National Library of Energy BETA

Sample records for discrete space-time symmetries

  1. Is space-time symmetry a suitable generalization of parity-time symmetry?

    SciTech Connect (OSTI)

    Amore, Paolo; Fernández, Francisco M.; Garcia, Javier

    2014-11-15

    We discuss space-time symmetric Hamiltonian operators of the form H=H{sub 0}+igH{sup ′}, where H{sub 0} is Hermitian and g real. H{sub 0} is invariant under the unitary operations of a point group G while H{sup ′} is invariant under transformation by elements of a subgroup G{sup ′} of G. If G exhibits irreducible representations of dimension greater than unity, then it is possible that H has complex eigenvalues for sufficiently small nonzero values of g. In the particular case that H is parity-time symmetric then it appears to exhibit real eigenvalues for all 0symmetry and perturbation theory enable one to predict whether H may exhibit real or complex eigenvalues for g>0. We illustrate the main theoretical results and conclusions of this paper by means of two- and three-dimensional Hamiltonians exhibiting a variety of different point-group symmetries. - Highlights: • Space-time symmetry is a generalization of PT symmetry. • The eigenvalues of a space-time Hamiltonian are either real or appear as pairs of complex conjugate numbers. • In some cases all the eigenvalues are real for some values of a potential-strength parameter g. • At some value of g space-time symmetry is broken and complex eigenvalues appear. • Some multidimensional oscillators exhibit broken space-time symmetry for all values of g.

  2. Discrete symmetries and de Sitter spacetime

    SciTech Connect (OSTI)

    Cotăescu, Ion I. Pascu, Gabriel

    2014-11-24

    Aspects of the ambiguity in defining quantum modes on de Sitter spacetime using a commuting system composed only of differential operators are discussed. Discrete symmetries and their actions on the wavefunction in commonly used coordinate charts are reviewed. It is argued that the system of commuting operators can be supplemented by requiring the invariance of the wavefunction to combined discrete symmetries- a criterion which selects a single state out of the α-vacuum family. Two such members of this family are singled out by particular combined discrete symmetries- states between which exists a well-known thermality relation.

  3. Breaking discrete symmetries in the effective field theory of inflation

    SciTech Connect (OSTI)

    Cannone, Dario; Gong, Jinn-Ouk; Tasinato, Gianmassimo

    2015-08-03

    We study the phenomenon of discrete symmetry breaking during the inflationary epoch, using a model-independent approach based on the effective field theory of inflation. We work in a context where both time reparameterization symmetry and spatial diffeomorphism invariance can be broken during inflation. We determine the leading derivative operators in the quadratic action for fluctuations that break parity and time-reversal. Within suitable approximations, we study their consequences for the dynamics of linearized fluctuations. Both in the scalar and tensor sectors, we show that such operators can lead to new direction-dependent phases for the modes involved. They do not affect the power spectra, but can have consequences for higher correlation functions. Moreover, a small quadrupole contribution to the sound speed can be generated.

  4. (Small) Resonant non-Gaussianities: Signatures of a Discrete Shift Symmetry

    Office of Scientific and Technical Information (OSTI)

    in the Effective Field Theory of Inflation (Journal Article) | SciTech Connect (Small) Resonant non-Gaussianities: Signatures of a Discrete Shift Symmetry in the Effective Field Theory of Inflation Citation Details In-Document Search Title: (Small) Resonant non-Gaussianities: Signatures of a Discrete Shift Symmetry in the Effective Field Theory of Inflation We apply the Effective Field Theory of Inflation to study the case where the continuous shift symmetry of the Goldstone boson {pi} is

  5. Integral group actions on symmetric spaces and discrete duality symmetries of supergravity theories

    SciTech Connect (OSTI)

    Carbone, Lisa; Murray, Scott H.; Sati, Hisham

    2015-10-15

    For G = G(ℝ), a split, simply connected, semisimple Lie group of rank n and K the maximal compact subgroup of G, we give a method for computing Iwasawa coordinates of K∖G using the Chevalley generators and the Steinberg presentation. When K∖G is a scalar coset for a supergravity theory in dimensions ≥3, we determine the action of the integral form G(ℤ) on K∖G. We give explicit results for the action of the discrete U-duality groups SL{sub 2}(ℤ) and E{sub 7}(ℤ) on the scalar cosets SO(2)∖SL{sub 2}(ℝ) and [SU(8)/( ± Id)]∖E{sub 7(+7)}(ℝ) for type IIB supergravity in ten dimensions and 11-dimensional supergravity reduced to D = 4 dimensions, respectively. For the former, we use this to determine the discrete U-duality transformations on the scalar sector in the Borel gauge and we describe the discrete symmetries of the dyonic charge lattice. We determine the spectrum-generating symmetry group for fundamental BPS solitons of type IIB supergravity in D = 10 dimensions at the classical level and we propose an analog of this symmetry at the quantum level. We indicate how our methods can be used to study the orbits of discrete U-duality groups in general.

  6. Discrete accidental symmetry for a particle in a constant magnetic field on a torus

    SciTech Connect (OSTI)

    Al-Hashimi, M.H. Wiese, U.-J.

    2009-02-15

    A classical particle in a constant magnetic field undergoes cyclotron motion on a circular orbit. At the quantum level, the fact that all classical orbits are closed gives rise to degeneracies in the spectrum. It is well-known that the spectrum of a charged particle in a constant magnetic field consists of infinitely degenerate Landau levels. Just as for the 1/r and r{sup 2} potentials, one thus expects some hidden accidental symmetry, in this case with infinite-dimensional representations. Indeed, the position of the center of the cyclotron circle plays the role of a Runge-Lenz vector. After identifying the corresponding accidental symmetry algebra, we re-analyze the system in a finite periodic volume. Interestingly, similar to the quantum mechanical breaking of CP invariance due to the {theta}-vacuum angle in non-Abelian gauge theories, quantum effects due to two self-adjoint extension parameters {theta}{sub x} and {theta}{sub y} explicitly break the continuous translation invariance of the classical theory. This reduces the symmetry to a discrete magnetic translation group and leads to finite degeneracy. Similar to a particle moving on a cone, a particle in a constant magnetic field shows a very peculiar realization of accidental symmetry in quantum mechanics.

  7. Space-Time Insight | Open Energy Information

    Open Energy Info (EERE)

    Space-Time Insight Jump to: navigation, search Name: Space-Time Insight Address: 45680 Northport Loop East Place: Fremont, California Zip: 94538 Region: Bay Area Sector: Efficiency...

  8. Chiral symmetry restoration at large chemical potential in strongly...

    Office of Scientific and Technical Information (OSTI)

    SYMMETRY; CHIRALITY; CLUSTER EXPANSION; CORRELATIONS; GAUGE INVARIANCE; POTENTIALS; QUANTUM FIELD THEORY; QUARKS; SPACE-TIME; STRONG-COUPLING MODEL; SU GROUPS Word Cloud More...

  9. Electrodynamics on {kappa}-Minkowski space-time

    SciTech Connect (OSTI)

    Harikumar, E.; Juric, T.; Meljanac, S.

    2011-10-15

    In this paper, we derive Lorentz force and Maxwell's equations on kappa-Minkowski space-time up to the first order in the deformation parameter. This is done by elevating the principle of minimal coupling to noncommutative space-time. We also show the equivalence of minimal coupling prescription and Feynman's approach. It is shown that the motion in kappa space-time can be interpreted as motion in a background gravitational field, which is induced by this noncommutativity. In the static limit, the effect of kappa deformation is to scale the electric charge. We also show that the laws of electrodynamics depend on the mass of the charged particle, in kappa space-time.

  10. Parabosonic string and space-time non-commutativity

    SciTech Connect (OSTI)

    Seridi, M. A.; Belaloui, N.

    2012-06-27

    We investigate the para-quantum extension of the bosonic strings in a non-commutative space-time. We calculate the trilinear relations between the mass-center variables and the modes and we derive the Virasoro algebra where a new anomaly term due to the non-commutativity is obtained.

  11. Formation of naked singularities in five-dimensional space-time

    SciTech Connect (OSTI)

    Yamada, Yuta; Shinkai, Hisa-aki

    2011-03-15

    We numerically investigate the gravitational collapse of collisionless particles in spheroidal configurations both in four- and five-dimensional (5D) space-time. We repeat the simulation performed by Shapiro and Teukolsky (1991) that announced an appearance of a naked singularity, and also find similar results in the 5D version. That is, in a collapse of a highly prolate spindle, the Kretschmann invariant blows up outside the matter and no apparent horizon forms. We also find that the collapses in 5D proceed more rapidly than in 4D, and the critical prolateness for the appearance of an apparent horizon in 5D is loosened, compared to 4D cases. We also show how collapses differ with spatial symmetries comparing 5D evolutions in single-axisymmetry, SO(3), and those in double-axisymmetry, U(1)xU(1).

  12. Navigating Space-Time with Ultrafast Exciton Photolithography or

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scintillating Near-fields to Follow Dynamic Processes in Molecular Materials | MIT-Harvard Center for Excitonics Navigating Space-Time with Ultrafast Exciton Photolithography or Scintillating Near-fields to Follow Dynamic Processes in Molecular Materials May 5, 2015 at 4:30pm/ rm: 4-370 Naomi Ginsberg University of California/Department of Chemistry and Physics nsginsberg abstract: A cross-cutting theme in my research group is to examine dynamic processes in spatially-heterogeneous condensed

  13. Magnetic Correlations: A (Momentum) Space-Time Odyssey | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource Magnetic Correlations: A (Momentum) Space-Time Odyssey Wednesday, July 6, 2016 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: Yue Cao, Brookhaven National Laboratory Program Description Magnetic correlations are the fundamental building blocks of magnetism, and are suspected by many to be the driving force behind such exotic phenomenon as high Tc superconductivity. The marriage between the Free Electron Laser (FEL) and inelastic X-ray spectroscopy

  14. Discrete dark matter

    SciTech Connect (OSTI)

    Hirsch, M.; Morisi, S.; Peinado, E.; Valle, J. W. F. [AHEP Group, Institut de Fisica Corpuscular--C.S.I.C./Universitat de Valencia, Edificio Institutos de Paterna, Apartado 22085, E-46071 Valencia (Spain)

    2010-12-01

    We propose a new motivation for the stability of dark matter (DM). We suggest that the same non-Abelian discrete flavor symmetry which accounts for the observed pattern of neutrino oscillations, spontaneously breaks to a Z{sub 2} subgroup which renders DM stable. The simplest scheme leads to a scalar doublet DM potentially detectable in nuclear recoil experiments, inverse neutrino mass hierarchy, hence a neutrinoless double beta decay rate accessible to upcoming searches, while {theta}{sub 13}=0 gives no CP violation in neutrino oscillations.

  15. Naked singularities in higher dimensional Vaidya space-times

    SciTech Connect (OSTI)

    Ghosh, S. G.; Dadhich, Naresh

    2001-08-15

    We investigate the end state of the gravitational collapse of a null fluid in higher-dimensional space-times. Both naked singularities and black holes are shown to be developing as the final outcome of the collapse. The naked singularity spectrum in a collapsing Vaidya region (4D) gets covered with the increase in dimensions and hence higher dimensions favor a black hole in comparison to a naked singularity. The cosmic censorship conjecture will be fully respected for a space of infinite dimension.

  16. Symmetries of Einstein's field equations with a perfect fluid source as examples of Lie--Baecklund symmetries

    SciTech Connect (OSTI)

    Stephani, H.

    1988-07-01

    The framework of Lie--Baecklund (or generalized) symmetries is used to give a unifying view of some of the known symmetries of Einstein's field equations for the vacuum or perfect fluid case (with a ..mu.. = p or a ..mu..+3p = 0 equation of state). These symmetries occur if space-time admits one or two Killing vectors (orthogonal or parallel, respectively, to the four-velocity in the perfect fluid case).

  17. Space-time complexity in solid state models

    SciTech Connect (OSTI)

    Bishop, A.R.

    1985-01-01

    In this Workshop on symmetry-breaking it is appropriate to include the evolving fields of nonlinear-nonequilibrium systems in which transitions to and between various degrees of ''complexity'' (including ''chaos'') occur in time or space or both. These notions naturally bring together phenomena of pattern formation and chaos and therefore have ramifications for a huge array of natural sciences - astrophysics, plasmas and lasers, hydrodynamics, field theory, materials and solid state theory, optics and electronics, biology, pattern recognition and evolution, etc. Our particular concerns here are with examples from solid state and condensed matter.

  18. Horizons versus singularities in spherically symmetric space-times

    SciTech Connect (OSTI)

    Bronnikov, K. A.; Elizalde, E.; Odintsov, S. D.; Zaslavskii, O. B.

    2008-09-15

    We discuss different kinds of Killing horizons possible in static, spherically symmetric configurations and recently classified as 'usual', 'naked', and 'truly naked' ones depending on the near-horizon behavior of transverse tidal forces acting on an extended body. We obtain the necessary conditions for the metric to be extensible beyond a horizon in terms of an arbitrary radial coordinate and show that all truly naked horizons, as well as many of those previously characterized as naked and even usual ones, do not admit an extension and therefore must be considered as singularities. Some examples are given, showing which kinds of matter are able to create specific space-times with different kinds of horizons, including truly naked ones. Among them are fluids with negative pressure and scalar fields with a particular behavior of the potential. We also discuss horizons and singularities in Kantowski-Sachs spherically symmetric cosmologies and present horizon regularity conditions in terms of an arbitrary time coordinate and proper (synchronous) time. It turns out that horizons of orders 2 and higher occur in infinite proper times in the past or future, but one-way communication with regions beyond such horizons is still possible.

  19. Broken Symmetry

    ScienceCinema (OSTI)

    None

    2011-10-06

    - Physics, as we know it, attempts to interpret the diverse natural phenomena as particular manifestations of general laws. This vision of a world ruled by general testable laws is relatively recent in the history of mankind. Basically it was initiated by the Galilean inertial principle. The subsequent rapid development of large-scale physics is certainly tributary to the fact that gravitational and electromagnetic forces are long-range and hence can be perceived directly without the mediation of highly sophisticated technical devices. - The discovery of subatomic structures and of the concomitant weak and strong short-range forces raised the question of how to cope with short-range forces in relativistic quantum field theory. The Fermi theory of weak interactions, formulated in terms of point-like current-current interaction, was well-defined in lowest order perturbation theory and accounted for existing experimental data.However, it was inconsistent in higher orders because of uncontrollable divergent quantum fluctuations. In technical terms, in contradistinction to quantum electrodynamics, the Fermi theorywas not ?renormalizable?. This difficulty could not be solved by smoothing the point-like interaction by a massive, and therefore short-range, charged ?vector? particle exchange: theories with massive charged vector bosons were not renormalizable either. In the early nineteen sixties, there seemed to be insuperable obstacles to formulating a consistent theory with short-range forces mediated by massive vectors. - The breakthrough came from the notion of spontaneous symmetry breaking which arose in the study of phase transitions and was introduced in field theory by Nambu in 1960. - Ferromagnets illustrate the notion in phase transitions. Although no direction is dynamically preferred, the magnetization selects a global orientation. This is a spontaneous broken symmetry(SBS)of rotational invariance. Such continuous SBS imply the existence of ?massless? modes

  20. Topological horseshoes in travelling waves of discretized nonlinear wave equations

    SciTech Connect (OSTI)

    Chen, Yi-Chiuan; Chen, Shyan-Shiou; Yuan, Juan-Ming

    2014-04-15

    Applying the concept of anti-integrable limit to coupled map lattices originated from space-time discretized nonlinear wave equations, we show that there exist topological horseshoes in the phase space formed by the initial states of travelling wave solutions. In particular, the coupled map lattices display spatio-temporal chaos on the horseshoes.

  1. An Approach to Integrate a Space-Time GIS Data Model with High Performance Computers

    SciTech Connect (OSTI)

    Wang, Dali; Zhao, Ziliang; Shaw, Shih-Lung

    2011-01-01

    In this paper, we describe an approach to integrate a Space-Time GIS data model on a high performance computing platform. The Space-Time GIS data model has been developed on a desktop computing environment. We use the Space-Time GIS data model to generate GIS module, which organizes a series of remote sensing data. We are in the process of porting the GIS module into an HPC environment, in which the GIS modules handle large dataset directly via parallel file system. Although it is an ongoing project, authors hope this effort can inspire further discussions on the integration of GIS on high performance computing platforms.

  2. Axi-dilaton gravity in D{>=}4 dimensional space-times with torsion

    SciTech Connect (OSTI)

    Cebeci, H.; Dereli, T.

    2005-01-15

    We study models of axi-dilaton gravity in space-time geometries with torsion. We discuss conformal rescaling rules in both Riemannian and non-Riemannian formulations. We give static, spherically symmetric solutions and examine their singularity behavior.

  3. Chiral symmetry and chiral-symmetry breaking

    SciTech Connect (OSTI)

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)

  4. Even perturbations of the self-similar Vaidya space-time

    SciTech Connect (OSTI)

    Nolan, Brien C.; Waters, Thomas J.

    2005-05-15

    We study even parity metric and matter perturbations of all angular modes in self-similar Vaidya space-time. We focus on the case where the background contains a naked singularity. Initial conditions are imposed, describing a finite perturbation emerging from the portion of flat space-time preceding the matter-filled region of space-time. The most general perturbation satisfying the initial conditions is allowed to impinge upon the Cauchy horizon (CH), where the perturbation remains finite: There is no 'blue-sheet' instability. However, when the perturbation evolves through the CH and onto the second future similarity horizon of the naked singularity, divergence necessarily occurs: This surface is found to be unstable. The analysis is based on the study of individual modes following a Mellin transform of the perturbation. We present an argument that the full perturbation remains finite after resummation of the (possibly infinite number of) modes.

  5. Mathematical Formalism for an Experimental Test of Space-Time Anisotropy

    SciTech Connect (OSTI)

    Voicu-Brinzei, Nicoleta; Siparov, Sergey

    2010-01-01

    Some specific astrophysical data collected during the last decade suggest the need of a modification of the expression for the Einstein-Hilbert action, and several attempts are known in this respect. The modification suggested in this paper stems from a possible anisotropy of space-time--which leads to a dependence on directional variables of the simplest scalar in the least action principle. In order to provide a testable support to this idea, the optic-metrical parametric resonance is regarded - an experiment on a galactic scale, based on the interaction between the electromagnetic radiation of cosmic masers and periodical gravitational waves emitted by close double systems or pulsars. Since the effect depends on the space-time metric, a possible anisotropy could be revealed through observations. We prove that if space-time is anisotropic, then the orientation of the astrophysical systems suitable for observations would show it.

  6. Relativistic spectrum of hydrogen atom in the space-time non-commutativity

    SciTech Connect (OSTI)

    Moumni, Mustafa; BenSlama, Achour; Zaim, Slimane

    2012-06-27

    We study space-time non-commutativity applied to the hydrogen atom and its phenomenological effects. We find that it modifies the Coulomb potential in the Hamiltonian and add an r{sup -3} part. By calculating the energies from Dirac equation using perturbation theory, we study the modifications to the hydrogen spectrum. We find that it removes the degeneracy with respect to the total angular momentum quantum number and acts like a Lamb shift. Comparing the results with experimental values from spectroscopy, we get a new bound for the space-time non-commutative parameter.

  7. The Symmetries of QCD

    ScienceCinema (OSTI)

    Sekhar Chivukula

    2010-01-08

    The symmetries of a quantum field theory can be realized in a variety of ways. Symmetries can be realized explicitly, approximately, through spontaneous symmetry breaking or, via an anomaly, quantum effects can dynamically eliminate a symmetry of the theory that was present at the classical level.  Quantum Chromodynamics (QCD), the modern theory of the strong interactions, exemplify each of these possibilities. The interplay of these effects determine the spectrum of particles that we observe and, ultimately, account for 99% of the mass of ordinary matter. 

  8. Constraint analysis for variational discrete systems

    SciTech Connect (OSTI)

    Dittrich, Bianca; Hhn, Philipp A.; Institute for Theoretical Physics, Universiteit Utrecht, Leuvenlaan 4, NL-3584 CE Utrecht

    2013-09-15

    A canonical formalism and constraint analysis for discrete systems subject to a variational action principle are devised. The formalism is equivalent to the covariant formulation, encompasses global and local discrete time evolution moves and naturally incorporates both constant and evolving phase spaces, the latter of which is necessary for a time varying discretization. The different roles of constraints in the discrete and the conditions under which they are first or second class and/or symmetry generators are clarified. The (non-) preservation of constraints and the symplectic structure is discussed; on evolving phase spaces the number of constraints at a fixed time step depends on the initial and final time step of evolution. Moreover, the definition of observables and a reduced phase space is provided; again, on evolving phase spaces the notion of an observable as a propagating degree of freedom requires specification of an initial and final step and crucially depends on this choice, in contrast to the continuum. However, upon restriction to translation invariant systems, one regains the usual time step independence of canonical concepts. This analysis applies, e.g., to discrete mechanics, lattice field theory, quantum gravity models, and numerical analysis.

  9. Discrete Element Modeling

    SciTech Connect (OSTI)

    Morris, J; Johnson, S

    2007-12-03

    The Distinct Element Method (also frequently referred to as the Discrete Element Method) (DEM) is a Lagrangian numerical technique where the computational domain consists of discrete solid elements which interact via compliant contacts. This can be contrasted with Finite Element Methods where the computational domain is assumed to represent a continuum (although many modern implementations of the FEM can accommodate some Distinct Element capabilities). Often the terms Discrete Element Method and Distinct Element Method are used interchangeably in the literature, although Cundall and Hart (1992) suggested that Discrete Element Methods should be a more inclusive term covering Distinct Element Methods, Displacement Discontinuity Analysis and Modal Methods. In this work, DEM specifically refers to the Distinct Element Method, where the discrete elements interact via compliant contacts, in contrast with Displacement Discontinuity Analysis where the contacts are rigid and all compliance is taken up by the adjacent intact material.

  10. Equations Governing Space-Time Variability of Liquid Water Path in Stratus Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Equations Governing Space-Time Variability of Liquid Water Path in Stratus Clouds K. Ivanova Pennsylvania State University University Park, Pennsylvania T. P. Ackerman Pacific Northwest National Laboratory Richland, Washington M. Ausloos University of Liège B-4000 Liège, Belgium Abstract We present a method on how to derive an underlying mathematical (statistical or model free) equation for a liquid water path (LWP) signal directly from empirical data. The evolution of the probability density

  11. Discrete spectral incoherent solitons in nonlinear media with noninstantaneous response

    SciTech Connect (OSTI)

    Michel, Claire; Kibler, Bertrand; Picozzi, Antonio

    2011-02-15

    We show theoretically that nonlinear optical media characterized by a finite response time may support the existence of discrete spectral incoherent solitons. The structure of the soliton consists of three incoherent spectral bands that propagate in frequency space toward the low-frequency components in a discrete fashion and with a constant velocity. Discrete spectral incoherent solitons do not exhibit a confinement in the space-time domain, but exclusively in the frequency domain. The kinetic theory describes in detail all the essential properties of discrete spectral incoherent solitons: A quantitative agreement has been obtained between simulations of the kinetic equation and the nonlinear Schroedinger equation. Discrete spectral incoherent solitons may be supported in both the normal dispersion regime or the anomalous dispersion regime. These incoherent structures find their origin in the causality condition inherent to the nonlinear response function of the material. Considering the concrete example of the Raman effect, we show that discrete incoherent solitons may be spontaneously generated through the process of supercontinuum generation in photonic crystal fibers.

  12. Exact solutions of (n+1)-dimensional Yang-Mills equations in curved space-time

    SciTech Connect (OSTI)

    Sanchez-Monroy, J.A.; Quimbay, C.J.

    2012-09-15

    In the context of a semiclassical approach where vectorial gauge fields can be considered as classical fields, we obtain exact static solutions of the SU(N) Yang-Mills equations in an (n+1)-dimensional curved space-time, for the cases n=1,2,3. As an application of the results obtained for the case n=3, we consider the solutions for the anti-de Sitter and Schwarzschild metrics. We show that these solutions have a confining behavior and can be considered as a first step in the study of the corrections of the spectra of quarkonia in a curved background. Since the solutions that we find in this work are valid also for the group U(1), the case n=2 is a description of the (2+1) electrodynamics in the presence of a point charge. For this case, the solution has a confining behavior and can be considered as an application of the planar electrodynamics in a curved space-time. Finally we find that the solution for the case n=1 is invariant under a parity transformation and has the form of a linear confining solution. - Highlights: Black-Right-Pointing-Pointer We study exact static confining solutions of the SU(N) Yang-Mills equations in an (n+1)-dimensional curved space-time. Black-Right-Pointing-Pointer The solutions found are a first step in the study of the corrections on the spectra of quarkonia in a curved background. Black-Right-Pointing-Pointer A expression for the confinement potential in low dimensionality is found.

  13. Singlet particles as cold dark matter in a noncommutative space-time

    SciTech Connect (OSTI)

    Ettefaghi, M. M.

    2009-03-15

    We extend the noncommutative (NC) standard model to incorporate singlet particles as cold dark matter. In the NC space-time, the singlet particles can be coupled to the U(1) gauge field in the adjoint representation. We study the relic density of the singlet particles due to the NC induced interaction. Demanding either the singlet fermion or the singlet scalar to serve as cold dark matter and the NC induced interactions to be relevant to the dark matter production, we obtain the corresponding relations between the NC scale and the dark matter masses, which are consistent with some existing bounds.

  14. Information content of nonautonomous free fields in curved space-time

    SciTech Connect (OSTI)

    Parreira, J. E.; Nemes, M. C.; Fonseca-Romero, K. M.

    2011-03-15

    We show that it is possible to quantify the information content of a nonautonomous free field state in curved space-time. A covariance matrix is defined and it is shown that, for symmetric Gaussian field states, the matrix is connected to the entropy of the state. This connection is maintained throughout a quadratic nonautonomous (including possible phase transitions) evolution. Although particle-antiparticle correlations are dynamically generated, the evolution is isoentropic. If the current standard cosmological model for the inflationary period is correct, in absence of decoherence such correlations will be preserved, and could potentially lead to observable effects, allowing for a test of the model.

  15. Weakly broken galileon symmetry

    SciTech Connect (OSTI)

    Pirtskhalava, David; Santoni, Luca; Trincherini, Enrico; Vernizzi, Filippo

    2015-09-01

    Effective theories of a scalar ϕ invariant under the internal galileon symmetryϕ→ϕ+b{sub μ}x{sup μ} have been extensively studied due to their special theoretical and phenomenological properties. In this paper, we introduce the notion of weakly broken galileon invariance, which characterizes the unique class of couplings of such theories to gravity that maximally retain their defining symmetry. The curved-space remnant of the galileon’s quantum properties allows to construct (quasi) de Sitter backgrounds largely insensitive to loop corrections. We exploit this fact to build novel cosmological models with interesting phenomenology, relevant for both inflation and late-time acceleration of the universe.

  16. Self-similar space-time evolution of an initial density discontinuity

    SciTech Connect (OSTI)

    Rekaa, V. L.; Pcseli, H. L.; Trulsen, J. K.

    2013-07-15

    The space-time evolution of an initial step-like plasma density variation is studied. We give particular attention to formulate the problem in a way that opens for the possibility of realizing the conditions experimentally. After a short transient time interval of the order of the electron plasma period, the solution is self-similar as illustrated by a video where the space-time evolution is reduced to be a function of the ratio x/t. Solutions of this form are usually found for problems without characteristic length and time scales, in our case the quasi-neutral limit. By introducing ion collisions with neutrals into the numerical analysis, we introduce a length scale, the collisional mean free path. We study the breakdown of the self-similarity of the solution as the mean free path is made shorter than the system length. Analytical results are presented for charge exchange collisions, demonstrating a short time collisionless evolution with an ensuing long time diffusive relaxation of the initial perturbation. For large times, we find a diffusion equation as the limiting analytical form for a charge-exchange collisional plasma, with a diffusion coefficient defined as the square of the ion sound speed divided by the (constant) ion collision frequency. The ion-neutral collision frequency acts as a parameter that allows a collisionless result to be obtained in one limit, while the solution of a diffusion equation is recovered in the opposite limit of large collision frequencies.

  17. Origin of matter and space-time in the big bang

    SciTech Connect (OSTI)

    Mathews, G. J.; Yamazaki, D.; Kusakabe, M.; Cheoun, M.-K.

    2014-05-02

    We review the case for and against a bulk cosmic motion resulting from the quantum entanglement of our universe with the multiverse beyond our horizon. Within the current theory for the selection of the initial state of the universe from the landscape multiverse there is a generic prediction that pre-inflation quantum entanglement with other universes should give rise to a cosmic bulk flow with a correlation length of order horizon size and a velocity field relative to the expansion frame of the universe. Indeed, the parameters of this motion are are tightly constrained. A robust prediction can be deduced indicating that there should be an overall motion of of about 800 km/s relative to the background space time as defined by the cosmic microwave background (CMB). This talk will summarize the underlying theoretical motivation for this hypothesis. Of course our motion relative to the background space time (CMB dipole) has been known for decades and is generally attributed to the gravitational pull of the local super cluster. However, this cosmic peculiar velocity field has been recently deduced out to very large distances well beyond that of the local super cluster by using X-ray galaxy clusters as tracers of matter motion. This is achieved via the kinematic component of the Sunyaev-Zeldovich (KSZ) effect produced by Compton scattering of cosmic microwave background photons from the local hot intracluster gas. As such, this method measures peculiar velocity directly in the frame of the cluster. Similar attempts by our group and others have attempted to independently assess this bulk flow via Type la supernova redshifts. In this talk we will review the observation case for and against the existence of this bulk flow based upon the observations and predictions of the theory. If this interpretation is correct it has profound implications in that we may be observing for the first time both the physics that occurred before the big bang and the existence of the multiverse

  18. A broken symmetry ontology: Quantum mechanics as a broken symmetry

    SciTech Connect (OSTI)

    Buschmann, J.E.

    1988-01-01

    The author proposes a new broken symmetry ontology to be used to analyze the quantum domain. This ontology is motivated and grounded in a critical epistemological analysis, and an analysis of the basic role of symmetry in physics. Concurrently, he is led to consider nonheterogeneous systems, whose logical state space contains equivalence relations not associated with the causal relation. This allows him to find a generalized principle of symmetry and a generalized symmetry-conservation formalisms. In particular, he clarifies the role of Noether's theorem in field theory. He shows how a broken symmetry ontology already operates in a description of the weak interactions. Finally, by showing how a broken symmetry ontology operates in the quantum domain, he accounts for the interpretational problem and the essential incompleteness of quantum mechanics. He proposes that the broken symmetry underlying this ontological domain is broken dilation invariance.

  19. Power and Performance Trade-offs for Space Time Adaptive Processing

    SciTech Connect (OSTI)

    Gawande, Nitin A.; Manzano Franco, Joseph B.; Tumeo, Antonino; Tallent, Nathan R.; Kerbyson, Darren J.; Hoisie, Adolfy

    2015-07-27

    Computational efficiency – performance relative to power or energy – is one of the most important concerns when designing RADAR processing systems. This paper analyzes power and performance trade-offs for a typical Space Time Adaptive Processing (STAP) application. We study STAP implementations for CUDA and OpenMP on two computationally efficient architectures, Intel Haswell Core I7-4770TE and NVIDIA Kayla with a GK208 GPU. We analyze the power and performance of STAP’s computationally intensive kernels across the two hardware testbeds. We also show the impact and trade-offs of GPU optimization techniques. We show that data parallelism can be exploited for efficient implementation on the Haswell CPU architecture. The GPU architecture is able to process large size data sets without increase in power requirement. The use of shared memory has a significant impact on the power requirement for the GPU. A balance between the use of shared memory and main memory access leads to an improved performance in a typical STAP application.

  20. Observable T{sub 7} Lepton Flavor Symmetry at the Large Hadron Collider

    SciTech Connect (OSTI)

    Cao Qinghong; Khalil, Shaaban; Ma, Ernest; Okada, Hiroshi

    2011-04-01

    More often than not, models of flavor symmetry rely on the use of nonrenormalizable operators (in the guise of flavons) to accomplish the phenomenologically successful tribimaximal mixing of neutrinos. We show instead how a simple renormalizable two-parameter neutrino mass model of tribimaximal mixing can be constructed with the non-Abelian discrete symmetry T{sub 7} and the gauging of B-L. This is also achieved without the addition of auxiliary symmetries and particles present in almost all other proposals. Most importantly, it is verifiable at the Large Hadron Collider.

  1. Symmetry Breaking of H2 Dissociation by a Single Photon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    breaking the molecular symmetry. A Molecular Paradox Symmetries in nature, such as the human body's bilateral symmetry and the snowflake's six-fold rotational symmetry, abound but...

  2. Dynamical symmetries in nuclear structure

    SciTech Connect (OSTI)

    Casten, R.F.

    1986-01-01

    In recent years the concept of dynamical symmetries in nuclei has witnessed a renaissance of interest and activity. Much of this work has been developed in the context of the Interacting Boson Approximation (or IBA) model. The appearance and properties of dynamical symmetries in nuclei will be reviewed, with emphasis on their characteristic signatures and on the role of the proton-neutron interaction in their formation, systematics and evolution. 36 refs., 20 figs.

  3. Parity-time symmetry broken by point-group symmetry

    SciTech Connect (OSTI)

    Fernndez, Francisco M. Garcia, Javier

    2014-04-15

    We discuss a parity-time (PT) symmetric Hamiltonian with complex eigenvalues. It is based on the dimensionless Schrdinger equation for a particle in a square box with the PT-symmetric potential V(x, y) = iaxy. Perturbation theory clearly shows that some of the eigenvalues are complex for sufficiently small values of |a|. Point-group symmetry proves useful to guess if some of the eigenvalues may already be complex for all values of the coupling constant. We confirm those conclusions by means of an accurate numerical calculation based on the diagonalization method. On the other hand, the Schrdinger equation with the potential V(x, y) = iaxy{sup 2} exhibits real eigenvalues for sufficiently small values of |a|. Point group symmetry suggests that PT-symmetry may be broken in the former case and unbroken in the latter one.

  4. Charge symmetry at the partonic level

    SciTech Connect (OSTI)

    Londergan, J. T.; Peng, J. C.; Thomas, A. W.

    2010-07-01

    This review article discusses the experimental and theoretical status of partonic charge symmetry. It is shown how the partonic content of various structure functions gets redefined when the assumption of charge symmetry is relaxed. We review various theoretical and phenomenological models for charge symmetry violation in parton distribution functions. We summarize the current experimental upper limits on charge symmetry violation in parton distributions. A series of experiments are presented, which might reveal partonic charge symmetry violation, or alternatively might lower the current upper limits on parton charge symmetry violation.

  5. Black holes in a box: Toward the numerical evolution of black holes in AdS space-times

    SciTech Connect (OSTI)

    Witek, Helvi; Nerozzi, Andrea; Cardoso, Vitor; Herdeiro, Carlos; Sperhake, Ulrich; Zilhao, Miguel

    2010-11-15

    The evolution of black holes in ''confining boxes'' is interesting for a number of reasons, particularly because it mimics the global structure of anti-de Sitter geometries. These are nonglobally hyperbolic space-times and the Cauchy problem may only be well defined if the initial data are supplemented by boundary conditions at the timelike conformal boundary. Here, we explore the active role that boundary conditions play in the evolution of a bulk black hole system, by imprisoning a black hole binary in a box with mirrorlike boundary conditions. We are able to follow the post-merger dynamics for up to two reflections off the boundary of the gravitational radiation produced in the merger. We estimate that about 15% of the radiation energy is absorbed by the black hole per interaction, whereas transfer of angular momentum from the radiation to the black hole is observed only in the first interaction. We discuss the possible role of superradiant scattering for this result. Unlike the studies with outgoing boundary conditions, both of the Newman-Penrose scalars {Psi}{sub 4} and {Psi}{sub 0} are nontrivial in our setup, and we show that the numerical data verifies the expected relations between them.

  6. Dragging two-dimensional discrete solitons by moving linear defects

    SciTech Connect (OSTI)

    Brazhnyi, Valeriy A.; Malomed, Boris A.

    2011-07-15

    We study the mobility of small-amplitude solitons attached to moving defects which drag the solitons across a two-dimensional (2D) discrete nonlinear Schroedinger lattice. Findings are compared to the situation when a free small-amplitude 2D discrete soliton is kicked in a uniform lattice. In agreement with previously known results, after a period of transient motion the free soliton transforms into a localized mode pinned by the Peierls-Nabarro potential, irrespective of the initial velocity. However, the soliton attached to the moving defect can be dragged over an indefinitely long distance (including routes with abrupt turns and circular trajectories) virtually without losses, provided that the dragging velocity is smaller than a certain critical value. Collisions between solitons dragged by two defects in opposite directions are studied too. If the velocity is small enough, the collision leads to a spontaneous symmetry breaking, featuring fusion of two solitons into a single one, which remains attached to either of the two defects.

  7. Scars of symmetries in quantum chaos

    SciTech Connect (OSTI)

    Delande, D.; Gay, J.C.

    1987-10-19

    The hydrogen atom in a magnetic field is a classically chaotic Hamiltonian system. The energy-level fluctuations have been shown recently to obey a random-matrix model. Here we go beyond the statistical analysis by studying the destruction of the low-field dynamical symmetries. We especially establish the existence of scars of symmetries in the chaotic regime. The symmetry properties are no longer associated with one given level, but fractalized onto clusters of levels, generating a long-range order.

  8. Molecular Manipulations of Symmetry | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Manipulations of Symmetry Researchers have studied the effect of concentration on the activity and selectivity in a zirconium-catalyzed hydroamination reaction. In this...

  9. Hidden Rotational Symmetries in Magnetic Domain Patterns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and magnetization history. Left: A typical speckle pattern from the CoPd multilayer. Color bar at bottom indicates relative intensity. The rotational symmetry of a scattering...

  10. Hidden Rotational Symmetries in Magnetic Domain Patterns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    One of the most powerful tools in the mathematics of science, from the physics of elementary particles to macroscopic matter, is symmetry, no doubt reflecting the...

  11. Hybrid Discrete - Continuum Algorithms for Stochastic Reaction...

    Office of Scientific and Technical Information (OSTI)

    for Stochastic Reaction Networks. Citation Details In-Document Search Title: Hybrid Discrete - Continuum Algorithms for Stochastic Reaction Networks. Abstract not provided. ...

  12. SNAP:SN (Discrete Ordinates) Application Proxy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application Proxy SNAP serves as a proxy application to model the performance of a modern discrete ordinates neutral particle transport application. June 29, 2013 software SNAP...

  13. Teaching symmetry in the introductory physics curriculum

    SciTech Connect (OSTI)

    Hill, C. T.; Lederman, L. M.

    2000-01-01

    Modern physics is largely defined by fundamental symmetry principles and Noether's Theorem. Yet these are not taught, or rarely mentioned, to beginning students, thus missing an opportunity to reveal that the subject of physics is as lively and contemporary as molecular biology, and as beautiful as the arts. We prescribe a symmetry module to insert into the curriculum, of a week's length.

  14. Conformal symmetries of adiabatic modes in cosmology

    SciTech Connect (OSTI)

    Hinterbichler, Kurt; Khoury, Justin; Hui, Lam E-mail: lhui@astro.columbia.edu

    2012-08-01

    We remark on the existence of non-linearly realized conformal symmetries for scalar adiabatic perturbations in cosmology. These conformal symmetries are present for any cosmological background, beyond any slow-roll or quasi-de Sitter approximation. The dilatation transformation shifts the curvature perturbation by a constant, and corresponds to the well-known symmetry under spatial rescaling. We argue that the scalar sector is also invariant under special conformal transformations, which shift the curvature perturbation by a term linear in the spatial coordinates. We discuss whether these conformal symmetries can be extended to include tensor perturbations. Tensor modes introduce their own set of non-linearly realized symmetries. We identify an infinite set of large gauge transformations which maintain the transverse, traceless gauge condition, while shifting the tensor mode non-trivially.

  15. Pair breaking versus symmetry breaking: Origin of the Raman modes...

    Office of Scientific and Technical Information (OSTI)

    Pair breaking versus symmetry breaking: Origin of the Raman modes in superconducting cuprates Citation Details In-Document Search Title: Pair breaking versus symmetry breaking:...

  16. Fractional Topological Phases and Broken Time-Reversal Symmetry...

    Office of Scientific and Technical Information (OSTI)

    Fractional Topological Phases and Broken Time-Reversal Symmetry in Strained Graphene Title: Fractional Topological Phases and Broken Time-Reversal Symmetry in Strained Graphene ...

  17. Bending-induced Symmetry Breaking of Lithiation in Germanium...

    Office of Scientific and Technical Information (OSTI)

    Bending-induced Symmetry Breaking of Lithiation in Germanium Nanowires Citation Details In-Document Search Title: Bending-induced Symmetry Breaking of Lithiation in Germanium ...

  18. Flavor symmetry breaking and vacuum alignment on orbifolds (Journal...

    Office of Scientific and Technical Information (OSTI)

    widely studied for figuring out the masses and mixing angles of standard model fermions. ... MIXING; POTENTIALS; SCALAR FIELDS; STANDARD MODEL; SYMMETRY; SYMMETRY BREAKING; ...

  19. Time-reversal symmetry breaking and the field theory of quantum chaos

    SciTech Connect (OSTI)

    Simons, B.D. [Cavendish Laboratory, Madingley Road, Cambridge, CB3 0HE (United Kingdom)] [Cavendish Laboratory, Madingley Road, Cambridge, CB3 0HE (United Kingdom); Agam, O. [NEC Research Institute, 4 Independence Way, Princeton, New Jersey 08540 (United States)] [NEC Research Institute, 4 Independence Way, Princeton, New Jersey 08540 (United States); Andreev, A.V. [Institute for Theoretical Physics, University of California, Santa Barbara, California 93106 (United States)] [Institute for Theoretical Physics, University of California, Santa Barbara, California 93106 (United States)

    1997-04-01

    Recent studies have shown that the quantum statistical properties of systems which are chaotic in their classical limit can be expressed in terms of an effective field theory. Within this description, spectral properties are determined by low energy relaxation modes of the classical evolution operator. It is in the interaction of these modes that quantum interference effects are encoded. In this paper we review this general approach and discuss how the theory is modified to account for time-reversal symmetry breaking. To keep our discussion general, we will also briefly describe how the theory is modified by the presence of an additional discrete symmetry such as inversion. Throughout, parallels are drawn between quantum chaotic systems and the properties of weakly disordered conductors. {copyright} {ital 1997 American Institute of Physics.}

  20. Unification of gauge, family, and flavor symmetries illustrated in gauged SU(12) models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Albright, Carl H.; Feger, Robert P.; Kephart, Thomas W.

    2016-04-25

    In this study, to explain quark and lepton masses and mixing angles, one has to extend the standard model, and the usual practice is to put the quarks and leptons into irreducible representations of discrete groups. We argue that discrete flavor symmetries (and their concomitant problems) can be avoided if we extend the gauge group. In the framework of SU(12) we give explicit examples of models having varying degrees of predictability obtained by scanning over groups and representations and identifying cases with operators contributing to mass and mixing matrices that need little fine- tuning of prefactors. Fitting with quark andmore » lepton masses run to the GUT scale and known mixing angles allows us to make predictions for the neutrino masses and hierarchy, the octant of the atmospheric mixing angle, leptonic CP violation, Majorana phases, and the effective mass observed in neutrinoless double beta decay.« less

  1. Runge-Lenz vector, accidental SU(2) symmetry, and unusual multiplets for motion on a cone

    SciTech Connect (OSTI)

    Al-Hashimi, M.H. Wiese, U.-J.

    2008-01-15

    We consider a particle moving on a cone and bound to its tip by 1/r or harmonic oscillator potentials. When the deficit angle of the cone divided by 2{pi} is a rational number, all bound classical orbits are closed. Correspondingly, the quantum system has accidental degeneracies in the discrete energy spectrum. An accidental SU(2) symmetry is generated by the rotations around the tip of the cone as well as by a Runge-Lenz vector. Remarkably, some of the corresponding multiplets have fractional 'spin' and unusual degeneracies.

  2. Hidden Rotational Symmetries in Magnetic Domain Patterns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hidden Rotational Symmetries in Magnetic Domain Patterns Print Magnetic thin films have complicated domain patterns that may or may not repeat with each cycle through a hysteresis loop. A magnetic thin film with perpendicular anisotropy, such as that used in computer hard drives, for example, commonly exhibits labyrinthine domain patterns. These patterns are disordered over a macroscopic length scale, and intuitively we do not expect to observe any symmetry in such systems. Scientists at the

  3. Hidden Rotational Symmetries in Magnetic Domain Patterns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hidden Rotational Symmetries in Magnetic Domain Patterns Print Magnetic thin films have complicated domain patterns that may or may not repeat with each cycle through a hysteresis loop. A magnetic thin film with perpendicular anisotropy, such as that used in computer hard drives, for example, commonly exhibits labyrinthine domain patterns. These patterns are disordered over a macroscopic length scale, and intuitively we do not expect to observe any symmetry in such systems. Scientists at the

  4. Hidden Rotational Symmetries in Magnetic Domain Patterns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hidden Rotational Symmetries in Magnetic Domain Patterns Print Magnetic thin films have complicated domain patterns that may or may not repeat with each cycle through a hysteresis loop. A magnetic thin film with perpendicular anisotropy, such as that used in computer hard drives, for example, commonly exhibits labyrinthine domain patterns. These patterns are disordered over a macroscopic length scale, and intuitively we do not expect to observe any symmetry in such systems. Scientists at the

  5. Hidden Rotational Symmetries in Magnetic Domain Patterns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hidden Rotational Symmetries in Magnetic Domain Patterns Print Magnetic thin films have complicated domain patterns that may or may not repeat with each cycle through a hysteresis loop. A magnetic thin film with perpendicular anisotropy, such as that used in computer hard drives, for example, commonly exhibits labyrinthine domain patterns. These patterns are disordered over a macroscopic length scale, and intuitively we do not expect to observe any symmetry in such systems. Scientists at the

  6. Hidden Rotational Symmetries in Magnetic Domain Patterns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hidden Rotational Symmetries in Magnetic Domain Patterns Print Magnetic thin films have complicated domain patterns that may or may not repeat with each cycle through a hysteresis loop. A magnetic thin film with perpendicular anisotropy, such as that used in computer hard drives, for example, commonly exhibits labyrinthine domain patterns. These patterns are disordered over a macroscopic length scale, and intuitively we do not expect to observe any symmetry in such systems. Scientists at the

  7. Hidden Rotational Symmetries in Magnetic Domain Patterns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hidden Rotational Symmetries in Magnetic Domain Patterns Print Magnetic thin films have complicated domain patterns that may or may not repeat with each cycle through a hysteresis loop. A magnetic thin film with perpendicular anisotropy, such as that used in computer hard drives, for example, commonly exhibits labyrinthine domain patterns. These patterns are disordered over a macroscopic length scale, and intuitively we do not expect to observe any symmetry in such systems. Scientists at the

  8. Hidden Rotational Symmetries in Magnetic Domain Patterns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hidden Rotational Symmetries in Magnetic Domain Patterns Print Magnetic thin films have complicated domain patterns that may or may not repeat with each cycle through a hysteresis loop. A magnetic thin film with perpendicular anisotropy, such as that used in computer hard drives, for example, commonly exhibits labyrinthine domain patterns. These patterns are disordered over a macroscopic length scale, and intuitively we do not expect to observe any symmetry in such systems. Scientists at the

  9. Hidden Rotational Symmetries in Magnetic Domain Patterns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hidden Rotational Symmetries in Magnetic Domain Patterns Print Magnetic thin films have complicated domain patterns that may or may not repeat with each cycle through a hysteresis loop. A magnetic thin film with perpendicular anisotropy, such as that used in computer hard drives, for example, commonly exhibits labyrinthine domain patterns. These patterns are disordered over a macroscopic length scale, and intuitively we do not expect to observe any symmetry in such systems. Scientists at the

  10. Hidden Rotational Symmetries in Magnetic Domain Patterns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hidden Rotational Symmetries in Magnetic Domain Patterns Hidden Rotational Symmetries in Magnetic Domain Patterns Print Wednesday, 27 June 2012 00:00 Magnetic thin films have complicated domain patterns that may or may not repeat with each cycle through a hysteresis loop. A magnetic thin film with perpendicular anisotropy, such as that used in computer hard drives, for example, commonly exhibits labyrinthine domain patterns. These patterns are disordered over a macroscopic length scale, and

  11. Running Parallel Discrete Event Simulators on Sierra

    SciTech Connect (OSTI)

    Barnes, P. D.; Jefferson, D. R.

    2015-12-03

    In this proposal we consider porting the ROSS/Charm++ simulator and the discrete event models that run under its control so that they run on the Sierra architecture and make efficient use of the Volta GPUs.

  12. Workshop on electroweak symmetry breaking: proceedings

    SciTech Connect (OSTI)

    Hinchliffe, I.

    1984-10-01

    A theoretical workshop on electroweak symmetry breaking at the Superconducting Supercollider was held at Lawrence Berkeley Laboratory, June 4-22, 1984. The purpose of the workshop was to focus theoretical attention on the ways in which experimentation at the SSC could reveal manifestations of the phenomenon responsible for electroweak symmetry breaking. This issue represents, at present, the most compelling scientific argument for the need to explore the energy region to be made accessible by the SSC, and a major aim of the workshop was to involve a broad cross section of particle theorists in the ongoing process of sharpening the requirements for both accelerator and detector design that will ensure detection and identification of meaningful signals, whatever form the electroweak symmetry breaking phenomenon should actually take. Separate entries were prepared for the data base for the papers presented.

  13. Electroless plating apparatus for discrete microsized particles

    DOE Patents [OSTI]

    Mayer, Anton

    1978-01-01

    Method and apparatus are disclosed for producing very uniform coatings of a desired material on discrete microsized particles by electroless techniques. Agglomeration or bridging of the particles during the deposition process is prevented by imparting a sufficiently random motion to the particles that they are not in contact with each other for a time sufficient for such to occur.

  14. Electrolytic plating apparatus for discrete microsized particles

    DOE Patents [OSTI]

    Mayer, Anton

    1976-11-30

    Method and apparatus are disclosed for electrolytically producing very uniform coatings of a desired material on discrete microsized particles. Agglomeration or bridging of the particles during the deposition process is prevented by imparting a sufficiently random motion to the particles that they are not in contact with a powered cathode for a time sufficient for such to occur.

  15. Relativistic pseudospin symmetry and shell model Hamiltonians that conserve pseudospin symmetry

    SciTech Connect (OSTI)

    Ginocchio, Joseph N

    2010-09-21

    Professor Akito Arima and his colleagues discovered 'pseudospin' doublets forty-one years ago in spherical nuclei. These doublets were subsequently discovered in deformed nuclei. We show that pseudospin symmetry is an SU(2) symmetry of the Dirac Hamiltonian which occurs when the scalar and vector potentials are opposite in sign but equal in magnitude. This symmetry occurs independent of the shape of the nucleus: spherical, axial deformed, triaxial, and gamma unstable. We survey some of the evidence that pseudospin symmetry is approximately conserved for a Dirac Hamiltonian with realistic scalar and vector potentials by examining the energy spectra, the lower components of the Dirac eigenfunctions, the magnetic dipole and Gamow-Teller transitions in nuclei, the upper components of the Dirac eigenfunctions, and nucleon-nucleus scattering. We shall also suggest that pseudospin symmetry may have a fundamental origin in chiral symmetry breaking by examining QCD sum rules. Finally we derive the shell model Hamiltonians which conserve pseudospin and show that they involve tensor interactions.

  16. Nonzero {theta}{sub 13} for neutrino mixing in a supersymmetric B-L gauge model with T{sub 7} lepton flavor symmetry

    SciTech Connect (OSTI)

    Cao Qinghong; Khalil, Shaaban; Ma, Ernest; Okada, Hiroshi

    2011-10-01

    We discuss how {theta}{sub 13}{ne}0 is accommodated in a recently proposed renormalizable model of neutrino mixing using the non-Abelian discrete symmetry T{sub 7} in the context of a supersymmetric extension of the standard model with gauged U(1){sub B-L}. We predict a correlation between {theta}{sub 13} and {theta}{sub 23}, as well as the effective neutrino mass m{sub ee} in neutrinoless double beta decay.

  17. State of Modeling Symmetry in Hohlraums

    SciTech Connect (OSTI)

    Jones, O. S.

    2015-07-22

    Modeling radiation drive asymmetry is challenging problem whose agreement with data depends on the hohlraum gas fill density. Modeling to date uses the HYDRA code with crossbeam energy transfer (CBET) calculated separately, and backscattered light removed from the input laser. For high fill hohlraums (~>1 mg/cc), matching symmetry requires ad hoc adjustments to CBET during picket and peak of drive. For near-vacuum hohlraums, there is little CBET or backscatter, and drive is more waist-high than predicted. For intermediate fill densities (~0.6 mg/cc) there appears to be a region of small CBET and backscatter where symmetry is reasonably well modeled. A new technique where backscatter and CBET are done “inline” appears it could bring high fill simulations closer to data.

  18. Eugene Wigner and Fundamental Symmetry Principles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eugene Wigner and Fundamental Symmetry Principles Patents * Resources with Additional Information * Wigner Honored "[Eugene P.] Wigner's great contribution to science, for which he won the Nobel Prize in Physics in 1963, was his insight into the fundamental mathematics and physics of quantum mechanics. He applied and extended the mathematical theory of groups to the quantum world of the atom; specifically, he used group theory to organize the quantum energy levels of electrons in atoms in a

  19. Electroweak Symmetry Breaking in Historical Perspective

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Quigg, Chris

    2015-10-01

    The discovery of the Higgs boson is a major milestone in our progress toward understanding the natural world. A particular aim of my review is to show how diverse ideas came together in the conception of electroweak symmetry breaking that led up to the discovery. Furthermore, I survey what we know now that we did not know before, what properties of the Higgs boson remain to be established, and what new questions we may now hope to address.

  20. Quark matter symmetry energy and quark stars

    SciTech Connect (OSTI)

    Chu, Peng-Cheng; Chen, Lie-Wen

    2014-01-10

    We extend the confined-density-dependent-mass (CDDM) model to include isospin dependence of the equivalent quark mass. Within the confined-isospin-density-dependent-mass (CIDDM) model, we study the quark matter symmetry energy, the stability of strange quark matter, and the properties of quark stars. We find that including isospin dependence of the equivalent quark mass can significantly influence the quark matter symmetry energy as well as the properties of strange quark matter and quark stars. While the recently discovered large mass pulsars PSR J1614–2230 and PSR J0348+0432 with masses around 2 M {sub ☉} cannot be quark stars within the CDDM model, they can be well described by quark stars in the CIDDM model. In particular, our results indicate that the two-flavor u-d quark matter symmetry energy should be at least about twice that of a free quark gas or normal quark matter within the conventional Nambu-Jona-Lasinio model in order to describe PSR J1614–2230 and PSR J0348+0432 as quark stars.

  1. Implications of current constraints on parton charge symmetry

    SciTech Connect (OSTI)

    J. T. Londergan; A. W. Thomas

    2005-11-01

    For the first time, charge symmetry breaking terms in parton distribution functions have been included in a global fit to high energy data. We review the results obtained for both valence and sea quark charge symmetry violation and compare these results with the most stringent experimental upper limits on charge symmetry violation for parton distribution functions, as well as with theoretical estimates of charge symmetry violation. The limits allowed in the global fit would tolerate a rather large violation of charge symmetry. We discuss the implications of this for various observables, including extraction of the Weinberg angle in neutrino DIS and the Gottfried and Adler sum rules.

  2. Integrability of the symmetry reduced bosonic dynamics and soliton generating transformations in the low energy heterotic string effective theory

    SciTech Connect (OSTI)

    Alekseev, G. A.

    2009-08-15

    Integrable structure of the symmetry reduced dynamics of massless bosonic sector of the heterotic string effective action is presented. For string background equations that govern in the space-time of D dimensions (D{>=}4), the dynamics of interacting gravitational, dilaton, antisymmetric tensor and any number n{>=}0 of Abelian vector gauge fields, all depending only on two coordinates, we construct an equivalent (2d+n)x(2d+n)-matrix spectral problem (d=D-2). This spectral problem provides the base for the development of various solution constructing procedures (dressing transformations, integral equation methods). For the case of the absence of Abelian gauge fields, we present the soliton generating transformations of any background with interacting gravitational, dilaton, and the second rank antisymmetric tensor fields.

  3. Dirac or inverse seesaw neutrino masses with B L gauge symmetry and S? flavor symmetry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ma, Ernest; Srivastava, Rahul

    2015-02-01

    Many studies have been made on extensions of the standard model with B L gauge symmetry. The addition of three singlet (right-handed) neutrinos renders it anomaly-free. It has always been assumed that the spontaneous breaking of B L is accomplished by a singlet scalar field carrying two units of B L charge. This results in a very natural implementation of the Majorana seesaw mechanism for neutrinos. However, there exists in fact another simple anomaly-free solution which allows Dirac or inverse seesaw neutrino masses. We show for the first time these new possibilities and discuss an application tomoreneutrino mixing with S? flavor symmetry.less

  4. Instabilities of an anisotropically expanding non-Abelian plasma: 1D+3V discretized hard-loop simulations

    SciTech Connect (OSTI)

    Rebhan, Anton; Attems, Maximilian; Strickland, Michael

    2008-08-15

    Non-Abelian plasma instabilities play a crucial role in the nonequilibrium dynamics of a weakly coupled quark-gluon plasma, and they importantly modify the standard perturbative bottom-up thermalization scenario in heavy-ion collisions. Using the auxiliary-field formulation of the hard-loop effective theory, we study numerically the real-time evolution of instabilities in an anisotropic collisionless Yang-Mills plasma undergoing longitudinal free-streaming expansion. In this first real-time lattice simulation we consider the most unstable modes, long-wavelength coherent color fields that are constant in transverse directions and which therefore are effectively 1+1 dimensional in space-time, except for the auxiliary fields which also depend on discretized momentum rapidity and transverse velocity components. We reproduce the semianalytical results obtained previously for the Abelian regime, and we determine the nonlinear effects which occur when the instabilities have grown such that non-Abelian interactions become important.

  5. Compartmentalization analysis using discrete fracture network models

    SciTech Connect (OSTI)

    La Pointe, P.R.; Eiben, T.; Dershowitz, W.; Wadleigh, E.

    1997-08-01

    This paper illustrates how Discrete Fracture Network (DFN) technology can serve as a basis for the calculation of reservoir engineering parameters for the development of fractured reservoirs. It describes the development of quantitative techniques for defining the geometry and volume of structurally controlled compartments. These techniques are based on a combination of stochastic geometry, computational geometry, and graph the theory. The parameters addressed are compartment size, matrix block size and tributary drainage volume. The concept of DFN models is explained and methodologies to compute these parameters are demonstrated.

  6. Construction of Discrete Time Shadow Price

    SciTech Connect (OSTI)

    Rogala, Tomasz Stettner, Lukasz

    2015-12-15

    In the paper expected utility from consumption over finite time horizon for discrete time markets with bid and ask prices and strictly concave utility function is considered. The notion of weak shadow price, i.e. an illiquid price, depending on the portfolio, under which the model without bid and ask price is equivalent to the model with bid and ask price is introduced. Existence and the form of weak shadow price is shown. Using weak shadow price usual (called in the paper strong) shadow price is then constructed.

  7. Symmetry Energy as a Function of Density and Mass

    SciTech Connect (OSTI)

    Danielewicz, Pawel; Lee, Jenny

    2007-10-26

    Energy in nuclear matter is, in practice, completely characterized at different densities and asymmetries, when the density dependencies of symmetry energy and of energy of symmetric matter are specified. The density dependence of the symmetry energy at subnormal densities produces mass dependence of nuclear symmetry coefficient and, thus, can be constrained by that latter dependence. We deduce values of the mass dependent symmetry coefficients, by using excitation energies to isobaric analog states. The coefficient systematic, for intermediate and high masses, is well described in terms of the symmetry coefficient values of a{sub a}{sup V} = (31.5-33.5) MeV for the volume coefficient and a{sub a}{sup S} = (9-12) MeV for the surface coefficient. These two further correspond to the parameter values describing density dependence of symmetry energy, of L{approx}95 MeV and K{sub sym}{approx}25 MeV.

  8. Impact of the nuclear symmetry energy on the pygmy dipole resonance

    SciTech Connect (OSTI)

    Daoutidis, I.; Goriely, S.

    2011-08-15

    The correlation between the pygmy dipole strength and the symmetry energy of nuclear matter is reanalyzed. While previous calculations [A. Klimkiewicz et al., Phys. Rev. C 76, 051603(R) (2007); A. Carbone, G. Colo, A. Bracco, L.-G. Cao, P. F. Bortignon, F. Camera, and O. Wieland, Phys. Rev. C 81, 041301 (2010).] have clearly shown a direct correlation between both quantities, it remains unclear to what extent experimental as well as theoretical uncertainties can allow for an accurate determination of the symmetry energy. For this reason, we have recalculated the low-lying strength distributions of the giant dipole resonances for {sup 130}Sn and {sup 132}Sn that have been recently measured, taking into account the above uncertainties. The calculations are performed within two microscopic models, namely, the discrete quasiparticle random phase approximation (DRPA) and the quasiparticle continuum RPA, which is an extension of the DRPA that takes the coupling to the single-particle continuum into account in an exact way.

  9. SYMMETRY OF THE IBEX RIBBON OF ENHANCED ENERGETIC NEUTRAL ATOM...

    Office of Scientific and Technical Information (OSTI)

    HELIOSPHERE; INTERSTELLAR SPACE; KEV RANGE; MAGNETIC FIELDS; PLASMA; REFLECTION; SUN; SYMMETRY The circular ribbon of enhanced energetic neutral atom (ENA) emission...

  10. Symmetry Breaking of H2 Dissociation by a Single Photon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    six-fold rotational symmetry, abound but are only approximately true because the objects of our macroscopic world are highly complex. Once we reduce their size and...

  11. Growth Mode and Substrate Symmetry Dependent Strain in Epitaxial...

    Office of Scientific and Technical Information (OSTI)

    Dependent Strain in Epitaxial Graphene. Citation Details In-Document Search Title: Growth Mode and Substrate Symmetry Dependent Strain in Epitaxial Graphene. Abstract not provided. ...

  12. The symmetry groups of bifurcations of integrable Hamiltonian systems

    SciTech Connect (OSTI)

    Orlova, E I

    2014-11-30

    Two-dimensional atoms are investigated; these are used to code bifurcations of the Liouville foliations of nondegenerate integrable Hamiltonian systems. To be precise, the symmetry groups of atoms with complexity at most 3 are under study. Atoms with symmetry group Z{sub p}?Z{sub q} are considered. It is proved that Z{sub p}?Z{sub q} is the symmetry group of atoric atom. The symmetry groups of all nonorientable atoms with complexity at most 3 are calculated. The concept of ageodesic atom is introduced. Bibliography: 9 titles.

  13. Unified description of superconducting pairing symmetry in electron...

    Office of Scientific and Technical Information (OSTI)

    Title: Unified description of superconducting pairing symmetry in electron-doped Fe-based-... Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal ...

  14. Breaking of Symmetry in Graphene Growth on Metal Substrates ...

    Office of Scientific and Technical Information (OSTI)

    Breaking of Symmetry in Graphene Growth on Metal Substrates Not Available Temp HTML Storage 2: Artyukhov, Vasilii I.; Hao, Yufeng; Ruoff, Rodney S.; Yakobson, Boris I. Temp Plain ...

  15. Travel Funding for Quantum Theory and Symmetries 6

    SciTech Connect (OSTI)

    Das, Sumit R.; Shapere, Alfred D.

    2009-07-01

    This is the proceedings volume of the 6th International Symposium on Quantum Theory and Symmetries (QTS6), held in Lexington KY, 20-25 July 2009.

  16. Dark matter and gauged flavor symmetries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bishara, Fady; Greljo, Admir; Kamenik, Jernej F.; Stamou, Emmanuel; Zupan, Jure

    2015-12-21

    We investigate the phenomenology of flavored dark matter (DM). DM stability is guaranteed by an accidental Z3 symmetry, a subgroup of the standard model (SM) flavor group that is not broken by the SM Yukawa interactions. We consider an explicit realization where the quark part of the SM flavor group is fully gauged. If the dominant interactions between DM and visible sector are through flavor gauge bosons, as we show for Dirac fermion flavored DM, then the DM mass is bounded between roughly 0.5 TeV and 5 TeV if the DM multiplet mass is split only radiatively. In general, however,more » no such relation exists. We demonstrate this using scalar flavored DM where the main interaction with the SM is through the Higgs portal. For both cases we derive constraints from flavor, cosmology, direct and indirect DM detection, and collider searches.« less

  17. Symmetry tests in photo-pion production

    SciTech Connect (OSTI)

    Bernstein, A. M.

    2013-11-07

    Small angle electron scattering with intense electron beams opens up the possibility of performing almost real photon induced reactions with thin, polarized hydrogen and few body targets, allowing for the detection of low energy charged particles. This promises to be much more effective than conventional photon tagging techniques. For photo-pion reactions some fundamental new possibilities include: tests of charge symmetry in the N-N system by measurement of the neutron-neutron scattering length a{sub nn} in the and ggrD ? ?{sup +}nn reaction; tests of isospin breaking due to the mass difference of the up and down quarks; measurements with polarized targets are sensitive to ?N phase shifts and will test the validity of the Fermi-Watson (final state interaction) theorem. All of these experiments will test the accuracy and energy region of validity of chiral effective theories.

  18. Dark matter and gauged flavor symmetries

    SciTech Connect (OSTI)

    Bishara, Fady; Greljo, Admir; Kamenik, Jernej F.; Stamou, Emmanuel; Zupan, Jure

    2015-12-21

    We investigate the phenomenology of flavored dark matter (DM). DM stability is guaranteed by an accidental Z3 symmetry, a subgroup of the standard model (SM) flavor group that is not broken by the SM Yukawa interactions. We consider an explicit realization where the quark part of the SM flavor group is fully gauged. If the dominant interactions between DM and visible sector are through flavor gauge bosons, as we show for Dirac fermion flavored DM, then the DM mass is bounded between roughly 0.5 TeV and 5 TeV if the DM multiplet mass is split only radiatively. In general, however, no such relation exists. We demonstrate this using scalar flavored DM where the main interaction with the SM is through the Higgs portal. For both cases we derive constraints from flavor, cosmology, direct and indirect DM detection, and collider searches.

  19. Modeling quasi-lattice with octagonal symmetry

    SciTech Connect (OSTI)

    Girzhon, V. V.; Smolyakov, O. V.; Zakharenko, M. I.

    2014-11-15

    We prove the possibility to use the method of modeling of a quasi-lattice with octagonal symmetry similar to that proposed earlier for the decagonal quasicrystal. The method is based on the multiplication of the groups of basis sites according to specified rules. This model is shown to be equivalent to the method of the periodic lattice projection, but is simpler because it considers merely two-dimensional site groups. The application of the proposed modeling procedure to the reciprocal lattice of octagonal quasicrystals shows a fairly good matching with the electron diffraction pattern. Similarly to the decagonal quasicrystals, the possibility of three-index labeling of the diffraction reflections is exhibited in this case. Moreover, the ascertained ratio of indices provides information on the intensity of diffraction reflections.

  20. DNA Origami Directed Self-Assembly of Discrete Silver Nanoparticle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DNA origami nanostructures were utilized as spatially addressable templates to organize noble-metal nanoparticles of silver and gold into well-defined discrete architectures ...

  1. Discrete phase space based on finite fields (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Discrete phase space based on finite fields Citation Details In-Document ... OSTI Identifier: 20649890 Resource Type: Journal Article Resource Relation: Journal Name: ...

  2. Symmetry remnants in the face of competing interactions in nuclei

    SciTech Connect (OSTI)

    Leviatan, A.; Macek, M.

    2015-10-15

    Detailed description of nuclei necessitates model Hamiltonians which break most dynamical symmetries. Nevertheless, generalized notions of partial and quasi dynamical symmetries may still be applicable to selected subsets of states, amidst a complicated environment of other states. We examine such scenarios in the context of nuclear shape-phase transitions.

  3. Pseudo-Symmetry and Majorana Operators in pf-Shell

    SciTech Connect (OSTI)

    Valencia, J. P.; Wu, H. C.

    2007-10-26

    The Majorana operator of the pseudo ds-shell preserves the SU-tilde(4) symmetry, and in a unified manner it reproduces reasonably well the ground state energies of the nine nuclei in this shell. The study of {beta} decay in the same shell provides further support for the SU-tilde(4) symmetry.

  4. Self-consistent Models of Strong Interaction with Chiral Symmetry

    DOE R&D Accomplishments [OSTI]

    Nambu, Y.; Pascual, P.

    1963-04-01

    Some simple models of (renormalizable) meson-nucleon interaction are examined in which the nucleon mass is entirely due to interaction and the chiral ( gamma {sub 5}) symmetry is "broken'' to become a hidden symmetry. It is found that such a scheme is possible provided that a vector meson is introduced as an elementary field. (auth)

  5. HODIF:High-Order Discretizations, Interpolations and

    Energy Science and Technology Software Center (OSTI)

    2006-06-20

    This software, a library, contains FORTRAN77 subroutines to calculate first and second derivatives up to 8th order, interpolations (1D and 2D) up to 10th order and filters up to 14th order. Only even orders are addressed and finite-difference stencils are implemented on a vertex-centered mesh. The primary aim of this library is to be used in block-structured adaptive mesh simulations where high order is desired. The interpolants in this library are essentially designed to domore » prolongations and restrictions between levels of rfinement - however, they assume that the refinement ratio is 2. The filters are provided to remove high wavenumber content from solutions in case Runge phenomenon occurs - a common occurrence in case of marginal resolution of the solution. Details of the derivation and use are to be found in "Using high-order methods on adaptively refined block-structured meshes - discretizations, interpolations and filters", by J. Ray, C.A. Kennedy, S. Lefantzi and H.N. Najm, Sandia Technical Report, SAND2005-7981. The software comes with a User's Guide and examples how to use it.« less

  6. The role of gauge symmetry in spintronics

    SciTech Connect (OSTI)

    Sobreiro, R.F.

    2011-12-15

    In this work we employ a field theoretical approach to explain the nature of the non-conserved spin current in spintronics. In particular, we consider the usual U(1) gauge theory for the electromagnetism at classical level in order to obtain the broken continuity equation involving the spin current and spin-transfer torque. Inspired by the recent work of A. Vernes, B. L. Gyorffy and P. Weinberger where they obtain such an equation in terms of relativistic quantum mechanics, we formalize their result in terms of the well known currents of field theory such as the Bargmann-Wigner current and the chiral current. Thus, an interpretation of spintronics is provided in terms of Noether currents (conserved or not) and symmetries of the electromagnetism. In fact, the main result of the present work is that the non-conservation of the spin current is associated with the gauge invariance of physical observables where the breaking term is proportional to the chiral current. Moreover, we generalize their result by including the electromagnetic field as a dynamical field instead of an external one.

  7. Leptonic mixing, family symmetries, and neutrino phenomenology

    SciTech Connect (OSTI)

    Medeiros Varzielas, I. de [Departamento de Fisica and Centro de Fisica Teorica de Particulas, Instituto Superior Tecnico, Avenida Rovisco Pais, 1049-001 Lisboa (Portugal); Fakultaet fuer Physik, Technische Universitaet Dortmund D-44221 Dortmund (Germany); Gonzalez Felipe, R. [Departamento de Fisica and Centro de Fisica Teorica de Particulas, Instituto Superior Tecnico, Avenida Rovisco Pais, 1049-001 Lisboa (Portugal); Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emidio Navarro, 1959-007 Lisboa (Portugal); Serodio, H. [Departamento de Fisica and Centro de Fisica Teorica de Particulas, Instituto Superior Tecnico, Avenida Rovisco Pais, 1049-001 Lisboa (Portugal)

    2011-02-01

    Tribimaximal leptonic mixing is a mass-independent mixing scheme consistent with the present solar and atmospheric neutrino data. By conveniently decomposing the effective neutrino mass matrix associated to it, we derive generic predictions in terms of the parameters governing the neutrino masses. We extend this phenomenological analysis to other mass-independent mixing schemes which are related to the tribimaximal form by a unitary transformation. We classify models that produce tribimaximal leptonic mixing through the group structure of their family symmetries in order to point out that there is often a direct connection between the group structure and the phenomenological analysis. The type of seesaw mechanism responsible for neutrino masses plays a role here, as it restricts the choices of family representations and affects the viability of leptogenesis. We also present a recipe to generalize a given tribimaximal model to an associated model with a different mass-independent mixing scheme, which preserves the connection between the group structure and phenomenology as in the original model. This procedure is explicitly illustrated by constructing toy models with the transpose tribimaximal, bimaximal, golden ratio, and hexagonal leptonic mixing patterns.

  8. Dynamical Symmetries Reflected in Realistic Interactions

    SciTech Connect (OSTI)

    Sviratcheva, K.D.; Draayer, J.P.; /Louisiana State U.; Vary, J.P.; /Iowa State U. /LLNL, Livermore /SLAC

    2007-04-06

    Realistic nucleon-nucleon (NN) interactions, derived within the framework of meson theory or more recently in terms of chiral effective field theory, yield new possibilities for achieving a unified microscopic description of atomic nuclei. Based on spectral distribution methods, a comparison of these interactions to a most general Sp(4) dynamically symmetric interaction, which previously we found to reproduce well that part of the interaction that is responsible for shaping pairing-governed isobaric analog 0{sup +} states, can determine the extent to which this significantly simpler model Hamiltonian can be used to obtain an approximate, yet very good description of low-lying nuclear structure. And furthermore, one can apply this model in situations that would otherwise be prohibitive because of the size of the model space. In addition, we introduce a Sp(4) symmetry breaking term by including the quadrupole-quadrupole interaction in the analysis and examining the capacity of this extended model interaction to imitate realistic interactions. This provides a further step towards gaining a better understanding of the underlying foundation of realistic interactions and their ability to reproduce striking features of nuclei such as strong pairing correlations or collective rotational motion.

  9. Symmetry-Breaking Orbital Anisotropy Observed for Detwinned Ba...

    Office of Scientific and Technical Information (OSTI)

    Symmetry-Breaking Orbital Anisotropy Observed for Detwinned Ba(Fe (1-X) Co (X) ) (2) As (2) Above the Spin Density Wave Transition Citation Details In-Document Search Title: ...

  10. Symmetry Methods for a Geophysical Mass Flow Model

    SciTech Connect (OSTI)

    Torrisi, Mariano; Tracina, Rita

    2011-09-14

    In the framework of symmetry analysis, the class of 2 x 2 PDE systems to whom belong the Savage and Hutter model and the Iverson model is considered. New classes of exact solutions are found.

  11. Erratum: "Impact of symmetry on the ferroelectric properties...

    Office of Scientific and Technical Information (OSTI)

    Impact of symmetry on the ferroelectric properties of CaTiO3 thin films" Appl. Phys. Lett. 106, 162904 (2015) Citation Details In-Document Search Title: Erratum: "Impact of ...

  12. Strongly broken Peccei-Quinn symmetry in the early Universe

    SciTech Connect (OSTI)

    Takahashi, Fuminobu; Yamada, Masaki

    2015-10-06

    We consider QCD axion models where the Peccei-Quinn symmetry is badly broken by a larger amount in the past than in the present, in order to avoid the axion isocurvature problem. Specifically we study supersymmetric axion models where the Peccei-Quinn symmetry is dynamically broken by either hidden gauge interactions or the SU(3){sub c} strong interactions whose dynamical scales are temporarily enhanced by the dynamics of flat directions. The former scenario predicts a large amount of self-interacting dark radiation as the hidden gauge symmetry is weakly coupled in the present Universe. We also show that the observed amount of baryon asymmetry can be generated by the QCD axion dynamics via spontaneous baryogenesis. We briefly comment on the case in which the PQ symmetry is broken by a non-minimal coupling to gravity.

  13. Approach to Developing Predictive Capability for Hohlraum Drive and Symmetry

    SciTech Connect (OSTI)

    Jones, O. S.

    2015-07-22

    Currently, we do not have the ability to predict the hohlraum drive and symmetry without requiring ad hoc adjustments to physics models. This document describes a plan for code improvements and focused physics validation experiments.

  14. Symmetry Breaking of H2 Dissociation by a Single Photon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Symmetry Breaking of H2 Dissociation by a Single Photon Symmetry Breaking of H2 Dissociation by a Single Photon Print Wednesday, 25 July 2007 00:00 A single hydrogen (or deuterium) molecule consists of only two protons (deuterons) and two electrons and is perfectly symmetric. Linearly polarized photons are similarly symmetric. So one might think that the angular distribution of photoelectrons resulting from photoionization of the molecule by the photon accompanied by dissociation into a hydrogen

  15. Yoichiro Nambu and the Mechanism of Spontaneous Broken Symmetries in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subatomic Physics Yoichiro Nambu and the Mechanism of Spontaneous Broken Symmetries in Subatomic Physics Resources with Additional Information * Awards Yoichiro Nambu Credit: University of Chicago Yoichiro Nambu was awarded the 2008 Nobel Prize in Physics "for the discovery of the mechanism of spontaneous broken symmetry in subatomic physics". Nambu 'has revolutionized modern scientific ideas about the nature of the most fundamental particles and the space through which they move.

  16. Self-interacting scalar dark matter with local Z{sub 3} symmetry

    SciTech Connect (OSTI)

    Ko, P.; Tang, Yong E-mail: ytang@kias.re.kr

    2014-05-01

    We construct a self-interacting scalar dark matter (DM) model with local discrete Z{sub 3} symmetry that stabilizes a weak scale scalar dark matter X. The model assumes a hidden sector with a local U(1){sub X} dark gauge symmetry, which is broken spontaneously into Z{sub 3} subgroup by nonzero VEV of dark Higgs field ?{sub X} ((?{sub X})?0). Compared with global Z{sub 3} DM models, the local Z{sub 3} model has two new extra fields: a dark gauge field Z{sup '} and a dark Higgs field ? (a remnant of the U(1){sub X} breaking). After imposing various constraints including the upper bounds on the spin-independent direct detection cross section and thermal relic density, we find that the scalar DM with mass less than 125 GeV is allowed in the local Z{sub 3} model, in contrary to the global Z{sub 3} model. This is due to new channels in the DM pair annihilations open into Z{sup '} and ? in the local Z{sub 3} model. Most parts of the newly open DM mass region can be probed by XENON1T and other similar future experiments. Also if ? is light enough (a few MeV ?

  17. Nucleon-Nucleon Scattering Parameters in the Limit of SU(3) Flavor Symmetry

    SciTech Connect (OSTI)

    Beane, Silas; Chang, Emanuel; Savage, Martin; Lin, Huey-Wen; Orginos, Konstantinos; Cohen, Saul; Detmold, William; Luu, Tom; Parreno, Assumpta; Junnarkar, Parikshit; Walker-Loud, Andre Paul

    2013-08-01

    The scattering lengths and effective ranges that describe low-energy nucleon-nucleon scattering are calculated in the limit of SU(3)-flavor symmetry at the physical strange-quark mass with Lattice Quantum Chromodynamics. The calculations are performed with an isotropic clover discretization of the quark action in three volumes with spatial extents of L ~ 3.4 fm, 4.5 fm and 6.7 fm, and with a lattice spacing of b ~ 0.145 fm. With determinations of the energies of the two-nucleon systems ?both of which contain bound states at these light-quark masses? at rest and moving in the lattice volume, Luscher?s method is used to determine the low-energy phase shift in each channel, from which the scattering length and effective range are obtained. The scattering parameters in the {sup 1}S{sub 0} channel are found to be m{sub ?}a{sup ({sup 1}S{sub 0})} = 9.51+/-0.74+/-1.00 and m{sub ?}r{sup ({sup 1}S{sub 0})} = 4.76+/-0.37+/-0.40, and in the {sup 3}S{sub 1} channel are m{sub ?}a{sup ({sup 3}S{sub 1})} = 7.45+/-0.57+/-0.71 and m{sub ?}r{sup ({sup 3}S{sub 1})} = 3.71+/-0.28+/-0.28. These values are consistent with the two-nucleon system exhibiting Wigner?s supermultiplet symmetry, which becomes exact in the limit of large-N{sub c}.

  18. Discrete Feature Approach for Heterogeneous Reservoir Production Enhancement

    SciTech Connect (OSTI)

    Dershowitz, William S.; Curran, Brendan; Einstein, Herbert; LaPointe, Paul; Shuttle, Dawn; Klise, Kate

    2002-07-26

    The report presents summaries of technology development for discrete feature modeling in support of the improved oil recovery (IOR) for heterogeneous reservoirs. In addition, the report describes the demonstration of these technologies at project study sites.

  19. Hybrid discrete/continuum algorithms for stochastic reaction networks

    SciTech Connect (OSTI)

    Safta, Cosmin Sargsyan, Khachik Debusschere, Bert Najm, Habib N.

    2015-01-15

    Direct solutions of the Chemical Master Equation (CME) governing Stochastic Reaction Networks (SRNs) are generally prohibitively expensive due to excessive numbers of possible discrete states in such systems. To enhance computational efficiency we develop a hybrid approach where the evolution of states with low molecule counts is treated with the discrete CME model while that of states with large molecule counts is modeled by the continuum Fokker–Planck equation. The Fokker–Planck equation is discretized using a 2nd order finite volume approach with appropriate treatment of flux components. The numerical construction at the interface between the discrete and continuum regions implements the transfer of probability reaction by reaction according to the stoichiometry of the system. The performance of this novel hybrid approach is explored for a two-species circadian model with computational efficiency gains of about one order of magnitude.

  20. Hybrid discrete/continuum algorithms for stochastic reaction networks

    SciTech Connect (OSTI)

    Safta, Cosmin; Sargsyan, Khachik; Debusschere, Bert; Najm, Habib N.

    2014-10-22

    Direct solutions of the Chemical Master Equation (CME) governing Stochastic Reaction Networks (SRNs) are generally prohibitively expensive due to excessive numbers of possible discrete states in such systems. To enhance computational efficiency we develop a hybrid approach where the evolution of states with low molecule counts is treated with the discrete CME model while that of states with large molecule counts is modeled by the continuum Fokker-Planck equation. The Fokker-Planck equation is discretized using a 2nd order finite volume approach with appropriate treatment of flux components to avoid negative probability values. The numerical construction at the interface between the discrete and continuum regions implements the transfer of probability reaction by reaction according to the stoichiometry of the system. As a result, the performance of this novel hybrid approach is explored for a two-species circadian model with computational efficiency gains of about one order of magnitude.

  1. Isolation of Discrete Nanoparticle-DNA Conjugates for Plasmonic Applications

    SciTech Connect (OSTI)

    Alivisatos, Paul; Claridge, Shelley A.; Liang, Huiyang W.; Basu, Sourav Roger; Frechet, Jean M.J.; Alivisatos, A. Paul

    2008-04-11

    Discrete DNA-gold nanoparticle conjugates with DNA lengths as short as 15 bases for both 5 nm and 20 nm gold particles have been purified by anion-exchange HPLC. Conjugates comprising short DNA (<40 bases) and large gold particles (>_ 20 nm) are difficult to purify by other means, and are potential substrates for plasmon coupling experiments. Conjugate purity is demonstrated by hybridizing complementary conjugates to form discrete structures, which are visualized by TEM.

  2. Discrete Feature Approach for Heterogeneous Reservoir Production Enhancement

    SciTech Connect (OSTI)

    Dershowitz, William S.; Cladouhos, Trenton

    2001-09-06

    This progress report describes activities during the period January 1, 1999 to June 30, 1999. Work was carried out on 21 tasks. The major activity during the reporting period was the development and preliminary application of discrete fracture network (DFN) models for Stoney Point, South Oregon Basin, and North Oregon Basins project study sites. In addition, research was carried out on analysis algorithms for discrete future orientation.

  3. Light Nuclei and HyperNuclei from Quantum Chromodynamics in the Limit of SU(3) Flavor Symmetry

    SciTech Connect (OSTI)

    Beane, S R; Cohen, S D; Detmold, W; Lin, H W; Luu, T C; Orginos, K; Parreno, A; Savage, M J

    2013-02-01

    The binding energies of a range of nuclei and hypernuclei with atomic number A <= 4 and strangeness |s| <= 2, including the deuteron, di-neutron, H-dibaryon, {sup 3}He, {sub {Lambda}}{sup 3}He, {sub {Lambda}}{sup 4}He, and {sub {Lambda}{Lambda}}{sup 4}He, are calculated in the limit of flavor-SU(3) symmetry at the physical strange quark mass with quantum chromodynamics (without electromagnetic interactions). The nuclear states are extracted from Lattice QCD calculations performed with n{sub f}=3 dynamical light quarks using an isotropic clover discretization of the quark-action in three lattice volumes of spatial extent L ~ 3.4 fm, 4.5 fm and 6.7 fm, and with a single lattice spacing b ~ 0.145 fm.

  4. Gedanken Worlds without Higgs: QCD-Induced Electroweak Symmetry Breaking

    SciTech Connect (OSTI)

    Quigg, Chris; Shrock, Robert; /YITP, Stony Brook

    2009-01-01

    To illuminate how electroweak symmetry breaking shapes the physical world, we investigate toy models in which no Higgs fields or other constructs are introduced to induce spontaneous symmetry breaking. Two models incorporate the standard SU(3){sub c} {circle_times} SU(2){sub L} {circle_times} U(1){sub Y} gauge symmetry and fermion content similar to that of the standard model. The first class--like the standard electroweak theory--contains no bare mass terms, so the spontaneous breaking of chiral symmetry within quantum chromodynamics is the only source of electroweak symmetry breaking. The second class adds bare fermion masses sufficiently small that QCD remains the dominant source of electroweak symmetry breaking and the model can serve as a well-behaved low-energy effective field theory to energies somewhat above the hadronic scale. A third class of models is based on the left-right-symmetric SU(3){sub c} {circle_times} SU(2){sub L} {circle_times} SU(2){sub R} {circle_times} U(1)B?L gauge group. In a fourth class of models, built on SU(4){sub PS} {circle_times} SU(2){sub L} {circle_times} SU(2){sub R} gauge symmetry, lepton number is treated as a fourth color. Many interesting characteristics of the models stem from the fact that the effective strength of the weak interactions is much closer to that of the residual strong interactions than in the real world. The Higgs-free models not only provide informative contrasts to the real world, but also lead us to consider intriguing issues in the application of field theory to the real world.

  5. Symmetries for Galileons and DBI scalars on curved space

    SciTech Connect (OSTI)

    Goon, Garrett; Hinterbichler, Kurt; Trodden, Mark E-mail: kurthi@physics.upenn.edu

    2011-07-01

    We introduce a general class of four-dimensional effective field theories which include curved space Galileons and DBI theories possessing nonlinear shift-like symmetries. These effective theories arise from purely gravitational actions for 3-branes probing higher dimensional spaces. In the simplest case of a Minkowski brane embedded in a higher dimensional Minkowski background, the resulting four-dimensional effective field theory is the Galileon one, with its associated Galilean symmetry and second order equations. However, much more general structures are possible. We construct the general theory and explicitly derive the examples obtained from embedding maximally symmetric branes in maximally symmetric ambient spaces. Among these are Galileons and DBI theories with second order equations that live on de Sitter or anti-de Sitter space, and yet retain the same number of symmetries as their flat space counterparts, symmetries which are highly non-trivial from the 4d point of view. These theories have a rich structure, containing potentials for the scalar fields, with masses protected by the symmetries. These models may prove relevant to the cosmology of both the early and late universe.

  6. A vault ribonucleoprotein particle exhibiting 39-fold dihedral symmetry

    SciTech Connect (OSTI)

    Kato, Koji; Tanaka, Hideaki; Sumizawa, Tomoyuki; Yoshimura, Masato; Yamashita, Eiki; Iwasaki, Kenji; Tsukihara, Tomitake

    2008-05-01

    A vault from rat liver was crystallized in space group C2. Rotational symmetry searches indicated that the particle has 39-fold dihedral symmetry. Vault is a 12.9 MDa ribonucleoprotein particle with a barrel-like shape, two protruding caps and an invaginated waist structure that is highly conserved in a wide variety of eukaryotes. Multimerization of the major vault protein (MVP) is sufficient to assemble the entire exterior shell of the barrel-shaped vault particle. Multiple copies of two additional proteins, vault poly(ADP-ribose) polymerase (VPARP) and telomerase-associated protein 1 (TEP1), as well as a small vault RNA (vRNA), are also associated with vault. Here, the crystallization of vault particles is reported. The crystals belong to space group C2, with unit-cell parameters a = 708.0, b = 385.0, c = 602.9 Å, β = 124.8°. Rotational symmetry searches based on the R factor and correlation coefficient from noncrystallographic symmetry (NCS) averaging indicated that the particle has 39-fold dihedral symmetry.

  7. New ways to leptogenesis with gauged B-L symmetry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Babu, K.S.; Meng, Yanzhi; Tavartkiladze, Zurab

    2009-10-01

    We show that in supersymmetric models with gauged B-L symmetry, there is a new source for cosmological lepton asymmetry. The Higgs bosons responsible for B-L gauge symmetry breaking decay dominantly into right-handed sneutrinos N~ and N~* producing an asymmetry in N~ over N~*. This can be fully converted into ordinary lepton asymmetry in the decays of N~. In simple models with gauged B-L symmetry we show that resonant/soft leptogenesis is naturally realized. Supersymmetry guarantees quasi-degenerate scalar states, while soft breaking of SUSY provides the needed CP violation. Acceptable values of baryon asymmetry are obtained without causing serious problems with gravitinomore » abundance.« less

  8. Modelling and real-time simulation of continuous-discrete systems in mechatronics

    SciTech Connect (OSTI)

    Lindow, H.

    1996-12-31

    This work presents a methodology for simulation and modelling of systems with continuous - discrete dynamics. It derives hybrid discrete event models from Lagrange`s equations of motion. This method combines continuous mechanical, electrical and thermodynamical submodels on one hand with discrete event models an the other hand into a hybrid discrete event model. This straight forward software development avoids numeric overhead.

  9. Symmetry and conservation laws in semiclassical wave packet dynamics

    SciTech Connect (OSTI)

    Ohsawa, Tomoki

    2015-03-15

    We formulate symmetries in semiclassical Gaussian wave packet dynamics and find the corresponding conserved quantities, particularly the semiclassical angular momentum, via Noether’s theorem. We consider two slightly different formulations of Gaussian wave packet dynamics; one is based on earlier works of Heller and Hagedorn and the other based on the symplectic-geometric approach by Lubich and others. In either case, we reveal the symplectic and Hamiltonian nature of the dynamics and formulate natural symmetry group actions in the setting to derive the corresponding conserved quantities (momentum maps). The semiclassical angular momentum inherits the essential properties of the classical angular momentum as well as naturally corresponds to the quantum picture.

  10. Hybrid discrete/continuum algorithms for stochastic reaction networks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Safta, Cosmin; Sargsyan, Khachik; Debusschere, Bert; Najm, Habib N.

    2014-10-22

    Direct solutions of the Chemical Master Equation (CME) governing Stochastic Reaction Networks (SRNs) are generally prohibitively expensive due to excessive numbers of possible discrete states in such systems. To enhance computational efficiency we develop a hybrid approach where the evolution of states with low molecule counts is treated with the discrete CME model while that of states with large molecule counts is modeled by the continuum Fokker-Planck equation. The Fokker-Planck equation is discretized using a 2nd order finite volume approach with appropriate treatment of flux components to avoid negative probability values. The numerical construction at the interface between the discretemore » and continuum regions implements the transfer of probability reaction by reaction according to the stoichiometry of the system. As a result, the performance of this novel hybrid approach is explored for a two-species circadian model with computational efficiency gains of about one order of magnitude.« less

  11. Methodology for characterizing modeling and discretization uncertainties in computational simulation

    SciTech Connect (OSTI)

    ALVIN,KENNETH F.; OBERKAMPF,WILLIAM L.; RUTHERFORD,BRIAN M.; DIEGERT,KATHLEEN V.

    2000-03-01

    This research effort focuses on methodology for quantifying the effects of model uncertainty and discretization error on computational modeling and simulation. The work is directed towards developing methodologies which treat model form assumptions within an overall framework for uncertainty quantification, for the purpose of developing estimates of total prediction uncertainty. The present effort consists of work in three areas: framework development for sources of uncertainty and error in the modeling and simulation process which impact model structure; model uncertainty assessment and propagation through Bayesian inference methods; and discretization error estimation within the context of non-deterministic analysis.

  12. The Eightfold Way: A Theory of Strong Interaction Symmetry

    DOE R&D Accomplishments [OSTI]

    Gell-Mann, M.

    1961-03-15

    A new model of the higher symmetry of elementary particles is introduced ln which the eight known baryons are treated as a supermultiplet, degenerate in the limit of unitary symmetry but split into isotopic spin multiplets by a symmetry-breaking term. The symmetry violation is ascribed phenomenologically to the mass differences. The baryons correspond to an eight-dimensional irreducible representation of the unitary group. The pion and K meson fit into a similar set of eight particles along with a predicted pseudoscalar meson X {sup o} having I = 0. A ninth vector meson coupled to the baryon current can be accommodated naturally in the scheme. It is predicted that the eight baryons should all have the same spin and parity and that pseudoscalar and vector mesons should form octets with possible additional singlets. The mathematics of the unitary group is described by considering three fictitious leptons, nu , e {sup -}, and mu {sup -}, which may throw light on the structure of weak interactions. (D. L.C.)

  13. Symmetries for Galileons and DBI scalars on curved space

    SciTech Connect (OSTI)

    Goon, Garrett; Hinterbichler, Kurt; Trodden, Mark

    2011-07-08

    We introduced a general class of four-dimensional effective field theories which include curved space Galileons and DBI theories possessing nonlinear shift-like symmetries. These effective theories arise from purely gravitational actions and may prove relevant to the cosmology of both the early and late universe.

  14. Entanglement entropy in quantum spin chains with broken reflection symmetry

    SciTech Connect (OSTI)

    Kadar, Zoltan; Zimboras, Zoltan

    2010-09-15

    We investigate the entanglement entropy of a block of L sites in quasifree translation-invariant spin chains concentrating on the effect of reflection-symmetry breaking. The Majorana two-point functions corresponding to the Jordan-Wigner transformed fermionic modes are determined in the most general case; from these, it follows that reflection symmetry in the ground state can only be broken if the model is quantum critical. The large L asymptotics of the entropy are calculated analytically for general gauge-invariant models, which have, until now, been done only for the reflection-symmetric sector. Analytical results are also derived for certain nongauge-invariant models (e.g., for the Ising model with Dzyaloshinskii-Moriya interaction). We also study numerically finite chains of length N with a nonreflection-symmetric Hamiltonian and report that the reflection symmetry of the entropy of the first L spins is violated but the reflection-symmetric Calabrese-Cardy formula is recovered asymptotically. Furthermore, for noncritical reflection-symmetry-breaking Hamiltonians, we find an anomaly in the behavior of the saturation entropy as we approach the critical line. The paper also provides a concise but extensive review of the block-entropy asymptotics in translation-invariant quasifree spin chains with an analysis of the nearest-neighbor case and the enumeration of the yet unsolved parts of the quasifree landscape.

  15. Aligned vertical fractures, HTI reservoir symmetry, and Thomsenseismic anisotropy parameters

    SciTech Connect (OSTI)

    Berryman, James G.

    2007-06-27

    The Sayers and Kachanov (1991) crack-influence parametersare shown to be directly related to Thomsen (1986) weak-anisotropyseismic parameters for fractured reservoirs when the crack density issmall enough. These results are then applied to seismic wave propagationin reservoirs having HTI symmetry due to aligned vertical fractures. Theapproach suggests a method of inverting for fracture density from wavespeed data.

  16. Analytic derivation of an approximate SU(3) symmetry inside the symmetry triangle of the interacting boson approximation model

    SciTech Connect (OSTI)

    Bonatsos, Dennis; Karampagia, S.; Casten, R. F.

    2011-05-15

    Using a contraction of the SU(3) algebra to the algebra of the rigid rotator in the large-boson-number limit of the interacting boson approximation (IBA) model, a line is found inside the symmetry triangle of the IBA, along which the SU(3) symmetry is preserved. The line extends from the SU(3) vertex to near the critical line of the first-order shape/phase transition separating the spherical and prolate deformed phases, and it lies within the Alhassid-Whelan arc of regularity, the unique valley of regularity connecting the SU(3) and U(5) vertices in the midst of chaotic regions. In addition to providing an explanation for the existence of the arc of regularity, the present line represents an example of an analytically determined approximate symmetry in the interior of the symmetry triangle of the IBA. The method is applicable to algebraic models possessing subalgebras amenable to contraction. This condition is equivalent to algebras in which the equilibrium ground state and its rotational band become energetically isolated from intrinsic excitations, as typified by deformed solutions to the IBA for large numbers of valence nucleons.

  17. Implications of SU(2)_L x U(1) Symmetry for SIM(2) Invariant...

    Office of Scientific and Technical Information (OSTI)

    Implications of SU(2)L x U(1) Symmetry for SIM(2) Invariant Neutrino Masses Citation Details In-Document Search Title: Implications of SU(2)L x U(1) Symmetry for SIM(2) Invariant ...

  18. Broken Symmetry in the Pseudogap State of YBa2Cu3O6+x (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Broken Symmetry in the Pseudogap State of YBa2Cu3O6+x Citation Details In-Document Search Title: Broken Symmetry in the Pseudogap State of YBa2Cu3O6+x You are ...

  19. Implications of SU(2)_L x U(1) Symmetry for SIM(2) Invariant...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Implications of SU(2)L x U(1) Symmetry for SIM(2) Invariant Neutrino Masses Citation Details In-Document Search Title: Implications of SU(2)L x U(1) Symmetry for ...

  20. Multi-Higgs doublet models with local U(1){sub H} gauge symmetry...

    Office of Scientific and Technical Information (OSTI)

    with local U(1)sub H gauge symmetry and neutrino physics therein Citation Details In-Document Search Title: Multi-Higgs doublet models with local U(1)sub H gauge symmetry and ...

  1. Characterizing multiple solutions to the time-energy canonical commutation relation via internal symmetries

    SciTech Connect (OSTI)

    Caballar, Roland Cristopher F.; Ocampo, Leonard R.; Galapon, Eric A.

    2010-06-15

    Internal symmetries can be used to classify multiple solutions to the time-energy canonical commutation relation (TE-CCR). The dynamical behavior of solutions to the TE-CCR possessing particular internal symmetries involving time reversal differ significantly from solutions to the TE-CCR without those particular symmetries, implying a connection between the internal symmetries of a quantum system, its internal unitary dynamics, and the TE-CCR.

  2. Test of fundamental symmetries via the Primakoff effect

    SciTech Connect (OSTI)

    Gan, Liping

    2014-06-01

    The three neutral pseudoscalar mesons, pi^0, eta and eta', represent one of the most interesting systems in strong interaction physics. A study of the electromagnetic properties of these mesons provides a sensitive probe of the symmetry structure of QCD at low energy. A comprehensive experimental program at Jefferson Laboratory (Jlab) is aimed at gathering high precision measurements on the two-photon decay widths and transition form factors at low Q^2 of pi^0, eta and eta' via the Primakoff effect. The completed experiments on the pi^0 radiative decay width at Jlab 6 GeV, and other planned measurements at Jlab 12 GeV will provide a rich laboratory to test the chiral anomaly and to study the origin and dynamics of chiral symmetry breaking at the confinement scale of QCD.

  3. Strong Electroweak Symmetry Breaking and Spin-0 Resonances

    SciTech Connect (OSTI)

    Evans, Jared; Luty, Markus A.

    2009-09-04

    We argue that theories of the strong electroweak symmetry breaking sector necessarily contain new spin 0 states at the TeV scale in the tt and tb/bt channels, even if the third generation quarks are not composite at the TeV scale. These states couple sufficiently strongly to third generation quarks to have significant production at LHC via gg->phi{sup 0} or gb->tphi{sup -}. The existence of narrow resonances in QCD suggests that the strong electroweak breaking sector contains narrow resonances that decay to tt or tb/bt, with potentially significant branching fractions to 3 or more longitudinal W and Z bosons. These may give new 'smoking gun' signals of strong electroweak symmetry breaking.

  4. Symmetry Breaking of H2 Dissociation by a Single Photon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Symmetry Breaking of H2 Dissociation by a Single Photon Print A single hydrogen (or deuterium) molecule consists of only two protons (deuterons) and two electrons and is perfectly symmetric. Linearly polarized photons are similarly symmetric. So one might think that the angular distribution of photoelectrons resulting from photoionization of the molecule by the photon accompanied by dissociation into a hydrogen atom and a hydrogen ion would itself be symmetric. However, an international team of

  5. Symmetry Breaking of H2 Dissociation by a Single Photon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Symmetry Breaking of H2 Dissociation by a Single Photon Print A single hydrogen (or deuterium) molecule consists of only two protons (deuterons) and two electrons and is perfectly symmetric. Linearly polarized photons are similarly symmetric. So one might think that the angular distribution of photoelectrons resulting from photoionization of the molecule by the photon accompanied by dissociation into a hydrogen atom and a hydrogen ion would itself be symmetric. However, an international team of

  6. Symmetry Breaking of H2 Dissociation by a Single Photon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Symmetry Breaking of H2 Dissociation by a Single Photon Print A single hydrogen (or deuterium) molecule consists of only two protons (deuterons) and two electrons and is perfectly symmetric. Linearly polarized photons are similarly symmetric. So one might think that the angular distribution of photoelectrons resulting from photoionization of the molecule by the photon accompanied by dissociation into a hydrogen atom and a hydrogen ion would itself be symmetric. However, an international team of

  7. Symmetry-breaking instability of quadratic soliton bound states

    SciTech Connect (OSTI)

    Delque, Michaeel; Fanjoux, Gil; Maillotte, Herve; Kockaert, Pascal; Sylvestre, Thibaut; Haelterman, Marc

    2011-01-15

    We study both numerically and experimentally two-dimensional soliton bound states in quadratic media and demonstrate their symmetry-breaking instability. The experiment is performed in a potassium titanyl phosphate crystal in a type-II configuration. The bound state is generated by the copropagation of the antisymmetric fundamental beam locked in phase with the symmetrical second harmonic one. Experimental results are in good agreement with numerical simulations of the nonlinear wave equations.

  8. Lectures on Chiral Symmetries and Soft Pion Processes

    DOE R&D Accomplishments [OSTI]

    Nambu, Y.

    1966-08-01

    At the Istanbul Summer School in 1962 I gave lectures on "Chiral Symmetries in Weak and Strong Interactions." It is only recently, however, that the basic ideas that were started several years ago have begun to bear fruit. We will cover in the present lectures more or less the same general field, but certainly there will be a lot more results to be discussed now than four years ago.

  9. Particle-hole symmetry broken pseudogap in high temperature superconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Particle-hole symmetry broken pseudogap in high temperature superconductors High-temperature (Tc) superconductivity is one of the most important topics in condensed matter physics. Despite extensive studies over more than two decades, the microscopic mechanism of high temperature superconductivity still remains elusive due to many unconventional properties that are not well understood. Among them, the most mysterious behavior of high-Tc superconductor is the nature of so called

  10. Symmetry Breaking of H2 Dissociation by a Single Photon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Symmetry Breaking of H2 Dissociation by a Single Photon Print A single hydrogen (or deuterium) molecule consists of only two protons (deuterons) and two electrons and is perfectly symmetric. Linearly polarized photons are similarly symmetric. So one might think that the angular distribution of photoelectrons resulting from photoionization of the molecule by the photon accompanied by dissociation into a hydrogen atom and a hydrogen ion would itself be symmetric. However, an international team of

  11. Crossing contours in the interacting boson approximation (IBA) symmetry triangle

    SciTech Connect (OSTI)

    McCutchan, E. A.; Casten, R. F.

    2006-11-15

    Constant contours of basic observables are discussed in the context of the interacting boson approximation (IBA) symmetry triangle. Contours that exhibit orthogonal crossing within the triangle are presented as a method for determining a set of parameter values for a particular nucleus and trajectories for isotopic chains. A set of contours that highlights a class of nuclei that are outside the two-parameter IBA-1 Hamitonian space is also presented.

  12. Discrete solitons and vortices in anisotropic hexagonal and honeycomb lattices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hoq, Q. E.; Kevrekidis, P. G.; Bishop, A. R.

    2016-01-14

    We consider the self-focusing discrete nonlinear Schrödinger equation on hexagonal and honeycomb lattice geometries. Our emphasis is on the study of the effects of anisotropy, motivated by the tunability afforded in recent optical and atomic physics experiments. We find that multi-soliton and discrete vortex states undergo destabilizing bifurcations as the relevant anisotropy control parameter is varied. Furthermore, we quantify these bifurcations by means of explicit analytical calculations of the solutions, as well as of their spectral linearization eigenvalues. Finally, we corroborate the relevant stability picture through direct numerical computations. In the latter, we observe the prototypical manifestation of these instabilitiesmore » to be the spontaneous rearrangement of the solution, for larger values of the coupling, into localized waveforms typically centered over fewer sites than the original unstable structure. In weak coupling, the instability appears to result in a robust breathing of the relevant waveforms.« less

  13. Streaked x-ray spectrometer having a discrete selection of Bragg...

    Office of Scientific and Technical Information (OSTI)

    Streaked x-ray spectrometer having a discrete selection of Bragg geometries for Omega Citation Details In-Document Search Title: Streaked x-ray spectrometer having a discrete selection ...

  14. Discrete quadratic solitons with competing second-harmonic components

    SciTech Connect (OSTI)

    Setzpfandt, Frank; Pertsch, Thomas; Sukhorukov, Andrey A.

    2011-11-15

    We describe families of discrete solitons in quadratic waveguide arrays supported by competing cascaded nonlinear interactions between one fundamental and two second-harmonic modes. We characterize the existence, stability, and excitation dynamics of these solitons and show that their features may resemble those of solitons in saturable media. Our results also demonstrate that a power threshold may appear for soliton formation, leading to a suppression of beam self-focusing which explains recent experimental observations.

  15. Three-dimensional discrete ordinates reactor assembly calculations on GPUs

    SciTech Connect (OSTI)

    Evans, Thomas M; Joubert, Wayne; Hamilton, Steven P; Johnson, Seth R; Turner, John A; Davidson, Gregory G; Pandya, Tara M

    2015-01-01

    In this paper we describe and demonstrate a discrete ordinates sweep algorithm on GPUs. This sweep algorithm is nested within a multilevel comunication-based decomposition based on energy. We demonstrated the effectiveness of this algorithm on detailed three-dimensional critical experiments and PWR lattice problems. For these problems we show improvement factors of 4 6 over conventional communication-based, CPU-only sweeps. These sweep kernel speedups resulted in a factor of 2 total time-to-solution improvement.

  16. Multifractal analysis of time series generated by discrete Ito equations

    SciTech Connect (OSTI)

    Telesca, Luciano; Czechowski, Zbigniew; Lovallo, Michele

    2015-06-15

    In this study, we show that discrete Ito equations with short-tail Gaussian marginal distribution function generate multifractal time series. The multifractality is due to the nonlinear correlations, which are hidden in Markov processes and are generated by the interrelation between the drift and the multiplicative stochastic forces in the Ito equation. A link between the range of the generalized Hurst exponents and the mean of the squares of all averaged net forces is suggested.

  17. Finite field-dependent symmetries in perturbative quantum gravity

    SciTech Connect (OSTI)

    Upadhyay, Sudhaker

    2014-01-15

    In this paper we discuss the absolutely anticommuting nilpotent symmetries for perturbative quantum gravity in general curved spacetime in linear and non-linear gauges. Further, we analyze the finite field-dependent BRST (FFBRST) transformation for perturbative quantum gravity in general curved spacetime. The FFBRST transformation changes the gauge-fixing and ghost parts of the perturbative quantum gravity within functional integration. However, the operation of such symmetry transformation on the generating functional of perturbative quantum gravity does not affect the theory on physical ground. The FFBRST transformation with appropriate choices of finite BRST parameter connects non-linear CurciFerrari and Landau gauges of perturbative quantum gravity. The validity of the results is also established at quantum level using BatalinVilkovisky (BV) formulation. -- Highlights: The perturbative quantum gravity is treated as gauge theory. BRST and anti-BRST transformations are developed in linear and non-linear gauges. BRST transformation is generalized by making it finite and field dependent. Connection between linear and non-linear gauges is established. Using BV formulation the results are established at quantum level also.

  18. Flavour symmetry breaking in the kaon parton distribution amplitude

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    none,

    2014-11-01

    We compute the kaon's valence-quark (twist-two parton) distribution amplitude (PDA) by projecting its Poincar-covariant BetheSalpeter wave-function onto the light-front. At a scale ? = 2 GeV, the PDA is a broad, concave and asymmetric function, whose peak is shifted 1216% away from its position in QCD's conformal limit. These features are a clear expression of SU(3)-flavour-symmetry breaking. They show that the heavier quark in the kaon carries more of the bound-state's momentum than the lighter quark and also that emergent phenomena in QCD modulate the magnitude of flavour-symmetry breaking: it is markedly smaller than one might expect based on themoredifference between light-quark current masses. Our results add to a body of evidence which indicates that at any energy scale accessible with existing or foreseeable facilities, a reliable guide to the interpretation of experiment requires the use of such nonperturbatively broadened PDAs in leading-order, leading-twist formulae for hard exclusive processes instead of the asymptotic PDA associated with QCD's conformal limit. We illustrate this via the ratio of kaon and pion electromagnetic form factors: using our nonperturbative PDAs in the appropriate formulae, FK/F?=1.23 at spacelike-Q2=17 GeV2, which compares satisfactorily with the value of 0.92(5) inferred in e+e- annihilation at s=17 GeV2.less

  19. Intrinsic transverse momentum and dynamical chiral symmetry breaking

    SciTech Connect (OSTI)

    Christian Weiss, Peter Schweitzer, Mark Strikman

    2013-01-01

    We study the effect of QCD vacuum structure on the intrinsic transverse momentum distribution of partons in the nucleon at a low scale. The dynamical breaking of chiral symmetry is caused by non-perturbative interactions at distances of the order rho ~ 0.2 - 0.3 fm, much smaller than the typical nucleon size R ~ 1 fm, resulting in a two-scale picture of nucleon structure. Using an effective dynamical model based on chiral constituent quark degrees of freedom and the 1/N_c expansion (chiral quark-soliton model), we calculate the transverse momentum distribution of quarks and antiquarks at a low scale. The distribution of valence quarks is localized at p_T ~ 1/R. The distribution of flavor-singlet unpolarized sea quarks exhibits a power-like tail extending up to the chiral-symmetry-breaking scale 1/{rho}. A similar tail is present in the flavor-nonsinglet polarized sea. These features are model-independent and represent the imprint of the QCD vacuum on the nucleon's partonic structure. At the level of the nucleon's light-cone wave function, we show that sea quarks partly exist in correlated pairs of transverse size {rho} << R, analogous to short-range NN correlations in nuclei. We discuss the implications of our findings for the transverse momentum distributions in hard scattering processes (semi-inclusive DIS, Drell-Yan pair production) and possible experimental tests of the non-perturbative parton correlations induced by QCD vacuum structure.

  20. Theory of discrete dynamo activity in laboratory plasmas: RFP sawteeth

    SciTech Connect (OSTI)

    Hegna, C.C.; Prager, S.C.; Gimblett, C.G.

    1996-12-31

    Reversed field pinch experiments (RFP) exhibit relaxation phenomena which sustain the magnetic configuration longer than electrical resistivity should allow. This effect is due to the NMD dynamo. An interesting feature of the dynamo is that the relaxations often occur in a discrete and nearly periodic sawtoothing fashion. Unlike the tokamak sawtooth where a single Fourier harmonic is believed to play a central role in the sawtooth dynamics, RFP sawteeth are characterized by a set of tearing instabilities which play the essential role in the MHD dynamo. A theoretical explanation of the discrete dynamo is presented which is based upon a description of the RFP dynamics as a low order dynamical system. The calculation accounts for the evolution of the equilibrium that is affected by applied electrical fields, diffusion processes and the MHD dynamo, as well as a dynamical description of the MHD dynamo which is determined from the behavior of the tearing instabilities and the properties of the equilibrium. The system can be reduced to two ordinary differential equations for the averaged current gradient, which measures the degree of plasma relaxation, and the dynamo amplitude. The dynamical system exhibit a predator-prey type periodic limit cycle, which is characterized by a slow current peaking phase followed by a rapid crash. The sawtooth amplitude and period are predicted to increase with Lundquist number and plasma current, features which are in qualitative agreement with experimental observations.

  1. A way forward in the study of the symmetry energy: experiment, theory, and observation

    SciTech Connect (OSTI)

    Horowitz, Charles; Brown, E F.; Kim, Y.; Lynch, W G.; Michaels, Robert; Ono, A.; Piekarewicz, Jorge; Tsang, M B.; Wolter, H H.

    2014-07-01

    The symmetry energy describes how the energy of nuclear matter rises as one goes away from equal numbers of neutrons and protons. This is very important to describe neutron rich matter in astrophysics. This article reviews our knowledge of the symmetry energy from theoretical calculations, nuclear structure measurements, heavy ion collisions, and astronomical observations. We then present a roadmap to make progress in areas of relevance to the symmetry energy that promotes collaboration between astrophysics and the nuclear physics communities.

  2. Electron-phonon coupling in a system with broken symmetry: Surface...

    Office of Scientific and Technical Information (OSTI)

    Electron-phonon coupling in a system with broken symmetry: Surface of Be ( 0001 ) Citation ... Country of Publication: United States Language: English Word Cloud More Like This Free ...

  3. Long distance symmetries for nuclear forces and the similarity renormalization group

    SciTech Connect (OSTI)

    Szpigel, S.; Timoteo, V. S.; Arriola, E. R.

    2013-03-25

    In this work we study the emergence of long distance symmetries for nuclear forces within the framework of the similarity renormalization group approach.

  4. Performance improvements of symmetry-breaking reflector structures in nonimaging devices

    DOE Patents [OSTI]

    Winston, Roland

    2004-01-13

    A structure and method for providing a broken symmetry reflector structure for a solar concentrator device. The component of the optical direction vector along the symmetry axis is conserved for all rays propagated through a translationally symmetric optical device. This quantity, referred to as the translational skew invariant, is conserved in rotationally symmetric optical systems. Performance limits for translationally symmetric nonimaging optical devices are derived from the distributions of the translational skew invariant for the optical source and for the target to which flux is to be transferred. A numerically optimized non-tracking solar concentrator utilizing symmetry-breaking reflector structures can overcome the performance limits associated with translational symmetry.

  5. Invariance, groups, and non-uniqueness: The discrete case

    SciTech Connect (OSTI)

    Vasco, D.W.

    2005-03-24

    Lie group methods provide a valuable tool for examininginvariance and non-uniqueness associated with geophysical inverseproblems. The techniques are particularly well suited for the study ofnon-linear inverse problems. Using the infinitesimal generators of thegroup it is possible to move within the null space in an iterativefashion. The key computational step in determining the symmetry groupsassociated with an inverse problem is the singular value decomposition(SVD) of a sparse matrix. I apply the methodology to the eikonal equationand examine the possible solutions associated with a crosswelltomographic experiment. Results from a synthetic test indicate that it ispossible to vary the velocity model significantly and still fit thereference arrival times. the approach is also applied to data fromcorosswell surveys conducted before and after a CO2 injection at the LostHills field in California. The results highlight the fact that a faultcross-cutting the region between the wells may act as a conduit for theflow of water and CO2.

  6. Spin-1 Dirac-Weyl fermions protected by bipartite symmetry

    SciTech Connect (OSTI)

    Lin, Zeren; Liu, Zhirong

    2015-12-07

    We propose that bipartite symmetry allows spin-1 Dirac-Weyl points, a generalization of the spin-1/2 Dirac points in graphene, to appear as topologically protected at the Fermi level. In this spirit, we provide methodology to construct spin-1 Dirac-Weyl points of this kind in a given 2D space group and get the classification of the known spin-1 systems in the literature. We also apply the workflow to predict two new systems, P3m1-9 and P31m-15, to possess spin-1 at K/K′ in the Brillouin zone of hexagonal lattice. Their stability under various strains is investigated and compared with that of T{sub 3}, an extensively studied model of ultracold atoms trapped in optical lattice with spin-1 also at K/K′.

  7. UNIVERSALITY OF PHASE TRANSITION DYNAMICS: TOPOLOGICAL DEFECTS FROM SYMMETRY BREAKING

    SciTech Connect (OSTI)

    Zurek, Wojciech H.; Del Campo, Adolfo

    2014-02-13

    In the course of a non-equilibrium continuous phase transition, the dynamics ceases to be adiabatic in the vicinity of the critical point as a result of the critical slowing down (the divergence of the relaxation time in the neighborhood of the critical point). This enforces a local choice of the broken symmetry and can lead to the formation of topological defects. The Kibble-Zurek mechanism (KZM) was developed to describe the associated nonequilibrium dynamics and to estimate the density of defects as a function of the quench rate through the transition. During recent years, several new experiments investigating formation of defects in phase transitions induced by a quench both in classical and quantum mechanical systems were carried out. At the same time, some established results were called into question. We review and analyze the Kibble-Zurek mechanism focusing in particular on this surge of activity, and suggest possible directions for further progress.

  8. Regularities and symmetries of subsets of collective 0{sup +} states

    SciTech Connect (OSTI)

    Bonatsos, Dennis; McCutchan, E. A.; Casten, R. F.; Casperson, R. J.; Werner, V.; Williams, E.

    2009-09-15

    The energies of subsets of excited 0{sup +} states in geometric collective models are investigated and found to exhibit intriguing regularities. In models with an infinite square well potential, it is found that a single formula, dependent on only the number of dimensions, describes a subset of 0{sup +} states. The same behavior of a subset of 0{sup +} states is seen in the large boson number limit of the interacting boson approximation (IBA) model near the critical point of a first-order phase transition, in contrast to the fact that these 0{sup +} state energies exhibit a harmonic behavior in all three limiting symmetries of the IBA. Finally, the observed regularities in 0{sup +} energies are analyzed in terms of the underlying group theoretical framework of the different models.

  9. Regularities and symmetries of subsets of collective 0{sup+} states.

    SciTech Connect (OSTI)

    Bonatsos, D.; McCutchan, E. A.; Casten, R. F.; Casperson, R. J.; Werner, V.; Williams, E.; Physics; N.C.S.R.; Yale Univ.

    2009-09-01

    The energies of subsets of excited 0{sup +} states in geometric collective models are investigated and found to exhibit intriguing regularities. In models with an infinite square well potential, it is found that a single formula, dependent on only the number of dimensions, describes a subset of 0{sup +} states. The same behavior of a subset of 0{sup +} states is seen in the large boson number limit of the interacting boson approximation (IBA) model near the critical point of a first-order phase transition, in contrast to the fact that these 0{sup +} state energies exhibit a harmonic behavior in all three limiting symmetries of the IBA. Finally, the observed regularities in 0{sup +} energies are analyzed in terms of the underlying group theoretical framework of the different models.

  10. Regularities and symmetries of collective 0{sup+} states.

    SciTech Connect (OSTI)

    Bonatsos, D.; McCutchan, E. A.; Casten, R. F.; Casperson, R. J.; Werner, V.; Williams, E.; Physics; N.C.S.R.

    2009-01-01

    The energies of subsets of excited 0{sup +} states in geometric collective models are investigated and found to exhibit intriguing regularities. In models with an infinite square well potential, it is found that a single formula, dependent on only the number of dimensions, describes a subset of 0{sup +} states. The same behavior of a subset of 0{sup +} states is seen in the large boson number limit of the interacting boson approximation (IBA) model near the critical point of a first-order phase transition, in contrast to the fact that these 0{sup +} state energies exhibit a harmonic behavior in all three limiting symmetries of the IBA. Finally, the observed regularities in 0{sup +} energies are analyzed in terms of the underlying group theoretical framework of the different models.

  11. Chiral symmetry and the nucleon-nucleon interaction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Machleidt, Ruprecht

    2016-04-20

    We review how nuclear forces emerge from low-energy quantum chromodynamics (QCD) via chiral effective field theory (EFT). During the past two decades, this approach has evolved into a powerful tool to derive nuclear two- and many-body forces in a systematic and model-independent way. We then focus on the nucleon-nucleon (NN) interaction and show in detail how, governed by chiral symmetry, the long- and intermediate-range of the NN potential builds up order by order. We proceed up to sixth order in small momenta, where convergence is achieved. Lastly, the final result allows for a full assessment of the validity of themore » chiral EFT approach to the NN interaction.« less

  12. Three-Triplet Model with Double SU(3) Symmetry

    DOE R&D Accomplishments [OSTI]

    Han, M. Y.; Nambu, Y.

    1965-01-01

    With a view to avoiding some of the kinematical and dynamical difficulties involved in the single triplet quark model, a model for the low lying baryons and mesons based on three triplets with integral charges is proposed, somewhat similar to the two-triplet model introduced earlier by one of us (Y. N.). It is shown that in a U(3) scheme of triplets with integral charges, one is naturally led to three triplets located symmetrically about the origin of I{sub 3} - Y diagram under the constraint that Nishijima-Gell-Mann relation remains intact. A double SU(3) symmetry scheme is proposed in which the large mass splittings between different representations are ascribed to one of the SU(3), while the other SU(3) is the usual one for the mass splittings within a representation of the first SU(3).

  13. Continuous flavor symmetries and the stability of asymmetric dark matter

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bishara, Fady; Zupan, Jure

    2015-01-19

    Generically, the asymmetric interactions in asymmetric dark matter (ADM) models could lead to decaying DM. We show that, for ADM that carries nonzero baryon number, the continuous flavor symmetries that generate the flavor structure in the quark sector also imply a looser lower bound on the mass scale of the asymmetric mediators between the dark and visible sectors. The mediators for B = 2 ADM that can produce a signal in the future indirect dark matter searches can thus also be searched for at the LHC. For two examples of the mediator models, with either the MFV or Froggatt-Nielsen flavormorebreaking pattern, we derive the FCNC constraints and discuss the search strategies at the LHC.less

  14. Continuous Flavor Symmetries and the Stability of Asymmetric Dark Matter

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bishara, Fady; Zupan, Jure

    2015-01-19

    Generically, the asymmetric interactions in asymmetric dark matter (ADM) models could lead to decaying DM. We show that, for ADM that carries nonzero baryon number, continuous flavor symmetries that generate the flavor structure in the quark sector also imply a looser lower bound on the mass scale of the asymmetric mediators between the dark and visible sectors. Furthermore, the mediators for B = 2 ADM that can produce a signal in the future indirect dark matter searches can thus also be searched for at the LHC. For two examples of the mediator models, with either the MFV or Froggatt-Nielsen flavormore » breaking pattern, we derive the FCNC constraints and discuss the search strategies at the LHC.« less

  15. Galactic center γ-ray excess in hidden sector DM models with dark gauge symmetries: local Z{sub 3} symmetry as an example

    SciTech Connect (OSTI)

    Ko, P.; Tang, Yong

    2015-01-16

    We show that hidden sector dark matter (DM) models with local dark gauge symmetries make a natural playground for the possible γ-ray excess from the galactic center (GC). We first discuss in detail the GC γ-ray excess in a scalar dark matter (DM) model with local Z{sub 3} symmetry which was recently proposed by the present authors. Within this model, scalar DM with mass 30–70 GeV is allowed due to the newly-opened (semi-)annihilation channels of a DM pair into dark Higgs ϕ and/or dark photon Z′ pair, and the γ-ray spectrum from the GC can be fit within this model. Then we argue that the GC gamma ray excess can be easily accommodated within hidden sector dark matter models where DM is stabilized by local gauge symmetries, due to the presence of dark Higgs (and also dark photon for Abelian dark gauge symmetry)

  16. Galactic center γ-ray excess in hidden sector DM models with dark gauge symmetries: local Z{sub 3} symmetry as an example

    SciTech Connect (OSTI)

    Ko, P.; Tang, Yong E-mail: ytang@kias.re.kr

    2015-01-01

    We show that hidden sector dark matter (DM) models with local dark gauge symmetries make a natural playground for the possible γ-ray excess from the galactic center (GC). We first discuss in detail the GC γ-ray excess in a scalar dark matter (DM) model with local Z{sub 3} symmetry which was recently proposed by the present authors. Within this model, scalar DM with mass 30–70 GeV is allowed due to the newly-opened (semi-)annihilation channels of a DM pair into dark Higgs φ and/or dark photon Z' pair, and the γ-ray spectrum from the GC can be fit within this model. Then we argue that the GC gamma ray excess can be easily accommodated within hidden sector dark matter models where DM is stabilized by local gauge symmetries, due to the presence of dark Higgs (and also dark photon for Abelian dark gauge symmetry)

  17. 3D imaging of semiconductor components by discrete laminography

    SciTech Connect (OSTI)

    Batenburg, K. J.; Palenstijn, W. J.; Sijbers, J.

    2014-06-19

    X-ray laminography is a powerful technique for quality control of semiconductor components. Despite the advantages of nondestructive 3D imaging over 2D techniques based on sectioning, the acquisition time is still a major obstacle for practical use of the technique. In this paper, we consider the application of Discrete Tomography to laminography data, which can potentially reduce the scanning time while still maintaining a high reconstruction quality. By incorporating prior knowledge in the reconstruction algorithm about the materials present in the scanned object, far more accurate reconstructions can be obtained from the same measured data compared to classical reconstruction methods. We present a series of simulation experiments that illustrate the potential of the approach.

  18. Origin of coherent structures in a discrete chaotic medium

    SciTech Connect (OSTI)

    Rabinovich, M.I.; Torres, J.J.; Varona, P.; Huerta, R.; Varona, P.; Huerta, R.; Weidman, P.

    1999-08-01

    Using as an example a large lattice of locally interacting Hindmarsh-Rose chaotic neurons, we disclose the origin of ordered structures in a discrete nonequilibrium medium with fast and slow chaotic oscillations. The origin of the ordering mechanism is related to the appearance of a periodic average dynamics in the group of chaotic neurons whose individual slow activity is significantly synchronized by the group mean field. Introducing the concept of a {open_quotes}coarse grain{close_quotes} as a cluster of neuron elements with periodic averaged behavior allows consideration of the dynamics of a medium composed of these clusters. A study of this medium reveals spatially ordered patterns in the periodic and slow dynamics of the coarse grains that are controlled by the average intensity of the fast chaotic pulsation. {copyright} {ital 1999} {ital The American Physical Society}

  19. Discrete physics: Practice, representation and rules of correspondence

    SciTech Connect (OSTI)

    Noyes, H.P.

    1988-07-01

    We make a brief historical review of some aspects of modern physics which we find most significant in our own endeavor. We discuss the ''Yukawa Vertices'' of elementary particle theory as used in laboratory practice, second quantized field theory, analytic S-Matrix theory and in our own approach. We review the conserved quantum numbers in the Standard Model of quarks and leptons. This concludes our presentation of the ''E-frame.'' We try to develop a self-consistent representation of our theory. We have already claimed that this approach provides a discrete reconciliation between the formal (representational) aspects of quantum mechanics and relativity. Also discussed are rules of correspondence connecting the formalism to the practice of physics by using the counter paradigm and event-based coordinates to construct relativistic quantum mechanics in a new way. 31 refs., 12 figs., 1 tab.

  20. Thermal depinning of fluxons in discrete Josephson rings

    SciTech Connect (OSTI)

    Mazo, J. J.; Naranjo, F.; Segall, K.

    2008-11-01

    We study the thermal depinning of single fluxons in rings made of Josephson junctions. Due to thermal fluctuations a fluxon can be excited from its energy minima and move through the array, causing a voltage across each junction. We find that for the initial depinning, the fluxon behaves as a single particle and follows a Kramers-type escape law. However, under some conditions this single-particle description breaks down. At low values of the discreteness parameter and low values of the damping, the depinning rate is larger than what the single-particle result would suggest. In addition, for some values of the parameters the fluxon can undergo low-voltage diffusion before switching to the high-voltage whirling mode. This type of diffusion is similar to phase diffusion in a single junction but occurs without frequency-dependent damping. We study the switching to the whirling state as well.

  1. Bright discrete solitons in spatially modulated DNLS systems

    SciTech Connect (OSTI)

    Kevrekidis, P. G.; Horne, R. L.; Whitaker, N.; Hoq, Q. E.; Kip, D.

    2015-08-04

    In the present work, we revisit the highly active research area of inhomogeneously nonlinear defocusing media and consider the existence, spectral stability and nonlinear dynamics of bright solitary waves in them. We use the anti-continuum limit of vanishing coupling as the starting point of our analysis, enabling in this way a systematic characterization of the branches of solutions. Our stability findings and bifurcation characteristics reveal the enhanced robustness and wider existence intervals of solutions with a broader support, culminating in the 'extended' solution in which all sites are excited. Our eigenvalue predictions are corroborated by numerical linear stability analysis. In conclusion, the dynamics also reveal a tendency of the solution profiles to broaden, in line with the above findings. These results pave the way for further explorations of such states in discrete systems, including in higher dimensional settings.

  2. Bright discrete solitons in spatially modulated DNLS systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kevrekidis, P. G.; Horne, R. L.; Whitaker, N.; Hoq, Q. E.; Kip, D.

    2015-08-04

    In the present work, we revisit the highly active research area of inhomogeneously nonlinear defocusing media and consider the existence, spectral stability and nonlinear dynamics of bright solitary waves in them. We use the anti-continuum limit of vanishing coupling as the starting point of our analysis, enabling in this way a systematic characterization of the branches of solutions. Our stability findings and bifurcation characteristics reveal the enhanced robustness and wider existence intervals of solutions with a broader support, culminating in the 'extended' solution in which all sites are excited. Our eigenvalue predictions are corroborated by numerical linear stability analysis. Inmore » conclusion, the dynamics also reveal a tendency of the solution profiles to broaden, in line with the above findings. These results pave the way for further explorations of such states in discrete systems, including in higher dimensional settings.« less

  3. An Asymptotic Study of Discretized Transport Equations in the Fokker-Planck Limit

    SciTech Connect (OSTI)

    Pautz, Shawn D.; Adams, Marvin L.

    2002-01-15

    Recent analyses have shown that the Fokker-Planck equation is an asymptotic limit of the transport equation given a forward-peaked scattering kernel satisfying certain constraints. Discretized transport equations in the same limit are studied, both by asymptotic analysis and by numerical testing. It is shown that spatially discretized discrete ordinates transport solutions can be accurate in this limit if and only if the scattering operator is handled in a certain nonstandard way.

  4. Fractured reservoir discrete feature network technologies. Final report, March 7, 1996 to September 30, 1998

    SciTech Connect (OSTI)

    Dershowitz, William S.; Einstein, Herbert H.; LaPoint, Paul R.; Eiben, Thorsten; Wadleigh, Eugene; Ivanova, Violeta

    1998-12-01

    This report summarizes research conducted for the Fractured Reservoir Discrete Feature Network Technologies Project. The five areas studied are development of hierarchical fracture models; fractured reservoir compartmentalization, block size, and tributary volume analysis; development and demonstration of fractured reservoir discrete feature data analysis tools; development of tools for data integration and reservoir simulation through application of discrete feature network technologies for tertiary oil production; quantitative evaluation of the economic value of this analysis approach.

  5. Development and Application of Compatible Discretizations of Maxwell's Equations

    SciTech Connect (OSTI)

    White, D; Koning, J; Rieben, R

    2005-05-27

    We present the development and application of compatible finite element discretizations of electromagnetics problems derived from the time dependent, full wave Maxwell equations. We review the H(curl)-conforming finite element method, using the concepts and notations of differential forms as a theoretical framework. We chose this approach because it can handle complex geometries, it is free of spurious modes, it is numerically stable without the need for filtering or artificial diffusion, it correctly models the discontinuity of fields across material boundaries, and it can be very high order. Higher-order H(curl) and H(div) conforming basis functions are not unique and we have designed an extensible C++ framework that supports a variety of specific instantiations of these such as standard interpolatory bases, spectral bases, hierarchical bases, and semi-orthogonal bases. Virtually any electromagnetics problem that can be cast in the language of differential forms can be solved using our framework. For time dependent problems a method-of-lines scheme is used where the Galerkin method reduces the PDE to a semi-discrete system of ODE's, which are then integrated in time using finite difference methods. For time integration of wave equations we employ the unconditionally stable implicit Newmark-Beta method, as well as the high order energy conserving explicit Maxwell Symplectic method; for diffusion equations, we employ a generalized Crank-Nicholson method. We conclude with computational examples from resonant cavity problems, time-dependent wave propagation problems, and transient eddy current problems, all obtained using the authors massively parallel computational electromagnetics code EMSolve.

  6. Optimizing parameters for predicting the geochemical behavior and performance of discrete fracture networks in geothermal systems

    Broader source: Energy.gov [DOE]

    Optimizing parameters for predicting the geochemical behavior and performance of discrete fracture networks in geothermal systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

  7. Coherent States and Spontaneous Symmetry Breaking in Light Front Scalar Field Theory

    SciTech Connect (OSTI)

    Vary, J.P.; Chakrabarti, D.; Harindranath, A.; Lloyd, R.; Martinovic, L.; Spence, J.R.; /Iowa State U.

    2005-12-14

    Recently developed nuclear many-body techniques provide novel results when applied to constituent quark models and to light-front scalar field theory. We show how spontaneous symmetry breaking arises and is consistent with a coherent state ansatz in a variational treatment. The kink and the kink-antikink topological features are identified and the onset of symmetry restoration is demonstrated.

  8. Integrable and superintegrable Hamiltonian systems with four dimensional real Lie algebras as symmetry of the systems

    SciTech Connect (OSTI)

    Abedi-Fardad, J.; Rezaei-Aghdam, A.; Haghighatdoost, Gh.

    2014-05-15

    We construct integrable and superintegrable Hamiltonian systems using the realizations of four dimensional real Lie algebras as a symmetry of the system with the phase space R{sup 4} and R{sup 6}. Furthermore, we construct some integrable and superintegrable Hamiltonian systems for which the symmetry Lie group is also the phase space of the system.

  9. Symmetry breaking indication for supergravity inflation in light of the Planck 2015

    SciTech Connect (OSTI)

    Li, Tianjun; Li, Zhijin; Nanopoulos, Dimitri V.

    2015-09-01

    Supergravity (SUGRA) theories with exact global U(1) symmetry or shift symmetry in Kähler potential provide natural frameworks for inflation. However, quadratic inflation is disfavoured by the new results on primordial tensor fluctuations from the Planck Collaboration. To be consistent with the new Planck data, we point out that the explicit symmetry breaking is needed, and study these two SUGRA inflation in detail. For SUGRA inflation with global U(1) symmetry, the symmetry breaking term leads to a trigonometric modulation on inflaton potential. Coefficient of the U(1) symmetry breaking term is of order 10{sup −2}, which is sufficient large to improve the inflationary predictions while its higher order corrections are negligible. Such models predict sizeable tensor fluctuations and highly agree with the Planck results. In particular, the model with a linear U(1) symmetry breaking term predicts the tensor-to-scalar ratio around r∼0.01 and running spectral index α{sub s}∼−0.004, which comfortably fit with the Planck observations. For SUGRA inflation with breaking shift symmetry, the inflaton potential is modulated by an exponential factor. The modulated linear and quadratic models are consistent with the Planck observations. In both types of models the tensor-to-scalar ratio can be of order 10{sup −2}, which will be tested by the near future observations.

  10. Symmetry-Driven Atomic Rearrangement at a Brownmillerite-Perovskite Interface

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meyer, Tricia L.; Jeen, Hyoungjeen; Gao, Xiang; Petrie, Jonathan R.; Chisholm, Matthew F.; Lee, Ho Nyung

    2015-12-15

    To those investigating new interfacial phenomena, symmetry mismatch is of immense interest. The interfacial and bulk microstructure of the brownmillerite–perovskite interface is probed using detailed transmission electron microscopy. Unique asymmetric displacements of the tetrahedra at the interface are observed, signifying a compensation mechanism for lattice and symmetry mismatch at the interface.

  11. Electric Dipole Moments in Radioactive Nuclei, Tests of Time Reversal Symmetry

    SciTech Connect (OSTI)

    Auerbach, N.

    2010-11-24

    The research of radioactive nuclei opens new possibilities to study fundamental symmetries, such as time reversal and reflection symmetry. Such nuclei often provide conditions to check in an optimal way certain symmetries and the violation of such symmetries. We will discuss the possibility of obtaining improved limits on violation of time reversal symmetry using pear shaped radioactive nuclei. An effective method to test time reversal invariance in the non-strange sector is to measure parity and time reversal violating (T-P-odd) electromagnetic moments, (such as the static electric dipole moment). Parity and time reversal violating components in the nuclear force may produce P-T-odd moments in nuclei which in turn induce such moments in atoms. We will discuss the possibility that in some reflection asymmetric, heavy nuclei (which are radioactive) these moments are enhanced by several orders of magnitude. Present and future experiments, which will test this idea, will be mentioned.

  12. A Piecewise Bi-Linear Discontinuous Finite Element Spatial Discretization of the Sn Transport Equation

    SciTech Connect (OSTI)

    Bailey, T S; Chang, J H; Warsa, J S; Adams, M L

    2010-12-22

    We present a new spatial discretization of the discrete-ordinates transport equation in two-dimensional Cartesian (X-Y) geometry for arbitrary polygonal meshes. The discretization is a discontinuous finite element method (DFEM) that utilizes piecewise bi-linear (PWBL) basis functions, which are formally introduced in this paper. We also present a series of numerical results on quadrilateral and polygonal grids and compare these results to a variety of other spatial discretizations that have been shown to be successful on these grid types. Finally, we note that the properties of the PWBL basis functions are such that the leading-order piecewise bi-linear discontinuous finite element (PWBLD) solution will satisfy a reasonably accurate diffusion discretization in the thick diffusion limit, making the PWBLD method a viable candidate for many different classes of transport problems.

  13. Sea quark transverse momentum distributions and dynamical chiral symmetry breaking

    SciTech Connect (OSTI)

    Schweitzer, Peter; Strikman, Mark; Weiss, Christian

    2014-01-01

    Recent theoretical studies have provided new insight into the intrinsic transverse momentum distributions of valence and sea quarks in the nucleon at a low scale. The valence quark transverse momentum distributions (q - qbar) are governed by the nucleon's inverse hadronic size R{sup -1} ~ 0.2 GeV and drop steeply at large p{sub T}. The sea quark distributions (qbar) are in large part generated by non-perturbative chiral-symmetry breaking interactions and extend up to the scale rho{sup -1} ~ 0.6 GeV. These findings have many implications for modeling the initial conditions of perturbative QCD evolution of TMD distributions (starting scale, shape of p{sub T}. distributions, coordinate-space correlation functions). The qualitative difference between valence and sea quark intrinsic p{sub T}. distributions could be observed experimentally, by comparing the transverse momentum distributions of selected hadrons in semi-inclusive deep-inelastic scattering, or those of dileptons produced in pp and pbar-p scattering.

  14. Quark and lepton mixing as manifestations of violated mirror symmetry

    SciTech Connect (OSTI)

    Dyatlov, I. T.

    2015-06-15

    The existence of heavy mirror analogs of ordinary fermions would provide deeper insight into the gedanken paradox appearing in the Standard Model upon direct parity violation and consisting in a physical distinguishability of left- and right-hand coordinate frames. Arguments are presented in support of the statement that such mirror states may also be involved in the formation of observed properties of the system of Standard Model quarks and leptons—that is, their mass spectra and their weak-mixing matrices: (i) In the case of the involvement of mirror generations, the quark mixing matrix assumes the experimentally observed form. It is determined by the constraints imposed by weak SU(2) symmetry and by the quark-mass hierarchy. (ii) Under the same conditions and upon the involvement of mirror particles, the lepton mixing matrix (neutrino mixing) may become drastically different from its quark analog—the Cabibbo-Kobayashi-Maskawa matrix; that is, it may acquire properties suggested by experimental data. This character of mixing is also indicative of an inverse mass spectrum of Standard Model neutrinos and their Dirac (not Majorana) nature.

  15. Entrainment of coarse grains using a discrete particle model

    SciTech Connect (OSTI)

    Valyrakis, Manousos; Arnold, Roger B. Jr.

    2014-10-06

    Conventional bedload transport models and incipient motion theories relying on a time-averaged boundary shear stress are incapable of accounting for the effects of fluctuating near-bed velocity in turbulent flow and are therefore prone to significant errors. Impulse, the product of an instantaneous force magnitude and its duration, has been recently proposed as an appropriate criterion for quantifying the effects of flow turbulence in removing coarse grains from the bed surface. Here, a discrete particle model (DPM) is used to examine the effects of impulse, representing a single idealized turbulent event, on particle entrainment. The results are classified according to the degree of grain movement into the following categories: motion prior to entrainment, initial dislodgement, and energetic displacement. The results indicate that in all three cases the degree of particle motion depends on both the force magnitude and the duration of its application and suggest that the effects of turbulence must be adequately accounted for in order to develop a more accurate method of determining incipient motion. DPM is capable of simulating the dynamics of grain entrainment and is an appropriate tool for further study of the fundamental mechanisms of sediment transport.

  16. Thermal Neutron Detectors with Discrete Anode Pad Readout

    SciTech Connect (OSTI)

    Yu,B.; Schaknowski, N.A., Smith, G.C., DeGeronimo, G., Vernon, E.O.

    2008-10-19

    A new two-dimensional thermal neutron detector concept that is capable of very high rates is being developed. It is based on neutron conversion in {sup 3}He in an ionization chamber (unity gas gain) that uses only a cathode and anode plane; there is no additional electrode such as a Frisch grid. The cathode is simply the entrance window, and the anode plane is composed of discrete pads, each with their own readout electronics implemented via application specific integrated circuits. The aim is to provide a new generation of detectors with key characteristics that are superior to existing techniques, such as higher count rate capability, better stability, lower sensitivity to background radiation, and more flexible geometries. Such capabilities will improve the performance of neutron scattering instruments at major neutron user facilities. In this paper, we report on progress with the development of a prototype device that has 48 x 48 anode pads and a sensitive area of 24cm x 24cm.

  17. Discrete Mathematical Approaches to Graph-Based Traffic Analysis

    SciTech Connect (OSTI)

    Joslyn, Cliff A.; Cowley, Wendy E.; Hogan, Emilie A.; Olsen, Bryan K.

    2014-04-01

    Modern cyber defense and anlaytics requires general, formal models of cyber systems. Multi-scale network models are prime candidates for such formalisms, using discrete mathematical methods based in hierarchically-structured directed multigraphs which also include rich sets of labels. An exemplar of an application of such an approach is traffic analysis, that is, observing and analyzing connections between clients, servers, hosts, and actors within IP networks, over time, to identify characteristic or suspicious patterns. Towards that end, NetFlow (or more generically, IPFLOW) data are available from routers and servers which summarize coherent groups of IP packets flowing through the network. In this paper, we consider traffic analysis of Netflow using both basic graph statistics and two new mathematical measures involving labeled degree distributions and time interval overlap measures. We do all of this over the VAST test data set of 96M synthetic Netflow graph edges, against which we can identify characteristic patterns of simulated ground-truth network attacks.

  18. Enhancing Complex System Performance Using Discrete-Event Simulation

    SciTech Connect (OSTI)

    Allgood, Glenn O; Olama, Mohammed M; Lake, Joe E

    2010-01-01

    In this paper, we utilize discrete-event simulation (DES) merged with human factors analysis to provide the venue within which the separation and deconfliction of the system/human operating principles can occur. A concrete example is presented to illustrate the performance enhancement gains for an aviation cargo flow and security inspection system achieved through the development and use of a process DES. The overall performance of the system is computed, analyzed, and optimized for the different system dynamics. Various performance measures are considered such as system capacity, residual capacity, and total number of pallets waiting for inspection in the queue. These metrics are performance indicators of the system's ability to service current needs and respond to additional requests. We studied and analyzed different scenarios by changing various model parameters such as the number of pieces per pallet ratio, number of inspectors and cargo handling personnel, number of forklifts, number and types of detection systems, inspection modality distribution, alarm rate, and cargo closeout time. The increased physical understanding resulting from execution of the queuing model utilizing these vetted performance measures identified effective ways to meet inspection requirements while maintaining or reducing overall operational cost and eliminating any shipping delays associated with any proposed changes in inspection requirements. With this understanding effective operational strategies can be developed to optimally use personnel while still maintaining plant efficiency, reducing process interruptions, and holding or reducing costs.

  19. Particle-Hole Symmetry Breaking in the Pseudogap State of Bi2201

    SciTech Connect (OSTI)

    Hashimoto, M.; He, R.-H.; Tanaka, K.; Testaud, J.P.; Meevasana1, W.; Moore, R.G.; Lu, D.H.; Yao, H.; Yoshida, Y.; Eisaki, H.; Devereaux, T.P.; Hussain, Z.; Shen, Z.-X.; /SIMES, Stanford /Stanford U., Geballe Lab.

    2011-08-19

    In conventional superconductors, a gap exists in the energy absorption spectrum only below the transition temperature (T{sub c}), corresponding to the energy price to pay for breaking a Cooper pair of electrons. In high-T{sub c} cuprate superconductors above T{sub c}, an energy gap called the pseudogap exists, and is controversially attributed either to pre-formed superconducting pairs, which would exhibit particle-hole symmetry, or to competing phases which would typically break it. Scanning tunnelling microscopy (STM) studies suggest that the pseudogap stems from lattice translational symmetry breaking and is associated with a different characteristic spectrum for adding or removing electrons (particle-hole asymmetry). However, no signature of either spatial or energy symmetry breaking of the pseudogap has previously been observed by angle-resolved photoemission spectroscopy (ARPES). Here we report ARPES data from Bi2201 which reveals both particle-hole symmetry breaking and dramatic spectral broadening indicative of spatial symmetry breaking without long range order, upon crossing through T* into the pseudogap state. This symmetry breaking is found in the dominant region of the momentum space for the pseudogap, around the so-called anti-node near the Brillouin zone boundary. Our finding supports the STM conclusion that the pseudogap state is a broken-symmetry state that is distinct from homogeneous superconductivity.

  20. Symmetry analysis of many-body wave functions, with applications to the nuclear shell model

    SciTech Connect (OSTI)

    Novoselsky, A. ); Katriel, J. )

    1995-01-01

    The weights of the different permutational symmetry components of a nonsymmetry-adapted many-particle wave function are evaluated in terms of the expectation values of the symmetric-group class sums. This facilitates the evaluation of the weights without the construction of a complete set of symmetry adapted functions. Subspace projection operators are introduced, to be used when prior knowledge about the symmetry-species composition of a wave function is available. The permutational weight analysis of a recursively angular-momentum coupled (shell model) wave function is presented as an illustration.

  1. Broken SU(3) x SU(3) x SU(3) x SU(3) Symmetry

    DOE R&D Accomplishments [OSTI]

    Freund, P. G. O.; Nambu, Y.

    1964-10-01

    We argue that the "Eight-fold Way" version of the SU(3) symmetry should be extended to a product of up to four separate and badly broken SU(3) groups, including the gamma{sub 5} type SU(3) symmetry. A hierarchy of subgroups (or subalgebras) are considered within this framework, and two candidates are found to be interesting in view of experimental evidence. Main features of the theory are: 1) the baryons belong to a nonet; 2) there is an octet of axial vector gauge mesons in addition to one or two octets of vector mesons; 3) pseudoscalar and scalar mesons exist as "incomplete" multiplets arising from spontaneous breakdown of symmetry.

  2. First collision source method for coupling Monte Carlo and discrete ordinates for localized source problems

    SciTech Connect (OSTI)

    Alcouffe, R.E.

    1985-01-01

    A difficult class of problems for the discrete-ordinates neutral particle transport method is to accurately compute the flux due to a spatially localized source. Because the transport equation is solved for discrete directions, the so-called ray effect causes the flux at space points far from the source to be inaccurate. Thus, in general, discrete ordinates would not be the method of choice to solve such problems. It is better suited for calculating problems with significant scattering. The Monte Carlo method is suited to localized source problems, particularly if the amount of collisional interactions in minimal. However, if there are many scattering collisions and the flux at all space points is desired, then the Monte Carlo method becomes expensive. To take advantage of the attributes of both approaches, we have devised a first collision source method to combine the Monte Carlo and discrete-ordinates solutions. That is, particles are tracked from the source to their first scattering collision and tallied to produce a source for the discrete-ordinates calculation. A scattered flux is then computed by discrete ordinates, and the total flux is the sum of the Monte Carlo and discrete ordinates calculated fluxes. In this paper, we present calculational results using the MCNP and TWODANT codes for selected two-dimensional problems that show the effectiveness of this method.

  3. Symmetry-Guided Synthesis of Highly Porous Metal-Organic Frameworks...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Symmetry-Guided Synthesis of Highly Porous Metal-Organic Frameworks with Fluorite Topology Previous Next List Muwei Zhang, Ying-Pin Chen, Mathieu Bosch, Thomas Gentle III, Kecheng...

  4. Broken Symmetry in the Pseudogap State of YBa2Cu3O6+x (Technical...

    Office of Scientific and Technical Information (OSTI)

    Title: Broken Symmetry in the Pseudogap State of YBa2Cu3O6+x Authors: Ramshaw, Brad 1 + Show Author Affiliations Los Alamos National Laboratory Los Alamos National Laboratory ...

  5. Twisted conformal symmetry in noncommutative two-dimensional quantum field theory

    SciTech Connect (OSTI)

    Lizzi, Fedele; Vitale, Patrizia; Vaidya, Sachindeo

    2006-06-15

    By twisting the commutation relations between creation and annihilation operators, we show that quantum conformal invariance can be implemented in the 2-d Moyal plane. This is an explicit realization of an infinite dimensional symmetry as a quantum algebra.

  6. Glide-plane symmetry and superconducting gap structure of iron-based superconductors

    SciTech Connect (OSTI)

    Wang, Yan; Berlijn, Tom; Hirschfeld, Peter J.; Scalapino, Douglas J.; Maier, Thomas A.

    2015-03-10

    We consider the effect of glide-plane symmetry of the Fe-pnictogen/chalcogen layer in Fe-based superconductors on pairing in spin fluctuation models. Recent theories propose that so-called ?-pairing states with nonzero total momentum can be realized and possess such exotic properties as odd parity spin singlet symmetry and time-reversal symmetry breaking. Here we show that when there is orbital weight at the Fermi level from orbitals with even and odd mirror reflection symmetry in z, ? pairing is inevitable; however, we conclude from explicit calculation that the gap function appearing in observable quantities is identical to that found in earlier pseudocrystal momentum calculations with 1 Fe per unit cell.

  7. Symmetries in Nature A glimpse into the beauty and art of science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Symmetries in Nature A glimpse into the beauty and art of science Dan Melconian Texas A&M University Cyclotron Institute Feb 28, 2009 From the very smallest scales ... ... to the...

  8. Glide-plane symmetry and superconducting gap structure of iron-based superconductors

    SciTech Connect (OSTI)

    Wang, Yan; Berlijn, Tom; Hirschfeld, Peter J.; Scalapino, Douglas J.; Maier, Thomas A.

    2015-03-10

    We consider the effect of glide-plane symmetry of the Fe-pnictogen/chalcogen layer in Fe-based superconductors on pairing in spin fluctuation models. Recent theories propose that so-called η-pairing states with nonzero total momentum can be realized and possess such exotic properties as odd parity spin singlet symmetry and time-reversal symmetry breaking. Here we show that when there is orbital weight at the Fermi level from orbitals with even and odd mirror reflection symmetry in z, η pairing is inevitable; however, we conclude from explicit calculation that the gap function appearing in observable quantities is identical to that found in earlier pseudocrystal momentum calculations with 1 Fe per unit cell.

  9. Glide-plane symmetry and superconducting gap structure of iron-based superconductors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Yan; Berlijn, Tom; Hirschfeld, Peter J.; Scalapino, Douglas J.; Maier, Thomas A.

    2015-03-10

    We consider the effect of glide-plane symmetry of the Fe-pnictogen/chalcogen layer in Fe-based superconductors on pairing in spin fluctuation models. Recent theories propose that so-called η-pairing states with nonzero total momentum can be realized and possess such exotic properties as odd parity spin singlet symmetry and time-reversal symmetry breaking. Here we show that when there is orbital weight at the Fermi level from orbitals with even and odd mirror reflection symmetry in z, η pairing is inevitable; however, we conclude from explicit calculation that the gap function appearing in observable quantities is identical to that found in earlier pseudocrystal momentummore » calculations with 1 Fe per unit cell.« less

  10. Structure symmetry determination and magnetic evolution in Sr2Ir1...

    Office of Scientific and Technical Information (OSTI)

    evolution in Sr2Ir1-xRhxO4 This content will become publicly available on November 23, 2016 Prev Next Title: Structure symmetry determination and magnetic evolution in ...

  11. Discrete Event Modeling of Algae Cultivation and Harvesting at Commercial Scale: Capital Costs, Operating Costs, and System Bottlenecks

    SciTech Connect (OSTI)

    Lacey, Ph.D, P.E., Ronald E.

    2012-07-16

    Discrete Event Modeling of Algae Cultivation and Harvesting at Commercial Scale: Capital Costs, Operating Costs, and System Bottlenecks

  12. Crystal surface symmetry from zone-axis patterns in reflection high-energy-electron diffraction

    SciTech Connect (OSTI)

    Shannon, M.D.; Eades, J.A.; Meichle, M.E.; Turner, P.S.; Buxton, B.F.

    1984-11-26

    New experimental techniques, sensitive to crystal surface symmetry, for reflection high-energy-electron diffraction have been developed and applied to the (001) surface of MgO. The techniques map the variation of the intensity of one or more diffracted beams as a function of the incident-beam orientation. The symmetry of these surface zone-axis patterns has been studied theoretically and confirmed experimentally. The techniques are expected to provide a sensitive means of surface characterization.

  13. Quantization of systems with temporally varying discretization. II. Local evolution moves

    SciTech Connect (OSTI)

    Hhn, Philipp A.

    2014-10-15

    Several quantum gravity approaches and field theory on an evolving lattice involve a discretization changing dynamics generated by evolution moves. Local evolution moves in variational discrete systems (1) are a generalization of the Pachner evolution moves of simplicial gravity models, (2) update only a small subset of the dynamical data, (3) change the number of kinematical and physical degrees of freedom, and (4) generate a dynamical (or canonical) coarse graining or refining of the underlying discretization. To systematically explore such local moves and their implications in the quantum theory, this article suitably expands the quantum formalism for global evolution moves, constructed in Paper I [P. A. Hhn, Quantization of systems with temporally varying discretization. I. Evolving Hilbert spaces, J. Math. Phys. 55, 083508 (2014); e-print http://arxiv.org/abs/arXiv:1401.6062 [gr-qc

  14. Discrete Packet Analysis for Improved Atmospheric Rejection on Modulated Laser Signals

    SciTech Connect (OSTI)

    O'Neill, M., McKenna, I., DiBenedetto, J., Capelle, G., Trainham, R.

    2012-07-19

    This slide-show discusses how the method of discrete packet analysis improves atmospheric compensation for quasi-CW fluorescence detection methods. This is key to improving remote sensing capabilities.

  15. Creating Interoperable Meshing and Discretization Software: The Terascale Simulation Tools and Technology Center

    SciTech Connect (OSTI)

    Brown, D.; Freitag, L.; Glimm, J.

    2002-03-28

    We present an overview of the technical objectives of the Terascale Simulation Tools and Technologies center. The primary goal of this multi-institution collaboration is to develop technologies that enable application scientists to easily use multiple mesh and discretization strategies within a single simulation on terascale computers. The discussion focuses on our efforts to create interoperable mesh generation tools, high-order discretization techniques, and adaptive meshing strategies.

  16. CREATING INTEROPERABLE MESHING AND DISCRETIZATION SOFTWARE: THE TERASCALE SIMULATION TOOLS AND TECHNOLOGY CENTER.

    SciTech Connect (OSTI)

    BROWN,D.; FREITAG,L.; GLIMM,J.

    2002-06-02

    We present an overview of the technical objectives of the Terascale Simulation Tools and Technologies center. The primary goal of this multi-institution collaboration is to develop technologies that enable application scientists to easily use multiple mesh and discretization strategies within a single simulation on terascale computers. The discussion focuses on our efforts to create interoperable mesh generation tools, high-order discretization techniques, and adaptive meshing strategies.

  17. Quantization of systems with temporally varying discretization. I. Evolving Hilbert spaces

    SciTech Connect (OSTI)

    Hhn, Philipp A.

    2014-08-15

    A temporally varying discretization often features in discrete gravitational systems and appears in lattice field theory models subject to a coarse graining or refining dynamics. To better understand such discretization changing dynamics in the quantum theory, an according formalism for constrained variational discrete systems is constructed. While this paper focuses on global evolution moves and, for simplicity, restricts to flat configuration spaces R{sup N}, a Paper II [P. A. Hhn, Quantization of systems with temporally varying discretization. II. Local evolution moves, J. Math. Phys., e-print http://arxiv.org/abs/arXiv:1401.7731 [gr-qc].] discusses local evolution moves. In order to link the covariant and canonical picture, the dynamics of the quantum states is generated by propagators which satisfy the canonical constraints and are constructed using the action and group averaging projectors. This projector formalism offers a systematic method for tracing and regularizing divergences in the resulting state sums. Non-trivial coarse graining evolution moves lead to non-unitary, and thus irreversible, projections of physical Hilbert spaces and Dirac observables such that these concepts become evolution move dependent on temporally varying discretizations. The formalism is illustrated in a toy model mimicking a creation from nothing. Subtleties arising when applying such a formalism to quantum gravity models are discussed.

  18. A reciprocal space approach for locating symmetry elements in Patterson superposition maps

    SciTech Connect (OSTI)

    Hendrixson, T.

    1990-09-21

    A method for determining the location and possible existence of symmetry elements in Patterson superposition maps has been developed. A comparison of the original superposition map and a superposition map operated on by the symmetry element gives possible translations to the location of the symmetry element. A reciprocal space approach using structure factor-like quantities obtained from the Fourier transform of the superposition function is then used to determine the best'' location of the symmetry element. Constraints based upon the space group requirements are also used as a check on the locations. The locations of the symmetry elements are used to modify the Fourier transform coefficients of the superposition function to give an approximation of the structure factors, which are then refined using the EG relation. The analysis of several compounds using this method is presented. Reciprocal space techniques for locating multiple images in the superposition function are also presented, along with methods to remove the effect of multiple images in the Fourier transform coefficients of the superposition map. In addition, crystallographic studies of the extended chain structure of (NHC{sub 5}H{sub 5})SbI{sub 4} and of the twinning method of the orthorhombic form of the high-{Tc} superconductor YBa{sub 2}Cu{sub 3}O{sub 7-x} are presented. 54 refs.

  19. Stability of skyrmion lattices and symmetries of quasi-two-dimensional chiral magnets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gungordu, Utkan; Nepal, Rabindra; Tretiakov, Oleg A.; Belashchenko, Kirill; Kovalev, Alexey A.

    2016-02-24

    Recently there has been substantial interest in realizations of skyrmions, in particular in quasi-two-dimensional (2D) systems due to increased stability resulting from reduced dimensionality. A stable skyrmion, representing the smallest realizable magnetic texture, could be an ideal element for ultradense magnetic memories. Here we use the most general form of the quasi-2D free energy with Dzyaloshinskii-Moriya interactions constructed from general symmetry considerations reflecting the underlying system. We predict that the skyrmion phase is robust and it is present even when the system lacks the in-plane rotational symmetry. In fact, the lowered symmetry leads to increased stability of vortex-antivortex lattices withmore » fourfold symmetry and in-plane spirals, in some instances even in the absence of an external magnetic field. Our results relate different hexagonal and square cell phases to the symmetries of materials used for realizations of skyrmions. This will give clear directions for experimental realizations of hexagonal and square cell phases, and will allow engineering of skyrmions with unusual properties. We also predict striking differences in gyrodynamics induced by spin currents for isolated skyrmions and for crystals where spin currents can be induced by charge carriers or by thermal magnons. As a result, we find that under certain conditions, isolated skyrmions can move along the current without a side motion which can have implications for realizations of magnetic memories.« less

  20. Nodal gap structure and order parameter symmetry of the unconventional superconductor UPt₃

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gannon, W. J.; Halperin, W. P.; Rastovski, C.; Schlesinger, K. J.; Hlevyack, J.; Eskildsen, M. R.; Vorontsov, A. B.; Gavilano, J.; Gasser, U.; Nagy, G.

    2015-02-01

    Spanning a broad range of physical systems, complex symmetry breaking is widely recognized as a hallmark of competing interactions. This is exemplified in superfluid ³He which has multiple thermodynamic phases with spin and orbital quantum numbers S = 1 and L = 1, that emerge on cooling from a nearly ferromagnetic Fermi liquid. The heavy fermion compound UPt₃ exhibits similar behavior clearly manifest in its multiple superconducting phases. However, consensus as to its order parameter symmetry has remained elusive. Our small angle neutron scattering measurements indicate a linear temperature dependence of the London penetration depth characteristic of nodal structure ofmore » the order parameter. Our theoretical analysis is consistent with assignment of its symmetry to an L = 3 odd parity state for which one of the three thermodynamic phases in non-zero magnetic field is chiral.« less

  1. Restoration of UA(1) symmetry and meson spectrum in hot or dense matter

    SciTech Connect (OSTI)

    Costa, P.; Ruivo, M.C.; Sousa, C.A. de; Kalinovsky, Yu.L.

    2005-06-14

    We explore the effects of breaking and restoration of chiral and axial symmetries using an extended three-flavor Nambu-Jona-Lasinio model that incorporates explicitly the axial anomaly through the 't Hooft interaction. We implement a temperature (density) dependence of the anomaly coefficient motivated by lattice results for the topological susceptibility. The spectrum of scalar and pseudoscalar mesons is analyzed bearing in mind the identification of chiral partners and the study of its convergence. We also concentrate on the behavior of the mixing angles that give us relevant information on the issue under discussion. The results suggest that the axial part of the symmetry is restored before the possible restoration of the full U(3)xU(3) chiral symmetry might occur.

  2. Generalized conditional symmetries and related solutions of the Grad-Shafranov equation

    SciTech Connect (OSTI)

    Cimpoiasu, Rodica

    2014-04-15

    The generalized conditional symmetry (GCS) method is applied to a specific case of the Grad–Shafranov (GS) equation, in cylindrical geometry assuming the existence of an axial symmetry. We investigate the conditions that yield the GS equation admitting a special class of second-order GCSs. The determining system for the unknown arbitrary functions is solved in several special cases and new exact solutions, including solitary waves, different in form and structure from the ones obtained using other nonclassical symmetry methods, are pointed out. Several plots of the level sets or flux surfaces of the new solutions as well as surfaces with vanishing flow are displayed. The obtained solutions can be useful for studying plasma equilibrium, transport phenomena, and magnetohydrodynamic stability.

  3. Nodal gap structure and order parameter symmetry of the unconventional superconductor UPt₃

    SciTech Connect (OSTI)

    Gannon, W. J.; Halperin, W. P.; Rastovski, C.; Schlesinger, K. J.; Hlevyack, J.; Eskildsen, M. R.; Vorontsov, A. B.; Gavilano, J.; Gasser, U.; Nagy, G.

    2015-02-01

    Spanning a broad range of physical systems, complex symmetry breaking is widely recognized as a hallmark of competing interactions. This is exemplified in superfluid ³He which has multiple thermodynamic phases with spin and orbital quantum numbers S = 1 and L = 1, that emerge on cooling from a nearly ferromagnetic Fermi liquid. The heavy fermion compound UPt₃ exhibits similar behavior clearly manifest in its multiple superconducting phases. However, consensus as to its order parameter symmetry has remained elusive. Our small angle neutron scattering measurements indicate a linear temperature dependence of the London penetration depth characteristic of nodal structure of the order parameter. Our theoretical analysis is consistent with assignment of its symmetry to an L = 3 odd parity state for which one of the three thermodynamic phases in non-zero magnetic field is chiral.

  4. Direct observation and imaging of a spin-wave soliton with p-like symmetry

    SciTech Connect (OSTI)

    Bonetti, S.; Kukreja, R.; Chen, Z.; Macià, F.; Hernàndez, J. M.; Eklund, A.; Backes, D.; Frisch, J.; Katine, J.; Malm, G.; Urazhdin, S.; Kent, A. D.; Stöhr, J.; Ohldag, H.; Dürr, H. A.

    2015-11-16

    Spin waves, the collective excitations of spins, can emerge as nonlinear solitons at the nanoscale when excited by an electrical current from a nanocontact. These solitons are expected to have essentially cylindrical symmetry (that is, s-like), but no direct experimental observation exists to confirm this picture. Using a high-sensitivity time-resolved magnetic X-ray microscopy with 50 ps temporal resolution and 35 nm spatial resolution, we are able to create a real-space spin-wave movie and observe the emergence of a localized soliton with a nodal line, that is, with p-like symmetry. Moreover, micromagnetic simulations explain the measurements and reveal that the symmetry of the soliton can be controlled by magnetic fields. Our results broaden the understanding of spin-wave dynamics at the nanoscale, with implications for the design of magnetic nanodevices.

  5. The influence of pairing correlations on the isospin symmetry breaking corrections of superallowed Fermi beta decays

    SciTech Connect (OSTI)

    Cal Latin-Small-Letter-Dotless-I k, A. E.; Gerceklioglu, M.; Selam, C.

    2013-05-15

    Within the framework of quasi-particle random phase approximation, the isospin breaking correction of superallowed 0{sup +} {yields} 0{sup +} beta decay and unitarity of Cabibbo-Kobayashi-Maskawa mixing matrix have been investigated. The broken isotopic symmetry of nuclear part of Hamiltonian has been restored by Pyatov's method. The isospin symmetry breaking correction with pairing correlations has been compared with the previous results without pairing. The effect of pairing interactions has been examined for nine superallowed Fermi beta decays; their parent nuclei are {sup 26}Al, {sup 34}Cl, {sup 38}K, {sup 42}Sc, {sup 46}V, {sup 50}Mn, {sup 54}Co, {sup 62}Ga, {sup 74}Rb.

  6. Higgs bosons, electroweak symmetry breaking, and the physics of the Large Hadron Collider

    SciTech Connect (OSTI)

    Quigg, Chris; /Fermilab /CERN

    2007-02-01

    The Large Hadron Collider, a 7 {circle_plus} 7 TeV proton-proton collider under construction at CERN (the European Laboratory for Particle Physics in Geneva), will take experiments squarely into a new energy domain where mysteries of the electroweak interaction will be unveiled. What marks the 1-TeV scale as an important target? Why is understanding how the electroweak symmetry is hidden important to our conception of the world around us? What expectations do we have for the agent that hides the electroweak symmetry? Why do particle physicists anticipate a great harvest of discoveries within reach of the LHC?

  7. New Mass Model FRDM 2012 and Symmetry Energy (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    New Mass Model FRDM 2012 and Symmetry Energy Citation Details In-Document Search Title: New Mass Model FRDM 2012 and Symmetry Energy Authors: Sagawa, Hiroyuki [1] ; Moller, Peter [2] + Show Author Affiliations RIKEN Nishina Center, Wako 351-0198, Saitama, Japan andCenter for Mathematics and Physic, University of Aizu, Aizu-Wakamatsu, Fukushima, 965-8580, Japan Los Alamos National Laboratory Publication Date: 2016-08-22 OSTI Identifier: 1304790 Report Number(s): LA-UR-16-26401 DOE Contract

  8. Enzymatic Ligation Creates Discrete Multi-Nanoparticle Building Blocks for Self-Assembly

    SciTech Connect (OSTI)

    Claridge, Shelley A.; Mastroianni, Alexander J.; Au, Yeung B.; Liang, Huiyang W.; Micheel, Christine M.; Frechet, Jean M.J.; Alivisatos, A. Paul

    2008-05-27

    Enzymatic ligation of discrete nanoparticle?DNA conjugates creates nanoparticle dimer and trimer structures in which the nanoparticles are linked by single-stranded DNA, rather than double-stranded DNA as in previous experiments. Ligation is verified by agarose gel and small-angle X-ray scattering. This capability is utilized in two ways: first to create a new class of multiparticle building blocks for nanoscale self-assembly; second to develop a system which can amplify a population of discrete nanoparticle assemblies.

  9. INteroperable Tools for Rapid dEveloPment of compatible Discretizations

    SciTech Connect (OSTI)

    2015-12-02

    Intrepid is a library of interoperable tools for compatible discretizations of Partial Differential Equations (PDEs).Current version is intended primarily for application developers who want to reuse large parts of their existing code frameworks such as I/O, data structures, assembly routines, etc. while gaining access to advanced discretization capabilities provided by Intrepid. Intrepid2 is a performance portable version of Intrepid, that requires all input data types be Kokkos (performance-portability library from Trillions) multidimentional arrays. this restriction is needed for providing performance portability in Intrepid2 and break backward-compatibility of Intrepid.

  10. On constructing optimistic simulation algorithms for the discrete event system specification

    SciTech Connect (OSTI)

    Nutaro, James J

    2008-01-01

    This article describes a Time Warp simulation algorithm for discrete event models that are described in terms of the Discrete Event System Specification (DEVS). The article shows how the total state transition and total output function of a DEVS atomic model can be transformed into an event processing procedure for a logical process. A specific Time Warp algorithm is constructed around this logical process, and it is shown that the algorithm correctly simulates a DEVS coupled model that consists entirely of interacting atomic models. The simulation algorithm is presented abstractly; it is intended to provide a basis for implementing efficient and scalable parallel algorithms that correctly simulate DEVS models.

  11. Analysis of discrete reaction-diffusion equations for autocatalysis and continuum diffusion equations for transport

    SciTech Connect (OSTI)

    Wang, Chi-Jen

    2013-01-01

    In this thesis, we analyze both the spatiotemporal behavior of: (A) non-linear “reaction” models utilizing (discrete) reaction-diffusion equations; and (B) spatial transport problems on surfaces and in nanopores utilizing the relevant (continuum) diffusion or Fokker-Planck equations. Thus, there are some common themes in these studies, as they all involve partial differential equations or their discrete analogues which incorporate a description of diffusion-type processes. However, there are also some qualitative differences, as shall be discussed below.

  12. Unified theory of exactly and quasiexactly solvable ''discrete'' quantum mechanics. I. Formalism

    SciTech Connect (OSTI)

    Odake, Satoru [Department of Physics, Shinshu University, Matsumoto 390-8621 (Japan); Sasaki, Ryu [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2010-08-15

    We present a simple recipe to construct exactly and quasiexactly solvable Hamiltonians in one-dimensional ''discrete'' quantum mechanics, in which the Schroedinger equation is a difference equation. It reproduces all the known ones whose eigenfunctions consist of the Askey scheme of hypergeometric orthogonal polynomials of a continuous or a discrete variable. The recipe also predicts several new ones. An essential role is played by the sinusoidal coordinate, which generates the closure relation and the Askey-Wilson algebra together with the Hamiltonian. The relationship between the closure relation and the Askey-Wilson algebra is clarified.

  13. Soliton stability and collapse in the discrete nonpolynomial Schroedinger equation with dipole-dipole interactions

    SciTech Connect (OSTI)

    Gligoric, Goran; Hadzievski, Ljupco; Maluckov, Aleksandra; Malomed, Boris A.

    2009-05-15

    The stability and collapse of fundamental unstaggered bright solitons in the discrete Schroedinger equation with the nonpolynomial on-site nonlinearity, which models a nearly one-dimensional Bose-Einstein condensate trapped in a deep optical lattice, are studied in the presence of the long-range dipole-dipole (DD) interactions. The cases of both attractive and repulsive contact and DD interaction are considered. The results are summarized in the form of stability-collapse diagrams in the parametric space of the model, which demonstrate that the attractive DD interactions stabilize the solitons and help to prevent the collapse. Mobility of the discrete solitons is briefly considered too.

  14. DOGS: a collection of graphics for support of discrete ordinates codes

    SciTech Connect (OSTI)

    Ingersoll, D.T.; Slater, C.O.

    1980-03-01

    A collection of computer codes called DOGS (Discrete Ordinates Graphics Support) has been developed to assist in the display and presentation of data generated by commonly used discrete ordinates transport codes. The DOGS codes include: EGAD for plotting two-dimensional geometries, ISOPLOT4 for plotting 2-D fluxes in a contour line fashion, FORM for plotting 2-D fluxes in a 3-D surface fashion, ACTUAL for calculating 2-D activities, TOOTH for calculating and plotting space-energy contributon fluxes, and ASPECT for plotting energy spectra. All of the codes use FIDO input formats and DISSPLA graphics software including the DISSPOP post processors.

  15. INteroperable Tools for Rapid dEveloPment of compatible Discretizations

    Energy Science and Technology Software Center (OSTI)

    2015-12-02

    Intrepid is a library of interoperable tools for compatible discretizations of Partial Differential Equations (PDEs).Current version is intended primarily for application developers who want to reuse large parts of their existing code frameworks such as I/O, data structures, assembly routines, etc. while gaining access to advanced discretization capabilities provided by Intrepid. Intrepid2 is a performance portable version of Intrepid, that requires all input data types be Kokkos (performance-portability library from Trillions) multidimentional arrays. this restrictionmore » is needed for providing performance portability in Intrepid2 and break backward-compatibility of Intrepid.« less

  16. A Spatial Discretization Scheme for Solving the Transport Equation on Unstructured Grids of Polyhedra

    SciTech Connect (OSTI)

    Thompson, K.G.

    2000-11-01

    In this work, we develop a new spatial discretization scheme that may be used to numerically solve the neutron transport equation. This new discretization extends the family of corner balance spatial discretizations to include spatial grids of arbitrary polyhedra. This scheme enforces balance on subcell volumes called corners. It produces a lower triangular matrix for sweeping, is algebraically linear, is non-negative in a source-free absorber, and produces a robust and accurate solution in thick diffusive regions. Using an asymptotic analysis, we design the scheme so that in thick diffusive regions it will attain the same solution as an accurate polyhedral diffusion discretization. We then refine the approximations in the scheme to reduce numerical diffusion in vacuums, and we attempt to capture a second order truncation error. After we develop this Upstream Corner Balance Linear (UCBL) discretization we analyze its characteristics in several limits. We complete a full diffusion limit analysis showing that we capture the desired diffusion discretization in optically thick and highly scattering media. We review the upstream and linear properties of our discretization and then demonstrate that our scheme captures strictly non-negative solutions in source-free purely absorbing media. We then demonstrate the minimization of numerical diffusion of a beam and then demonstrate that the scheme is, in general, first order accurate. We also note that for slab-like problems our method actually behaves like a second-order method over a range of cell thicknesses that are of practical interest. We also discuss why our scheme is first order accurate for truly 3D problems and suggest changes in the algorithm that should make it a second-order accurate scheme. Finally, we demonstrate 3D UCBL's performance on several very different test problems. We show good performance in diffusive and streaming problems. We analyze truncation error in a 3D problem and demonstrate robustness in a

  17. Symmetry operators for Dirac's equation on two-dimensional spin manifolds

    SciTech Connect (OSTI)

    Fatibene, Lorenzo; McLenaghan, Raymond G.; Smith, Shane N.; Rastelli, Giovanni

    2009-05-15

    It is shown that the second order symmetry operators for the Dirac equation on a general two-dimensional spin manifold may be expressed in terms of Killing vectors and valence 2 Killing tensors. The role of these operators in the theory of separation of variables for the Dirac equation is studied.

  18. Density dependence of the symmetry energy from neutron skin thickness in finite nuclei

    SciTech Connect (OSTI)

    Vinas, X.; Centelles, M.; Roca-Maza, X.; Warda, M.

    2012-10-20

    The density dependence of the symmetry energy, characterized by the parameter L, is studied using information provided by the neutron skin thickness in finite nuclei. An estimate of L is obtained from experimental data of antiprotonic atoms. We also discuss the ability of parity violating electron scatering to obtain information about the neutron skin thickness in {sup 208}Pb.

  19. Microscopic calculations of nuclear and neutron matter, symmetry energy and neutron stars

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gandolfi, S.

    2015-02-01

    We present Quantum Monte Carlo calculations of the equation of state of neutron matter. The equation of state is directly related to the symmetry energy and determines the mass and radius of neutron stars, providing then a connection between terrestrial experiments and astronomical observations. As a result, we also show preliminary results of the equation of state of nuclear matter.

  20. On-chip generation of Einstein-Podolsky-Rosen states with arbitrary symmetry

    SciTech Connect (OSTI)

    Grfe, Markus; Heilmann, Ren; Nolte, Stefan; Szameit, Alexander

    2015-05-04

    We experimentally demonstrate a method for integrated-optical generation of two-photon Einstein-Podolsky-Rosen states featuring arbitrary symmetries. In our setting, we employ detuned directional couplers to impose a freely tailorable phase between the two modes of the state. Our results allow to mimic the quantum random walk statistics of bosons, fermions, and anyons, particles with fractional exchange statistics.

  1. Sphericity and symmetry breaking in the formation of Frank–Kasper phases from one component materials

    SciTech Connect (OSTI)

    Lee, Sangwoo; Leighton, Chris; Bates, Frank S.

    2014-11-05

    Frank–Kasper phases are tetrahedrally packed structures occurring in numerous materials, from elements to intermetallics to self-assembled soft materials. They exhibit complex manifolds of Wigner–Seitz cells with many-faceted polyhedra, forming an important bridge between the simple close-packed periodic and quasiperiodic crystals. The recent discovery of the Frank–Kasper σ-phase in diblock and tetrablock polymers stimulated the experiments reported here on a poly(isoprene-b-lactide) diblock copolymer melt. Thus, analysis of small-angle X-ray scattering and mechanical spectroscopy exposes an undiscovered competition between the tendency to form self-assembled particles with spherical symmetry, and the necessity to fill space at uniform density within the framework imposed by the lattice. We thus deduce surprising analogies between the symmetry breaking at the body-centered cubic phase to σ-phase transition in diblock copolymers, mediated by exchange of mass, and the symmetry breaking in certain metals and alloys (such as the elements Mn and U), mediated by exchange of charge. Similar connections are made between the role of sphericity in real space for polymer systems, and the role of sphericity in reciprocal space for metallic systems such as intermetallic compounds and alloys. These findings establish new links between disparate materials classes, provide opportunities to improve the understanding of complex crystallization by building on synergies between hard and soft matter, and, perhaps most significantly, challenge the view that the symmetry breaking required to form reduced symmetry structures (possibly even quasiperiodic crystals) requires particles with multiple predetermined shapes and/or sizes.

  2. Sphericity and symmetry breaking in the formation of Frank–Kasper phases from one component materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, Sangwoo; Leighton, Chris; Bates, Frank S.

    2014-11-05

    Frank–Kasper phases are tetrahedrally packed structures occurring in numerous materials, from elements to intermetallics to self-assembled soft materials. They exhibit complex manifolds of Wigner–Seitz cells with many-faceted polyhedra, forming an important bridge between the simple close-packed periodic and quasiperiodic crystals. The recent discovery of the Frank–Kasper σ-phase in diblock and tetrablock polymers stimulated the experiments reported here on a poly(isoprene-b-lactide) diblock copolymer melt. Thus, analysis of small-angle X-ray scattering and mechanical spectroscopy exposes an undiscovered competition between the tendency to form self-assembled particles with spherical symmetry, and the necessity to fill space at uniform density within the framework imposed bymore » the lattice. We thus deduce surprising analogies between the symmetry breaking at the body-centered cubic phase to σ-phase transition in diblock copolymers, mediated by exchange of mass, and the symmetry breaking in certain metals and alloys (such as the elements Mn and U), mediated by exchange of charge. Similar connections are made between the role of sphericity in real space for polymer systems, and the role of sphericity in reciprocal space for metallic systems such as intermetallic compounds and alloys. These findings establish new links between disparate materials classes, provide opportunities to improve the understanding of complex crystallization by building on synergies between hard and soft matter, and, perhaps most significantly, challenge the view that the symmetry breaking required to form reduced symmetry structures (possibly even quasiperiodic crystals) requires particles with multiple predetermined shapes and/or sizes.« less

  3. A 3-Dimensional discrete fracture network generator to examine fracture-matrix interaction using TOUGH2

    SciTech Connect (OSTI)

    Ito, Kazumasa; Yongkoo, Seol

    2003-04-09

    Water fluxes in unsaturated, fractured rock involve the physical processes occurring at fracture-matrix interfaces within fracture networks. Modeling these water fluxes using a discrete fracture network model is a complicated effort. Existing preprocessors for TOUGH2 are not suitable to generate grids for fracture networks with various orientations and inclinations. There are several 3-D discrete-fracture-network simulators for flow and transport, but most of them do not capture fracture-matrix interaction. We have developed a new 3-D discrete-fracture-network mesh generator, FRACMESH, to provide TOUGH2 with information about the fracture network configuration and fracture-matrix interactions. FRACMESH transforms a discrete fracture network into a 3 dimensional uniform mesh, in which fractures are considered as elements with unique rock material properties and connected to surrounding matrix elements. Using FRACMESH, individual fractures may have uniform or random aperture distributions to consider heterogeneity. Fracture element volumes and interfacial areas are calculated from fracture geometry within individual elements. By using FRACMESH and TOUGH2, fractures with various inclinations and orientations, and fracture-matrix interaction, can be incorporated. In this paper, results of flow and transport simulations in a fractured rock block utilizing FRACMESH are presented.

  4. Aligned vertical fractures, HTI reservoir symmetry, and Thomsenseismic anisotropy parameters for polar media

    SciTech Connect (OSTI)

    Berryman, James G.

    2007-12-12

    Sayers and Kachanov (1991) defined crack-influence parameters that are shown to be directly related to Thomsen (1986) weak-anisotropy seismic parameters for fractured reservoirs when the crack/fracture density is small enough. These results are then applied to the problem of seismic wave propagation in polar (i.e., non-isotropic) reservoirs having HTI seismic wave symmetry due to the presence of aligned vertical fractures and resulting in azimuthal seismic wave symmetry at the earth's surface. The approach presented suggests one method of inverting for fracture density from wave-speed data. It is also observed that the angular location {theta}{sub ex} of the extreme value (peak or trough) of the quasi-SV-wave speed for VTI occurs at an angle determined approximately by the formula tan{sup 2} {theta}{sub ex} {approx_equal} tan {theta}{sub m} = [(c{sub 33} - c{sub 44})/(c{sub 11}-c{sub 44})]{sup 1/2}, where {theta}{sub m} is an angle determined directly (as shown) from the c{sub ij} elastic stiffnesses, whenever these are known from either quasi-static or seismic wave measurements. Alternatively, {theta}{sub ex} is given in terms of the Thomsen seismic anisotropy parameters by tan {theta}{sub ex} {approx_equal} ([v{sub p}{sup 2}(0)-v{sub s}{sup 2}(0)]/[(1 + 2{epsilon})v{sub p}{sup 2}(0)-v{sub s}{sup 2}(0)]){sup 1/4}, where {epsilon} = (c{sub 11}-c{sub 33})/2c{sub 33}, v{sub p}{sup 2}(0) = c{sub 33}/{rho}, and v{sub s}{sup 2}(0) = c{sub 44}/{rho}, with {rho} being the background inertial mass density. The axis of symmetry is always treated here as the x{sub 3}-axis for either VTI symmetry (due, for example, to horizontal cracks), or HTI symmetry (due to aligned vertical cracks). Then the meaning of the stiffnesses is derived from the fracture analysis in the same way for VTI and HTI media, but for HTI the wave speeds relative to the earth's surface are shifted by 90{sup o} in the plane perpendicular to the aligned vertical fractures. Skempton's (1954) coefficient is

  5. Eigenfunction Expansion of the Space-Time Dependent Neutron Survival...

    Office of Scientific and Technical Information (OSTI)

    2013 ANS Winter Meeting held November 9-13, 2013 in Washington DC, DC.; Related Information: Proposed for presentation at the 2013 ANS Winter Meeting held November 9-13, 2013 ...

  6. Navigating Space-Time with Ultrafast Exciton Photolithography...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Awards include UC Berkeley Department of Chemistry Teaching Award (2013), DARPA Young Faculty Awardee (2012), Packard Fellow for Science and Engineering (2011), and Cupola Era ...

  7. Feynman and the visualization of space-time processes

    SciTech Connect (OSTI)

    Schweber, S.S.

    1986-04-01

    The Shelter Island conference in 1947 was the stimulus for many of the important advances in quantum field theory following World War II. Schwinger, Feynman, Tomonaga, and Dyson were the principal contributors during the initial phase of these developments. This article attempts to reconstruct the genesis of Feynman's formulation of quantum electrodynamics, focusing principally on the period from 1947 to 1950.

  8. Eigenfunction Expansion of the Space-Time Dependent Neutron Survival...

    Office of Scientific and Technical Information (OSTI)

    Language: English Word Cloud More Like This Full Text Journal Articles Find in Google Scholar Find in Google Scholar Search WorldCat Search WorldCat to find libraries that may hold ...

  9. Generalised BRST symmetry and gaugeon formalism for perturbative quantum gravity: Novel observation

    SciTech Connect (OSTI)

    Upadhyay, Sudhaker

    2014-05-15

    In this paper the novel features of Yokoyama gaugeon formalism are stressed out for the theory of perturbative quantum gravity in the Einstein curved spacetime. The quantum gauge transformations for the theory of perturbative gravity are demonstrated in the framework of gaugeon formalism. These quantum gauge transformations lead to renormalised gauge parameter. Further, we analyse the BRST symmetric gaugeon formalism which embeds more acceptable KugoOjima subsidiary condition. Further, the BRST symmetry is made finite and field-dependent. Remarkably, the Jacobian of path integral under finite and field-dependent BRST symmetry amounts to the exact gaugeon action in the effective theory of perturbative quantum gravity. -- Highlights: We analyse the perturbative gravity in gaugeon formalism. The generalisation of BRST transformation is also studied in this context. Within the generalised BRST framework we found the exact gaugeon modes in the theory.

  10. Spontaneous symmetry breaking in cosmos: the hybrid symmetron as a dark energy switching device

    SciTech Connect (OSTI)

    Bamba, K.; Nojiri, S.; Gannouji, R.; Kamijo, M.; Sami, M. E-mail: gannouji@rs.kagu.tus.ac.jp E-mail: nojiri@phys.nagoya-u.ac.jp

    2013-07-01

    We consider symmetron model in a generalized background with a hope to make it compatible with dark energy. We observe a ''no go'' theorem at least in case of a conformal coupling. Being convinced of symmetron incapability to be dark energy, we try to retain its role for spontaneous symmetry breaking and assign the role of dark energy either to standard quintessence or F(R) theory which are switched on by symmetron field in the symmetry broken phase. The scenario reduces to standard Einstein gravity in the high density region. After the phase transition generated by symmetron field, either the F(R) gravity or the standard quintessence are induced in the low density region. we demonstrate that local gravity constraints and other requirements are satisfied although the model could generate the late-time acceleration of Universe.