Addressing Common Subsurface Challenges
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
geophysical and geochemical technologies quantitatively inferring subsurface evolution under current and future engineered conditions finding viable, low-risk resources...
Site Recommendation Subsurface Layout
C.L. Linden
2000-06-28
The purpose of this analysis is to develop a Subsurface Facility layout that is capable of accommodating the statutory capacity of 70,000 metric tons of uranium (MTU), as well as an option to expand the inventory capacity, if authorized, to 97,000 MTU. The layout configuration also requires a degree of flexibility to accommodate potential changes in site conditions or program requirements. The objective of this analysis is to provide a conceptual design of the Subsurface Facility sufficient to support the development of the Subsurface Facility System Description Document (CRWMS M&O 2000e) and the ''Emplacement Drift System Description Document'' (CRWMS M&O 2000i). As well, this analysis provides input to the Site Recommendation Consideration Report. The scope of this analysis includes: (1) Evaluation of the existing facilities and their integration into the Subsurface Facility design. (2) Identification and incorporation of factors influencing Subsurface Facility design, such as geological constraints, thermal loading, constructibility, subsurface ventilation, drainage control, radiological considerations, and the Test and Evaluation Facilities. (3) Development of a layout showing an available area in the primary area sufficient to support both the waste inventories and individual layouts showing the emplacement area required for 70,000 MTU and, if authorized, 97,000 MTU.
Subsurface Contamination Control
Y. Yuan
2001-11-16
There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of the subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the subsurface repository; (2) provides a table of derived LRCL for nuclides of radiological importance; (3) Provides an as low as is reasonably achievable (ALARA) evaluation of the derived LRCL by comparing potential onsite and offsite doses to documented ALARA requirements; (4) Provides a method for estimating potential releases from a defective WP; (5) Provides an evaluation of potential radioactive releases from a defective WP that may become airborne and result in contamination of the subsurface facility; and (6) Provides a preliminary analysis of the detectability of a potential WP leak to support the design of an airborne release monitoring system.
Subsurface Contamination Control
Y. Yuan
2001-12-12
There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of the subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the subsurface repository; (2) provides a table of derived LRCL for nuclides of radiological importance; (3) Provides an as low as is reasonably achievable (ALARA) evaluation of the derived LRCL by comparing potential onsite and offsite doses to documented ALARA requirements; (4) Provides a method for estimating potential releases from a defective WP; (5) Provides an evaluation of potential radioactive releases from a defective WP that may become airborne and result in contamination of the subsurface facility; and (6) Provides a preliminary analysis of the detectability of a potential WP leak to support the design of an airborne release monitoring system.
Best Practice -- Subsurface Investigations
Clark Scott
2010-03-01
These best practices for Subsurface Survey processes were developed at the Idaho National Laboratory (INL) and later shared and formalized by a sub-committee, under the Electrical Safety Committee of EFCOG. The developed best practice is best characterized as a Tier II (enhanced) survey process for subsurface investigations. A result of this process has been an increase in the safety and lowering of overall cost, when utility hits and their related costs are factored in. The process involves improving the methodology and thoroughness of the survey and reporting processes; or improvement in tool use rather than in the tools themselves. It is hoped that the process described here can be implemented at other sites seeking to improve their Subsurface Investigation results with little upheaval to their existing system.
Subsurface connection methods for subsurface heaters
Vinegar, Harold J. (Bellaire, TX); Bass, Ronald Marshall (Houston, TX); Kim, Dong Sub (Sugar Land, TX); Mason, Stanley Leroy (Allen, TX); Stegemeier, George Leo (Houston, TX); Keltner, Thomas Joseph (Spring, TX); Carl, Jr., Frederick Gordon (Houston, TX)
2010-12-28
A system for heating a subsurface formation is described. The system includes a first elongated heater in a first opening in the formation. The first elongated heater includes an exposed metal section in a portion of the first opening. The portion is below a layer of the formation to be heated. The exposed metal section is exposed to the formation. A second elongated heater is in a second opening in the formation. The second opening connects to the first opening at or near the portion of the first opening below the layer to be heated. At least a portion of an exposed metal section of the second elongated heater is electrically coupled to at least a portion of the exposed metal section of the first elongated heater in the portion of the first opening below the layer to be heated.
Subsurface contaminants focus area
1996-08-01
The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.
Subsurface Tech Team | Department of Energy
Office of Environmental Management (EM)
Subsurface Tech Team Subsurface Tech Team Subsurface Tech Team Energy sources originating from beneath the Earth's surface satisfy over 80% of total U.S. energy needs. Finding and...
Containment of subsurface contaminants
Corey, J.C.
1994-09-06
A barrier is disclosed for reducing the spread of a plume of subsurface contaminants. The apparatus includes a well system for injecting a fluid, such as air, just outside and below the periphery of the plume. The fluid is injected at a pressure sufficient to lower the hydraulic conductivity of the soil from the point of injection to the surface thus establishing a curtain-like barrier to groundwater movement. The barrier is established upgradient of the plume to divert groundwater away, or preferably completely around the plume to reduce the flow of groundwater into or out of the plume. The barrier enables the remediation of the confined contamination and then, when the injection of the fluid is halted, the barrier quickly dissipates. 5 figs.
Containment of subsurface contaminants
Corey, John C. (Aiken, SC)
1994-01-01
A barrier for reducing the spread of a plume of subsurface contaminants. The apparatus includes a well system for injecting a fluid, such as air, just outside and below the periphery of the plume. The fluid is injected at a pressure sufficient to lower the hydraulic conductivity of the soil from the point of injection to the surface thus establishing a curtain-like barrier to groundwater movement. The barrier is established upgradient of the plume to divert groundwater away, or preferably completely around the plume to reduce the flow of groundwater into or out of the plume. The barrier enables the remediation of the confined contamination and then, when the injection of the fluid is halted, the barrier quickly dissipates.
Poster on Subsurface Technology & Engineering Research, Development...
Office of Environmental Management (EM)
Poster on Subsurface Technology & Engineering Research, Development, and Demonstration Crosscut (SubTER) Poster on Subsurface Technology & Engineering Research, Development, and...
Subsurface Facility System Description Document
Eric Loros
2001-07-31
The Subsurface Facility System encompasses the location, arrangement, size, and spacing of the underground openings. This subsurface system includes accesses, alcoves, and drifts. This system provides access to the underground, provides for the emplacement of waste packages, provides openings to allow safe and secure work conditions, and interfaces with the natural barrier. This system includes what is now the Exploratory Studies Facility. The Subsurface Facility System physical location and general arrangement help support the long-term waste isolation objectives of the repository. The Subsurface Facility System locates the repository openings away from main traces of major faults, away from exposure to erosion, above the probable maximum flood elevation, and above the water table. The general arrangement, size, and spacing of the emplacement drifts support disposal of the entire inventory of waste packages based on the emplacement strategy. The Subsurface Facility System provides access ramps to safely facilitate development and emplacement operations. The Subsurface Facility System supports the development and emplacement operations by providing subsurface space for such systems as ventilation, utilities, safety, monitoring, and transportation.
Crosscutting Subsurface Initiative: Adaptive Control of Subsurface Fractures
Broader source: Energy.gov [DOE]
The subsurface provides most of the world’s energy and offers great potential for CO2, nuclear waste, and energy storage. Despite decades of research and recent successes in new extraction methods...
Maintaining Subsurface Drip Irrigation Systems
Enciso, Juan; Porter, Dana; Bordovsky, Jim; Fipps, Guy
2004-09-07
A subsurface drip irrigation system should last more than 20 years if properly maintained. Important maintenance procedures include cleaning the filters, flushing the lines, adding chlorine and injecting acids. Details of these procedures...
Subsurface Geotechnical Parameters Report
D. Rigby; M. Mrugala; G. Shideler; T. Davidsavor; J. Leem; D. Buesch; Y. Sun; D. Potyondy; M. Christianson
2003-12-17
The Yucca Mountain Project is entering a the license application (LA) stage in its mission to develop the nation's first underground nuclear waste repository. After a number of years of gathering data related to site characterization, including activities ranging from laboratory and site investigations, to numerical modeling of processes associated with conditions to be encountered in the future repository, the Project is realigning its activities towards the License Application preparation. At the current stage, the major efforts are directed at translating the results of scientific investigations into sets of data needed to support the design, and to fulfill the licensing requirements and the repository design activities. This document addresses the program need to address specific technical questions so that an assessment can be made about the suitability and adequacy of data to license and construct a repository at the Yucca Mountain Site. In July 2002, the U.S. Nuclear Regulatory Commission (NRC) published an Integrated Issue Resolution Status Report (NRC 2002). Included in this report were the Repository Design and Thermal-Mechanical Effects (RDTME) Key Technical Issues (KTI). Geotechnical agreements were formulated to resolve a number of KTI subissues, in particular, RDTME KTIs 3.04, 3.05, 3.07, and 3.19 relate to the physical, thermal and mechanical properties of the host rock (NRC 2002, pp. 2.1.1-28, 2.1.7-10 to 2.1.7-21, A-17, A-18, and A-20). The purpose of the Subsurface Geotechnical Parameters Report is to present an accounting of current geotechnical information that will help resolve KTI subissues and some other project needs. The report analyzes and summarizes available qualified geotechnical data. It evaluates the sufficiency and quality of existing data to support engineering design and performance assessment. In addition, the corroborative data obtained from tests performed by a number of research organizations is presented to reinforce conclusions derived from the pool of data gathered within a full QA-controlled domain. An evaluation of the completeness of the current data is provided with respect to the requirements for geotechnical data to support design and performance assessment.
Uranium Biomineralization by Natural Microbial Phosphatase Activities in the Subsurface
Sobecky, Patricia A.
2015-04-06
In this project, inter-disciplinary research activities were conducted in collaboration among investigators at The University of Alabama (UA), Georgia Institute of Technology (GT), Lawrence Berkeley National Laboratory (LBNL), Brookhaven National Laboratory (BNL), the DOE Joint Genome Institute (JGI), and the Stanford Synchrotron Radiation Light source (SSRL) to: (i) confirm that phosphatase activities of subsurface bacteria in Area 2 and 3 from the Oak Ridge Field Research Center result in solid U-phosphate precipitation in aerobic and anaerobic conditions; (ii) investigate the eventual competition between uranium biomineralization via U-phosphate precipitation and uranium bioreduction; (iii) determine subsurface microbial community structure changes of Area 2 soils following organophosphate amendments; (iv) obtain the complete genome sequences of the Rahnella sp. Y9-602 and the type-strain Rahnella aquatilis ATCC 33071 isolated from these soils; (v) determine if polyphosphate accumulation and phytate hydrolysis can be used to promote U(VI) biomineralization in subsurface sediments; (vi) characterize the effect of uranium on phytate hydrolysis by a new microorganism isolated from uranium-contaminated sediments; (vii) utilize positron-emission tomography to label and track metabolically-active bacteria in soil columns, and (viii) study the stability of the uranium phosphate mineral product. Microarray analyses and mineral precipitation characterizations were conducted in collaboration with DOE SBR-funded investigators at LBNL. Thus, microbial phosphorus metabolism has been shown to have a contributing role to uranium immobilization in the subsurface.
Enceladus's measured physical libration requires a global subsurface ocean
Thomas, P C; Tiscareno, M S; Burns, J A; Joseph, J; Loredo, T J; Helfenstein, P; Porco, C
2015-01-01
Several planetary satellites apparently have subsurface seas that are of great interest for, among other reasons, their possible habitability. The geologically diverse Saturnian satellite Enceladus vigorously vents liquid water and vapor from fractures within a south polar depression and thus must have a liquid reservoir or active melting. However, the extent and location of any subsurface liquid region is not directly observable. We use measurements of control points across the surface of Enceladus accumulated over seven years of spacecraft observations to determine the satellite's precise rotation state, finding a forced physical libration of 0.120 $\\pm$ 0.014{\\deg} (2{\\sigma}). This value is too large to be consistent with Enceladus's core being rigidly connected to its surface, and thus implies the presence of a global ocean rather than a localized polar sea. The maintenance of a global ocean within Enceladus is problematic according to many thermal models and so may constrain satellite properties or requ...
SUBSURFACE VISUAL ALARM SYSTEM ANALYSIS
D.W. Markman
2001-08-06
The ''Subsurface Fire Hazard Analysis'' (CRWMS M&O 1998, page 61), and the document, ''Title III Evaluation Report for the Surface and Subsurface Communication System'', (CRWMS M&O 1999a, pages 21 and 23), both indicate the installed communication system is adequate to support Exploratory Studies Facility (ESF) activities with the exception of the mine phone system for emergency notification purposes. They recommend the installation of a visual alarm system to supplement the page/party phone system The purpose of this analysis is to identify data communication highway design approaches, and provide justification for the selected or recommended alternatives for the data communication of the subsurface visual alarm system. This analysis is being prepared to document a basis for the design selection of the data communication method. This analysis will briefly describe existing data or voice communication or monitoring systems within the ESF, and look at how these may be revised or adapted to support the needed data highway of the subsurface visual alarm. system. The existing PLC communication system installed in subsurface is providing data communication for alcove No.5 ventilation fans, south portal ventilation fans, bulkhead doors and generator monitoring system. It is given that the data communication of the subsurface visual alarm system will be a digital based system. It is also given that it is most feasible to take advantage of existing systems and equipment and not consider an entirely new data communication system design and installation. The scope and primary objectives of this analysis are to: (1) Briefly review and describe existing available data communication highways or systems within the ESF. (2) Examine technical characteristics of an existing system to disqualify a design alternative is paramount in minimizing the number of and depth of a system review. (3) Apply general engineering design practices or criteria such as relative cost, and degree of difficulty and complexity in determining requirements in adapting existing data communication highways to support the subsurface visual alarm system. These requirements would include such things as added or new communication cables, added Programmable Logic Controller (PLC), Inputs and Outputs (I/O), and communication hardware components, and human machine interfaces and their software operating system. (4) Select the best data communication highway system based on this review of adapting or integrating with existing data communication systems.
Geophysical subsurface imaging and interface identification.
Pendley, Kevin; Bochev, Pavel Blagoveston; Day, David Minot; Robinson, Allen Conrad; Weiss, Chester Joseph
2005-09-01
Electromagnetic induction is a classic geophysical exploration method designed for subsurface characterization--in particular, sensing the presence of geologic heterogeneities and fluids such as groundwater and hydrocarbons. Several approaches to the computational problems associated with predicting and interpreting electromagnetic phenomena in and around the earth are addressed herein. Publications resulting from the project include [31]. To obtain accurate and physically meaningful numerical simulations of natural phenomena, computational algorithms should operate in discrete settings that reflect the structure of governing mathematical models. In section 2, the extension of algebraic multigrid methods for the time domain eddy current equations to the frequency domain problem is discussed. Software was developed and is available in Trilinos ML package. In section 3 we consider finite element approximations of De Rham's complex. We describe how to develop a family of finite element spaces that forms an exact sequence on hexahedral grids. The ensuing family of non-affine finite elements is called a van Welij complex, after the work [37] of van Welij who first proposed a general method for developing tangentially and normally continuous vector fields on hexahedral elements. The use of this complex is illustrated for the eddy current equations and a conservation law problem. Software was developed and is available in the Ptenos finite element package. The more popular methods of geophysical inversion seek solutions to an unconstrained optimization problem by imposing stabilizing constraints in the form of smoothing operators on some enormous set of model parameters (i.e. ''over-parametrize and regularize''). In contrast we investigate an alternative approach whereby sharp jumps in material properties are preserved in the solution by choosing as model parameters a modest set of variables which describe an interface between adjacent regions in physical space. While still over-parametrized, this choice of model space contains far fewer parameters than before, thus easing the computational burden, in some cases, of the optimization problem. And most importantly, the associated finite element discretization is aligned with the abrupt changes in material properties associated with lithologic boundaries as well as the interface between buried cultural artifacts and the surrounding Earth. In section 4, algorithms and tools are described that associate a smooth interface surface to a given triangulation. In particular, the tools support surface refinement and coarsening. Section 5 describes some preliminary results on the application of interface identification methods to some model problems in geophysical inversion. Due to time constraints, the results described here use the GNU Triangulated Surface Library for the manipulation of surface meshes and the TetGen software library for the generation of tetrahedral meshes.
R. L. Oldershaw
2007-12-19
The possibility that global discrete dilation invariance is a fundamental symmetry principle of nature is explored. If the discrete self-similarity observed in nature is exact, then the Principle of General Covariance needs to be broadened in order to accommodate this form of discrete conformal invariance, and a further generalization of relativity theory is required.
New Horizons for Deep Subsurface Microbiology
Onstott, Tullis
life cannot exist. · Experiments being designed for the Deep Un- derground Science and EngineeringNew Horizons for Deep Subsurface Microbiology Subsurface microorganisms may grow slowly 200-m-deep wells along with procedures to monitor for drilling-related contaminants, uncovered
Discrete Fracture Reservoir Simulation
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Discrete Fracture Reservoir Simulation Shale Gas Flow Simulation Shale Gas Flow Simulation FRACGENNFFLOW, fractured reservoir modeling software developed by NETL's Geological and...
Sequestration of ethane in the cryovolcanic subsurface of Titan
Olivier Mousis; Bernard Schmitt
2008-02-07
Saturn's largest satellite, Titan, has a thick atmosphere dominated by nitrogen and methane. The dense orange-brown smog hiding the satellite's surface is produced by photochemical reactions of methane, nitrogen and their dissociation products with solar ultraviolet, which lead primarily to the formation of ethane and heavier hydrocarbons. In the years prior to the exploration of Titan's surface by the Cassini-Huygens spacecraft, the production and condensation of ethane was expected to have formed a satellite-wide ocean one kilometer in depth, assuming that it was generated over the Solar system's lifetime. However, Cassini-Huygens observations failed to find any evidence of such an ocean. Here we describe the main cause of the ethane deficiency on Titan: cryovolcanic lavas regularly cover its surface, leading to the percolation of the liquid hydrocarbons through this porous material and its accumulation in subsurface layers built up during successive methane outgassing events. The liquid stored in the pores may, combined with the ice layers, form a stable ethane-rich clathrate reservoir, potentially isolated from the surface. Even with a low open porosity of 10% for the subsurface layers, a cryovolcanic icy crust less than 2300 m thick is required to bury all the liquid hydrocarbons generated over the Solar system's lifetime.
Does carbon dioxide pool or stream in the subsurface?
Cardoso, Silvana S S
2014-01-01
Pools of carbon dioxide are found in natural geological accumulations and in engineered storage in saline aquifers. It has been thought that once this CO2 dissolves in the formation water, making it denser, convection streams would transport it efficiently to depth, but this may not be so. Here, we assess the impact of natural chemical reactions between the dissolved CO2 and the rock formation on the convection streams in the subsurface. We show that, while in carbonate rocks the streaming of dissolved carbon dioxide persists, the chemical interactions in silicate-rich rocks may curb this transport drastically and even inhibit it altogether. New laboratory experiments confirm the curtailing of convection by reaction. Wide and narrow streams of dense carbon-rich water are shut-off gradually as reaction strength increases until all transport of the pooled carbon dioxide occurs by slow molecular diffusion. These results show that the complex fluid dynamic and kinetic interactions between pooled carbon dioxide an...
Morris, J; Johnson, S
2007-12-03
The Distinct Element Method (also frequently referred to as the Discrete Element Method) (DEM) is a Lagrangian numerical technique where the computational domain consists of discrete solid elements which interact via compliant contacts. This can be contrasted with Finite Element Methods where the computational domain is assumed to represent a continuum (although many modern implementations of the FEM can accommodate some Distinct Element capabilities). Often the terms Discrete Element Method and Distinct Element Method are used interchangeably in the literature, although Cundall and Hart (1992) suggested that Discrete Element Methods should be a more inclusive term covering Distinct Element Methods, Displacement Discontinuity Analysis and Modal Methods. In this work, DEM specifically refers to the Distinct Element Method, where the discrete elements interact via compliant contacts, in contrast with Displacement Discontinuity Analysis where the contacts are rigid and all compliance is taken up by the adjacent intact material.
Adaptive and Efficient Computing for Subsurface Simulation within ParFlow
Tiedeman, H; Woodward, C S
2010-11-16
This project is concerned with the PF.WRF model as a means to enable more accurate predictions of wind fluctuations and subsurface storage. As developed at LLNL, PF.WRF couples a groundwater (subsurface) and surface water flow model (ParFlow) to a mesoscale atmospheric model (WRF, Weather Research and Forecasting Model). It was developed as a unique tool to address coupled water balance and wind energy questions that occur across traditionally separated research regimes of the atmosphere, land surface, and subsurface. PF.WRF is capable of simulating fluid, mass, and energy transport processes in groundwater, vadose zone, root zone, and land surface systems, including overland flow, and allows for the WRF model to both directly drive and respond to surface and subsurface hydrologic processes and conditions. The current PF.WRF model is constrained to have uniform spatial gridding below the land surface and matching areal grids with the WRF model at the land surface. There are often cases where it is advantageous for land surface, overland flow and subsurface models to have finer gridding than their atmospheric counterparts. Finer vertical discretization is also advantageous near the land surface (to properly capture feedbacks) yet many applications have a large vertical extent. However, the surface flow is strongly dependent on topography leading to a need for greater lateral resolution in some regions and the subsurface flow is tightly coupled to the atmospheric model near the surface leading to a need for finer vertical resolution. In addition, the interactions (e.g. rain) will be highly variable in space and time across the problem domain so an adaptive scheme is preferred to a static strategy to efficiently use computing and memory resources. As a result, this project focussed on algorithmic research required for development of an adaptive simulation capability in the PF.WRF system and its subsequent use in an application problem in the Central Valley of California. This report documents schemes of use for a future implementation of an adaptive grid capability within the ParFlow subsurface flow simulator in PF.WRF. The methods describe specific handling of the coarse/fine boundaries within a cell-centered discretization of the nonlinear parabolic Richards equation model for variable saturated flow. In addition, we describe development of a spline fit and table lookup method implemented within ParFlow to enhance computational efficiency of variably saturated flow calculations.
Maintaining Subsurface Drip Irrigation Systems (Spanish)
Enciso, Juan; Porter, Dana; Bordovsky, Jim; Fipps, Guy
2004-09-07
A subsurface drip irrigation system should last more than 20 years if properly maintained. Important maintenance procedures include cleaning the filters, flushing the lines, adding chlorine and injecting acids. Details of these procedures...
Floating insulated conductors for heating subsurface formations
Burns, David; Goodwin, Charles R.
2014-07-29
A heating system for a subsurface formation includes a conduit located in a first opening in the subsurface formation. Three electrical conductors are located in the conduit. A return conductor is located inside the conduit. The return conductor is electrically coupled to the ends of the electrical conductors distal from the surface of the formation. Insulation is located inside the conduit. The insulation electrically insulates the three electrical conductors, the return conductor, and the conduit from each other.
SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN
C.J. Fernado
1998-09-17
The purpose of this document is to develop preliminary high-level functional and physical control system architectures for the proposed subsurface repository at Yucca Mountain. This document outlines overall control system concepts that encompass and integrate the many diverse systems being considered for use within the subsurface repository. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The subsurface repository design will be composed of a series of diverse systems that will be integrated to accomplish a set of overall functions and objectives. The subsurface repository contains several Instrumentation and Control (I&C) related systems including: waste emplacement systems, ventilation systems, communication systems, radiation monitoring systems, rail transportation systems, ground control monitoring systems, utility monitoring systems (electrical, lighting, water, compressed air, etc.), fire detection and protection systems, retrieval systems, and performance confirmation systems. Each of these systems involve some level of I&C and will typically be integrated over a data communication network. The subsurface I&C systems will also integrate with multiple surface-based site-wide systems such as emergency response, health physics, security and safeguards, communications, utilities and others. The scope and primary objectives of this analysis are to: (1) Identify preliminary system level functions and interface needs (Presented in the functional diagrams in Section 7.2). (2) Examine the overall system complexity and determine how and on what levels these control systems will be controlled and integrated (Presented in Section 7.2). (3) Develop a preliminary subsurface facility-wide design for an overall control system architecture, and depict this design by a series of control system functional block diagrams (Presented in Section 7.2). (4) Develop a series of physical architectures that present preliminary concepts for integrating the diverse set of control systems to be used within the subsurface repository facility (Presented in Section 7.3). (5) Develop initial concepts for an overall subsurface data communication system that can be used to integrate critical and data-intensive control systems (Presented in Section 7.4). (6) Discuss technology trends and control system design issues (Presented in Section 7.5).
Ecker, Amir L. (Dallas, TX)
1980-01-01
What is disclosed is a heat exchanger-accumulator for vaporizing a refrigerant or the like, characterized by an upright pressure vessel having a top, bottom and side walls; an inlet conduit eccentrically and sealingly penetrating through the top; a tubular overflow chamber disposed within the vessel and sealingly connected with the bottom so as to define an annular outer volumetric chamber for receiving refrigerant; a heat transfer coil disposed in the outer volumetric chamber for vaporizing the liquid refrigerant that accumulates there; the heat transfer coil defining a passageway for circulating an externally supplied heat exchange fluid; transferring heat efficiently from the fluid; and freely allowing vaporized refrigerant to escape upwardly from the liquid refrigerant; and a refrigerant discharge conduit penetrating sealingly through the top and traversing substantially the length of the pressurized vessel downwardly and upwardly such that its inlet is near the top of the pressurized vessel so as to provide a means for transporting refrigerant vapor from the vessel. The refrigerant discharge conduit has metering orifices, or passageways, penetrating laterally through its walls near the bottom, communicating respectively interiorly and exteriorly of the overflow chamber for controllably carrying small amounts of liquid refrigerant and oil to the effluent stream of refrigerant gas.
Discrete Fourier Transform Javier Montoya
Giger, Christine
Discrete Fourier Transform Javier Montoya Photogrammetry and Remote Sensing ETH Zurich March 16, 2012 1 Introduction The Discrete form of the Fourier transform is known as Discrete Fourier Transform domain using the Inverse Discrete Fourier Transform (IDFT): f(x) = 1 N N-1 x=0 F(u)ej 2 N ux for u = 0, 1
A discrete fractional random transform
Zhengjun Liu; Haifa Zhao; Shutian Liu
2006-05-20
We propose a discrete fractional random transform based on a generalization of the discrete fractional Fourier transform with an intrinsic randomness. Such discrete fractional random transform inheres excellent mathematical properties of the fractional Fourier transform along with some fantastic features of its own. As a primary application, the discrete fractional random transform has been used for image encryption and decryption.
Subsurface Contaminants Focus Area annual report 1997
1997-12-31
In support of its vision for technological excellence, the Subsurface Contaminants Focus Area (SCFA) has identified three strategic goals. The three goals of the SCFA are: Contain and/or stabilize contamination sources that pose an imminent threat to surface and ground waters; Delineate DNAPL contamination in the subsurface and remediate DNAPL-contaminated soils and ground water; and Remove a full range of metal and radionuclide contamination in soils and ground water. To meet the challenges of remediating subsurface contaminants in soils and ground water, SCFA funded more than 40 technologies in fiscal year 1997. These technologies are grouped according to the following product lines: Dense Nonaqueous-Phase Liquids; Metals and Radionuclides; Source Term Containment; and Source Term Remediation. This report briefly describes the SCFA 1997 technologies and showcases a few key technologies in each product line.
Heating systems for heating subsurface formations
Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)
2011-04-26
Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.
Induction heaters used to heat subsurface formations
Nguyen, Scott Vinh (Houston, TX); Bass, Ronald M. (Houston, TX)
2012-04-24
A heating system for a subsurface formation includes an elongated electrical conductor located in the subsurface formation. The electrical conductor extends between at least a first electrical contact and a second electrical contact. A ferromagnetic conductor at least partially surrounds and at least partially extends lengthwise around the electrical conductor. The electrical conductor, when energized with time-varying electrical current, induces sufficient electrical current flow in the ferromagnetic conductor such that the ferromagnetic conductor resistively heats to a temperature of at least about 300.degree. C.
Solids Accumulation Scouting Studies
Duignan, M. R.; Steeper, T. J.; Steimke, J. L.
2012-09-26
The objective of Solids Accumulation activities was to perform scaled testing to understand the behavior of remaining solids in a Double Shell Tank (DST), specifically AW-105, at Hanford during multiple fill, mix, and transfer operations. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles containing plutonium could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste staging tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids: Gibbsite, Zirconia, Sand, and Stainless Steel, with stainless steel particles representing the heavier particles, e.g., plutonium, and supernatant were charged to the test tank and rotating liquid jets were used to mix most of the solids while the simulant was pumped out. Subsequently, the volume and shape of the mounds of residual solids and the spatial concentration profiles for the surrogate for heavier particles were measured. Several techniques were developed and equipment designed to accomplish the measurements needed and they included: 1. Magnetic particle separator to remove simulant stainless steel solids. A device was designed and built to capture these solids, which represent the heavier solids during a waste transfer from a staging tank. 2. Photographic equipment to determine the volume of the solids mounds. The mounds were photographed as they were exposed at different tank waste levels to develop a composite of topographical areas. 3. Laser rangefinders to determine the volume of the solids mounds. The mounds were scanned after tank supernatant was removed. 4. Core sampler to determine the stainless steel solids distribution within the solids mounds. This sampler was designed and built to remove small sections of the mounds to evaluate concentrations of the stainless steel solids at different special locations. 5. Computer driven positioner that placed the laser rangefinders and the core sampler in appropriate locations over solids mounds that accumulated on the bottom of a scaled staging tank where mixing is poor. These devices and techniques were effective to estimate the movement, location, and concentrations of the solids representing heavier particles and could perform well at a larger scale The experiment contained two campaigns with each comprised of ten cycles to fill and empty the scaled staging tank. The tank was filled without mixing, but emptied, while mixing, in seven batches; the first six were of equal volumes of 13.1 gallons each to represent the planned fullscale batches of 145,000 gallons, and the last, partial, batch of 6.9 gallons represented a full-scale partial batch of 76,000 gallons that will leave a 72-inch heel in the staging tank for the next cycle. The sole difference between the two campaigns was the energy to mix the scaled staging tank, i.e., the nozzle velocity and jet rotational speed of the two jet pumps. Campaign 1 used 22.9 ft/s, at 1.54 rpm based on past testing and Campaign 2 used 23.9 ft/s at 1.75 rpm, based on visual observation of minimum velocity that allowed fast settling solids, i.e., sand and stainless steel, to accumulate on the scaled tank bottom.
Virus transport in physically and geochemically heterogeneous subsurface porous media
Ryan, Joe
Virus transport in physically and geochemically heterogeneous subsurface porous media Subir for virus transport in physically and geochemically heterogeneous subsurface porous media is presented. The model involves solution of the advectiondispersion equation, which additionally considers virus
On-Site Wastewater Treatment Systems: Subsurface Drip Distribution
Lesikar, Bruce J.
1999-09-06
A subsurface drip system distributes wastewater to the lawn through a system of tubing installed below the ground. This publication explains the advantages and disadvantages of subsurface drip distribution systems, as well ...
Subsurface Biogeochemical Research (SBR) Contractor-Grantee Workshop--Abstracts
Hazen, Terry C.
2010-01-01
Area Subsurface Sediments Grantee-Led Research Beyenal H.of Reactive Transport Grantee-Led Research Choreover J.Subsurface Metal Contaminants Grantee-Led Research Daley R.
Methods for forming long subsurface heaters
Kim, Dong Sub
2013-09-17
A method for forming a longitudinal subsurface heater includes longitudinally welding an electrically conductive sheath of an insulated conductor heater along at least one longitudinal strip of metal. The longitudinal strip is formed into a tubular around the insulated conductor heater with the insulated conductor heater welded along the inside surface of the tubular.
Hogan, J.T.; Hillis, D.L.; Galambos, J.; Uckan, N.A. ); Dippel, K.H.; Finken, K.H. . Inst. fuer Plasmaphysik); Hulse, R.A.; Budny, R.V. . Plasma Physics Lab.)
1990-01-01
Many studies have shown the importance of the ratio {upsilon}{sub He}/{upsilon}{sub E} in determining the level of He ash accumulation in future reactor systems. Results of the first tokamak He removal experiments have been analysed, and a first estimate of the ratio {upsilon}{sub He}/{upsilon}{sub E} to be expected for future reactor systems has been made. The experiments were carried out for neutral beam heated plasmas in the TEXTOR tokamak, at KFA/Julich. Helium was injected both as a short puff and continuously, and subsequently extracted with the Advanced Limiter Test-II pump limiter. The rate at which the He density decays has been determined with absolutely calibrated charge exchange spectroscopy, and compared with theoretical models, using the Multiple Impurity Species Transport (MIST) code. An analysis of energy confinement has been made with PPPL TRANSP code, to distinguish beam from thermal confinement, especially for low density cases. The ALT-II pump limiter system is found to exhaust the He with maximum exhaust efficiency (8 pumps) of {approximately}8%. We find 1<{upsilon}{sub He}/{upsilon}{sub E}<3.3 for the database of cases analysed to date. Analysis with the ITER TETRA systems code shows that these values would be adequate to achieve the required He concentration with the present ITER divertor He extraction system.
Discrete multivariate distributions
Oleg Yu. Vorobyev; Lavrentiy S. Golovkov
2011-02-22
This article brings in two new discrete distributions: multidimensional Binomial distribution and multidimensional Poisson distribution. Those distributions were created in eventology as more correct generalizations of Binomial and Poisson distributions. Accordingly to eventology new laws take into account full distribution of events. Also, in article its characteristics and properties are described
Subsurface materials management and containment system
Nickelson, Reva A.; Richardson, John G.; Kostelnik, Kevin M.; Sloan, Paul A.
2006-10-17
Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.
Subsurface materials management and containment system
Nickelson, Reva A.; Richardson, John G.; Kosteinik, Kevin M.; Sloan, Paul A.
2004-07-06
Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.
Subsurface Knowledge Reference Page | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternational Affairs, Before the CommitteeYears 2003 - 2008 U .SubscribeSubsurface
L. R. G. Fontes; C. M. Newman; K. Ravishankar; E. Schertzer
2007-04-20
The dynamical discrete web (DDW), introduced in recent work of Howitt and Warren, is a system of coalescing simple symmetric one-dimensional random walks which evolve in an extra continuous dynamical parameter s. The evolution is by independent updating of the underlying Bernoulli variables indexed by discrete space-time that define the discrete web at any fixed s. In this paper, we study the existence of exceptional (random) values of s where the paths of the web do not behave like usual random walks and the Hausdorff dimension of the set of such exceptional s. Our results are motivated by those about exceptional times for dynamical percolation in high dimension by H\\"aggstrom, Peres and Steif, and in dimension two by Schramm and Steif. The exceptional behavior of the walks in DDW is rather different from the situation for dynamical random walks of Benjamini, H\\"aggstrom, Peres and Steif. In particular, we prove that there are exceptional values of s for which the walk from the origin S^s(n) has limsup S^s(n)/\\sqrt n \\leq K with a nontrivial dependence of the Hausdorff dimension on K. We also discuss how these and other results extend to the dynamical Brownian web, a natural scaling limit of DDW. The scaling limit is the focus of a paper in preparation; it was studied by Howitt and Warren and is related to the Brownian net of Sun and Swart.
Pemberton, Bradley E. (Aiken, SC); May, Christopher P. (Columbia, MD); Rossabi, Joseph (Aiken, SC); Riha, Brian D. (Augusta, GA); Nichols, Ralph L. (North Augusta, SC)
1998-07-07
A sampling port is provided which has threaded ends for incorporating the port into a length of subsurface pipe. The port defines an internal receptacle which is in communication with subsurface fluids through a series of fine filtering slits. The receptacle is in further communication through a bore with a fitting carrying a length of tubing there which samples are transported to the surface. Each port further defines an additional bore through which tubing, cables, or similar components of adjacent ports may pass.
Discrete Fracture Reservoir Simulation
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory | National NuclearDiscoveringDiscrete Fracture Reservoir
Hirsch, M.; Morisi, S.; Peinado, E.; Valle, J. W. F. [AHEP Group, Institut de Fisica Corpuscular--C.S.I.C./Universitat de Valencia, Edificio Institutos de Paterna, Apartado 22085, E-46071 Valencia (Spain)
2010-12-01
We propose a new motivation for the stability of dark matter (DM). We suggest that the same non-Abelian discrete flavor symmetry which accounts for the observed pattern of neutrino oscillations, spontaneously breaks to a Z{sub 2} subgroup which renders DM stable. The simplest scheme leads to a scalar doublet DM potentially detectable in nuclear recoil experiments, inverse neutrino mass hierarchy, hence a neutrinoless double beta decay rate accessible to upcoming searches, while {theta}{sub 13}=0 gives no CP violation in neutrino oscillations.
Discrete Probability Distributions
Stewart, William J.
, 2, . . . , n, the moments of the discrete uniform distribution are given by E[Xk ] = nX i=1 ik /n. In particular, E[X] = nX i=1 i/n = 1 n nX i=1 i = 1 n n(n + 1) 2 = n + 1 2 , and, using the well-known formula for the sum of the squares of the first n integers, E[X2 ] = nX i=1 i2 /n = 1 n nX i=1 i2 = 1 n n(n + 1)(2n
Low temperature monitoring system for subsurface barriers
Vinegar, Harold J. (Bellaire, TX); McKinzie, II. Billy John (Houston, TX)
2009-08-18
A system for monitoring temperature of a subsurface low temperature zone is described. The system includes a plurality of freeze wells configured to form the low temperature zone, one or more lasers, and a fiber optic cable coupled to at least one laser. A portion of the fiber optic cable is positioned in at least one freeze well. At least one laser is configured to transmit light pulses into a first end of the fiber optic cable. An analyzer is coupled to the fiber optic cable. The analyzer is configured to receive return signals from the light pulses.
Parallel heater system for subsurface formations
Harris, Christopher Kelvin (Houston, TX); Karanikas, John Michael (Houston, TX); Nguyen, Scott Vinh (Houston, TX)
2011-10-25
A heating system for a subsurface formation is disclosed. The system includes a plurality of substantially horizontally oriented or inclined heater sections located in a hydrocarbon containing layer in the formation. At least a portion of two of the heater sections are substantially parallel to each other. The ends of at least two of the heater sections in the layer are electrically coupled to a substantially horizontal, or inclined, electrical conductor oriented substantially perpendicular to the ends of the at least two heater sections.
2014 JASON Report: State of Stress in Engineered Subsurface Systems...
that "DOE take a leadership role in the science and technology for improved measurement, characterization, and understanding of the state of stress of engineered subsurface...
Evaluation of subsurface fracture geometry using fluid pressure...
Evaluation of subsurface fracture geometry using fluid pressure response to solid earth tidal strain Jump to: navigation, search OpenEI Reference LibraryAdd to library Report:...
Attenuation-Based Remedies in the Subsurface Applied Field Research...
Broader source: Energy.gov (indexed) [DOE]
Field Research Initiative (ABRS AFRI) Located at the Savannah River Site in Aiken, South Carolina, the Attenuation-Based Remedies in the Subsurface Applied Field Research...
Characterization of subsurface fracture patterns in the Coso...
of subsurface fracture patterns in the Coso geothermal reservoir by analyzing shear-wave splitting of microearthquake seismorgrams Jump to: navigation, search OpenEI Reference...
USING MICRO-SEISMICITY AND SEISMIC VELOCITIES TO MAP SUBSURFACE...
USING MICRO-SEISMICITY AND SEISMIC VELOCITIES TO MAP SUBSURFACE GEOLOGIC AND HYDROLOGIC STRUCTURE WITHIN THE COSO GEOTHERMAL FIELD, CALIFORNIA Jump to: navigation, search OpenEI...
Using Micro-Seismicity and Seismic Velocities to Map Subsurface...
Using Micro-Seismicity and Seismic Velocities to Map Subsurface Geologic and Hydrologic Structure Within the Coso Geothermal Field California Jump to: navigation, search OpenEI...
Subsurface Stratigraphy, Structure, and Alteration in the Senator...
Subsurface Stratigraphy, Structure, and Alteration in the Senator Thermal Area, Northern Dixie Valley Geothermal Field, Nevada-Initial Results from Injection Well 38-32, and a New...
U.S. Department of Energy Subsurface Technology and Engineering...
Office of Environmental Management (EM)
to characterize subsurface systems by focusing on four areas of research: new signals, integration of multiple datasets, identification of critical system transitions, and...
Thermodynamics of discrete quantum processes
Janet Anders; Vittorio Giovannetti
2012-11-01
We define thermodynamic configurations and identify two primitives of discrete quantum processes between configurations for which heat and work can be defined in a natural way. This allows us to uncover a general second law for any discrete trajectory that consists of a sequence of these primitives, linking both equilibrium and non-equilibrium configurations. Moreover, in the limit of a discrete trajectory that passes through an infinite number of configurations, i.e. in the reversible limit, we recover the saturation of the second law. Finally, we show that for a discrete Carnot cycle operating between four configurations one recovers Carnot's thermal efficiency.
Constucting Discrete KSurfaces Ivan Sterling
Sterling, Ivan
Constucting Discrete KSurfaces Ivan Sterling (joint work with Tim Ho#mann, and Ulrich Pinkall) Old it is possible to find other examples (FIGURE 4). 2 #12; Figure 4. Ho#manSterling Discrete KSurface 4. Computer and examples can be found at www.jreality.de. References [1] G.T. Bennett, A new mechanism, Engineering 76
Note on Discrete Gauge Anomalies
T. Banks; M. Dine
1991-10-02
We consider the probem of gauging discrete symmetries. All valid constraints on such symmetries can be understood in the low energy theory in terms of instantons. We note that string perturbation theory often exhibits global discrete symmetries, which are broken non-perturbatively.
Subsurface Geoscience The Wiess School of Natural Sciences
Richards-Kortum, Rebecca
to be explorationists, with strong skills in using seismic and other geophysical methods along with geological experts in aspects of exploration seismology. The subsurface geoscience degree is one of three tracks, design, and/or marketing of new sci- ence-based products. Degree Requirements for MS in Subsurface
Subsurface Geoscience The Wiess School of Natural Sciences
Richards-Kortum, Rebecca
to be explorationists, with strong skills in using seismic and other geophysical methods along with geological experts in aspects of exploration seismology. The subsurface geoscience degree is 1 of 3 tracks/or marketing within oil-and gas-related industries. Degree Requirements for MS in Subsurface Geoscience
Optimal joule heating of the subsurface
Berryman, J.G.; Daily, W.D.
1994-07-05
A method for simultaneously heating the subsurface and imaging the effects of the heating is disclosed. This method combines the use of tomographic imaging (electrical resistance tomography or ERT) to image electrical resistivity distribution underground, with joule heating by electrical currents injected in the ground. A potential distribution is established on a series of buried electrodes resulting in energy deposition underground which is a function of the resistivity and injection current density. Measurement of the voltages and currents also permits a tomographic reconstruction of the resistivity distribution. Using this tomographic information, the current injection pattern on the driving electrodes can be adjusted to change the current density distribution and thus optimize the heating. As the heating changes conditions, the applied current pattern can be repeatedly adjusted (based on updated resistivity tomographs) to affect real time control of the heating.
Optimal joule heating of the subsurface
Berryman, James G. (Danville, CA); Daily, William D. (Livermore, CA)
1994-01-01
A method for simultaneously heating the subsurface and imaging the effects of the heating. This method combines the use of tomographic imaging (electrical resistance tomography or ERT) to image electrical resistivity distribution underground, with joule heating by electrical currents injected in the ground. A potential distribution is established on a series of buried electrodes resulting in energy deposition underground which is a function of the resistivity and injection current density. Measurement of the voltages and currents also permits a tomographic reconstruction of the resistivity distribution. Using this tomographic information, the current injection pattern on the driving electrodes can be adjusted to change the current density distribution and thus optimize the heating. As the heating changes conditions, the applied current pattern can be repeatedly adjusted (based on updated resistivity tomographs) to affect real time control of the heating.
Accelerating Subsurface Transport Simulation on Heterogeneous Clusters
Villa, Oreste; Gawande, Nitin A.; Tumeo, Antonino
2013-09-23
Reactive transport numerical models simulate chemical and microbiological reactions that occur along a flowpath. These models have to compute reactions for a large number of locations. They solve the set of ordinary differential equations (ODEs) that describes the reaction for each location through the Newton-Raphson technique. This technique involves computing a Jacobian matrix and a residual vector for each set of equation, and then solving iteratively the linearized system by performing Gaussian Elimination and LU decomposition until convergence. STOMP, a well known subsurface flow simulation tool, employs matrices with sizes in the order of 100x100 elements and, for numerical accuracy, LU factorization with full pivoting instead of the faster partial pivoting. Modern high performance computing systems are heterogeneous machines whose nodes integrate both CPUs and GPUs, exposing unprecedented amounts of parallelism. To exploit all their computational power, applications must use both the types of processing elements. For the case of subsurface flow simulation, this mainly requires implementing efficient batched LU-based solvers and identifying efficient solutions for enabling load balancing among the different processors of the system. In this paper we discuss two approaches that allows scaling STOMP's performance on heterogeneous clusters. We initially identify the challenges in implementing batched LU-based solvers for small matrices on GPUs, and propose an implementation that fulfills STOMP's requirements. We compare this implementation to other existing solutions. Then, we combine the batched GPU solver with an OpenMP-based CPU solver, and present an adaptive load balancer that dynamically distributes the linear systems to solve between the two components inside a node. We show how these approaches, integrated into the full application, provide speed ups from 6 to 7 times on large problems, executed on up to 16 nodes of a cluster with two AMD Opteron 6272 and a Tesla M2090 per node.
Discrete generalized multigroup theory and applications
Zhu, Lei, Ph. D. Massachusetts Institute of Technology
2012-01-01
This study develops a fundamentally new discrete generalized multigroup energy expansion theory for the linear Boltzmann transport equation. Discrete orthogonal polynomials are used, in conjunction with the traditional ...
Fischer, M.L.
2011-01-01
OF SUBSURFACE GASOLINE CONTAMINATION Marc L. Fischer, AbraOF SUBSURFACE GASOLINE CONTAMINATION Marc L. Fischer, Abrareporting indoor air contamination (6,7). Estimation of
Common Discrete Distributions Statistics 104
Irwin, Mark E.
must be all 1, so it is omitted. Discrete Distributions 4 #12;H HHH HHH HH k p 0.01 0.05 0.10 0.20 0
Discrete geodesics and cellular automata
Pablo Arrighi; Gilles Dowek
2015-07-24
This paper proposes a dynamical notion of discrete geodesics, understood as straightest trajectories in discretized curved spacetime. The notion is generic, as it is formulated in terms of a general deviation function, but readily specializes to metric spaces such as discretized pseudo-riemannian manifolds. It is effective: an algorithm for computing these geodesics naturally follows, which allows numerical validation---as shown by computing the perihelion shift of a Mercury-like planet. It is consistent, in the continuum limit, with the standard notion of timelike geodesics in a pseudo-riemannian manifold. Whether the algorithm fits within the framework of cellular automata is discussed at length. KEYWORDS: Discrete connection, parallel transport, general relativity, Regge calculus.
Discrete geodesics and cellular automata
Arrighi, Pablo
2015-01-01
This paper proposes a dynamical notion of discrete geodesics, understood as straightest trajectories in discretized curved spacetime. The notion is generic, as it is formulated in terms of a general deviation function, but readily specializes to metric spaces such as discretized pseudo-riemannian manifolds. It is effective: an algorithm for computing these geodesics naturally follows, which allows numerical validation---as shown by computing the perihelion shift of a Mercury-like planet. It is consistent, in the continuum limit, with the standard notion of timelike geodesics in a pseudo-riemannian manifold. Whether the algorithm fits within the framework of cellular automata is discussed at length. KEYWORDS: Discrete connection, parallel transport, general relativity, Regge calculus.
RADIOIODINE GEOCHEMISTRY IN THE SRS SUBSURFACE ENVIRONMENT
Kaplan, D.; Emerson, H.; Powell, B.; Roberts, K.; Zhang, S.; Xu, C.; Schwer, K.; Li, H.; Ho, Y.; Denham, M.; Yeager, C.; Santschi, P.
2013-05-16
Iodine-129 is one of the key risk drivers for several Savannah River Site (SRS) performance assessments (PA), including that for the Low-Level Waste Disposal Facility in E-Area. In an effort to reduce the uncertainty associated with the conceptual model and the input values used in PA, several studies have recently been conducted dealing with radioiodine geochemistry at the SRS. The objective of this report was to review these recent studies and evaluate their implications on SRS PA calculations. For the first time, these studies measured iodine speciation in SRS groundwater and provided technical justification for assuming the presence of more strongly sorbing species (iodate and organo-iodine), and measured greater iodine sediment sorption when experiments included these newly identified species; specifically they measured greater sorption coefficients (K{sub d} values: the concentration ratio of iodine on the solid phase divided by the concentration in the aqueous phase). Based on these recent studies, new best estimates were proposed for future PA calculations. The new K{sub d} values are greater than previous recommended values. These proposed K{sub d} values reflect a better understanding of iodine geochemistry in the SRS subsurface environment, which permits reducing the associated conservatism included in the original estimates to account for uncertainty. Among the key contributing discoveries supporting the contention that the K{sub d} values should be increased are that: 1) not only iodide (I{sup -}), but also the more strongly sorbing iodate (IO{sub 3}{sup -}) species exists in SRS groundwater (average total iodine = 15% iodide, 42% iodate, and 43% organoiodine), 2) when iodine was added as iodate, the measured K{sub d} values were 2 to 6 times greater than when the iodine was added as iodide, and perhaps most importantly, 3) higher desorption (10 to 20 mL/g) than (ad)sorption (all previous studies) K{sub d} values were measured. The implications of this latter point is that the iodine desorption process would be appreciably slower than the (ad)sorption process, and as such would control the rate (and the PA K{sub d} value) that iodine sorbed to and therefore migrated through the subsurface sediment. High desorption K{sub d} values would result in the “effective K{sub d}” for a reactive transport model being closer to the desorption K{sub d} value (the rate limiting value) than the (ad)sorption K{sub d} value. In summary, our understanding of {sup 129}I geochemistry has greatly improved, reducing the uncertainty associated with the PA’s conceptual model, thereby permitting us to reduce the conservatism presently incorporated in PA input values to describe {sup 129}I fate and transport in the SRS subsurface environment.
Enhanced bioremediation of subsurface contamination: Enzyme recruitment and redesign
Brockman, F.J.; Ornstein, R.L.
1991-12-01
Subsurface systems containing radionuclide, heavy metal, and organic wastes must be carefully attended to avoid further impacts to the environment or exposures to human populations. It is appropriate, therefore, to invest in basic research to develop the requisite tools and methods for addressing complex cleanup problems. The rational modification of subsurface microoganisms by enzyme recruitment and enzyme design, in concert with engineered systems for delivery of microorganisms and nutrients to the contaminated zone, are potentially useful tools in the spectrum of approaches that will be required for successful remediation of deep subsurface contamination.
Starvation-survival of subsurface bacteria
Magill, N.G.
1988-01-01
The ability of four subsurface isolates to survive starvation was examined and the results were compared to survival curves obtained for Escherichia coli B and Serratia marcescens. To examine the starvation-survival phenomenon further, several experimental parameters including nutritional history, initial cell density, growth phase, temperature of growth and starvation, and aeration. Nutritional history, initial cell density, and growth phases of the cells had some effect on the ability of these bacteria to survive whereas temperature and limited aeration had no effect under the conditions tested. No conditions were found where E. coli B or Serratia marcescens died rapidly or where less than 10% of the original cell number of viable cells remained. Because the apparent survival of these bacteria may be due to cryptic growth, cross-feeding experiments with {sup 14}C-labeled cells and unlabeled cells were carried out with E. coli B and Pseudomonas Lula V. Leaked extracellular {sup 14}C-compounds were not used for growth or maintenance energy, and were not taken up by either bacterium. Cryptic growth did not occur; the cells were truly starving under the experimental conditions used.
1D subsurface electromagnetic fields excited by energized steel casing
Torres-Verdín, Carlos
1D subsurface electromagnetic fields excited by energized steel casing Wei Yang1 , Carlos Torres-cased well is energized at the surface or within the borehole at an arbitrary depth with an electrode
Laboratory simulation of subsurface airflow beneath a building
Corsello, Joseph William
2014-01-01
Vapor intrusion is the vapor-phase migration of volatile organic compounds (VOCs) into buildings due to subsurface soil or groundwater contamination. Oxygen replenishment rates beneath a building are significant for ...
Deep-water subsurface imagingusing OBS interferometry Olivier Carrire1
Gerstoft, Peter
for detecting and monitoring changes in hydrate distribution and other hydrocarbon related subsurface process used here crosses one of the main normal faults of the mound. The measurement of pressure and particle
Subsurface Electrical Measurements at Dixie Valley, Nevada, Using...
Subsurface Electrical Measurements at Dixie Valley, Nevada, Using Single-Well and Surface-to-Well Induction Logging Jump to: navigation, search OpenEI Reference LibraryAdd to...
Evaluation of the application uniformity of subsurface drip distribution systems
Weynand, Vance Leo
2004-09-30
The goal of this research was to evaluate the application uniformity of subsurface drip distribution systems and the recovery of emitter flow rates. Emission volume in the field, and laboratory measured flow rates were ...
On-Site Wastewater Treatment Systems: Subsurface Drip Distribution (Spanish)
Lesikar, Bruce J.; Enciso, Juan
1999-08-12
A subsurface drip system distributes wastewater to the lawn through a system of tubing installed below the ground surface. This publication explains the advantages, disadvantages, maintenance steps and estimated costs of ...
Seismic Mapping Of The Subsurface Structure At The Ryepatch Geothermal...
Seismic Mapping Of The Subsurface Structure At The Ryepatch Geothermal Reservoir Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Seismic Mapping Of The...
Monitoring the subsurface with quasi-static deformation
Sneider, Roel; Spetzler, Hartmut
2013-09-06
This project consisted of three sub-projects that are all aimed at monitoring the subsurface with geophysical methods. The objectives of these sub-projects are: to investigate the use of seismic waves for remote monitoring of temperature changes in the Yucca Mountain nuclear repository; to investigate the use of measured changes in the tidal tilt as a diagnostic for the infiltration of fluids in the subsurface; and to extract the electrostatic response from dynamic field fluctuations.
Discrete Hamiltonian for General Relativity
Ziprick, Jonathan
2015-01-01
Beginning from canonical general relativity written in terms of Ashtekar variables, we derive a discrete phase space with a physical Hamiltonian for gravity. The key idea is to define the gravitational fields within a complex of three-dimensional cells such that the dynamics is completely described by discrete boundary variables, and the full theory is recovered in the continuum limit. Canonical quantization is attainable within the loop quantum gravity framework, and we believe this will lead to a promising candidate for quantum gravity.
Discrete Hamiltonian for General Relativity
Jonathan Ziprick; Jack Gegenberg
2015-07-27
Beginning from canonical general relativity written in terms of Ashtekar variables, we derive a discrete phase space with a physical Hamiltonian for gravity. The key idea is to define the gravitational fields within a complex of three-dimensional cells such that the dynamics is completely described by discrete boundary variables, and the full theory is recovered in the continuum limit. Canonical quantization is attainable within the loop quantum gravity framework, and we believe this will lead to a promising candidate for quantum gravity.
Quantum chaos on discrete graphs
Uzy Smilansky
2007-04-26
Adapting a method developed for the study of quantum chaos on {\\it quantum (metric)} graphs \\cite {KS}, spectral $\\zeta$ functions and trace formulae for {\\it discrete} Laplacians on graphs are derived. This is achieved by expressing the spectral secular equation in terms of the periodic orbits of the graph, and obtaining functions which belongs to the class of $\\zeta$ functions proposed originally by Ihara \\cite {Ihara}, and expanded by subsequent authors \\cite {Stark,Sunada}. Finally, a model of "classical dynamics" on the discrete graph is proposed. It is analogous to the corresponding classical dynamics derived for quantum graphs \\cite {KS}.
Lower-Temperature Subsurface Layout and Ventilation Concepts
Christine L. Linden; Edward G. Thomas
2001-06-20
This analysis combines work scope identified as subsurface facility (SSF) low temperature (LT) Facilities System and SSF LT Ventilation System in the Technical Work Plan for Subsurface Design Section FY 01 Work Activities (CRWMS M&O 2001b, pp. 6 and 7, and pp. 13 and 14). In accordance with this technical work plan (TWP), this analysis is performed using AP-3.10Q, Analyses and Models. It also incorporates the procedure AP-SI.1Q, Software Management. The purpose of this analysis is to develop an overall subsurface layout system and the overall ventilation system concepts that address a lower-temperature operating mode for the Monitored Geologic Repository (MGR). The objective of this analysis is to provide a technical design product that supports the lower-temperature operating mode concept for the revision of the system description documents and to provide a basis for the system description document design descriptions. The overall subsurface layout analysis develops and describes the overall subsurface layout, including performance confirmation facilities (also referred to as Test and Evaluation Facilities) for the Site Recommendation design. This analysis also incorporates current program directives for thermal management.
Subsurface barrier demonstration test strategy and performance specification
Treat, R.L.; Cruse, J.M.
1994-05-01
This document was developed to help specify a major demonstration test project of subsurface barrier systems supporting the Tank Waste Remediation System (TWRS) Program. The document focuses discussion on requirements applicable to demonstration of three subsurface barrier concepts: (1) Injected Material, (2) Cryogenic, and (3) Desiccant. Detailed requirements are provided for initial qualification of a technology proposal followed by the pre-demonstration and demonstration test requirements and specifications. Each requirement and specification is accompanied by a discussion of the rationale for it. The document also includes information on the Hanford Site tank farms and related data; the related and currently active technology development projects within the DOE`s EM-50 Program; and the overall demonstration test strategy. Procurement activities and other preparations for actual demonstration testing are on hold until a decision is made regarding further development of subsurface barriers. Accordingly, this document is being issued for information only.
Discrete and Hybrid Nonholonomy Antonio Bicchi1
Piccoli, Benedetto
Discrete and Hybrid Nonholonomy Antonio Bicchi1 , Alessia Marigo2 , and Benedetto Piccoli3 1 Centro such as cars, trucks with trailers, rolling 3D objects, underactuated mechanisms, satellites, etc., has made of systems, allowing for discrete and hybrid (mixed continuous and discrete) configurations and transi- tions
Method for formation of subsurface barriers using viscous colloids
Apps, J.A.; Persoff, P.; Moridis, G.; Pruess, K.
1998-11-17
A method is described for formation of subsurface barriers using viscous liquids where a viscous liquid solidifies at a controlled rate after injection into soil and forms impermeable isolation of the material enclosed within the subsurface barriers. The viscous liquid is selected from the group consisting of polybutenes, polysiloxanes, colloidal silica and modified colloidal silica of which solidification is controlled by gelling, cooling or cross-linking. Solidification timing is controlled by dilution, addition of brines, coating with alumina, stabilization with various agents and by temperature. 17 figs.
Linking deposit morphology and clogging in subsurface remediation: Final Technical Report
Mays, David C. [University of Colorado Denver
2013-12-11
Groundwater is a crucial resource for water supply, especially in arid and semiarid areas of the United States west of the 100th meridian. Accordingly, remediation of contaminated groundwater is an important application of science and technology, particularly for the U.S. Department of Energy (DOE), which oversees a number of groundwater remediation sites from Cold War era mining. Groundwater remediation is complex, because it depends on identifying, locating, and treating contaminants in the subsurface, where remediation reactions depend on interacting geological, hydrological, geochemical, and microbiological factors. Within this context, permeability is a fundamental concept, because it controls the rates and pathways of groundwater flow. Colloid science is intimately related to permeability, because when colloids are present (particles with equivalent diameters between 1 nanometer and 10 micrometers), changes in hydrological or geochemical conditions can trigger a detrimental reduction in permeability called clogging. Accordingly, clogging is a major concern in groundwater remediation. Several lines of evidence suggest that clogging by colloids depends on (1) colloid deposition, and (2) deposit morphology, that is, the structure of colloid deposits, which can be quantified as a fractal dimension. This report describes research, performed under a 2-year, exploratory grant from the DOE’s Subsurface Biogeochemical Research (SBR) program. This research employed a novel laboratory technique to simultaneously measure flow, colloid deposition, deposit morphology, and permeability in a flow cell, and also collected field samples from wells at the DOE’s Old Rifle remediation site. Field results indicate that suspended solids at the Old Rifle site have fractal structures. Laboratory results indicate that clogging is associated with colloid deposits with smaller fractal dimensions, in accordance with previous studies on initially clean granular media. Preliminary modeling has identified the deposit radius of gyration as a candidate variable to account for clogging as a function of (1) colloid accumulation and (2) deposit morphology.
Fischer, M.L.
2011-01-01
AT A SITE OF SUBSURFACE GASOLINE CONTAMINATION Marc L.A T A SITE OF SUBSURFACE GASOLINE CONTAMINATION Marc L.a site contaminated with gasoline. Although the high V O C
Subsurface Geoscience The Wiess School of Natural Sciences
Richards-Kortum, Rebecca
. The geology focus area prepares students to be explorationists, with strong skills in using seismic and other prepares students to become technical experts in aspects of exploration seismology. The subsurface careers in consulting or research and development, design, and/ or marketing within oil-and gas
Subsurface Geoscience The Wiess School of Natural Sciences
Richards-Kortum, Rebecca
. The geology focus area prepares students to be explorationists, with strong skills in using seismic and other prepares students to become technical experts in aspects of exploration seismology. The subsurface careers in consulting or research and development, design, and/or marketing within oil-and gas
HYDROLOGIC CONTROLS ON THE SUBSURFACE TRANSPORT OF OIL-FIELD
in Osage County, Oklahoma. Salt and crude oil from oil well waste pits and accidental releases from oil DESCRIPTION As shown in the site map (figure 1), at Site "B" there is an oil tank battery and a waste pitHYDROLOGIC CONTROLS ON THE SUBSURFACE TRANSPORT OF OIL-FIELD BRINE AT THE OSAGE-SKIATOOK PETROLEUM
The Subsurface Fluid Mechanics of Geologic Carbon Dioxide Storage
The Subsurface Fluid Mechanics of Geologic Carbon Dioxide Storage by Michael Lawrence Szulczewski S Mechanics of Geologic Carbon Dioxide Storage by Michael Lawrence Szulczewski Submitted to the Department capture and storage (CCS), CO2 is captured at power plants and then injected into deep geologic reservoirs
Variability of the methane trapping in martian subsurface clathrate hydrates
Caroline Thomas; Olivier Mousis; Sylvain Picaud; Vincent Ballenegger
2008-10-23
Recent observations have evidenced traces of methane CH4 heterogeneously distributed in the martian atmosphere. However, because the lifetime of CH4 in the atmosphere of Mars is estimated to be around 300-600 years on the basis of photochemistry, its release from a subsurface reservoir or an active primary source of methane have been invoked in the recent literature. Among the existing scenarios, it has been proposed that clathrate hydrates located in the near subsurface of Mars could be at the origin of the small quantities of the detected CH4. Here, we accurately determine the composition of these clathrate hydrates, as a function of temperature and gas phase composition, by using a hybrid statistical thermodynamic model based on experimental data. Compared to other recent works, our model allows us to calculate the composition of clathrate hydrates formed from a more plausible composition of the martian atmosphere by considering its main compounds, i.e. carbon dioxyde, nitrogen and argon, together with methane. Besides, because there is no low temperature restriction in our model, we are able to determine the composition of clathrate hydrates formed at temperatures corresponding to the extreme ones measured in the polar caps. Our results show that methane enriched clathrate hydrates could be stable in the subsurface of Mars only if a primitive CH4-rich atmosphere has existed or if a subsurface source of CH4 has been (or is still) present.
Subsurface Defect Detection in Metals with Pulsed Eddy Current
Plotnikov, Yuri A. [GE Global Research Center, One Research Circle, Niskayuna, NY 12309-1135 (United States); Bantz, Walter J. [GE Aircraft Engines M and QTD, 10270 St. Rita Lane, Cincinnati, OH 45215 (United States)
2005-04-09
The eddy current (EC) method is traditionally used for open surface crack detection in metallic components. Subsurface voids in bulk metals can also be detected by the eddy current devices. Taking into consideration the skin effect in conductive materials, a lower frequency of electromagnetic excitation is used for a deeper penetration. A set of special specimens was designed and fabricated to investigate sensitivity to subsurface voids. Typically, flat bottom holes (FBHs) are used for subsurface defect simulation. This approach is not very representative of real defects for eddy current inspection because the FBH depth extends to the bottom of the specimen. Two-layer specimens with finite depth FBHs were fabricated and scanned with conventional EC of variable frequency. Sensitivity and spatial resolution of EC diminish with flaw depth. The pulsed EC approach was applied for flaw detection at variable distance under the surface. The transient response from multi-layer model was derived and compared to experiments. The multi-frequency nature of pulsed excitation provides effective coverage of a thick layer of material in one pass. Challenging aspects of subsurface flaw detection and visualization using the EC technique are discussed.
Heating subsurface formations by oxidizing fuel on a fuel carrier
Costello, Michael; Vinegar, Harold J.
2012-10-02
A method of heating a portion of a subsurface formation includes drawing fuel on a fuel carrier through an opening formed in the formation. Oxidant is supplied to the fuel at one or more locations in the opening. The fuel is combusted with the oxidant to provide heat to the formation.
Infrared photothermal radiometry of deep subsurface defects in semiconductor materials
Mandelis, Andreas
Infrared photothermal radiometry of deep subsurface defects in semiconductor materials M. E. Rodri sensitivity to the electronic transport properties of the laser photoexcited material.3 Using two information. INTRODUCTION The nondestructive, nonintrusive evaluation of semicon- ductor materials has been of common
Bioventing approach to remediate a gasoline contaminated subsurface. Book chapter
Kampbell, D.H.; Wilson, J.T.; Griffin, C.J.
1992-01-01
Bioventing is a subsurface process using an air stream to enhance biodegradation of oily contaminants. Two pilot-scale bioventing systems were installed at a field site. Process operations began in October 1990. The field site is located at an air station. A spill in 1969 of about 100,000 kilograms aviation gasoline was caused by a broken underground transfer line. A major portion of the spilled product still persists as an oily-phase residue in a 80x360 meter plume. The subsurface is a uniform beach sand with the ground water level near five meters. Prior to startup of the venting systems, a grass cover was established and a nutrient solution was dispersed throughout the unsaturated subsurface. Subsurface air flow patterns are being determined with a tracer gas of sulfur hexafloride. Soil gas, core material, and underground water are being monitored to determine the extent of remediation. Objectives of the study are to demonstrate that surface emissions of gasoline are minimal, oily residue will be reduced to <100 mg fuel carbon/Kg core material, and the process will be applicable to full-scale remediation. Flow rate is based on a calculated residence time of 24 hours. Surface emission of fuel hydrocarbons have not exceeded 1 micrograms/liter soil gas.
Subsurface characterization of the San Jacinto River Research site
Leik, Jason Allan
1998-01-01
. The average horizontal flow velocity was found to be 2x10-7 m/s. The average azimuth of all data from the cove was 2100, trending towards the south-southwest in a direction consistent with river basin direction. Because the shallow subsurface water is confined...
Subsurface Ambient Thermoelectric Power for Moles and Penetrators1
Lorenz, Ralph D.
1 Subsurface Ambient Thermoelectric Power for Moles and Penetrators1 Ralph D. Lorenz, Lunar for electrical power generation for planetary exploration applications using thermoelectric conversion of the vehicle. Proof-of-concept experiments are described using off-the-shelf thermoelectric CPU cooling plates
Snow Accumulation in a Distributed Hydrological
Anderson, Charles W.
Snow Accumulation in a Distributed Hydrological Model by Bruce Davison A thesis presented of snow processes in the coupled land-surface-hydrological model WATCLASS. The processes under consideration were mixed precipitation, variable fresh snow density, maximum snowpack density, canopy
Yoon, Joon Sik, 1973-
2005-01-01
An understanding of how discrete particles in the micron to submicron range behave in porous media is important to a number of environmental problems. Discrete particle behavior in the interior of a porous medium is complex ...
Using electrical impedance tomography to map subsurface hydraulic conductivity
Berryman, James G. (Danville, CA); Daily, William D. (Livermore, CA); Ramirez, Abelardo L. (Pleasanton, CA); Roberts, Jeffery J. (Livermore, CA)
2000-01-01
The use of Electrical Impedance Tomography (EIT) to map subsurface hydraulic conductivity. EIT can be used to map hydraulic conductivity in the subsurface where measurements of both amplitude and phase are made. Hydraulic conductivity depends on at least two parameters: porosity and a length scale parameter. Electrical Resistance Tomography (ERT) measures and maps electrical conductivity (which can be related to porosity) in three dimensions. By introducing phase measurements along with amplitude, the desired additional measurement of a pertinent length scale can be achieved. Hydraulic conductivity controls the ability to flush unwanted fluid contaminants from the surface. Thus inexpensive maps of hydraulic conductivity would improve planning strategies for subsequent remediation efforts. Fluid permeability is also of importance for oil field exploitation and thus detailed knowledge of fluid permeability distribution in three-dimension (3-D) would be a great boon to petroleum reservoir analysts.
Multi-step heater deployment in a subsurface formation
Mason, Stanley Leroy (Allen, TX)
2012-04-03
A method for installing a horizontal or inclined subsurface heater includes placing a heating section of a heater in a horizontal or inclined section of a wellbore with an installation tool. The tool is uncoupled from the heating section. A lead in section is mechanically and electrically coupled to the heating section of the heater. The lead-in section is located in an angled or vertical section of the wellbore.
Downhole burner systems and methods for heating subsurface formations
Farmayan, Walter Farman (Houston, TX); Giles, Steven Paul (Damon, TX); Brignac, Jr., Joseph Phillip (Katy, TX); Munshi, Abdul Wahid (Houston, TX); Abbasi, Faraz (Sugarland, TX); Clomburg, Lloyd Anthony (Houston, TX); Anderson, Karl Gregory (Missouri City, TX); Tsai, Kuochen (Katy, TX); Siddoway, Mark Alan (Katy, TX)
2011-05-31
A gas burner assembly for heating a subsurface formation includes an oxidant conduit, a fuel conduit, and a plurality of oxidizers coupled to the oxidant conduit. At least one of the oxidizers includes a mix chamber for mixing fuel from the fuel conduit with oxidant from the oxidant conduit, an igniter, and a shield. The shield includes a plurality of openings in communication with the oxidant conduit. At least one flame stabilizer is coupled to the shield.
Chitinozoans in the subsurface Lower Paleozoic of West Texas
Kauffman, A. E.
1971-10-22
THE UNIVERSITY OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS October 22, 1971 Paper 54 CHITINOZOANS IN THE SUBSURFACE LOWER PALEOZOIC OF WEST TEXAS A. E. KAUFFMAN Humble Oil & Refining Company, Midland, Texas ABSTRACT Studies based on both comprehensive... are found throughout the West Texas area. As generally accepted by operational petroleum geologists, the Simpson Group comprises the Joins Formation (limestone and dolomite); Oil Creek Formation (sandstone, shale, and limestone); McLish Formation (sand...
Method of sealing casings of subsurface materials management system
Nickelson, Reva A.; Richardson, John G.; Kostelnik, Kevin M.; Sloan, Paul A.
2007-02-06
Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.
Methods and system for subsurface stabilization using jet grouting
Loomis, Guy G. (Idaho Falls, ID); Weidner, Jerry R. (Iona, ID); Farnsworth, Richard K. (Idaho Falls, ID); Gardner, Bradley M. (Idaho Falls, ID); Jessmore, James J. (Idaho Falls, ID)
1999-01-01
Methods and systems are provided for stabilizing a subsurface area such as a buried waste pit for either long term storage, or interim storage and retrieval. A plurality of holes are drilled into the subsurface area with a high pressure drilling system provided with a drill stem having jet grouting nozzles. A grouting material is injected at high pressure through the jet grouting nozzles into a formed hole while the drill stem is withdrawn from the hole at a predetermined rate of rotation and translation. A grout-filled column is thereby formed with minimal grout returns, which when overlapped with other adjacent grout-filled columns encapsulates and binds the entire waste pit area to form a subsurface agglomeration or monolith of grout, soil, and waste. The formed monolith stabilizes the buried waste site against subsidence while simultaneously providing a barrier against contaminate migration. The stabilized monolith can be left permanently in place or can be retrieved if desired by using appropriate excavation equipment. The jet grouting technique can also be utilized in a pretreatment approach prior to in situ vitrification of a buried waste site. The waste encapsulation methods and systems are applicable to buried waste materials such as mixed waste, hazardous waste, or radioactive waste.
Subsurface Biogeochemical Research FY11 Second Quarter Performance Measure
Scheibe, Timothy D.
2011-03-31
The Subsurface Biogeochemical Research (SBR) Long Term Measure for 2011 under the Performance Assessment Rating Tool (PART) measure is to "Refine subsurface transport models by developing computational methods to link important processes impacting contaminant transport at smaller scales to the field scale." The second quarter performance measure is to "Provide a report on computational methods linking genome-enabled understanding of microbial metabolism with reactive transport models to describe processes impacting contaminant transport in the subsurface." Microorganisms such as bacteria are by definition small (typically on the order of a micron in size), and their behavior is controlled by their local biogeochemical environment (typically within a single pore or a biofilm on a grain surface, on the order of tens of microns in size). However, their metabolic activity exerts strong influence on the transport and fate of groundwater contaminants of significant concern at DOE sites, in contaminant plumes with spatial extents of meters to kilometers. This report describes progress and key findings from research aimed at integrating models of microbial metabolism based on genomic information (small scale) with models of contaminant fate and transport in aquifers (field scale).
Discrete R Symmetries and Low Energy Supersymmetry
California at Santa Cruz, University of
R Symmetries and Low Energy Supersymmetry #12;Plan for Today: "New, Improved" Models of DynamicalDiscrete R Symmetries and Low Energy Supersymmetry UC Davis, 2011 Michael Dine Department on metastable susy breaking. Michael Dine Discrete R Symmetries and Low Energy Supersymmetry #12;Metastable
Compact discrete-time chaos generator circuit
Dudek, Piotr
Compact discrete-time chaos generator circuit P. Dudek and V.D. Juncu A three-transistor CMOS circuit is presented, with adjustable nonlinear characteristics, which can be used as a map that generates discrete-time chaotic signals. A method of constructing a chaos generator using two map circuits is also
Quasicrystals with discrete support and spectrum
Nir Lev; Alexander Olevskii
2015-09-08
We proved recently that a measure on R, whose support and spectrum are both uniformly discrete sets, must have a periodic structure. Here we show that this is not the case if the support and the spectrum are just discrete closed sets.
Quantum Walks and discrete Gauge Theories
Pablo Arnault; Fabrice Debbasch
2015-10-19
A particular example is produced to prove that quantum walks can be used to simulate full-fledged discrete gauge theories. A new family of $(1 + 2)$-dimensional walks is introduced and its continuous limit is shown to coincide with the dynamics of a Dirac fermion coupled to arbitrary electromagnetic fields. The electromagnetic interpretation is extended beyond the continuous limit by proving that these DTQWs exhibit an exact discrete local $U(1)$ gauge invariance and possess a discrete gauge-invariant conserved current. A discrete gauge-invariant electromagnetic field is also constructed and that field is coupled to the conserved current by a discrete generalization of Maxwell equations. The dynamics of the DTQWs under crossed electric and magnetic fields is finally explored outside the continuous limit by numerical simulations. Bloch oscillations and the so-called ${\\bf E} \\times {\\bf B}$ drift are recovered in the weak-field limit. Localization is observed for some values of the gauge fields.
Strategies for gas production from oceanic Class 3 hydrate accumulations
Moridis, George J.; Reagan, Matthew T.
2007-01-01
during production from the Class 3 oceanic hydrate depositProduction From Oceanic Class 3 Hydrate Accumulations GeorgeAccumulations Houston, Texas, Class 3 May 2007. presented,
COHERENT DISCRETE EMBEDDINGS FOR LAGRANGIAN AND HAMILTONIAN SYSTEMS
COHERENT DISCRETE EMBEDDINGS FOR LAGRANGIAN AND HAMILTONIAN SYSTEMS by J. Cresson, I. Greff & C . . ........................................ 6 Part II. Discrete variational embedding of Lagrangian systems . . ...................... 7 4. -- Lagrangian systems, Hamiltonian systems, variational integrators, discrete embeddings, numerical schemes, FEM
Identification and Estimation of a Discrete Game of Complete Information
Bajari, Patrick
We discuss the identification and estimation of discrete games of complete information. Following Bresnahan and Reiss (1990, 1991), a discrete game is a generalization of a standard discrete choice model where utility ...
Ken-ichi Maruno; Gino Biondini
2005-04-09
We present a class of solutions of the two-dimensional Toda lattice equation, its fully discrete analogue and its ultra-discrete limit. These solutions demonstrate the existence of soliton resonance and web-like structure in discrete integrable systems such as differential-difference equations, difference equations and cellular automata (ultra-discrete equations).
Wohlberg, Brendt
our approach, and to demonstrate its advantages, we construct a synthetic porous medium consisting, and Alberto Guadagnini Abstract-- A typical subsurface environment is heterogeneous, consists of multiple
Probabilistic Calibration of a Discrete Particle Model
Zhang, Yanbei
2011-10-21
A discrete element model (DEM) capable of reproducing the mechanistic behavior of a triaxial compressive test performed on a Vosges sandstone specimen is presented considering similar experimental testing conditions and ...
Discrete element modelling of cementitious materials
Brown, Nicholas John
2013-07-01
This thesis presents a new bonded particle model that accurately predicts the wideranging behaviour of cementitious materials. There is an increasing use of the Discrete Element Method (DEM) to study the behaviour of ...
ADAPTIVE DISCRETIZATION OF AN INTEGRODIFFERENTIAL EQUATION
Larsson, Stig
ADAPTIVE DISCRETIZATION OF AN INTEGROÂDIFFERENTIAL EQUATION MODELING QUASIÂSTATIC FRACTIONAL ORDER VISCOELASTICITY Klas Adolfsson # Mikael Enelund ## Stig Larsson ### # Department of Applied Mechanics, Chalmers Mechanics, Chalmers University of Technology, SE--412 96 GË?oteborg, Sweden, mikael
Geophysical data fusion for subsurface imaging. Phase 1
Hoekstra, P.; Vandergraft, J.; Blohm, M.; Porter, D.
1993-08-01
A geophysical data fusion methodology is under development to combine data from complementary geophysical sensors and incorporate geophysical understanding to obtain three dimensional images of the subsurface. The research reported here is the first phase of a three phase project. The project focuses on the characterization of thin clay lenses (aquitards) in a highly stratified sand and clay coastal geology to depths of up to 300 feet. The sensor suite used in this work includes time-domain electromagnetic induction (TDEM) and near surface seismic techniques. During this first phase of the project, enhancements to the acquisition and processing of TDEM data were studied, by use of simulated data, to assess improvements for the detection of thin clay layers. Secondly, studies were made of the use of compressional wave and shear wave seismic reflection data by using state-of-the-art high frequency vibrator technology. Finally, a newly developed processing technique, called ``data fusion,`` was implemented to process the geophysical data, and to incorporate a mathematical model of the subsurface strata. Examples are given of the results when applied to real seismic data collected at Hanford, WA, and for simulated data based on the geology of the Savannah River Site.
Using electrical resistance tomography to map subsurface temperatures
Ramirez, A.L.; Chesnut, D.A.; Daily, W.D.
1994-09-13
A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations. 1 fig.
Using electrical resistance tomography to map subsurface temperatures
Ramirez, Abelardo L. (Pleasanton, CA); Chesnut, Dwayne A. (San Francisco, CA); Daily, William D. (Livermore, CA)
1994-01-01
A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations.
Subsurface barrier validation with the SEAtrace{trademark} system
Sandra Dalvit Dunn; William Lowry; Veraun Chipman
1999-09-01
Under contract to the Department of Energy, Science and Engineering Associates has completed development and testing of a subsurface barrier verification and monitoring system. This system, called SEAtrace{trademark}, is able to locate and size leaks with a high degree of accuracy in subsurface barriers that are emplaced in an unsaturated medium. It uses gaseous tracer injection, in-field real-time monitoring, and real time data analysis to evaluate barrier integrity. The approach is: Conservative as it measures vapor leaks in a containment system whose greatest risk is posed by liquid leaks; Applicable to any impermeable type of barrier emplacement technology in the unsaturated zone; Inexpensive as it uses readily available, non-toxic, nonhazardous gaseous tracers, does not require an inordinately large number of sampling points, and injection and sampling points can be emplaced by direct push techniques; Capable of assessing not only a barrier's initial integrity, but can also provide long-term monitoring. To date, six demonstrations of the system have been completed. Results from two of the demonstrations are detailed in this report. They include the final developmental demonstration of the SEAtrace system and a comparison demonstration of two tracer based verification technologies. The final developmental demonstration of SEAtrace was completed at a naval facility in Brunswick, Maine. The demonstration was funded solely by the DOE and was performed in cooperation with the US Navy, the Environmental Protection Agency, and the Maine Department of Environmental Protection.
Symmetric Instantons and Discrete Hitchin Equations
Ward, R S
2015-01-01
Self-dual Yang-Mills instantons on $R^4$ correspond to algebraic ADHM data. This paper describes how to specialize such ADHM data so that the instantons have a $T^2$ symmetry, and this in turn motivates an integrable discrete version of the 2-dimensional Hitchin equations. It is analogous to the way in which the ADHM data for $S^1$-symmetric instantons, or hyperbolic BPS monopoles, may be viewed as a discretization of the Nahm equations.
Carbon allocation and accumulation in conifers
Gower, S.T.; Isebrands, J.G.; Sheriff, D.W.
1995-07-01
Forests cover approximately 33% of the land surface of the earth, yet they are responsible for 65% of the annual carbon (C) accumulated by all terrestrial biomes. In general, total C content and net primary production rates are greater for forests than for other biomes, but C budgets differ greatly among forests. Despite several decades of research on forest C budgets, there is still an incomplete understanding of the factors controlling C allocation. Yet, if we are to understand how changing global events such as land use, climate change, atmospheric N deposition, ozone, and elevated atmospheric CO{sub 2} affect the global C budget, a mechanistic understanding of C assimilation, partitioning, and allocation is necessary. The objective of this chapter is to review the major factors that influence C allocation and accumulation in conifer trees and forests. In keeping with the theme of this book, we will focus primarily on evergreen conifers. However, even among evergreen conifers, leaf, canopy, and stand-level C and nutrient allocation patterns differ, often as a function of leaf development and longevity. The terminology related to C allocation literature is often inconsistent, confusing and inadequate for understanding and integrating past and current research. For example, terms often used synonymously to describe C flow or movement include translocation, transport, distribution, allocation, partitioning, apportionment, and biomass allocation. A common terminology is needed because different terms have different meanings to readers. In this paper we use C allocation, partitioning, and accumulation according to the definitions of Dickson and Isebrands (1993). Partitioning is the process of C flow into and among different chemical, storage, and transport pools. Allocation is the distribution of C to different plant parts within the plant (i.e., source to sink). Accumulation is the end product of the process of C allocation.
Energy Levels of "Hydrogen Atom" in Discrete Time Dynamics
Andrei Khrennikov; Yaroslav Volovich
2006-04-27
We analyze dynamical consequences of a conjecture that there exists a fundamental (indivisible) quant of time. In particular we study the problem of discrete energy levels of hydrogen atom. We are able to reconstruct potential which in discrete time formalism leads to energy levels of unperturbed hydrogen atom. We also consider linear energy levels of quantum harmonic oscillator and show how they are produced in the discrete time formalism. More generally, we show that in discrete time formalism finite motion in central potential leads to discrete energy spectrum, the property which is common for quantum mechanical theory. Thus deterministic (but discrete time!) dynamics is compatible with discrete energy levels.
Energy Levels of "Hydrogen Atom" in Discrete Time Dynamics
Khrennikov, A; Khrennikov, Andrei; Volovich, Yaroslav
2006-01-01
We analyze dynamical consequences of a conjecture that there exists a fundamental (indivisible) quant of time. In particular we study the problem of discrete energy levels of hydrogen atom. We are able to reconstruct potential which in discrete time formalism leads to energy levels of unperturbed hydrogen atom. We also consider linear energy levels of quantum harmonic oscillator and show how they are produced in the discrete time formalism. More generally, we show that in discrete time formalism finite motion in central potential leads to discrete energy spectrum, the property which is common for quantum mechanical theory. Thus deterministic (but discrete time!) dynamics is compatible with discrete energy levels.
FACT (Version 2.0) - Subsurface Flow and Contaminant Transport Documentation and User's Guide
Aleman, S.E.
2000-05-05
This report documents a finite element code designed to model subsurface flow and contaminant transport, named FACT. FACT is a transient three-dimensional, finite element code designed to simulate isothermal groundwater flow, moisture movement, and solute transport in variably saturated and fully saturated subsurface porous media.
Diversity of Life at the Geothermal Subsurface--Surface Interface: The Yellowstone Example
Diversity of Life at the Geothermal Subsurface--Surface Interface: The Yellowstone Example example of Yellowstone National Park indi- cate that the diversity of microbial life at the geothermal temperatures. The geothermal subsurface-surface interface in the presence of both electron donors and acceptors
Plumbing the Depths: Testing Natural Tracers of Subsurface CO2 Origin and
Gilfillan, Stuart
to be added to the CO2 at the time of injec- tion. This will marginally increase the cost of storagePlumbing the Depths: Testing Natural Tracers of Subsurface CO2 Origin and Migration, Utah Mark storage of fluid CO2 in porous subsurface rock will re- quire the ability to track, and identify
Subsurface Utility Location Standards UNC Chapel Hill Page 1 of 2 May 17, 2013
McLaughlin, Richard M.
Subsurface Utility Location Standards UNC Â Chapel Hill Page 1 of 2 May 17, 2013 THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL SUBSURFACE UTILITY LOCATION STANDARDS Created on July 7, 2005 (Updated May 2013) Scope: Perform field location surveys of utilities installed during the construction phase
Subsurface Containment Assurance Program: Key Element Overview and Best Practice Examples
is to ensure that no environmental damage, damage to operated assets, or impacts on well operations (drilling or production) are incurred by leakage of production or injection fluids from their intended zones. Subsurface subsurface fluid containment loss. Specific assessment criteria and ranking approaches and tools
West, Phillip B. (Idaho Falls, ID); Novascone, Stephen R. (Idaho Falls, ID); Wright, Jerry P. (Idaho Falls, ID)
2012-05-29
Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.
West, Phillip B. (Idaho Falls, ID); Novascone, Stephen R. (Idaho Falls, ID); Wright, Jerry P. (Idaho Falls, ID)
2011-09-27
Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.
Optimal Spacing in an Array of Fully Penetrating Ditches for Subsurface Drainage
Chahar, B. R.
Optimal Spacing in an Array of Fully Penetrating Ditches for Subsurface Drainage Bhagu R. Chahar1 courses, race courses, parks, and other amenities Chahar and Vadodaria 2008 . Subsurface drainage system 1995 . An extensive solu- tion has been obtained by Chahar and Vadodaria 2008 for drain- age from
Evaluation of Subsurface Exploration Programs By Photios G. Ioannou, A.M. ASCE
Evaluation of Subsurface Exploration Programs By Photios G. Ioannou, A.M. ASCE Abstract: This paper presents a decision support system for the evaluation of geologic explo- ration programs in underground construction. This system can be used to quantify the economic value of different subsurface investigation
Rain-induced subsurface airflow and Lisse effect Haipeng Guo,1
Jiao, Jiu Jimmy
is low, and the maximum water-level rise is less than the maximum air pressure induced by rain and the water table depth. Citation: Guo, H., J. J. Jiao, and E. P. Weeks (2008), Rain-induced subsurface] Water table fluctuation may induce subsurface airflow [Jiao and Li, 2004] and airflow caused by rain
Chamberlain, E.R.; Madrid, V.M.
1986-07-01
Shallow (2000 ft), heavy (11/sup 0/-14/sup 0/ API) oil accumulations within the Pleistocene, nonmarine, Tulare sands along the west side of the San Joaquin Valley represent major thermal enhanced oil recovery (EOR) objectives. These low-pressure reservoirs display a variety of petrophysical characteristics indicating a complex history of oil migration resulting from uplift of the Tulare reservoirs above the regional ground-water table (RGT). In the Cymric-McKittrick area, it is possible to correlate Tulare outcrops with subsurface log data and determine the relationship between oil saturation, structural elevation, and proximity to the present RGT. The observed relationship is that economic oil saturations (S/sub 0/ = 30-75%) occur in structural lows and grade updip to reduced oil saturations (S/sub 0/ = 0-30%). The equivalent sands above the RGT exhibit formation density log-compensated neutron log (FDC/CNL) cross-over. Basinward, as the entire Tulare reservoir dips below the RGT, it exhibits characteristics of conventional reservoirs, such as high water saturations in structural lows, grading upward to increased oil saturations in structural highs. The authors present the following model to explain these observations. (1) Oil migrated into Tulare sands and originally filled all stratigraphic/structural traps below the paleo-RGT. (2) Subsequent uplift of the Tulare reservoirs above the paleo-RGT resulted in gravity drainage of original accumulations into structural lows. (3) Washing of the oils by repeated ground-water fluctuations along with biodegradation resulted in the essentially immobile Tulare heavy oil accumulations observed today.
Park, Joongsuk
2005-02-17
) for various surface and subsurface applications, such as profiling the surface and subsurface of pavements, detecting and localizing small buried Anti-Personnel (AP) mines and measuring the liquid level in a tank. These sensors meet the critical requirements...
TITLE III EVALUATION REPORT FOR THE SUBSURFACE LIGHTING SYSTEM
L.J. Fernandez
1998-09-09
The objective of this evaluation is to provide recommendations to ensure consistency between the technical baseline requirements, baseline design, and the as-constructed Subsurface Lighting System. Recommendations for resolving discrepancies between the as-constructed system, and the technical baseline requirements are included in this report. Cost and Schedule estimates are provided for all recommended modifications. This report does not address items which do not meet current safety or code requirements. These items are identified to the CMO and immediate action is taken to correct the situation. The report does identify safety and code items for which the A/E is recommending improvements. The recommended improvements will exceed the minimum requirements of applicable code and safety guide lines. These recommendations are intended to improve and enhance the operation and maintenance of the facility.
Ranging methods for developing wellbores in subsurface formations
MacDonald, Duncan (Houston, TX)
2011-09-06
A method for forming two or more wellbores in a subsurface formation includes forming a first wellbore in the formation. A second wellbore is directionally drilled in a selected relationship relative to the first wellbore. At least one magnetic field is provided in the second wellbore using one or more magnets in the second wellbore located on a drilling string used to drill the second wellbore. At least one magnetic field is sensed in the first wellbore using at least two sensors in the first wellbore as the magnetic field passes by the at least two sensors while the second wellbore is being drilled. A position of the second wellbore is continuously assessed relative to the first wellbore using the sensed magnetic field. The direction of drilling of the second wellbore is adjusted so that the second wellbore remains in the selected relationship relative to the first wellbore.
Constraint analysis for variational discrete systems
Dittrich, Bianca; Höhn, Philipp A.; Institute for Theoretical Physics, Universiteit Utrecht, Leuvenlaan 4, NL-3584 CE Utrecht
2013-09-15
A canonical formalism and constraint analysis for discrete systems subject to a variational action principle are devised. The formalism is equivalent to the covariant formulation, encompasses global and local discrete time evolution moves and naturally incorporates both constant and evolving phase spaces, the latter of which is necessary for a time varying discretization. The different roles of constraints in the discrete and the conditions under which they are first or second class and/or symmetry generators are clarified. The (non-) preservation of constraints and the symplectic structure is discussed; on evolving phase spaces the number of constraints at a fixed time step depends on the initial and final time step of evolution. Moreover, the definition of observables and a reduced phase space is provided; again, on evolving phase spaces the notion of an observable as a propagating degree of freedom requires specification of an initial and final step and crucially depends on this choice, in contrast to the continuum. However, upon restriction to translation invariant systems, one regains the usual time step independence of canonical concepts. This analysis applies, e.g., to discrete mechanics, lattice field theory, quantum gravity models, and numerical analysis.
Test Plan - Solids Accumulation Scouting Studies
Duignan, M. R.; Steeper, T. J.; Steimke, J. L.; Fowley, M. D.
2012-05-10
This plan documents the highlights of the Solids Accumulations Scouting Studies test; a project, from Washington River Protection Solutions (WRPS), that began on February 1, 2012. During the last 12 weeks considerable progress has been made to design and plan methods that will be used to estimate the concentration and distribution of heavy fissile solids in accumulated solids in the Hanford double-shell tank (DST) 241-AW-105 (AW-105), which is the primary goal of this task. This DST will be one of the several waste feed delivery staging tanks designated to feed the Pretreatment Facility (PTF) of the Waste Treatment and Immobilization Plant (WTP). Note that over the length of the waste feed delivery mission AW-105 is currently identified as having the most fill empty cycles of any DST feed tanks, which is the reason for modeling this particular tank. At SRNL an existing test facility, the Mixing Demonstration Tank, which will be modified for the present work, will use stainless steel particles in a simulant that represents Hanford waste to perform mock staging tanks transfers that will allow solids to accumulate in the tank heel. The concentration and location of the mock fissile particles will be measured in these scoping studies to produce information that will be used to better plan larger scaled tests. Included in these studies is a secondary goal of developing measurement methods to accomplish the primary goal. These methods will be evaluated for use in the larger scale experiments. Included in this plan are the several pretest activities that will validate the measurement techniques that are currently in various phases of construction. Aspects of each technique, e.g., particle separations, volume determinations, topographical mapping, and core sampling, have been tested in bench-top trials, as discussed herein, but the actual equipment to be employed during the full test will need evaluation after fabrication and integration into the test facility.
An Accumulative Model for Quantum Theories
Christopher Thron
2015-06-06
For a general quantum theory that is describable by a path integral formalism, we construct a mathematical model of an accumulation-to-threshold process whose outcomes give predictions that are nearly identical to the given quantum theory. The model is neither local nor causal in spacetime, but is both local and causal is in a non-observable path space. The probabilistic nature of the squared wavefunction is a natural consequence of the model. We verify the model with simulations, and we discuss possible discrepancies from conventional quantum theory that might be detectable via experiment. Finally, we discuss the physical implications of the model.
Chen, Zhongping
Increasing subsurface water storage in discontinuous permafrost areas of the Lena River basin in terrestrial water storage (TWS) in the Lena river basin, Eurasia, during the period April 2002 to September the observed TWS increase of 68 Æ 19 km3 to an increase in subsurface water storage. This large subsurface
WORKING PAPER N 2009 -41 Migration and capital accumulation
Boyer, Edmond
, remittances, capital accumulation, rural poverty PARIS-JOURDAN SCIENCES ECONOMIQUES LABORATOIRE D. Key Words: Migration; Remittances; Capital Accumulation; Rural Poverty. Paris School of Economics (PSE) and Poverty Action Lab (J-PAL Europe), 48 Boulevard Jourdan, 75014 Paris, France. chiodi
Wave Packets in Discrete Quantum Phase Space
Jang Young Bang; Micheal S Berger
2008-11-06
The properties of quantum mechanics with a discrete phase space are studied. The minimum uncertainty states are found, and these states become the Gaussian wave packets in the continuum limit. With a suitably chosen Hamiltonian that gives free particle motion in the continuum limit, it is found that full or approximate periodic time evolution can result. This represents an example of revivals of wave packets that in the continuum limit is the familiar free particle motion on a line. Finally we examine the uncertainty principle for discrete phase space and obtain the correction terms to the continuum case.
Compliance of Hazardous Waste Satellite Accumulation Areas (SAAs)
Compliance of Hazardous Waste Satellite Accumulation Areas (SAAs) All Hazardous waste generated to be chemically hazardous and shall be kept in a Satellite Accumulation Area (SAA). The safety coordinator will keep a list of all SAA's in the division and must be notified before an accumulation area
Molten salt as a heat transfer fluid for heating a subsurface formation
Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)
2010-11-16
A heating system for a subsurface formation includes a conduit located in an opening in the subsurface formation. An insulated conductor is located in the conduit. A material is in the conduit between a portion of the insulated conductor and a portion of the conduit. The material may be a salt. The material is a fluid at operating temperature of the heating system. Heat transfers from the insulated conductor to the fluid, from the fluid to the conduit, and from the conduit to the subsurface formation.
Rose, Kelly K.; Johnson, Joel E.; Torres, Marta E.; Hong, WeiLi; Giosan, Liviu; Solomon, E.; Kastner, Miriam; Cawthern, Thomas; Long, Philip E.; Schaef, Herbert T.
2014-12-01
In addition to well established properties that control the presence or absence of the hydrate stability zone, such as pressure, temperature, and salinity, additional parameters appear to influence the concentration of gas hydrate in host sediments. The stratigraphic record at Site 17A in the Andaman Sea, eastern Indian Ocean, illustrates the need to better understand the role pore-scale phenomena play in the distribution and presence of marine gas hydrates in a variety of subsurface settings. In this paper we integrate field-generated datasets with newly acquired sedimentology, physical property, imaging and geochemical data with mineral saturation and ion activity products of key mineral phases such as amorphous silica and calcite, to document the presence and nature of secondary precipitates that contributed to anomalous porosity preservation at Site 17A in the Andaman Sea. This study demonstrates the importance of grain-scale subsurface heterogeneities in controlling the occurrence and distribution of concentrated gas hydrate accumulations in marine sediments, and document the importance that increased permeability and enhanced porosity play in supporting gas concentrations sufficient to support gas hydrate formation. The grain scale relationships between porosity, permeability, and gas hydrate saturation documented at Site 17A likely offer insights into what may control the occurrence and distribution of gas hydrate in other sedimentary settings.
Perception as evidence accumulation 1 Perception as evidence accumulation and Bayesian inference
Norris, Dennis
then incorporate this algorithm into the Bayesian Reader model (Norris, 2006), and confirm its predictions in three of masked priming for unconscious cognition and visual masking. #12;Perception as evidence accumulation 3 Reader model (Norris, 2006) and show that this can both explain existing data and generate new
Stability of discrete breathers in magnetic metamaterials
Pelinovsky, Dmitry
Stability of discrete breathers in magnetic metamaterials Dmitry Pelinovsky1 and Vassilis Rothos2 1 describing magnetic metamaterials which consist of periodic arrays of split- ring resonators [4, 7]: ¨qn + V criterion to the multi-site breathers in magnetic metamaterials. 2 Formalism In what follows, we shall use
Chow's Team Petri Net Models discrete event
Kaber, David B.
", and "high" plate contents CELISCA: collection of physiology data based on NCSU prototype Output1 CELISCA: collection of physiology data based on New NCSU prototype Output2 #12;k Chow's Team Petri Net Models discrete event stochastic models (set fixed time interval updates
DISCRETE BREATHERS -RECENT RESULTS AND APPLICATIONS
Flach, Sergej
of Complex Systems, NÂ¨othnitzer Str. 38, D-01187 Dresden, Germany E-mail: flach energy thresholds in lattice dimensions d 2, models with ana- lytic solutions and compact solutions the past decade1,2,3 . The discreteness of space - i.e. the usage of a spatial lattice - is crucial
Comment on ``Discrete Boltzmann Equation for Microfluidics''
Luo, Li-Shi
Comment on ``Discrete Boltzmann Equation for Microfluidics'' In a recent Letter [1], Li and Kwok use a lattice Boltzmann equation (LBE) for microfluidics. Their main claim is that an LBE model for microfluidics can be constructed based on the ``Bhatnagar-Gross-Kooky [sic]'' model by including ``the
On the discrete bicycle transformation S. Tabachnikov
Tabachnikov, Sergei
On the discrete bicycle transformation S. Tabachnikov E. Tsukerman 1 Introduction The motivation for this paper comes from the study of a simple model of bicycle motion. The bicycle is modeled as an oriented segment in the plane of fixed length , the wheelbase of the bicycle. The motion is constrained so
Global discretization of continuous attributes as preprocessing for machine learning
Chmielewski, M. R.; Grzymala-Busse, Jerzy W.
1996-11-01
data sets with discrete attributes. Methods of discretization restricted to single continuous attributes will be called local, while methods that simultaneously convert all continuous attributes will be called global. in this paper, a method...
Defining Employee Perceptions of Discretion: When, Where, and How
Thompson, Rebecca Jean
2013-12-10
The construct employee discretion has been researched under many labels (e.g., flexibility, autonomy). As a result, employee discretion has been operationalized differently across multiple streams of research leading to construct deficiency...
STOMP Subsurface Transport Over Multiple Phases: User`s guide
White, M.D.; Oostrom, M.
1997-10-01
The U.S. Department of Energy, through the Office of Technology Development, has requested the demonstration of remediation technologies for the cleanup of volatile organic compounds and associated radionuclides within the soil and groundwater at arid sites. This demonstration program, called the VOC-Arid Soils Integrated Demonstration Program (Arid-ID), has been initially directed at a volume of unsaturated and saturated soil contaminated with carbon tetrachloride, on the Hanford Site near Richland, Washington. A principal subtask of the Arid-ID program involves the development of an integrated engineering simulator for evaluating the effectiveness and efficiency of various remediation technologies. The engineering simulator`s intended users include scientists and engineers who are investigating soil physics phenomena associated with remediation technologies. Principal design goals for the engineer simulator include broad applicability, verified algorithms, quality assurance controls, and validated simulations against laboratory and field-scale experiments. An important goal for the simulator development subtask involves the ability to scale laboratory and field-scale experiments to full-scale remediation technologies, and to transfer acquired technology to other arid sites. The STOMP (Subsurface Transport Over Multiple Phases) simulator has been developed by the Pacific Northwest National Laboratory for modeling remediation technologies. Information on the use, application, and theoretical basis of the STOMP simulator theory and discussions on the governing equations, constitutive relations, and numerical solution algorithms for the STOMP simulator.
Miki, Hiroshi; Tsujimoto, Satoshi
2011-01-01
Discrete spectral transformations of skew orthognal polynomials are presented. From these spectral transformations, it is shown that the corresponding discrete integrable systems are derived both in 1+1 dimension and in 2+1 dimension. Especially in the 2+1 dimensional case, the corresponding system can be extended to 2x2 matrix form. The factorization theorem of the skew-Christoffel kernel in random matrix theory is presented as a by-product of these transformations.
Hiroshi Miki; Hiroaki Goda; Satoshi Tsujimoto
2012-02-29
Discrete spectral transformations of skew orthogonal polynomials are presented. From these spectral transformations, it is shown that the corresponding discrete integrable systems are derived both in 1+1 dimension and in 2+1 dimension. Especially in the (2+1)-dimensional case, the corresponding system can be extended to 2x2 matrix form. The factorization theorem of the Christoffel kernel for skew orthogonal polynomials in random matrix theory is presented as a by-product of these transformations.
Geophysical characterization of the effects of fractures and stress on subsurface reservoirs
Fang, Xinding, Ph. D. Massachusetts Institute of Technology
2013-01-01
We study the effect of fractures on reservoir characterization and subsurface rock property measurements using seismic data. Based on the scale of a fracture relative to seismic wavelength, we divide the dissertation into ...
Fu, Xin, 1973-
2003-01-01
Field-scale Dense Nonaqueous Phase Liquid (DNAPL) dissolution in three-dimensional heterogeneous subsurface systems is investigated using a stochastic approach that treats the variability of flow properties as three-dimensional ...
Rolling contact fatigue in martensitic 100Cr6: Subsurface hardening and crack formation
Kang, Jee-Hyun; Vegter, R. H.; Rivera-Díaz-del-Castillo, Pedro E. J.
2014-04-13
Rolling contact fatigue tests on 100Cr6 steel were carried out with a ball-on-rod tester. Microstructural damage was manifested by gradual hardness changes under the subsurface, and microcracks formed adjacent to inclusions; both being evidence...
Beltrami, Hugo
and compared to those obtained from subsurface geothermal data. Since GCMs have bottom boundary conditions. In addition, the agreement between the LSM surface fluxes and the borehole temperature reconstructed fluxes
Technologies Provide High-Resolution Subsurface Imaging of Vadose Zone Contamination at Hanford Site
Broader source: Energy.gov [DOE]
RICHLAND, Wash. – Cold War waste disposal practices resulted in both planned and unplanned releases of large amounts of radionuclide and heavy metal contamination into the subsurface throughout the DOE complex.
Full wavefield inversion methods for monitoring time-lapse subsurface velocity changes
Yang, Di, Ph. D. Massachusetts Institute of Technology
2014-01-01
Quantitative measurements of seismic velocity changes from time-lapse seismic experiments provide dynamic information about the subsurface that improves the understanding of the geology and reservoir properties. In this ...
Calculation Notes for Subsurface Leak Resulting in Pool, TWRS FSAR Accident Analysis
Hall, B.W.
1996-09-25
This document includes the calculations performed to quantify the risk associated with the unmitigated and mitigated accident scenarios described in the TWRS FSAR for the accident analysis titled: Subsurface Leaks Resulting in Pool.
Relationship Between Soil Moisture Storage and Deep Percolation and Subsurface Return Flow
Nieber, J. L.
1984-01-01
A simulation study was performed to analyze the relationship between the volume of moisture stored in a soil profile and the rate of percolation and subsurface return flow. The simulation study was derived on the basis of the Richards equation...
Effects of droplet size on intrusion of sub-surface oil spills
Chan, Godine Kok Yan
2013-01-01
This thesis explores the effects of droplet size on droplet intrusion in sub-surface oil spills. Laboratory experiments were performed where glass beads of various sizes, which serve to simulate oil droplets in deepsea oil ...
Exploring the Earth’s subsurface with virtual seismic sources and receivers
Nicolson, Heather Johan
2011-11-24
Traditional methods of imaging the Earth’s subsurface using seismic waves require an identifiable, impulsive source of seismic energy, for example an earthquake or explosive source. Naturally occurring, ambient seismic waves form an ever...
Wastewater treatment and flow patterns in an onsite subsurface flow constructed wetland
Stecher, Matthew C
2001-01-01
Subsurface flow constructed wetlands (SFCWs) are becoming increasingly common as a secondary treatment of onsite domestic wastewater. Even though SFCWs are being used widely, sufficient data has not been collected to determine how parameters...
Design and implementation of a new low-cost subsurface mooring system for efficient data recovery
Tian, Chuan; Deng, Zhiqun; Tian, Jiwei; Zhao, Wei; Song, Dalei; Xu, Ming; Xu, Xiaoyang; Lu, Jun
2013-09-23
Mooring systems are the most effective method for making sustained time series observations in the oceans. Generally there are two types of ocean mooring systems: surface and subsurface. Subsurface mooring system is less likely to be damaged after deployment than surface system. However, subsurface system usually needs to be retrieved from the ocean for data recovery. This paper describes the design and implementation of a new low-cost subsurface mooring system for efficient data recovery: Timed Communication Buoy System (TCBS). TCBS is usually integrated in the main float and the designated data is downloaded from the control system. After data retrieval, TCBS will separate from main float, rise up to the sea surface, and transmit data by satellite communication.
Long, P.E.
2013-01-01
CHARACTERIZATION OF U CONTAMINATION AND SOLID PHASE MINERALOGY AND GEOCHEMISTRY IN THE RIFLE SUBSURFACE SEDIMENTS. Geological
Final Report: A Model Management System for Numerical Simulations of Subsurface Processes
Zachmann, David
2013-10-07
The DOE and several other Federal agencies have committed significant resources to support the development of a large number of mathematical models for studying subsurface science problems such as groundwater flow, fate of contaminants and carbon sequestration, to mention only a few. This project provides new tools to help decision makers and stakeholders in subsurface science related problems to select an appropriate set of simulation models for a given field application.
Sub-surface dissolution of evaporites in the Eastern Mediterranean sea
Camerlenghi, Angelo Alessandro
1988-01-01
SUB-SURFACE DISSOLUTION OF EVAPORITES IN THE EASTERN MEDITERRANEAN SEA A Thesis by ANGELO ALESSANDRO CAMERLENGHI Submitted to the Office of Graduate Studies of Texas ASM University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 1988 Major Subject: Oceanography SUB-SURFACE DISSOLUTION OF EVAPORITES IN THE EASTERN MEDITERRANEAN SEA A Thesis by ANGELO ALESSANDRO CAMERLENGHI Approved as to style and content by: Pl&DWa~rg~~~ William R. Bryair...
Discrete mechanics, optimal control and formation flying spacecraft
Patrick, George
Discrete mechanics, optimal control and formation flying spacecraft Oliver Junge Center-BlÂ¨obaum partially supported by the CRC 376 Oliver Junge Discrete mechanics, optimal control and formation flying spacecraft p.1 #12;Outline mechanical optimal control problem direct discretization of the variational
AVERAGES ALONG POLYNOMIAL SEQUENCES IN DISCRETE NILPOTENT GROUPS: SINGULAR RADON TRANSFORMS
Magyar, Akos
AVERAGES ALONG POLYNOMIAL SEQUENCES IN DISCRETE NILPOTENT GROUPS: SINGULAR RADON TRANSFORMS can consider discrete maximal Radon transforms, which have applications to pointwise ergodic theo- rems, and discrete singular Radon transforms. In this paper we prove L2 boundedness of discrete
Butler, David R. - Department of Geography, Texas State University
. Livres ice cave, Switzerland Markus Stoffel a,b,c, , Marc Luetscher d,e , Michelle Bollschweiler b Sciences, University of Geneva, Site de Batelle, chemin de Drize 7, CH-1227 Carouge-Geneva, Switzerland b, Baltzerstrasse 1+3, CH-3012 Berne, Switzerland c Department of Geosciences, Geography, University of Fribourg
Greenland snow accumulation estimates from satellite radar scatterometer data
Long, David G.
Greenland snow accumulation estimates from satellite radar scatterometer data Mark R. DrinkwaterWinds on QuikScat (QSCAT) satellite instruments are used to illustrate spatiotemporal variability in snow in backscatter, B, in the range 20 60 are compared with historical snow accumulation data and recent
RUPTURE BY DAMAGE ACCUMULATION IN ROCKS David Amitrano
Paris-Sud XI, Université de
RUPTURE BY DAMAGE ACCUMULATION IN ROCKS David Amitrano LIRIGM, Université J. Fourier, Grenoble of rocks is associated with microcracks nucleation and propagation, i.e. damage. The accumulation of damage as strength and modulus. The damage process can be studied both statically by direct observation of thin
Sacrificing Reproductive Success for the Primitive Accumulation of Cattle
White, Douglas R.
Sacrificing Reproductive Success for the Primitive Accumulation of Cattle DURAN BELL and SHUNFENG provided by Cronk (1989), we have developed a computer simulation of the demographic growth and cattle the marrying out of daughters in order to accumulate cattle and parental neglect of sons, in order (we claim
Optical method and apparatus for detection of surface and near-subsurface defects in dense ceramics
Ellingson, W.A.; Brada, M.P.
1995-06-20
A laser is used in a non-destructive manner to detect surface and near-subsurface defects in dense ceramics and particularly in ceramic bodies with complex shapes such as ceramic bearings, turbine blades, races, and the like. The laser`s wavelength is selected based upon the composition of the ceramic sample and the laser can be directed on the sample while the sample is static or in dynamic rotate or translate motion. Light is scattered off surface and subsurface defects using a preselected polarization. The change in polarization angle is used to select the depth and characteristics of surface/subsurface defects. The scattered light is detected by an optical train consisting of a charge coupled device (CCD), or vidicon, television camera which, in turn, is coupled to a video monitor and a computer for digitizing the image. An analyzing polarizer in the optical train allows scattered light at a given polarization angle to be observed for enhancing sensitivity to either surface or near-subsurface defects. Application of digital image processing allows subtraction of digitized images in near real-time providing enhanced sensitivity to subsurface defects. Storing known ``feature masks`` of identified defects in the computer and comparing the detected scatter pattern (Fourier images) with the stored feature masks allows for automatic classification of detected defects. 29 figs.
Optical method and apparatus for detection of surface and near-subsurface defects in dense ceramics
Ellingson, William A. (Naperville, IL); Brada, Mark P. (Goleta, CA)
1995-01-01
A laser is used in a non-destructive manner to detect surface and near-subsurface defects in dense ceramics and particularly in ceramic bodies with complex shapes such as ceramic bearings, turbine blades, races, and the like. The laser's wavelength is selected based upon the composition of the ceramic sample and the laser can be directed on the sample while the sample is static or in dynamic rotate or translate motion. Light is scattered off surface and subsurface defects using a preselected polarization. The change in polarization angle is used to select the depth and characteristics of surface/subsurface defects. The scattered light is detected by an optical train consisting of a charge coupled device (CCD), or vidicon, television camera which, in turn, is coupled to a video monitor and a computer for digitizing the image. An analyzing polarizer in the optical train allows scattered light at a given polarization angle to be observed for enhancing sensitivity to either surface or near-subsurface defects. Application of digital image processing allows subtraction of digitized images in near real-time providing enhanced sensitivity to subsurface defects. Storing known "feature masks" of identified defects in the computer and comparing the detected scatter pattern (Fourier images) with the stored feature masks allows for automatic classification of detected defects.
Compartmentalization analysis using discrete fracture network models
La Pointe, P.R.; Eiben, T.; Dershowitz, W.; Wadleigh, E.
1997-08-01
This paper illustrates how Discrete Fracture Network (DFN) technology can serve as a basis for the calculation of reservoir engineering parameters for the development of fractured reservoirs. It describes the development of quantitative techniques for defining the geometry and volume of structurally controlled compartments. These techniques are based on a combination of stochastic geometry, computational geometry, and graph the theory. The parameters addressed are compartment size, matrix block size and tributary drainage volume. The concept of DFN models is explained and methodologies to compute these parameters are demonstrated.
Coherence properties of discrete static kinks
H. Landa
2010-02-01
A chain of interacting particles subject also to a nonlinear on-site potential admits stable soliton-like configurations : static kinks. The linear normal-modes around such a kink contain a discrete set of localized, gap-separated modes. Quantization of the Hamiltonian in these modes results in an interacting system of phonons. We investigate numerically the coherence properties of such localized modes at low temperatures using a non-Markovian master equation. We show that low decoherence rates can be achieved in these nonlinear configurations for a surprisingly long time. If realized in the ion trap, kink internal modes may be advantageously used for Quantum Information Processing.
Quantumness of discrete Hamiltonian cellular automata
Hans-Thomas Elze
2014-07-08
We summarize a recent study of discrete (integer-valued) Hamiltonian cellular automata (CA) showing that their dynamics can only be consistently defined, if it is linear in the same sense as unitary evolution described by the Schr\\"odinger equation. This allows to construct an invertible map between such CA and continuous quantum mechanical models, which incorporate a fundamental scale. Presently, we emphasize general aspects of these findings, the construction of admissible CA observables, and the existence of solutions of the modified dispersion relation for stationary states.
Levander, Alan Richard; Zelt, Colin A.
2015-03-17
The work plan for this project was to develop and apply advanced seismic reflection and wide-angle processing and inversion techniques to high resolution seismic data for the shallow subsurface to seismically characterize the shallow subsurface at hazardous waste sites as an aid to containment and cleanup activities. We proposed to continue work on seismic data that we had already acquired under a previous DoE grant, as well as to acquire additional new datasets for analysis. The project successfully developed and/or implemented the use of 3D reflection seismology algorithms, waveform tomography and finite-frequency tomography using compressional and shear waves for high resolution characterization of the shallow subsurface at two waste sites. These two sites have markedly different near-surface structures, groundwater flow patterns, and hazardous waste problems. This is documented in the list of refereed documents, conference proceedings, and Rice graduate theses, listed below.
Ramirez, Abelardo L. (Pleasanton, CA); Cooper, John F. (Oakland, CA); Daily, William D. (Livermore, CA)
1996-01-01
This invention relates generally to the remote detections of subsurface liquid contaminants using in combination a geophysical technique known as ERT and an EKS. Electrokinetic transport is used to enhance the ability of electrical resistance tomography (ERT) to detect position and movement of subsurface contaminant liquids, particles or ions. ERT images alone are difficult to interpret because of natural inhomogeneities in soil composition and electrical properties. By subtracting two or more ERT images obtained before and after field induced movement, a high contrast image of a plume of distinct electrokinetic properties can be seen. The invention is applicable to important subsurface characterization problems including, as examples, (1) detection of liquid-saturated plumes of contaminants such as those associated with leaks from underground storage tanks containing hazardous concentrated electrolytes, (2) detection and characterization of soils contaminated with organic pollutants such as droplets of gasoline; and (3) monitoring the progress of electrokinetic containment or clean up of underground contamination.
Ramirez, A.L.; Cooper, J.F.; Daily, W.D.
1996-02-27
This invention relates generally to the remote detections of subsurface liquid contaminants using in combination a geophysical technique known as ERT and an EKS. Electrokinetic transport is used to enhance the ability of electrical resistance tomography (ERT) to detect position and movement of subsurface contaminant liquids, particles or ions. ERT images alone are difficult to interpret because of natural inhomogeneities in soil composition and electrical properties. By subtracting two or more ERT images obtained before and after field induced movement, a high contrast image of a plume of distinct electrokinetic properties can be seen. The invention is applicable to important subsurface characterization problems including, as examples, (1) detection of liquid-saturated plumes of contaminants such as those associated with leaks from underground storage tanks containing hazardous concentrated electrolytes, (2) detection and characterization of soils contaminated with organic pollutants such as droplets of gasoline; and (3) monitoring the progress of electrokinetic containment or clean up of underground contamination. 1 fig.
Oxidation induced amorphous stabilization of the subsurface region in Zr-Cu metallic glass
Lim, K. R. [Light Metal Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsan-gu, Changwon, Gyeongnam 642-831 (Korea, Republic of); Park, J. M. [Materials Research Center, Samsung Advanced Institute of Technology (SAIT) San 14-1, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-712 (Korea, Republic of); Park, S. H.; Na, M. Y.; Kim, K. C.; Kim, D. H., E-mail: dohkim@yonsei.ac.kr [Department of Materials Science and Engineering, Center for Non-crystalline Materials, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Kim, W. T. [Department of Optical Engineering, Cheongju University, 36 Naedock-dong, Cheongju 360-764 (Korea, Republic of)
2014-01-20
In the present study, we demonstrate that selective surface oxidation of Zr{sub 70}Cu{sub 30} metallic glass can stabilize the amorphous structure in the subsurface region of the matrix. The oxidation proceeds by selective oxidation of Zr, forming monoclinic ZrO{sub 2} layer on the surface, and the subsurface layer becomes Cu-enriched due to back diffusion of Cu atoms from the oxide layer. Interestingly, in this system, the composition change in the subsurface region leads to enhancement of glass stability, forming of a double layered surface structure consisted of inner amorphous layer and outer monoclinic ZrO{sub 2} layer even when the remaining matrix is completely crystallized.
Galactic discrete sources of high energy neutrinos
W. Bednarek; G. F. Burgio; T. Montaruli
2004-04-27
We review recently developed models of galactic discrete sources of high energy neutrinos. Some of them are based on a simple rescaling of the TeV $\\gamma$-ray fluxes from recently detected galactic sources, such as, shell-type supernova remnants or pulsar wind nebulae. Others present detailed and originally performed modeling of processes occurring close to compact objects, i.e. neutron stars and low mass black holes, which are supposed to accelerate hadrons close to dense matter and radiation fields. Most of the models considered in this review optimistically assume that the energy content in relativistic hadrons is equal to a significant part of the maximum observable power output in specific sources, i.e. typically $\\sim 10%$. This may give a large overestimation of the neutrino fluxes. This is the case of models which postulate neutrino production in hadron-photon collisions already at the acceleration place, due to the likely $e^\\pm$ pair plasma domination. Models postulating neutrino production in hadron-hadron collisions avoid such problems and therefore seem to be more promising. The neutrino telescopes currently taking data have not detected any excess from discrete sources yet, although some models could already be constrained by the limits they are providing.
Lowest-rank Solutions of Continuous and Discrete Lyapunov ...
2012-10-08
Lyapunov equations are of great importance but generally diffi- cult to achieve in ... of the discrete Lyapunov inequality can be efficiently solved by a linear ...
Lowest-rank Solutions of Continuous and Discrete Lyapunov ...
Ziyan Luo
2012-10-09
Oct 9, 2012 ... Abstract: The low-rank solutions of continuous and discrete Lyapunov equations are of great importance but generally difficult to achieve in ...
Efficient energy stable schemes with spectral discretization in space ...
2012-04-03
We construct energy stable schemes for the time discretization of the highly ... Fundamentally, the gradient energy density loses its convexity (see a proof in the
Dual Transform Domain Echo Canceller for Discrete Multitone Systems
Champagne, Benoît
Dual Transform Domain Echo Canceller for Discrete Multitone Systems Neda Ehtiati and Beno Email:{neda.ehtiati,benoit.champagne}@mcgill.ca Abstract--In communication systems where full
Schilk, A.J.; Perkins, R.W.; Abel, K.H.; Brodzinski, R.L.
1993-04-01
The past operations of uranium production and support facilities at several Department of Energy (DOE) sites have occasionally resulted in the local contamination of some surface and subsurface soils, and the three-dimensional distribution of the uranium at these sites must be thoroughly characterized before any effective remedial protocols can be established. To this end, Pacific Northwest Laboratory (PNL) has been tasked by the DOE`s Office of Technology Development with adapting, developing, and demonstrating technologies for the measurement of uranium in surface and subsurface soils at the Fernald Uranium in Soils Integrated Demonstration site. These studies are detailed in this report.
Complex Systems Science for Subsurface Fate and Transport Report from the August 2009 Workshop
2010-03-01
The subsurface environment, which encompasses the vadose and saturated zones, is a heterogeneous, geologically complex domain. Believed to contain a large percentage of Earth's biomass in the form of microorganisms, the subsurface is a dynamic zone where important biogeochemical cycles work to sustain life. Actively linked to the atmosphere and biosphere through the hydrologic and carbon cycles, the subsurface serves as a storage location for much of Earth's fresh water. Coupled hydrological, microbiological, and geochemical processes occurring within the subsurface environment cause the local and regional natural chemical fluxes that govern water quality. These processes play a vital role in the formation of soil, economically important fossil fuels, mineral deposits, and other natural resources. Cleaning up Department of Energy (DOE) lands impacted by legacy wastes and using the subsurface for carbon sequestration or nuclear waste isolation require a firm understanding of these processes and the documented means to characterize the vertical and spatial distribution of subsurface properties directing water, nutrient, and contaminant flows. This information, along with credible, predictive models that integrate hydrological, microbiological, and geochemical knowledge over a range of scales, is needed to forecast the sustainability of subsurface water systems and to devise ways to manage and manipulate dynamic in situ processes for beneficial outcomes. Predictive models provide the context for knowledge integration. They are the primary tools for forecasting the evolving geochemistry or microbial ecology of groundwater under various scenarios and for assessing and optimizing the potential effectiveness of proposed approaches to carbon sequestration, waste isolation, or environmental remediation. An iterative approach of modeling and experimentation can reveal powerful insights into the behavior of subsurface systems. State-of-science understanding codified in models can provide a basis for testing hypotheses, guiding experiment design, integrating scientific knowledge on multiple environmental systems into a common framework, and translating this information to support informed decision making and policies. Subsurface behavior typically has been investigated using reductionist, or bottom-up approaches. In these approaches, mechanisms of small-scale processes are quantified, and key aspects of their behaviors are moved up to the prediction scale using scaling laws and models. Reductionism has and will continue to yield essential and comprehensive understanding of the molecular and microscopic underpinnings of component processes. However, system-scale predictions cannot always be made with bottom-up approaches because the behaviors of subsurface environments often simply do not result from the sum of smaller-scale process interactions. Systems exhibiting such behavior are termed complex and can range from the molecular to field scale in size. Complex systems contain many interactive parts and display collective behavior including emergence, feedback, and adaptive mechanisms. Microorganisms - key moderators of subsurface chemical processes - further challenge system understanding and prediction because they are adaptive life forms existing in an environment difficult to observe and measure. A new scientific approach termed complex systems science has evolved from the critical need to understand and model these systems, whose distinguishing features increasingly are found to be common in the natural world. In contrast to reductionist approaches, complexity methods often use a top-down approach to identify key interactions controlling diagnostic variables at the prediction scale; general macroscopic laws controlling system-scale behavior; and essential, simplified models of subsystem interactions that enable prediction. This approach is analogous to systems biology, which emphasizes the tight coupling between experimentation and modeling and is defined, in the context of Biological Systems Science research programs under DOE'
Bae, Jin-Woo
2007-01-01
from Deep Subsurface Water of the South Coast of Korea CHANG,HO-WON1,2 ,JIN-WOOBAE1 ,YOUNG-DONAM1 ,HYUK-yellow pigmented bacterial strain CH7T was isolated using a dilution-plating technique from deep subsurface water, Chungnam National University, Daejeon 306-764, Korea3 Department of Microbiology and Microbial Engineering
Hubbard, Susan
of recharge on subsurface contamination M. B. Kowalsky,1 E. Gasperikova,1 S. Finsterle,1 D. Watson,2 G. Baker measurements, may be useful for monitoring subsurface contamination. However, interpreting geophysical data understand freshwater recharge and associated contaminant dilution. Our goal is to show that the coupled
Kelley, Scott
Role of the terrestrial subsurface in shaping geothermal spring microbial communitiesemi4_248 491 the possibility that dis- persal from terrestrial subsurface sources `seeds' the development of geothermal spring a phylogenetic group of uncultured Firmi- cutes never before reported in geothermal habitats that were closely
McKenzie, Jeffrey M.
Analytical solutions for benchmarking cold regions subsurface water flow and energy transport Freezing and thawing a b s t r a c t Numerous cold regions water flow and energy transport models have of powerful simulators of cold regions subsurface water flow and energy transport have emerged in recent years
Period tripling accumulation point for complexified Henon map
O. B. Isaeva; S. P. Kuznetsov
2005-09-06
Accumulation point of period-tripling bifurcations for complexified Henon map is found. Universal scaling properties of parameter space and Fourier spectrum intrinsic to this critical point is demonstrated.
Proper Lagoon Management to Reduce Odor and Excessive Sludge Accumulation
Mukhtar, Saqib
1999-10-19
Proper management techniques to reduce odor and excessive sludge accumulation include maintaining pH and salt levels, pumping regularly, maintaining adequate bacteria levels, and designing for efficiency. Definitions of key words are boxed for easy...
Accumulation Rate of Bound States of Dipoles in Graphene
Simone Rademacher; Heinz Siedentop
2015-07-08
We prove that the bound state energies of the two-dimensional massive Dirac operator with dipole type potentials accumulate with exponentials rate at the band edge. In fact we prove a corresponding formula of De Martino et al (2014)
An investigation of damage accumulation in graphite/epoxy laminates
Norvell, Robert Gerald
1985-01-01
AN INVESTIGATION OF DAMAGE ACCUMULATION IN GRAPHITE/EPOXY LAMINATES A Thesis by ROBERT GERALD NORVELL Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... August 1985 Major Subject: Aerospace Engineering AN INVESTIGATION OF DAMAGE ACCUMULATION IN GRAPHITE/EPOXY LAMINATES A Thesis by ROBERT GERALD NORVELL Approved as to style and content by: David H. Allen (Co-Chair of C mmitt. ) Richard A. Schap...
Information storage capacity of discrete spin systems
Beni Yoshida
2012-12-24
Understanding the limits imposed on information storage capacity of physical systems is a problem of fundamental and practical importance which bridges physics and information science. There is a well-known upper bound on the amount of information that can be stored reliably in a given volume of discrete spin systems which are supported by gapped local Hamiltonians. However, all the previously known systems were far below this theoretical bound, and it remained open whether there exists a gapped spin system that saturates this bound. Here, we present a construction of spin systems which saturate this theoretical limit asymptotically by borrowing an idea from fractal properties arising in the Sierpinski triangle. Our construction provides not only the best classical error-correcting code which is physically realizable as the energy ground space of gapped frustration-free Hamiltonians, but also a new research avenue for correlated spin phases with fractal spin configurations.
Discrete solitons and vortices on anisotropic lattices
Kevrekidis, P.G. [Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003-4515 (United States); Frantzeskakis, D.J. [Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 15784 (Greece); Carretero-Gonzalez, R. [Nonlinear Dynamical Systems Group, Department of Mathematics and Statistics, and Computational Science Research Center, San Diego State University, San Diego, California 92182-7720 (United States); Malomed, B.A. [Department of Interdisciplinary Studies, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Bishop, A.R. [Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
2005-10-01
We consider the effects of anisotropy on solitons of various types in two-dimensional nonlinear lattices, using the discrete nonlinear Schroedinger equation as a paradigm model. For fundamental solitons, we develop a variational approximation that predicts that broad quasicontinuum solitons are unstable, while their strongly anisotropic counterparts are stable. By means of numerical methods, it is found that, in the general case, the fundamental solitons and simplest on-site-centered vortex solitons ('vortex crosses') feature enhanced or reduced stability areas, depending on the strength of the anisotropy. More surprising is the effect of anisotropy on the so-called 'super-symmetric' intersite-centered vortices ('vortex squares'), with the topological charge S equal to the square's size M: we predict in an analytical form by means of the Lyapunov-Schmidt theory, and confirm by numerical results, that arbitrarily weak anisotropy results in dramatic changes in the stability and dynamics in comparison with the degenerate, in this case, isotropic, limit.
Reduction of B-integral accumulation in lasers
Meyerhofer, David D. (Spencerport, NY); Konoplev, Oleg A. (Rochester, NY)
2000-01-01
A pulsed laser is provided wherein the B-integral accumulated in the laser pulse is reduced using a semiconductor wafer. A laser pulse is generated by a laser pulse source. The laser pulse passes through a semiconductor wafer that has a negative nonlinear index of refraction. Thus, the laser pulse accumulates a negative B-integral. The laser pulse is then fed into a laser amplification medium, which has a positive nonlinear index of refraction. The laser pulse may make a plurality of passes through the laser amplification medium and accumulate a positive B-integral during a positive non-linear phase change. The semiconductor and laser pulse wavelength are chosen such that the negative B-integral accumulated in the semiconductor wafer substantially cancels the positive B-integral accumulated in the laser amplification medium. There may be additional accumulation of positive B-integral if the laser pulse passes through additional optical mediums such as a lens or glass plates. Thus, the effects of self-phase modulation in the laser pulse are substantially reduced.
2 Urban heat island in the subsurface 3 Grant Ferguson1
Woodbury, Allan D.
2 Urban heat island in the subsurface 3 Grant Ferguson1 and Allan D. Woodbury2 4 Received 11 heat island effect has received significant 7 attention in recent years due to the possible effect that the urban heat island 19 effect has significant and complex spatial variability. In 20 most situations
Rubin, Yoram
1 High-Resolution Estimation of Near-Subsurface Water Content using Surface GPR Ground Wave, UC Berkeley, Berkeley, CA 94720 1. Introduction Information about near surface soil water content the applicability of a surface geophysical method, ground penetrating radar (GPR), for use as a water content
Transport Processes in a Salt-Dome Environment We consider coupled subsurface flow
Kornhuber, Ralf
Transport Processes in a Salt-Dome Environment A We consider coupled subsurface flow and transport within a vertical cross section of a sedimentary basin. To illustrate the effects of (1) heat flow and heat transport simulations will be compared with coupled flow and mass transport simulations
Detecting urbanization effects on surface and subsurface thermal environment --A case study of Osaka
Huang, Shaopeng
of the urban heat island effects across the ground surface. The annual surface air temperature time series from be attributed to the urban heat island effects. However, this surface air temperature warming is not as strong extent of urban heat island effects on the subsurface environment. © 2008 Elsevier B.V. All rights
THE SUBSURFACE ANATOMY OF THE BOOTHEEL'S SAND BLOWS: REMNANTS OF THE NEW MADRID EARTHQUAKES
Freeland, Robert S.
. Freeland, Ph.D., P.E. J. T. Ammons, Ph.D. Professor, Agricultural Engineering Professor, Soil Science The Department of Biosystems Engineering & Soil Science The University of Tennessee 2506 E. J. Chapman Dr within the subsurface were sand-filled vents channeling between the water table and surface; as such
Subsurface and Atmospheric Influences on Solar Activity ASP Conference Series, Vol. 383, c 2008
California at Berkeley, University of
Subsurface and Atmospheric Influences on Solar Activity ASP Conference Series, Vol. 383, c 2008 R descriptions of the ambient coronal magnetic field struc- ture and the associated solar wind streams thanks twist, cur- rent sheets, and other unstable or energized configurations in the active region vicinity. 1
SOURCE SEPARATION TECHNIQUES APPLIED TO THE DETECTION OF SUBSURFACE DEFECTS IN THE EDDY CURRENT NDT
Paris-Sud XI, Université de
SOURCE SEPARATION TECHNIQUES APPLIED TO THE DETECTION OF SUBSURFACE DEFECTS IN THE EDDY CURRENT NDT component analysis, to process the data from the eddy current inspection of riveted lap joints. An eddy methods are proposed for processing such eddy current data by means of both the considered source
Cai, Long
Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models a vessel for injury and to measure blood-flow dynamics. We irradiated the vessel with high-fluence, ultrashort laser pulses and achieved three forms of vascular insult. (i) Vessel rupture was induced
Firoozabadi, Abbas
Mathematical Modeling of Carbon Dioxide Injection in the Subsurface for Improved Hydrocarbon Recovery and Sequestration Philip C. Myint, Laurence Rongy, Kjetil B. Haugen, Abbas Firoozabadi Department. Combustion of fossil fuels contributes to rising atmospheric carbon dioxide (CO2) levels that have been
Processes in microbial transport in the natural subsurface Timothy R. Ginn a,*, Brian D. Wood b
Clement, Prabhakar
of Environmental Engineering (DEE), Centre for Water Research, 35 Stirling Highway, The University of Western of bioremediation and pathogen transport in the natural subsurface. Ó 2002 Elsevier Science Ltd. All rights reserved. Keywords: Microbial transport; Bioremediation; Groundwater; Microbesurface interactions; Upscaling 1
Recent experimental data may point to a greater role for osmotic pressures in the subsurface
Recent experimental data may point to a greater role for osmotic pressures in the subsurface C. E large osmotic pressures when highly compacted. In the last few years, additional laboratory and in situ experiments have greatly increased the number of data on osmotic properties of argillaceous formations
Mandelis, Andreas
to generate time-of-flight acoustic information of the subsurface features. This paper reports the theoretical generation and the delay time of signal arrival to the transducer, information specific to a particular depth.80.Qf YHB Pages: 35233533 I. INTRODUCTION The photoacoustic PA , or more precisely, photo- thermo-acoustic
Subsurface and Atmospheric Influences on Solar Activity ASP Conference Series, Vol. 383, c 2008
Lin, Yong
hemisphere with the Swedish 1-m Solar Telescope on 26 August 2003. The upper panel shows the filament spineSubsurface and Atmospheric Influences on Solar Activity ASP Conference Series, Vol. 383, c 2008 R and their Interrelation Y. Lin,1 S. F. Martin,2 and O. Engvold1 Abstract. The main structural components of solar
Method for determining depth and shape of a sub-surface conductive object
Lee, D.O.; Montoya, P.C.; Wayland, Jr.
1984-06-27
The depth to and size of an underground object may be determined by sweeping a controlled source audio magnetotelluric (CSAMT) signal and locating a peak response when the receiver spans the edge of the object. The depth of the object is one quarter wavelength in the subsurface media of the frequency of the peak. 3 figures.
An evaluation of large diameter coiled tubing for subsurface production tubulars
Adams, L.S.; Smith, L.W.
1995-12-31
This paper provides an economic and technological perspective for use of large diameter coiled tubing relative to threaded tubulars for subsurface production tubing. This new advancement in coiled tubing technology can significantly reduce the expense for purchasing and installing production tubing while increasing hydrocarbon reserve recovery and providing a safer, more desirable ecosystem interrelation.
Dynamics of Subsurface and Surface Chemisorption for B, C, and N on Gaas and Inp
MENON, M.; Allen, Roland E.
1991-01-01
Using Hellmann-Feynman molecular-dynamics simulations, we have investigated interactions of first-row elements with the (110) surfaces of GaAs and InP. We find that these atoms prefer to occupy subsurface sites. The open structure...
SOLAR SUB-SURFACE FLUID DYNAMICS DESCRIPTORS DERIVED FROM GONG AND MDI DATA
Corbard, Thierry
SOLAR SUB-SURFACE FLUID DYNAMICS DESCRIPTORS DERIVED FROM GONG AND MDI DATA R. Komm National Solar Observatory 950 N. Cherry Ave., Tucson, AZ 85719 komm@noao.edu ABSTRACT We analyze GONG and MDI observations closer to the surface. GONG and MDI data show the same results. Di#11;erences occur mainly at high
Mineralization of ancient carbon in the subsurface of riparian forests Noel P. Gurwick,1,2
Gold, Art
Mineralization of ancient carbon in the subsurface of riparian forests Noel P. Gurwick,1,2 Daniel M C mineralization rates can support ecosystem-relevant rates of denitrification. Buried horizons and 14 C dating of dissolved inorganic carbon revealed that ancient SOC mineralization was common
Device and nondestructive method to determine subsurface micro-structure in dense materials
Sun, Jiangang (Westmont, IL)
2006-05-09
A method and a device to detect subsurface three-dimensional micro-structure in a sample by illuminating the sample with light of a given polarization and detecting light emanating from the sample that has a different direction of polarization by means of a confocal optical system.
Background: Subsurface Water Retention Technology (SWRT) Durable and easy to install: Water
Background: Subsurface Water Retention Technology (SWRT) Benefits Durable and easy to install: Water retaining membranes can last at least 40 years and can be installed quickly and costeffectively permeable marginal soils converting them to much higher production levels of food crops. Better water
Camassa, Roberto
Subsurface Trapping of Oil Plumes in Stratification: Laboratory Investigations David Adalsteinsson the Deepwater Horizon Gulf oil spill can be trapped as they rise through an ambient, strati ed uid. The addition and theory on trapping/escape of plumes containing an oil/water/surfactant mixture released into nonlinear
Subsurface Gravel Wetlands for the T t t f St tTreatment of Stormwater
Subsurface Gravel Wetlands for the T t t f St tTreatment of Stormwater ThomasThomas P. Ballestero Puls, University of New Hampshire Stormwater CenterUniversity of New Hampshire Stormwater Center NJASLA://www.unhsc.unh.edu effective stormwater management · Research and development of stormwater treatment systems· Research
Vermont, University of
Subsurface characterization of groundwater contaminated by landfill leachate using microbial in leachate-contaminated groundwater using only microbiological data for input. The data-driven methodology leachate. We modified a self-organizing map (SOM) to weight the input variables by their relative
Smerdon, Jason E.
Simulating heat transport of harmonic temperature signals in the Earth's shallow subsurface: Lower changes, freeze-thaw cycles, and hydrologic dynamics. It is uncertain, however, whether the reported atmospheric simulations. Citation: Smerdon, J. E., and M. Stieglitz (2006), Simulating heat transport
Texas at Austin, University of
OTC 15117 Multicomponent seismic data registration for subsurface characterization in the shallow acknowledgment of where and by whom the paper was presented. Abstract Using multicomponent ocean-bottom seismic images. The algorithm improves the matching of the two seismic volumes obtained by previous manual
Compositions of subsurface ices at the Mars Phoenix landing site Selby Cull,1
Skemer, Philip
Compositions of subsurface ices at the Mars Phoenix landing site Selby Cull,1 Raymond E. Arvidson,1 25 October 2010; accepted 2 November 2010; published 22 December 2010. [1] NASA's Phoenix Lander that broke during Robotic Arm operations; and a darker icy deposit. Spectra from the Phoenix Surface Stereo
Atomic-Scale Chemical, Physical and Electronic Properties of the Subsurface Hydride of Palladium
Weiss, Paul
2014-01-20
We employed low-temperature, extreme-high vacuum scanning tunneling microscopy (STM) to investigate the roles of subsurface hydride (H) and deuteride (D) in the surface reconstruction and surface reactivity of Pd{110}. Specifically, we gained the ability to tailor the surface structure of Pd{110} both by preparation method and by deposition of deuterium from the gas phase. We observed thiophene at low coverage on Pd{110} to determine its adsorption orientation and electronic structure through scanning tunneling spectroscopy (STS) – namely, conductance spectroscopy and differential conductance imaging. We developed the methods necessary to coadsorb D adatoms with thiophene molecules, and to induce the reaction of individual molecules with predefined subsurface H or D features. In the case of Pd{110}, we found a much more pronounced effect from subsurface D, as it is influenced by the surface directionality. These experiments facilitate an understanding of the role of surface and subsurface H and D in heterogeneous catalytic processes, specifically in the hydrodesulfuization (HDS) of thiophene, an important and ubiquitous component found to be detrimental to petroleum refining.
Hazen, Terry
SUBSURFACE CONTAMINANTS FOCUS AREA TECHNICAL ASSISTANCE TEAM to DEPARTMENT OF ENERGY ALBUQUERQUE volumes of soil containing mixed waste. Also, examine the risk management analysis and review cover storage issue. The remaining projects would be reviewed at a later date. The SCFA Lead Laboratory Manager
A superintegrable discrete harmonic oscillator based on bivariate Charlier polynomials
Vincent X. Genest; Hiroshi Miki; Luc Vinet; Guofu Yu
2015-11-30
A simple discrete model of the two dimensional isotropic harmonic oscillator is presented. It is superintegrable with su(2) as its symmetry algebra. It is constructed with the help of the algebraic properties of the bivariate Charlier polyno-mials. This adds to the other discrete superintegrable models of the oscillator based on Krawtchouk and Meixner orthogonal polynomials in several variables.
Nash Equilibria in Discrete Routing Games with Convex Latency Functions
Mavronicolas, Marios
Nash Equilibria in Discrete Routing Games with Convex Latency Functions Martin Gairing1 , Thomas L 20537, Nicosia CY-1678, Cyprus. mavronic@ucy.ac.cy Abstract. We study Nash equilibria in a discrete, this is the first time that mixed Nash equilibria for routing games have been studied in combination with non
Mechanical Integrators Derived from a Discrete Variational Principle
Marsden, Jerrold
Mechanical Integrators Derived from a Discrete Variational Principle Jerey M. Wendlandt1;2 Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720, USA Jerrold E. Marsden3 for mechanical system simulation are created by using discrete algorithms to approximate the continuous equations
Discrete Fourier transform in nanostructures using scattering Michael N. Leuenbergera)
Flatte, Michael E.
Discrete Fourier transform in nanostructures using scattering Michael N. Leuenbergera) and Michael that the discrete Fourier transform DFT can be performed by scattering a coherent particle or laser beam off the initial vector into the two-dimensional potential by means of electric gates, the Fourier
GRADIENT THEORY FOR PLASTICITY VIA HOMOGENIZATION OF DISCRETE DISLOCATIONS
Garroni, Adriana
GRADIENT THEORY FOR PLASTICITY VIA HOMOGENIZATION OF DISCRETE DISLOCATIONS ADRIANA GARRONI theory for plasticity from a model of discrete dislocations. We restrict our analysis to the case of a cylindrical symmetry for the crystal in exam, so that the mathematical formulation will involve a two
MS Thesis Defense A Combined Discrete-dislocation/Scale-
Grujicic, Mica
MS Thesis Defense A Combined Discrete-dislocation/Scale- dependent Crystal Plasticity Analysis of Deformation and Fracture in Nanomaterials A Combined Discrete-dislocation/Scale- dependent Crystal Plasticity der Giessen, Needleman 1995) Crystal Plasticity Model Results and ComparisonII. Micro-beam Bending
EQUILIBRIUM RECONSTRUCTION FROM DISCRETE MAGNETIC MEASUREMENTS IN A TOKAMAK
Faugeras, Blaise
EQUILIBRIUM RECONSTRUCTION FROM DISCRETE MAGNETIC MEASUREMENTS IN A TOKAMAK Blaise Faugeras (joint of the equilibrium in a Tokamak from discrete magnetic mea- surements. In order to solve this inverse problem we of a plasma in a Tokamak [1]. The state variable of interest in the modelization of such an equilibrium under
Discrete Applied Mathematics 85 (1998) 59-70 MATHEMATICS
Fomin, Fedor V.
1998-01-01
ELSEYIER DISCRETE APPLIED Discrete Applied Mathematics 85 (1998) 59-70 MATHEMATICS Helicopter problem on a graph in which one cop in a helicopter flying from vertex to vertex tries to catch the robber. In each of the following steps, Cop moves (flies by helicopter) to some vertex (not necessarily adjacent
Model Transformation with Hierarchical Discrete-Event Control
Model Transformation with Hierarchical Discrete- Event Control Thomas Huining Feng Electrical, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work permission. #12;Model Transformation with Hierarchical Discrete-Event Control by Huining Feng B.S. (Nanjing
DISCRETE DUALITY FINITE VOLUME SCHEMES FOR DOUBLY NONLINEAR DEGENERATE
operators 17 3.4. Penalization operator 19 3.5. Discrete convection operator 20 3.6. Projection operators establish the existence and uniqueness of entropy solutions. We then turn to the construction and analysis and well-posedness 5 3. Discrete duality finite volume (DDFV) schemes 13 3.1. Construction of "double
Utility Maximization under Model Uncertainty in Discrete Time
Nutz, Marcel
Utility Maximization under Model Uncertainty in Discrete Time Marcel Nutz January 14, 2014 Abstract We give a general formulation of the utility maximization problem under nondominated model uncertainty in discrete time and show that an optimal portfolio exists for any utility function
Discrete curvature and the Gauss-Bonnet theorem
Joakim Arnlind; Jens Hoppe; Gerhard Huisken
2010-01-13
For matrix analogues of embedded surfaces we define discrete curvatures and Euler characteristics, and a non-commutative Gauss--Bonnet theorem is shown to follow. We derive simple expressions for the discrete Gauss curvature in terms of matrices representing the embedding coordinates, and provide a large class of explicit examples illustrating the new notions.
September 2011 Discrete Wheeler-DeWitt Equation
Hamber, Herbert W.
September 2011 Discrete Wheeler-DeWitt Equation Herbert W. Hamber 1 Institut des Hautes Etudes, Cambridge CB3 0JG, United Kingdom. ABSTRACT We present a discrete form of the Wheeler-DeWitt equation, with the solutions to the lattice equations providing a suitable approximation to the continuum wave functional
ISS-Lyapunov Functions for Discontinuous Discrete-Time Systems
Paris-Sud XI, Université de
1 ISS-Lyapunov Functions for Discontinuous Discrete-Time Systems Lars Gr¨une and Christopher M. Kellett Abstract Input-to-State Stability (ISS) and the ISS-Lyapunov function have proved to be useful- ous discrete-time dynamics, we investigate ISS-Lyapunov functions for such systems. ISS-Lyapunov
Institute of Operations Research Discrete Optimization and Logistics
Al Hanbali, Ahmad
Institute of Operations Research Discrete Optimization and Logistics 1 Prof. Dr. Stefan Nickel Health Care Logistics: Overview Health Care Logistics 11/28/2013 #12;Institute of Operations Research Discrete Optimization and Logistics 2 Prof. Dr. Stefan Nickel Health Care Logistics: Overview Health Care
NEPTUNIUM IV AND V SORPTIN TO END-MEMBER SUBSURFACE SEDIMENTS TO THE SAVANNAH RIVER SITE
Kaplan, D.
2009-11-13
Migration of Np through the subsurface is expected to be primarily controlled by sorption to sediments. Therefore, understanding and quantifying Np sorption to sediments and sediments from the Savannah River Site (SRS) is vital to ensure safe disposal of Np bearing wastes. In this work, Np sorption to two sediments representing the geological extremes with respect to sorption properties expected in the SRS subsurface environment (named 'subsurface sandy sediment' and 'subsurface clayey sediment') was examined under a variety of conditions. First a series of baseline sorption tests at pH 5.5 under an oxic atmosphere was performed to understand Np sorption under typical subsurface conditions. These experiments indicated that the baseline K{sub d} values for the subsurface sandy and subsurface clayey sediments are 4.26 {+-} 0.24 L kg{sup -1} and 9.05 {+-} 0.61 L kg{sup -1}, respectively. These Np K{sub d} values of SRS sediments are the first to be reported since Sheppard et al. (1979). The previous values were 0.25 and 0.16 L kg{sup -1} for a low pH sandy sediment. To examine a possible range of K{sub d} values under various environmental scenarios, the effects of natural organic matter (NOM, also a surrogate for cellulose degradation products), the presence of various chemical reductants, and an anaerobic atmosphere on Np sorption were examined. The presence of NOM resulted in an increase in the Np K{sub d} values for both sediments. This behavior is hypothesized to be the result of formation of a ternary Np-NOM-sediment complex. Slight increases in the Np sorption (K{sub d} 13-24 L kg{sup -1}) were observed when performing experiments in the presence of chemical reductants (dithionite, ascorbic acid, zero-valent iron) or under anaerobic conditions. Presumably, the increased sorption can be attributed to a slight reduction of Np(V) to Np(IV), the stronger sorbing form of Np. The most significant result of this study is the finding that Np weakly sorbs to both end member sediments and that Np only has a slight tendency to reduce to its stronger sorbing form, even under the most strongly reducing conditions expected under natural SRS conditions. Also, it appears that pH has a profound effect on Np sorption. Based on the these new measurements and the revelations about Np redox chemistry, the following changes to 'Best K{sub d}' values, as defined in Kaplan (2006), for SRS performance assessment calculations are recommended.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Hwang, C.; Copeland, A.; Lucas, Susan; Lapidus, Alla; Barry, Kerrie W.; Glavina del Rio, T.; Dalin, Eileen; Tice, Hope; Pitluck, S.; Sims, David R.; et al
2015-01-22
We report the genome sequence of Anaeromyxobacter sp. Fw109-5, isolated from nitrate- and uranium-contaminated subsurface sediment of the Oak Ridge Integrated Field-Scale Subsurface Research Challenge (IFC) site, Oak Ridge Reservation, TN. The bacterium’s genome sequence will elucidate its physiological potential in subsurface sediments undergoing in situ uranium bioremediation and natural attenuation.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Hwang, C.; Copeland, A.; Lucas, S.; Lapidus, A.; Barry, K.; Glavina del Rio, T.; Dalin, E.; Tice, H.; Pitluck, S.; Sims, D.; et al
2015-01-22
We report the genome sequence of Anaeromyxobacter sp. Fw109-5, isolated from nitrate- and uranium-contaminated subsurface sediment of the Oak Ridge Integrated Field-Scale Subsurface Research Challenge (IFC) site, Oak Ridge Reservation, TN. The bacterium’s genome sequence will elucidate its physiological potential in subsurface sediments undergoing in situ uranium bioremediation and natural attenuation.
d li d l iModeling and Solution Issues in Discrete Event Simulationin Discrete Event Simulation
Grossmann, Ignacio E.
// / Flexsim: http://www.flexsim.com/ Witness: http://www.witness-for-simulation.com/ ProModel: httpd li d l iModeling and Solution Issues in Discrete Event Simulationin Discrete Event Simulation of a real system. Simulation helps to predict performance test ideas eliminateSimulation helps to predict
Kostka, Joel [Florida State University; Green, Stefan [Florida State University, Tallahassee; Wu, Wei-min [Stanford University; Criddle, Craig [Stanford University; Watson, David B [ORNL; Jardine, Philip M [ORNL
2009-07-01
Long-term field manipulation experiments investigating the effects of subsurface redox conditions on the fate and transport of soluble uranium(VI) were conducted over a 3 year period at the Oak Ridge Integrated Field Research Center (OR-IFRC) in Oak Ridge, TN. In the highly contaminated source zone, introduction of ethanol to the subsurface stimulated native denitrifying, sulfate-reducing, iron-reducing and fermentative microorganisms and reduced U to below 0.03 mg/L. Subsequently, oxygen and nitrate were experimentally re-introduced into the subsurface to examine the potential for re-oxidation and re-mobilization of U(IV). Introduction of oxygen or nitrate caused changes in subsurface geochemistry and re-oxidation of U. After reoxidation, the subsurface experienced several months of starvation conditions before ethanol injection was restored to reduce the treatment zone. Subsurface microorganisms were characterized by community fingerprinting, targeted population analyses, and quantitative PCR of key functional groups in 50 samples taken during multiple phases of field manipulation. Statistical analysis confirmed the hypothesis that the microbial community would co-vary with the shifts in the subsurface geochemistry. The level of hydraulic connectivity of sampling wells to the injection well was readily tracked by microbial community analysis. We demonstrate quantitatively that specific populations, especially Desulfosporosinus, are heavily influenced by geochemical conditions and positively correlate with the immobilization of uranium. Following nitrate reoxidation, populations of Fe(II)-oxidizing, nitrate reducing organisms (Thiobacillus) showed an increase in relative abundance.
Reeves, Eoghan
2010-01-01
This thesis presents the results of four discrete investigations into processes governing the organic and inorganic chemical composition of seafloor hydrothermal fluids in a variety of geologic settings. Though Chapters 2 ...
Discrete Scale Relativity And SX Phoenicis Variable Stars
R. L. Oldershaw
2009-06-18
Discrete Scale Relativity proposes a new symmetry principle called discrete cosmological self-similarity which relates each class of systems and phenomena on a given Scale of nature's discrete cosmological hierarchy to the equivalent class of analogue systems and phenomena on any other Scale. The new symmetry principle can be understood in terms of discrete scale invariance involving the spatial, temporal and dynamic parameters of all systems and phenomena. This new paradigm predicts a rigorous discrete self-similarity between Stellar Scale variable stars and Atomic Scale excited atoms undergoing energy-level transitions and sub-threshold oscillations. Previously, methods for demonstrating and testing the proposed symmetry principle have been applied to RR Lyrae, Delta Scuti and ZZ Ceti variable stars. In the present paper we apply the same analytical methods and diagnostic tests to a new class of variable stars: SX Phoenicis variables. Double-mode pulsators are shown to provide an especially useful means of testing the uniqueness and rigor of the conceptual principles and discrete self-similar scaling of Discrete Scale Relativity.
Li, L.
2009-01-01
phase transformation and biomass accumulation associatedMineral Transformation and Biomass Accumulation Associatedof new mineral phases and biomass. Word count: 5496 (text) +
Li, L.
2009-01-01
iron(III) oxyhydroxides: effects of mineral solubility andMineral Transformation and Biomass Accumulation Associatedthe accumulation of new mineral phases and biomass. Word
Wave Equations for Discrete Quantum Gravity
Gudder, Stan
2015-01-01
This article is based on the covariant causal set ($c$-causet) approach to discrete quantum gravity. A $c$-causet $x$ is a finite partially ordered set that has a unique labeling of its vertices. A rate of change on $x$ is described by a covariant difference operator and this operator acting on a wave function forms the left side of the wave equation. The right side is given by an energy term acting on the wave function. Solutions to the wave equation corresponding to certain pairs of paths in $x$ are added and normalized to form a unique state. The modulus squared of the state gives probabilities that a pair of interacting particles is at various locations given by pairs of vertices in $x$. We illustrate this model for a few of the simplest nontrivial examples of $c$-causets. Three forces are considered, the attractive and repulsive electric forces and the strong nuclear force. Large models get much more complicated and will probably require a computer to analyze.
Wave Equations for Discrete Quantum Gravity
Stan Gudder
2015-08-29
This article is based on the covariant causal set ($c$-causet) approach to discrete quantum gravity. A $c$-causet $x$ is a finite partially ordered set that has a unique labeling of its vertices. A rate of change on $x$ is described by a covariant difference operator and this operator acting on a wave function forms the left side of the wave equation. The right side is given by an energy term acting on the wave function. Solutions to the wave equation corresponding to certain pairs of paths in $x$ are added and normalized to form a unique state. The modulus squared of the state gives probabilities that a pair of interacting particles is at various locations given by pairs of vertices in $x$. We illustrate this model for a few of the simplest nontrivial examples of $c$-causets. Three forces are considered, the attractive and repulsive electric forces and the strong nuclear force. Large models get much more complicated and will probably require a computer to analyze.
The Transmission Property of the Discrete Heisenberg Ferromagnetic Spin Chain
Qing Ding; Wei Lin
2008-01-14
We present a mechanism for displaying the transmission property of the discrete Heisenberg ferromagnetic spin chain (DHF) via a geometric approach. By the aid of a discrete nonlinear Schr\\"odinger-like equation which is the discrete gauge equivalent to the DHF, we show that the determination of transmitting coefficients in the transmission problem is always bistable. Thus a definite algorithm and general stochastic algorithms are presented. A new invariant periodic phenomenon of the non-transmitting behavior for the DHF, with a large probability, is revealed by an adoption of various stochastic algorithms.
Generalized discrete orbit function transforms of affine Weyl groups
Tomasz Czy?ycki; Ji?í Hrivnák
2014-11-14
The affine Weyl groups with their corresponding four types of orbit functions are considered. Two independent admissible shifts, which preserve the symmetries of the weight and the dual weight lattices, are classified. Finite subsets of the shifted weight and the shifted dual weight lattices, which serve as a sampling grid and a set of labels of the orbit functions, respectively, are introduced. The complete sets of discretely orthogonal orbit functions over the sampling grids are found and the corresponding discrete Fourier transforms are formulated. The eight standard one-dimensional discrete cosine and sine transforms form special cases of the presented transforms.
Conceptual Model of Iodine Behavior in the Subsurface at the Hanford Site
Truex, Michael J.; Lee, Brady D.; Johnson, Christian D.; Qafoku, Nikolla P.; Last, George V.; Lee, Michelle H.; Kaplan, Daniel I.
2015-09-01
The fate and transport of 129I in the environment and potential remediation technologies are currently being studied as part of environmental remediation activities at the Hanford Site. A conceptual model describing the nature and extent of subsurface contamination, factors that control plume behavior, and factors relevant to potential remediation processes is needed to support environmental remedy decisions. Because 129I is an uncommon contaminant, relevant remediation experience and scientific literature are limited. Thus, the conceptual model also needs to both describe known contaminant and biogeochemical process information and to identify aspects about which additional information needed to effectively support remedy decisions. this document summarizes the conceptual model of iodine behavior relevant to iodine in the subsurface environment at the Hanford site.
Vinegar, Harold J. (Bellaire, TX); Sandberg, Chester Ledlie (Palo Alto, CA)
2010-11-09
A heating system for a subsurface formation is described. The heating system includes a first heater, a second heater, and a third heater placed in an opening in the subsurface formation. Each heater includes: an electrical conductor; an insulation layer at least partially surrounding the electrical conductor; and an electrically conductive sheath at least partially surrounding the insulation layer. The electrical conductor is electrically coupled to the sheath at a lower end portion of the heater. The lower end portion is the portion of the heater distal from a surface of the opening. The first heater, the second heater, and the third heater are electrically coupled at the lower end portions of the heaters. The first heater, the second heater, and the third heater are configured to be electrically coupled in a three-phase wye configuration.
Switching Between Discrete and Continuous Models To Predict Genetic Activity
Weld, Daniel S.
Molecular biologists use a variety of models when they predict the behavior of genetic systems. A discrete model of the behavior of individual macromolecular elements forms the foundation for their theory of each system. ...
Analysis of steel silo structures on discrete supports
Li, Hongyu
The objective of this thesis is to broaden current knowledge of the strength and buckling/collapse of shells, with special reference to steel silo structures on discrete supports, and thus to provide design guidance of ...
Research on Combinatorial Statistics: Crossings and Nestings in Discrete Structures
Poznanovikj, Svetlana
2011-10-21
We study the distribution of combinatorial statistics that exhibit a structure of crossings and nesting in various discrete structures, in particular, in set partitions, matchings, and fillings of moon polyominoes with entries 0 and 1. Let pi and y...
AC transmission system planning choosing lines from a discrete set
Gilbertson, Eric W.
2013-04-24
Transmission system planning (TSP) is a difficult nonlinear optimization problem involving non-convex quadratic terms, as well as discrete variables. We extend prior results for linear relaxations, drawing on a preliminary ...
Design of discrete-time filters for efficient implementation
Wei, Dennis
2011-01-01
The cost of implementation of discrete-time filters is often strongly dependent on the number of non-zero filter coefficients or the precision with which the coefficients are represented. This thesis addresses the design ...
Discrete Feature Approach for Heterogeneous Reservoir Production Enhancement
Dershowitz, William S.; Curran, Brendan; Einstein, Herbert; LaPointe, Paul; Shuttle, Dawn; Klise, Kate
2002-07-26
The report presents summaries of technology development for discrete feature modeling in support of the improved oil recovery (IOR) for heterogeneous reservoirs. In addition, the report describes the demonstration of these technologies at project study sites.
2-D discrete element modeling of unconsolidated sandstones
Franquet Barbara, Javier Alejandro
2001-01-01
In this work unconsolidated sands saturated with heavy oil were modeled using a discrete element numerical model, (DEM). The DEM code was built in Mathematica ? programming language. The strain-stress behavior of biaxial ...
POLYHEDRAL REPRESENTATION OF DISCRETE MORSE ETHAN D. BLOCH
Bloch, Ethan
POLYHEDRAL REPRESENTATION OF DISCRETE MORSE FUNCTIONS ETHAN D. BLOCH Abstract. It is proved during a sabbatical when parts of this paper were written. 1 #12;2 ETHAN D. BLOCH Forman defines an index
Double-distribution-function discrete Boltzmann model for combustion
Chuandong Lin; Aiguo Xu; Guangcai Zhang; Yingjun Li
2015-11-11
A 2-dimensional discrete Boltzmann model for combustion is presented. Mathematically, the model is composed of two coupled discrete Boltzmann equations for two species and a phenomenological equation for chemical reaction process. Physically, the model is equivalent to a reactive Navier-Stokes model supplemented by a coarse-grained model for the thermodynamic nonequilibrium behaviours. This model adopts 16 discrete velocities. It works for both subsonic and supersonic combustion phenomena with flexible specific heat ratio. To discuss the physical accuracy of the coarse-grained model for nonequilibrium behaviours, three other discrete velocity models are used for comparisons. Numerical results are compared with analytical solutions based on both the first-order and second-order truncations of the distribution function. It is confirmed that the physical accuracy increases with the increasing moment relations needed by nonequlibrium manifestations. Furthermore, compared with the single distribution function model, this model can simulate more details of combustion.
Automatic Performance Optimization of the Discrete Fourier Transform
Franchetti, Franz
Automatic Performance Optimization of the Discrete Fourier Transform on Distributed Memory {franzf,pueschel}@ece.cmu.edu Abstract. This paper introduces a formal framework for automatically. Using a tagging mechanism and formula rewriting, we extend SPIRAL to automatically generate parallelized
Finding discrete logarithms with a set orbit distinguisher
International Association for Cryptologic Research (IACR)
or a prime order 1 #12;subgroup of an elliptic curve group, and a standard assumption in these groups outline algorithms for computing discrete logarithms. The theme in each case is that given a polynomial
Dual Domain Echo Cancellers for Multirate Discrete Multitone Systems
Champagne, Benoît
Dual Domain Echo Cancellers for Multirate Discrete Multitone Systems Neda Ehtiati and Beno Email:{neda.ehtiati, benoit.champagne}@mcgill.ca Abstract--Digital echo cancellers are used in duplex
On the solutions of generalized discrete Poisson Roman Werpachowski
On the solutions of generalized discrete Poisson equation Roman Werpachowski Center for Theoretical of the right-hand side g and will be analyzed elsewhere. 2 #12;2 Uniqueness theorem Theorem 1 Let x : Zd C
Resolution of grain scale interactions using the Discrete Element Method
Johnson, Scott M. (Scott Matthew), 1978-
2006-01-01
Granular materials are an integral part of many engineering systems. Currently, a popular tool for numerically investigating granular systems is the Discrete Element Method (DEM). Nearly all implementations of the DEM, ...
Neeway, James J.; Pierce, Eric M.; Freedman, Vicky L.; Ryan, Joseph V.; Qafoku, Nikolla
2014-08-04
The federal facilities located on the Hanford Site in southeastern Washington State have been used extensively by the U.S. government to produce nuclear materials for the U.S. strategic defense arsenal. Currently, the Hanford Site is under the stewardship of the U.S. Department of Energy (DOE) Office of Environmental Management (EM). A large inventory of radioactive and mixed waste resulting from the production of nuclear materials has accumulated, mainly in 177 underground single- and double-shell tanks located in the central plateau of the Hanford Site (Mann et al., 2001). The DOE-EM Office of River Protection (ORP) is proceeding with plans to immobilize and permanently dispose of the low-activity waste (LAW) fraction onsite in a shallow subsurface disposal facility (the Integrated Disposal Facility [IDF]). Pacific Northwest National Laboratory (PNNL) was contracted to provide the technical basis for estimating radionuclide release from the engineered portion of the IDF (the source term) as part of an immobilized low-activity waste (ILAW) glass testing program to support future IDF performance assessments (PAs).
Thermal wave image processing for characterization of subsurface of flaws in materials
Gopalan, K.; Gopalsami, N.
1993-08-01
Infrared images resulting from back-scattered thermal waves in composite materials are corrupted by instrument noise and sample heat-spread function. This paper demonstrates that homomorphic deconvolution and {open_quotes}demultiplication{close_quotes} result in enhanced image quality for characterization of subsurface flaws in Kevlar and graphics composites. The choice of processing depends on the material characteristics and the extent of noise in the original image.
Uranium Contamination in the Subsurface Beneath the 300 Area, Hanford Site, Washington
Peterson, Robert E.; Rockhold, Mark L.; Serne, R. Jeffrey; Thorne, Paul D.; Williams, Mark D.
2008-02-29
This report provides a description of uranium contamination in the subsurface at the Hanford Site's 300 Area. The principal focus is a persistence plume in groundwater, which has not attenuated as predicted by earlier remedial investigations. Included in the report are chapters on current conditions, hydrogeologic framework, groundwater flow modeling, and geochemical considerations. The report is intended to describe what is known or inferred about the uranium contamination for the purpose of making remedial action decisions.
Fernandes, Roland Anthony Savio
2009-05-15
Page 2.1 Transient smoke ring diffusion into a conducting halfspace, conductivity ? = 0.1 S/m. .............................................................................. 10 2.2 The relation of transmitter current with induced emf... generated by this switch-off is shown in figure 2.2. The magnetic flux threads through the earth and the emf associated with its abrupt switch off generates eddy currents within the subsurface. The geometry of the eddy current distribution is approximated...
Subsurface conditions description for the S-SX waste management area
WOOD, M.I.
1999-10-21
This document provides a discussion of the subsurface conditions relevant to the occurrence and migration of contaminants in the vadose zone and groundwater underlying the 241-5 and 241-SX tank farms This document provides a concise summary of existing information in support of characterization planning. This document includes a description of the available environmental contamination data and a limited qualitative interpretation of these data.
Nickelson, Reva A.; Richardson, John G.; Kostelnik, Kevin M.; Sloan, Paul A.
2006-04-18
Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.
Preliminary Criticality Safety Evaluation for In Situ Grouting in the Subsurface Disposal Area
Slate, Lawrence J; Taylor, Joseph Todd
2000-08-01
A preliminary criticality safety evaluation is presented for in situ grouting in the Subsurface Disposal Area (SDA) at the Idaho National Engineering Laboratory. The grouting materials evaluated are cement and paraffin. The evaluation determines physical and administrative controls necessary to preclude criticality and identifies additional information required for a final criticality safety evaluation. The evaluation shows that there are no criticality concerns with cementitious grout but a neutron poison such as boron would be required for the use of the paraffin matrix.
propagation1114 , when using active rather than passive sources of 1School of GeoSciences, University of Subsurface Science and Engineering), UK, 3British Geological Survey, Murchison House, Kings Buildings, West
Ornstein, R.L.
1993-06-01
Heavily halogenated hydrocarbons are one of the most prevalent classes of man-made recalcitrant environmental contaminants and often make their way into subsurface environments. Biodegradation of heavily chlorinated compounds in the deep subsurface often occurs at extremely slow rates because native enzymes of indigenous microbes are unable to efficiently metabolize such synthetic substances. Cost-effective engineering solutions do not exist for dealing with disperse and recalcitrant pollutants in the deep subsurface (i.e., ground water, soils, and sediments). Timely biodegradation of heavily chlorinated compounds in the deep subsurface may be best accomplished by rational redesign of appropriate enzymes that enhance the ability of indigenous microbes to metabolize these substances. The isozyme family cytochromes P450 are catalytically very robust and are found in all aerobic life forms and may be active in may anaerobes as well. The author is attempting to demonstrate proof-of-principle rational enzyme redesign of cytochromes P450 to enhance biodehalogenation.
Direct measurement of yield stress of discrete materials
S. H. Ebrahimnazhad Rahbari; J. Vollmer; S. Herminghaus; M. Brinkmann
2012-06-09
We present a novel computational method for direct measurement of yield stress of discrete materials. The method is well-suited for the measurement of jamming phase diagram of a wide range of discrete particle systems such as granular materials, foams, and colloids. We further successfully apply the method to evaluate the jamming phase diagram of wet granular material in order to demonstrates the applicability of the model.
Duane P. Moser; Ken Czerwinski; Charles E. Russell; Mavrik Zavarin
2010-07-13
This US Department of Energy (DOE) Environmental Remediation Sciences Project (ERSP) was designed to test fundamental hypotheses concerning the existence and nature of indigenous microbial populations of Nevada Test Site subsurface nuclear test/detonation cavities. Now called Subsurface Biogeochemical Research (SBR), this programâ??s Exploratory Research (ER) element, which funded this research, is designed to support high risk, high potential reward projects. Here, five cavities (GASCON, CHANCELLOR, NASH, ALEMAN, and ALMENDRO) and one tunnel (U12N) were sampled using bailers or pumps. Molecular and cultivation-based techniques revealed bacterial signatures at five sites (CHANCELLOR may be lifeless). SSU rRNA gene libraries contained diverse and divergent microbial sequences affiliated with known metal- and sulfur-cycling microorganisms, organic compound degraders, microorganisms from deep mines, and bacteria involved in selenate reduction and arsenite oxidation. Close relatives of Desulforudis audaxviator, a microorganism thought to subsist in the terrestrial deep subsurface on H2 and SO42- produced by radiochemical reactions, was detected in the tunnel waters. NTS-specific media formulations were used to culture and quantify nitrate-, sulfate-, iron-reducing, fermentative, and methanogenic microorganisms. Given that redox manipulations mediated by microorganisms can impact the mobility of DOE contaminants, our results should have implications for management strategies at this and other DOE sites.
Moser, Duane P.; Bruckner, Jim; Fisher, Jen; Czerwinski, Ken; Russell, Charles E.; Zavarin, Mavrik
2010-09-01
This U.S. Department of Energy (DOE) Environmental Remediation Sciences Project (ERSP) was designed to test fundamental hypotheses concerning the existence and nature of indigenous microbial populations of Nevada Test Site subsurface nuclear test/detonation cavities. Now called Subsurface Biogeochemical Research (SBR), this program’s Exploratory Research (ER) element, which funded this research, is designed to support high risk, high potential reward projects. Here, five cavities (GASCON, CHANCELLOR, NASH, ALEMAN, and ALMENDRO) and one tunnel (U12N) were sampled using bailers or pumps. Molecular and cultivation-based techniques revealed bacterial signatures at five sites (CHANCELLOR may be lifeless). SSU rRNA gene libraries contained diverse and divergent microbial sequences affiliated with known metal- and sulfur-cycling microorganisms, organic compound degraders, microorganisms from deep mines, and bacteria involved in selenate reduction and arsenite oxidation. Close relatives of Desulforudis audaxviator, a microorganism thought to subsist in the terrestrial deep subsurface on H2 and SO42- produced by radiochemical reactions, was detected in the tunnel waters. NTS-specific media formulations were used to culture and quantify nitrate-, sulfate-, iron-reducing, fermentative, and methanogenic microorganisms. Given that redox manipulations mediated by microorganisms can impact the mobility of DOE contaminants, our results should have implications for management strategies at this and other DOE sites.
Wang, Guohui; Um, Wooyong
2012-11-23
Highly alkaline nuclear waste solutions have been released from underground nuclear waste storage tanks and pipelines into the vadose zone at the U.S. Department of Energy’s Hanford Site in Washington, causing mineral dissolution and re-precipitation upon contact with subsurface sediments. High pH caustic NaNO3 solutions with and without dissolved Al were reacted with quartz sand through flow-through columns stepwise at 45, 51, and 89°C to simulate possible reactions between leaked nuclear waste solution and primary subsurface mineral. Upon reaction, Si was released from the dissolution of quartz sand, and nitrate-cancrinite [Na8Si6Al6O24(NO3)2] precipitated on the quartz surface as a secondary mineral phase. Both steady-state dissolution and precipitation kinetics were quantified, and quartz dissolution apparent activation energy was determined. Mineral alteration through dissolution and precipitation processes results in pore volume and structure changes in the subsurface porous media. In this study, the column porosity increased up to 40.3% in the pure dissolution column when no dissolved Al was present in the leachate, whereas up to a 26.5% porosity decrease was found in columns where both dissolution and precipitation were observed because of the presence of Al in the input solution. The porosity change was also confirmed by calculation using the dissolution and precipitation rates and mineral volume changes.
Performance Indicators for Uranium Bioremediation in the Subsurface: Basis and Assessment
Long, Philip E.; Yabusaki, Steven B.
2006-12-29
The purpose of this letter report is to identify performance indicators for in situ engineered bioremediation of subsurface uranium (U) contamination. This report focuses on in situ treatment of groundwater by biostimulation of extant in situ microbial populations (see http://128.3.7.51/NABIR/generalinfo/primers_guides/03_NABIR_primer.pdf for background information on bioremediation of metals and radionuclides). The treatment process involves amendment of the subsurface with an electron donor such as acetate, lactate, ethanol or other organic compound such that in situ microorganisms mediate the reduction of U(VI) to U(IV). U(VI) precipitates as uraninite or other insoluble U phase. Uranium is thus immobilized in place by such processes and is subject to reoxidation that may remobilize the reduced uranium. Related processes include augmenting the extant subsurface microbial populations, addition of electron acceptors, and introduction of chemically reducing materials such as zero-valent Fe. While metrics for such processes may be similar to those for in situ biostimulation, these related processes are not directly in the scope of this letter report.
Development of Enabling Scientific Tools to Characterize the Geologic Subsurface at Hanford
Kenna, Timothy C.; Herron, Michael M.
2014-07-08
This final report to the Department of Energy provides a summary of activities conducted under our exploratory grant, funded through U.S. DOE Subsurface Biogeochemical Research Program in the category of enabling scientific tools, which covers the period from July 15, 2010 to July 14, 2013. The main goal of this exploratory project is to determine the parameters necessary to translate existing borehole log data into reservoir properties following scientifically sound petrophysical relationships. For this study, we focused on samples and Ge-based spectral gamma logging system (SGLS) data collected from wells located in the Hanford 300 Area. The main activities consisted of 1) the analysis of available core samples for a variety of mineralogical, chemical and physical; 2) evaluation of selected spectral gamma logs, environmental corrections, and calibration; 3) development of algorithms and a proposed workflow that permits translation of log responses into useful reservoir properties such as lithology, matrix density, porosity, and permeability. These techniques have been successfully employed in the petroleum industry; however, the approach is relatively new when applied to subsurface remediation. This exploratory project has been successful in meeting its stated objectives. We have demonstrated that our approach can lead to an improved interpretation of existing well log data. The algorithms we developed can utilize available log data, in particular gamma, and spectral gamma logs, and continued optimization will improve their application to ERSP goals of understanding subsurface properties.
Sharma, M.L.; Luxmoore, R.J.; DeAngelis, R.; Ward, R.C.; Yeh, G.T.
1987-08-01
Water flow through hill slopes consisting of five soil layers, with varying spatial dependence in hydraulic characteristics in the lateral plane was simulated by solving Richards' equation in three dimensions under varying rainfall intensities and for two complexities of terrain. By concepts of similar media the variability in soil hydraulic characteristics was expressed by a single dimensionless parameter, the scaling factor ..cap alpha... The moments of log normally distributed ..cap alpha.. were set as: Mean = 1.0 and standard deviation = 1.0. Four cases of spatial dependence of ..cap alpha.. in the lateral plane were selected for simulation, using exponential variogram functions ranging in spatial structure from random (no spatial dependence) to large dependence (large correlation lengths). The simulations showed that the rates of subsurface flow from the 30/sup 0/ hillslope, during and following rainfall, were significantly enhanced with an increase in spatial dependence. Subsurface drainage was also increased with increases in rainfall intensity and slop complexity. For hill slopes the relative effects of spatial dependence in soil hydraulic characteristics was smaller with 30/sup 0/ horizontal pitching than without pitching. Hill slopes with a random distribution of hydraulic characteristics provided greater opportunity for soil units with differing water capacities to interact than in cases with spatially correlated distributions. This greater interaction is associated with a greater lag in subsurface flow generation. These studies illustrate some of the expected effects of spatial dependence of soil hydraulic characteristics of the integrated hydrologic response of land areas.
ORIGINAL PAPER Accumulation of vitamin E in potato (Solanum tuberosum)
Douches, David S.
ORIGINAL PAPER Accumulation of vitamin E in potato (Solanum tuberosum) tubers Elizabeth F. Crowell Springer Science+Business Media B.V. 2007 Abstract Vitamin E (tocopherol) is a powerful antioxidant Homogentisate phytyltransferase Á a-Tocopherol Á Metabolic engineering Introduction Vitamin E is an essential
Invited Paper Efficient transmission control based on carrier accumulation in
Chen, Ray
Invited Paper Efficient transmission control based on carrier accumulation in silicon slot photonic@ece.utexas.edu ABSTRACT We experimentally demonstrate an all-silicon optical transmission controller based. We perform a detailed DC characterization of the electro-optic device including the DC modulation
INTRODUCTION Urea accumulation is a generalized amphibian response to osmotic
Lee Jr., Richard E.
2969 INTRODUCTION Urea accumulation is a generalized amphibian response to osmotic challenge to increased plasma osmotic pressure during progressive dehydration (Muir et al., 2007). In nature, urea, upland habitats (Regosin et al., 2003). Urea is of obvious importance in the osmotic homeostasis
BWeb Notes for Chapter 4: Accumulating the Flows
Ford, Andrew
of the Commons: Misperceptions of Feedback and Policies for Sustainable Development, System Dynamics Review, 16 the effect of the flows. For one reason or another, subjects will misread the impact of the flows). The failure to judge the accumulation has profound importance for environmental systems, especially systems
SEDIMENT AND NUTRIENT ACCUMULATION WITHIN LOWLAND BOTTOMLAND ECOSYSTEMS
SEDIMENT AND NUTRIENT ACCUMULATION WITHIN LOWLAND BOTTOMLAND ECOSYSTEMS: AN EXAMPLE FROM THE ATCHAFALAYA RIVER BASIN, LOUISIANA C.R. Hupp1 and G.B. Noe1 ABSTRACT Sediment and nutrient deposition, storage and interpretation of sedimentation/nutrient processes remain incomplete. Our studies located in the Coastal Plain
Protein accumulation and distribution in floodplain soils and river foam
Rilli, Matthias C.
REPORT Protein accumulation and distribution in floodplain soils and river foam Mary J. Harner,1 of particular organisms is unknown. In this study, we explore how a Bradford-reactive soil protein (BRSP in Montana, we extracted BRSP from soils and related the protein concentrations to the age of soil surfaces
The deep water gas charged accumulator and its possible replacements
Mir Rajabi, Mehdi
2006-04-12
rate fluid communication and fast response times are required.5 There is no static friction to be overcome as with a piston seal, and there is no piston mass to be accelerated, so response time for such accumulators are very short and less than 25ms...
Temperature-dependence of biomass accumulation rates during secondary succession
Gillooly, Jamie
on the biochemical kinetics of photosynthesis in chloroplasts. In addition, the rate of biomass accumulation one example of how emergent, ecosystem-level rate processes can be predicted based on the kinetics of uncertainty in terrestrial ecosystem models (e.g. Schimel et al. 2001; Houghton 2003, 2005). Additionally
Quantifying the surface-subsurface biogeochemical coupling during the VERTIGO ALOHA and K2 studies
Boyd, P.W.; Gall, M.P.; Silver, M.W.; Bishop, J.K.B.; Coale, Susan L.; Bidigare, Robert R.
2008-02-25
A central question addressed by the VERTIGO (VERtical Transport In the Global Ocean) study was 'What controls the efficiency of particle export between the surface and subsurface ocean'? Here, we present data from sites at ALOHA (N Central Pacific Gyre) and K2 (NW subarctic Pacific) on phytoplankton processes, and relate them via a simple planktonic foodweb model, to subsurface particle export (150-500 m). Three key factors enable quantification of the surface-subsurface coupling: a sampling design to overcome the temporal lag and spatial displacement between surface and subsurface processes; data on the size-partitioning of Net Primary Production (NPP) and subsequent transformations prior to export; estimates of the ratio of algal- to faecal-mediated vertical export flux. At ALOHA, phytoplankton were characterized by low stocks, NPP, F{sub v}/F{sub m} (N-limited), and were dominated by picoplankton. The HNLC waters at K2 were characterized by both two-fold changes in NPP and floristic shifts (high to low proportion of diatoms) between deployment 1 and 2. Prediction of export exiting the euphotic zone was based on size-partitioning of NPP, a copepod-dominated foodweb and a ratio of 0.2 (ALOHA) and 0.1 (K2) for algal:faecal particle flux. Predicted export was 20-22 mg POC m{sup -2} d{sup -1} at ALOHA (i.e. 10-11% NPP (0-125 m); 1.1-1.2 x export flux at 150 m (E{sub 150}). At K2, export was 111 mg C m{sup -2} d{sup -1} (21% NPP (0-50 m); 1.8 x E{sub 150}) and 33 mg POC m{sup -2} d{sup -1} (11% NPP, 0-55 m); 1.4 x E{sub 150}) for deployments 1 and 2, respectively. This decrease in predicted export at K2 matches the observed trend for E{sub 150}. Also, the low attenuation of export flux from 60 to 150 m is consistent with that between 150 to 500 m. This strong surface-subsurface coupling suggests that phytoplankton productivity and floristics play a key role at K2 in setting export flux, and moreover that pelagic particle transformations by grazers strongly influence to what extent sinking particles are further broken down in the underlying waters of the Twilight Zone.
Department of Electrical Engineering and Computer Science Discrete Event Systems Group
Tilbury, Dawn
Department of Electrical Engineering and Computer Science 1 Discrete Event Systems Group A Discrete 2000 #12;Department of Electrical Engineering and Computer Science 2 Discrete Event Systems Group of Electrical Engineering and Computer Science 3 Discrete Event Systems Group Requirements for Industrial
Bounds for the price of discrete arithmetic Asian options M. Vanmaele
Vanmaele, Michèle
on discrete averaging which is the normal specification in real contracts. Discrete arithmetic Asian optionsBounds for the price of discrete arithmetic Asian options M. Vanmaele , G. Deelstra , J. Liinev , J.Goovaerts@econ.kuleuven.ac.be, Tel. +32 16 326750. #12;Bounds for the price of discrete arithmetic Asian options Abstract
The Discrete Operator Approach to the Numerical Solution of Partial Differential Equations
The Discrete Operator Approach to the Numerical Solution of Partial Differential Equations James C that performs a cer- tain calculation on a field. A field corresponds to any scalar or vector variable required = Discrete gradient operator I = Discrete integral operator L = Generic operator R = Discrete interpolant
Weber, Karrie A.; Bender, Kelly S.; Li, Yusong
2013-09-28
Microbially mediated metabolisms have been identified as a significant factor either directly or indirectly impacting the fate and transport of heavy metal/radionuclide contaminants. To date microorganisms have been isolated from contaminated environments. Examination of annotated finished genome sequences of many of these subsurface isolates from DOE sites, revealed evidence of prior viral infection. To date the role that viruses play influencing microbial mortality and the resulting community structure which directly influences biogeochemical cycling in soils and sedimentary environments remains poorly understood. The objective of this exploratory study was to investigate the role of viral infection of subsurface bacteria and the formation of contaminant-bearing viral particles. This objective was approached by examining the following working hypotheses: (i) subsurface microorganisms are susceptible to viral infections by the indigenous subsurface viral community, and (ii) viral surfaces will adsorb heavy metals and radionuclides. Our results have addressed basic research needed to accomplish the BER Long Term Measure to provide sufficient scientific understanding such that DOE sites would be able to incorporate coupled physical, chemical and biological processes into decision making for environmental remediation or natural attenuation and long-term stewardship by establishing viral-microbial relationships on the subsequent fate and transport of heavy metals and radionuclides. Here we demonstrated that viruses play a significant role in microbial mortality and community structure in terrestrial subsurface sedimentary systems. The production of viral-like particles within subsurface sediments in response to biostimulation with dissolved organic carbon and a terminal electron acceptor resulted in the production of viral-like particles. Organic carbon alone did not result in significant viral production and required the addition of a terminal electron acceptor (nitrate), indicating that nutrients are not limiting viral production, but rather substrates that can be converted into energy for host metabolism. Our results also revealed that cell abundance was not correlated to the mineralization of organic carbon, but rather viruses were positively correlated with carbon mineralization. This is a result of viral-mediated cell lysis and demonstrates that viruses are sensitive indicators of microbial activity. Viruses as an indicator of microbial activity was not unique to batch culture studies as results obtained from an in situ field experiment conducted at the DOE Old Rifle Field site. This study revealed that viral abundance increased in response to the injection of oxygenated groundwater and influx of dissolved organic carbon whereas cell abundance changes were minimal. However, the extent to which viral-mediated cell lysis alters organic matter pools subsequently influencing microbial community structure and biogeochemical function remains a critical question in subsurface biogeochemical cycling. The production of significant numbers of viruses in groundwater has implications for nanoparticulate metal as well as carbon transport in groundwater. We have demonstrated that the virus surface is reactive and will adsorb heavy metals. Thus viruses can promote colloidal contaminant mobility. Interestingly, the presence of heavy metals has a positive effect on infectivity of the phage, increasing phage infection which could lead to further production of viruses. Together, the results indicate that the sorption of metals to the surface of viruses could not only contribute to nanoparticulate metal as well as carbon transport but could also enhance infectivity further contributing to cell lysis which could subsequently influence biogeochemical cycling. As more viruses infect host microbial populations the high concentration of metals would enhance infection, resulting in cell lysis, and decreasing the metabolically active host population while yielding greater numbers of viruses capable of transporting contaminats. Additional studie
Accumulating Particles at the Boundaries of a Laminar Flow
Michael Schindler; Peter Talkner; Marcin Kostur; Peter Hanggi
2007-06-25
The accumulation of small particles is analyzed in stationary flows through channels of variable width at small Reynolds number. The combined influence of pressure, viscous drag and thermal fluctuations is described by means of a Fokker-Planck equation for the particle density. It is shown that in the limit of vanishing particle size a uniform particle distribution is always approached in the long time limit. For extended spherical particles, conditions are specified that lead to inhomogeneous densities and consequently to particle accumulation and depletion. Hereby the boundary conditions for the particle density play a decisive role: The centers of spherical particles must keep the minimal distance of their radius from the fluid boundaries. The normal components of the forces acting on the sphere then may assume finite values which are diffusively transported into the bulk of the fluid.
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergyPlan | Department of Energy 1Department ofLithium
Grossman, E.L.; Ammerman, J.W.; Suflita, J.M.
1997-12-31
The objectives of this study were to determine the factors controlling microbial activity and survival in the subsurface and, specifically, to determine whether microbial communities in aquitards and in aquifer microenvironments provide electron donors and/or acceptors that enhance microbial survival in aquifers. Although the original objectives were to focus on methane cycling, the authors pursued an opportunity to study sulfur cycling in aquifer systems, a process of much greater importance in microbial activity and survival, and in the mobility of metals in the subsurface. Furthermore, sulfur cycling is pertinent to the Subsurface Science Program`s study at Cerro Negro, New Mexico. The study combined field and laboratory approaches and microbiological, molecular, geochemical, and hydrogeological techniques. During drilling operations, sediments were collected aseptically and assayed for a variety of microorganisms and metabolic capabilities including total counts, viable aerobic heterotrophs, total anaerobic heterotrophs, sulfate reducing bacteria (SRB) and sulfate reduction activity (in situ and in slurries), methanogens, methanotrophs, and Fe- and S-oxidizers, among others. Geochemical analyses of sediments included organic carbon content and {sup 13}C/{sup 12}C ratio, sulfur chemistry (reduced sulfur, sulfate), {sup 34}S/{sup 32}S, {sup 13}C/{sup 12}C, {sup 14}C, tritium, etc. The authors drilled eight boreholes in the Eocene Yegua formation at four localities on the Texas A&M University campus using a hollow-stem auger drilling rig. The drilling pattern forms a T, with three well clusters along the dip direction and two along strike. Four boreholes were sampled for sediments and screened at the deepest sand interval encountered, and four boreholes were drilled to install wells in shallower sands. Boreholes range in depth from 8 to 31 m, with screened intervals ranging from 6 to 31 m. Below are the results of these field studies.
Are nonlinear discrete cellular automata compatible with quantum mechanics?
Hans-Thomas Elze
2015-05-14
We consider discrete and integer-valued cellular automata (CA). A particular class of which comprises "Hamiltonian CA" with equations of motion that bear similarities to Hamilton's equations, while they present discrete updating rules. The dynamics is linear, quite similar to unitary evolution described by the Schroedinger equation. This has been essential in our construction of an invertible map between such CA and continuous quantum mechanical models, which incorporate a fundamental discreteness scale. Based on Shannon's sampling theory, it leads, for example, to a one-to-one relation between quantum mechanical and CA conservation laws. The important issue of linearity of the theory is examined here by incorporating higher-order nonlinearities into the underlying action. These produce inconsistent nonlocal (in time) effects when trying to describe continuously such nonlinear CA. Therefore, in the present framework, only linear CA and local quantum mechanical dynamics are compatible.
Zimbelman, J.R.
1987-08-01
Viking Orbiter images of the Acheron Fossae on Mars are presented and analyzed, with an emphasis on the impact of image resolution on the interpretation. High-resolution (less than 10 m/pixel) images reveal small mounds which can be interpreted as aeolian dunes, but these features are not evident on images with resolution of 50 m/pixel or greater. Also reported are the results of a visual inspection of 527 usable high-resolution images: it is found that all of the morphological features identified can arise in the absence of subsurface volatiles. 21 references.
Three-phase heaters with common overburden sections for heating subsurface formations
Vinegar, Harold J. (Bellaire, TX)
2012-02-14
A heating system for a subsurface formation is described. The heating system includes three substantially u-shaped heaters with first end portions of the heaters being electrically coupled to a single, three-phase wye transformer and second end portions of the heaters being electrically coupled to each other and/or to ground. The three heaters may enter the formation through a first common wellbore and exit the formation through a second common wellbore so that the magnetic fields of the three heaters at least partially cancel out in the common wellbores.
Subsurface Temperature, Moisture, Thermal Conductivity and Heat Flux, Barrow, Area A, B, C, D
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Cable, William; Romanovsky, Vladimir
Subsurface temperature data are being collected along a transect from the center of the polygon through the trough (and to the center of the adjacent polygon for Area D). Each transect has five 1.5m vertical array thermistor probes with 16 thermistors each. This dataset also includes soil pits that have been instrumented for temperature, water content, thermal conductivity, and heat flux at the permafrost table. Area C has a shallow borehole of 2.5 meters depth is instrumented in the center of the polygon.
Subsurface Temperature, Moisture, Thermal Conductivity and Heat Flux, Barrow, Area A, B, C, D
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Cable, William; Romanovsky, Vladimir
2014-03-31
Subsurface temperature data are being collected along a transect from the center of the polygon through the trough (and to the center of the adjacent polygon for Area D). Each transect has five 1.5m vertical array thermistor probes with 16 thermistors each. This dataset also includes soil pits that have been instrumented for temperature, water content, thermal conductivity, and heat flux at the permafrost table. Area C has a shallow borehole of 2.5 meters depth is instrumented in the center of the polygon.
Subsurface Biogeochemical Research | U.S. DOE Office of Science (SC)
Office of Science (SC) Website
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thIWalter H.4Office of Science (SC)EPSCoR HomeSubsurface
Analysis of Hanle-effect signals observed in Si-channel spin accumulation devices
Takamura, Yota, E-mail: takamura@spin.pe.titech.ac.jp [Imaging Science and Engineering Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan); Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8552 (Japan); Akushichi, Taiju; Sadano, Adiyudha; Okishio, Takao; Shuto, Yusuke; Sugahara, Satoshi, E-mail: sugahara@isl.titech.ac.jp [Imaging Science and Engineering Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan)
2014-05-07
We reexamined curve-fitting analysis for spin-accumulation signals observed in Si-channel spin-accumulation devices, employing widely-used Lorentz functions and a new formula developed from the spin diffusion equation. A Si-channel spin-accumulation device with a high quality ferromagnetic spin injector was fabricated, and its observed spin-accumulation signals were verified. Experimentally obtained Hanle-effect signals for spin accumulation were not able to be fitted by a single Lorentz function and were reproduced by the newly developed formula. Our developed formula can represent spin-accumulation signals and thus analyze Hanle-effect signals.
Barrash, Warren
> EARTHQUAKE HAZARD analyses to determine location and uplift history of fault zones > GROUNDWATER studies. Students work on problems of water flow in the shallow subsurface using electrical
Green, Stefan [Florida State University; Prakash, Om [Florida State University; Jasrotia, Puja [Florida State University; Overholt, Will [Florida State University; Cardenas, Erick [Michigan State University, East Lansing; Hubbard, Daniela [Florida State University; Tiedje, James M. [Michigan State University, East Lansing; Watson, David B [ORNL; Schadt, Christopher Warren [ORNL; Brooks, Scott C [ORNL; Kostka, Joel [Florida State University
2011-01-01
The effect of long-term mixed-waste contamination, particularly uranium and nitrate, on the microbial community in the terrestrial subsurface was investigated at the field scale at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site in Oak Ridge, TN. The abundance, community composition, and distribution of groundwater microorganisms were examined across the site during two seasonal sampling events. At representative locations, subsurface sediment was also examined from two boreholes, one sampled from the most heavily contaminated area of the site and another from an area with low contamination. A suite of DNA- and RNA-based molecular tools were employed for community characterization, including quantitative PCR of ribosomal RNA and nitrite reductase genes, community composition fingerprinting analysis, and high-throughput pyrotag sequencing of rRNA genes. The results demonstrate that pH is a major driver of the subsurface microbial community structure, and denitrifying bacteria from the genus Rhodanobacter (class Gammaproteobacteria) dominate at low pH. The relative abundance of bacteria from this genus was positively correlated with lower pH conditions, and these bacteria were abundant and active in the most highly contaminated areas. Other factors, such as concentration of nitrogen species, oxygen and sampling season did not appear to strongly influence the distribution of Rhodanobacter. Results indicate that these organisms are acid-tolerant denitrifiers, well suited to the acidic, nitrate-rich subsurface conditions, and pH is confirmed as a dominant driver of bacterial community structure in this contaminated subsurface environment.
Computer aided analysis and synthesis for discrete robust control systems
Setijawan, Bambang
1994-01-01
of an interval discrete system. . 4 Nyquist plot of the system with a constant controller k = -3. . . . . 5 Definition of encirclement. . Page 27 28 30 6 Definition of enclosed points and regions. . 7 Definition of the number of encirclement and enclosure... unstable 1 Re marginally stable Fig. 1. Stability region for discrete time systems A general control system is presented in the following figure, r e + controller C(z) PLANT G(z) Fig. 2. A general form of control systems Any physical process...
Discrete Cosmological Self-Similarity And Delta Scuti Stars
R. L. Oldershaw
2008-10-08
Within the context of a fractal paradigm that emphasizes nature's well-stratified hierarchical organization, the delta Scuti class of variable stars is investigated for evidence of discrete cosmological self-similarity. Methods that were successfully applied to the RR Lyrae class of variable stars are used to identify Atomic Scale analogues to delta Scuti stars and their relevant range of energy levels. The mass, pulsation mode and fundamental oscillation period of a well-studied delta Scuti star are shown to be quantitatively self-similar to the counterpart parameters of a uniquely identified Atomic Scale analogue. Several additional tests confirm the specificity of the discrete fractal relationship.
Methodology for characterizing modeling and discretization uncertainties in computational simulation
ALVIN,KENNETH F.; OBERKAMPF,WILLIAM L.; RUTHERFORD,BRIAN M.; DIEGERT,KATHLEEN V.
2000-03-01
This research effort focuses on methodology for quantifying the effects of model uncertainty and discretization error on computational modeling and simulation. The work is directed towards developing methodologies which treat model form assumptions within an overall framework for uncertainty quantification, for the purpose of developing estimates of total prediction uncertainty. The present effort consists of work in three areas: framework development for sources of uncertainty and error in the modeling and simulation process which impact model structure; model uncertainty assessment and propagation through Bayesian inference methods; and discretization error estimation within the context of non-deterministic analysis.
Ye, Sheng; Li, Hongyi; Huang, Maoyi; Ali, Melkamu; Leng, Guoyong; Leung, Lai-Yung R.; Wang, Shaowen; Sivapalan, Murugesu
2014-07-21
Subsurface stormflow is an important component of the rainfall–runoff response, especially in steep terrain. Its contribution to total runoff is, however, poorly represented in the current generation of land surface models. The lack of physical basis of these common parameterizations precludes a priori estimation of the stormflow (i.e. without calibration), which is a major drawback for prediction in ungauged basins, or for use in global land surface models. This paper is aimed at deriving regionalized parameterizations of the storage–discharge relationship relating to subsurface stormflow from a top–down empirical data analysis of streamflow recession curves extracted from 50 eastern United States catchments. Detailed regression analyses were performed between parameters of the empirical storage–discharge relationships and the controlling climate, soil and topographic characteristics. The regression analyses performed on empirical recession curves at catchment scale indicated that the coefficient of the power-law form storage–discharge relationship is closely related to the catchment hydrologic characteristics, which is consistent with the hydraulic theory derived mainly at the hillslope scale. As for the exponent, besides the role of field scale soil hydraulic properties as suggested by hydraulic theory, it is found to be more strongly affected by climate (aridity) at the catchment scale. At a fundamental level these results point to the need for more detailed exploration of the co-dependence of soil, vegetation and topography with climate.
Not Available
1993-09-01
Surface and subsurface soil cleanup protocols for the Gunnison, Colorado, processing sits are summarized as follows: In accordance with EPA-promulgated land cleanup standards (40 CFR 192), in situ Ra-226 is to be cleaned up based on bulk concentrations not exceeding 5 and 15 pCi/g in 15-cm surface and subsurface depth increments, averaged over 100-m{sup 2} grid blocks, where the parent Ra-226 concentrations are greater than, or in secular equilibrium with, the Th-230 parent. A bulk interpretation of these EPA standards has been accepted by the Nuclear Regulatory Commission (NRC), and while the concentration of the finer-sized soil fraction less than a No. 4 mesh sieve contains the higher concentration of radioactivity, the bulk approach in effect integrates the total sample radioactivity over the entire sample mass. In locations where Th-230 has differentially migrated in subsoil relative to Ra-226, a Th-230 cleanup protocol has been developed in accordance with Supplemental Standard provisions of 40 CFR 192 for NRC/Colorado Department of Health (CDH) approval for timely implementation. Detailed elements of the protocol are contained in Appendix A, Generic Protocol from Thorium-230 Cleanup/Verification at UMTRA Project Processing Sites. The cleanup of other radionuclides or nonradiological hazards that pose a significant threat to the public and the environment will be determined and implemented in accordance with pathway analysis to assess impacts and the implications of ALARA specified in 40 CFR 192 relative to supplemental standards.
Intermediate-Scale Laboratory Experiments of Subsurface Flow and Transport Resulting from Tank Leaks
Oostrom, Martinus; Wietsma, Thomas W.
2014-09-30
Washington River Protection Solutions contracted with Pacific Northwest National Laboratory to conduct laboratory experiments and supporting numerical simulations to improve the understanding of water flow and contaminant transport in the subsurface between waste tanks and ancillary facilities at Waste Management Area C. The work scope included two separate sets of experiments: •Small flow cell experiments to investigate the occurrence of potential unstable fingering resulting from leaks and the limitations of the STOMP (Subsurface Transport Over Multiple Phases) simulator to predict flow patterns and solute transport behavior under these conditions. Unstable infiltration may, under certain conditions, create vertically elongated fingers potentially transporting contaminants rapidly through the unsaturated zone to groundwater. The types of leak that may create deeply penetrating fingers include slow release, long duration leaks in relatively permeable porous media. Such leaks may have occurred below waste tanks at the Hanford Site. •Large flow experiments to investigate the behavior of two types of tank leaks in a simple layered system mimicking the Waste Management Area C. The investigated leaks include a relatively large leak with a short duration from a tank and a long duration leak with a relatively small leakage rate from a cascade line.
Grisanti, Ames A.; Timpe, Ronald C.; Foster, H.J.; Eylands, Kurt E.; Crocker, Charlene R.
1997-12-31
Surface and subsurface contamination of soils by heavy metals, including Pb, Cr, Cu, Zn, and Cd, has become an area of concern for many industrial and government organizations (1). Conventional sampling and analysis techniques for soil provide a high degree of sensitivity and selectivity for individual analytes. However, obtaining a representative sampling and analysis from a particular site using conventional techniques is time consuming and costly (2). Additionally, conventional methods are difficult to implement in the field for in situ and/or real-time applications. Therefore, there is a need for characterization and monitoring techniques for heavy metals in soils which allow cost-effective, rapid, in situ measurements. Laser-induced breakdown spectroscopy (LIBS) has been used to successfully measure metals content in a variety of matrices (3-15) including soil (16,17). Under the Department of Energy (DOE) Federal Energy Technology Center (FETC) Industry Program, Science {ampersand} Engineering Associates (SEA) is developing a subsurface cone penetrometer (CPT) probe for heavy metals detection that employs LIBS (18). The LIES-CPT unit is to be applied to in situ, real-time sampling and analysis of heavy metals in soil. As part of its contract with DOE FETC, SEA is scheduled to field test its LIBS-CPT system in September 1997.
Riley, R.G.; Zachara, J.M. )
1992-04-01
This report identifies individual contaminants and contaminant mixtures that have been measured in the ground at 91 waste sites at 18 US Department of Energy (DOE) facilities within the weapons complex. The inventory of chemicals and mixtures was used to identify generic chemical mixtures to be used by DOE's Subsurface Science Program in basic research on the subsurface geochemical and microbiological behavior of mixed contaminants (DOE 1990a and b). The generic mixtures contain specific radionuclides, metals, organic ligands, organic solvents, fuel hydrocarbons, and polychlorinated biphenyls (PCBs) in various binary and ternary combinations. The mixtures are representative of in-ground contaminant associations at DOE facilities that are likely to exhibit complex geochemical behavior as a result of intercontaminant reactions and/or microbiologic activity stimulated by organic substances. Use of the generic mixtures will focus research on important mixed contaminants that are likely to be long-term problems at DOE sites and that will require cleanup or remediation. The report provides information on the frequency of associations among different chemicals and compound classes at DOE waste sites that require remediation.
Lopez de Victoria, G. (Puerto Rico Univ., Rio Piedras (Puerto Rico). Dept. of Biology)
1989-02-01
The chemotactic behavior of deep terrestrial subsurface bacteria toward amino acids, carbohydrates and trichloroethylene was assayed using a modification of the capillary method and bacterial enumeration by acridine orange direct counts. Eleven isolates of bacteria isolated from six different geological formations were investigated. A bimodal response rather than an absolute positive or negative response was observed in most assays. Most of the isolates were positively chemotactic to low concentrations of substrates and were repelled by high concentrations of the same substrate. However, this was not the case for trichloroethylene (TCE) which was mostly an attractant and elicited the highest responses in all the isolates when compared with amino acids and carbohydrates. The movement rates of these isolates in aseptic subsurface sediments in the absence and presence of TCE were also determined using a laboratory model. All of the isolates showed distinct response range, peak, and threshold concentrations when exposed to the same substrates suggesting that they are possibly different species as has been inferred from DNA homology studies. 101 refs., 4 figs., 57 tabs.
Atri, Dimitra
2015-01-01
Photosynthesis is a highly efficient mechanism developed by terrestrial life to utilize the energy from photons of solar origin for biological use. Subsurface regions are isolated from the photosphere, and consequently are incapable of utilizing this energy. This opens up the opportunity for life to cultivate alternative mechanisms in order to take advantage of other available energy sources. Studies have shown that in subsurface environments, life can use energy generated from geochemical and geothermal processes to sustain a minimal metabolism. Another mechanism is radiolysis, in which particles emitted by radioactive substances are indirectly utilized for metabolism. One such example is the bacterium fueled by radiation, found 2 miles deep in a South African mine, which consumes hydrogen formed from particles emitted by radioactive U, Th and K present in rock. An additional source of radiation in the subsurface environments is secondary particles, such as muons generated by Galactic Cosmic Rays (GCRs). It ...
EXPERIMENTAL METHODS TO ESTIMATE ACCUMULATED SOLIDS IN NUCLEAR WASTE TANKS
Duignan, M.; Steeper, T.; Steimke, J.
2012-12-10
The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream; Magnetic wand used to manually remove stainless steel solids from samples and the tank heel; Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas; Laser rangefinders to determine the volume and shape of the solids mounds; Core sampler to determine the stainless steel solids distribution within the solids mounds; Computer driven positioner that placed the laser rangefinders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet velocities were low. These devices and techniques were very effective to estimate the movement, location, and concentrations of the solids representing plutonium and are expected to perform well at a larger scale. The operation of the techniques and their measurement accuracies will be discussed as well as the overall results of the accumulated solids test.
High Efficiency Positron Accumulation for High-Precision Measurements
Hoogerheide, S Fogwell; Novitski, E; Gabrielse, G
2015-01-01
Positrons are accumulated within a Penning trap designed to make more precise measurements of the positron and electron magnetic moments. The retractable radioactive source used is weak enough to require no license for handling radioactive material and the radiation dosage one meter from the source gives an exposure several times smaller than the average radiation dose on the earth's surface. The 100 mK trap is mechanically aligned with the 4.2 K superconducting solenoid that produces a 6 tesla magnetic trapping field with a direct mechanical coupling.
The Role of Wave Energy Accumulation in Tropical Cyclogenesis over the Tropical North Atlantic
Webster, Peter J.
The Role of Wave Energy Accumulation in Tropical Cyclogenesis over the Tropical North Atlantic "wave energy"). Relative vorticity increases locally leading to an increase in the likelihood scales of interaction. The importance of wave energy accumulation for tropical cyclogenesis
Physics in discrete spaces (A): Space-Time organization
P. Peretto
2010-12-29
We put forward a model of discrete physical space that can account for the structure of space- time, give an interpretation to the postulates of quantum mechanics and provide a possible explanation to the organization of the standard model of particles.
Leptonic Dirac CP Violation Predictions from Residual Discrete Symmetries
Girardi, I; Stuart, Alexander J; Titov, A V
2015-01-01
Assuming that the observed pattern of 3-neutrino mixing is related to the existence of a (lepton) flavour symmetry, corresponding to a non-Abelian discrete symmetry group $G_f$, and that $G_f$ is broken to specific residual symmetries $G_e$ and $G_\
Leptonic Dirac CP Violation Predictions from Residual Discrete Symmetries
I. Girardi; S. T. Petcov; Alexander J. Stuart; A. V. Titov
2015-09-08
Assuming that the observed pattern of 3-neutrino mixing is related to the existence of a (lepton) flavour symmetry, corresponding to a non-Abelian discrete symmetry group $G_f$, and that $G_f$ is broken to specific residual symmetries $G_e$ and $G_\
Nash Equilibria in Discrete Routing Games with Convex Latency Functions
Mavronicolas, Marios
Nash Equilibria in Discrete Routing Games with Convex Latency Functions Martin Gairing Thomas L is determined by an arbitrary non-decreasing, non-constant and convex latency function . In a Nash equilib- rium on the link it chooses. To evaluate Nash equilibria, we formulate Social Cost as the sum of the users
Dynamic Limit Growth Indices in Discrete Time Tomasz R. Bielecki
Heller, Barbara
Dynamic Limit Growth Indices in Discrete Time Tomasz R. Bielecki 1 bielecki@iit.edu Igor Cialenco 1, Illinois Institute of Technology, Chicago, 60616 IL, USA 2 Institute of Mathematics, Jagiellonian propose a new class of mappings, called Dynamic Limit Growth Indices, that are designed to measure
DISCRETE-CONTINUUM MODELING OF METAL MATRIX COMPOSITES PLASTICITY
Devincre, Benoit
. For this reason, the pre- diction of the plastic properties of Metal Matrix Composites (MMCs) is some- times for plastic properties. On the one hand, the FE code treats the boundary value problem and cares of the conDISCRETE-CONTINUUM MODELING OF METAL MATRIX COMPOSITES PLASTICITY S. Groh1, B. Devincre1, F. Feyel2
Discrete dissipative localized modes in nonlinear magnetic metamaterials
Discrete dissipative localized modes in nonlinear magnetic metamaterials Nikolay N. Rosanov,1 effects in. References and links 1. N. Engheta and R. W. Ziolkowski, eds. Electromagnetic Metamaterials. Gorkunov, I. V. Shadrivov, and Yu. S. Kivshar, "Metamaterial tuning by manip- ulation of near
Cryptanalyzing a discrete-time chaos synchronization secure communication system
Gonzalo Alvarez; Fausto Montoya; Miguel Romera; Gerardo Pastor
2003-11-21
This paper describes the security weakness of a recently proposed secure communication method based on discrete-time chaos synchronization. We show that the security is compromised even without precise knowledge of the chaotic system used. We also make many suggestions to improve its security in future versions.
Verification in Loosely Synchronous Queue-Connected Discrete Timed Automata
Dang, Zhe
, the expressive power of timed automata has many limitations in modeling, since many real-time systems are simply. We look at a model of a queue system that consists of the following components: 1. Two discrete timed model for investigating verification problems of real-time sys- tems (see [1, 30] for surveys). However
Verification in Loosely Synchronous QueueConnected Discrete Timed Automata ?
Dang, Zhe
, the expressive power of timed automata has many limitations in modeling, since many realÂtime systems are simply. We look at a model of a queue system that consists of the following components: 1. Two discrete timed model for investigating verification problems of realÂtime sysÂ tems (see [1, 30] for surveys). However
Tensile damage response from discrete element virtual testing
Paris-Sud XI, Université de
Tensile damage response from discrete element virtual testing A. DELAPLACE LMT-Cachan, ENS Cachan conditions on brittle materials, damage can generally not be re- duced to a simple scalar. Microcrack into account the damage anisotropy in phenomenological models is a possible option, but the identification
Discrete wave turbulence of rotational capillary water waves
Adrian Constantin; Elena Kartashova; Erik Wahlén
2010-05-12
We study the discrete wave turbulent regime of capillary water waves with constant non-zero vorticity. The explicit Hamiltonian formulation and the corresponding coupling coefficient are obtained. We also present the construction and investigation of resonance clustering. Some physical implications of the obtained results are discussed.
Hamiltonian dynamics and constrained variational calculus: continuous and discrete settings
Manuel de Leon; Fernando Jimenez; David Martin de Diego
2012-01-01
The aim of this paper is to study the relationship between Hamiltonian dynamics and constrained variational calculus. We describe both using the notion of Lagrangian submanifolds of convenient symplectic manifolds and using the so-called Tulczyjew's triples. The results are also extended to the case of discrete dynamics and nonholonomic mechanics. Interesting applications to geometrical integration of Hamiltonian systems are obtained.
ENHANCING DISCRETE CHOICE DEMAND MODELING FOR DECISION-BASED DESIGN
Chen, Wei
the Decision-Based Design framework. Even though demand modeling techniques exist in market research, little design, in particular that facilitates engineering decision-making. In market research, two major demand1 ENHANCING DISCRETE CHOICE DEMAND MODELING FOR DECISION-BASED DESIGN In Press of ASME Journal
A DISCRETE WAVELET ANALYSIS OF FREAK WAVES IN THE OCEAN
measurement of landslide-generated impulse waves was presented in [2]. In fact, the measured results of continuous wave recordings made in the Sea of Japan during 19861990 by the Ship Research Institute of JapanA DISCRETE WAVELET ANALYSIS OF FREAK WAVES IN THE OCEAN EN-BING LIN AND PAUL C. LIU Received 25
ADAPTIVE DISCRETIZATION OF AN INTEGRO-DIFFERENTIAL EQUATION
Larsson, Stig
ADAPTIVE DISCRETIZATION OF AN INTEGRO-DIFFERENTIAL EQUATION MODELING QUASI-STATIC FRACTIONAL ORDER VISCOELASTICITY Klas Adolfsson Mikael Enelund Stig Larsson Department of Applied Mechanics, Chalmers University of Technology, SEÂ412 96 GÂ¨oteborg, Sweden, klas.adolfsson@chalmers.se Department of Applied Mechanics
Energy-Efficient Discrete Cosine Transform on Ronald Scrofano
Jang, Ju-Wook
Energy-Efficient Discrete Cosine Transform on FPGAs Ronald Scrofano Department of Computer Science is brought to mobile devices, it becomes important that it is possible to calculate the DCT in an energy-efficient the DCT with a linear array of PEs. This design is optimized for energy efficiency. We analyze the energy
Inverses of Multivariate Polynomial Matrices using Discrete Convolution
Young, R. Michael
Inverses of Multivariate Polynomial Matrices using Discrete Convolution R. Lobo Dept. of Elec Raleigh, NC 27695 Abstract-- A new method for inversion of rectangular matrices in a multivariate to multivariate polynomial system of equations is the subject of intensive research and has major applications
Integrating a discrete motion model into GMM based background subtraction
Wolf, Christian
consecutive frames minimizing a global energy function taking into account spatial and temporal re- lationships. A discrete approximative optical-flow like motion model is integrated into the energy function, for instance for track- ing algorithms. Most existing methods build an explicit background model either using
Generic Average Modeling and Simulation of Discrete Controllers
be advantageous to have the capability of running AC analysis of digitally controlled power systems on a general is suggested for the design of discrete controllers for switch mode systems. I. INTRODUCTION The current, in principle, to large signal (time domain) analysis. However, classical control design methods in power
Topological horseshoes in travelling waves of discretized nonlinear wave equations
Chen, Yi-Chiuan, E-mail: YCChen@math.sinica.edu.tw [Institute of Mathematics, Academia Sinica, Taipei 10617, Taiwan (China)] [Institute of Mathematics, Academia Sinica, Taipei 10617, Taiwan (China); Chen, Shyan-Shiou, E-mail: sschen@ntnu.edu.tw [Department of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan (China)] [Department of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan (China); Yuan, Juan-Ming, E-mail: jmyuan@pu.edu.tw [Department of Financial and Computational Mathematics, Providence University, Shalu, Taichung 43301, Taiwan (China)] [Department of Financial and Computational Mathematics, Providence University, Shalu, Taichung 43301, Taiwan (China)
2014-04-15
Applying the concept of anti-integrable limit to coupled map lattices originated from space-time discretized nonlinear wave equations, we show that there exist topological horseshoes in the phase space formed by the initial states of travelling wave solutions. In particular, the coupled map lattices display spatio-temporal chaos on the horseshoes.
Wave-packet continuum discretization for quantum scattering
O. A. Rubtsova; V. I. Kukulin; V. N. Pomerantsev
2015-01-15
A general approach to a solution of few- and many-body scattering problems based on a continuum-discretization procedure is described in detail. The complete discretization of continuous spectrum is realized using stationary wave packets which are the normalized states constructed from exact non-normalized continuum states. Projecting the wave functions and all scattering operators like $t$-matrix, resolvent, etc. on such a wave-packet basis results in a formulation of quantum scattering problem entirely in terms of discrete elements and linear equations with regular matrices. It is demonstrated that there is a close relation between the above stationary wave packets and pseudostates which are employed often to approximate the scattering states with a finite $L_2$ basis. Such a fully discrete treatment of complicated few- and many-body scattering problems leads to significant simplification of their practical solution. Also we get finite-dimensional approximations for complicated operators like effective interactions between composite particles constructed via the Feshbach-type projection formalism. As illustrations to this general approach we consider several important particular problems including multichannel scattering and scattering in the three-nucleon system within the Faddeev framework.
Double-distribution-function discrete Boltzmann model for combustion
Chuandong Lin; Aiguo Xu; Guangcai Zhang; Yingjun Li
2015-06-21
A 2-dimensional discrete Boltzmann model for combustion is presented. Mathematically, the model is composed of two coupled discrete Boltzmann equations for two species and a phenomenological evolution equation for chemical reaction process. Physically, the model is equivalent to a Navier-Stokes model supplemented by a coarse-grained model for the thermodynamic nonequilibrium behaviours. This model adopts $16$ discrete velocities. It works for both subsonic and supersonic combustion phenomena with flexible specific heat ratio. To discuss the physical accuracy of the coarse-grained model for nonequilibrium behaviours, three other discrete velocity models are used for comparisons. Numerical results are compared with analytical solutions based on both the first-order and second-order truncations of the distribution function. It is confirmed that the physical accuracy increases with the increasing moment relations needed by nonequlibrium manifestations. Furthermore, a criterion of transition from incomplete to complete combustion is obtained. Compared with the single distribution function model, this model can simulate incomplete combustion, decomposition and combination reactions.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Stollenwerk, A. J.; Gu, G.; Hurley, N.; Beck, B.; Spurgeon, K.; Kidd, T. E.
2015-03-01
We present evidence that subsurface carbon nanoparticles in Bi?Sr?CaCu?O8+? can be manipulated with nanometer precision using a scanning tunneling microscope. High resolution images indicate that most of the carbon particles remain subsurface after transport observable as a local increase in height as the particle pushes up on the surface. Tunneling spectra in the vicinity of these protrusions exhibit semiconducting characteristics with a band gap of approximately 1.8 eV, indicating that the incorporation of carbon locally alters the electronic properties near the surface.
Grain Accumulation of Selenium Species in Rice (Oryza sativa L.)
Carey, Anne-Marie; Scheckel, Kirk G.; Lombi, Enzo; Newville, Matt; Choi, Yongseong; Norton, Gareth J.; Price, Adam H.; Meharg, Andrew A.
2012-09-05
Efficient Se biofortification programs require a thorough understanding of the accumulation and distribution of Se species within the rice grain. Therefore, the translocation of Se species to the filling grain and their spatial unloading were investigated. Se species were supplied via cut flag leaves of intact plants and excised panicle stems subjected to a {+-} stem-girdling treatment during grain fill. Total Se concentrations in the flag leaves and grain were quantified by inductively coupled plasma mass spectrometry. Spatial accumulation was investigated using synchrotron X-ray fluorescence microtomography. Selenomethionine (SeMet) and selenomethylcysteine (SeMeSeCys) were transported to the grain more efficiently than selenite and selenate. SeMet and SeMeSeCys were translocated exclusively via the phloem, while inorganic Se was transported via both the phloem and xylem. For SeMet- and SeMeSeCys-fed grain, Se dispersed throughout the external grain layers and into the endosperm and, for SeMeSeCys, into the embryo. Selenite was retained at the point of grain entry. These results demonstrate that the organic Se species SeMet and SeMeSeCys are rapidly loaded into the phloem and transported to the grain far more efficiently than inorganic species. Organic Se species are distributed more readily, and extensively, throughout the grain than selenite.
Patterns and processes of wood debris accumulation in the Queets river basin, Washington
Montgomery, David R.
Patterns and processes of wood debris accumulation in the Queets river basin, Washington Tim B Mountains in NW Washington reveal basin-wide patterns of distinctive wood debris (WD) accumulations development. The classification of wood debris accumulations in the Queets river basin is based on physical
Dimensionnement et gestion d'un systme de stockage thermique par hydro-accumulation : application la
Paris-Sud XI, Université de
Dimensionnement et gestion d'un système de stockage thermique par hydro-accumulation : application de stockage thermique de type hydro-accumulation destiné à une chaufferie collective multi, mix-énergétique, stockage thermique, hydro-accumulation, dimensionnement optimal, gestion, graphe d
Discrete dragline attachment induces aggregation in spiderlings of a solitary species
Theraulaz, Guy
Discrete dragline attachment induces aggregation in spiderlings of a solitary species RAPHAEL and the experimental data shows that the discrete pattern of silk dragline attachment is the key mechanism involved
Siu, Ho Chit
2015-01-01
We present a discrete numerical approach for forward-modeling lightcurves from stellar occultations by planetary atmospheres. Our discrete approach provides a way to arbitrarily set atmospheric properties at any radius ...
Discrete Applied Mathematics 154 (2006) 16331639 www.elsevier.com/locate/dam
Hartke, Stephen
2006-01-01
Discrete Applied Mathematics 154 (2006) 16331639 www.elsevier.com/locate/dam Note The elimination. doi:10.1016/j.dam.2005.11.009 #12;1634 Stephen G. Hartke / Discrete Applied Mathematics 154 (2006
FOURIER PAIRS OF DISCRETE SUPPORT WITH LITTLE STRUCTURE MIHAIL N. KOLOUNTZAKIS
Kolountzakis, Mihalis
FOURIER PAIRS OF DISCRETE SUPPORT WITH LITTLE STRUCTURE MIHAIL N. KOLOUNTZAKIS Abstract. We give line of discrete support, whose Fourier Transform is also a measure of discrete support, yet this Fourier pair cannot be constructed by repeatedly applying the Poisson Summation Formula finitely many
A discrete fourth-order Lidstone problem with parameters Douglas R. Anderson a,*, Feliz Minhs b
Anderson, Douglas R.
A discrete fourth-order Lidstone problem with parameters Douglas R. Anderson a,*, Feliz Minhós b Symmetric Green's function Fixed points Fourth-order Discrete Beam Lidstone Semipositone a b s t r a c discrete fourth-order Lidstone boundary value problem with dependence on two parameters are given, using
Finite-Time Stability of Discrete-Time Nonlinear Systems: Analysis and Design
Finite-Time Stability of Discrete-Time Nonlinear Systems: Analysis and Design S. Mastellone, P. Dorato, C. T. Abdallah Abstract-- Finite-time stability of nonlinear discrete-time systems is studied we propose a new analysis result for fi- nite time stability of deterministic and stochastic discrete
HIPPO_discrete_continuous_Users_Guide_20121130 1 Revision Date: November 30, 2012
Discrete Flask and GC Sample GHG, Halocarbon, and Hydrocarbon Data (R_20121129) Summary: This data set results. Each row of the data file contains the results for all of measurements of a discrete sample / laboratory made a particular discrete measurement: 1 =AWAS/U.Miami, 2 = NWAS/NOAA+CU, 3 = PantherMSD/NOAA, 4
CERNA WORKING PAPER SERIES Patent quality and value in discrete and cumulative innovation
Paris-Sud XI, Université de
1 CERNA WORKING PAPER SERIES Patent quality and value in discrete and cumulative innovation Justus,version2-16Nov2010 #12;2 Patent Quality and Value in Discrete and Cumulative Innovation Cerna Working the relationship between patent quality and patent value in discrete and cumulative innovation. Using factor
Controllers for Discrete Event Systems via P. Madhusudan 1 and P. S. Thiagarajan 2 ?
Parthasarathy, Madhusudan
Controllers for Discrete Event Systems via Morphisms P. Madhusudan 1 and P. S. Thiagarajan 2 ? 1 the problem of synthesising controllers for discrete event systems. Traditionally this problem is tackled therein. From the controlÂtheoretic perspective, the modelling of discreteÂevent systems (DES
Averages along polynomial sequences in discrete nilpotent groups: singular Radon transforms
Ionescu, Alexandru D; Wainger, Stephen
2012-01-01
We consider a class of operators defined by taking averages along polynomial sequences in discrete nilpotent groups. In this paper we prove $L^2$ boundedness of discrete singular Radon transforms along general polynomial sequences in discrete nilpotent groups of step 2.
Stanford University
The construction of discretely conservative finite volume schemes that also globally conserve conservation law u t + x f(u) = 0 is approximated by the semi-discrete conservative scheme duj dt + 1 x fj+1 2 shown that shock waves can be fully resolved by non-dissipative discretizations of this type with a fine
Elsheikh, Ahmed H., E-mail: aelsheikh@ices.utexas.edu [Institute for Computational Engineering and Sciences (ICES), University of Texas at Austin, TX (United States); Institute of Petroleum Engineering, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Wheeler, Mary F. [Institute for Computational Engineering and Sciences (ICES), University of Texas at Austin, TX (United States)] [Institute for Computational Engineering and Sciences (ICES), University of Texas at Austin, TX (United States); Hoteit, Ibrahim [Department of Earth Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal (Saudi Arabia)] [Department of Earth Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal (Saudi Arabia)
2014-02-01
A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using Stochastic Ensemble Method (SEM). NS is an efficient sampling algorithm that can be used for Bayesian calibration and estimating the Bayesian evidence for prior model selection. Nested sampling has the advantage of computational feasibility. Within the nested sampling algorithm, a constrained sampling step is performed. For this step, we utilize HMC to reduce the correlation between successive sampled states. HMC relies on the gradient of the logarithm of the posterior distribution, which we estimate using a stochastic ensemble method based on an ensemble of directional derivatives. SEM only requires forward model runs and the simulator is then used as a black box and no adjoint code is needed. The developed HNS algorithm is successfully applied for Bayesian calibration and prior model selection of several nonlinear subsurface flow problems.
Audibert, J.M.E.; Lew, L.R.
1994-12-31
Large scale surface and subsurface contamination resulted from numerous releases of feed stock, process streams, waste streams, and final product at a major chemical plant. Soil and groundwater was contaminated by numerous compounds including lead, tetraethyl lead, ethylene dibromide, ethylene dichloride, and toluene. The state administrative order dictated that the site be investigated fully, that remedial alternative be evaluated, and that the site be remediated within a year period. Because of the acute toxicity and extreme volatility of tetraethyl lead and other organic compounds present at the site and the short time frame ordered by the regulators, innovative approaches were needed to carry out the remediation while protecting plant workers, remediation workers, and the public.
Barrier-free subsurface incorporation of 3d metal atoms into Bi(111) films
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Klein, C.; Vollmers, N. J.; Gerstmann, U.; Zahl, P.; Lukermann, D.; Jnawali, G.; Pfnur, H.; Sutter, P.; Tegenkamp, C.; Schmidt, W. G.; et al
2015-05-27
By combining scanning tunneling microscopy with density functional theory it is shown that the Bi(111) surface provides a well-defined incorporation site in the first bilayer that traps highly coordinating atoms such as transition metals (TMs) or noble metals. All deposited atoms assume exactly the same specific sevenfold coordinated subsurface interstitial site while the surface topography remains nearly unchanged. Notably, 3d TMs show a barrier-free incorporation. The observed surface modification by barrier-free subsorption helps to suppress aggregation in clusters. Thus, it allows a tuning of the electronic properties not only for the pure Bi(111) surface, but may also be observed formore »topological insulators formed by substrate-stabilized Bi bilayers.« less
Boswell, R.M.; Jewell, G.A. )
1988-08-01
Correlation and depositional environments of the Upper Devonian-Lower Mississippian Price-Rockwell delta complex are well understood for units along the outcrop belt in eastern West Virginia. However, the correlation of these units with the sequence of subsurface driller's sandstones is poorly known. Furthermore, little is known concerning the relationships of the well-developed Lower Mississippian hydrocarbon-bearing strata of southern West Virginia with equivalent units to the north. Regional analysis of over 700 gamma-ray well logs, combined with study of outcrops at Rowlesburg and Caldwell, West Virginia, provides insight into the nature of the Cloyd conglomerate, and the Berea, Weir, Squaw, and Big Injun sandstones and allows the refinement of the stratigraphic succession of the Price Formation in southern West Virginia. New members listed herein are as of yet information, pending publication of description of type sections from the Caldwell outcrop.
Krupka, Kenneth M.; Martin, Wayne J.
2001-07-23
Natural attenuation processes are commonly used for remediation of contaminated sites. A variety of natural processes occur without human intervention at all sites to varying rates and degrees of effectiveness to attenuate (decrease) the mass, toxicity, mobility, volume, or concentration of organic and inorganic contaminants in soil, groundwater, and surface water systems. The objective of this review is to identify potential technical investments to be incorporated in the Subsurface Contaminant Focus Area Strategic Plan for monitored natural attenuation. When implemented, the technical investments will help evaluate and implement monitored natural attenuation as a remediation option at DOE sites. The outcome of this review is a set of conclusions and general recommendations regarding research needs, programmatic guidance, and stakeholder issues pertaining to monitored natural attenuation for the DOE complex.
Kirwan-Taylor, H.; McCabe, G.H. [Battelle Seattle Research Center, WA (United States); Lesperance, A. [Pacific Northwest National Lab., Richland, WA (United States); Kauffman, J.; Serie, P.; Dressen, L. [EnvironIssues (United States)
1996-09-01
The US DOE is developing and deploying innovative technologies for cleaning up its contaminated facilities using a market-oriented approach. This report describes the activities of the Subsurface Contaminant Focus Area`s (SCFA) External Integration Team (EIT) in supporting DOE`s technology development program. The SCFA program for technology development is market-oriented, driven by the needs of end users. The purpose of EIT is to understand the technology needs of the DOE sites and identify technology acceptance criteria from users and other stakeholders to enhance deployment of innovative technologies. Stakeholders include regulators, technology users, Native Americans, and environmental and other interest groups. The success of this national program requires close coordination and communication among technology developers and stakeholders to work through all of the various phases of planning and implementation. Staff involved must be willing to commit significant amounts of time to extended discussions with the various stakeholders.
A Passive Probe for Subsurface Oceans and Liquid Water in Jupiter's Icy Moons
Romero-Wolf, Andrew; Maiwald, Frank; Heggy, Essam; Ries, Paul; Liewer, Kurt
2014-01-01
We describe an interferometric reflectometer method for passive detection of subsurface oceans and liquid water in Jovian icy moons using Jupiter's decametric radio emission (DAM). The DAM flux density exceeds 3,000 times the galactic background in the neighborhood of the Jovian icy moons, providing a signal that could be used for passive radio sounding. An instrument located between the icy moon and Jupiter could sample the DAM emission along with its echoes reflected in the ice layer of the target moon. Cross-correlating the direct emission with the echoes would provide a measurement of the ice shell thickness along with its dielectric properties. The interferometric reflectometer provides a simple solution to sub-Jovian radio sounding of ice shells that is complementary to ice penetrating radar measurements better suited to measurements in the anti-Jovian hemisphere that shadows Jupiter's strong decametric emission. The passive nature of this technique also serves as risk reduction in case of radar transmi...
Visual probes and methods for placing visual probes into subsurface areas
Clark, Don T.; Erickson, Eugene E.; Casper, William L.; Everett, David M.
2004-11-23
Visual probes and methods for placing visual probes into subsurface areas in either contaminated or non-contaminated sites are described. In one implementation, the method includes driving at least a portion of a visual probe into the ground using direct push, sonic drilling, or a combination of direct push and sonic drilling. Such is accomplished without providing an open pathway for contaminants or fugitive gases to reach the surface. According to one implementation, the invention includes an entry segment configured for insertion into the ground or through difficult materials (e.g., concrete, steel, asphalt, metals, or items associated with waste), at least one extension segment configured to selectively couple with the entry segment, at least one push rod, and a pressure cap. Additional implementations are contemplated.
Evaluation of a low-cost and accurate ocean temperature logger on subsurface mooring systems
Tian, Chuan; Deng, Zhiqun; Lu, Jun; Xu, Xiaoyang; Zhao, Wei; Xu, Ming
2014-06-23
Monitoring seawater temperature is important to understanding evolving ocean processes. To monitor internal waves or ocean mixing, a large number of temperature loggers are typically mounted on subsurface mooring systems to obtain high-resolution temperature data at different water depths. In this study, we redesigned and evaluated a compact, low-cost, self-contained, high-resolution and high-accuracy ocean temperature logger, TC-1121. The newly designed TC-1121 loggers are smaller, more robust, and their sampling intervals can be automatically changed by indicated events. They have been widely used in many mooring systems to study internal wave and ocean mixing. The logger’s fundamental design, noise analysis, calibration, drift test, and a long-term sea trial are discussed in this paper.
Hydraulic accumulator-compressor for geopressured enhanced oil recovery
Goldsberry, Fred L. (Spring, TX)
1988-01-01
A hydraulic accumulator-compressor vessel using geothermal brine under pressure as a piston to compress waste (CO.sub.2 rich) gas is used in a system having a plurality of gas separators in tandem to recover pipeline quality gas from geothermal brine. A first high pressure separator feeds gas to a membrance separator which separates low pressure waste gas from high pressure quality gas. A second separator produces low pressure waste gas. Waste gas from both separators is combined and fed into the vessel through a port at the top as the vessel is drained for another compression cycle. High pressure brine is then admitted into the vessel through a port at the bottom of the vessel. Check valves control the flow of low pressure waste gas into the vessel and high pressure waste gas out of the vessel.
Beltrami, Hugo
-specific diffusivity measurements greatly improved the accuracy of CO2 production estimates. We observed a consistent and close correspondence between calculated profile CO2 production and (independently measured) soil CO2 surface flux. The subsurface CO2 production estimates acquired using in situ gas diffusivity measurements
Hourdin, Chez Frédéric
GEOPHYSICAL RESEARCH LETTERS, VOL. 27, NO. 15, PAGES 22452248, AUGUST 1, 2000 Subsurface nuclear nuclear tests down to 1 kiloton (kt) TNT equivalent anywhere on the planet. The IMS is based upon four waves will help check for underground, underwater and atmospheric nuclear tests. The fourth network
2012 Groundwater Monitoring Report Central Nevada Test Area, Subsurface Corrective Action Unit 443
None
2013-04-01
The Central Nevada Test Area was the site of a 0.2- to 1-megaton underground nuclear test in 1968. The surface of the site has been closed, but the subsurface is still in the corrective action process. The corrective action alternative selected for the site was monitoring with institutional controls. Annual sampling and hydraulic head monitoring are conducted as part of the subsurface corrective action strategy. The site is currently in the fourth year of the 5-year proof-of-concept period that is intended to validate the compliance boundary. Analytical results from the 2012 monitoring are consistent with those of previous years. Tritium remains at levels below the laboratory minimum detectable concentration in all wells in the monitoring network. Samples collected from reentry well UC-1-P-2SR, which is not in the monitoring network but was sampled as part of supplemental activities conducted during the 2012 monitoring, indicate concentrations of tritium that are consistent with previous sampling results. This well was drilled into the chimney shortly after the detonation, and water levels continue to rise, demonstrating the very low permeability of the volcanic rocks. Water level data from new wells MV-4 and MV-5 and recompleted well HTH-1RC indicate that hydraulic heads are still recovering from installation and testing. Data from wells MV-4 and MV-5 also indicate that head levels have not yet recovered from the 2011 sampling event during which several thousand gallons of water were purged. It has been recommended that a low-flow sampling method be adopted for these wells to allow head levels to recover to steady-state conditions. Despite the lack of steady-state groundwater conditions, hydraulic head data collected from alluvial wells installed in 2009 continue to support the conceptual model that the southeast-bounding graben fault acts as a barrier to groundwater flow at the site.
Lin, Xueju; Kennedy, David W.; Fredrickson, Jim K.; Bjornstad, Bruce N.; Konopka, Allan
2012-02-01
The microbial diversity in subsurface sediments at the Hanford Site's 300 Area in southeastern Washington State was investigated by analyzing 21 samples recovered from depths that ranged from 9 to 52 m. Approximately 8000 non-chimeric Bacterial and Archaeal 16S rRNA gene sequences were analyzed across geological strata that contain a natural redox transition zone. These strata included the oxic coarse-grained Hanford formation, fine-grained oxic and anoxic Ringold Formation sediments, and the weathered basalt group. We detected 1233 and 120 unique bacterial and archaeal OTUs (Operational Taxonomic Units, defined at the 97% identity level). Microbial community structure and richness varied substantially across the different geological strata. Bacterial OTU richness (based upon Chao1 estimator) was highest (>700) in the upper Hanford formation, and declined to about 120 at the bottom of the Hanford formation. Just above the Ringold oxic-anoxic transition zone, richness was about 325 and declined to less than 50 in the deeper reduced zones. The Bacterial community in the oxic Hanford and Ringold Formations contained members of 9 major well-recognized phyla as well 30 as unusually high proportions of 3 candidate divisions (GAL15, NC10, and SPAM). The deeper Ringold strata were characterized by low OTU richness and a very high preponderance (ca. 90%) of Proteobacteria. The study has greatly expanded the intralineage phylogenetic diversity within some major divisions. These subsurface sediments have been shown to contain a large number of phylogenetically novel microbes, with substantial heterogeneities between sediment samples from the same geological formation.
A Many-Task Parallel Approach for Multiscale Simulations of Subsurface Flow and Reactive Transport
Scheibe, Timothy D.; Yang, Xiaofan; Schuchardt, Karen L.; Agarwal, Khushbu; Chase, Jared M.; Palmer, Bruce J.; Tartakovsky, Alexandre M.
2014-12-16
Continuum-scale models have long been used to study subsurface flow, transport, and reactions but lack the ability to resolve processes that are governed by pore-scale mixing. Recently, pore-scale models, which explicitly resolve individual pores and soil grains, have been developed to more accurately model pore-scale phenomena, particularly reaction processes that are controlled by local mixing. However, pore-scale models are prohibitively expensive for modeling application-scale domains. This motivates the use of a hybrid multiscale approach in which continuum- and pore-scale codes are coupled either hierarchically or concurrently within an overall simulation domain (time and space). This approach is naturally suited to an adaptive, loosely-coupled many-task methodology with three potential levels of concurrency. Each individual code (pore- and continuum-scale) can be implemented in parallel; multiple semi-independent instances of the pore-scale code are required at each time step providing a second level of concurrency; and Monte Carlo simulations of the overall system to represent uncertainty in material property distributions provide a third level of concurrency. We have developed a hybrid multiscale model of a mixing-controlled reaction in a porous medium wherein the reaction occurs only over a limited portion of the domain. Loose, minimally-invasive coupling of pre-existing parallel continuum- and pore-scale codes has been accomplished by an adaptive script-based workflow implemented in the Swift workflow system. We describe here the methods used to create the model system, adaptively control multiple coupled instances of pore- and continuum-scale simulations, and maximize the scalability of the overall system. We present results of numerical experiments conducted on NERSC supercomputing systems; our results demonstrate that loose many-task coupling provides a scalable solution for multiscale subsurface simulations with minimal overhead.
Does aspartic acid racemization constrain the depth limit of the subsurface biosphere?
Onstott, T. C.; Aubrey, A.D.; Kieft, T L; Silver, B J; Phelps, Tommy Joe; Van Heerden, E.; Opperman, D. J.; Bada, J L.
2014-01-01
Previous studies of the subsurface biosphere have deduced average cellular doubling times of hundreds to thousands of years based upon geochemical models. We have directly constrained the in situ average cellular protein turnover or doubling times for metabolically active micro-organisms based on cellular amino acid abundances, D/L values of cellular aspartic acid, and the in vivo aspartic acid racemization rate. Application of this method to planktonic microbial communities collected from deep fractures in South Africa yielded maximum cellular amino acid turnover times of ~89 years for 1 km depth and 27 C and 1 2 years for 3 km depth and 54 C. The latter turnover times are much shorter than previously estimated cellular turnover times based upon geochemical arguments. The aspartic acid racemization rate at higher temperatures yields cellular protein doubling times that are consistent with the survival times of hyperthermophilic strains and predicts that at temperatures of 85 C, cells must replace proteins every couple of days to maintain enzymatic activity. Such a high maintenance requirement may be the principal limit on the abundance of living micro-organisms in the deep, hot subsurface biosphere, as well as a potential limit on their activity. The measurement of the D/L of aspartic acid in biological samples is a potentially powerful tool for deep, fractured continental and oceanic crustal settings where geochemical models of carbon turnover times are poorly constrained. Experimental observations on the racemization rates of aspartic acid in living thermophiles and hyperthermophiles could test this hypothesis. The development of corrections for cell wall peptides and spores will be required, however, to improve the accuracy of these estimates for environmental samples.
Implementation of Quantum and Classical Discrete Fractional Fourier Transforms
Steffen Weimann; Armando Perez-Leija; Maxime Lebugle; Robert Keil; Malte Tichy; Markus Gräfe; Rene Heilmann; Stefan Nolte; Hector Moya-Cessa; Gregor Weihs; Demetrios N. Christodoulides; Alexander Szameit
2015-07-31
Fourier transforms are ubiquitous mathematical tools in basic and applied sciences. We here report classical and quantum optical realizations of the discrete fractional Fourier transform, a generalization of the Fourier transform. In the integrated configuration used in our experiments, the order of the transform is mapped onto the longitudinal coordinate, thus opening up the prospect of simultaneously observing all Transformation orders. In the context of classical optics, we implement discrete fractional Fourier transforms, both integer and fractional, of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to transform separable and highly entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools, such as quantum chemistry and biology, physics and mathematics.
Invariant discretization schemes for the shallow-water equations
Alexander Bihlo; Roman O. Popovych
2013-01-03
Invariant discretization schemes are derived for the one- and two-dimensional shallow-water equations with periodic boundary conditions. While originally designed for constructing invariant finite difference schemes, we extend the usage of difference invariants to allow constructing of invariant finite volume methods as well. It is found that the classical invariant schemes converge to the Lagrangian formulation of the shallow-water equations. These schemes require to redistribute the grid points according to the physical fluid velocity, i.e., the mesh cannot remain fixed in the course of the numerical integration. Invariant Eulerian discretization schemes are proposed for the shallow-water equations in computational coordinates. Instead of using the fluid velocity as the grid velocity, an invariant moving mesh generator is invoked in order to determine the location of the grid points at the subsequent time level. The numerical conservation of energy, mass and momentum is evaluated for both the invariant and non-invariant schemes.
Quantum Mechanics and Discrete Time from "Timeless" Classical Dynamics
H. -T. Elze
2003-07-03
We study classical Hamiltonian systems in which the intrinsic proper time evolution parameter is related through a probability distribution to the physical time, which is assumed to be discrete. - This is motivated by the ``timeless'' reparametrization invariant model of a relativistic particle with two compactified extradimensions. In this example, discrete physical time is constructed based on quasi-local observables. - Generally, employing the path-integral formulation of classical mechanics developed by Gozzi et al., we show that these deterministic classical systems can be naturally described as unitary quantum mechanical models. The emergent quantum Hamiltonian is derived from the underlying classical one. It is closely related to the Liouville operator. We demonstrate in several examples the necessity of regularization, in order to arrive at quantum models with bounded spectrum and stable groundstate.
Fast Computation Algorithm for Discrete Resonances among Gravity Waves
Elena Kartashova
2006-05-25
Traditionally resonant interactions among short waves, with large real wave-numbers, were described statistically and only a small domain in spectral space with integer wave-numbers, discrete resonances, had to be studied separately in resonators. Numerical simulations of the last few years showed unambiguously the existence of some discrete effects in the short-waves part of the wave spectrum. Newly presented model of laminated turbulence explains theoretically appearance of these effects thus putting a novel problem - construction of fast algorithms for computation of solutions of resonance conditions with integer wave-numbers of order $10^3$ and more. Example of such an algorithm for 4-waves interactions of gravity waves is given. Its generalization on the different types of waves is briefly discussed.
Directed assembly of discrete gold nanoparticle groupings usingbranched DNA scaffolds
Claridge, Shelley A.; Goh, Sarah L.; Frechet, Jean M.J.; Williams, Shara C.; Micheel, Christine M.; Alivisatos, A. Paul
2004-09-14
The concept of self-assembled dendrimers is explored for the creation of discrete nanoparticle assemblies. Hybridization of branched DNA trimers and nanoparticle-DNA conjugates results in the synthesis of nanoparticle trimer and tetramer complexes. Multiple tetramer architectures are investigated, utilizing Au-DNA conjugates with varying secondary structural motifs. Hybridization products are analyzed by gel electrophoresis, and discrete bands are observed corresponding to structures with increasing numbers of hybridization events. Samples extracted from each band are analyzed by transmission electron microscopy, and statistics compiled from micrographs are used to compare assembly characteristics for each architecture. Asymmetric structures are also produced in which both 5 and 10 nm Au particles are assembled on branched scaffolds.
A study of discrete and continuum joint modeling techniques
Jung, J.; Brown, S.R.
1992-05-01
This paper presents the results of a numerical and experimental study in which finite element and discrete element techniques were used to analyze a layered polycarbonate plate model subjected to uniaxial compression. Also, the two analysis techniques were used to compute the response of an eight meter diameter drift in jointed-rock. The drift was subjected to in-situ and far-field induced thermal stresses. The finite element analyses used a continuum rock model to represent the jointed-rock. A comparison of the analyses showed that the finite element continuum joint model consistently predicted less joint slippage than did the discrete element analyses, although far-field displacements compared well.
THREE-DIMENSIONAL DISCRETE ORDINATES REACTOR ASSEMBLY CALCULATIONS ON GPUS
Evans, Thomas M [ORNL; Joubert, Wayne [ORNL; Hamilton, Steven P [ORNL; Johnson, Seth R [ORNL; Turner, John A [ORNL; Davidson, Gregory G [ORNL; Pandya, Tara M [ORNL
2015-01-01
In this paper we describe and demonstrate a discrete ordinates sweep algorithm on GPUs. This sweep algorithm is nested within a multilevel comunication-based decomposition based on energy. We demonstrated the effectiveness of this algorithm on detailed three-dimensional critical experiments and PWR lattice problems. For these problems we show improvement factors of 4 6 over conventional communication-based, CPU-only sweeps. These sweep kernel speedups resulted in a factor of 2 total time-to-solution improvement.
Continuum and discrete models for unbalanced woven fabrics
Angela Madeo; Gabriele Barbagallo; Marco Valerio D'Agostino; Philippe Boisse
2015-09-15
The classical models used for describing the behavior of woven fabrics do not fully account for the whole set of phenomena that occur during the testing of such materials. This lack of precision is mainly due to the absence of energy terms related to the microstructural properties of the fabric and, in particular, to the bending stiffness of the yarns. In this paper it is shown that in the unbalanced fabrics the different bending stiffnesses of the warp and weft yarns produce macroscopic effects that are extremely visible as, for example, the asymmetric S-shape during a Bias Extension Test (BET). We propose to introduce a constrained micromorphic model and a discrete model that are able to account for i) the angle variation between warp and weft tows, ii) the unbalance in the bending stiffness of the yarns and iii) the relative slipping of the tows. The constrained micromorphic model is framed in the spirit of the Principle of Virtual Powers for the equilibrium of continuum bodies. A suitable constraint is introduced by means of Lagrange multipliers in the strain energydens ity and the resulting constrained model tends a particular second gradientone. The main advantage of using such constrained micromorphic model is that the kinematical and traction boundary conditions that can be imposed on the boundary of the considered body take a natural and unique meaning. The discrete model is set up by opportunely interconnecting Euler-Bernoulli beams with different bending stiffnesses in the two directions by means of rotational and translational elastic springs. The main advantage of such discrete model is that the slipping of the tows is described in a rather realistic way. Suitable numerical simulations are presented for both the continuum and the discrete models and a comparison between the simulations and the experimental results is made showing a definitely good agreement.
Discrete Lagrangian Systems on Graphs. Symplecto-Topological Properties
S. P. Novikov; A. S. Schwarz
2000-04-11
Discrete Lagrangian Systems on graphs are considered. Vector-valued closed differential 2-form on the space of solutions is constructed. This form takes values in the first homology group of the graph. This construction generalizes the Symplectic Wronskian for the linear self-adjoint operators on graphs found in 1997 by the first author and used for the needs of the Scattering Theory for graphs with tails
Heuristic Optimization for the Discrete Virtual Power Plant Dispatch Problem
Petersen, Mette K.; Hansen, Lars H.; Bendtsen, Jan; Edlund, Kristian; Stoustrup, Jakob
2014-10-17
We consider a virtual power plant, which is given the task of dispatching a fluctuating power supply to a portfolio of flexible consumers. The flexible consumers are modeled as discrete batch processes, and the associated optimization problem is denoted the discrete virtual power plant dispatch problem (DVPPDP). First, the nondeterministic polynomial time (NP)-completeness of the discrete virtual power plant dispatch problem is proved formally. We then proceed to develop tailored versions of the meta-heuristic algorithms hill climber and greedy randomized adaptive search procedure (GRASP). The algorithms are tuned and tested on portfolios of varying sizes. We find that all the tailored algorithms perform satisfactorily in the sense that they are able to find sub-optimal, but usable, solutions to very large problems (on the order of 105 units) at computation times on the scale of just 10 s, which is far beyond the capabilities of the optimal algorithms we have tested. In particular, GRASP sorted shows with the most promising performance, as it is able to find solutions that are both agile (sorted) and well balanced, and consistently yields the best numerical performance among the developed algorithms.
Convergence analysis of the thermal discrete dipole approximation
Edalatpour, Sheila; Trueax, Tyler; Backman, Roger; Francoeur, Mathieu
2015-01-01
The thermal discrete dipole approximation (T-DDA) is a numerical approach for modeling near-field radiative heat transfer in complex three-dimensional geometries. In this work, the convergence of the T-DDA is investigated using the exact solution for two spheres separated by a vacuum gap. The error associated with the T-DDA is reported for various size parameters, refractive indices and vacuum gap sizes. The results reveal that for a fixed number of sub-volumes, the accuracy of the T-DDA degrades as the refractive index and the sphere diameter to gap ratio increase. A converging trend is observed as the number of sub-volumes increases. The large computational requirements associated with increasing the number of sub-volumes, and the shape error induced by large sphere diameter to gap ratios, are mitigated by using a non-uniform discretization scheme. Non-uniform discretization is shown to significantly accelerate the convergence of the T-DDA, and is thus recommended for near-field thermal radiation simulation...
Hubbard, Susan S [Lawrence Berkeley National Laboratory (LBNL); Gangodagmage, C [Los Alamos National Laboratory (LANL); Dafflon, B [Lawrence Berkeley National Laboratory (LBNL); Wainwright, H [Lawrence Berkeley National Laboratory (LBNL); Peterson, J [Lawrence Berkeley National Laboratory (LBNL); Gusmeroli, A [University of Alaska, Fairbanks; Ulrich, Craig [Lawrence Berkeley National Laboratory (LBNL); Wu, Yuxin [Lawrence Berkeley National Laboratory (LBNL); Wilson, Cathy [Los Alamos National Laboratory (LANL); Rowland, J [Los Alamos National Laboratory (LANL); Tweedie, Craig [University of Texas, El Paso; Wullschleger, Stan D [ORNL
2013-01-01
The complexity of permafrost dynamics and its critical impact on climate feedbacks warrant continued development of advanced high-latitude terrestrial ecosystem characterization and monitoring approaches. In this study, we explore the value of remote sensing and surface geophysical data for characterizing land surface and subsurface properties and their linkages in an Alaskan Coastal Plain ecosystem. We base our study on data collected at the end of the 2011 growing season in the Barrow Environmental Observatory, where a nested suite of measurements were collected within a polygon-dominated region including: surface ground penetrating radar, electromagnetic, and electrical resistance tomography data; thaw depth, soil temperature and moisture content, soil texture, soil carbon and nitrogen content, and major and trace cations. Previously-collected lidar data were also available for the study. Analysis of the datasets, individually and in combination, revealed the utility of the methods for characterizing critical land-surface and subsurface properties and associated spatial zonation. Lidar analysis was performed to extract geomorphic metrics (such as slope, curvature, and directed distance of polygons), which potentially indicate drainage potential and permafrost deformation state. Cluster analysis of these lidar-obtained attributes suggested that the land surface can be grouped into three spatially coherent zones, each having a dominant geomorphic expression including: a high centered polygon zone, a low centered polygon zone and a transitional zone. Comparison of the geophysical attributes from radar, electrical resistance tomography, and electromagnetic data with point measurements suggests that the surface geophysical data can provide very high-resolution information about subsurface properties that affect ecosystem feedbacks to climate, such as thaw depth and moisture content. Cluster analysis suggested that the geophysical attributes also varied spatially in a systematic way, suggesting the presence of three laterally distinct subsurface zones. Analysis of zone-based subsurface point measurements suggests that the geophysically-defined zones have unique distributions of hydrological, thermal, and geochemical properties and that the subsurface (geophysically-based) and land-surface (lidar-based) zonation is consistent. Although the close linkage between land surface (polygonal geomorphology) and subsurface (active layer) variability revealed through our study is not surprising, to our knowledge this is the first study to document such relationships using high resolution and non-invasive approaches. This study suggests the potential of using coincident lidar and surface geophysical measurements to quantify land surface and subsurface properties (respectively) and their linkages, which are likely to play a role in terrestrial ecosystem evolution and feedbacks to climate. These findings open the way for future research focused on using combined geophysical and remote sensing datasets to estimate subsurface and land-surface properties in high resolution and over large regions as is needed for process understanding and numerical model initialization in high latitude terrestrial ecosystems.
Transport and intracellular accumulation of acetaldehyde in Saccharomyces cerevisiae
Stanley, G.A.; Pamment, N.B. )
1993-06-05
The rate of acetaldehyde efflux from yeast cells and its intracellular concentration were studied in the light of recent suggestions that acetaldehyde inhibition may be an important factor in yeast ethanol fermentations. When the medium surrounding cells containing ethanol and acetaldehyde was suddenly diluted, the rate of efflux of acetaldehyde was slow relative to the rate of ethanol efflux, suggesting that acetaldehyde, unlike ethanol, may accumulate intracellularly. Intracellular acetaldehyde concentrations were measured during high cell density fermentations, using direct injection gas chromatography to avoid the need to concentrate or disrupt the cells. Intracellular acetaldehyde concentrations substantially exceeded the extracellular concentrations throughout fermentation and were generally much higher than the acetaldehyde concentrations normally recorded in the culture broth in ethanol fermentations. The technique used was sensitive to the time taken to cool and freeze the samples. Measured intracellular acetaldehyde concentrations fell rapidly as the time taken to freeze the suspensions was extended beyond 2 s. The results add weight to recent claims that acetaldehyde toxicity is responsible for some of the effects previously ascribed to ethanol in alcohol fermentations, especially Zymomonas fermentations. Further work is required to confirm the importance of acetaldehyde toxicity under other culture conditions.
McLing, Travis; Carpenter, Michael; Brandon, William; Zavala, Bernie
2015-06-01
The Environmental Protection Agency (EPA) has teamed with Battelle Energy Alliance, LLC (BEA) at Idaho National Laboratory (INL) to facilitate further testing of geologic-fracture-identification methodology at a field site near the Monsanto Superfund Site located in Soda Springs, Idaho. INL has the necessary testing and technological expertise to perform this work. Battelle Memorial Institute (BMI) has engaged INL to perform this work through a Work for Others (WFO) Agreement. This study continues a multi-year collaborative effort between INL and EPA to test the efficacy of using field deployed Cr-39 radon in soil portals. This research enables identification of active fractures capable of transporting contaminants at sites where fractures are suspected pathways into the subsurface. Current state of the art methods for mapping fracture networks are exceedingly expensive and notoriously inaccurate. The proposed WFO will evaluate the applicability of using cheap, readily available, passive radon detectors to identify conductive geologic structures (i.e. fractures, and fracture networks) in the subsurface that control the transport of contaminants at fracture-dominated sites. The proposed WFO utilizes proven off-the-shelf technology in the form of CR-39 radon detectors, which have been widely deployed to detect radon levels in homes and businesses. In an existing collaborative EPA/INL study outside of this workscope,. CR-39 detectors are being utilized to determine the location of active transport fractures in a fractured granitic upland adjacent to a landfill site at the Fort Devens, MA that EPA-designated as National Priorities List (NPL) site. The innovative concept of using an easily deployed port that allows the CR-39 to measure the Rn-222 in the soil or alluvium above the fractured rock, while restricting atmospheric Rn-222 and soil sourced Ra from contaminating the detector is unique to INL and EPA approach previously developed. By deploying a series of these inexpensive detector-casing combinations statistical samples of the Rn-222 flux can be measured, elucidating the most communicative fractures (i.e. fractures that are actively transporting water and gasses). The Rn-222 measurements can then be used as an input to create a more accurate conceptual model to be used for transport modeling and related cleanup activities. If the team’s approach is demonstrated to be applicable to a wide variety of rock types and soil conditions it might potentially offer significant cost saving without a reduction in data quality at Monsanto Superfund and other sites underlain by fracture-dominated bedrock.
Wang, Guohui; Qafoku, Nikolla; Lawter, Amanda R.; Bowden, Mark E.; Harvey, Omar; Sullivan, E. C.; Brown, Christopher F.
2015-07-15
A series of batch and column experiments combined with solid phase characterization studies (i.e., quantitative x-ray diffraction and wet chemical extractions) were conducted to address a variety of scientific issues and evaluate the impacts of the potential leakage of carbon dioxide (CO2) from deep subsurface storage reservoirs. The main objective was to gain an understanding of how CO2 gas influences: 1) the aqueous phase pH; and 2) mobilization of major, minor, and trace elements from minerals present in an aquifer overlying potential CO2 sequestration subsurface repositories. Rocks and slightly weathered rocks representative of an unconfined, oxidizing carbonate aquifer within the continental US, i.e., the Edwards aquifer in Texas, were used in these studies. These materials were exposed to a CO2 gas stream or were leached with a CO2-saturated influent solution to simulate different CO2 gas leakage scenarios, and changes in aqueous phase pH and chemical composition were measured in the liquid samples collected at pre-determined experimental times (batch experiments) or continuously (column experiments). The results from the strong acid extraction tests confirmed that in addition to the usual elements present in most soils, rocks, and sediments, the Edward aquifer samples contain As, Cd, Pb, Cu, and occasionally Zn, which may potentially be mobilized from the solid to the aqueous phase during or after exposure to CO2. The results from the batch and column experiments confirmed the release of major chemical elements into the contacting aqueous phase (such as Ca, Mg, Ba, Sr, Si, Na, and K); the mobilization and possible rapid immobilization of minor elements (such as Fe, Al, and Mn), which are able to form highly reactive secondary phases; and sporadic mobilization of only low concentrations of trace elements (such as As, Cd, Pb, Cu, Zn, Mo, etc.). The results from this experimental research effort will help in developing a systematic understanding of how CO2 leakage is likely to influence pertinent geochemical processes (e.g., dissolution/precipitation, sorption/desorption) in the aquifer sediments and will support site selection, risk assessment, policy-making, and public education efforts associated with geologic carbon sequestration.
Recovery Act: Web-based CO{sub 2} Subsurface Modeling
Paolini, Christopher; Castillo, Jose
2012-11-30
The Web-based CO{sub 2} Subsurface Modeling project focused primarily on extending an existing text-only, command-line driven, isothermal and isobaric, geochemical reaction-transport simulation code, developed and donated by Sienna Geodynamics, into an easier-to-use Web-based application for simulating long-term storage of CO{sub 2} in geologic reservoirs. The Web-based interface developed through this project, publically accessible via URL http://symc.sdsu.edu/, enables rapid prototyping of CO{sub 2} injection scenarios and allows students without advanced knowledge of geochemistry to setup a typical sequestration scenario, invoke a simulation, analyze results, and then vary one or more problem parameters and quickly re-run a simulation to answer what-if questions. symc.sdsu.edu has 2x12 core AMD Opteron™ 6174 2.20GHz processors and 16GB RAM. The Web-based application was used to develop a new computational science course at San Diego State University, COMP 670: Numerical Simulation of CO{sub 2} Sequestration, which was taught during the fall semester of 2012. The purpose of the class was to introduce graduate students to Carbon Capture, Use and Storage (CCUS) through numerical modeling and simulation, and to teach students how to interpret simulation results to make predictions about long-term CO{sub 2} storage capacity in deep brine reservoirs. In addition to the training and education component of the project, significant software development efforts took place. Two computational science doctoral and one geological science masters student, under the direction of the PIs, extended the original code developed by Sienna Geodynamics, named Sym.8. New capabilities were added to Sym.8 to simulate non-isothermal and non-isobaric flows of charged aqueous solutes in porous media, in addition to incorporating HPC support into the code for execution on many-core XSEDE clusters. A successful outcome of this project was the funding and training of three new computational science students and one geological science student in technologies relevant to carbon sequestration and problems involving flow in subsurface media. The three computational science students are currently finishing their doctorial studies on different aspects of modeling CO{sub 2} sequestration, while the geological science student completed his master’s thesis in modeling the thermal response of CO{sub 2} injection in brine and, as a direct result of participation in this project, is now employed at ExxonMobil as a full-time staff geologist.
ERS 14.1 Satellite Accumulation Ares (RCRA Compliance), 4/30/13
Broader source: Energy.gov [DOE]
The objective of this surveillance is to evaluate the effectiveness of the contractor's management of hazardous and mixed wastes in satellite accumulation areas. The Facility Representative...
Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments
Moridis, George J.; Sloan, E. Dendy
2006-01-01
Page viable gas production. The overall conclusion drawnnot promising targets for gas production. Acknowledgment TheTS. Strategies for gas production from hydrate accumulations
Discrete Fourier-based Correlations for Entanglement Detection
Ryo Namiki; Yuuki Tokunaga
2012-06-06
We introduce two forms of correlations on two $d$-level (qudit) systems for entanglement detection. The correlations can be measured via experimentally tractable two local measurement settings and their separable bounds are determined by discrete Fourier-based uncertainty relations. They are useful to estimate lower bounds of the Schmidt number in order to clarify generation of a genuine qudit entanglement. We also present inseparable conditions for multi-qudit systems associated with the qudit stabilizer formalism as another role of the correlations on the inseparability problem.
Quantum mechanics as a consequence of discrete interactions
Gabriele Carcassi
2008-01-05
Quantum mechanics is usually presented starting from a series of postulates about the mathematical framework. In this work we show that those same postulates can be derived by assuming that measurements are discrete interactions: that is, that we measure at specific moments in time (as opposed to a continuous measurement that spans a long time interval) and that the system is in general affected by our measurement. We believe that this way of presenting quantum mechanics would make it easier to understand by laying out a more cohesive view of the theory and making it resonate more with our physics intuition.
Leptons and Quarks from a Discrete Flavor Symmetry
Y. H. Ahn
2013-03-20
We propose a new model of leptons and quarks based on the discrete flavor symmetry $T'$, the double covering of $A_4$, in which the hierarchies of charged fermion masses and the mildness of neutrino masses are responsible for Higgs scalars. After spontaneous breaking of flavor symmetry, with the constraint of renormalizability in the Lagrangian, the leptons have $m_{e}=0$ and the quarks have the Cabibbo-Kobayashi-Maskawa (CKM) mixing angles $\\theta^{q}_{12}=13^{\\circ}, \\theta^{q}_{23}=0^{\\circ}$ and $\\theta^{q}_{13}=0^{\\circ}$. Thus, certain effective dimension-5 operators are introduced, which induce $m_{e}\
Signatures of discrete symmetries in the scalar sector
Lavoura, L. (Department of Physics, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213 (United States))
1994-12-01
I discuss methods to identify the presence of discrete symmetries in the two-Higgs-doublet model by observing the masses and the cubic and quartic interactions of the scalars. The symmetries considered are a [ital Z][sub 2] symmetry under which [phi][sub 2][r arrow][minus][phi][sub 2], and a [ital CP] symmetry which enforces real coupling constants in the Higgs potential. Those symmetries are spontaneously broken, and the [ital Z][sub 2] symmetry may also be softly broken. I identify the signatures in the interactions of the scalars that these symmetries leave after their breaking.
Advanced Polymer Technology for Containing and Immobilizing Strontium-90 in the Subsurface - 8361
K. Baker; G. Heath; C. Scott; A. Schafer; S. Bryant; M. Sharma; C. Huh; S. K. Choi
2008-02-01
Many Department of Energy (DOE) sites, including Idaho and Hanford, have heavy metals and/or radionuclides (e.g. strontium-90) present that are strongly adsorbed in the vadose zone, but which nevertheless are propagating toward the water table. A key challenge for immobilization of these contaminants is bringing the chosen amendment or remediation technology into contact with the contaminated porous medium, while ensuring that contaminated water and colloids do not escape. This is particularly challenging when the subsurface geology is complex and highly heterogeneous, as is the case at many DOE sites. The Idaho National Laboratory (INL) in collaboration with the University of Texas at Austin (UT) has conducted research sponsored through the DOE Office of Environmental Management (EM) Advanced Remediation Technologies Phase I program that successfully demonstrated application of a novel, pH-triggered advanced polymer for creating a physical barrier that prevents heavy metals and radionuclides in vadose zone soil and soil-pore water from migrating to the groundwater. The focus of this paper is on the column and sandbox experiments conducted by researchers at the Idaho National Laboratory in support of the Phase I program objectives. Proof of these concepts provides a technology basis for confining or isolating a volume of contaminated groundwater, to be implemented in future investigations at the Vadose Zone Research Park (VZRP) at INL.
Electrode Induced Removal and Recovery of Uranium (VI) from Acidic Subsurfaces
Gregory, Kelvin
2013-08-12
The overarching objective of this research is to provide an improved understanding of how aqueous geochemical conditions impact the removal of U and Tc from groundwater and how engineering design may be utilized to optimize removal of these radionuclides. Experiments were designed to address the unique conditions in Area 3 of ORNL while also providing broader insight into the geochemical effectors of the removal rates and extent for U and Tc. The specific tasks of this work were to: 1) quantify the impact of common aqueous geochemical and operational conditions on the rate and extent of U removal and recovery from water, 2) investigate the removal of Tc with polarized graphite electrode, and determine the influence of geochemical and operational conditions on Tc removal and recovery, 3) determine whether U and Tc may be treated simultaneous from Area 3 groundwater, and examine the bench-scale performance of electrode-based treatment, and 4) determine the capacity of graphite electrodes for U(VI) removal and develop a mathematical, kinetic model for the removal of U(VI) from aqueous solution. Overall the body of work suggests that an electrode-based approach for the remediation of acidic subsurface environments, such as those observed in Area 3 of ORNL may be successful for the removal for both U(VI) and Tc. Carbonaceous (graphite) electrode materials are likely to be the least costly means to maximize removal rates and efficiency by maximizing the electrode surface area.
Lin, Xueju; Kennedy, David W.; Fredrickson, Jim K.; Bjornstad, Bruce N.; Konopka, Allan
2011-11-29
Microbial diversity in subsurface sediments at the Hanford Site 300 Area near Richland, Washington State (USA) was investigated by analyzing samples recovered from depths of 9 to 52 m. Approximately 8000 near full-length 16S rRNA gene sequences were analyzed across geological strata that include a natural redox transition zone. These strata included the oxic coarse-grained Hanford formation, fine-grained oxic and anoxic Ringold Formation sediments, and the weathered basalt group. We detected 1233 and 120 unique bacterial and archaeal OTUs (Operational Taxonomic Units at the 97% identity level), respectively. Microbial community structure and richness varied substantially across the different geological strata. Bacterial OTU richness (Chao1 estimator) was highest (>700) in the upper Hanford formation, and declined to about 120 at the bottom of the Hanford formation. Just above the Ringold oxic-anoxic interface, richness was about 325 and declined to less than 50 in the deeper reduced zones. The deeper Ringold strata were characterized by a preponderance (ca. 90%) of Proteobacteria. The Bacterial community in the oxic sediments contained not only members of 9 well-recognized phyla but also an unusually high proportion of 3 candidate divisions (GAL15, NC10, and SPAM). Additionally, novel phylogenetic orders were identified within the Delta-proteobacteria, a clade rich in microbes that carry out redox transformations of metals that are important contaminants on the Hanford Site.
Lee, Ji-Hoon; Fredrickson, Jim K.; Kukkadapu, Ravi K.; Boyanov, Maxim I.; Kemner, Kenneth M.; Lin, Xueju; Kennedy, David W.; Bjornstad, Bruce N.; Konopka, Allan; Moore, Dean A.; Resch, Charles T.; Phillips, Jerry L.
2012-04-14
The microbial reduction of Fe(III) and U(VI) were investigated in shallow aquifer sediments collected from subsurface Pleistocene flood deposits near the Hanford Reach of the Columbia River in Washington State. Increases in 0.5 N HCl-extractable Fe(II) were observed in incubated sediments and 57Fe Mössbauer spectroscopy revealed that Fe(III) associated with phyllosilicates and pyroxene was reduced to Fe(II). Aqueous uranium(VI) concentrations decreased in incubated Hanford sediments with the rate and extent being greater in sediment amended with organic carbon. X-ray absorption spectroscopy of bioreduced sediments indicated that 67-77% of the U signal was U(VI), probably as an adsorbed species associated with a new or modified reactive mineral phase. Phylotypes within the Deltaproteobacteria were more common in Hanford sediments incubated with U(VI) than without and in U(VI)-free incubations, members of the Clostridiales were dominant with sulfate-reducing phylotypes more common in the sulfate-amended sediments. These results demonstrate the potential for anaerobic reduction phyllosilicate Fe(III) and sulfate in Hanford unconfined aquifer sediments and biotransformations involving reduction and adsorption leading to decreased aqueous U concentrations.
MICROSCALE METABOLIC, REDOX AND ABIOTIC REACTIONS IN HANFORD 300 AREA SUBSURFACE SEDIMENTS
Beyenal, Haluk; McLEan, Jeff; Majors, Paul; Fredrickson, Jim
2013-11-14
The Hanford 300 Area is a unique site due to periodic hydrologic influence of river water resulting in changes in groundwater elevation and flow direction. This area is also highly subject to uranium remobilization, the source of which is currently believed to be the region at the base of the vadose zone that is subject to period saturation due to the changes in the water levels in the Columbia River. We found that microbial processes and redox and abiotic reactions which operate at the microscale were critical to understanding factors controlling the macroscopic fate and transport of contaminants in the subsurface. The combined laboratory and field research showed how microscale conditions control uranium mobility and how biotic, abiotic and redox reactions relate to each other. Our findings extended the current knowledge to examine U(VI) reduction and immobilization using natural 300 Area communities as well as selected model organisms on redox-sensitive and redox-insensitive minerals. Using innovative techniques developed specifically to probe biogeochemical processes at the microscale, our research expanded our current understanding of the roles played by mineral surfaces, bacterial competition, and local biotic, abiotic and redox reaction rates on the reduction and immobilization of uranium.
Evaluation of Natural Radioactivity in Subsurface Air, Water and Soil in Western Japan
Fukui, Masami [Research Reactor Institute, Kyoto University, 2-1010, Asashiro-nishi, Kumatori-cho, Osaka, 590-0494 (Japan)
2008-08-07
Surveys of radon concentrations in western Japan were carried out to estimate the contents not only of waters in the environment but also in soil gas. The maximum concentration measured for drinking water as public supply exceeded the 1991 United States Environmental Protection Agency-recommended limit for drinking water (11 Bq L{sup -1}) but did not exceed that of several European countries (100 Bq L{sup -1}). Overall, the concentrations of radon in subsurface water ranged from 1 to 100 Bq L{sup -1} and those in surface water were below 1 Bq L{sup -1} in a residential area. Fifty nine samples in soil gas at 4 Prefectures of the Kinki district were analyzed together with 19 samples of interest due to karst and uranium mining sites from another two Prefectures to compare with the above samples. The cumulative frequency of the {sup 222}Rn-concentrations both in environmental water and soil gas showed a log-normal distribution. Surveys of natural radioactivity in soils were also carried out with a Ge(Li) detector to determine the concentrations.
A Method Of Evaluating A Subsurface Region Using Gather Sensitive Data Discrimination
Lazaratos, Spyridon K. (Houston, TX)
2000-01-11
A method of evaluating a subsurface region by separating/enhancing a certain type of seismic event data of interest from an overall set of seismic event data which includes other, different types of seismic event data is disclosed herein. In accordance with one feature, a particular type of gather is generated from the seismic event data such that the gather includes at least a portion of the data which is of interest and at least a portion of the other data. A series of data discrimination lines are incorporated into the gather at positions and directions which are established in the gather in a predetermined way. Using the data discrimination lines, the data of interest which is present in the gather is separated/enhanced with respect to the other data within the gather. The separated data may be used for example in producing a map of the particular subterranean region. In accordance with another feature, the gather is selected such that the incorporated discrimination lines approach a near parallel relationship with one another. Thereby, the data is transformed in a way which causes the discrimination lines to be parallel with one another, resulting in reduced frequency distortion accompanied by improved accuracy in the separation/enhancement of data. In accordance with still another feature, the disclosed data separation/enhancement method is compatible with an iterative approach.
North, Elizabeth W
A better understanding of oil droplet formation, degradation, and dispersal in deep waters is needed to enhance prediction of the fate and transport of subsurface oil spills. This research evaluates the influence of initial ...
Rynne, Timothy M. (Long Beach, CA); Spadaro, John F. (Huntington Beach, CA); Iovenitti, Joe L. (Pleasant Hill, CA); Dering, John P. (Lakewood, CA); Hill, Donald G. (Walnut Creek, CA)
1998-10-27
A method of enhancing the remediation of contaminated soils and ground water, production of oil and gas, and production of any solid, gas, and/or liquid from subsurface geologic and man-made formations including the steps of estimating the geometric boundaries of the region containing the material to be recovered, drilling a recovery well(s) into subsurface in a strategic location to recover the material of interest, establishing multiple sources of acoustical power in an array about and spaced-apart from the surface or at various depths below the surface in a borehole(s) and/or well(s), directing a volume of acoustical excitation from the sources into the region containing the material to be recovered, the excitation in the form of either controllable sinusoidal, square, pulsed, or various combinations of these three waveforms, and controlling the phasing, frequency, power, duration, and direction of these waveforms from the sources to increase and control the intensity of acoustical excitation in the region of the material to be recovered to enhance. the recovery of said material from the recovery well(s). The invention will augment any technology affecting the removal of materials from the subsurface.
Solodov, I.N.; Belichkin, V.I.; Zotov, A.V.; Kochkin, B.T.; Drozhko, E.G.; Glagolev, A.V.; Skokov, A.N.
1994-06-01
The present investigation is devoted to the study of the distribution and geochemistry of contaminated subsurface waters, beneath the site of temporary storage of liquid radioactive waste known as Lake Karachai. For this purpose a method of hydrogeochemical logging (HGCL) together with standard hydrogeochemical and geophysical methods of uncased hole logging were used. The distribution of sodium nitrate brine plumes in the subsurface was determined by the physical and physico-chemical properties of these brines and by the petrochemical composition of enclosing rocks and the structural setting of the flow paths. The latter is represented by fractures and large faults in the bedrock of volcanogenic and volcanogenic-sedimentary rocks of intermediate-to-basic composition. The volcanogenic rocks are overlain in some places by a thin cover of unconsolidated sediments, i.e., by loams and relatively impermeable silts. Contaminated waters flow-in accordance with the eluvium bottom relief towards local areas of natural (Mishelyak and Techa rivers) and artificial (Novogomenskii water intake) discharge of subsurface waters. The large Mishelyak fault, southwest of Lake Karachai and under fluvial sediments of the Mishelyak, is assumed to significantly influence the flow pattern of contaminated waters, diverting them from an intake of drinking water.
Discrete-element modeling of particulate aerosol flows
Marshall, J.S. [School of Engineering, University of Vermont, 33 Colchecter Avenue, Burlington, Vermont 05405 (United States)], E-mail: jeffm@cems.uvm.edu
2009-03-20
A multiple-time step computational approach is presented for efficient discrete-element modeling of aerosol flows containing adhesive solid particles. Adhesive aerosol particulates are found in numerous dust and smoke contamination problems, including smoke particle transport in the lungs, particle clogging of heat exchangers in construction vehicles, industrial nanoparticle transport and filtration systems, and dust fouling of electronic systems and MEMS components. Dust fouling of equipment is of particular concern for potential human occupation on dusty planets, such as Mars. The discrete-element method presented in this paper can be used for prediction of aggregate structure and breakup, for prediction of the effect of aggregate formation on the bulk fluid flow, and for prediction of the effects of small-scale flow features (e.g., due to surface roughness or MEMS patterning) on the aggregate formation. After presentation of the overall computational structure, the forces and torques acting on the particles resulting from fluid motion, particle-particle collision, and adhesion under van der Waals forces are reviewed. The effect of various parameters of normal collision and adhesion of two particles are examined in detail. The method is then used to examine aggregate formation and particle clogging in pipe and channel flow.
Level I Guidance Documentation Environmental: Hazardous Waste: Satellite Accumulation Areas (SAA)
Entekhabi, Dara
"Hazardous Waste", (2) the container's contents written out (e.g. "WASTE OIL, no formulas, no abbreviations(10/28/03) Level I Guidance Documentation Environmental: Hazardous Waste: Satellite Accumulation Areas (SAA) 1. Is all hazardous waste stored in the satellite accumulation area (SAA)? 2
Gilli, Adrian
Origins and accumulation of organic matter in expanded Albian to Santonian black shale sequences laminated, Cenoma- nianSantonian black shale sequences contain between 2% and 15% organic carbon about the depositional conditions leading to the black shale accumulations. The low d13 Corg values
Large Spin Accumulation in a Permalloy-Silver Lateral Spin Valve T. Kimura and Y. Otani
Otani, Yoshichika
Large Spin Accumulation in a Permalloy-Silver Lateral Spin Valve T. Kimura and Y. Otani Institute accumulation due to the electrical spin injection has been observed in Permalloy-silver lateral spin-valve structures. The observed resistance change is the largest among the reported metallic lateral spin valves
Damage production and accumulation in SiC structures in inertial and magnetic fusion systems
Ghoniem, Nasr M.
damage and helium production on defect accumulation in SiC/SiC composites are also discussed. Ó 2010Damage production and accumulation in SiC structures in inertial and magnetic fusion systems M spectrum, and pulsed nature of neutron production result in significant differences in damage parameters
Faulds, James E.
of interseismic crustal strain accumulation at Yucca Mountain, Nevada William C. Hammond,1 Corné Kreemer,1 March 2010. [1] We estimate the longterm crustal strain rate at Yucca Mountain (YM), Nevada from GPS crustal strain accumulation at Yucca Mountain, Nevada, Geophys. Res. Lett., 37, L06307, doi:10.1029/2010GL
Measurement of Liquid Water Accumulation in a PEMFC with Dead-Ended Anode
Stefanopoulou, Anna
, Maryland 20899, USA The operation and accumulation of liquid water within the cell structure of a polymer and cathode water flooding. The rate of accumulation of liquid water, and its impact on the rate of cell, polymer electrolyte membrane fuel cells PEMFCs operate below the boil- ing point of water, causing excess
ACM SIGGRAPH 2002, San Antonio, TX Modeling the Accumulation of Wind-Driven Snow
O'Brien, James F.
ACM SIGGRAPH 2002, San Antonio, TX Modeling the Accumulation of Wind-Driven Snow Technical Sketch of snow drifts formed by the accumulation of wind-blown snow near buildings and other obstacles. Our our method is able to model how the snow is convected, deposited, and lifted by the wind. The results
Capital accumulation and non-renewable energy resources: a special functions case
Nesterov, Yurii
2007/9 Capital accumulation and non-renewable energy resources: a special functions case Agustin Pérez-Barahona #12;CORE DISCUSSION PAPER 2007/9 Capital accumulation and non-renewable energy resources-run dynamics using Gauss Hypergeometric functions. Keywords: non-renewable resources, energy-saving technical
Discrete transforms and orthogonal polynomials of (anti)symmetric multivariate cosine functions
Ji?í Hrivnák; Lenka Motlochová
2014-11-27
The discrete cosine transforms of types V--VIII are generalized to the antisymmetric and symmetric multivariate discrete cosine transforms. Four families of discretely and continuously orthogonal Chebyshev-like polynomials corresponding to the antisymmetric and symmetric generalizations of cosine functions are introduced. Each family forms an orthogonal basis of the space of all polynomials with respect to some weighted integral. Cubature formulas, which correspond to these families of polynomials and which stem from the developed discrete cosine transforms, are derived. Examples of three-dimensional interpolation formulas and three-dimensional explicit forms of the polynomials are presented.
Microscale and mesoscale discrete models for dynamic fracture of structures built of brittle are derived either at microscale with random distribution of material properties or at a mesoscale
Mavko, G. [Stanford Univ., CA (US); Rubin, Y.N. [Univ. of California, Berkeley, CA (US)
1998-06-01
'The general purpose is the subsurface characterization of LLNL superfund site. The goal is to get the most accurate map of the hydrogeological parameters, necessary for modeling and designing the cleanup efforts at the site, using well log data and remote sensing geophysical techniques. In the second year of the project progress has been made in several areas: gathering and interpreting Vertical Seismic Profile (VSP) and Electromagnetic (EM) surveys; investigating the impact of various seismic measurements on upscaling of rock physics relations between sediment properties; and developing a new approach to integrate geophysical and hydrological data using state of the art methods to characterize the subsurface lithology. Vertical Seismic Profile data has been gathered from selected wells at the Treatment Facility D (TFD) during April 1996 and April 1998. The most striking finding here is the detection of anomalies related to saturation conditions. Preliminary results have revealed three anomalously low acoustic velocity zones with velocities below 1,000 m/s; this is lower than the natural acoustic velocity in saturated media by pure water (1,500 m/s). These three zones appear to be associated with HSUs 3a, 3b and 5. Velocities below 600 m/s have been revealed in the 3a and 3b HSUs (http://www.ce.Berkeley.edu/{approximately}ezzedine/DOE/paul.html). The authors believe that these anomalies are indicative of partial saturation. This explanation is supported by the water samples taken from pumping stations near the VSP well sites which appears to contain air bubbles. A gas analysis of water samples has not yet been performed. The authors hypothesize that this gas can be either air being sucked-in from the vadose zone above the water table, or from some chemical reaction. As a matter of fact, the natural water table level at this site was around 20 m below ground surface before any large scale pumping began, and had dropped to 25.5 m, in April 98. Furthermore, some of these low velocity zones are occurring not only in the major free-flowing sand or gravel parts of the HSU, but in boundary layers of silty sand either above or below the main HSU conductor. An electromagnetic survey was conducted at the site during June 4--25, 1997, and they worked on its interpretation. Seven cross well EM data sets were collected. Both 1D and 2D simulations, approximating the actual site and survey setup, were conducted. The 1D simulations were conducted using the code EM1D for one data set. Newman and Alumbaugh''s 3D forward code was used to simulate the response of both a resistive layer (representing HSU 4) and a conductive layer at the same location. Three separate inversion algorithms were applied to the data: Newman and Alumbaugh''s 2.5D finite difference and integral solution algorithm, Alumbaugh''s iterative Born approximation with a cylindrical symmetry, and Tseng''s 3D extended born approximation. The field EM data are still being analyzed.'
Sorption of organic carbon compounds to the fine fraction of surface and Subsurface Soils
Jagadamma, Sindhu [ORNL; Mayes, Melanie [ORNL; Zinn, Yuri [Federal University of Lavras, Brazil; Gisladottir, Gudrun [University of Iceland; Ann, Russell [Iowa State University
2014-01-01
Dissolved organic carbon (DOC) transported from the soil surface is stabilized in deeper soil profiles by physicochemical sorption processes. However, it is unclear how different forms of organic carbon (OC) compounds common in soil organic matter interact with soil minerals in the surface (A) and subsurface (B) horizons. We added four compounds (glucose, starch, cinnamic acid and stearic acid) to the silt- and clay-sized fraction (fine fraction) of A and B horizons of eight soils from varying climates (3 temperate, 3 tropical, 1 arctic and 1 sub-arctic). Equilibriumbatch experiments were conducted using 0 to 100 mg C L 1 of 14C-labeled compounds for 8 h. Sorption parameters (maximum sorption capacity, Qmax and binding coefficient, k) calculated by fitting sorption data to the Langmuir equation showed that Qmax of A and B horizons was very similar for all compounds. Both Qmax and k values were related to sorbate properties, with Qmax being lowest for glucose (20 500 mg kg 1), highest for stearic acid (20,000 200,000 mg kg 1), and intermediate for both cinnamic acid (200 4000 mg kg 1) and starch (400 6000 mg kg 1). Simple linear regression analysis revealed that physicochemical properties of the sorbents influenced the Qmax of cinnamic acid and stearic acid, but not glucose and starch. The sorbent properties did not show predictive ability for binding coefficient k. By using the fine fraction as sorbent, we found that the mineral fractions of A horizons are equally reactive as the B horizons irrespective of soil organic carbon content.
Qafoku, Nikolla; Brown, Christopher F.; Wang, Guohui; Sullivan, E. C.; Lawter, Amanda R.; Harvey, Omar R.; Bowden, Mark
2013-04-15
Experimental research work has been conducted and is undergoing at Pacific Northwest National Laboratory (PNNL) to address a variety of scientific issues related with the potential leaks of the carbon dioxide (CO2) gas from deep storage reservoirs. The main objectives of this work are as follows: • Develop a systematic understanding of how CO2 leakage is likely to influence pertinent geochemical processes (e.g., dissolution/precipitation, sorption/desorption and redox reactions) in the aquifer sediments. • Identify prevailing environmental conditions that would dictate one geochemical outcome over another. • Gather useful information to support site selection, risk assessment, policy-making, and public education efforts associated with geological carbon sequestration. In this report, we present results from experiments conducted at PNNL to address research issues related to the main objectives of this effort. A series of batch and column experiments and solid phase characterization studies (quantitative x-ray diffraction and wet chemical extractions with a concentrated acid) were conducted with representative rocks and sediments from an unconfined, oxidizing carbonate aquifer, i.e., Edwards aquifer in Texas, and a confined aquifer, i.e., the High Plains aquifer in Kansas. These materials were exposed to a CO2 gas stream simulating CO2 gas leaking scenarios, and changes in aqueous phase pH and chemical composition were measured in liquid and effluent samples collected at pre-determined experimental times. Additional research to be conducted during the current fiscal year will further validate these results and will address other important remaining issues. Results from these experimental efforts will provide valuable insights for the development of site-specific, generation III reduced order models. In addition, results will initially serve as input parameters during model calibration runs and, ultimately, will be used to test model predictive capability and competency. The results from these investigations will provide useful information to support site selection, risk assessment, and public education efforts associated with geological, deep subsurface CO2 storage and sequestration.
Subsurface Hybrid Power Options for Oil & Gas Production at Deep Ocean Sites
Farmer, J C; Haut, R; Jahn, G; Goldman, J; Colvin, J; Karpinski, A; Dobley, A; Halfinger, J; Nagley, S; Wolf, K; Shapiro, A; Doucette, P; Hansen, P; Oke, A; Compton, D; Cobb, M; Kopps, R; Chitwood, J; Spence, W; Remacle, P; Noel, C; Vicic, J; Dee, R
2010-02-19
An investment in deep-sea (deep-ocean) hybrid power systems may enable certain off-shore oil and gas exploration and production. Advanced deep-ocean drilling and production operations, locally powered, may provide commercial access to oil and gas reserves otherwise inaccessible. Further, subsea generation of electrical power has the potential of featuring a low carbon output resulting in improved environmental conditions. Such technology therefore, enhances the energy security of the United States in a green and environmentally friendly manner. The objective of this study is to evaluate alternatives and recommend equipment to develop into hybrid energy conversion and storage systems for deep ocean operations. Such power systems will be located on the ocean floor and will be used to power offshore oil and gas exploration and production operations. Such power systems will be located on the oceans floor, and will be used to supply oil and gas exploration activities, as well as drilling operations required to harvest petroleum reserves. The following conceptual hybrid systems have been identified as candidates for powering sub-surface oil and gas production operations: (1) PWR = Pressurized-Water Nuclear Reactor + Lead-Acid Battery; (2) FC1 = Line for Surface O{sub 2} + Well Head Gas + Reformer + PEMFC + Lead-Acid & Li-Ion Batteries; (3) FC2 = Stored O2 + Well Head Gas + Reformer + Fuel Cell + Lead-Acid & Li-Ion Batteries; (4) SV1 = Submersible Vehicle + Stored O{sub 2} + Fuel Cell + Lead-Acid & Li-Ion Batteries; (5) SV2 = Submersible Vehicle + Stored O{sub 2} + Engine or Turbine + Lead-Acid & Li-Ion Batteries; (6) SV3 = Submersible Vehicle + Charge at Docking Station + ZEBRA & Li-Ion Batteries; (7) PWR TEG = PWR + Thermoelectric Generator + Lead-Acid Battery; (8) WELL TEG = Thermoelectric Generator + Well Head Waste Heat + Lead-Acid Battery; (9) GRID = Ocean Floor Electrical Grid + Lead-Acid Battery; and (10) DOC = Deep Ocean Current + Lead-Acid Battery.
Heat flow and subsurface temperature distributions in central and western New York. Final report
Hodge, D.S.; Fromm, K.
1984-01-01
Initiation of a geothermal energy program in western and central New York requires knowledge of subsurface temperatures for targeting areas of potential resources. The temperature distribution in possible geothermal reservoirs, calculated from heat flow measurements and modeling techniques, shows that a large area of New York can be considered for exploitation of geothermal resources. Though the temperatures at currently accessible depths show the availability of only a low-temperature (less than 100/sup 0/C), direct-use resource, this can be considered as an alternative for the future energy needs of New York State. From analysis of bottom-hole-temperature data and direct heat flow measurements, estimates of temperatures in the Cambrian Sandstones provide the basis of the economic evaluation of the reservoir. This reservoir contains the extractable fluids needed for targeting a potential geothermal well site in the low-temperature geothermal target zone. In the northern section of the Appalachian basin, reservoir temperatures in the Cambrian are below 50/sup 0/C but may be over 80/sup 0/C in the deeper parts of the basin in southern New York State. Using a minimum of 50/sup 0/C as a useful reservoir temperature, temperatures in excess of this value are encountered in the Theresa Formation at depths in excess of 1300 meters. Considering a maximum depth for economical drilling to be 2500 meters with present technology, the 2500 meters to the Theresa (sea level datum) forms the lower limit of the geothermal resource. Temperatures in the range of 70/sup 0/C to 80/sup 0/C are predicted for the southern portion of New York State.
3D imaging of semiconductor components by discrete laminography
Batenburg, K. J.; Palenstijn, W. J.; Sijbers, J.
2014-06-19
X-ray laminography is a powerful technique for quality control of semiconductor components. Despite the advantages of nondestructive 3D imaging over 2D techniques based on sectioning, the acquisition time is still a major obstacle for practical use of the technique. In this paper, we consider the application of Discrete Tomography to laminography data, which can potentially reduce the scanning time while still maintaining a high reconstruction quality. By incorporating prior knowledge in the reconstruction algorithm about the materials present in the scanned object, far more accurate reconstructions can be obtained from the same measured data compared to classical reconstruction methods. We present a series of simulation experiments that illustrate the potential of the approach.
Origin of coherent structures in a discrete chaotic medium
Rabinovich, M.I.; Torres, J.J.; Varona, P.; Huerta, R.; Varona, P.; Huerta, R.; Weidman, P.
1999-08-01
Using as an example a large lattice of locally interacting Hindmarsh-Rose chaotic neurons, we disclose the origin of ordered structures in a discrete nonequilibrium medium with fast and slow chaotic oscillations. The origin of the ordering mechanism is related to the appearance of a periodic average dynamics in the group of chaotic neurons whose individual slow activity is significantly synchronized by the group mean field. Introducing the concept of a {open_quotes}coarse grain{close_quotes} as a cluster of neuron elements with periodic averaged behavior allows consideration of the dynamics of a medium composed of these clusters. A study of this medium reveals spatially ordered patterns in the periodic and slow dynamics of the coarse grains that are controlled by the average intensity of the fast chaotic pulsation. {copyright} {ital 1999} {ital The American Physical Society}
Inverse problem with transmission eigenvalues for the discrete Schrödinger equation
Tuncay Aktosun; Vassilis G. Papanicolaou
2015-01-28
The discrete Schr\\"odinger equation with the Dirichlet boundary condition is considered on a half-line lattice when the potential is real valued and compactly supported. The inverse problem of recovery of the potential from the so-called transmission eigenvalues is analyzed. The Marchenko method and the Gel'fand-Levitan method are used to solve the inverse problem uniquely, except in one "unusual" case where the sum of the transmission eigenvalues is equal to a certain integer related to the support of the potential. It is shown that in the unusual case there may be a unique solution corresponding to certain sets of transmission eigenvalues, there may be a finite number of distinct potentials for some sets of transmission eigenvalues, or there may be infinitely many potentials for some sets of transmission eigenvalues. The theory presented is illustrated with several explicit examples.
Semiclassical approach to discrete symmetries in quantum chaos
Joyner, Chris; Sieber, Martin
2012-01-01
We use semiclassical methods to evaluate the spectral two-point correlation function of quantum chaotic systems with discrete geometrical symmetries. The energy spectra of these systems can be divided into subspectra that are associated to irreducible representations of the corresponding symmetry group. We show that for (spinless) time reversal invariant systems the statistics inside these subspectra depend on the type of irreducible representation. For real representations the spectral statistics agree with those of the Gaussian Orthogonal Ensemble (GOE) of Random Matrix Theory (RMT), whereas complex representations correspond to the Gaussian Unitary Ensemble (GUE). For systems without time reversal invariance all subspectra show GUE statistics. There are no correlations between non-degenerate subspectra. Our techniques generalize recent developments in the semiclassical approach to quantum chaos allowing one to obtain full agreement with the two-point correlation function predicted by RMT, including oscilla...
Semiclassical approach to discrete symmetries in quantum chaos
Chris Joyner; Sebastian Müller; Martin Sieber
2012-02-22
We use semiclassical methods to evaluate the spectral two-point correlation function of quantum chaotic systems with discrete geometrical symmetries. The energy spectra of these systems can be divided into subspectra that are associated to irreducible representations of the corresponding symmetry group. We show that for (spinless) time reversal invariant systems the statistics inside these subspectra depend on the type of irreducible representation. For real representations the spectral statistics agree with those of the Gaussian Orthogonal Ensemble (GOE) of Random Matrix Theory (RMT), whereas complex representations correspond to the Gaussian Unitary Ensemble (GUE). For systems without time reversal invariance all subspectra show GUE statistics. There are no correlations between non-degenerate subspectra. Our techniques generalize recent developments in the semiclassical approach to quantum chaos allowing one to obtain full agreement with the two-point correlation function predicted by RMT, including oscillatory contributions.
Thermal depinning of fluxons in discrete Josephson rings
Mazo, J. J.; Naranjo, F.; Segall, K.
2008-11-01
We study the thermal depinning of single fluxons in rings made of Josephson junctions. Due to thermal fluctuations a fluxon can be excited from its energy minima and move through the array, causing a voltage across each junction. We find that for the initial depinning, the fluxon behaves as a single particle and follows a Kramers-type escape law. However, under some conditions this single-particle description breaks down. At low values of the discreteness parameter and low values of the damping, the depinning rate is larger than what the single-particle result would suggest. In addition, for some values of the parameters the fluxon can undergo low-voltage diffusion before switching to the high-voltage whirling mode. This type of diffusion is similar to phase diffusion in a single junction but occurs without frequency-dependent damping. We study the switching to the whirling state as well.
A three-level BDDC algorithm for mortar discretizations
Kim, Hyea Hyun; Tu, Xuemin
2009-03-05
Society for Industrial and Applied Mathematics Vol. 47, No. 2, pp. 1576–1600 A THREE-LEVEL BDDC ALGORITHM FOR MORTAR DISCRETIZATIONS? HYEA HYUN KIM† AND XUEMIN TU‡ Abstract. In this paper, a three-level balancing domain decomposition by constraints (BDDC...- search, U.S. Department of Energy under contract DE-AC02-05CH11231. 1576 D ow nl oa de d 09 /2 9/ 14 to 1 29 .2 37 .4 6. 10 0. R ed ist rib ut io n su bje ct to SIA M lic en se or co py rig ht; se e h ttp ://w ww .si am .or g/j ou rna ls/ ojs a...
Continuum discretized BCS approach for weakly bound nuclei
J. A. Lay; C. E. Alonso; L. Fortunato; A. Vitturi
2015-10-12
The Bardeen-Cooper-Schrieffer (BCS) formalism is extended by including the single-particle continuum, thus enabling the analysis of an isotopic chain from stability up to the drip line. We propose a continuum discretized generalized BCS based on single-particle pseudostates (PS). These PS are generated from the diagonalization of the single-particle Hamiltonian within a Transformed Harmonic Oscillator (THO) basis. The consistency of the results versus the size of the basis is studied. The method is applied to neutron rich Oxygen and Carbon isotopes and compared with similar previous works and available experimental data. We make use of the flexibility of the proposed model in order to study the evolution of the occupation of the low-energy continuum when the system becomes weakly bound. We find a larger influence of the non-resonant continuum as long as the Fermi level approaches zero.
Breaking discrete symmetries in the effective field theory of inflation
Dario Cannone; Jinn-Ouk Gong; Gianmassimo Tasinato
2015-05-29
We study the phenomenon of discrete symmetry breaking during the inflationary epoch, using a model-independent approach based on the effective field theory of inflation. We work in a context where both time reparameterization symmetry and spatial diffeomorphism invariance can be broken during inflation. We determine the leading derivative operators in the quadratic action for fluctuations that break parity and time-reversal. Within suitable approximations, we study their consequences for the dynamics of linearized fluctuations. Both in the scalar and tensor sectors, we show that such operators can lead to new direction-dependent phases for the modes involved. They do not affect the power spectra, but can have consequences for higher correlation functions. Moreover, a small quadrupole contribution to the sound speed can be generated.
74 MHz Discrete HII Absorption Regions Towards The Inner Galaxy
Michael E. Nord; P. A. Henning; R. J. Rand; T. Joseph W. Lazio; Namir E. Kassim
2006-03-02
At low radio frequencies ( 1) and can be observed as discrete absorption regions against the Galactic nonthermal background emission created by Galactic cosmic ray electrons spiraling around magnetic fields. In this work we present 74 MHz observations in the region 26>l>-15, -5
Quantum Discrete Fourier Transform with Classical Output for Signal Processing
Chao-Yang Pang; Ben-Qiong Hu
2007-06-17
Discrete Fourier transform (DFT) is the base of modern signal or information processing. 1-Dimensional fast Fourier transform (1D FFT) and 2D FFT have time complexity O(NlogN) and O(N^2logN) respectively. Quantum 1D and 2D DFT algorithms with classical output (1D QDFT and 2D QDFT) are presented in this paper. And quantum algorithm for convolution estimation is also presented in this paper. Compared with FFT, QDFT has two advantages at least. One of advantages is that 1D and 2D QDFT has time complexity O(sqrt(N)) and O(N) respectively. The other advantage is that QDFT can process very long signal sequence at a time. QDFT and quantum convolution demonstrate that quantum signal processing with classical output is possible.
Extinction dynamics of a discrete population in an oasis
Berti, Stefano; Vergni, Davide; Vulpiani, Angelo
2015-01-01
Understanding the conditions ensuring the persistence of a population is an issue of primary importance in population biology. The first theoretical approach to the problem dates back to the 50's with the KiSS (after Kierstead, Slobodkin and Skellam) model, namely a continuous reaction-diffusion equation for a population growing on a patch of finite size $L$ surrounded by a deadly environment with infinite mortality -- i.e. an oasis in a desert. The main outcome of the model is that only patches above a critical size allow for population persistence. Here, we introduce an individual-based analogue of the KiSS model to investigate the effects of discreteness and demographic stochasticity. In particular, we study the average time to extinction both above and below the critical patch size of the continuous model and investigate the quasi-stationary distribution of the number of individuals for patch sizes above the critical threshold.
Multipole-preserving quadratures for discretization of functions
Genovese, Luigi
2015-01-01
Discretizing an analytic function on a uniform real-space grid is often done via a straightforward collocation method. This is ubiquitous in all areas of computational physics and quantum chemistry. An example in Density Functional Theory is given by the local external potential describing the interaction between ions and electrons. Also notable examples are given by the analytic functions defining compensation charges for range-separated electrostatic treatments. The accuracy of the collocation method used is therefore very important for the reliability of subsequent treatments like self-consistent field solutions of the electronic structure problems. When the real-space grid is too coarse, the collocation method introduces numerical artifacts typical of real-space treatments, like the so-called egg-box error, that may spoil the numerical stability of the description. We present in this paper a new quadrature scheme that is able to exactly preserve the multipoles of a given analytic function for a wide range...
Novel coupling scheme to control dynamics of coupled discrete systems
Snehal M. Shekatkar; G. Ambika
2015-08-08
We present a new coupling scheme to control spatio-temporal patterns and chimeras on 1-d and 2-d lattices and random networks of discrete dynamical systems. The scheme involves coupling with an external lattice or network of damped systems. When the system network and external network are set in a feedback loop, the system network can be controlled to a homogeneous steady state or synchronized periodic state with suppression of the chaotic dynamics of the individual units. The control scheme has the advantage that its design does not require any prior information about the system dynamics or its parameters and works effectively for a range of parameters of the control network. We analyze the stability of the controlled steady state or amplitude death state of lattices using the theory of circulant matrices and Routh-Hurwitz's criterion for discrete systems and this helps to isolate regions of effective control in the relevant parameter planes. The conditions thus obtained are found to agree well with those obtained from direct numerical simulations in the specific context of lattices with logistic map and Henon map as on-site system dynamics. We show how chimera states developed in an experimentally realizable 2-d lattice can be controlled using this scheme. We propose this mechanism can provide a phenomenological model for the control of spatio-temporal patterns in coupled neurons due to non-synaptic coupling with the extra cellular medium. We extend the control scheme to regulate dynamics on random networks and adapt the master stability function method to analyze the stability of the controlled state for various topologies and coupling strengths.
Interaction of discrete breathers with electrons in nonlinear lattices S. Flach* and K. Kladko
Flach, Sergej
Interaction of discrete breathers with electrons in nonlinear lattices S. Flach* and K. Kladko Max 1995 We study the effects of electron-lattice interaction in the presence of discrete breathers. The lattice is treated classically. We consider two different situations: i the scattering of an electron
Discrete Applied Mathematics Special Issue: Mathematics based Cryptography and Future Security
Discrete Applied Mathematics Special Issue: Mathematics based Cryptography and Future Security for such systems is cryptography. The mathematical techniques of cryptography can be related to such aspects mathematics. Topics to be considered for the special issue are: - Discrete and combinatorial mathematics based
Antsaklis, Panos
Switching Stabilization and l2 Gain Performance Controller Synthesis for Discrete-Time Switched Linear Systems Hai Lin and Panos J. Antsaklis Abstract-- In this paper, the switching controller synthesis problem for a class of discrete-time switched linear systems is considered. In particular, a state
Computational Issues in Intelligent Control: Discrete-Event and Hybrid Systems
Koutsoukos, Xenofon D.
Computational Issues in Intelligent Control: Discrete-Event and Hybrid Systems Xenofon D discrete event and hybrid systems. Computational issues of various problems and al- gorithms concerning to address the control needs of complex systems that exhibit complicated dynamical behaviors. The design
Herbert, John
Symmetric versus asymmetric discretization of the integral equations in polarizable continuum form 28 April 2011 Available online 1 May 2011 a b s t r a c t Discretization of the integral equations of the integral operators. Consequently, the appropriate form of the finite-dimensional matrix equations
Capacity of the Discrete Memoryless Energy Harvesting Channel with Side Information
Yener, Aylin
Capacity of the Discrete Memoryless Energy Harvesting Channel with Side Information Omur Ozel1 to the available battery energy in that channel use. The capacity of this channel with only transmitter side, The Pennsylvania State University, University Park, PA 16802 Abstract--We determine the capacity of a discrete
A WEIGHTED FREQUENCY-DOMAIN LEAST SQUARES APPROACH FOR EQUALIZATION IN DISCRETE MULTITONE SYSTEMS
Adali, Tulay
chosen as the industry modulation standard for asymmetrical digital subscriber line (ADSL) modems [4 the energy and constellation size of each carrier. One implementation of MCM is the Discrete Multitone (DMT) system which uses the discrete Fourier transform (DFT) for modulation [2], [3]. DMT has recently been
The Capacity-Cost Function of Discrete Additive Noise Channels with and without Feedback
Wehlau, David
of discrete channels with memory. Index Terms { Channels with memory, additive noise, capacity-cost functionThe Capacity-Cost Function of Discrete Additive Noise Channels with and without Feedback #3; Fady by investigating the capacity- cost function (C (#12;)) of such additive noise channels without feedback. We
Passive Millimeter-Wave Ranging Using Discrete Lenses with Wave-Front Coding
Popovic, Zoya
of a receiving discrete lens with modulated amplitude and/or phase response. The result is a set of image pat on a relatively small (100-element) discrete lens antenna array with a cosinusoidal amplitude mask and half curve around 94 GHz. Waves in this fre- quency range penetrate through dust, fog and smoke
Hacker, Bradley R.
Discrete ultrahigh-pressure domains in the Western Gneiss Region, Norway: implications of Norway, Leiv Erikssons vei 39, 7491 Trondheim, Norway 4 Division of Geological and Planetary Sciences Ar ages within the Western Gneiss Region of Norway define three discrete ultrahigh-pressure (UHP
Call for Submissions -CanaDAM 2007 Canadian Discrete and Algorithmic Mathematics Conference 2007
Mohar, Bojan
Call for Submissions - CanaDAM 2007 Canadian Discrete and Algorithmic Mathematics Conference 2007 Banff Conference Center, Banff, Alberta, May 28-31, 2007 http://www.cs.ualberta.ca/mreza/CANADAM/ This is a new conference series on Discrete and Algorithmic Mathematics to be held in Canada every two years (in
Beylkin, Gregory
Discrete Radon Transform GREGORY BEYLKIN Abstract-This paper describes the discrete Radon transform (DRT showthattheDRTcan beused tocomputevariousgen- eralizations of the classical Radon transform (RT) and. An interesting observation is that the exact inversion algorithm cannot be obtained directly from Radon
Abdou, Mohamed
2007-01-01
Fusion Engineering and Design 82 (2007) 22332238 Application of discrete element method to study mechanical behaviors of ceramic breeder pebble beds Zhiyong An, Alice Ying, Mohamed Abdou Mechanical In this paper, the discrete element method (DEM) approach has been applied to study mechanical behaviors
Completeness in DiscreteTime Process Algebra Michel A. Reniers and Jan Joris Vereijken
Reniers, Michel
Completeness in DiscreteÂTime Process Algebra Michel A. Reniers and Jan Joris Vereijken Department, 1996 Abstract We prove soundness and completeness for some ACPÂstyle concrete, relativeÂtime, discrete . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Soundness and Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Basic
MAP-Inference on Large Scale Higher-Order Discrete Graphical Models by Fusion Moves
Schnörr, Christoph
MAP-Inference on Large Scale Higher-Order Discrete Graphical Models by Fusion Moves J¨org Hendrik reconsider the work of Lempitsky et al. 2010 on fusion moves and apply it to general discrete graphical models. We propose two alternatives for calculating fusion moves that outperform the standard in several
Melting in an Enclosure with Discrete Heating at a Constant Rate
Zhang, Yuwen
- Melting in an Enclosure with Discrete Heating at a Constant Rate Yuwen Zhang Zhongqi Chen Qijie · The melting of n-octadecane that is discretely heated at a constant rate from one side of an enclosure- Experimental Thermal and Fluid Science 1993; 6:196-201 rate heating mode of the melting process
Adaptability of a Discrete PSO Algorithm applied to the Traveling Salesman Problem with Fuzzy Data
Ludwig, Simone
Adaptability of a Discrete PSO Algorithm applied to the Traveling Salesman Problem with Fuzzy Data-known optimization method, Particle Swarm Optimization (PSO), when solving a fuzzy problem. The discrete PSO in order to study the impact of uncertain information in the quality of the results provided by PSO
Avanzini, Federico
Efficiency, accuracy, and stability issues in discrete-time simulations of single reed wind that when the continuous-time model is discretized, a delay-free path is generated in the computation for investigating experimentally the functioning of single reed wind instruments.13 A widely accepted ap- proach
An energy-momentum-conserving temporal discretization scheme for adhesive contact problems
An energy-momentum-conserving temporal discretization scheme for adhesive contact problems Sachin S' knowledge, none have been proposed for adhesive contact problems. In this work, an energy-momentum-conserving temporal discretization scheme for adhesive contact problems is proposed. A contact criterion is also
Discrete-time Lyapunov based small-gain theorem for parameterized interconnected ISS systems
Nesic, Dragan
Discrete-time Lyapunov based small-gain theorem for parameterized interconnected ISS systems Dina via the Lyapunov method. In particular, an ISS Lyapunov function for the overall system is constructed from the ISS Lyapunov functions of the two subsystems. We consider parameterized families of discrete
Lightweight Floating-Point Arithmetic: Case Study of Inverse Discrete Cosine Transform
Chen, Tsuhan
, customizable bit- width, rounding modes, low-power, inverse discrete cosine transform, video coding 1 of effort must be spent to manage the complexity, power consumption and time-to-market of the modernLightweight Floating-Point Arithmetic: Case Study of Inverse Discrete Cosine Transform Fang Fang
A DISCRETE CHOICE PEDESTRIAN BEHAVIOR MODEL FOR PEDESTRIAN DETECTION IN VISUAL TRACKING SYSTEMS
Bierlaire, Michel
A DISCRETE CHOICE PEDESTRIAN BEHAVIOR MODEL FOR PEDESTRIAN DETECTION IN VISUAL TRACKING SYSTEMS-based models. In this paper we propose the use of a discrete choice model (DCM) of pedestrian behavior and its application to the problem of the target detection in the particular case of pedestrian tracking. We analyze
Journal of Discrete Algorithms 4 (2006) 499510 www.elsevier.com/locate/jda
Dimitrios, Thilikos
2006-01-01
Journal of Discrete Algorithms 4 (2006) 499510 www.elsevier.com/locate/jda A 3-approximation reserved. doi:10.1016/j.jda.2005.06.004 #12;500 F.V. Fomin, D.M. Thilikos / Journal of Discrete Algorithms
Discrete Applied Mathematics 180 (2015) 135140 Contents lists available at ScienceDirect
Onn, Shmuel
2015-01-01
Discrete Applied Mathematics 180 (2015) 135140 Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam Some efficiently solvable problems over@ie.technion.ac.il (S. Onn), v.shlyk@gmail.com, v.shlyk@outlook.com (V.A. Shlyk). http://dx.doi.org/10.1016/j.dam.2014
Discrete Applied Mathematics 180 (2015) 5269 Contents lists available at ScienceDirect
Deza, Antoine
2015-01-01
Discrete Applied Mathematics 180 (2015) 5269 Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam How many double squares can a string@mcmaster.ca (A. Thierry). http://dx.doi.org/10.1016/j.dam.2014.08.016 0166-218X/© 2014 Elsevier B.V. All rights
Discrete Applied Mathematics 181 (2015) 3340 Contents lists available at ScienceDirect
Lu, Mei
2015-01-01
Discrete Applied Mathematics 181 (2015) 3340 Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam Fault-tolerant maximal local: hql_2008@163.com (H. Liu), mlu@math.tsinghua.edu.cn (M. Lu). http://dx.doi.org/10.1016/j.dam.2014
Europhysics Letters PREPRINT Exploring the lower part of discrete polymer model energy
Stadler, Peter F.
Europhysics Letters PREPRINT Exploring the lower part of discrete polymer model energy landscapes a generic, problem independent algorithm for exploration of the low- energy portion of the energy landscape of discrete systems and apply it to the energy landscape of lattice proteins. Starting from a set of optimal
On the discretization of the Euler-Poincaré-Suslov equations in $SO(3)$
Fernando Jimenez; Juergen Scheurle
2015-06-03
In this paper we explore the discretization of Euler-Poincar\\'e-Suslov equations in $SO(3)$. We prove that the consistency order of the unreduced and reduced setups, when the discrete reconstruction equation is given by a Cayley retraction map, are related to each other in a nontrivial way. Moreover, we give precise conditions under which general and variational integrators generate a discrete flow preserving the distribution. These results are carefully illustrated by the example of the Suslov problem in $SO(3)$, establishing general consistency bounds and illustrating the performance of several discretizations through some plots. Finally, we show that any constraints-preserving discretization may be understood as being generated by the exact evolution map of a time-periodic non-autonomous perturbation of the original continuous-time nonholonomic system.
2012 Groundwater Monitoring Report Project Shoal Area Subsurface Corrective Action Unit 447
2013-03-01
The Project Shoal Area (PSA) in Nevada was the site of a 12-kiloton underground nuclear test in 1963. Although the surface of the site has been remediated, investigation of groundwater contamination resulting from the test is still in the corrective action process. Annual sampling and hydraulic head monitoring are conducted at the site as part of the subsurface corrective action strategy. Analytical results from the 2012 monitoring are consistent with those of the previous years, with tritium detected only in well HC-4. The tritium concentration in groundwater from well HC-4 remains far below the U.S. Environmental Protection Agency-established maximum contaminant level of 20,000 picocuries per liter. Concentrations of total uranium and gross alpha were also detected during this monitoring period, with uranium accounting for nearly all the gross alpha activity. The total uranium concentrations obtained from this monitoring period were consistent with previous results and reflect a slightly elevated natural uranium concentration, consistent with the mineralized geologic terrain. Isotopic ratios of uranium also indicate a natural source of uranium in groundwater, as opposed to a nuclear-test-related source. Water level trends obtained from the 2012 water level data were consistent with those of previous years. The corrective action strategy for the PSA is currently focused on revising the site conceptual model (SCM) and evaluating the adequacy of the current monitoring well network. Some aspects of the SCM are known; however, two major concerns are the uncertainty in the groundwater flow direction and the cause of rising water levels in site wells west of the shear zone. Water levels have been rising in the site wells west of the shear zone since the first hydrologic characterization wells were installed in 1996. While water levels in wells west of the shear zone continue to rise, the rate of increase is less than in previous years. The SCM will be revised, and an evaluation of the groundwater monitoring network will be conducted when water levels at the site have stabilized.
1998-12-01
This research included development of a new geologic sample management facility and associated quality assurance systems for the LANL Environmental Restoration Program. Additional work with the LANL Environmental Restoration Program included the development of Sampling and Analysis Plans (SAP) for various Operable Units for the Laboratory. The PI (Davidson) served as the sample curation/sample management specialist on the ER program Subsurface Studies Technical Team. Specialization in Field Unit Data Base systems was the focus of the work towards the end of the contract. A document is included which provides the Statement of Policy for the management of borehole samples collected during environmental restoration activities at LANL.
Chen, Hong
2002-01-01
Accumulation of enrofloxacin (ENR) was compared in resting DH82 macrophages and cerebral endothelia cells (CVE) (negative control) incubated with ENR (4 []g/ml) for certain hours. Both supernatant and cells were collected and subjected to analysis...
CHEN, SHU
2013-08-31
Abstract Previous studies on the synoptic forcing of high elevation areas of central Greenland have mostly relied on ice cores, snow pits, mesoscale models, and climate models. In this study, a radar-measured 118-year annual snow accumulation record...
Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments
Moridis, George J.; Sloan, E. Dendy
2006-01-01
bound gas in marine sediments: how much is really out there?methane hydrate in ocean sediment. Energy & Fuels 2005: 19:Accumulations in Oceanic Sediments George J. Moridis 1 and
www.rsc.org/loc Volume 9 | 2009 | High Speed Nanofluidic Protein Accumulator
Steckl, Andrew J.
with 10 nm polycarbonate nanopore membranes were utilized as high-speed protein accumulators. Double is electrically driven and operates based on differences in buffer concentration, conductance or p
-focusing. It was predicted that diffractional spreading is suppressed for discrete solitons,4,5 which are known to possess demonstrate, for the first time to our knowledge, the existence of discrete gap solitons that display
February 17, 2002 14:24 WorldScienti c/ws lula Conservative Discretization of the
Preziosi, Luigi
February 17, 2002 14:24 WorldScienti c/ws lula Chapter 1 Conservative Discretization:24 WorldScienti c/ws lula 2 Conservative Discretization of the Boltzmann Equation and the Semicontinuous
Parks, Steven Louis
1979-01-01
DISTRIBUTION AND A POSSIBLE MECHANISM OF URANIUM ACCUMULATION IN THE CATAHOULA TUFF, LIVE OAK COUNTY, TEXAS A Thesis by Steven Louis Parks Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirements... f' or the degree of MASTER OF SCIENCE May 1979 Major Subject: Geology DISTRIBUTION AND A POSSIBLE MECHANISM OF URANIUM ACCUMULATION IN THE CATAHOULA TUFF, LIVE OAK COUNTY, TEXAS A Thesis by Steven Louis Parks Approved as to style...
Oji, L. N.
2015-08-01
This report provides the results of analyses on Tanks 39H surface and subsurface supernatant liquid samples in support of the Corrosion Control Program. Analyses included warm acid strike preparation followed by analysis for silicon, aluminum, and sodium and water dilution preparation followed by analysis for anions. Other reported analytical results include analyses results for uranium, Pu-241 and Pu-239. The measured sodium concentration averaged, respectively, 4.28E+00 ± 9.30E-02 M and 4.32E+00 ± 1.076E-01 M in the Tank 39H surface sample and Tank 39H subsurface sample. In general, the nitrate, nitrite, free-OH and specific gravity of the Tank 39H surface and subsurface samples were all about the same in magnitude, respectively, averaging 1.98 M, 0.314 M, 1.26 M and 1.24. The measured silicon concentration for the Tank 39H surface and subsurface samples were, respectively, 3.84E+01± 5.51E+00 and 4.14E+01± 1.17E+00 mg/L. Based on the uranium, Pu-241 and Pu-239 concentrations, the calculated U-235 equivalent is 21.41 wt% for the surface sample and 21.32 wt% for the subsurface sample.
Lacey, Ph.D, P.E., Ronald E.
2012-07-16
Discrete Event Modeling of Algae Cultivation and Harvesting at Commercial Scale: Capital Costs, Operating Costs, and System Bottlenecks
Peraire, Jaime
adaptation for high-order discretizations and simplex, cut-cell mesh generation. First, output-based mesh is presented for high-order (p > 1) discretizations, driven by an output-error estimate obtained fromA Simplex Cut-Cell Adaptive Method for High-Order Discretizations of the Compressible Navier
Aizenberg, Igor
Fresnel Functions and Transforms in an Arbitrary Discrete Basis Igor Aizenberg, Senior Member, IEEE, and Jaakko T. Astola, Fellow, IEEE Abstract--The idea of generalized Fresnel functions, which traces back discrete Fresnel functions and the generalized discrete Fresnel transforms for an arbitrary basis
Alcouffe, R.E.
1985-01-01
A difficult class of problems for the discrete-ordinates neutral particle transport method is to accurately compute the flux due to a spatially localized source. Because the transport equation is solved for discrete directions, the so-called ray effect causes the flux at space points far from the source to be inaccurate. Thus, in general, discrete ordinates would not be the method of choice to solve such problems. It is better suited for calculating problems with significant scattering. The Monte Carlo method is suited to localized source problems, particularly if the amount of collisional interactions in minimal. However, if there are many scattering collisions and the flux at all space points is desired, then the Monte Carlo method becomes expensive. To take advantage of the attributes of both approaches, we have devised a first collision source method to combine the Monte Carlo and discrete-ordinates solutions. That is, particles are tracked from the source to their first scattering collision and tallied to produce a source for the discrete-ordinates calculation. A scattered flux is then computed by discrete ordinates, and the total flux is the sum of the Monte Carlo and discrete ordinates calculated fluxes. In this paper, we present calculational results using the MCNP and TWODANT codes for selected two-dimensional problems that show the effectiveness of this method.
Kansa, E.J.; Wijesinghe, A.M.; Viani, B.E.
1997-01-14
The remediation of heterogeneous subsurfaces is extremely time consuming and expensive with current and developing technologies. Although such technologies can adequately remove contaminants in the high hydraulic conductivity, coarse-grained sediments, they cannot access the contaminated low hydraulic conductivity fine-grained sediments. The slow bleed of contaminants from the fine-grained sediments is the primary reason why subsurface remediation is so time-consuming and expensive. This invention addresses the problem of remediating contaminated fine-grained sediments. It is intended that, in the future, a heterogeneous site be treated by a hybrid process that first remediates the high hydraulic conductivity, coarse-grained sediments, to be followed by the process, described in this invention, to treat the contaminated low hydraulic conductivity fine-grained sediments. The invention uses cationic flocculants and organic solvents to collapse the swelling negative double layer surrounding water saturated clay particles, causing a flocculated, cracked clay structure. The modification of the clay fabric in fine-grained sediments dramatically increases the hydraulic conductivity of previously very tight clays many orders of magnitude. 8 figs.