. These activities are designed to protect the worker, the public, and the environment. Meeting these responsibilities requires expertise in many disciplines, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science and engineering, analytical chemistry, epidemiology, and waste management. New and challenging health, safety, and environmental problems occasionally arise from the diverse research and development work of the Laboratory, and research programs in HSE Division often stem from these applied needs. These programs continue but are also extended, as needed, to study specific problems for the Department of Energy. The results of these programs help develop better practices in occupational health and safety, radiation protection, and environmental science.

  12. Page 1Laser Safety Training Laser Institute of America Laser Safety Laser Institute of America

    E-Print Network [OSTI]

    Farritor, Shane

    Page 1Laser Safety Training © Laser Institute of America 1 Laser Safety © Laser Institute of America Laser Safety: Hazards, Bioeffects, and Control Measures Laser Institute of America Gus Anibarro Education Manager 2Laser Safety © Laser Institute of America Laser Safety Overview Laser Safety Accidents

  13. Major Energy Efficiency Opportunities in Laboratories --Implications for Health and Safety

    SciTech Connect (OSTI)

    Mathew, Paul A.; Sartor, Dale A.; Bell, Geoffrey C.; Drummond,David

    2007-04-27T23:59:59.000Z

    Laboratory facilities present a unique challenge for energy efficient design, partly due to their health and safety requirements. Recent experience has shown that there is significant energy efficiency potential in laboratory buildings. However, there is often a misperception in the laboratory community that energy efficiency will inherently compromise safety. In some cases, energy efficiency measures require special provisions to ensure that safety requirements are met. In other cases, efficiency measures actually improve safety. In this paper we present five major, yet under-utilized, energy efficiency strategies for ventilation-intensive laboratories and discuss their implications for health and safety. These include: (a) optimizing ventilation rates; (b) reducing laboratory chemical hood energy use; (c) low-pressure drop HVAC design; (d) right-sizing HVAC systems; and (e) reducing simultaneous heating and cooling. In all cases, the successful design and implementation of these strategies requires active and informed participation by health and safety personnel.

  14. B PLANT DOCUMENTED SAFETY ANALYSIS

    SciTech Connect (OSTI)

    DODD, E.N.; KERR, N.R.

    2003-08-01T23:59:59.000Z

    This document provides the documented safety analysis (DSA) and Central Plateau Remediation Project (CP) requirements that apply to surveillance and maintenance (S&M) activities at the 221-B Canyon Building and ancillary support structures (B Plant). The document replaces BHI-010582, Documented Safety Analysis for the B-Plant Facility. The B Plant is non-operational, deactivated and undergoing long term S&M prior to decontamination and decommissioning (D&D). This DSA is compliant with 10 CFR 830, Nuclear Safety Management, Subpart B, ''Safety Basis Requirements.'' The DSA was developed in accordance with U.S. Department of Energy (DOE) standard DOE-STD-1120-98, Integration of Environment, Safety, and Health into Facility Disposition Activities (DOE 1998) per Table 2 of 10 CFR 830 Appendix A, DOE Richland Operation Office (RL) direction (02-ABD-0053, Fluor Hanford Nuclear Safety Basis Strategy and Criteria) for facilities in long term S&M, and RL Direction (02-ABD-0091, ''FHI Nuclear Safety Expectations for Nuclear Facilities in Surveillance and Maintenance''). A crosswalk was prepared to identify potential inconsistencies between the previous B Plant safety analysis and DOE-STD-1120-98 guidance. In general, the safety analysis met the criteria of DOE-STD-1120-98. Some format and content changes have been made, including incorporating recent facility modifications and updating the evaluation guidelines and control selection criteria in accordance with RL direction (02-ABD-0053). The facility fire hazard analysis (FHA) and Technical Safety Requirements (TSR) are appended to this DSA as an aid to the users, to minimize editorial redundancy, and to provide an efficient basis for update.

  15. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    SciTech Connect (OSTI)

    Zull, Lawrence M.; Yeniscavich, William [Defense Nuclear Facilities Safety Board, 625 Indiana Ave., NW, Suite 700, Washington, DC 20004-2901 (United States)

    2008-01-15T23:59:59.000Z

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.

  16. RISMC ADVANCED SAFETY ANALYSIS WORKING PLAN – FY 2015 – FY 2019

    SciTech Connect (OSTI)

    Szilard, Ronaldo H; Smith, Curtis L

    2014-09-01T23:59:59.000Z

    SUMMARY In this report, the Advanced Safety Analysis Program (ASAP) objectives and value proposition is described. ASAP focuses on modernization of nuclear power safety analysis (tools, methods and data); implementing state-of-the-art modeling techniques (which include, for example, enabling incorporation of more detailed physics as they become available); taking advantage of modern computing hardware; and combining probabilistic and mechanistic analyses to enable a risk informed safety analysis process. The modernized tools will maintain the current high level of safety in our nuclear power plant fleet, while providing an improved understanding of safety margins and the critical parameters that affect them. Thus, the set of tools will provide information to inform decisions on plant modifications, refurbishments, and surveillance programs, while improving economics. The set of tools will also benefit the design of new reactors, enhancing safety per unit cost of a nuclear plant. As part of the discussion, we have identified three sets of stakeholders, the nuclear industry, the Department of Energy (DOE), and associated oversight organizations. These three groups would benefit from ASAP in different ways. For example, within the DOE complex, the possible applications that are seen include the safety of experimental reactors, facility life extension, safety-by-design in future generation advanced reactors, and managing security for the storage of nuclear material. This report provides information in five areas: 1. A value proposition (“why is this important?”) that will make the case for stakeholder’s use of the ASAP research and development (R&D) products. 2. An identification of likely end users and pathway to adoption of enhanced tools by the end-users. 3. A proposed set of practical and achievable “use case” demonstrations. 4. A proposed plan to address ASAP verification and validation (V&V) needs. 5. A proposed schedule for the multi-year ASAP.

  17. Corporate Analysis of DOE Safety Performance

    Broader source: Energy.gov [DOE]

    The Office of Environment, Health, Safety and Security (EHSS), Office of Analysis develops analysis tools and performance dashboards, and conducts analysis of DOE safety performance corporately and on a variety of specific environment, safety and health topics.

  18. DEPARTMENT OF ENVIRONMENTAL HEALTH & SAFETY CHEMICAL HYGIENE

    E-Print Network [OSTI]

    Firestone, Jeremy

    DEPARTMENT OF ENVIRONMENTAL HEALTH & SAFETY CHEMICAL HYGIENE PLAN #12, 2014 #12;University of Delaware Department of Environmental Health & Safety Chemical Hygiene) #12;University of Delaware Department of Environmental Health & Safety Chemical Hygiene Plan

  19. Pipeline Safety Program Oak Ridge National Laboratory

    E-Print Network [OSTI]

    programs prepared by pipeline operators in accordance with Federal pipeline safety regulations, grounding, and interference, · environmentally sensitive areas, · federal pipeline safety regulationsPipeline Safety Program Oak Ridge National Laboratory managed by UT-Battelle, LLC for the U

  20. Table of Organization Environmental Health & Safety

    E-Print Network [OSTI]

    Jia, Songtao

    Safety Continues Page 3 Lauren Kelly Manager Hazardous Materials June, 2014 James Kaznosky, Senior Research Safety Lauren Kelly Manager Hazardous Materials Radioactive Waste (only) Hazardous Materials Assistant Physicist Vacant Assistant Physicist 2 #12;Environmental Safety/Hazardous Materials Management

  1. Safety and Nonsafety Communications and Interactions in International Nuclear Power Plants

    SciTech Connect (OSTI)

    Kisner, Roger A [ORNL; Mullens, James Allen [ORNL; Wilson, Thomas L [ORNL; Wood, Richard Thomas [ORNL; Korsah, Kofi [ORNL; Qualls, A L [ORNL; Muhlheim, Michael David [ORNL; Holcomb, David Eugene [ORNL; Loebl, Andy [ORNL

    2007-08-01T23:59:59.000Z

    Current industry and NRC guidance documents such as IEEE 7-4.3.2, Reg. Guide 1.152, and IEEE 603 do not sufficiently define a level of detail for evaluating interdivisional communications independence. The NRC seeks to establish criteria for safety systems communications that can be uniformly applied in evaluation of a variety of safety system designs. This report focuses strictly on communication issues related to data sent between safety systems and between safety and nonsafety systems. Further, the report does not provide design guidance for communication systems nor present detailed failure modes and effects analysis (FMEA) results for existing designs. This letter report describes communications between safety and nonsafety systems in nuclear power plants outside the United States. A limited study of international nuclear power plants was conducted to ascertain important communication implementations that might have bearing on systems proposed for licensing in the United States. This report provides that following information: 1.communications types and structures used in a representative set of international nuclear power reactors, and 2.communications issues derived from standards and other source documents relevant to safety and nonsafety communications. Topics that are discussed include the following: communication among redundant safety divisions, communications between safety divisions and nonsafety systems, control of safety equipment from a nonsafety workstation, and connection of nonsafety programming, maintenance, and test equipment to redundant safety divisions during operation. Information for this report was obtained through publicly available sources such as published papers and presentations. No proprietary information is represented.

  2. Start-to-end beam dynamics simulation of double triangular current profile generation in Argonne Wakefield Accelerator

    SciTech Connect (OSTI)

    Ha, G.; Power, J.; Kim, S. H.; Gai, W.; Kim, K.-J.; Cho, M. H.; Namkung, W. [POSTECH, Pohang, Gyeongbuk, 790-784 (Korea, Republic of); Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); POSTECH, Pohang, Gyeongbuk, 790-784 (Korea, Republic of) and Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); POSTECH, Pohang, Gyeongbuk, 790-784 (Korea, Republic of) and Pohang Accelerator Laboratory, Pohang, Gyeongbuk, 790-784 (Korea, Republic of); Pohang Accelerator Laboratory, Pohang, Gyeongbuk, 790-784 (Korea, Republic of)

    2012-12-21T23:59:59.000Z

    Double triangular current profile (DT) gives a high transformer ratio which is the determining factor of the performance of collinear wakefield accelerator. This current profile can be generated using the emittance exchange (EEX) beam line. Argonne Wakefield Accelerator (AWA) facility plans to generate DT using the EEX beam line. We conducted start-to-end simulation for the AWA beam line using PARMELA code. Also, we discuss requirements of beam parameters for the generation of DT.

  3. Helpful links for materials transport, safety, etc.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Helpful links for materials transport, safety, etc. relating to experiment safety at the APS. Internal Reference Material: Transporting Hazardous Materials "Natural" radioactivity...

  4. Office of Worker Safety and Health Policy

    Broader source: Energy.gov [DOE]

    The Office of Worker Safety and Health Policy establishes Departmental expectations for worker safety and health through the development of rules, directives and guidance.

  5. RADIATION SAFETY MANUAL POLICIES AND PROCEDURES

    E-Print Network [OSTI]

    Zhang, Yuanlin

    RADIATION SAFETY MANUAL POLICIES AND PROCEDURES FOR RADIATION PROTECTION AT TEXAS TECH UNIVERSITY................................................................................................................I-1 B. Radiation Protection Program...............................................................................I-3 D. Radiation Safety Management

  6. BNL | CFN Operations Safety Awareness (COSA) Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CFN Operations Safety Awareness (COSA) Training All users at the CFN must complete the CFN Operations Safety Awareness (COSA) Training before they can access the facilities. COSA...

  7. Hazardous Material Transportation Safety (South Dakota)

    Broader source: Energy.gov [DOE]

    This legislation authorizes the Division of Highway Safety, in the Department of Public Safety, to promulgate regulations pertaining to the safe transportation of hazardous materials by a motor...

  8. Safety and Security Enfrocment Process Overview

    Office of Environmental Management (EM)

    are to enhance and protect worker safety and health, nuclear safety, and classified information security by fostering a culture that seeks to attain and sustain compliance...

  9. Safety and Security Enforcement Process Overview

    Broader source: Energy.gov (indexed) [DOE]

    SAFETY AND SECURITY ENFORCEMENT PROCESS OVERVIEW August 2012 OFFICE OF ENFORCEMENT AND OVERSIGHT OFFICE OF HEALTH, SAFETY AND SECURITY U.S. DEPARTMENT OF ENERGY AUGUST 2012 DOE...

  10. CFN Ops Plan | Experimental Safety Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Safety Committee The CFN Experimental Safety Committee will consist of the members listed below. Additional SME's from the lab support divisions will be added as...

  11. Nuclear Explosive Safety Evaluation Processes - DOE Directives...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Admin Chg 1, Nuclear Explosive Safety Evaluation Processes by Carl Sykes Functional areas: Administrative Change, Defense Nuclear Facility Safety and Health Requirement, Defense...

  12. Interdisciplinary: Industrial Hygienist/Safety Engineer

    Broader source: Energy.gov [DOE]

    This position is located in the Office of Worker Safety and Health Assessments that conducts assessments to provide critical feedback and objective information on occupational safety and health...

  13. LANL Researcher Roger Wiens Discusses ChemCam

    ScienceCinema (OSTI)

    Wiens, Roger

    2014-08-12T23:59:59.000Z

    Discussion of the ChemCam instrument on the Curiosity Rover that occurred during the NASA press conference prior to launch of the Mars Science Laboratory. The ChemCam instrument was developed by Los Alamos National Laboratory and the French Space Institute. Los Alamos National Laboratory researcher Roger Wiens discusses the instrument on this video. ChemCam uses a laser to "zap" features of the Martian landscape and then uses a spectrometer to gather information about the composition of the sample. ChemCam will help the Curiosity Rover determine whether Mars is or was habitable. The Rover is expected to touch down on the Red Planet on August 5, 2012.

  14. CCB Laboratory Safety Orientation Checklist Laboratory Safety Training Review

    E-Print Network [OSTI]

    Heller, Eric

    ) Location and use of hazardous waste accumulation areas Location of Safety Data hazardous materials, equipment, or processes that pertain to the research program and meeting area Location of fire extinguishers and closest pull station Location

  15. Reactor Safety Research Programs

    SciTech Connect (OSTI)

    Edler, S. K.

    1981-07-01T23:59:59.000Z

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipeto- pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-ofcoolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  16. Reactor Safety Research Programs

    SciTech Connect (OSTI)

    Dotson, CW

    1980-08-01T23:59:59.000Z

    This document summarizes the work performed by Pacific Northwest laboratory from October 1 through December 31, 1979, for the Division of Reactor Safety Research within the Nuclear Regulatory Commission. Evaluation of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibilty of determining structural graphite strength, evaluating the feasibilty of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include the loss-of-coolant accident simulation tests at the NRU reactor, Chalk River, Canada; the fuel rod deformation and post-accident coolability tests for the ESSOR Test Reactor Program, lspra, Italy; the blowdown and reflood tests in the test facility at Cadarache, France; the instrumented fuel assembly irradiation program at Halden, Norway; and the experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory. These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  17. Chemical Hazards and Safety Issues in Fusion Safety Design

    SciTech Connect (OSTI)

    Cadwallader, L.C. [Idaho National Engineering and Environmental Laboratory (United States)

    2003-09-15T23:59:59.000Z

    Radiological inventory releases have dominated accident consequences for fusion; these consequences are important to analyze and are generally the most severe result of a fusion facility accident event. However, the advent of, or plan for, large-scale usage of some toxic materials poses the additional hazard of chemical exposure from an accident event. Examples of toxic chemicals are beryllium for magnetic fusion and fluorine for laser fusion. Therefore, chemical exposure consequences must also be addressed in fusion safety assessment. This paper provides guidance for fusion safety analysis. US Department of Energy (DOE) chemical safety assessment practices for workers and the public are reviewed. The US Environmental Protection Agency (EPA) has published some guidance on public exposure to releases of mixtures of chemicals, this guidance has been used to create an initial guideline for treating mixed radiological and toxicological releases in fusion; for example, tritiated hazardous dust from a tokamak vacuum vessel. There is no convenient means to judge the hazard severity of exposure to mixed materials. The chemical fate of mixed material constituents must be reviewed to determine if there is a separate or combined radiological and toxicological carcinogenesis, or if other health threats exist with radiological carcinogenesis. Recommendations are made for fusion facility chemical safety evaluation and safety guidance for protecting the public from chemical releases, since such levels are not specifically identified in the DOE fusion safety standard.

  18. CRITICALITY SAFETY CONTROLS AND THE SAFETY BASIS AT PFP

    SciTech Connect (OSTI)

    Kessler, S

    2009-04-21T23:59:59.000Z

    With the implementation of DOE Order 420.1B, Facility Safety, and DOE-STD-3007-2007, 'Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities', a new requirement was imposed that all criticality safety controls be evaluated for inclusion in the facility Documented Safety Analysis (DSA) and that the evaluation process be documented in the site Criticality Safety Program Description Document (CSPDD). At the Hanford site in Washington State the CSPDD, HNF-31695, 'General Description of the FH Criticality Safety Program', requires each facility develop a linking document called a Criticality Control Review (CCR) to document performance of these evaluations. Chapter 5, Appendix 5B of HNF-7098, Criticality Safety Program, provided an example of a format for a CCR that could be used in lieu of each facility developing its own CCR. Since the Plutonium Finishing Plant (PFP) is presently undergoing Deactivation and Decommissioning (D&D), new procedures are being developed for cleanout of equipment and systems that have not been operated in years. Existing Criticality Safety Evaluations (CSE) are revised, or new ones written, to develop the controls required to support D&D activities. Other Hanford facilities, including PFP, had difficulty using the basic CCR out of HNF-7098 when first implemented. Interpretation of the new guidelines indicated that many of the controls needed to be elevated to TSR level controls. Criterion 2 of the standard, requiring that the consequence of a criticality be examined for establishing the classification of a control, was not addressed. Upon in-depth review by PFP Criticality Safety staff, it was not clear that the programmatic interpretation of criterion 8C could be applied at PFP. Therefore, the PFP Criticality Safety staff decided to write their own CCR. The PFP CCR provides additional guidance for the evaluation team to use by clarifying the evaluation criteria in DOE-STD-3007-2007. In reviewing documents used in classifying controls for Nuclear Safety, it was noted that DOE-HDBK-1188, 'Glossary of Environment, Health, and Safety Terms', defines an Administrative Control (AC) in terms that are different than typically used in Criticality Safety. As part of this CCR, a new term, Criticality Administrative Control (CAC) was defined to clarify the difference between an AC used for criticality safety and an AC used for nuclear safety. In Nuclear Safety terms, an AC is a provision relating to organization and management, procedures, recordkeeping, assessment, and reporting necessary to ensure safe operation of a facility. A CAC was defined as an administrative control derived in a criticality safety analysis that is implemented to ensure double contingency. According to criterion 2 of Section IV, 'Linkage to the Documented Safety Analysis', of DOESTD-3007-2007, the consequence of a criticality should be examined for the purposes of classifying the significance of a control or component. HNF-PRO-700, 'Safety Basis Development', provides control selection criteria based on consequence and risk that may be used in the development of a Criticality Safety Evaluation (CSE) to establish the classification of a component as a design feature, as safety class or safety significant, i.e., an Engineered Safety Feature (ESF), or as equipment important to safety; or merely provides defense-in-depth. Similar logic is applied to the CACs. Criterion 8C of DOE-STD-3007-2007, as written, added to the confusion of using the basic CCR from HNF-7098. The PFP CCR attempts to clarify this criterion by revising it to say 'Programmatic commitments or general references to control philosophy (e.g., mass control or spacing control or concentration control as an overall control strategy for the process without specific quantification of individual limits) is included in the PFP DSA'. Table 1 shows the PFP methodology for evaluating CACs. This evaluation process has been in use since February of 2008 and has proven to be simple and effective. Each control identified i

  19. A Discussion on the Classifier Projection Space for Classifier Combining

    E-Print Network [OSTI]

    Duin, Robert P.W.

    . Such a space of a low dimensionality is a Classifier Projection Space (CPS). In the first instance, it is used. This is illustrated by some examples. In the end, we discuss how the CPS may also be used as a basis for constructing to essentially different solutions. The concept of diversity is, thereby, crucial [9]. There are various ways

  20. LANL physicists discuss electrical grid in journal article

    E-Print Network [OSTI]

    - 1 - LANL physicists discuss electrical grid in journal article October 17, 2013 Electrical grids of distribution grids. Revolutionary changes to the electric grid will lead to grids that are more random that could make a major impact on the future grid: · probabilistic measures of electrical grid reliability

  1. MAE 124/ESYS 103 Discussion: Week 7 Transportation Alternatives

    E-Print Network [OSTI]

    Gille, Sarah T.

    MAE 124/ESYS 103 Discussion: Week 7 Transportation Alternatives 0. San Diego government routes. And today is Bike to Work Day. Let's take a Life Cycle Assessment approach to transportation planning? What steps do we need to pursue? 1. Why does SANDAG care about transportation? Why does UCSD

  2. Discussion Papers in Individual and Group Learning in Crisis Simulations

    E-Print Network [OSTI]

    Discussion Papers in Management Individual and Group Learning in Crisis Simulations Edward-5 January 2002 ISSN 1356-3548 #12;2 Individual and Group Learning in Crisis Simulations Edward Borodzicz1 learning. The issue is raised that simulation exercises may concentrate learning outcomes for exercise

  3. Higgs Boson Digest and Discussion By Tony O'Hagan

    E-Print Network [OSTI]

    O'Hagan, Tony

    Higgs Boson ­ Digest and Discussion By Tony O'Hagan Introduction On July 10th 2012, I posted to consult this list in search of answers. We've heard a lot about the Higgs boson. The news reports say like (in the sense of having some of the right characteristics of) the elusive Higgs boson

  4. Discussion on Agricultural Econometrics: Its History and Its Future

    E-Print Network [OSTI]

    McCarl, Bruce A.

    Discussion on Agricultural Econometrics: Its History and Its Future David A. Bessler Texas A&M UniversityTexas A&M University AAEA Session on History of Econometrics1 Denver, Colorado Tuesday, July 27 Concerns · Partial Answers (Instrumental Variables) · Cautions · Revolution in Econometrics · Mopping

  5. Summary of experimental discussion session at ILWOG42

    SciTech Connect (OSTI)

    Viera, David J [Los Alamos National Laboratory; Dardenne, Yves M [LLNL

    2010-09-21T23:59:59.000Z

    During the ILWOG-42 held at LANL in May of 2010, a set of discussions between scientists from AWE, LANL, and LLNL was held to develop collaborative experiments that would improve radiochemical diagnostic evaluations. DOE headquarters has asked that a 5-year roadmap be developed to resolve outstanding issues. The goal of this discussion was to explore common areas of interest where collaborative experiments could be undertaken to resolve identified problems and to gain support across the weapons program and DOE for this work. Collaboration was encouraged not only between these laboratories, but with University collaborators who are funded through the NNSA Stewardship Science Academic Alliance. In the development of experiments there were some criteria that were established. The uncertainty budgets will need to be assessed for proposed experiments so that potential gains to the programs can be determined. Measurements using different methods should be encouraged to provide greater confidence (and hopefully improved accuracy) in the result. Six distinct subjects were discussed: (1) Experiments at critical assemblies/14-MeV neutron (D+T) facilities; (2) Fission-chain-yield (FCY) energy dependence; (3) Absolute FCY measurements; (4) Measurements of {sup 147}Nd 531-keV absolute gamma-ray intensity; (5) Atom scale cross calibrations; and (6) Other experimental issues. A short summary of the discussions is given.

  6. ERIA-DP-2011-03 ERIA Discussion Paper Series

    E-Print Network [OSTI]

    ERIA-DP-2011-03 ERIA Discussion Paper Series Harmonizing Biodiesel Fuel Standards in East Asia Asia (ERIA), Indonesia Shinichi GOTO Research Center for New Fuels and Vehicle Technology (NFV), National Institute of Advanced Industrial Science and Technology (AIST), Japan May 2011 Abstract

  7. TI 2013-055/III Tinbergen Institute Discussion Paper

    E-Print Network [OSTI]

    Chen, Yiling

    TI 2013-055/III Tinbergen Institute Discussion Paper Parallel Sequential Monte Carlo for Efficient Density Combination: The Deco Matlab Toolbox Roberto Casarin1 Stefano Grassi2 Francesco Ravazzolo3 Herman Mahlerplein 117 1082 MS Amsterdam The Netherlands Tel.: +31(0)20 525 8579 #12;PARALLEL SEQUENTIAL MONTE CARLO

  8. BUDGET ADVISORY COMMITTEE DISCUSSION PAPER ON THE OPERATING BUDGET

    E-Print Network [OSTI]

    Brownstone, Rob

    BUDGET ADVISORY COMMITTEE DISCUSSION PAPER ON THE OPERATING BUDGET PLAN FOR 2013-14 REPORT XLIX January 10, 2013 #12;The Budget Advisory Committee (BAC) was established by the President in 1992, and Susan Robertson, Director, Budgets and Financial Analysis. The Committee employs an open

  9. Aging of safety class 1E transformers in safety systems of nuclear power plants

    SciTech Connect (OSTI)

    Roberts, E.W.; Edson, J.L.; Udy, A.C. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1996-02-01T23:59:59.000Z

    This report discusses aging effects on safety-related power transformers in nuclear power plants. It also evaluates maintenance, testing, and monitoring practices with respect to their effectiveness in detecting and mitigating the effects of aging. The study follows the US Nuclear Regulatory Commission`s (NRC`s) Nuclear Plant-Aging Research approach. It investigates the materials used in transformer construction, identifies stressors and aging mechanisms, presents operating and testing experience with aging effects, analyzes transformer failure events reported in various databases, and evaluates maintenance practices. Databases maintained by the nuclear industry were analyzed to evaluate the effects of aging on the operation of nuclear power plants.

  10. Status Update on Action 2d: Discussion of DEAR ISM Clause in DOE Contracts

    Broader source: Energy.gov [DOE]

    Slide Presentation by Patricia Worthington, PhD, Director Office of Health and Safety, Office of Health Safety and Security. Regulatory Aspects of ISM--Evaluating current ISM clause in DOE Contracts.

  11. Integrated Safety Management System Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-11-01T23:59:59.000Z

    This manual provides requirements and guidance for DOE and contractors to ensure development and implementation of an effective Integrated Safety Management system that is periodically reviewed and continuously improved. Canceled by DOE O 450.2.

  12. Safety | Linac Coherent Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Overview Each person who works at LCLS is required to be familiar with and identify in advance the hazards associated with hisher work, the hazards associated with work...

  13. SEAS LABORATORY SAFETY OFFICER ORIENTATION

    E-Print Network [OSTI]

    delegated by the Deans and Senior University Administration, the ESCO for each school or administrative unit/EH&S and lab · Communicate with lab members and PI · Get support from EH&S, ESCO and safety committees "The

  14. Forrestal Security and Safety Procedures

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1983-02-02T23:59:59.000Z

    To establish uniform procedures for the security and safety of the Forrestal Building and to inform all personnel of precautionary measures. This directive does not cancel another directive. Canceled by DOE N 251.11.

  15. Safety and Occupational Health Manager

    Broader source: Energy.gov [DOE]

    This position is located in the Office of Environment, Security, Safety and Health, under the Deputy Assistant Secretary (DAS) for Business Operations/Chief Operating Officer (COO). The Office of...

  16. CAHNRS Safety Committee Meeting Minutes

    E-Print Network [OSTI]

    Collins, Gary S.

    was cancelled, so there is no report. EH&S sent out a reminder that they have a short Hazardous Waste of Internal Audits is apparently developing a university level protocol for lab safety and training. 2

  17. BIOLOGICAL SAFETY POLICY PROGRAM TOPICS

    E-Print Network [OSTI]

    Fang-Yen, Christopher

    research protocols involving hazardous materials, reviews construction design for safety features with or near biologically hazardous materials (infectious agents, biohazards or recombinant DNA). 1.3 "Infectious waste" or "biohazardous waste" is defined by the Pennsylvania Department of Environmental

  18. Biodiesel Safety and Best Management

    E-Print Network [OSTI]

    Lee, Dongwon

    Biodiesel Safety and Best Management Practices for Small-Scale Noncommercial Use and Production you produce biodiesel: · Chemical-resistantgloves(butylrubberisbestfor methanol and lye........................................................................... 1 FuelOptionsfromBiomassOilFeedstocks ......................... 1 UsingBiodiesel

  19. Tank Farms Technical Safety Requirements

    SciTech Connect (OSTI)

    DANNA, M.A.

    2003-10-24T23:59:59.000Z

    The TSRs define the acceptable conditions, safe boundaries, bases thereof, and controls to ensure safe operation during authorized activities, for facilities within the scope of the Tank Farms Documented Safety Analysis (DSA), in parallel with the DSA.

  20. FAQS Reference Guide – Occupational Safety

    Broader source: Energy.gov [DOE]

    This reference guide has been developed to address the competency statements in the July 2011 version of DOE-STD-1160-2011, Occupational Safety Functional Area Qualification Standard.

  1. Gallium Safety in the Laboratory

    SciTech Connect (OSTI)

    Cadwallader, L.C.

    2003-05-07T23:59:59.000Z

    A university laboratory experiment for the US Department of Energy magnetic fusion research program required a simulant for liquid lithium. The simulant choices were narrowed to liquid gallium and galinstan (Ga-In-Sn) alloy. Safety information on liquid gallium and galinstan were compiled, and the choice was made to use galinstan. A laboratory safety walkthrough was performed in the fall of 2002 to support the galinstan experiment. The experiment has been operating successfully since early 2002.

  2. Reactor operation safety information document

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

  3. Hanford Generic Interim Safety Basis

    SciTech Connect (OSTI)

    Lavender, J.C.

    1994-09-09T23:59:59.000Z

    The purpose of this document is to identify WHC programs and requirements that are an integral part of the authorization basis for nuclear facilities that are generic to all WHC-managed facilities. The purpose of these programs is to implement the DOE Orders, as WHC becomes contractually obligated to implement them. The Hanford Generic ISB focuses on the institutional controls and safety requirements identified in DOE Order 5480.23, Nuclear Safety Analysis Reports.

  4. Normalization of Process Safety Metrics 

    E-Print Network [OSTI]

    Wang, Mengtian

    2012-10-19T23:59:59.000Z

    , for this research, the number of process safety incidents is not available; since all the companies just started recording process safety incidents after API RP 745 was issued. Therefore, the most similar reported indicator-operational oil spills is used... for lagging metrics testing as a proper substitute. The major related data was obtained for this section as follows: • Process and environmental incidents (operational oil spills) • Total oil production volume • Total natural gas production volume • Total...

  5. Topaz II preliminary safety assessment

    SciTech Connect (OSTI)

    Marshall, A.C. (Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)); Standley, V. (Air Force Phillips Laboratory, Albuquerque, New Mexico 87110 (United States)); Voss, S.S. (Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)); Haskin, E. (Department of Chemical and Nuclear Engineering Department, Institute for Nuclear Power Studies, University of New Mexico, Albuquerque, New Mexico 87110 (United States))

    1993-01-10T23:59:59.000Z

    The Strategic Defense Initiative Organization (SDIO) decided to investigate the possibility of launching a Russian Topaz II space nuclear power system. A preliminary safety assessment was conducted to determine whether or not a space mission could be conducted safely and within budget constraints. As part of this assessment, a safety policy and safety functional requirements were developed to guide both the safety assessment and future Topaz II activities. A review of the Russian flight safety program was conducted and documented. Our preliminary safety assessment included a top level event tree, neutronic analysis of normal and accident configurations, an evaluation of temperature coefficients of reactivity, a reentry and disposal analysis, and analysis of postulated launch abort impact accidents, and an analysis of postulated propellant fire and explosion accidents. Based on the assessment, it appears that it will be possible to safely launch the Topaz II system in the U.S. with some possible system modifications. The principal system modifications will probably include design changes to preclude water flooded criticality and to assure intact reentry.

  6. Advancing the Hydrogen Safety Knowledge Base

    SciTech Connect (OSTI)

    Weiner, Steven C.

    2014-12-01T23:59:59.000Z

    A White Paper of the International Energy Agency Hydrogen Implementing Agreement Task 31 - Hydrogen Safety

  7. Protecting Health and Safety in Education Abroad

    E-Print Network [OSTI]

    Protecting Health and Safety in Education Abroad Faculty and Staff Handbook #12;1 Office of people on campus and beyond CSU to ensure your health and safety. This CSU team serves you before, during . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 In-Country Health and Safety Health and Safety Issues

  8. LASER SAFETY MANUAL 2012 RICE UNIVERSITY 1

    E-Print Network [OSTI]

    Natelson, Douglas

    LASER SAFETY MANUAL 2012 RICE UNIVERSITY 1 Rice University Laser Safety Manual Environmental Health and Safety MS 123 P.O. Box 1892 Houston, TX 77251-1892 December 2012 #12;LASER SAFETY MANUAL 2012 RICE, and general procedures to aid those individuals working in the laser laboratory environment. It is intended

  9. HAZARD ALERT ENVIRONMENT HEALTH AND SAFETY

    E-Print Network [OSTI]

    Calgary, University of

    HAZARD ALERT ENVIRONMENT HEALTH AND SAFETY EH&S Hazard Alert - 2010.06.18 HAZARD ALERT ­ Reaction Manual. http://www.ucalgary.ca/safety/files/safety/LaboratoryFumeHoodUserStandard.pdf #12;HAZARD ALERT ENVIRONMENT HEALTH AND SAFETY EH&S Hazard Alert - 2010.06.18 In the recent incident the sash was closed while

  10. Texas Tech University Safety and Health Handbook

    E-Print Network [OSTI]

    Gelfond, Michael

    of the mission of this institution. Responsibility for the administration of the institution's safety, healthTexas Tech University Safety and Health Handbook for Supervisors/Safety Coordinators February 19, 1997 #12;i Table of Contents University Safety, Health, and Environmental Policy

  11. Safety Case Development: Current Practice, Future Prospects

    E-Print Network [OSTI]

    Kelly, Tim

    and maintenance, and the problems engineers face in these areas. 1.1 The Purpose and Content of a Safety Case and evidence aspects of the safety case are combined; · Safety Case Maintenance - examining the need the safety requirements, so long as the lanes fail independently. · SE - the results of hardware reliability

  12. Food Safety Participant Materials for Notebook

    E-Print Network [OSTI]

    foods. · Not eating foods that have been irradiated. · Eating whole foods instead of processed foodsUNIT 5: Food Safety Participant Materials for Notebook #12;Navigating for Success Food Safety p 1 Food Safety Good food safety practices are crucial to reducing foodborne illnesses. Nutrition educators

  13. Toolbox Safety Talk Aerial Work Platforms

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Toolbox Safety Talk Aerial Work Platforms Environmental Health & Safety Facilities Safety & Health to Environmental Health & Safety for recordkeeping. Aerial work platforms are important tools and if used correctly, and equipment damage. This guide addresses safe use of aerial work platforms and provides tips to prevent

  14. Nuclear Criticality Safety Application Guide: Safety Analysis Report Update Program

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    Martin Marietta Energy Systems, Inc. (MMES) is committed to performing and documenting safety analyses for facilities it manages for the Department of Energy (DOE). Safety analyses are performed to identify hazards and potential accidents; to analyze the adequacy of measures taken to eliminate, control, or mitigate hazards; and to evaluate potential accidents and determine associated risks. Safety Analysis Reports (SARs) are prepared to document the safety analysis to ensure facilities can be operated safely and in accordance with regulations. Many of the facilities requiring a SAR process fissionable material creating the potential for a nuclear criticality accident. MMES has long had a nuclear criticality safety program that provides the technical support to fissionable material operations to ensure the safe processing and storage of fissionable materials. The guiding philosophy of the program has always been the application of the double-contingency principle, which states: {open_quotes}process designs shall incorporate sufficient factors of safety to require at least two unlikely, independent, and concurrent changes in process conditions before a criticality accident is possible.{close_quotes} At Energy Systems analyses have generally been maintained to document that no single normal or abnormal operating conditions that could reasonably be expected to occur can cause a nuclear criticality accident. This application guide provides a summary description of the MMES Nuclear Criticality Safety Program and the MMES Criticality Accident Alarm System requirements for inclusion in facility SARs. The guide also suggests a way to incorporate the analyses conducted pursuant to the double-contingency principle into the SAR. The prime objective is to minimize duplicative effort between the NCSA process and the SAR process and yet adequately describe the methodology utilized to prevent a nuclear criticality accident.

  15. Electronic Safety Resource Tools – Supporting Hydrogen and Fuel Cell Commercialization

    SciTech Connect (OSTI)

    Barilo, Nick F.

    2014-09-29T23:59:59.000Z

    The Pacific Northwest National Laboratory (PNNL) Hydrogen Safety Program conducted a planning session in Los Angeles, CA on April 1, 2014 to consider what electronic safety tools would benefit the next phase of hydrogen and fuel cell commercialization. A diverse, 20-person team led by an experienced facilitator considered the question as it applied to the eight most relevant user groups. The results and subsequent evaluation activities revealed several possible resource tools that could greatly benefit users. The tool identified as having the greatest potential for impact is a hydrogen safety portal, which can be the central location for integrating and disseminating safety information (including most of the tools identified in this report). Such a tool can provide credible and reliable information from a trustworthy source. Other impactful tools identified include a codes and standards wizard to guide users through a series of questions relating to application and specific features of the requirements; a scenario-based virtual reality training for first responders; peer networking tools to bring users from focused groups together to discuss and collaborate on hydrogen safety issues; and a focused tool for training inspectors. Table ES.1 provides results of the planning session, including proposed new tools and changes to existing tools.

  16. KERENA safety concept in the context of the Fukushima accident

    SciTech Connect (OSTI)

    Zacharias, T.; Novotny, C.; Bielor, E. [AREVA NP GmbH, Paul-Gossen-Strasse 100, 91052 Erlangen (Germany)

    2012-07-01T23:59:59.000Z

    Within the last three years AREVA NP and E.On KK finalized the basic design of KERENA which is a medium sized innovative boiling water reactor, based on the operational experience of German BWR nuclear power plants (NPPs). It is a generation III reactor design with a net electrical output of about 1250 MW. It combines active safety equipment of service-proven designs with new passive safety components, both safety classified. The passive systems utilize basic laws of physics, such as gravity and natural convection, enabling them to function without electric power. Even actuation of these systems is performed thanks to basic physic laws. The degree of diversity in component and system design, achieved by combining active and passive equipment, results in a very low core damage frequency. The Fukushima accident enhanced the world wide discussion about the safety of operating nuclear power plants. World wide stress tests for operating nuclear power plants are being performed embracing both natural and man made hazards. Beside the assessment of existing power plants, also new designs are analyzed regarding the system response to beyond design base accidents. KERENA's optimal combination of diversified cooling systems (active and passive) allows passing efficiently such tests, with a high level of confidence. This paper describes the passive safety components and the KERENA reactor behavior after a Fukushima like accident. (authors)

  17. Discussions on the Cancellation Effect on a Curved Orbit

    SciTech Connect (OSTI)

    Rui Li; Ya. S. Derbenev

    2005-05-16T23:59:59.000Z

    The canonical formulation and the cancellation effect for bunch dynamics under collective interaction on a curved orbit were presented in Ref. [*]. Some possible controversial representations of the cancellation effect were later addressed by Geloni et al.** In this study, we discuss all the points raised in Ref. [**] based on our canonical treatment, and show how these points can be perceived from the view point of the cancellation picture.

  18. Safety Series No. 75-INSAG-4, Safety Culture: A report by the International Nuclear Safety Advisory Group, International Atomic Energy Agency

    Broader source: Energy.gov [DOE]

    Safety Series No. 75-INSAG-4, Safety Culture: A report by the International Nuclear Safety Advisory Group, International Atomic Energy Agency, IAEA, 1991

  19. MSU Safety & Risk Management Page 1 of 2 SAFETY & RISK MANAGEMENT

    E-Print Network [OSTI]

    Dyer, Bill

    MSU Safety & Risk Management Page 1 of 2 SAFETY & RISK MANAGEMENT OCCUPATIONAL HEALTH & SAFETY Safety & Risk Management (SRM) of new hires. Completion of a baseline occupational health evaluation Protection Program.) #12;MSU Safety & Risk Management Page 2 of 2 MSU provides additional medical evaluations

  20. RADIATION SAFETY OFFICE Campus Radiation Safety Manual UNIVERSITY OF NEW ORLEANS Previous Revision: May 1999

    E-Print Network [OSTI]

    Li, X. Rong

    SAFETY OFFICER AND RADIATION PROTECTION STAFF The Radiation Safety Officer has the responsibilityRADIATION SAFETY OFFICE Campus Radiation Safety Manual UNIVERSITY OF NEW ORLEANS Previous Revision radiation safety program will be conducted in such a manner that exposure to faculty, staff, students

  1. Health and Safety Policy Version 2012, Page 1 of 8 Health and Safety Policy

    E-Print Network [OSTI]

    Low, Robert

    Health and Safety Policy Version 2012, Page 1 of 8 Health and Safety Policy #12;Health and Safety Policy Version 2012, Page 2 of 8 Coventry University Health and Safety Policy 1. Introduction, Purpose and Scope The objective of our Health and Safety Policy is to enable the University to operate effectively

  2. Chapter 13 Employee Health and Safety 13.01 Safety Policy and Accident Reporting

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Chapter 13 Employee Health and Safety 13.01 Safety Policy and Accident Reporting General Safety. If an accident occurs, this responsibility includes making an adequate investigation and taking necessary are responsible for following established safety procedures and using protective equipment. Safety and Accident

  3. Health and Safety Plan for Operations Performed for the Environmental Restoration Program: Task, Characterization of Potential Waste Sources at Auxiliary Reactor Area-1 Operable Unit 5--07 site ARA-02

    SciTech Connect (OSTI)

    Pickett, S.L.; Morton, S.L.

    1992-06-01T23:59:59.000Z

    This document constitutes the generic health and safety plan for the Environmental Restoration Program (ERP). It addresses the health and safety requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); Occupational Safety and Health Administration (OSHA) 29 CFR 1910.120 standard; and EG G Idaho, Inc. This plan is a guide to individuals who must complete a health and safety plan for a task performed for the ERP. It contains a task specific addendum that, when completed, specifically addresses task specific health and safety issues. This health and safety plan reduces the time it takes to write a task specific health and safety plan by providing discussions of requirements, guidance on where specific information is located, and specific topics in the Addendum that must be discussed at a task level. This format encourages a complete task specific health and safety plan and a standard for all health and safety plans written for ERP.

  4. Health and Safety Plan for Operations Performed for the Environmental Restoration Program: Task, Characterization of Potential Waste Sources at Auxiliary Reactor Area-1 Operable Unit 5--07 site ARA-02

    SciTech Connect (OSTI)

    Pickett, S.L.; Morton, S.L.

    1992-06-01T23:59:59.000Z

    This document constitutes the generic health and safety plan for the Environmental Restoration Program (ERP). It addresses the health and safety requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); Occupational Safety and Health Administration (OSHA) 29 CFR 1910.120 standard; and EG&G Idaho, Inc. This plan is a guide to individuals who must complete a health and safety plan for a task performed for the ERP. It contains a task specific addendum that, when completed, specifically addresses task specific health and safety issues. This health and safety plan reduces the time it takes to write a task specific health and safety plan by providing discussions of requirements, guidance on where specific information is located, and specific topics in the Addendum that must be discussed at a task level. This format encourages a complete task specific health and safety plan and a standard for all health and safety plans written for ERP.

  5. 242-A evaporator safety analysis report

    SciTech Connect (OSTI)

    CAMPBELL, T.A.

    1999-05-17T23:59:59.000Z

    This report provides a revised safety analysis for the upgraded 242-A Evaporator (the Evaporator). This safety analysis report (SAR) supports the operation of the Evaporator following life extension upgrades and other facility and operations upgrades (e.g., Project B-534) that were undertaken to enhance the capabilities of the Evaporator. The Evaporator has been classified as a moderate-hazard facility (Johnson 1990). The information contained in this SAR is based on information provided by 242-A Evaporator Operations, Westinghouse Hanford Company, site maintenance and operations contractor from June 1987 to October 1996, and the existing operating contractor, Waste Management Hanford (WMH) policies. Where appropriate, a discussion address the US Department of Energy (DOE) Orders applicable to a topic is provided. Operation of the facility will be compared to the operating contractor procedures using appropriate audits and appraisals. The following subsections provide introductory and background information, including a general description of the Evaporator facility and process, a description of the scope of this SAR revision,a nd a description of the basic changes made to the original SAR.

  6. Safety of magnetic fusion facilities: Requirements

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    This Standard identifies safety requirements for magnetic fusion facilities. Safety functions are used to define outcomes that must be achieved to ensure that exposures to radiation, hazardous materials, or other hazards are maintained within acceptable limits. Requirements applicable to magnetic fusion facilities have been derived from Federal law, policy, and other documents. In addition to specific safety requirements, broad direction is given in the form of safety principles that are to be implemented and within which safety can be achieved.

  7. Improving safety through root cause analysis

    SciTech Connect (OSTI)

    Gatlin, J.L.; Taylor, K.

    1991-01-01T23:59:59.000Z

    Operations at the US Department of Energy -- Savannah River Site (SRS) include such diverse facilities as reactors, fuel fabrication, chemical processing, coal burning power houses, analytical laboratories and research facilities. To enhance the safety of operations at SRS, a Root Cause Analysis process has been developed and is discussed in this document. Root Cause Analysis is a three-step process designed to evaluate and correct problems by identifying WHY an occurrence happened. Although this involves correction after a problem occurs, it is also used to prevent future problems by identifying the Root Causes. Root Causes are the most basic causes that can reasonably be identified, that management has control to fix and for which effective recommendations for preventing recurrence can be generated. Making corrective actions based upon Root Causes lowers the risk of future operation.

  8. Improving safety through root cause analysis

    SciTech Connect (OSTI)

    Gatlin, J.L.; Taylor, K.

    1991-12-31T23:59:59.000Z

    Operations at the US Department of Energy -- Savannah River Site (SRS) include such diverse facilities as reactors, fuel fabrication, chemical processing, coal burning power houses, analytical laboratories and research facilities. To enhance the safety of operations at SRS, a Root Cause Analysis process has been developed and is discussed in this document. Root Cause Analysis is a three-step process designed to evaluate and correct problems by identifying WHY an occurrence happened. Although this involves correction after a problem occurs, it is also used to prevent future problems by identifying the Root Causes. Root Causes are the most basic causes that can reasonably be identified, that management has control to fix and for which effective recommendations for preventing recurrence can be generated. Making corrective actions based upon Root Causes lowers the risk of future operation.

  9. President Obama Discusses Solar Power in Nevada | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - T enAmountCammieReserve |Geothermal and SolarDiscusses

  10. Live Discussion on Energy 101: Fuel Cells | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatestCenter (LMI-EFRC) -ChoicesListLive Discussion on

  11. Open Discussion of Freeze Related Issues | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment ofOil's Impact onDepartment of EnergyDiscussion of

  12. Portfolio Manager Space Type Discussion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of60 DATE: MarchNEPA/309EnergySpace Type Discussion

  13. Audit Services Requirements Discussed In Guide Chapter 42.101-

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from TarasaName4Services Requirements Discussed In Guide

  14. Yonath discusses visualizing ribosomes and antibiotic resistance | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhatY-12 recognized forCyclotronYonath discusses

  15. Safety still Job No. 1 for PRB users

    SciTech Connect (OSTI)

    Javetski, J.

    2006-06-15T23:59:59.000Z

    A report is given of the annual meeting of the Powder River Basin Coal Users' Group (PRBCUG) held in Atlantic during Electric Power 2006. Papers were presented and discussions held on: Coal handling; boilers and combustion; and fire protection, safety and risk management. PRBCUG's plant of the year award wet to TXU Corp.'s Monticello Steam Electric Station, 120 miles east of Dallas. The Group has a re-vamped website at www.prbcoals.com. 3 photos.

  16. Thermally-related safety issues associated with thermal batteries.

    SciTech Connect (OSTI)

    Guidotti, Ronald Armand

    2006-06-01T23:59:59.000Z

    Thermal batteries can experience thermal runaway under certain usage conditions. This can lead to safety issues for personnel and cause damage to associated test equipment if the battery thermally self destructs. This report discusses a number of thermal and design related issues that can lead to catastrophic destruction of thermal batteries under certain conditions. Contributing factors are identified and mitigating actions are presented to minimize or prevent undesirable thermal runaway.

  17. Nuclear Emergency and the Atmospheric Dispersion of Nuclear Aerosols: Discussion of the Shared Nuclear Future - 13163

    SciTech Connect (OSTI)

    Rana, Mukhtar A. [Science-Admin Coherence Cell (SACC), PINSTECH Admin Blk, PAEC, Islamabad (Pakistan)] [Science-Admin Coherence Cell (SACC), PINSTECH Admin Blk, PAEC, Islamabad (Pakistan); Ali, Nawab [Physics Division, Directorate of Science, Pakistan Institute of Nuclear Science and Technology (PINSTECH), P.O. Nilore, Islamabad (Pakistan)] [Physics Division, Directorate of Science, Pakistan Institute of Nuclear Science and Technology (PINSTECH), P.O. Nilore, Islamabad (Pakistan); Akhter, Parveen [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad (Pakistan)] [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad (Pakistan); Khan, E.U. [Department of Physics, International Islamic University (IIU), Kettle Fields, Kashmir Highways, Islamabad (Pakistan)] [Department of Physics, International Islamic University (IIU), Kettle Fields, Kashmir Highways, Islamabad (Pakistan); Mathieson, John [International Relations, Nuclear Decommissioning Authority (NDA), Building 587, Curie Avenue, Harwell, Didcot, Oxon, OX11 0RH (United Kingdom)] [International Relations, Nuclear Decommissioning Authority (NDA), Building 587, Curie Avenue, Harwell, Didcot, Oxon, OX11 0RH (United Kingdom)

    2013-07-01T23:59:59.000Z

    This paper has a twofold objective. One is to analyze the current status of high-level nuclear waste disposal along with presentation of practical perspectives about the environmental issues involved. Present disposal designs and concepts are analyzed on a scientific basis and modifications to existing designs are proposed from the perspective of environmental safety. Other is to understand the aerosol formation in the atmosphere for the case of the leakage from the nuclear waste containers or a nuclear accident. Radio-nuclides released from the waste will attach themselves to the existing aerosols in the atmosphere along with formation of new aerosols. Anticipating the nuclear accident when a variety of radioactive aerosols will form and exist in the atmosphere, as a simple example, measurement of naturally existing radioactive aerosols are made in the atmosphere of Islamabad and Murree. A comparison with similar measurements in 3 cities of France is provided. Measurement of radionuclides in the atmosphere, their attachment to aerosols and follow up transport mechanisms are key issues in the nuclear safety. It is studied here how {sup 7}Be concentration in the atmospheric air varies in the capital city of Islamabad and a Himalaya foothill city of Murree (Pakistan). Present results are compared with recent related published results to produce a {sup 7}Be concentration versus altitude plot up to an altitude of 4000 m (a.s.l.). Origin and variance of {sup 7}Be concentration at different altitudes is discussed in detail. The relevance of results presented here with the evaluation of implications of Chernobyl and Fukushima nuclear disasters has been discussed in a conclusive manner. It is the first international report of a joint collaboration/project. The project is being generalized to investigate and formulate a smooth waste storage and disposal policy. The project will address the fission and fusion waste reduction, its storage, its recycling, air, water and soil quality monitoring, and the final disposal with the major foci of dealing with related chemical, biogical, physical, geophysical, engineering, management and administration aspects. (authors)

  18. A literature review of safety culture.

    SciTech Connect (OSTI)

    Cole, Kerstan Suzanne; Stevens-Adams, Susan Marie; Wenner, Caren A.

    2013-03-01T23:59:59.000Z

    Workplace safety has been historically neglected by organizations in order to enhance profitability. Over the past 30 years, safety concerns and attention to safety have increased due to a series of disastrous events occurring across many different industries (e.g., Chernobyl, Upper Big-Branch Mine, Davis-Besse etc.). Many organizations have focused on promoting a healthy safety culture as a way to understand past incidents, and to prevent future disasters. There is an extensive academic literature devoted to safety culture, and the Department of Energy has also published a significant number of documents related to safety culture. The purpose of the current endeavor was to conduct a review of the safety culture literature in order to understand definitions, methodologies, models, and successful interventions for improving safety culture. After reviewing the literature, we observed four emerging themes. First, it was apparent that although safety culture is a valuable construct, it has some inherent weaknesses. For example, there is no common definition of safety culture and no standard way for assessing the construct. Second, it is apparent that researchers know how to measure particular components of safety culture, with specific focus on individual and organizational factors. Such existing methodologies can be leveraged for future assessments. Third, based on the published literature, the relationship between safety culture and performance is tenuous at best. There are few empirical studies that examine the relationship between safety culture and safety performance metrics. Further, most of these studies do not include a description of the implementation of interventions to improve safety culture, or do not measure the effect of these interventions on safety culture or performance. Fourth, safety culture is best viewed as a dynamic, multi-faceted overall system composed of individual, engineered and organizational models. By addressing all three components of safety culture, organizations have a better chance of understanding, evaluating, and making positive changes towards safety within their own organization.

  19. Integrating Safety with Science,Technology and Innovation at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Rich, Bethany M [Los Alamos National Laboratory

    2012-04-02T23:59:59.000Z

    The mission of Los Alamos National Laboratory (LANL) is to develop and apply science, technology and engineering solutions to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve emerging national security challenges. The most important responsibility is to direct and conduct efforts to meet the mission with an emphasis on safety, security, and quality. In this article, LANL Environmental, Safety, and Health (ESH) trainers discuss how their application and use of a kinetic learning module (learn by doing) with a unique fall arrest system is helping to address one the most common industrial safety challenges: slips and falls. A unique integration of Human Performance Improvement (HPI), Behavior Based Safety (BBS) and elements of the Voluntary Protection Program (VPP) combined with an interactive simulator experience is being used to address slip and fall events at Los Alamos.

  20. Topaz II preliminary safety assessment

    SciTech Connect (OSTI)

    Marshall, A.C. (Sandia National Labs., Albuquerque, NM (United States)); Standley, V. (Air Force Phillips Laboratory, Albuquerque, NM (United States)); Voss, S.S. (Los Alamos National Lab., NM (United States)); Haskin, E. (New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering)

    1992-01-01T23:59:59.000Z

    The Strategic Defense Initiative Organization (SDIO) decided to investigate the possibility of launching a Russian Topaz 11 space nuclear power system. A preliminary safety assessment was conducted to determine whether or not a space mission could be conducted safely and within budget constraints. As part of this assessment, a safety policy and safety functional requirements were developed to guide both the safely assessment and future Topaz II activities. A review of the Russian flight safety program was conducted and documented. Our preliminary safety assessment included a top level event tree, neutronic analysis of normal and accident configurations, an evaluation of temperature coefficients of reactivity, a reentry and disposal analysis, and analysis of postulated launch abort impact accidents, and an analysis of postulated propellant fire and explosion accidents. Based on the assessment, it appears that it will be possible to safely launch the Topaz II system in the US with some possible system modifications. The principal system modifications will probably include design changes to preclude water flooded criticality and to assure intact reentry.

  1. Recommended research on LNG safety

    SciTech Connect (OSTI)

    Carpenter, H.J.; Gilmore, F.R.

    1981-03-01T23:59:59.000Z

    The US Department of Energy (DOE) is conducting research on the safety and other environmental aspects of liquefied energy gases including liquefied natural gas (LNG). The effort reported here was conducted as part of the planning for further research into the safety aspects of transporting and storing LNG, with primary emphasis on public safety. Although the modern LNG industry has enjoyed excellent success in providing for safe operations, significant questions remain on the part of many, the expressions of which were intensified with the addition of marine-based LNG import terminals. Public safety with regard to large-scale importation of this fuel has received widespread attention in the US Congress, state legislatures, county and city governments, and from various individuals and public groups, with coverage in all the news media, including books published on the subject. The safety concerns have centered around the consequences to the public of a large spill of the cryogenic liquid from an ocean tanker or a larger storage tank, either of which might hold as much as 125,000 m/sup 3/ of LNG.

  2. Tank farms criticality safety manual

    SciTech Connect (OSTI)

    FORT, L.A.

    2003-03-27T23:59:59.000Z

    This document defines the Tank Farms Contractor (TFC) criticality safety program, as required by Title 10 Code of Federal Regulations (CFR), Subpart 830.204(b)(6), ''Documented Safety Analysis'' (10 CFR 830.204 (b)(6)), and US Department of Energy (DOE) 0 420.1A, Facility Safety, Section 4.3, ''Criticality Safety.'' In addition, this document contains certain best management practices, adopted by TFC management based on successful Hanford Site facility practices. Requirements in this manual are based on the contractor requirements document (CRD) found in Attachment 2 of DOE 0 420.1A, Section 4.3, ''Nuclear Criticality Safety,'' and the cited revisions of applicable standards published jointly by the American National Standards Institute (ANSI) and the American Nuclear Society (ANS) as listed in Appendix A. As an informational device, requirements directly imposed by the CRD or ANSI/ANS Standards are shown in boldface. Requirements developed as best management practices through experience and maintained consistent with Hanford Site practice are shown in italics. Recommendations and explanatory material are provided in plain type.

  3. Environment/Health/Safety (EHS): Safety Concerns Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000ConsumptionInnovationEnvironment, SafetySafety CommitteeConcerns

  4. Hanford’s Robust Safety Culture Gains One More Site-Wide Safety Standard

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – The safety of the Hanford Site workforce has been bolstered with another program added to the list of Site-wide Safety Standards. The latest Site-wide Safety Standard covers Fall Protection.

  5. DOE's Safety Bulletin No. 2011-01, Events Beyond Design Safety Basis Analysis, March 2011

    Broader source: Energy.gov [DOE]

    PURPOSE This Safety Alert provides information on a safety concern related to the identification and mitigation of events that may fall outside those analyzed in the documented safety analysis.

  6. Assessment of environmental health and safety issues associated with the commercialization of unconventional gas recovery: methane from coal seams

    SciTech Connect (OSTI)

    Ethridge, L.J.; Cowan, C.E.; Riedel, E.F.

    1980-07-01T23:59:59.000Z

    Potential public health and safety problems and the potential environmental impacts from the recovery of gas from coalbeds are identified and examined. The technology of methane recovery is described and economic and legal barriers to production are discussed. (ACR)

  7. Management of radioactive material safety programs at medical facilities. Final report

    SciTech Connect (OSTI)

    Camper, L.W.; Schlueter, J.; Woods, S. [and others

    1997-05-01T23:59:59.000Z

    A Task Force, comprising eight US Nuclear Regulatory Commission and two Agreement State program staff members, developed the guidance contained in this report. This report describes a systematic approach for effectively managing radiation safety programs at medical facilities. This is accomplished by defining and emphasizing the roles of an institution`s executive management, radiation safety committee, and radiation safety officer. Various aspects of program management are discussed and guidance is offered on selecting the radiation safety officer, determining adequate resources for the program, using such contractual services as consultants and service companies, conducting audits, and establishing the roles of authorized users and supervised individuals; NRC`s reporting and notification requirements are discussed, and a general description is given of how NRC`s licensing, inspection and enforcement programs work.

  8. ACCIDENT ANALYSES & CONTROL OPTIONS IN SUPPORT OF THE SLUDGE WATER SYSTEM SAFETY ANALYSIS

    SciTech Connect (OSTI)

    WILLIAMS, J.C.

    2003-11-15T23:59:59.000Z

    This report documents the accident analyses and nuclear safety control options for use in Revision 7 of HNF-SD-WM-SAR-062, ''K Basins Safety Analysis Report'' and Revision 4 of HNF-SD-SNF-TSR-001, ''Technical Safety Requirements - 100 KE and 100 KW Fuel Storage Basins''. These documents will define the authorization basis for Sludge Water System (SWS) operations. This report follows the guidance of DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports'', for calculating onsite and offsite consequences. The accident analysis summary is shown in Table ES-1 below. While this document describes and discusses potential control options to either mitigate or prevent the accidents discussed herein, it should be made clear that the final control selection for any accident is determined and presented in HNF-SD-WM-SAR-062.

  9. Vehicle Battery Safety Roadmap Guidance

    SciTech Connect (OSTI)

    Doughty, D. H.

    2012-10-01T23:59:59.000Z

    The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

  10. Autoclave nuclear criticality safety analysis

    SciTech Connect (OSTI)

    D`Aquila, D.M. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States); Tayloe, R.W. Jr. [Battelle, Columbus, OH (United States)

    1991-12-31T23:59:59.000Z

    Steam-heated autoclaves are used in gaseous diffusion uranium enrichment plants to heat large cylinders of UF{sub 6}. Nuclear criticality safety for these autoclaves is evaluated. To enhance criticality safety, systems are incorporated into the design of autoclaves to limit the amount of water present. These safety systems also increase the likelihood that any UF{sub 6} inadvertently released from a cylinder into an autoclave is not released to the environment. Up to 140 pounds of water can be held up in large autoclaves. This mass of water is sufficient to support a nuclear criticality when optimally combined with 125 pounds of UF{sub 6} enriched to 5 percent U{sup 235}. However, water in autoclaves is widely dispersed as condensed droplets and vapor, and is extremely unlikely to form a critical configuration with released UF{sub 6}.

  11. Integral fast reactor safety features

    SciTech Connect (OSTI)

    Cahalan, J.E.; Kramer, J.M.; Marchaterre, J.F.; Mueller, C.J.; Pedersen, D.R.; Sevy, R.H.; Wade, D.C.; Wei, T.Y.C.

    1988-01-01T23:59:59.000Z

    The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. In addition to liquid metal cooling, the principal design features that distinguish the IFR are: (1) a pool-type primary system, (2) an advanced ternary alloy metallic fuel, and (3) an integral fuel cycle with on-site fuel reprocessing and fabrication. This paper focuses on the technical aspects of the improved safety margins available in the IFR concept. This increased level of safety is made possible by (1) the liquid metal (sodium) coolant and pool-type primary system layout, which together facilitate passive decay heat removal, and (2) a sodium-bonded metallic fuel pin design with thermal and neutronic properties that provide passive core responses which control and mitigate the consequences of reactor accidents.

  12. Environment, Safety and Health Reporting

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-01-01T23:59:59.000Z

    To ensure timely collection, reporting, analysis, and dissemination of information on environment, safety, and health issues as required by law or regulations or as needed to ensure that the Department of Energy (DOE) and National Nuclear Security Administration are kept fully informed on a timely basis about events that could adversely affect the health and safety of the public or the workers, the environment, the intended purpose of DOE facilities, or the credibility of the Department. Cancels DOE O 210.1, DOE O 231.1, DOE O 232.1A. Canceled by DOE O 231.1B. DOE O 231.1B cancels all portions pertaining to environment, safety, and health reporting. Occurrence reporting and processing of operations information provisions remain in effect until January 1, 2012.

  13. System safety management lessons learned

    SciTech Connect (OSTI)

    Piatt, J.A.

    1989-05-01T23:59:59.000Z

    The Assistant Secretary of the Army for Research, Development and Acquisition directed the Army Safety Center to provide an audit of the causes of accidents and safety of use restrictions on recently fielded systems by tracking residual hazards back through the acquisition process. The objective was to develop ''lessons learned'' that could be applied to the acquisition process to minimize mishaps in fielded systems. System safety management lessons learned are defined as Army practices or policies, derived from past successes and failures, that are expected to be effective in eliminating or reducing specific systemic causes of residual hazards. They are broadly applicable and supportive of the Army structure and acquisition objectives. 29 refs., 7 figs.

  14. The ING Instrumentation Conference Discussion, Options for a Competitive Observatory

    E-Print Network [OSTI]

    N. A. Walton; S. J. Smartt

    2000-08-10T23:59:59.000Z

    An expert panel initiated discussion on a number of key questions facing the role of 4-m and small telescopes in the new era of 8-m telescopes. The panel and audience agreed that the 4-m class telescope role would necessarily evolve, but would still be important in the coming years. The need for an active development programme of competitive instrumentation for 4-m class telescopes, and in particular the William Herschel Telescope (WHT) was stressed. In conjunction with this, the need to de-commission instrumentation made redundant by 8-m class telescopes was noted. New operational modes, including greater emphasis on survey programmes, and possibly queue scheduling, coupled with changes to the procedures for allocating time were seen as desirable. The panel and audience supported the Isaac Newton Group's emphasis on the development of instrumentation to exploit its imminent deployment of the WHT's facility Adaptive Optics system.

  15. A Pedagogical Discussion on Neutrino Wave-Packet Evolution

    E-Print Network [OSTI]

    Cheng-Hsien Li; Yong-Zhong Qian

    2014-04-04T23:59:59.000Z

    We present a pedagogical discussion on the time evolution of a Gaussian neutrino wave packet in free space. A common treatment is to keep momentum terms up to the quadratic order in the expansion of the energy-momentum relation so that the Fourier transform can be evaluated analytically via Gaussian integrals. This leads to a solution representing a flat Gaussian distribution with a constant longitudinal width and a spreading transverse width, which suggests that special relativity would be violated if the neutrino wave packet were detected on its edge. However, we demonstrate that by including terms of higher order in momentum the correct geometry of the wave packet is restored. The corrected solution has a spherical wave front so that it complies with special relativity.

  16. Enduring Nuclear Fuel Cycle, Proceedings of a panel discussion

    SciTech Connect (OSTI)

    Walter, C. E., LLNL

    1997-11-18T23:59:59.000Z

    The panel reviewed the complete nuclear fuel cycle in the context of alternate energy resources, energy need projections, effects on the environment, susceptibility of nuclear materials to theft, diversion, and weapon proliferation. We also looked at ethical considerations of energy use, as well as waste, and its effects. The scope of the review extended to the end of the next century with due regard for world populations beyond that period. The intent was to take a long- range view and to project, not forecast, the future based on ethical rationales, and to avoid, as often happens, long-range discussions that quickly zoom in on only the next few decades. A specific nuclear fuel cycle technology that could satisfy these considerations was described and can be applied globally.

  17. Single Component Sorption-Desorption Test Experimental Design Approach Discussions

    SciTech Connect (OSTI)

    Phil WInston

    2011-09-01T23:59:59.000Z

    A task was identified within the fission-product-transport work package to develop a path forward for doing testing to determine behavior of volatile fission products behavior and to engage members of the NGNP community to advise and dissent on the approach. The following document is a summary of the discussions and the specific approaches suggested for components of the testing. Included in the summary isare the minutes of the conference call that was held with INL and external interested parties to elicit comments on the approaches brought forward by the INL participants. The conclusion was that an initial non-radioactive, single component test will be useful to establish the limits of currently available chemical detection methods, and to evaluated source-dispersion uniformity. In parallel, development of a real-time low-concentration monitoring method is believed to be useful in detecting rapid dispersion as well as desorption phenomena. Ultimately, the test cycle is expected to progress to the use of radio-traced species, simply because this method will allow the lowest possible detection limits. The consensus of the conference call was that there is no need for an in-core test because the duct and heat exchanger surfaces that will be the sorption target will be outside the main neutron flux and will not be affected by irradiation. Participants in the discussion and contributors to the INL approach were Jeffrey Berg, Pattrick Calderoni, Gary Groenewold, Paul Humrickhouse, Brad Merrill, and Phil Winston. Participants from outside the INL included David Hanson of General Atomics, Todd Allen, Tyler Gerczak, and Izabela Szlufarska of the University of Wisconsin, Gary Was, of the University of Michigan, Sudarshan Loyalka and Tushar Ghosh of the University of Missouri, and Robert Morris of Oak Ridge National Laboratory.

  18. Nuclear reactor safety heat transfer

    SciTech Connect (OSTI)

    Jones, O.C.

    1982-07-01T23:59:59.000Z

    Reviewed is a book which has 5 parts: Overview, Fundamental Concepts, Design Basis Accident-Light Water Reactors (LWRs), Design Basis Accident-Liquid-Metal Fast Breeder Reactors (LMFBRs), and Special Topics. It combines a historical overview, textbook material, handbook information, and the editor's personal philosophy on safety of nuclear power plants. Topics include thermal-hydraulic considerations; transient response of LWRs and LMFBRs following initiating events; various accident scenarios; single- and two-phase flow; single- and two-phase heat transfer; nuclear systems safety modeling; startup and shutdown; transient response during normal and upset conditions; vapor explosions, natural convection cooling; blockages in LMFBR subassemblies; sodium boiling; and Three Mile Island.

  19. A bootstrap towards asymptotic safety

    E-Print Network [OSTI]

    K. Falls; D. F. Litim; K. Nikolakopoulos; C. Rahmede

    2013-01-17T23:59:59.000Z

    A search strategy for asymptotic safety is put forward and tested for a simplified version of gravity in four dimensions using the renormalization group. Taking the action to be a high-order polynomial of the Ricci scalar, a self-consistent ultraviolet fixed point is found where curvature invariants become increasingly irrelevant with increasing mass dimension. Intriguingly, universal scaling exponents take near-Gaussian values despite the presence of residual interactions. Asymptotic safety of metric gravity would seem in reach if this pattern carries over to the full theory.

  20. Environment, Safety, and Health Reporting

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-08-19T23:59:59.000Z

    To ensure timely collection, reporting, analysis, and dissemination of information on environment, safety, and health issues as required by law or regulations or as needed to ensure that the Department of Energy (DOE) and National Nuclear Security Administration (NNSA) are kept fully informed on a timely basis about events that could adversely affect the health and safety of the public or the workers, the environment, the intended purpose of DOE facilities, or the credibility of the Department. Cancels DOE O 210.1, DOE O 231.1, and DOE O 232.1A. Canceled by DOE O 232.2.

  1. Safety Around Sources of Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton nSafeguards andSafety Alerts Safety

  2. Safety Comes First | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton nSafeguards andSafety AlertsSafety

  3. Environment/Health/Safety Concerns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000ConsumptionInnovationEnvironment, SafetySafetyEHS Emergencies

  4. Quarterly report on the Ferrocyanide Safety Program for the period ending June 30, 1994

    SciTech Connect (OSTI)

    Meacham, J.E.; Cash, R.J.; Dukelow, G.T.

    1994-07-01T23:59:59.000Z

    This is the thirteenth quarterly report on the progress of activities addressing the Ferrocyanide Safety Issue associated With Hanford site high-level radioactive waste tanks. Progress in the Ferrocyanide Safety Program is reviewed, including work addressing the six parts of Defense Nuclear Facilities Safety Board Recommendation 90-7 (FR 1990). All work activities are described in the revised program plan (Borsheim et al. 1993), and this report follows the same format presented there. A summary of the key events occurring this quarter is presented in Section 1.2. More detailed discussions of progress are located in Sections 3.0 and 4.0.

  5. BioSafety On Campus Holiday Fire Safety

    E-Print Network [OSTI]

    Becker, Luann

    to biohazardous or potentially infectious agents. At UCSB, the Biological Safety Program is one of five units an average of 24 civilian deaths, 27 civilian injuries, and $13.3 million in direct property damage per year of the total number of natural Christmas trees sold, which is estimated at 30 million trees, in the United

  6. ENVIRONMENT, SAFETY, HEALTH, AND QUALITY DIVISION Chapter 42: Subcontractor Safety

    E-Print Network [OSTI]

    Wechsler, Risa H.

    URL: http://www-group.slac.stanford.edu/esh/eshmanual/references/subcontractorProcedNonGreen.pdf 1 Purpose The purpose of this procedure is to ensure that SLAC's environment, safety, and health (ESH) requirements, as documented in the hazard-specific chapters of this ESH Manual, are incorporated

  7. ENVIRONMENT, SAFETY, HEALTH, AND QUALITY DIVISION Chapter 42: Subcontractor Safety

    E-Print Network [OSTI]

    Wechsler, Risa H.

    to persons, damage to property, or harm to the environment could bring operations at SLAC to a halt. To avoid Manual (SLAC-I-720-0A29Z-001) Chapter 42, "Subcontractor Safety" Or contact the program manager. 26 line managers, points of contact (POCs), project managers (PMs), field construction and service

  8. Health and Safety Policy Statement4 Health and Safety Policy

    E-Print Network [OSTI]

    Haase, Markus

    To achieve this, the University will ensure effective management of risk by setting and reviewing a quality-based health and safety management system and workplace health framework, and by allocating the resources necessary to attain these. It will also define clear management systems and ensure the involvement of all

  9. 324 Building safety basis criteria document

    SciTech Connect (OSTI)

    STEFFEN, J.M.

    1999-06-02T23:59:59.000Z

    The Safety Basis Criteria document describes the proposed format, content, and schedule for the preparation of an updated Safety Analysis Report (SAR) and Operational Safety Requirements document (OSR) for the 324 Building. These updated safety authorization basis documents are intended to cover stabilization and deactivation activities that will prepare the facility for turnover to the Environmental Restoration Contractor for final decommissioning. The purpose of this document is to establish the specific set of criteria needed for technical upgrades to the 324 Facility Safety Authorization Basis, as required by Project Hanford Procedure HNF-PRO-705, Safety Basis Planning, Documentation, Review, and Approval.

  10. Nonreactor Nuclear Safety Design Criteria and Explosive Safety Criteria Guide for Use with DOE O 420.1, Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-03-28T23:59:59.000Z

    This Guide provides guidance on the application of requirements for nonreactor nuclear facilities and explosives facilities of Department of Energy (DOE) O 420.1, Facility Safety, Section 4.1, Nuclear and Explosives Safety Design Criteria. No cancellation.

  11. CRAD, Engineering Design and Safety Basis - December 22, 2009...

    Broader source: Energy.gov (indexed) [DOE]

    Engineering Design and Safety Basis - December 22, 2009 CRAD, Engineering Design and Safety Basis - December 22, 2009 December 22, 2009 Engineering Design and Safety Basis...

  12. Office of Environment, Safety and Health Evaluations Appraisal...

    Broader source: Energy.gov (indexed) [DOE]

    of ES&H Evaluations HSS Office of Health, Safety and Security ISM Integrated Safety Management QRB Quality Review Board TSR Technical Safety Requirement VSF Vital Systems...

  13. Safety and Occupational Health Specialist (Fall Protection Specialist)

    Broader source: Energy.gov [DOE]

    The incumbent in this position serves as a Fall Protection Specialist in the Safety Office. Safety is responsible for administering BPA's safety program and providing advice, counsel, direction,...

  14. National Report Joint Convention on the Safety of Spent Fuel...

    Office of Environmental Management (EM)

    National Report Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management National Report Joint Convention on the Safety of Spent...

  15. Identification and Resolution of Safety Issues for the Advanced Integral Type PWR

    SciTech Connect (OSTI)

    Kim, Woong Sik; Jo, Jong Chull; Yune, Young Gill; Kim, Hho Jung [Korea Institute of Nuclear Safety, 19 Kusung-dong, Yusung-ku, Taejon, 305-338 (Korea, Republic of)

    2004-07-01T23:59:59.000Z

    This paper presents the interim results of a study on the identification and resolution of safety issues for the AIPWR licensing. The safety issues discussed in this paper include (1) policy issues for which decision-makings are needed for the procedural requirements of licensing system in the regulatory policy point of view, (2) technical issues for which either development of new requirements or amendment of some existing requirements is needed, or (3) other technical issues for which safety verifications are required. The study covers (a) the assessment of applicability of the issues identified from the previous studies to the case of the AIPWR, (b) identification of safety issues through analysis of the international experiences in the design and licensing of advanced reactors, and technical review of the AIPWR design, and (c) development of the resolutions of safety issues, and application of the resolutions to the amendment of regulatory requirements and the licensing review of the AIPWR. As the results of this study, a total of twenty eight safety issues was identified: fourteen issues from the previous studies, including the establishment of design safety goals; four issues from the foreign practices and experiences, including the risk-informed licensing; and ten issues by the AIPWR design review, including reliability of passive safety systems. Ten issues of them have been already resolved and the succeeding study is under way to resolve the remaining ones. (authors)

  16. Discussion series on PURPA related topics: load management

    SciTech Connect (OSTI)

    Sturgeon, J I

    1980-08-01T23:59:59.000Z

    The Discussion Series on PURPA Related Topics is composed of five volumes: Metering, Billing, Information to Customers, Load Management Techniques and Master Metering. These reports are based on twenty-five Demonstration and Implementation projects sponsored and directed during the past five years by the US Department of Energy, Office of Utility Systems. Each of the topics bears directly on one or more of the federal standards contained in the Public Utilities Regulatory Policies Act of 1978 (PURPA). This volume, Load Management Techniques, relates primarily to the Time-of-Day rates standard, PURPA IB(d)3. The experiences related in this report deal, in part, with the procedures and equipment which are affected when time-of-day rates are implemented. One goal of this report is to describe how people in a variety of settings have dealt with the many practical issues in load management. Another is to highlight the lessons and summarize the experiences of the Project participants. This report does not stand as a manual nor provide prescriptive guidelines on how to deal with the topic. Rather it offers an account for those charged with the responsibility of implementing PURPA requirements to learn from the insights and problems which occurred during the Rate Demonstration projects.

  17. Report on discussions with utility engineers about superconducting generators

    SciTech Connect (OSTI)

    none,

    1996-03-01T23:59:59.000Z

    This report relates to a series of discussions with electric utility engineers concerning the integration of high-temperature superconducting (HTS) generators into the present electric power system. The current and future interest of the utilities in the purchase and use of HTS generators is assessed. Various performance and economic factors are also considered as part of this inspection of the utility prospects for HTS generators. Integration of HTS generators into the electric utility sector is one goal of the Superconductivity Partnership Initiative (SPI). The SPI, a major part of the Department of Energy (DOE) Superconductivity Program for Electric Systems, features vertical teaming of a major industrial power apparatus manufacturers, a producer of HTS wire, and an end-user with assistance and technical support for the national laboratories. The SPI effort on HTS generators is headed by a General Electric Corporation internal team comprised of the Corporate Research Laboratories, Power Generation Engineering, and Power Systems Group. Intermagnetics General corporation, which assisted in the development of the superconducting coils, is the HTS wire and tape manufacturer. Additional technical support is provided by the national laboratories: Argonne, Los Alamos, and Oak Ridge, and the New York State Institute on Superconductivity. The end-user is represented by Niagara-Mohawk and the Electric Power Research Institute.

  18. Assuring the Performance of Buildings and Infrastructures: Report of Discussions

    SciTech Connect (OSTI)

    Hunter, Regina L.

    1999-05-28T23:59:59.000Z

    How to ensure the appropriate performance of our built environment in the face of normal conditions, natural hazards, and malevolent threats is an issue of emerging national and international importance. As the world population increases, new construction must be increasingly cost effective and at the same time increasingly secure, safe, and durable. As the existing infrastructure ages, materials and techniques for retrofitting must be developed in parallel with improvements in design, engineering, and building codes for new construction. Both new and renovated structures are more often being subjected to the scrutiny of risk analysis. An international conference, "Assuring the Performance of Buildings and Infrastructures," was held in May 1997 to address some of these issues. The conference was co-sponsored by the Architectural Engineering Division of the American Society of Civil Engineers (ASCE), the American Institute of Architects, and Sandia National Laboratories and convened in Albuquerque, NM. Many of the papers presented at the conference are found within this issue of Techno20~. This paper presents some of the major conference themes and summarizes discussions not found in the other papers.

  19. Training Program Environmental Health & Safety

    E-Print Network [OSTI]

    Jia, Songtao

    Training Program Overview Environmental Health & Safety VISION STATEMENT We provide expert guidance University Medical Center 212-854-8749 Morningside Campus 212-854-8749 Introduction Training&S offers a wide range of training programs, presented by subject matter experts in multiple formats

  20. Human Resources, Safety & Risk Management

    E-Print Network [OSTI]

    1 Human Resources, Safety & Risk Management 1600 Holloway Avenue, ADM 252 San Francisco, California OF RISK AND AGREEMENT TO PAY CLAIMS Activity: San Francisco State University Campus Recreation Department participating in this Activity. I am aware of the risks associated with traveling to/from and participating

  1. Wearable Airbags and Safety Diapers

    E-Print Network [OSTI]

    Hacker, Randi

    2009-02-11T23:59:59.000Z

    for its ingenuity as well as its respect for elders. So it should come as no surprise that the Japanese have come up with wearable airbags and safety diapers to cushion the inevitable spills of old age. If elders should lose their balance and pitch over...

  2. COLUMBIA UNIVERSITY Radiation Safety Program

    E-Print Network [OSTI]

    Jia, Songtao

    for increased protection from ionizing radiation for declared pregnant radiation workers. The radiation doseCOLUMBIA UNIVERSITY Radiation Safety Program Medical Center - T: 212-305-0303 F: 212 regulations of the Rules of the City of New York, Article 175, Radiation Control, there is a requirement

  3. _____________________________ Environment, Health, & Safety _________ __________________ Training Program

    E-Print Network [OSTI]

    Eisen, Michael

    _________ __________________ Training Program EHS 258 Lockout/Tagout Refresher Training Course Syllabus Subject Category: General Course Prerequisite: EHS0358 Lockout/Tagout Verification Course Length: 1 hour Medical Approval: None Delivery Mode Lockout/Tagout responsibilities, acceptable practices, and procedures with respect to safety

  4. _____________________________ Environment, Health, & Safety _________ __________________ Training Program

    E-Print Network [OSTI]

    Eisen, Michael

    _________ __________________ Training Program EHS 359 Lockout/Tagout Practical Training Course Syllabus Subject Category: Electrical Safety Course Prerequisite: EHS0358 Lockout/Tagout Verification Course Length: 4 hours Medical Approval is designed to provide employees with hands on training on Lockout/Tagout responsibilities, acceptable

  5. University of Pittsburgh Safety Manual

    E-Print Network [OSTI]

    Sibille, Etienne

    : ELECTRICAL SAFETY Effective Date 5/6/13 Page 2 of 4 1.10 Lockout/Tagout procedures must be followed when equipment is de-energized. Call EH&S for more information on the University's Lockout/Tagout Program. 1

  6. SAFETY ANALYSIS QUANTITATIVE ANALYSIS ON

    E-Print Network [OSTI]

    Wang, Yinhai

    1 TOPIC C2 SAFETY ANALYSIS AND POLICY QUANTITATIVE ANALYSIS ON ANGLE-ACCIDENT RISK AT SIGNALIZED-2700 Tel: (206) 543-9639 Fax: (206) 543-5965 Email: nihan@u.washington.edu #12;2 Quantitative Analysis on Angle-Accident Risk at Signalized Intersections Abstract: This paper demonstrates how a new modeling

  7. Nuclear Reactions and Reactor Safety

    E-Print Network [OSTI]

    Onuchic, José

    Nuclear Reactions and Reactor Safety DO NOT LICK We haven't entirely nailed down what element nuclear chain reaction, 1938 #12;Nuclear Chain Reactions Do nuclear chain reactions lead to runaway explosions? or ? -Controlled nuclear chain reactions possible: control energy release/sec -> More

  8. Library Protocol Safety and Security

    E-Print Network [OSTI]

    Oxford, University of

    Library Protocol Safety and Security · The library is open only to members of Brasenose; strangers are not to be admitted. · Eating, drinking (with the exception of water) and smoking are strictly forbidden. · Library the library. · Lampshades must not be tilted or have notes, postcards etc attached to them; any such items

  9. Safety of Nuclear Explosive Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-08-07T23:59:59.000Z

    This directive establishes responsibilities and requirements to ensure the safety of routine and planned nuclear explosive operations and associated activities and facilities. Cancels DOE O 452.2A and DOE G 452.2A-1A. Canceled by DOE O 452.2C.

  10. SAFETY BULLETIN January 10, 2014

    E-Print Network [OSTI]

    Abolmaesumi, Purang

    conditions may be used: · The heater must be electrically powered. Fuel powered (propane, kerosene) space/off" or "high/low" switches continue to heat without any regulation and can easily cause fires. · Space heaters must cover the heating element. · Heated open coil radiant heaters are not permitted. #12;SAFETY

  11. Vehicle Management Driver Safety Program

    E-Print Network [OSTI]

    Machel, Hans

    Vehicle Management and Driver Safety Program Manual Facilities & Operations / Finance & Administration Version 2 April 2012 #12;© 2012 University of Alberta. #12;The Vehicle Management and Driver of employment. Driver Acknowledgement I have received the University of Alberta, Vehicle Management and Driver

  12. Personal Safety Street Smart Quiz

    E-Print Network [OSTI]

    Thompson, Michael

    STREET SMARTS Personal Safety Street Smart Quiz: 1. What do you do if a stranger grabs you? (A night and you want to get home, you... (A) Call SWHAT 27500 (B) Walk with a drunken (C) Walk home alone (D) Fly home in a cape Stranger like superman 3. Late at night, a stranger stops beside you

  13. ILLINOIS INSTITUTE OF TECHNOLOGY SAFETY POLICY COMMITTEE

    E-Print Network [OSTI]

    Heller, Barbara

    ILLINOIS INSTITUTE OF TECHNOLOGY SAFETY POLICY COMMITTEE OFFICE SAFETY POLICY Approved: October 10 of pinch points before closing desk or file drawers. 3.14 File/desk drawers, bookcases, and cabinet doors

  14. Environment, Safety, and Health Reporting Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-11-07T23:59:59.000Z

    This Manual provides detailed requirements to supplement DOE O 231.1, ENVIRONMENT, SAFETY AND HEALTH REPORTING, which establishes management objectives and requirements for reporting environment, safety and health information. Chg 1, 11-7-96.

  15. Environment Safety and Health Reporting Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-30T23:59:59.000Z

    This Manual provides detailed requirements to supplement DOE O 231.1, Environment, Safety and Health Reporting, which establishes management objectives and requirements for reporting environment, safety and health information. Does not cancel other directives.

  16. Columbia University Department of Public Safety

    E-Print Network [OSTI]

    Lazar, Aurel A.

    Columbia University Department of Public Safety SECURITY ALERT BURGLARY On August 24, 2012 a tenant crime prevention tips and programs offered by Columbia University Public Safety on our website at www.columbia

  17. Slideshow, National Safety Month- June 2013

    Broader source: Energy.gov [DOE]

    National Safety Month is recognized by employers, employees, and safety and health professionals throughout the country. During the month of June, HSS provided information, activities, and events pertaining to weekly themes.

  18. Flood Protection and Dam Safety (Virginia)

    Broader source: Energy.gov [DOE]

    All dams in Virginia are subject to the Dam Safety Act and Dam Safety Regulations unless specifically excluded. A dam is excluded if it: (a) is less than six feet high; (b) has a maximum capacity...

  19. Safety Monitor Joint Working Group (JWG) Tour

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 th Meeting of the Joint Working Group of the U.S.-Japan Coordinating Committee of Fusion Energy on Safety in Inter-Institutional Collaborations (U.S.-Japan Safety Monitoring...

  20. Elec 331 -Hospital Safety Power Distribution

    E-Print Network [OSTI]

    Pulfrey, David L.

    - Hospital Safety 7 Ground Fault Interrupter Test Reset Gnd Ref Hot Ref Hot Test / Reset Relay Relay : 5 to 30 mA, Protection #12;Elec 331 - Hospital Safety 8

  1. Occupational Safety, Health, and Environmental Management

    E-Print Network [OSTI]

    Stanford, Kyle

    , hearing conservation, machine guarding, system safety, and environmental health. The workshop settingOccupational Safety, Health, and Environmental Management Certificate Program Corporate) This course covers concepts used in the Environmental Management courses. The course emphasizes the practi

  2. Independent Activity Report, Defense Nuclear Facilities Safety...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Health, Safety and Security (HSS) observed the public hearing of the DNFSB review of the UPF project status for integrating safety into design. The meeting was broken into three...

  3. Job Safety Analysis College/Department/Unit

    E-Print Network [OSTI]

    Saskatchewan, University of

    Job Safety Analysis (JSA) College/Department/Unit: Title of Job Activity: Oven Location of Activity and understanding the Job Safety Analysis: Date Name (Print) Signature #12;JSA # Page 3 Basic Job Steps Possible

  4. Fire safety of LPG in marine transportation

    SciTech Connect (OSTI)

    Martinsen, W.E.; Johnson, D.W.; Welker, J.R.

    1980-08-01T23:59:59.000Z

    This report contains an analytical examination of cargo spill and fire hazard potential associated with the marine handling of liquefied petroleum gas (LPG) as cargo. Principal emphasis was on cargo transfer operations for ships unloading at receiving terminals, and barges loading or unloading at a terminal. Major safety systems, including emergency shutdown systems, hazard detection systems, and fire extinguishment and control systems were included in the analysis. Spill probabilities were obtained from fault tree analyses utilizing composite LPG tank ship and barge designs. Failure rates for hardware in the analyses were generally taken from historical data on similar generic classes of hardware, there being very little historical data on the specific items involved. Potential consequences of cargo spills of various sizes are discussed and compared to actual LPG vapor cloud incidents. The usefulness of hazard mitigation systems (particularly dry chemical fire extinguishers and water spray systems) in controlling the hazards posed by LPG spills and spill fires is also discussed. The analysis estimates the probability of fatality for a terminal operator is about 10/sup -6/ to 10/sup -5/ per cargo transfer operation. The probability of fatality for the general public is substantially less.

  5. Module 6: Fuel Cell Engine Safety

    Broader source: Energy.gov [DOE]

    This course will cover the hazards and safety provisions associated with hydrogen and fuel cell engine systems

  6. Track 5: Integration of Safety Into Design

    Broader source: Energy.gov [DOE]

    ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 5: Integration of Safety Into Design

  7. Track 6: Integrating Safety Into Security Operations

    Broader source: Energy.gov [DOE]

    ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 6: Integrating Safety Into Security Operations

  8. NASA Benchmarks Safety Functions Assessment plan - Developed...

    Broader source: Energy.gov (indexed) [DOE]

    SAFETY FUNCTIONS Assessment Plan Developed By NNSANevada Site Office Facility Representative Division Performance Objective: Management should be proactive in addressing...

  9. Supervisors` orientation to occupational safety in DOE

    SciTech Connect (OSTI)

    NONE

    1993-10-01T23:59:59.000Z

    This document presents OSHA regulations, safety and health guidelines pertinent to DOE and the first-line supervisor.

  10. FAA Air Traffic Organization Safety Management

    Broader source: Energy.gov [DOE]

    Presenter: Mark DeNicuolo, Manager Performance and Analyses Air Traffic Organization Safety and Technical Training Federal Aviation Administration

  11. pamphlet2014.docx Office of Research Safety

    E-Print Network [OSTI]

    Kim, Duck O.

    Control Center (24 hrs) 3456 Epidemiology 4376 Employee Health Service 2893 Emergency Department 2588 4 Biological Safety/Bloodborne Pathogen/TB 5 TB Exposure Control 6 Chemical Safety 7 Radiation 31 Confined Space 32 Asbestos Awareness 33 UCHC Safety Information/Policies 34 Chemical Inventory #12

  12. Toolbox Safety Talk DOT Materials of Trade

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Toolbox Safety Talk DOT ­ Materials of Trade Environmental Health & Safety Facilities Safety by Trades personnel that meet the definition of hazardous materials even though they may be sold as consumer commodities. The DOT regulations have exceptions for Materials of Trade (MOT). The MOT exception provides

  13. National Construction Safety Team Act Annual Report

    E-Print Network [OSTI]

    Magee, Joseph W.

    National Construction Safety Team Act Annual Report Fiscal Year 2007 Introduction In October 2002, the President signed into law the National Construction Safety Team (NCST) Act (P.L. 107 National Construction Safety Teams for deployment after events causing the failure of a building

  14. Postgraduate Diploma in Safety and Risk Management

    E-Print Network [OSTI]

    Mottram, Nigel

    Postgraduate Diploma in Safety and Risk Management #12;Programme Structure The Postgraduate Diploma in Safety and Risk Management comprises four modules with a total academic rating of 60 credits: Methods of Professional Enquiry 15 credits Entry to the Masters phase of the Safety and Risk Management Programme requires

  15. Chemical Safety Vulnerability Working Group Report

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This report marks the culmination of a 4-month review conducted to identify chemical safety vulnerabilities existing at DOE facilities. This review is an integral part of DOE's efforts to raise its commitment to chemical safety to the same level as that for nuclear safety.

  16. Special Clinical Staff Training Specialized Radiation Safety

    E-Print Network [OSTI]

    Baker, Chris I.

    Special Clinical Staff Training Specialized Radiation Safety Training Courses for: Nurses these training courses by contacting the Radiation Safety Training Office at 496-2255. Radiation Safety for Clinical Center Employees A great introduction to radiation and radioactive material for new Clinical

  17. Department of Pesticide Worker Health and Safety

    E-Print Network [OSTI]

    Nguyen, Danh

    6/6/2012 1 Cal/EPA Department of Pesticide Regulation Worker Health and Safety Branch Industrial Hygiene Services Health and Safety Issues and Case Studies For Fumigants Harvard R. Fong, CIH Senior Industrial Hygienist California Department of Pesticide Regulation Worker Health and Safety Branch Industrial

  18. Northwestern University Office for Research Safety

    E-Print Network [OSTI]

    Shull, Kenneth R.

    Northwestern University Office for Research Safety ISIS User Manual ISIS (pronounced -ss) is Northwestern University's Integrated Safety Information System. ISIS is the on-line web application by which PIs submit applications and registrations for review. ISIS also builds a laboratory's Safety Profile

  19. Toolbox Safety Talk Articulating Boom Work Platforms

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Toolbox Safety Talk Articulating Boom Work Platforms Environmental Health & Safety Facilities sign-in sheet to Environmental Health & Safety for recordkeeping. Articulating boom work platforms platforms and provides tips to prevent injuries, death, and equipment damage. More information can be found

  20. Roadmap: Environmental Health and Safety Environmental Safety and Security Associate of Applied Science

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Environmental Health and Safety ­ Environmental Safety and Security ­ Associate of Applied/LNHD This roadmap is a recommended semester-by-semester plan of study for this major. However, courses.000 2.000 #12;Roadmap: Environmental Health and Safety ­ Environmental Safety and Security ­ Associate