National Library of Energy BETA

Sample records for discovery gas transmission

  1. EIA - Natural Gas Pipeline Network - Natural Gas Transmission Path Diagram

    U.S. Energy Information Administration (EIA) Indexed Site

    Transmission Path Diagram About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Transmission Path Natural Gas Transmission Path

  2. Virginia Dry Natural Gas Reserves New Field Discoveries (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) Virginia Dry Natural Gas Reserves New Field ... New Field Discoveries of Dry Natural Gas Reserves Virginia Dry Natural Gas Proved Reserves ...

  3. West Virginia Dry Natural Gas Reserves New Field Discoveries...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) West Virginia Dry Natural Gas Reserves New ... New Field Discoveries of Dry Natural Gas Reserves West Virginia Dry Natural Gas Proved ...

  4. North Dakota Dry Natural Gas New Reservoir Discoveries in Old...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) North Dakota Dry Natural Gas ... Dry Natural Gas New Reservoir Discoveries in Old Fields North Dakota Dry Natural Gas ...

  5. North Dakota Dry Natural Gas Reserves New Field Discoveries ...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves New Field ... New Field Discoveries of Dry Natural Gas Reserves North Dakota Dry Natural Gas Proved ...

  6. Florida Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ... Dry Natural Gas New Reservoir Discoveries in Old Fields Florida Dry Natural Gas Proved ...

  7. Michigan Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Michigan Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  8. Wyoming Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Wyoming Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  9. Ohio Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Ohio Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  10. Mississippi Dry Natural Gas New Reservoir Discoveries in Old...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Mississippi Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  11. Montana Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Montana Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  12. Oklahoma Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Oklahoma Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  13. West Virginia Dry Natural Gas New Reservoir Discoveries in Old...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) West Virginia Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  14. Alabama Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Alabama Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  15. Colorado Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Colorado Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  16. Virginia Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Virginia Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  17. Louisiana Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Louisiana Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  18. Utah Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  19. Pennsylvania Dry Natural Gas New Reservoir Discoveries in Old...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Pennsylvania Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  20. Alaska Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Alaska Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  1. Texas Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Texas Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  2. Kentucky Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Kentucky Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  3. Arkansas Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Arkansas Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  4. New Mexico Dry Natural Gas Reserves New Field Discoveries (Billion...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    New Field Discoveries (Billion Cubic Feet) New Mexico Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  5. New York Dry Natural Gas Reserves New Field Discoveries (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) New York Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  6. Natural Gas Transmission and Distribution Module

    U.S. Energy Information Administration (EIA) Indexed Site

    www.eia.gov Joe Benneche July 31, 2012, Washington, DC Major assumption changes for AEO2013 Oil and Gas Working Group Natural Gas Transmission and Distribution Module DRAFT WORKING GROUP PRESENTATION DO NOT QUOTE OR CITE Overview 2 Joe Benneche, Washington, DC, July 31, 2012 * Replace regional natural gas wellhead price projections with regional spot price projections * Pricing of natural gas vehicles fuels (CNG and LNG) * Methodology for modeling exports of LNG * Assumptions on charges related

  7. Infrastructure Needs: Natural Gas/Electricity Transmission,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Through our six operating companies, Eversource operates over 4,300 miles of transmission lines, 72,000 miles of distribution lines, and 6,500 miles of natural gas pipelines. ...

  8. ,"New Mexico Dry Natural Gas New Reservoir Discoveries in Old...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic...

  9. ,"New Mexico Dry Natural Gas Reserves New Field Discoveries ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2013...

  10. ,"Texas Dry Natural Gas Reserves New Field Discoveries (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2013...

  11. ,"Texas Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic...

  12. Factsheet: An Initiative to Help Modernize Natural Gas Transmission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Initiative to Help Modernize Natural Gas Transmission and Distribution Infrastructure ... cost recovery for infrastructure investments and expanding markets; concerns about ...

  13. Louisiana Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Field Discoveries (Billion Cubic Feet) Louisiana Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 772 7 16 23 17 1990's 3 68 75 5 25 63 13 11 57 44 2000's 45 27 68 12 18 6 27 0 191 257 2010's 48 47 5 17 57 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  14. Michigan Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Field Discoveries (Billion Cubic Feet) Michigan Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 115 47 48 1980's 33 18 16 15 30 42 65 90 96 30 1990's 39 16 7 0 0 10 76 0 6 0 2000's 15 50 8 0 0 11 1 0 4 19 2010's 2 14 7 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  15. Oklahoma Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Field Discoveries (Billion Cubic Feet) Oklahoma Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 181 155 197 1980's 168 412 376 53 53 94 14 11 26 91 1990's 50 10 0 25 0 23 30 2 4 0 2000's 20 13 14 6 8 1 0 6 21 0 2010's 51 47 44 2 135 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  16. Natural Gas Transmission and Distribution Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Documents the archived version of the Natural Gas Transmission and Distribution Model that was used to produce the natural gas forecasts used in support of the Annual Energy Outlook 2014.

  17. Collection, transmission of low-pressure Sichuan gas detailed

    SciTech Connect (OSTI)

    Runcang, C.

    1983-09-28

    As a result of fairly long-term exploitation, the gas fields in the Sichuan Basin which were opened quite early now have reduced output and lower wellhead pressures. The wellhead pressure in some gas wells is now lower than the pressure of the collection and transmission pipelines. The technologies for collecting and transmitting low-pressure gas in gas fields are discussed.

  18. Infrastructure Needs: Natural Gas/Electricity Transmission,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... This will require significant northsouth transmission investment that falls outside of our ... We are a partner with the New England States Committee on Electricity (NESCOE) ...

  19. Discoveries

    U.S. Energy Information Administration (EIA) Indexed Site

    Changes to proved reserves of U.S. natural gas by source, 2013-14 trillion cubic feet Year-end 2013 2014 Year-end 2014 proved 2014 revisions and 2014 proved Source of natural gas reserves Discoveries other changes production reserves Coalbed methane 12.4 0.4 4.3 -1.4 15.7 Shale 159.1 37.8 16.2 -13.4 199.7 Other U.S. natural gas Lower 48 onshore 166.0 11.4 -8.4 -11.7 157.2 Lower 48 offshore 9.1 0.8 0.8 -1.3 9.4 Alaska 7.4 0.1 -0.4 -0.3 6.8 U.S. TOTAL 354.0 50.5 12.4 -28.1 388.8 Note: Lower 48

  20. Kentucky Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Field Discoveries (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3 0 1 1980's 2 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 1 0 0 0 2000's 5 0 0 0 0 17 0 0 0 0 2010's 0 1 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  1. Mississippi Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Field Discoveries (Billion Cubic Feet) Mississippi Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 98 53 17 1980's 359 45 15 9 17 10 0 1 20 25 1990's 21 12 5 10 4 14 0 0 0 0 2000's 1 0 1 0 0 0 0 0 2 2 2010's 0 1 1 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  2. Pennsylvania Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Field Discoveries (Billion Cubic Feet) Pennsylvania Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 5 60 1980's 8 48 13 3 0 0 6 0 0 0 1990's 6 0 0 0 0 0 0 0 1 0 2000's 0 33 0 21 0 0 13 7 61 128 2010's 50 165 414 36 7 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  3. Arkansas Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Field Discoveries (Billion Cubic Feet) Arkansas Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4 1 3 1980's 5 17 7 4 2 13 0 0 0 0 1990's 3 0 1 0 1 0 2 0 0 1 2000's 0 0 24 0 4 4 7 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  4. California Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Field Discoveries (Billion Cubic Feet) California Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 31 25 12 1980's 4 2 1 10 13 1990's 2 1 22 14 0 0 0 0 0 0 2000's 7 0 0 5 0 0 0 0 0 1 2010's 1 0 4 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  5. Colorado Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Field Discoveries (Billion Cubic Feet) Colorado Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 31 9 22 1980's 15 16 20 12 12 22 0 7 2 8 1990's 2 2 5 2 3 80 0 2 0 123 2000's 0 4 1 1 171 32 14 15 17 8 2010's 22 18 9 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  6. Factsheet: An Initiative to Help Modernize Natural Gas Transmission and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distribution Infrastructure | Department of Energy An Initiative to Help Modernize Natural Gas Transmission and Distribution Infrastructure Factsheet: An Initiative to Help Modernize Natural Gas Transmission and Distribution Infrastructure July 29, 2014 - 10:55am Addthis News Media Contact 202-586-4940 Capstone Roundtable on Reducing Methane Emissions: Improving Safety, the Economy, the Environment, and Creating Jobs Today, the White House and the Department of Energy are hosting a Capstone

  7. Gas insulated transmission line having tapered particle trapping ring

    DOE Patents [OSTI]

    Cookson, Alan H.

    1982-01-01

    A gas-insulated transmission line includes an outer sheath, an inner conductor, insulating supports and an insulating gas. A particle-trapping ring is secured to each insulating support, and it is comprised of a central portion and two tapered end portions. The ends of the particle trapping ring have a smaller diameter than the central portion of the ring, so as to enable the use of the particle trapping ring in a curved transmission line.

  8. Corrugated outer sheath gas-insulated transmission line

    DOE Patents [OSTI]

    Kemeny, George A.; Cookson, Alan H.

    1981-01-01

    A gas-insulated transmission line includes two transmission line sections each of which are formed of a corrugated outer housing enclosing an inner high-voltage conductor disposed therein, with insulating support means supporting the inner conductor within the outer housing and an insulating gas providing electrical insulation therebetween. The outer housings in each section have smooth end sections at the longitudinal ends thereof which are joined together by joining means which provide for a sealing fixed joint.

  9. EIS-0164: Pacific Gas Transmission/Pacific Gas and Electric and Altamont Natural Gas Pipeline Project

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) has prepared the PGT/PG&E and Altamont Natural Gas Pipeline Projects Environmental Impact Statement to satisfy the requirements of the National Environmental Policy Act. This project addresses the need to expand the capacity of the pipeline transmission system to better transfer Canadian natural gas to Southern California and the Pacific Northwest. The U.S. Department of Energy cooperated in the preparation of this statement because Section 19(c) of the Natural Gas Act applies to the Department’s action of authorizing import/export of natural gas, and adopted this statement by the spring of 1992. "

  10. U.S. Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  11. New Mexico Dry Natural Gas New Reservoir Discoveries in Old Fields...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) New Mexico Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  12. New York Dry Natural Gas New Reservoir Discoveries in Old Fields...

    Gasoline and Diesel Fuel Update (EIA)

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) New York Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  13. High voltage gas insulated transmission line with continuous particle trapping

    DOE Patents [OSTI]

    Cookson, Alan H. (Pittsburgh, PA); Dale, Steinar J. (Monroeville, PA)

    1983-01-01

    This invention provides a novel high voltage gas insulated transmission line utilizing insulating supports spaced at intervals with snap-in means for supporting a continuous trapping apparatus and said trapping apparatus having perforations and cutouts to facilitate trapping of contaminating particles and system flexibility.

  14. Gas insulated transmission line with insulators having field controlling recesses

    DOE Patents [OSTI]

    Cookson, Alan H. (Pittsburgh, PA); Pederson, Bjorn O. (Chelmsford, MA)

    1984-01-01

    A gas insulated transmission line having a novel insulator for supporting an inner conductor concentrically within an outer sheath. The insulator has a recess contiguous with the periphery of one of the outer and inner conductors. The recess is disposed to a depth equal to an optimum gap for the dielectric insulating fluid used for the high voltage insulation or alternately disposed to a large depth so as to reduce the field at the critical conductor/insulator interface.

  15. Gas insulated transmission line having low inductance intercalated sheath

    DOE Patents [OSTI]

    Cookson, Alan H. (Southboro, MA)

    1978-01-01

    A gas insulated transmission line including an outer sheath, an inner conductor disposed within the outer sheath, and an insulating gas between the inner conductor and the outer sheath. The outer sheath comprises an insulating tube having first and second ends, and having interior and exterior surfaces. A first electrically conducting foil is secured to the interior surface of the insulating tube, is spirally wound from one tube end to the second tube end, and has a plurality of overlapping turns. A second electrically conducting foil is secured to the exterior surface of the insulating tube, and is spirally wound in the opposite direction from the first electrically conducting foil. By winding the foils in opposite directions, the inductances within the intercalated sheath will cancel each other out.

  16. U.S. Natural Gas Liquids Lease Condensate, Reserves New Field Discoveries

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) New Field Discoveries (Million Barrels) U.S. Natural Gas Liquids Lease Condensate, Reserves New Field Discoveries (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 19 2010's 36 4 2 3 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Lease Condensate New Field Discoveries U.S.

  17. Gas cell for in situ soft X-ray transmission-absorption spectroscopy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cell for in situ soft X-ray transmission-absorption spectroscopy of materials Previous ... Abstract: A simple gas cell design, constructed primarily from commercially available ...

  18. Particle trap for compressed gas insulated transmission systems

    DOE Patents [OSTI]

    Cookson, Alan H.

    1985-01-01

    A particle trap is provided for gas insulated transmission lines having a central high voltage conductor supported within an outer coaxial conductive sheath by a dielectric support member. A cavity between the inner conductor and outer sheath is filled with a dielectric insulating gas. A cone-like particle deflector, mounted to the inner conductor, deflects moving particles away from the support member, to radially outer portions of the cavity. A conductive shield is disposed adjacent the outer sheath to form a field-free region in radially outer portions of the cavity, between the shield and the sheath. Particles traveling along the cavity are deflected by the cone-like deflector into the field-free region where they are held immobile. In a vertical embodiment, particles enter the field-free region through an upper end of a gap formed between shield and sheath members. In a horizontal embodiment, the deflector cone has a base which is terminated radially internally of the shield. Apertures in the shield located adjacent the deflector allow passage of deflected particles into the field-free region. The dielectric support member is thereby protected from contaminating particles that may otherwise come to rest thereon.

  19. Particle trap for compressed gas insulated transmission systems

    DOE Patents [OSTI]

    Cookson, A.H.

    1984-04-26

    A particle trap is provided for gas insulated transmission lines having a central high voltage conductor supported within an outer coaxial conductive sheath by a dielectric support member. A cavity between the inner conductor and outer sheath is filled with a dielectric insulating gas. A cone-like particle deflector, mounted to the inner conductor, deflects moving particles away from the support member, to radially outer portions of the cavity. A conductive shield is disposed adjacent the outer sheath to form a field-free region in radially outer portions of the cavity, between the shield and the sheath. Particles traveling along the cavity are deflected by the cone-like deflector into the field-free region where they are held immobile. In a vertical embodiment, particles enter the field-free region through an upper end of a gap formed between shield and sheath members. In a horizontal embodiment, the deflector cone has a base which is terminated radially internally of the shield. Apertures in the shield located adjacent the deflector allow passage of deflected particles into the field-free region. The dielectric support member is thereby protected from contaminating particles that may otherwise come to rest thereon.

  20. Wyoming Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 391 332 123 1980's 130 287 85 42 27 87 17 5 9 2 1990's 4 16 6 0 17 21 0 39 7 18 2000's 8 44 15 32 8 11 2 2 1 0 2010's 1 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  1. Alabama Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) Alabama Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 40 4 13 1980's 1 5 1990's 433 35 95 0 1 0 0 0 10 0 2000's 0 42 0 0 3 0 0 0 2 0 2010's 3 2 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: New

  2. California Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) New Reservoir Discoveries in Old Fields (Billion Cubic Feet) California Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 38 2 3 1980's 13 0 2 6 11 1990's 32 11 13 15 7 14 17 10 12 3 2000's 5 2 5 0 5 2 4 1 14 0 2010's 0 0 9 2 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  3. Texas Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) Texas Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 949 667 79 177 601 222 1990's 203 123 127 139 257 268 516 373 249 92 2000's 303 603 84 195 264 138 80 78 472 476 2010's 519 69 58 5 30 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  4. U.S. Natural Gas Plant Liquids, Reserves New Field Discoveries (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) New Field Discoveries (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves New Field Discoveries (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 94 1980's 90 131 112 70 55 44 34 39 41 83 1990's 39 25 20 24 54 52 65 114 66 51 2000's 92 138 48 35 26 32 16 30 65 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  5. Light transmissive electrically conductive oxide electrode formed in the presence of a stabilizing gas

    DOE Patents [OSTI]

    Tran, Nang T.; Gilbert, James R.

    1992-08-04

    A light transmissive, electrically conductive oxide is doped with a stabilizing gas such as H.sub.2 and H.sub.2 O. The oxide is formed by sputtering a light transmissive, electrically conductive oxide precursor onto a substrate at a temperature from 20.degree. C. to 300.degree. C. Sputtering occurs in a gaseous mixture including a sputtering gas and the stabilizing gas.

  6. Florida Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: New Field Discoveries of Dry Natural Gas Reserves Florida Dry Natural Gas

  7. Distribution of Natural Gas: The Final Step in the Transmission Process

    Reports and Publications (EIA)

    2008-01-01

    This report analyzes the role of local distribution companies (LDCs) and transmission pipelines in delivering natural gas supplies to end use customers, focusing upon the years 1996 through 2006.

  8. Distribution of Natural Gas: The Final Step in the Transmission...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Figure 1. Storage Gas Plant LNG Storage Imports Trucked Source: Energy Information ... electric generation units in existing coal- and oil-fired power plants and the construction of ...

  9. Kansas Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Kansas Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 7 18 14 1980's 3 99 7 5 6 6 2 1 5 4 1990's 1 6 24 3 7 3 3 4 1 1 2000's 0 1 2 0 0 4 3 0 2 0 2010's 1 1 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  10. Kansas Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) Kansas Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 21 23 23 1980's 22 5 8 3 7 8 37 8 10 4 1990's 1 4 1 11 13 1 0 0 1 6 2000's 3 2 5 0 1 0 0 0 9 0 2010's 4 0 5 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  11. Montana Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) Montana Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4 4 5 1980's 21 6 3 6 2 2 4 0 0 1 1990's 0 0 0 0 0 0 0 0 1 0 2000's 0 1 4 0 1 0 19 0 0 0 2010's 0 7 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  12. Ohio Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) Ohio Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 28 0 1980's 0 2 0 0 0 0 0 0 0 0 1990's 0 1 1 1 0 0 0 0 0 0 2000's 0 0 2 0 0 5 0 0 1 0 2010's 0 0 14 17 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  13. Alaska Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) Alaska Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 0 15 1980's 0 0 0 0 0 0 0 12 0 0 1990's 0 0 0 0 0 0 61 0 4 56 2000's 0 74 0 20 0 22 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  14. U.S. Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) U.S. Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,173 3,860 3,188 1980's 2,539 3,731 2,687 1,574 2,536 999 1,099 1,089 1,638 1,450 1990's 2,004 848 649 899 1,894 1,666 1,451 2,681 1,074 1,568 2000's 1,983 3,578 1,332 1,222 759 942 409 796 1,170 1,372 2010's 850 947 762 256 632 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  15. U.S. Natural Gas, Wet After Lease Separation New Reservoir Discoveries in

    U.S. Energy Information Administration (EIA) Indexed Site

    Old Fields (Billion Cubic Feet) New Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Natural Gas, Wet After Lease Separation New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,637 1980's 2,648 3,080 3,520 3,071 2,778 3,053 1,855 1,556 1,979 2,313 1990's 2,492 1,655 1,773 1,930 3,606 2,518 3,209 2,455 2,240 2,265 2000's 2,463 2,898 1,752 1,653 1,244 1,243 1,197 1,244 1,678 2,656 2010's

  16. Utah Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) Utah Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 32 84 41 1980's 9 3 11 8 3 0 0 5 3 0 1990's 0 5 0 8 1 2 17 0 0 4 2000's 0 4 0 0 5 4 45 4 64 0 2010's 0 1 0 0 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  17. Model documentation: Natural gas transmission and distribution model of the National Energy Modeling System. Volume 1

    SciTech Connect (OSTI)

    1995-02-17

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of integrated Analysis and Forecasting of the Energy information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The methodology employed allows the analysis of impacts of regional capacity constraints in the interstate natural gas pipeline network and the identification of pipeline capacity expansion requirements. There is an explicit representation of core and noncore markets for natural gas transmission and distribution services, and the key components of pipeline tariffs are represented in a pricing algorithm. Natural gas pricing and flow patterns are derived by obtaining a market equilibrium across the three main elements of the natural gas market: the supply element, the demand element, and the transmission and distribution network that links them. The NGTDM consists of four modules: the Annual Flow Module, the Capacity F-expansion Module, the Pipeline Tariff Module, and the Distributor Tariff Module. A model abstract is provided in Appendix A.

  18. Virtual Pipeline System Testbed to Optimize the U.S. Natural Gas Transmission Pipeline System

    SciTech Connect (OSTI)

    Kirby S. Chapman; Prakash Krishniswami; Virg Wallentine; Mohammed Abbaspour; Revathi Ranganathan; Ravi Addanki; Jeet Sengupta; Liubo Chen

    2005-06-01

    The goal of this project is to develop a Virtual Pipeline System Testbed (VPST) for natural gas transmission. This study uses a fully implicit finite difference method to analyze transient, nonisothermal compressible gas flow through a gas pipeline system. The inertia term of the momentum equation is included in the analysis. The testbed simulate compressor stations, the pipe that connects these compressor stations, the supply sources, and the end-user demand markets. The compressor station is described by identifying the make, model, and number of engines, gas turbines, and compressors. System operators and engineers can analyze the impact of system changes on the dynamic deliverability of gas and on the environment.

  19. Traction drive automatic transmission for gas turbine engine driveline

    DOE Patents [OSTI]

    Carriere, Donald L.

    1984-01-01

    A transaxle driveline for a wheeled vehicle has a high speed turbine engine and a torque splitting gearset that includes a traction drive unit and a torque converter on a common axis transversely arranged with respect to the longitudinal centerline of the vehicle. The drive wheels of the vehicle are mounted on a shaft parallel to the turbine shaft and carry a final drive gearset for driving the axle shafts. A second embodiment of the final drive gearing produces an overdrive ratio between the output of the first gearset and the axle shafts. A continuously variable range of speed ratios is produced by varying the position of the drive rollers of the traction unit. After starting the vehicle from rest, the transmission is set for operation in the high speed range by engaging a first lockup clutch that joins the torque converter impeller to the turbine for operation as a hydraulic coupling.

  20. Natural Gas Transmission and Distribution Model of the National Energy Modeling System. Volume 1

    SciTech Connect (OSTI)

    1998-01-01

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic design, provides detail on the methodology employed, and describes the model inputs, outputs, and key assumptions. Subsequent chapters of this report provide: an overview of NGTDM; a description of the interface between the NEMS and NGTDM; an overview of the solution methodology of the NGTDM; the solution methodology for the Annual Flow Module; the solution methodology for the Distributor Tariff Module; the solution methodology for the Capacity Expansion Module; the solution methodology for the Pipeline Tariff Module; and a description of model assumptions, inputs, and outputs.

  1. COLDz: KARL G. JANSKY VERY LARGE ARRAY DISCOVERY OF A GAS-RICH GALAXY IN COSMOS

    SciTech Connect (OSTI)

    Lentati, L.; Wagg, J.; Carilli, C. L.; Riechers, D.; Sharon, C.; Capak, P.; Scoville, N.; Walter, F.; Da Cunha, E.; Decarli, R.; Aravena, M.; Hodge, J. A.; Ivison, R. J.; Smail, I.; Daddi, E.; Dickinson, M.; Sargent, M.; Smolčć, V.

    2015-02-10

    The broad spectral bandwidth at millimeter and centimeter wavelengths provided by the recent upgrades to the Karl G. Jansky Very Large Array (VLA) has made it possible to conduct unbiased searches for molecular CO line emission at redshifts, z > 1.31. We present the discovery of a gas-rich, star-forming galaxy at z = 2.48 through the detection of CO J = 1-0 line emission in the COLDz survey and through a sensitive, Ka-band (31-39 GHz) VLA survey of a 6.5 arcmin{sup 2} region of the COSMOS field. We argue that the broad line (FWHM ∼ 570 ± 80 km s{sup –1}) is most likely to be CO J = 1-0 at z = 2.48, as the integrated emission is spatially coincident with an infrared-detected galaxy with a photometric redshift estimate of z {sub phot} = 3.2 ± 0.4. The CO J = 1-0 line luminosity is L{sub CO}{sup ′}=(2.2±0.3)×10{sup 10} K km s{sup –1} pc{sup 2}, suggesting a cold molecular gas mass of M {sub gas} ∼ (2-8) × 10{sup 10} M {sub ☉} depending on the assumed value of the molecular gas mass to CO luminosity ratio α{sub CO}. The estimated infrared luminosity from the (rest-frame) far-infrared spectral energy distribution (SED) is L {sub IR} = 2.5 × 10{sup 12} L {sub ☉} and the star formation rate is ∼250 M {sub ☉} yr{sup –1}, with the SED shape indicating substantial dust obscuration of the stellar light. The infrared to CO line luminosity ratio is ∼114 ± 19 L {sub ☉}/(K km s{sup –1} pc{sup 2}), similar to galaxies with similar SFRs selected at UV/optical to radio wavelengths. This discovery confirms the potential for molecular emission line surveys as a route to study populations of gas-rich galaxies in the future.

  2. Particle trap with dielectric barrier for use in gas insulated transmission lines

    DOE Patents [OSTI]

    Dale, S.J.

    1982-06-15

    A gas-insulated transmission line includes an outer sheath, an inner conductor within the outer sheath, insulating supports supporting the inner conductor within the outer sheath, and an insulating gas electrically insulating the inner conductor from the outer sheath. An apertured particle trapping electrode is disposed within the outer sheath, and the electrode has a pair of dielectric members secured at each longitudinal end thereof, with the dielectric members extending outwardly from the apertured electrode. 7 figs.

  3. Particle trap with dielectric barrier for use in gas insulated transmission lines

    DOE Patents [OSTI]

    Dale, Steinar J.

    1982-01-01

    A gas-insulated transmission line includes an outer sheath, an inner conductor within the outer sheath, insulating supports supporting the inner conductor within the outer sheath, and an insulating gas electrically insulating the inner conductor from the outer sheath. An apertured particle trapping electrode is disposed within the outer sheath, and the electrode has a pair of dielectric members secured at each longitudinal end thereof, with the dielectric members extending outwardly from the apertured electrode.

  4. Gas mixing system for imaging of nanomaterials under dynamic environments by environmental transmission electron microscopy

    SciTech Connect (OSTI)

    Akatay, M. Cem; Zvinevich, Yury; Ribeiro, Fabio H. E-mail: estach@bnl.gov; Baumann, Philipp; Stach, Eric A. E-mail: estach@bnl.gov

    2014-03-15

    A gas mixing manifold system that is capable of delivering a stable pressure stream of a desired composition of gases into an environmental transmission electron microscope has been developed. The system is designed to provide a stable imaging environment upon changes of either the composition of the gas mixture or upon switching from one gas to another. The design of the system is described and the response of the pressure inside the microscope, the sample temperature, and sample drift in response to flow and composition changes of the system are reported.

  5. Vertically aligned gas-insulated transmission line having particle traps at the inner conductor

    DOE Patents [OSTI]

    Dale, Steinar J.

    1984-01-01

    Gas insulated electrical apparatus having first and second conductors separated by an insulating support within an insulating gas environment, and particle traps disposed along the surface of the high potential conductor for trapping and inactivating foreign particles which may be present within the insulating gas medium. Several embodiments of the invention were developed which are particularly suited for vertically aligned gas insulated transmission lines. The particle traps are grooves or cavities formed into the walls of the tubular inner conductor, without extending into the hollow portion of the conductor. In other embodiments, the traps are appendages or insert flanges extending from the inner conductor, with the insulator supports contacting the appendages instead of the inner conductor.

  6. Hybrid particle traps and conditioning procedure for gas insulated transmission lines

    DOE Patents [OSTI]

    Dale, Steinar J.; Cookson, Alan H.

    1982-01-01

    A gas insulated transmission line includes an outer sheath, an inner condor within the outer sheath, insulating supports supporting the inner conductor within the outer sheath, and an insulating gas electrically insulating the inner conductor from the outer sheath. An apertured particle trapping ring is disposed within the outer sheath, and the trapping ring has a pair of dielectric members secured at each longitudinal end thereof, with the dielectric members extending outwardly from the trapping ring along an arc. A support sheet having an adhesive coating thereon is secured to the trapping ring and disposed on the outer sheath within the low field region formed between the trapping ring and the outer sheath. A conditioning method used to condition the transmission line prior to activation in service comprises applying an AC voltage to the inner conductor in a plurality of voltage-time steps, with the voltage-time steps increasing in voltage magnitude while decreasing in time duration.

  7. Natural gas transmission and distribution model of the National Energy Modeling System

    SciTech Connect (OSTI)

    1997-02-01

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. From 1982 through 1993, the Intermediate Future Forecasting System (IFFS) was used by the EIA for its analyses, and the Gas Analysis Modeling System (GAMS) was used within IFFS to represent natural gas markets. Prior to 1982, the Midterm Energy Forecasting System (MEFS), also referred to as the Project Independence Evaluation System (PIES), was employed. NEMS was developed to enhance and update EIA`s modeling capability by internally incorporating models of energy markets that had previously been analyzed off-line. In addition, greater structural detail in NEMS permits the analysis of a broader range of energy issues. The time horizon of NEMS is the midterm period (i.e., through 2015). In order to represent the regional differences in energy markets, the component models of NEMS function at regional levels appropriate for the markets represented, with subsequent aggregation/disaggregation to the Census Division level for reporting purposes.

  8. UNDERSTANDING METHANE EMISSIONS SOURCES AND VIABLE MITIGATION MEASURES IN THE NATURAL GAS TRANSMISSION SYSTEMS: RUSSIAN AND U.S. EXPERIENCE

    SciTech Connect (OSTI)

    Ishkov, A.; Akopova, Gretta; Evans, Meredydd; Yulkin, Grigory; Roshchanka, Volha; Waltzer, Suzie; Romanov, K.; Picard, David; Stepanenko, O.; Neretin, D.

    2011-10-01

    This article will compare the natural gas transmission systems in the U.S. and Russia and review experience with methane mitigation technologies in the two countries. Russia and the United States (U.S.) are the world's largest consumers and producers of natural gas, and consequently, have some of the largest natural gas infrastructure. This paper compares the natural gas transmission systems in Russia and the U.S., their methane emissions and experiences in implementing methane mitigation technologies. Given the scale of the two systems, many international oil and natural gas companies have expressed interest in better understanding the methane emission volumes and trends as well as the methane mitigation options. This paper compares the two transmission systems and documents experiences in Russia and the U.S. in implementing technologies and programs for methane mitigation. The systems are inherently different. For instance, while the U.S. natural gas transmission system is represented by many companies, which operate pipelines with various characteristics, in Russia predominately one company, Gazprom, operates the gas transmission system. However, companies in both countries found that reducing methane emissions can be feasible and profitable. Examples of technologies in use include replacing wet seals with dry seals, implementing Directed Inspection and Maintenance (DI&M) programs, performing pipeline pump-down, applying composite wrap for non-leaking pipeline defects and installing low-bleed pneumatics. The research methodology for this paper involved a review of information on methane emissions trends and mitigation measures, analytical and statistical data collection; accumulation and analysis of operational data on compressor seals and other emission sources; and analysis of technologies used in both countries to mitigate methane emissions in the transmission sector. Operators of natural gas transmission systems have many options to reduce natural gas losses

  9. Particle trap to sheath contact for a gas-insulated transmission line having a corrugated outer conductor

    DOE Patents [OSTI]

    Fischer, William H.; Cookson, Alan H.; Yoon, Kue H.

    1984-04-10

    A particle trap to outer elongated conductor or sheath contact for gas-insulated transmission lines. The particle trap to outer sheath contact of the invention is applicable to gas-insulated transmission lines having either corrugated or non-corrugated outer sheaths. The contact of the invention includes an electrical contact disposed on a lever arm which in turn is rotatably disposed on the particle trap and biased in a direction to maintain contact between the electrical contact and the outer sheath.

  10. Numerical models for static denting and dynamic puncture of gas transmission linepipe and their validation

    SciTech Connect (OSTI)

    Zarea, M.F.; Toumbas, D.N.; Philibert, C.E.; Deo, I.

    1996-12-31

    Gas transmission pipe resistance to external damage is a subject of great attention at Gaz de France and in Europe. Existing results cover part of the necessary criteria for the residual life of damaged pipelines, but more knowledge is needed on defect creation. The authors propose to complement existing experimental work which is limited to the explored range of parameters by validated numerical models. The first, simple static denting model aims at optimizing the conditions for calculating the residual stress distribution needed to assess the fatigue life of dents and dents and gouges. The second, more complex dynamic puncture model calculates both the puncture force and the puncture energy for a given pipe, excavator and tooth geometry. These models can contribute to enhance the external damage prevention policies of transmission pipeline operators.

  11. Flexible gas insulated transmission line having regions of reduced electric field

    DOE Patents [OSTI]

    Cookson, Alan H.; Fischer, William H.; Yoon, Kue H.; Meyer, Jeffry R.

    1983-01-01

    A gas insulated transmission line having radially flexible field control means for reducing the electric field along the periphery of the inner conductor at predetermined locations wherein the support insulators are located. The radially flexible field control means of the invention includes several structural variations of the inner conductor, wherein careful controlling of the length to depth of surface depressions produces regions of reduced electric field. Several embodiments of the invention dispose a flexible connector at the predetermined location along the inner conductor where the surface depressions that control the reduced electric field are located.

  12. Model documentation Natural Gas Transmission and Distribution Model of the National Energy Modeling System. Volume 1

    SciTech Connect (OSTI)

    1996-02-26

    The Natural Gas Transmission and Distribution Model (NGTDM) of the National Energy Modeling System is developed and maintained by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting. This report documents the archived version of the NGTDM that was used to produce the natural gas forecasts presented in the Annual Energy Outlook 1996, (DOE/EIA-0383(96)). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic approach, and provides detail on the methodology employed. Previously this report represented Volume I of a two-volume set. Volume II reported on model performance, detailing convergence criteria and properties, results of sensitivity testing, comparison of model outputs with the literature and/or other model results, and major unresolved issues.

  13. Semi-flexible gas-insulated transmission line using electric field stress shields

    DOE Patents [OSTI]

    Cookson, A.H.; Dale, S.J.; Bolin, P.C.

    1982-12-28

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections. 10 figs.

  14. Semi-flexible gas-insulated transmission line using sandwiched discs for intermittent flexing joints

    DOE Patents [OSTI]

    Kommineni, Prasad R.

    1983-02-15

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by the use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements are formed by sandwiching together, by fusing, a pair of thin hollow discs which are fixedly secured to both the main conductor sections and the conductor hub section.

  15. Semi-flexible gas-insulated transmission line using sandwiched discs for intermittent flexing joints

    DOE Patents [OSTI]

    Kommineni, P.R.

    1983-02-15

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by the use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements are formed by sandwiching together, by fusing, a pair of thin hollow discs which are fixedly secured to both the main conductor sections and the conductor hub section. 4 figs.

  16. Semi-flexible gas-insulated transmission line using electric field stress shields

    DOE Patents [OSTI]

    Cookson, Alan H.; Dale, Steinar J.; Bolin, Philip C.

    1982-12-28

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections.

  17. Model documentation: Natural Gas Transmission and Distribution Model of the National Energy Modeling System; Volume 1

    SciTech Connect (OSTI)

    1994-02-24

    The Natural Gas Transmission and Distribution Model (NGTDM) is a component of the National Energy Modeling System (NEMS) used to represent the domestic natural gas transmission and distribution system. NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the Energy Information Administration (EIA) and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. This report documents the archived version of NGTDM that was used to produce the natural gas forecasts used in support of the Annual Energy Outlook 1994, DOE/EIA-0383(94). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic design, provides detail on the methodology employed, and describes the model inputs, outputs, and key assumptions. It is intended to fulfill the legal obligation of the EIA to provide adequate documentation in support of its models (Public Law 94-385, Section 57.b.2). This report represents Volume 1 of a two-volume set. (Volume 2 will report on model performance, detailing convergence criteria and properties, results of sensitivity testing, comparison of model outputs with the literature and/or other model results, and major unresolved issues.) Subsequent chapters of this report provide: (1) an overview of the NGTDM (Chapter 2); (2) a description of the interface between the National Energy Modeling System (NEMS) and the NGTDM (Chapter 3); (3) an overview of the solution methodology of the NGTDM (Chapter 4); (4) the solution methodology for the Annual Flow Module (Chapter 5); (5) the solution methodology for the Distributor Tariff Module (Chapter 6); (6) the solution methodology for the Capacity Expansion Module (Chapter 7); (7) the solution methodology for the Pipeline Tariff Module (Chapter 8); and (8) a description of model assumptions, inputs, and outputs (Chapter 9).

  18. Incentives for Methane Mitigation and Energy-Efficiency Improvements in Case of Ukraine’s Natural Gas Transmission System

    SciTech Connect (OSTI)

    Roshchanka, Volha; Evans, Meredydd

    2014-06-01

    Reducing methane losses is a concern for climate change policy and energy policy. The energy sector is the major source of methane emissions into the atmosphere. Reducing methane emissions and avoiding combustion can be very cost-effective, but various barriers prevent such energy-efficiency measures from taking place. To date, few examples of industry-wide improvements exist. One example of substantial investments into upgrading natural gas transmission system comes from Ukraine. The Ukrainian transmission company, Ukrtransgaz, reduced its own system’s natural gas consumption by 68 percent in 2011 compared to the level in 2005. Evaluating reductions in methane emissions is challenging because of lack of accurate data and gaps in accounting methodologies. At the same time, Ukraine’s transmission system has undergone improvements that, at the very least, have contained methane emissions, if not substantially reduced them. In this paper, we describe recent developments in Ukraine’s natural gas transmission system and analyze the incentives that forced the sector to pay close attention to its methane losses. Ukraine is one of most energy-intensive countries, among the largest natural gas consumers in the world, and a significant emitter of methane. The country is also dependent on imports of natural gas. A combination of steep increases in the price of imported natural gas, and comprehensive domestic environmental and energy policies, regional integration policy, and international environmental agreements has created conditions for successful methane emission and combustion reductions. Learning about such case studies can help us design better policies elsewhere.

  19. Conductor load bearing roller for a gas-insulated transmission line having a corrugated outer conductor

    DOE Patents [OSTI]

    Fischer, William H.; Yoon, Kue H.

    1984-04-10

    A gas-insulated transmission line includes a corrugated outer conductor, an inner conductor disposed within and insulated from the outer conductor by means of support insulators and an insulating gas, and a transport device for supporting and permitting movement of the inner conductor/insulating support assembly axially along the corrugated outer conductor without radial displacement. The transport device includes two movable contacts, such as skids or rollers, supported on a common pivot lever, the pivot lever being rotatably disposed about a pivot lever axis, which pivot lever axis is in turn disposed on the periphery of a support insulator or particle trap if one is used. The movable contacts are separated axially a distance equal to the axial distance between the peaks and valleys of the corrugations of the outer conductor and separated radially a distance equal to the radial distance between the peaks and valleys of the corrugations of the outer conductor. The transport device has the pivot lever axis disposed perpendicular to the direction of travel of the inner conductor/insulating support assembly.

  20. INCREASED FLEXIBILITY OF TURBO-COMPRESSORS IN NATURAL GAS TRANSMISSION THROUGH DIRECT SURGE CONTROL

    SciTech Connect (OSTI)

    Robert J. McKee

    2003-05-01

    This preliminary phase 1 report summarizes the background and the work on the ''Increased Flexibility of Turbo-Compressors in Natural Gas Transmission through Direct Surge Control'' project to date. The importance of centrifugal compressors for natural gas transmission is discussed, and the causes of surge and the consequences of current surge control approaches are explained. Previous technology development, including findings from early GMRC research, previous surge detection work, and selected publications, are presented. The project is divided into three Phases to accomplish the project objectives of verifying near surge sensing, developing a prototype surge control system (sensor and controller), and testing/demonstrating the benefits of direct surge control. Specification for the direct surge control sensor and controller developed with guidance from the industry Oversight Committee is presented in detail. Results of CFD modeling conducted to aid in interpreting the laboratory test results are shown and explained. An analysis of the system dynamics identified the data sampling and handling requirements for direct surge control. A detailed design process for surge detection probes has been developed and explained in this report and has been used to prepare drag probes for the laboratory compressor test and the first field test. The surge detection probes prepared for testing have been bench tested and flow tested to determine and calibrate their sensitivity to flow forces as shown in data presented in this report. The surge detection drag probes have been shown to perform as expected and as required to detect approaching surge. Laboratory test results of surge detection in the SwRI centrifugal compressor demonstrated functionality of the surge detection probes and a change in the impeller inlet flow pattern prior to surge. Although the recirculation cannot be detected because of the specific geometry of this compressor, there are changes that indicate the

  1. INCREASED FLEXIBILITY OF TURBO-COMPRESSORS IN NATURAL GAS TRANSMISSION THROUGH DIRECT SURGE CONTROL

    SciTech Connect (OSTI)

    Robert J. McKee; Danny M. Deffenbaugh

    2004-12-01

    This annual progress report describes the third year's technical progress in a three-year program. This report introduces the benefits of improved surge detection and summarizes what is known about internal flows as surge precursors in centrifugal compressors. Early research results and findings concerning surge in centrifugal compressors and possible precursors to surge are presented. Laboratory test results in modern compressors with 3D impellers are described in detail and used to show the changes in internal flow patterns that occur as a compressor approaches surge. It was found that older compressors with recessed impeller blading (2D geometry) do not have the same accessible flow patterns. The laboratory test results indicate a large increase in potential operating range for modern compressors. This annual report also presents results from the field testing conducted during the course of this third year. The field test results showed similar changes in the surge probe strain signals and the same type, although of less magnitude, of indication that the compressor is approaching surge. An algorithm for identifying the nearness of surge has been proposed and evaluated with the available data. This project is co-funded by the Gas Machinery Research Council (GMRC) and by Siemens Energy and Automation (Siemens). The results of the project include a step-by-step process for design, sizing, and installation of surge detection probes and for implementation of the direct surge control in centrifugal compressor controllers. This work is considered a step towards the successful implementation of direct surge control for improved flexibility and efficiency in natural gas transmission compressors.

  2. INCREASED FLEXIBILITY OF TURBO-COMPRESSORS IN NATURAL GAS TRANSMISSION THROUGH DIRECT SURGE CONTROL

    SciTech Connect (OSTI)

    Robert J. McKee; Shane P. Siebenaler; Danny M. Deffenbaugh

    2005-02-25

    The objective of this Direct Surge Control project was to develop a new internal method to avoid surge of pipeline compressors. This method will safely expand the range and flexibility of compressor operations, while minimizing wasteful recycle flow at the lower end of the operating envelope. The approach is to sense the onset of surge with a probe that directly measures re-circulation at the impeller inlet. The signals from the probe are used by a controller to allow operation at low flow conditions without resorting to a predictive method requiring excessive margin to activate a recycle valve. The sensor developed and demonstrated during this project was a simple, rugged, and sensitive drag probe. Experiments conducted in a laboratory compressor clearly showed the effectiveness of the technique. Subsequent field demonstrations indicated that the increase in range without the need to recycle flow was on the order of 19% to 25%. The cost benefit of applying the direct surge control technology appears to be as much as $120 per hour per compressor for operation without the current level of recycle flow. This could amount to approximately $85 million per year for the U.S. Natural Gas Transmission industry, if direct surge control systems are applied to most pipeline centrifugal compressors.

  3. U.S. Natural Gas Plant Liquids, New Reservoir Discoveries in Old Fields

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Expected Future Production (Million Barrels) U.S. Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5,204 1980's 5,198 5,488 5,620 6,288 6,121 6,491 6,729 6,745 6,849 6,380 1990's 6,284 6,220 6,225 6,030 6,023 6,202 6,516 6,632 6,188 6,503 2000's 6,873 6,595 6,648 6,244 6,707 6,903 7,133 7,648 7,842 8,557 2010's 9,809 10,825 10,777 11,943 15,029 - = No Data Reported; -- = Not

  4. Semi-flexible gas-insulated transmission line using protection tube in conductor plug-in joint

    DOE Patents [OSTI]

    Kommineni, P.R.

    1983-01-25

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. A plug and socket arrangement is utilized for joining adjacent sections of the inner conductor, and a protection tube is utilized inside the hollow plug to maintain proper alignment of the joint when the transmission line is bent. 3 figs.

  5. Semi-flexible gas-insulated transmission line using protection tube in conductor plug-in joint

    DOE Patents [OSTI]

    Kommineni, Prasad R.

    1983-01-25

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. A plug and socket arrangement is utilized for joining adjacent sections of the inner conductor, and a protection tube is utilized inside the hollow plug to maintain proper alignment of the joint when the transmission line is bent.

  6. Particle trap to sheath non-binding contact for a gas-insulated transmission line having a corrugated outer conductor

    DOE Patents [OSTI]

    Fischer, William H.

    1984-04-24

    A non-binding particle trap to outer sheath contact for use in gas insulated transmission lines having a corrugated outer conductor. The non-binding feature of the contact according to the teachings of the invention is accomplished by having a lever arm rotatably attached to a particle trap by a pivot support axis disposed parallel to the direction of travel of the inner conductor/insulator/particle trap assembly.

  7. Corporate Realignments and Investments in the Interstate Natural Gas Transmission System

    Reports and Publications (EIA)

    1999-01-01

    Examines the financial characteristics of current ownership in the natural gas pipeline industry and of the major U.S. interstate pipeline companies that transported the bulk of the natural gas consumed in the United States between 1992 and 1997, focusing on 14 parent corporations. It also examines the near-term investment needs of the industry and the anticipated growth in demand for natural gas during the next decade.

  8. A method for measuring the local gas pressure within a gas-flow stage in situ in the transmission electron microscope

    SciTech Connect (OSTI)

    Colby, Robert J.; Alsem, Daan H.; Liyu, Andrey V.; Kabius, Bernd C.

    2015-06-01

    The development of environmental transmission electron microscopy (TEM) has enabled in situ experiments in a gaseous environment with high resolution imaging and spectroscopy. Addressing scientific challenges in areas such as catalysis, corrosion, and geochemistry can require pressures much higher than the ~20 mbar achievable with a differentially pumped, dedicated environmental TEM. Gas flow stages, in which the environment is contained between two semi-transparent thin membrane windows, have been demonstrated at pressures of several atmospheres. While this constitutes significant progress towards operando measurements, the design of many current gas flow stages is such that the pressure at the sample cannot necessarily be directly inferred from the pressure differential across the system. Small differences in the setup and design of the gas flow stage can lead to very different sample pressures. We demonstrate a method for measuring the gas pressure directly, using a combination of electron energy loss spectroscopy and TEM imaging. This method requires only two energy filtered TEM images, limiting the measurement time to a few seconds and can be performed during an ongoing experiment at the region of interest. This approach provides a means to ensure reproducibility between different experiments, and even between very differently designed gas flow stages.

  9. INCREASED FLEXIBILITY OF TURBO-COMPRESSORS IN NATURAL GAS TRANSMISSION THROUGH DIRECT SURGE CONTROL

    SciTech Connect (OSTI)

    Robert J. Mckee; Danny M. Deffenbaugh

    2003-12-01

    This annual progress report describes the second year's technical progress in a three-year program. This report summarizes what is known about internal flows as surge precursors in centrifugal compressors and focuses on accessing factors that affect pre-surge detection. An attempt is made in this analysis to identify and quantify factors concerning compressor design and operations that affect the detection of pre-surge conditions. This progress report presents results from recent laboratory tests conducted during the course of this second year. This project is co-funded by the Gas Machinery Research Council (GMRC) and by Siemens Energy and Automation (Siemens). The most recently available measured pre-surge internal flow data is parameterized to help identify factors that affect the indications that a compressor is approaching surge. Theoretical arguments are applied to access the factors that influence surge precursors and surge initiation in different centrifugal compressors. This work is considered a step in accessing the factors that affect the success or limitations of pre-surge detection in natural gas pipeline compressors.

  10. Non-binding conductor load bearing roller for a gas-insulated transmission line having a corrugated outer conductor

    DOE Patents [OSTI]

    Fischer, William H.

    1984-01-01

    A gas-insulated transmission line includes a corrugated outer conductor, an inner conductor disposed within and insulated from the outer conductor by means of support insulators and an insulating gas, and a non-binding transport device for supporting and permitting movement of the inner conductor/insulating support assembly axially along the corrugated outer conductor without radial displacement and for moving without binding along corrugations of any slope less than vertical. The transport device includes two movable contacts, such as skids or rollers, supported on a common pivot lever, the pivot lever being rotatably disposed about a pivot lever axis, which pivot lever axis is in turn disposed on the periphery of a support insulator or particle trap if one is used. The movable contacts are separated axially a distance equal to the axial distance between the peaks and valleys of the corrugations of the outer conductor and separated radially a distance equal to the radial distance between the peaks and valleys of the corrugations of the outer conductor. The transport device has the pivot lever axis disposed parallel to the motion of travel of the inner conductor/insulating support assembly.

  11. DISCOVERY OF THE METHOXY RADICAL, CH{sub 3}O, TOWARD B1: DUST GRAIN AND GAS-PHASE CHEMISTRY IN COLD DARK CLOUDS

    SciTech Connect (OSTI)

    Cernicharo, J.; Jimenez-Escobar, A.; Munoz Caro, G. M.; Marcelino, N.; Roueff, E.; Gerin, M.

    2012-11-10

    We report on the discovery of the methoxy radical (CH{sub 3}O) toward the cold and dense core B1-b based on the observation, with the IRAM 30 m radio telescope, of several lines at 3 and 2 mm wavelengths. Besides this new molecular species we also report on the detection of many lines arising from methyl mercaptan (CH{sub 3}SH), formic acid (HCOOH), propynal (HCCCHO), acetaldehyde (CH{sub 3}CHO), dimethyl ether (CH{sub 3}OCH{sub 3}), methyl formate (CH{sub 3}OCOH), and the formyl radical (HCO). The column density of all these species is {approx_equal}10{sup 12} cm{sup -2}, corresponding to abundances of {approx_equal}10{sup -11}. The similarity in abundances for all these species strongly suggest that they are formed on the surface of dust grains and ejected to the gas phase through non-thermal desorption processes, most likely cosmic rays or secondary photons. Nevertheless, laboratory experiments indicate that the CH{sub 3}O isomer released to the gas phase is CH{sub 2}OH rather than the methoxy one. Possible gas-phase formation routes to CH{sub 3}O from OH and methanol are discussed.

  12. Transmission and Storage Operations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transmission and Storage Operations Natural Gas Infrastructure R&D and Methane Mitigation Workshop Mary Savalle, PMP, LSSGB Compression Reliability Engineer November 12, 2014 ...

  13. IONIZED GAS KINEMATICS AT HIGH RESOLUTION. II. DISCOVERY OF A DOUBLE INFRARED CLUSTER IN II Zw 40

    SciTech Connect (OSTI)

    Beck, Sara; Lahad, Ohr; Turner, Jean; Lacy, John; Greathouse, Thomas

    2013-04-10

    The nearby dwarf galaxy II Zw 40 hosts an intense starburst. At the center of the starburst is a bright compact radio and infrared source, thought to be a giant dense H II region containing Almost-Equal-To 14, 000 O stars. Radio continuum images suggest that the compact source is actually a collection of several smaller emission regions. We accordingly use the kinematics of the ionized gas to probe the structure of the radio-infrared emission region. With TEXES on the NASA-IRTF we measured the 10.5 {mu}m [S IV] emission line with effective spectral resolutions, including thermal broadening, of {approx}25 and {approx}3 km s{sup -1} and spatial resolution {approx}1''. The line profile shows two distinct, spatially coextensive, emission features. The stronger feature is at galactic velocity and has FWHM 47 km s{sup -1}. The second feature is {approx}44 km s{sup -1} redward of the first and has FWHM 32 km s{sup -1}. We argue that these are two giant embedded clusters, and estimate their masses to be Almost-Equal-To 3 Multiplication-Sign 10{sup 5} M{sub Sun} and Almost-Equal-To 1.5 Multiplication-Sign 10{sup 5} M{sub Sun }. The velocity shift is unexpectedly large for such a small spatial offset. We suggest that it may arise in a previously undetected kinematic feature remaining from the violent merger that formed the galaxy.

  14. Controlling Methane Emissions in the Natural Gas Sector. A Review of Federal and State Regulatory Frameworks Governing Production, Gathering, Processing, Transmission, and Distribution

    SciTech Connect (OSTI)

    Paranhos, Elizabeth; Kozak, Tracy G.; Boyd, William; Bradbury, James; Steinberg, D. C.; Arent, D. J.

    2015-04-23

    This report provides an overview of the regulatory frameworks governing natural gas supply chain infrastructure siting, construction, operation, and maintenance. Information was drawn from a number of sources, including published analyses, government reports, in addition to relevant statutes, court decisions and regulatory language, as needed. The scope includes all onshore facilities that contribute to methane emissions from the natural gas sector, focusing on three areas of state and federal regulations: (1) natural gas pipeline infrastructure siting and transportation service (including gathering, transmission, and distribution pipelines), (2) natural gas pipeline safety, and (3) air emissions associated with the natural gas supply chain. In addition, the report identifies the incentives under current regulatory frameworks to invest in measures to reduce leakage, as well as the barriers facing investment in infrastructure improvement to reduce leakage. Policy recommendations regarding how federal or state authorities could regulate methane emissions are not provided; rather, existing frameworks are identified and some of the options for modifying existing regulations or adopting new regulations to reduce methane leakage are discussed.

  15. Discovery in Action - Pacific Northwest National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery in Action Discovery in Action

  16. Discovery Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    universe Discovery Science Since the beginning of civilization, humans have marveled at the night sky and pondered the vast stretches of the universe. The invention of telescopes in the 17th century revealed the first details of the Moon and the planets in our solar system. Four hundred years later, space-based observatories such as NASA's Hubble and Kepler regularly capture amazing vistas of billions of galaxies millions of light years away. Despite these advances, astronomers have only been

  17. Transmission and Storage Operations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transmission and Storage Operations Natural Gas Infrastructure R&D and Methane Mitigation Workshop Mary Savalle, PMP, LSSGB Compression Reliability Engineer November 12, 2014 Agenda * DTE Gas Snapshot * NOx & CO - Combustion stability * Methane - Packing - Blowdowns * Capture vs Flare 2 SNAPSHOT * DTE Gas - 41 Units * Age Range: 8-59yrs (Average 45yrs) - 118,200HP * 1,000-15,000HP - 7 different manufacturers * Cooper-Bessemer, Solar, Waukesha, DeLaval, IR, CAT, Ariel - Complete Mixture *

  18. Assumption to the Annual Energy Outlook 2014 - Natural Gas Transmissi...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Transmission and Distribution Module This page inTenTionally lefT blank Natural Gas Transmission and Distribution Module The NEMS Natural Gas Transmission and Distribution Module...

  19. Model documentation natural gas transmission and distribution model (NGTDM) of the national energy modeling system. Volume II: Model developer`s report

    SciTech Connect (OSTI)

    Not Available

    1995-01-03

    To partially fulfill the requirements for {open_quotes}Model Acceptance{close_quotes} as stipulated in EIA Standard 91-01-01 (effective February 3, 1991), the Office of Integrated Analysis and Forecasting has conducted tests of the Natural Gas Transmission and Distribution Model (NGTDM) for the specific purpose of validating the forecasting model. This volume of the model documentation presents the results of {open_quotes}one-at-a-time{close_quotes} sensitivity tests conducted in support of this validation effort. The test results are presented in the following forms: (1) Tables of important model outputs for the years 2000 and 2010 are presented with respect to change in each input from the reference case; (2) Tables of percent changes from base case results for the years 2000 and 2010 are presented for important model outputs; (3) Tables of conditional sensitivities (percent change in output/percent change in input) for the years 2000 and 2010 are presented for important model outputs; (4) Finally, graphs presenting the percent change from base case results for each year of the forecast period are presented for selected key outputs. To conduct the sensitivity tests, two main assumptions are made in order to test the performance characteristics of the model itself and facilitate the understanding of the effects of the changes in the key input variables to the model on the selected key output variables: (1) responses to the amount demanded do not occur since there are no feedbacks of inputs from other NEMS models in the stand-alone NGTDM run. (2) All the export and import quantities from and to Canada and Mexico, and liquefied natural gas (LNG) imports and exports are held fixed (i.e., there are no changes in imports and exports between the reference case and the sensitivity cases) throughout the forecast period.

  20. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    more from the system than they nominate. Other pipeline companies, such as CenterPoint Energy Gas Transmission Company and Southern Star Central Gas Pipeline Corporation, both...

  1. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    that had been in place since February 1. Other pipeline companies, such as CenterPoint Energy Gas Transmission Company and Southern Star Central Gas Pipeline Corporation, both...

  2. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Significant New Deepwater Oil and Natural Gas Discovery: A successful production test in the deepwater Gulf of Mexico has confirmed a significant new oil play in the lower...

  3. A GAS GIANT CIRCUMBINARY PLANET TRANSITING THE F STAR PRIMARY OF THE ECLIPSING BINARY STAR KIC 4862625 AND THE INDEPENDENT DISCOVERY AND CHARACTERIZATION OF THE TWO TRANSITING PLANETS IN THE KEPLER-47 SYSTEM

    SciTech Connect (OSTI)

    Kostov, V. B.; Tsvetanov, Z. I.; McCullough, P. R.; Valenti, J. A.; Hinse, T. C.; Hebrard, G.; Diaz, R. F.; Deleuil, M.

    2013-06-10

    We report the discovery of a transiting, gas giant circumbinary planet orbiting the eclipsing binary KIC 4862625 and describe our independent discovery of the two transiting planets orbiting Kepler-47. We describe a simple and semi-automated procedure for identifying individual transits in light curves and present our follow-up measurements of the two circumbinary systems. For the KIC 4862625 system, the 0.52 {+-} 0.018 R{sub Jupiter} radius planet revolves every {approx}138 days and occults the 1.47 {+-} 0.08 M{sub Sun }, 1.7 {+-} 0.06 R{sub Sun} F8 IV primary star producing aperiodic transits of variable durations commensurate with the configuration of the eclipsing binary star. Our best-fit model indicates the orbit has a semi-major axis of 0.64 AU and is slightly eccentric, e = 0.1. For the Kepler-47 system, we confirm the results of Orosz et al. Modulations in the radial velocity of KIC 4862625A are measured both spectroscopically and photometrically, i.e., via Doppler boosting, and produce similar results.

  4. Transmission Workshop

    Broader source: Energy.gov [DOE]

    On November 1-2, 2012, the GTT presented a workshop on grid integration on the transmission system at the DoubleTree Crystal City near Washington, DC.

  5. Transmission Workshop

    Broader source: Energy.gov (indexed) [DOE]

    Grid Tech Team U.S. Department of Energy DOE Grid Tech Team (GTT) The Grid Tech Team ... regional diversity, AC-DC transmission and distribution solutions, ...

  6. California/Transmission | Open Energy Information

    Open Energy Info (EERE)

    San Diego Gas & Electric, Sacramento Municipal Utility District, PacifiCorp, Bonneville Power Administration, Transmission Agency of Northern California, and Western Area Power...

  7. QER Report: Energy Transmission, Storage, and Distribution Infrastruct...

    Broader source: Energy.gov (indexed) [DOE]

    NG-1 Chapter VII Appendix B NATURAL GAS NG-2 QER Report: Energy Transmission, Storage, and Distribution Infrastructure | April 2015 Appendix B: NATURAL GAS Highlights Increasing...

  8. Transmission decisions

    SciTech Connect (OSTI)

    Ellison, C.T. )

    1993-03-01

    As the US FERC moves forward to implement the transmission access provisions of the National Energy Policy Act of 1992, the debate over Regional Transmission Groups continues. Independent energy producers have much at stake in this debate and their reaction to the general RTG concept and to specific RTG proposals will weigh heavily in determining the fate of these proposals.

  9. Shell appraising deepwater discovery off Philippines

    SciTech Connect (OSTI)

    Scherer, M. ); Lambers, E.J.T.; Steffens, G.S. )

    1993-05-10

    Shell International Petroleum Co. Ltd. negotiated a farmout in 1990 from Occidental International Exploration and Production Co. for Block SC-38 in the South China Sea off Palawan, Philippines, following Oxy's discovery of gas in 1989 in a Miocene Nido limestone buildup. Under the terms of the farmout agreement, Shell became operator with a 50% share. Following the disappointing well North Iloc 1, Shell was successful in finding oil and gas in Malampaya 1. Water 700-1,000 m deep, remoteness, and adverse weather conditions have imposed major challenges for offshore operations. The paper describes the tectonic setting; the Nido limestone play; the Malampaya discovery; and Shell's appraisal studies.

  10. Discoveries in Energy & Environment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Changes to proved reserves of U.S. natural gas by source, 2013-14 trillion cubic feet Year-end 2013 2014 Year-end 2014 proved 2014 revisions and 2014 proved Source of natural gas reserves Discoveries other changes production reserves Coalbed methane 12.4 0.4 4.3 -1.4 15.7 Shale 159.1 37.8 16.2 -13.4 199.7 Other U.S. natural gas Lower 48 onshore 166.0 11.4 -8.4 -11.7 157.2 Lower 48 offshore 9.1 0.8 0.8 -1.3 9.4 Alaska 7.4 0.1 -0.4 -0.3 6.8 U.S. TOTAL 354.0 50.5 12.4 -28.1 388.8 Note: Lower 48

  11. EIS-0067: 230-kV International Transmission Line San Diego County, California to Tijuana, Mexico, San Diego Gas and Electric Company

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration and the California Public Utilities Commission jointly prepared this EIS to evaluate the environmental impacts of the construction, maintenance and operation of a 10-mile, 230-kilovolt transmission line across the U.S./Mexico border for the purpose of economic exchange of power and increased reliability.

  12. Transmission Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Services BPA Clarifications on the DSO216 1 Document updated on 2242015 at 3:29:25 PM B O N N E V I L L E P O W E R A D M I N I S T R A T I O N BPA Clarifications on...

  13. Transmission Planning

    Broader source: Energy.gov [DOE]

    The Department's research into a variety of tools that will improve advanced system monitoring, visualization, control, operations, and market structure will ultimately modernize the electricity transmission infrastructure to ease congestion, allow for increases in demand, and provide a greater degree of security.

  14. Decades of Discovery

    DOE R&D Accomplishments [OSTI]

    2011-06-01

    For the past two-and-a-half decades, the Office of Science at the U.S. Department of Energy has been at the forefront of scientific discovery. Over 100 important discoveries supported by the Office of Science are represented in this document.

  15. The Greatest Mathematical Discovery?

    SciTech Connect (OSTI)

    Bailey, David H.; Borwein, Jonathan M.

    2010-05-12

    What mathematical discovery more than 1500 years ago: (1) Is one of the greatest, if not the greatest, single discovery in the field of mathematics? (2) Involved three subtle ideas that eluded the greatest minds of antiquity, even geniuses such as Archimedes? (3) Was fiercely resisted in Europe for hundreds of years after its discovery? (4) Even today, in historical treatments of mathematics, is often dismissed with scant mention, or else is ascribed to the wrong source? Answer: Our modern system of positional decimal notation with zero, together with the basic arithmetic computational schemes, which were discovered in India about 500 CE.

  16. Natural Gas Liquids New Field Discoveries

    Gasoline and Diesel Fuel Update (EIA)

    35 26 32 16 30 65 1979-2008 Federal Offshore U.S. 25 7 21 6 24 22 1981-2008 Pacific (California) 0 0 0 0 0 0 1979-2008 Gulf of Mexico (Louisiana & Alabama) 25 7 21 6 13 22 1981-2008 Gulf of Mexico (Texas) 0 0 0 0 11 0 1981-2008 Alaska 0 0 0 0 0 0 1979-2008 Lower 48 States 35 26 32 16 30 65 1979-2008 Alabama 0 0 0 0 0 0 1979-2008 Arkansas 0 0 0 0 0 0 1979-2008 California 0 0 0 0 0 0 1979-2008 Coastal Region Onshore 0 0 0 0 0 0 1979-2008 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2008 San

  17. U.S. Nonassociated Natural Gas, Wet After Lease Separation, New...

    U.S. Energy Information Administration (EIA) Indexed Site

    Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Nonassociated Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) ...

  18. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic ...

  19. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    while the OFO was in effect. Pacific Gas and Electric Company extended a systemwide high-inventory OFO on its California Gas Transmission system through Saturday, July 5. It was...

  20. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    the Northeast were expected to be in the single digits. Prices off Transcontinental Gas Pipe Line in New York and Algonquin Gas Transmission in the New England region yesterday...

  1. BNL Discovery to Deployment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Discovery to Deployment: Chemistry for Sustainable Energy Alex Harris Chair, BNL Chemistry Department State Energy Advisory Board October 10, 2012 Topics  BNL Energy Research in Sustainable Chemical Conversion  Fuel Cell Electrocatalysis: Discovery to Deployment 2 Brookhaven Mission, Part I: "Advance photon sciences, energy, and environment-related research and apply them to 21 st Century problems of critical importance to the Nation." Brookhaven Energy R&D Basic Research,

  2. Transmission | Department of Energy

    Energy Savers [EERE]

    resources for Tribes on transmission. Transmission 101 Presentation from the National Council on Electricity Policy's Transmissions Technologies workshop. Includes information on...

  3. Transmission Business Line

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Business Line Non-Federal Financing of Transmission Projects - March 2004 Critical paths on the Northwest transmission grid are congested and the system is near or at...

  4. Dynamic Transmission Electron Microscopy

    SciTech Connect (OSTI)

    Evans, James E.; Jungjohann, K. L.; Browning, Nigel D.

    2012-10-12

    Dynamic transmission electron microscopy (DTEM) combines the benefits of high spatial resolution electron microscopy with the high temporal resolution of ultrafast lasers. The incorporation of these two components into a single instrument provides a perfect platform for in situ observations of material processes. However, previous DTEM applications have focused on observing structural changes occurring in samples exposed to high vacuum. Therefore, in order to expand the pump-probe experimental regime to more natural environmental conditions, in situ gas and liquid chambers must be coupled with Dynamic TEM. This chapter describes the current and future applications of in situ liquid DTEM to permit time-resolved atomic scale observations in an aqueous environment, Although this chapter focuses mostly on in situ liquid imaging, the same research potential exists for in situ gas experiments and the successful integration of these techniques promises new insights for understanding nanoparticle, catalyst and biological protein dynamics with unprecedented spatiotemporal resolution.

  5. Natural Gas Citygate Price

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From

  6. Storage & Transmission Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage & Transmission Projects Storage & Transmission Projects Storage & Transmission Projects Storage & Transmission Projects Storage & Transmission Projects Storage & ...

  7. Regional Transmission Projects: Finding Solutions

    SciTech Connect (OSTI)

    The Keystone Center

    2005-06-15

    The Keystone Center convened and facilitated a year-long Dialogue on "Regional Transmission Projects: Finding Solutions" to develop recommendations that will help address the difficult and contentious issues related to expansions of regional electric transmission systems that are needed for reliable and economic transmission of power within and across regions. This effort brought together a cross-section of affected stakeholders and thought leaders to address the problem with the collective wisdom of their experience and interests. Transmission owners sat at the table with consumer advocates and environmental organizations. Representatives from regional transmission organizations exchanged ideas with state and federal regulators. Generation developers explored common interests with public power suppliers. Together, the Dialogue participants developed consensus solutions about how to begin unraveling some of the more intractable issues surrounding identification of need, allocation of costs, and reaching consensus on siting issues that can frustrate the development of regional transmission infrastructure. The recommendations fall into three broad categories: 1. Recommendations on appropriate institutional arrangements and processes for achieving regional consensus on the need for new or expanded transmission infrastructure 2. Recommendations on the process for siting of transmission lines 3. Recommendations on the tools needed to support regional planning, cost allocation, and siting efforts. List of Dialogue participants: List of Dialogue Participants: American Electric Power American Transmission Company American Wind Energy Association California ISO Calpine Corporation Cinergy Edison Electric Institute Environmental Defense Federal Energy Regulatory Commission Great River Energy International Transmission Company ISO-New England Iowa Public Utility Board Kanner & Associates Midwest ISO National Association of Regulatory Utility Commissioners National Association

  8. DOE Transmission Workshop

    Broader source: Energy.gov (indexed) [DOE]

    Order No. 1000 Transmission Ratemaking Enabling New Resources - Demand Response - Variable Generation - Storage 2 Stages of Transmission Planning - Local, ...

  9. Discovery of Charm

    DOE R&D Accomplishments [OSTI]

    Goldhaber, G.

    1984-11-01

    In my talk I will cover the period 1973 to 1976 which saw the discoveries of the J/psi and psi' resonances and most of the Psion spectroscopy, the tau lepton and the D0030099,D0015599 charmed meson doublet. Occasionally I will refer briefly to more recent results. Since this conference is on the history of the weak-interactions I will deal primarily with the properties of naked charm and in particular the weakly decaying doublet of charmed mesons. Most of the discoveries I will mention were made with the SLAC-LBL Magnetic Detector or MARK I which we operated at SPEAR from 1973 to 1976.

  10. QER Report: Energy Transmission, Storage, and Distribution Infrastruct...

    Broader source: Energy.gov (indexed) [DOE]

    Chapter VII Appendix B NATURAL GAS NG-2 QER Report: Energy Transmission, Storage, and ... time horizon under consideration for the Quadrennial Energy Review). Increasing Demand. ...

  11. QER Report: Energy Transmission, Storage, and Distribution Infrastruct...

    Broader source: Energy.gov (indexed) [DOE]

    Chapter VII Appendix C ELECTRICITY EL-2 QER Report: Energy Transmission, Storage, and ... policy objectives, such as greenhouse gas reduction and state renewable energy goals. ...

  12. Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

  13. Hydromechanical transmission

    DOE Patents [OSTI]

    Orshansky, Jr. deceased, Elias; Weseloh, William E.

    1978-01-01

    A power transmission having three planetary assemblies, each having its own carrier and its own planet, sun, and ring gears. A speed-varying module is connected in driving relation to the input shaft and in driving relationship to the three sun gears, all of which are connected together. The speed-varying means may comprise a pair of hydraulic units hydraulically interconnected so that one serves as a pump while the other serves as a motor and vice versa, one of the units having a variable stroke and being connected in driving relation to the input shaft, the other unit, which may have a fixed stroke, being connected in driving relation to the sun gears. The input shaft also drives the carrier of the third planetary assembly. A brake grounds the first carrier in the first range and in reverse and causes drive to be delivered to the output through the first ring gear in a hydrostatic mode. The carrier of the third planetary assembly drives the ring gear of the second planetary assembly, and a first clutching means connects the second carrier with the output in a second range, the brake for grounding the first carrier then being released. A second clutching means enables the third ring gear to drive the output shaft in a third range.

  14. Published New Reservoir Proved Revision Revision New Field Discoveries

    U.S. Energy Information Administration (EIA) Indexed Site

    Total natural gas proved reserves, reserves changes, and production, wet after lease separation, 2014 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and subdivision 12/31/13 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/14 Alaska 7,383 -25 268 690 167 195 146 0 0 305 6,805 Lower 48 States 346,611 4,930 55,060 53,654

  15. Published New Reservoir Proved Revision Revision New Field Discoveries

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated natural gas proved reserves, reserves changes, and production, wet after lease separation, 2014 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/13 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/14 Alaska 955 -24 89 137 0 34 138 0 0 101 954 Lower 48 States 294,549 3,533 41,975 44,047

  16. Published New Reservoir Proved Revision Revision New Field Discoveries

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2014 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/13 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/14 Alaska 6,428 -1 179 553 167 161 8 0 0 204 5,851 Lower 48 States 52,062 1,397

  17. RAPID/BulkTransmission/Transmission Siting & Interconnection...

    Open Energy Info (EERE)

    federal review). Bulk Transmission Transmission Siting & Interconnection in New Mexico New Mexico Statutes (N.M.S.) 62-9-1, 62-9-3(B), and 62-9-3.2 No Location Permit may be...

  18. Evalutation of Natural Gas Pipeline Materials and Infrastructure for Hydrogen/Mixed Gas Service

    Office of Energy Efficiency and Renewable Energy (EERE)

    Objectives: To assist DOE-EE in evaluating the feasibility of using the existing natural gas transmission and distribution piping network for hydrogen/mixed gas delivery

  19. NREL: Transmission Grid Integration - Transmission Planning and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Printable Version Transmission Grid Integration Home Issues Projects Western Wind & Solar ... Electricity Market Operations Energy Imbalance Markets FESTIV Model Active ...

  20. Decades of Discovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 6/1/2011 2.24 Unraveling the Mystery of High-Temperature Superconductivity Since the discovery in the 1980s of high-temperature superconductors, the Office of Science has supported research designed to explain and improve the physical behavior of these materials and develop methods of making wires and other objects from them. These materials conduct electricity with virtually no resistance at temperatures high enough to be cooled by liquid nitrogen (-196 degrees C, or -321 degrees F) instead

  1. Natural gas industry directory

    SciTech Connect (OSTI)

    1999-11-01

    This directory has information on the following: associations and organizations; exploration and production; gas compression; gas processors; gathering and transmission companies; liquefied natural gas; local distribution companies; marketing firms; regulatory agencies; service companies; suppliers and manufacturers; and regional buyer`s guide.

  2. Transmission Capacity Forum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Email Address: Name: Organization Entity Type: Select the best fit for your role... Energy Trader Transmission Provider Employee Transmission Purchaser Energy Scheduler...

  3. Survey of Transmission Cost Allocation Methodologies for Regional Transmission Organizations

    SciTech Connect (OSTI)

    Fink, S.; Porter, K.; Mudd, C.; Rogers, J.

    2011-02-01

    The report presents transmission cost allocation methodologies for reliability transmission projects, generation interconnection, and economic transmission projects for all Regional Transmission Organizations.

  4. Sandia Energy - Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Grid Integration Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Transmission Grid Integration Transmission Grid...

  5. Langley Deep Field, discovery and interpretation

    SciTech Connect (OSTI)

    Henderson, G.J.; Lake, E.A.; Douglas, G.

    1984-01-01

    In May 1978, ARCO Oil and Gas Co. completed the Langley Deep Unit 1 well in Lea County, New Mexico, discovering a deep gas field with production from two horizons. The discovery well produces gas from a northwest-southeast-trending anticline that has a reverse fault at the Ellenburger formation on the northeast flank of the structure. This reverse fault, possibly persistent to the base of the Wolfcamp Formation, generated an anticlinal feature in the upthrown block at the Devonian level. The fault itself is the trap at the Ellenburger formation. Since the discovery of the Langley Deep field in 1978, a new geologic interpretation has been proposed for the eastern rim of the Delaware basin. A major conclusion, based on seismic control, the well control from this field, and on subsurface control throughout southern Lea County, New Mexico, is that a strike-slip fault was activated during the Late Pennsylvanian and Early Permian and caused deformation resulting in the formation of the Langley Deep structure.

  6. Decades of Discovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 6/1/2011 3.2 Discovery of One of the Smallest Particles of Matter Forces of nature are mediated by the interaction or exchange of particles called bosons. In 1989, experiments at Stanford Linear Accelerator Center and the European Laboratory for Particle Physics (also known as CERN) made precise measurements of the lifetime of the Z0 boson, which carries the "weak force" that allows particles to change form. The experiment was significant because it implied that only three families

  7. LBNL-41172 Discovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    41172 Discovery of a Supernova Explosion at Half the Age of the Universe and its Cosmological Implications S. Perlmutter, G. Aldering, M. Della Valle, S. Deustua, R. S. Ellis, S. Fabbro, A. Fruchter, G. Goldhaber, A. Goobar, D. E. Groom, 1. M. Hook, A. G. Kim, M. Y. Kim, R.A. Knop, C. Lidman, R. G. McMahon, P. Nugent, R. Pain, N. Panagia, C. R. Pennypacker, P. Ruiz-Lapuente, B. Schaefer & N. Walton (The Supernova Cosmology Project) This work was supported in part by the Director, Office of

  8. Asian natural gas

    SciTech Connect (OSTI)

    Klass, D.L. ); Ohashi, T. )

    1989-01-01

    This book presents an overview of the present status and future development in Asia of domestic and export markets for natural gas and to describes gas utilization technologies that will help these markets grow. A perspective of natural gas transmission, transport, distribution, and utilization is presented. The papers in this book are organized under several topics. The topics are : Asian natural gas markets, Technology of natural gas export projects, Technology of domestic natural gas projects, and Natural gas utilization in power generation, air conditioning, and other applications.

  9. Agenda: Natural Gas: Transmission, Storage and Distribution ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jeff Herholdt, Director, West Virginia Division of Energy Jo Sexton, Director, Cambridge (OH) Area Chamber of Commerce 2:00 PM - Open Microphone for Public Comments People ...

  10. Waveguide gas laser

    SciTech Connect (OSTI)

    Zedong, C.

    1982-05-01

    Waveguide gas lasers are described. Transmission loss of hollow tube light waveguides, coupling loss, the calculation of output power, and the width of the oscillation belt are discussed. The structure of a waveguide CO/sub 2/ laser is described.

  11. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    that had been in place since February 1. Other pipeline companies, such as CenterPoint Energy Gas Transmission Company and Southern Star Central Gas Pipeline Corporation, both...

  12. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    more from the system than they nominate. Other pipeline companies, such as CenterPoint Energy Gas Transmission Company and Southern Star Central Gas Pipeline Corporation, both...

  13. Evalutation of Natural Gas Pipeline Materials and Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Objectives: To assist DOE-EE in evaluating the feasibility of using the existing natural gas transmission and distribution piping network for hydrogenmixed gas delivery ...

  14. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Significant New Deepwater Oil and Natural Gas Discovery: A successful production test in the deepwater Gulf of Mexico has confirmed a significant new oil play in the lower...

  15. System for Information Discovery

    Energy Science and Technology Software Center (OSTI)

    1998-09-25

    SID characterizes natural language based documents so that they may be related and retrieved based on content similarity. This technology processes textual documents, autonoumsly identifies the major topics of the document set, and constructs an interpretable, high dimensional representation of each document. SID also provides the ability to interactively reweight representations based on user need, so users may analyze the dataset from multiple points of view. The particular advantages SID offers are speed, data compression,more » flexibility in representation, and incremental processing. SPIRE consists of software for visual analysis of text-based information sources. This technology enables users to make discoveries about the content of very large sets of textual documents without requiring the user to read or presort the documents. It employs algorithms for text and word proximity analysis to identify the key themes within the documents. The results of this analysis are projected onto a visual spatial proximity display (Galaxies or Themescape) where document proximity represents the degree of relatedness of theme.« less

  16. Published New Reservoir Proved Revision Revision New Field Discoveries

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2014 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/13 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/14 Alaska 0 0 0 0 0 0 0 0 0 0 0 Lower 48 States 159,115 12,113 27,643 26,199 5,029 7,657 35,401

  17. Automated manual transmission controller

    DOE Patents [OSTI]

    Lawrie, Robert E.; Reed, Jr., Richard G.; Bernier, David R.

    1999-12-28

    A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.

  18. Fermilab | Inquiring Minds | Neutrino | Discovery | Particles...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | theory | astrophysics | discoveries at Fermilab Discoveries at Fermilab - The Tau Neutrino Neutrino Symbol An international collaboration of scientists at the Department...

  19. Materials Discovery | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery Images of red and yellow particles NREL's research in materials discovery serves as a foundation for technological progress in renewable energies. Our experimental activities in inorganic solid-state materials innovation span a broad range of technological readiness levels-from basic science through applied research to device development-relying on a high-throughput combinatorial materials science approach, followed by traditional targeted experiments. In addition, our researchers work

  20. Pulsed gas laser

    DOE Patents [OSTI]

    Anderson, Louis W.; Fitzsimmons, William A.

    1978-01-01

    A pulsed gas laser is constituted by Blumlein circuits wherein space metal plates function both as capacitors and transmission lines coupling high frequency oscillations to a gas filled laser tube. The tube itself is formed by spaced metal side walls which function as connections to the electrodes to provide for a high frequency, high voltage discharge in the tube to cause the gas to lase. Also shown is a spark gap switch having structural features permitting a long life.

  1. Load-resistant coaxial transmission line

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe

    2006-01-03

    A transmission line for downhole tools that make up all or part of a tool string for drilling and production of oil, gas, and geothermal wells that can withstand the dynamic gravitational forces and other accelerations associated with downhole excavations. The transmission line has a metal tube, or outer conductor, that houses a coaxial wire inner conductor. A non-metallic dielectric material is interposed between the inner and outer conductors. The outer and inner conductors and the dielectric are sufficiently compressed together so that independent motion between them is abated. Compression of the components of the transmission line may be achieved by drawing the transmission through one or more dies in order to draw down the outer conductor onto the dielectric, or by expanding the inner conductor against the dielectric using a mandrel or hydraulic pressure. Non-metallic bead segments may be used in aid of the compression necessary to resist the dynamic forces and accelerations of drilling.

  2. Transmission Planning Analysis Tool

    SciTech Connect (OSTI)

    2015-06-23

    Developed to solve specific problem: Assist transmission planning for regional transfers in interconnected power systems. This work was originated in a study for the U.S. Department of State, to recommend transmission reinforcements for the Central American regional system that interconnects 6 countries. Transmission planning analysis is currently performed by engineers with domainspecific and systemspecific knowledge without a unique methodology. The software codes of this disclosure assists engineers by defining systematic analysis procedures to help identify weak points and make decisions on transmission planning of regional interconnected power systems. Transmission Planning Analysis Tool groups PSS/E results of multiple AC contingency analysis and voltage stability analysis and QV analysis of many scenarios of study and arrange them in a systematic way to aid power system planning engineers or transmission operators in effective decision]making process or in the off]line study environment.

  3. Transmission Planning Analysis Tool

    Energy Science and Technology Software Center (OSTI)

    2015-06-23

    Developed to solve specific problem: Assist transmission planning for regional transfers in interconnected power systems. This work was originated in a study for the U.S. Department of State, to recommend transmission reinforcements for the Central American regional system that interconnects 6 countries. Transmission planning analysis is currently performed by engineers with domainspecific and systemspecific knowledge without a unique methodology. The software codes of this disclosure assists engineers by defining systematic analysis procedures to help identifymore » weak points and make decisions on transmission planning of regional interconnected power systems. Transmission Planning Analysis Tool groups PSS/E results of multiple AC contingency analysis and voltage stability analysis and QV analysis of many scenarios of study and arrange them in a systematic way to aid power system planning engineers or transmission operators in effective decision]making process or in the off]line study environment.« less

  4. NREL: Transmission Grid Integration - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Want updates about future transmission grid integration webinars and ... and Transmission Study Flexible Energy Scheduling Tool for Integration of ...

  5. Series Transmission Line Transformer

    DOE Patents [OSTI]

    Buckles, Robert A.; Booth, Rex; Yen, Boris T.

    2004-06-29

    A series transmission line transformer is set forth which includes two or more of impedance matched sets of at least two transmissions lines such as shielded cables, connected in parallel at one end ans series at the other in a cascading fashion. The cables are wound about a magnetic core. The series transmission line transformer (STLT) which can provide for higher impedance ratios and bandwidths, which is scalable, and which is of simpler design and construction.

  6. Electrical Engineer- Transmission Lines

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration, Upper Great Plains Region, Maintenance, North Dakota Maintenance, Transmission...

  7. Current Transmission Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  8. Previous Transmission Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  9. 2012 Transmission Rate Schedules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Transmission, Ancillary, and Control Area Service Rate Schedules and General Rate Schedule Provisions (FY 2014-2015) October 2013 United States Department of Energy...

  10. Collaborative Transmission Technology Roadmap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Addendum to the Collaborative Transmission Technology Roadmap March 2014 Bonneville Power Administration Enhanced PDF Functionality Functionality of the PDF version of this...

  11. Transmission - Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact-Information-Transmission Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects &...

  12. Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Energy, SMART Grid, Systems Analysis, Transmission Grid Integration, Wind Energy Sandia Contributes to International Electrotechnical Commission IEC 61400-26 Availability ...

  13. Hydrogen Transmission and Distribution Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transmission and Distribution Workshop Hydrogen Transmission and Distribution Workshop The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) held a Hydrogen Transmission and Distribution Workshop on February 25-26, 2014, in Golden, Colorado. The workshop included experts from the industrial gas and energy industries, national laboratories, academia, and the National Institute of Standards and Technology with expertise in the relevant fields. The objective was to

  14. Transmission Line Security Monitor

    SciTech Connect (OSTI)

    2011-01-01

    The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.

  15. Transmission Line Security Monitor

    ScienceCinema (OSTI)

    None

    2013-05-28

    The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.

  16. Fault Detection Tool Project: Automatic Discovery of Faults using Machine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learning Fault Detection Tool Project: Automatic Discovery of Faults using Machine Learning - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization

  17. China develops natural gas industry

    SciTech Connect (OSTI)

    An, Z.

    1982-09-06

    As of 1981, China was producing some 474.4 billion CF (12.74 billion m/sup 3/)/yr of natural gas from over 60 gas fields, 40 of them in Sichuan Province. The Sichuan gas lies in fractures and solution cavities in limestone and dolomite formations that generally require stimulation. After desulfurization, the gas is used by the steel and chemical industries and for residential heating. Recent discoveries in other areas of China include the Guxinzhuang field in the Bohai-North China basin, where geological conditions favor large gas pools, and the Sebei fields in Qaidam basin, northwest China.

  18. EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline Systems

    U.S. Energy Information Administration (EIA) Indexed Site

    Interstate Pipelines Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Thirty Largest U.S. Interstate Natural Gas Pipeline Systems, 2008 (Ranked by system capacity) Pipeline Name Market Regions Served Primary Supply Regions States in Which Pipeline Operates Transported in 2007 (million dekatherm)1 System Capacity (MMcf/d) 2 System Mileage Columbia Gas Transmission Co. Northeast Southwest, Appalachia DE, PA, MD, KY, NC, NJ, NY,

  19. Total Natural Gas Gross Withdrawals (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From

  20. Natural Gas Underground Storage Capacity (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From

  1. Electric Transmission System Workshop

    Broader source: Energy.gov (indexed) [DOE]

    Lauren Azar Senior Advisor to Secretary Chu November 2, 2012 Electric Transmission System ... Can we agree on several key design attributes for the future grid? Taking Action in the ...

  2. Downhole transmission system

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe

    2008-01-15

    A transmission system in a downhole component comprises a data transmission element in both ends of the downhole component. Each data transmission element houses an electrically conducting coil in a MCEI circular trough. An electrical conductor connects both the transmission elements. The electrical conductor comprises at least three electrically conductive elements insulated from each other. In the preferred embodiment the electrical conductor comprises an electrically conducting outer shield, an electrically conducting inner shield and an electrical conducting core. In some embodiments of the present invention, the electrical conductor comprises an electrically insulating jacket. In other embodiments, the electrical conductor comprises a pair of twisted wires. In some embodiments, the electrical conductor comprises semi-conductive material.

  3. Electricity Transmission, A Primer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... the power from low-cost, mine- mouth coal power plants and wind generators in Wyoming. ... As a result, the transmission system helps to insulate electricity consumers from the ...

  4. Transmission Grid Integration

    Office of Energy Efficiency and Renewable Energy (EERE)

    The levels of solar energy penetration envisioned by the DOE SunShot Initiative must be interconnected effectively onto the transmission grid. This interconnection requires an in-depth...

  5. Down hole transmission system

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT)

    2007-07-24

    A transmission system in a downhole component comprises a data transmission element in both ends of the downhole component. Each data transmission element houses an electrically conducting coil in a MCEI circular trough. The electrically conducting coil comprises at least two generally fractional loops. In the preferred embodiment, the transmission elements are connected by an electrical conductor. Preferably, the electrical conductor is a coaxial cable. Preferably, the MCEI trough comprises ferrite. In the preferred embodiment, the fractional loops are connected by a connecting cable. In one aspect of the present invention, the connecting cable is a pair of twisted wires. In one embodiment the connecting cable is a shielded pair of twisted wires. In another aspect of the present invention, the connecting cable is a coaxial cable. The connecting cable may be disposed outside of the MCEI circular trough.

  6. Transmission SEAB Presentation

    Broader source: Energy.gov (indexed) [DOE]

    "05 * Nine Agency MOU - Oct. 2009 * Transmission Cabinet * Designated 7 Pilot Projects DOD CEQ FERC USDA DOE ACHP EPA DOI DOC RRTT Pilot Projects RRTT Rapid Response Team for ...

  7. Transmission Developers Inc.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ' % ~ Transmission Developers Inc. July 7, 2011 Mr. Anthony J. Como Director, Permitting and Siting Office ofElectricity Delivery and Energy Reliability (OE-20) U.S. Department of Energy 1000 Independence A venue SW, Room 8G-024 Washington, D.C. 20585 Subject: Champlain Hudson Power Express Project U.S. Department of Energy Presidential Permit Application PP-362 Dear Mr. Como: On January 25, 2010, Transmission Developers, Inc. ("TDI'' or "Applicants") submitted on behalf of

  8. Transmission Infrastructure Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TRANSMISSION INFRASTRUCTURE PROGRAM DOE Tribal Energy Summit 2015 SECRETARYOF ENERGY'S FINANCING ROUNDTABLE Tracey A. LeBeau Senior Vice President & Transmission Infrastructure Program Manager 1 Program Description Western's Loan Authority * $3.25 billion permanent authority (revolving) * Goal: Attract investment in infrastructure & address market needs * Commercial underwriting standards TIP Portfolio Management Fundamentals * Reflective of Market Need(s) * Ensure Funds Revolve 2 Recent

  9. EIS-0411: Transmission Agency of Northern California Transmission Project

    Broader source: Energy.gov [DOE]

    This EIS is for the Western Area Power Administration construction, operation, and maintenance of the proposed transmission agency of Northern California Transmission Project, California.

  10. National transmission grid study

    SciTech Connect (OSTI)

    Abraham, Spencer

    2003-05-31

    The National Energy Policy Plan directed the U.S. Department of Energy (DOE) to conduct a study to examine the benefits of establishing a national electricity transmission grid and to identify transmission bottlenecks and measures to address them. DOE began by conducting an independent analysis of U.S. electricity markets and identifying transmission system bottlenecks using DOE’s Policy Office Electricity Modeling System (POEMS). DOE’s analysis, presented in Section 2, confirms the central role of the nation’s transmission system in lowering costs to consumers through increased trade. More importantly, DOE’s analysis also confirms the results of previous studies, which show that transmission bottlenecks and related transmission system market practices are adding hundreds of millions of dollars to consumers’ electricity bills each year. A more detailed technical overview of the use of POEMS is provided in Appendix A. DOE led an extensive, open, public input process and heard a wide range of comments and recommendations that have all been considered.1 More than 150 participants registered for three public workshops held in Detroit, MI (September 24, 2001); Atlanta, GA (September 26, 2001); and Phoenix, AZ (September 28, 2001).

  11. U.S. Shale Proved Reserves New Field Discoveries (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Field Discoveries (Billion Cubic Feet) U.S. Shale Proved Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 868 2010's 557 232 353 16 158 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas New Field Discoveries

  12. Transmission Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Grid Tech Team » Activities/Outreach » GTT Activities » Transmission Workshop Transmission Workshop Transmission Workshop GTT Transmission Workshop - November 1-2, 2012 On November 1-2, 2012, the GTT presented a workshop on grid integration on the transmission system at the DoubleTree Crystal City near Washington, DC. A draft of the DOE Action Plan Addressing the Electricity Transmission System was discussed during the workshop, which addressed the challenges and opportunities presented

  13. ITC Transmission | Open Energy Information

    Open Energy Info (EERE)

    ITC Transmission Jump to: navigation, search Name: ITC Transmission Place: Michigan Phone Number: Western Michigan Office: (269) 792-7223 -- Northern Michigan Office: (989)...

  14. Transmission | Open Energy Information

    Open Energy Info (EERE)

    land in 11 Western States (Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming) for oil, gas and hydrogen pipelines and...

  15. Opportunities for Efficiency Improvements in the U.S. Natural Gas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transmission, Storage and Distribution System | Department of Energy Opportunities for Efficiency Improvements in the U.S. Natural Gas Transmission, Storage and Distribution System Opportunities for Efficiency Improvements in the U.S. Natural Gas Transmission, Storage and Distribution System This report provides an in-depth review of the opportunities for energy efficiency in the U.S. natural gas transmission, storage and distribution system, from gas gathering at wellheads to final delivery

  16. Transmission line capital costs

    SciTech Connect (OSTI)

    Hughes, K.R.; Brown, D.R.

    1995-05-01

    The displacement or deferral of conventional AC transmission line installation is a key benefit associated with several technologies being developed with the support of the U.S. Department of Energy`s Office of Energy Management (OEM). Previous benefits assessments conducted within OEM have been based on significantly different assumptions for the average cost per mile of AC transmission line. In response to this uncertainty, an investigation of transmission line capital cost data was initiated. The objective of this study was to develop a database for preparing preliminary estimates of transmission line costs. An extensive search of potential data sources identified databases maintained by the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) as superior sources of transmission line cost data. The BPA and WAPA data were adjusted to a common basis and combined together. The composite database covers voltage levels from 13.8 to 765 W, with cost estimates for a given voltage level varying depending on conductor size, tower material type, tower frame type, and number of circuits. Reported transmission line costs vary significantly, even for a given voltage level. This can usually be explained by variation in the design factors noted above and variation in environmental and land (right-of-way) costs, which are extremely site-specific. Cost estimates prepared from the composite database were compared to cost data collected by the Federal Energy Regulatory Commission (FERC) for investor-owned utilities from across the United States. The comparison was hampered because the only design specifications included with the FERC data were voltage level and line length. Working within this limitation, the FERC data were not found to differ significantly from the composite database. Therefore, the composite database was judged to be a reasonable proxy for estimating national average costs.

  17. Fermilab | Science | Particle Physics | Key Discoveries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Key Discoveries Fermilab produced its first high-energy particle beam on March 1, 1972. Since then hundreds of experiments have used Fermilab's accelerators to study matter at ever smaller scales and its detectors to study the universe at great distances. Here an overview of the top achievements so far. Discovery of the Higgs boson Discovery of the top quark Discovery of the bottom quark Observation of tau neutrino Discovery of a quasar at a distance of 27 billion light-years Observation of

  18. Natural gas pipeline technology overview.

    SciTech Connect (OSTI)

    Folga, S. M.; Decision and Information Sciences

    2007-11-01

    The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies

  19. Printed circuit dispersive transmission line

    DOE Patents [OSTI]

    Ikezi, H.; Lin-Liu, Y.R.; DeGrassie, J.S.

    1991-08-27

    A printed circuit dispersive transmission line structure is disclosed comprising an insulator, a ground plane formed on one surface of the insulator, a first transmission line formed on a second surface of the insulator, and a second transmission line also formed on the second surface of the insulator and of longer length than the first transmission line and periodically intersecting the first transmission line. In a preferred embodiment, the transmission line structure exhibits highly dispersive characteristics by designing the length of one of the transmission line between two adjacent periodic intersections to be longer than the other. 5 figures.

  20. Printed circuit dispersive transmission line

    DOE Patents [OSTI]

    Ikezi, Hiroyuki; Lin-Liu, Yuh-Ren; DeGrassie, John S.

    1991-01-01

    A printed circuit dispersive transmission line structure is disclosed comprising an insulator, a ground plane formed on one surface of the insulator, a first transmission line formed on a second surface of the insulator, and a second transmission line also formed on the second surface of the insulator and of longer length than the first transmission line and periodically intersecting the first transmission line. In a preferred embodiment, the transmission line structure exhibits highly dispersive characteristics by designing the length of one of the transmission line between two adjacent periodic intersections to be longer than the other.

  1. Dry Natural Gas New Reservoir Discoveries in Old Fields

    Gasoline and Diesel Fuel Update (EIA)

    ,598 1,668 1,227 376 1,566 2,562 1977-2014 Federal Offshore U.S. 300 237 76 103 73 94 1990-2014 Pacific (California) 0 0 0 0 0 0 1977-2014 Gulf of Mexico (Louisiana & Alabama) 223 213 76 48 56 68 1981-2014 Gulf of Mexico (Texas) 77 24 0 55 17 26 1981-2014 Alaska 0 0 3 0 1 0 1977-2014 Lower 48 States 2,598 1,668 1,224 376 1,565 2,562 1977-2014 Alabama 0 0 0 0 0 14 1977-2014 Arkansas 36 27 23 11 1 2 1977-2014 California 0 0 0 9 2 2 1977-2014 Coastal Region Onshore 0 0 0 0 0 0 1977-2014 Los

  2. Dry Natural Gas New Reservoir Discoveries in Old Fields (Summary)

    Gasoline and Diesel Fuel Update (EIA)

    2,598 1,668 1,227 376 1,566 2,562 1977-2014 Alabama 0 0 0 0 0 14 1977-2014 Alaska 0 0 3 0 1 0 1977-2014 Arkansas 36 27 23 11 1 2 1977-2014 California 0 0 0 9 2 2 1977-2014 Colorado 0 27 0 0 12 6 1977-2014 Florida 0 0 0 0 0 0 1977-2014 Kansas 0 1 1 0 0 0 1977-2014 Kentucky 0 0 0 0 0 1 1977-2014 Louisiana 1,542 279 167 13 21 69 1981-2014 Michigan 9 0 0 1 3 1 1977-2014 Mississippi 0 0 0 0 0 2 1977-2014 Montana 0 1 1 0 0 0 1977-2014 New Mexico 3 3 9 4 89 3 1977-2014 New York 0 0 27 0 0 0 1977-2014

  3. Dry Natural Gas Proved Reserves New Field Discoveries (Summary)

    Gasoline and Diesel Fuel Update (EIA)

    1,372 850 947 762 256 632 1977-2014 Alabama 0 3 2 0 0 0 1977-2014 Alaska 0 0 0 0 0 0 1977-2014 Arkansas 0 0 0 0 0 0 1977-2014 California 1 1 0 4 0 0 1977-2014 Colorado 8 22 18 9 0 0 1977-2014 Florida 0 0 0 0 0 0 1977-2014 Kansas 0 4 0 5 0 0 1977-2014 Kentucky 0 0 1 0 0 0 1977-2014 Louisiana 257 48 47 5 17 57 1981-2014 Michigan 19 2 14 7 0 0 1977-2014 Mississippi 2 0 1 1 0 1 1977-2014 Montana 0 0 7 0 0 0 1977-2014 New Mexico 1 0 3 1 0 1 1977-2014 New York 0 56 0 0 0 0 1977-2014 North Dakota 6 25

  4. Natural Gas Liquids New Reservoir Discoveries in Old Fields

    Gasoline and Diesel Fuel Update (EIA)

    72 54 42 53 58 68 1979-2008 Federal Offshore U.S. 37 32 21 19 16 18 1981-2008 Pacific (California) 0 0 0 0 0 0 1979-2008 Gulf of Mexico (Louisiana & Alabama) 32 31 19 18 16 17 1981-2008 Gulf of Mexico (Texas) 5 1 2 1 0 1 1981-2008 Alaska 0 0 0 0 0 0 1979-2008 Lower 48 States 72 54 42 53 58 68 1979-2008 Alabama 0 0 0 0 0 0 1979-2008 Arkansas 0 0 0 0 0 0 1979-2008 California 0 0 0 0 0 1 1979-2008 Coastal Region Onshore 0 0 0 0 0 0 1979-2008 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2008 San

  5. New Field Discoveries of Dry Natural Gas Reserves

    Gasoline and Diesel Fuel Update (EIA)

    1,372 850 947 762 256 632 1977-2014 Federal Offshore U.S. 308 68 562 82 84 378 1990-2014 Pacific (California) 0 0 0 0 0 0 1977-2014 Gulf of Mexico (Louisiana & Alabama) 48 68 562 64 84 378 1981-2014 Gulf of Mexico (Texas) 260 0 0 18 0 0 1981-2014 Alaska 0 0 0 0 0 0 1977-2014 Lower 48 States 1,372 850 947 762 256 632 1977-2014 Alabama 0 3 2 0 0 0 1977-2014 Arkansas 0 0 0 0 0 0 1977-2014 California 1 1 0 4 0 0 1977-2014 Coastal Region Onshore 0 0 0 0 0 0 1977-2014 Los Angeles Basin Onshore 0 0

  6. New Field Discoveries of Natural Gas, Wet After Lease Separation

    Gasoline and Diesel Fuel Update (EIA)

    1,423 895 987 780 263 671 1979-2014 Federal Offshore U.S. 310 71 590 87 88 399 1990-2014 Pacific (California) 0 0 0 0 0 0 1979-2014 Gulf of Mexico (Louisiana & Alabama) 50 71 590 68 88 399 1981-2014 Gulf of Mexico (Texas) 260 0 0 19 0 0 1981-2014 Alaska 0 0 0 0 0 0 1979-2014 Lower 48 States 1,423 895 987 780 263 671 1979-2014 Alabama 0 3 2 0 0 0 1979-2014 Arkansas 0 0 0 0 0 0 1979-2014 California 1 1 0 4 0 0 1979-2014 Coastal Region Onshore 0 0 0 0 0 0 1979-2014 Los Angeles Basin Onshore 0 0

  7. Nonassociated Natural Gas New Field Discoveries, Wet After Lease Separation

    Gasoline and Diesel Fuel Update (EIA)

    1,160 793 376 629 200 344 1979-2014 Federal Offshore U.S. 96 65 66 22 34 96 1990-2014 Pacific (California) 0 0 0 0 0 0 1979-2014 Gulf of Mexico (Louisiana & Alabama) 25 65 66 3 34 96 1981-2014 Gulf of Mexico (Texas) 71 0 0 19 0 0 1981-2014 Alaska 0 0 0 0 0 0 1979-2014 Lower 48 States 1,160 793 376 629 200 344 1979-2014 Alabama 0 1 0 0 0 0 1979-2014 Arkansas 0 0 0 0 0 0 1979-2014 California 1 1 0 0 0 0 1979-2014 Coastal Region Onshore 0 0 0 0 0 0 1979-2014 Los Angeles Basin Onshore 0 0 0 0 0

  8. Nonassociated Natural Gas New Reservoir Discoveries in Old Fields, Wet

    Gasoline and Diesel Fuel Update (EIA)

    After Lease Separation 2,487 1,515 1,100 179 1,099 2,161 1979-2014 Federal Offshore U.S. 186 95 38 28 65 90 1990-2014 Pacific (California) 0 0 0 0 0 0 1979-2014 Gulf of Mexico (Louisiana & Alabama) 150 83 38 22 47 64 1981-2014 Gulf of Mexico (Texas) 36 12 0 6 18 26 1981-2014 Alaska 0 0 3 0 1 0 1979-2014 Lower 48 States 2,487 1,515 1,097 179 1,098 2,161 1979-2014 Alabama 0 0 0 0 0 0 1979-2014 Arkansas 36 27 23 11 1 2 1979-2014 California 0 0 0 9 0 0 1979-2014 Coastal Region Onshore 0 0 0

  9. ARM - Measurement - Trace gas concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsTrace gas concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Trace gas concentration The amount per unit volume of trace gases other than carbon dioxide, nitrogen oxides, ozone and water vapor, typically measured in conjunction with in situ aerosol measurements, e.g. carbon monoxide, and sulfur dioxide. Categories Atmospheric State, Atmospheric Carbon Instruments The above

  10. Autonomous data transmission apparatus

    DOE Patents [OSTI]

    Kotlyar, Oleg M. (4675 W. 3825 S, Salt Lake City, UT 84120)

    1997-01-01

    A autonomous borehole data transmission apparatus for transmitting measurement data from measuring instruments at the downhole end of a drill string by generating pressure pulses utilizing a transducer longitudinally responsive to magnetic field pulses caused by electrical pulses corresponding to the measured downhole parameters.

  11. Autonomous data transmission apparatus

    DOE Patents [OSTI]

    Kotlyar, O.M.

    1997-03-25

    A autonomous borehole data transmission apparatus is described for transmitting measurement data from measuring instruments at the downhole end of a drill string by generating pressure pulses utilizing a transducer longitudinally responsive to magnetic field pulses caused by electrical pulses corresponding to the measured downhole parameters. 4 figs.

  12. Borehole data transmission apparatus

    DOE Patents [OSTI]

    Kotlyar, Oleg M.

    1993-01-01

    A borehole data transmission apparatus whereby a centrifugal pump impeller(s) is used to provide a turbine stage having substantial pressure characteristics in response to changing rotational speed of a shaft for the pressure pulsing of data from the borehole through the drilling mud to the surface of the earth.

  13. Borehole data transmission apparatus

    DOE Patents [OSTI]

    Kotlyar, O.M.

    1993-03-23

    A borehole data transmission apparatus is described whereby a centrifugal pump impeller(s) is used to provide a turbine stage having substantial pressure characteristics in response to changing rotational speed of a shaft for the pressure pulsing of data from the borehole through the drilling mud to the surface of the earth.

  14. Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen | Department of Energy Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of Hydrogen Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of Hydrogen Pipping of GH2 Pipeline. Background: FG 64 built in 50ies, KP added in 70ies, active mining area over total length hpwgw_questissues_campbell.pdf (1.02 MB) More Documents & Publications Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues Hydrogen Pipeline Discussion EIS-0487:

  15. Technical Workshop: Resilience Metrics for Energy Transmission and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distribution Infrastructure | Department of Energy Resilience Metrics for Energy Transmission and Distribution Infrastructure Technical Workshop: Resilience Metrics for Energy Transmission and Distribution Infrastructure During this workshop, EPSA invited technical experts from industry, national laboratories, academia, and NGOs to discuss the state of play of and need for resilience metrics and how they vary by natural gas, liquid fuels and electric grid infrastructures. Issues important to

  16. Drill string transmission line

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Bradford, Kline; Fox, Joe

    2006-03-28

    A transmission line assembly for transmitting information along a downhole tool comprising a pin end, a box end, and a central bore traveling between the pin end and the box end, is disclosed in one embodiment of the invention as including a protective conduit. A transmission line is routed through the protective conduit. The protective conduit is routed through the central bore and the ends of the protective conduit are routed through channels formed in the pin end and box end of the downhole tool. The protective conduit is elastically forced into a spiral or other non-linear path along the interior surface of the central bore by compressing the protective conduit to a length within the downhole tool shorter than the protective conduit.

  17. Appendix TFIELD: Transmissivity Fields

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Appendix TFIELD-2014 Transmissivity Fields United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico Compliance Recertification Application 2014 Appendix TFIELD-2014 Table of Contents TFIELD-1.0 Overview of the T-field Development, Calibration, and Mining Modification Process TFIELD-2.0 Geologic Data TFIELD-2.1 Culebra Hydrogeologic Setting TFIELD-2.2 Refinement of Geologic Boundaries TFIELD-2.2.1 Rustler Halite Margins TFIELD-2.2.2 Salado

  18. Requirements for Petitions to Construct Electric and Gas Facilities...

    Open Energy Info (EERE)

    requirements for petitions to construct electric generation, electric transmission, and natural gas facilities pursuant to 30 V.S.A. 248. In addition, the rule clarifies...

  19. Natural Gas Processing Plants in the United States: 2010 Update...

    Gasoline and Diesel Fuel Update (EIA)

    National Overview Btu Content The natural gas received and transported by the major intrastate and interstate mainline transmission systems must be within a specific energy (Btu)...

  20. Microsoft Word - Gas-Electricity Briefing Memo 072414 FINAL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    21 in Cheyenne, Wyoming); and electricity transmission, storage, and distribution issues ... flexibility factors that led to past investment in natural gas generation will ...

  1. Materials Discovery across Technological Readiness Levels | Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science | NREL Materials Discovery across Technological Readiness Levels Materials discovery is important across technology readiness levels: basic science, applied research, and device development. Over the past several years, NREL has worked at each of these levels, demonstrating our competence in a broad range of materials discovery problems. Basic Science An image of a triangular diagram with tantalum-cobalt-tin at the top vertex, tantalum at the lower left vertex, and cobalt at the

  2. Stories of Discovery & Innovation: Scientists Create World's...

    Office of Science (SC) Website

    Scientists Create World's Smallest Battery Energy Frontier Research Centers (EFRCs) EFRCs ... Stories of Discovery & Innovation: Scientists Create World's Smallest Battery Print Text ...

  3. Geothermal Resources and Transmission Planning

    Broader source: Energy.gov [DOE]

    This project addresses transmission-related barriers to utility-scale deployment of geothermal electric generation technologies.

  4. GTT 2012 Transmission Workshop- Documents

    Broader source: Energy.gov [DOE]

    Use the links below to download documents from the GTT's Transmission Workshop, held November 1-2, 2012

  5. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    while the OFO was in effect. Pacific Gas and Electric Company extended a systemwide high-inventory OFO on its California Gas Transmission system through Saturday, July 5. It was...

  6. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    the Northeast were expected to be in the single digits. Prices off Transcontinental Gas Pipe Line in New York and Algonquin Gas Transmission in the New England region yesterday...

  7. Electricity Transmission, A Primer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transmission, A Primer Electricity Transmission, A Primer This primer on electric transmission is intended to help policymakers understand the physics of the transmission system, the economics, and the policies. Electricity Transmission, A Primer (1.95 MB) More Documents & Publications Draft Chapter 4: Transmission Adequacy Electricity Grid Basics Webinar Presentation Slides and Text Version Chapter 4 Transmission Adequacy

  8. EIA - Natural Gas Pipeline Network - Region To Region System Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Levels Interregional Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Interregional Natural Gas Transmission Pipeline Capacity, Close of 2008 (Million cubic feet per day) Map of Interregional Natural Gas Transmission Pipeline Capacity in 2008 The EIA has determined that the informational map displays here do not raise security concerns, based on the application of the Federal Geographic Data Committee's Guidelines for

  9. Colorado Electrical Transmission Grid

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: Xcel Energy Publication Date: 2012 Title: Colorado XcelEnergy NonXcel Transmission Network Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains transmission network of Colorado Spatial Domain: Extent: Top: 4540689.017558 m Left: 160606.141934 m Right: 758715.946645 m Bottom: 4098910.893397m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shapefile

  10. Automated manual transmission clutch controller

    DOE Patents [OSTI]

    Lawrie, Robert E.; Reed, Jr., Richard G.; Rausen, David J.

    1999-11-30

    A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.