Powered by Deep Web Technologies
Note: This page contains sample records for the topic "disciplines magnetism materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Major Facilities for Materials Research and Related Disciplines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities Facilities for Materials Research and Related Disciplines Major Materials Facilities Committee Commission on Physical Sciences, Mathematics, and Resources National Research Council NATIONAL ACADEMY PRESS Washington, DC 1984 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. This report has been reviewed by a group other than the authors according to procedures approved by a Report Review Committee con- sisting of members of the National Academy of Sciences, the National

2

NEW MAGNETIC MATERIALS  

Science Journals Connector (OSTI)

New, sophisticated magnetic materials can be found as essential components in computers, sensors, and actuators, and in a variety of telecommunications devices ranging from telephones to satellites. Some of th...

STANOJA STOIMENOV

2006-01-01T23:59:59.000Z

3

Superconductivity and Magnetism: Materials Properties  

E-Print Network [OSTI]

#12;#12;Superconductivity and Magnetism: Materials Properties and Developments #12;Copyright 2003 and Magnetism: Materials Properties and Developments Extended abstracts of the 24th Risø International Symposium LABORATORY ROSKILDE, DENMARK #12;Risø International Symposium on Superconductivity and Magnetism: Material

4

Soft Magnetic Materials in Telecommunications  

Science Journals Connector (OSTI)

... , the subject being "Soft Magnetic Materials whose Properties are of Use or Significance in Telecommunications". The meetings were attended by about seventy people from Great Britain and the Continent ... for a few papers which dealt with aspects of the matter not generally considered by telecommunications engineers, the authors concentrated on the following main lines : theoretical consequences of domain ...

1952-05-31T23:59:59.000Z

5

Cryogenic structural materials for superconducting magnets  

SciTech Connect (OSTI)

This paper reviews research in the United States and Japan on structural materials for high-field superconducting magnets. Superconducting magnets are used for magnetic fusion energy devices and for accelerators that are used in particle-physics research. The cryogenic structural materials that we review are used for magnet cases and support structures. We expect increased materials requirements in the future.

Dalder, E.N.C.; Morris, J.W. Jr.

1985-02-22T23:59:59.000Z

6

Background Material Important Questions about Magnetism  

E-Print Network [OSTI]

Background Material Important Questions about Magnetism: 1) What is Magnetism?Magnetism is a force or repulsion due to charge is called the electric force. But what about magnetism, is there a fundamental property of some matter that makes things magnetic? The answer is: "sort of." Electric current

Mojzsis, Stephen J.

7

MagLab - Magnets and Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NSF highlights here. Magnets and materials go hand-in-hand, as the push for ever higher magnetic fields requires not just engineering excellence with what is already available,...

8

Static High Magnetic Fields and Materials Science  

Science Journals Connector (OSTI)

Like temperature or pressure, the magnetic field is one of the important thermodynamic parameters that are used to change the inner energies of materials. Materials are essentially composed of atomic nuclei an...

M. Motokawa; K. Watanabe; F. Herlach

2002-01-01T23:59:59.000Z

9

Magnetic Filtration Process, Magnetic Filtering Material, and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SummaryORNL researchers developed a new method for filtering materials and managing wastewater. This invention offers an integrated, intensified process to handle organic...

10

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

Materials Science Materials Science Go to Research Groups Preprints Provided by Individual Scientists: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Abécassis, Benjamin (Benjamin Abécassis) - Laboratoire de Physique des Solides, Université de Paris-Sud 11 Ackland, Graeme (Graeme Ackland) - Centre for Materials Science and Engineering & School of Physics, University of Edinburgh Adams, James B (James B Adams) - Department of Chemical and Materials Engineering, Arizona State University Adams, Philip W. (Philip W. Adams) - Department of Physics and Astronomy, Louisiana State University Adeyeye, Adekunle (Adekunle Adeyeye) - Department of Electrical and Computer Engineering, National University of Singapore Agrawal, Dinesh (Dinesh Agrawal) - Microwave Processing and

11

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

R S R S T U V W X Y Z Qasem, Apan (Apan Qasem) - Department of Computer Science, Texas State University - San Marcos Qi, Xiaojun (Xiaojun Qi) - Department of Computer Science, Utah State University Qi, Yuan "Alan" (Yuan "Alan" Qi) - Departments of Computer Sciences & Statistics, Purdue University Qian, Xiaoping (Xiaoping Qian) - Mechanical, Materials, and Aerospace Engineering Department, Illinois Institute of Technology Qiao, Chunming (Chunming Qiao) - Department of Computer Science and Engineering, State University of New York at Buffalo Qiao, Daji (Daji Qiao) - Department of Electrical and Computer Engineering, Iowa State University Qiao, Sanzheng (Sanzheng Qiao) - Department of Computing and Software, McMaster University Qin, Feng (Feng Qin) - Department of Computer Science and

12

Journal of Magnetism and Magnetic Materials 252 (2002) 159161 Magnetically induced alignment of FNS  

E-Print Network [OSTI]

Journal of Magnetism and Magnetic Materials 252 (2002) 159­161 Magnetically induced alignment the observation of magnetically controlled anchoring of ferro-nematic suspensions. We found that application of a weak magnetic field to a cell with the ferro-suspension induces an easy orientation axis with weak

Reznikov, Yuri

13

Journal of Magnetism and Magnetic Materials 225 (2001) 337345 Irreversible magnetization in nickel nanoparticles  

E-Print Network [OSTI]

in this magnetic nanoparticle system. # 2001 Elsevier Science B.V. All rights reserved. PACS: 75.10.Nr; 75.50.KjJournal of Magnetism and Magnetic Materials 225 (2001) 337­345 Irreversible magnetization in nickel in revised form 20 October 2000 Abstract We report magnetic studies on nickel nanoparticle films of average

Zuo, Fulin

14

Magnetism and magnetic materials probed with neutron scattering  

Science Journals Connector (OSTI)

Abstract Neutron scattering techniques are becoming increasingly accessible to a broader range of scientific communities, in part due to the onset of next-generation, high-power spallation sources, high-performance, sophisticated instruments and data analysis tools. These technical advances also advantageously impact research into magnetism and magnetic materials, where neutrons play a major role. In this Current Perspective series, the achievements and future prospects of elastic and inelastic neutron scattering, polarized neutron reflectometry, small angle neutron scattering, and neutron imaging, are highlighted as they apply to research into magnetic frustration, superconductivity and magnetism at the nanoscale.

S.G.E. te Velthuis; C. Pappas

2014-01-01T23:59:59.000Z

15

Final Technical Progress Report NANOSTRUCTURED MAGNETIC MATERIALS  

SciTech Connect (OSTI)

This report describes progress made during the final phase of our DOE-funded program on Nanostructured Magnetic Materials. This period was quite productive, resulting in the submission of three papers and presentation of three talks at international conferences and three seminars at research institutions. Our DOE-funded research efforts were directed toward studies of magnetism at surfaces and interfaces in high-quality, well-characterized materials prepared by Molecular Beam Epitaxy (MBE) and sputtering. We have an exceptionally well-equipped laboratory for these studies, with: Thin film preparation equipment; Characterization equipment; Equipment to study magnetic properties of surfaces and ultra-thin magnetic films and interfaces in multi-layers and superlattices.

Charles M. Falco

2012-09-13T23:59:59.000Z

16

Journal of Magnetism and Magnetic Materials 290291 (2005) 836838 Dynamic response limits of an elastic magnet  

E-Print Network [OSTI]

on the elastomagnetic coupling but also on the interaction among the microparticles magnetic moments depending as for possible applications [1,2]. When the magnetic particles are permanently magnetized and the matrix material. Bar shaped samples have been produced with the permanent magnetic moments preferentially oriented

Franzese, Giancarlo

17

Diamond Beamline I16 (Materials and Magnetism)  

SciTech Connect (OSTI)

We describe the key features and performance specifications of a facility for high-resolution single-crystal x-ray diffraction at Diamond Light Source. The scientific emphasis of the beamline is materials- and x-ray-physics, including resonant and magnetic scattering. We highlight some of the more novel aspects of the beamline design.

Collins, S. P.; Bombardi, A.; Marshall, A. R.; Williams, J. H.; Barlow, G.; Day, A. G.; Pearson, M. R.; Woolliscroft, R. J.; Walton, R. D.; Beutier, G.; Nisbet, G. [Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE (United Kingdom)

2010-06-23T23:59:59.000Z

18

Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms  

SciTech Connect (OSTI)

Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permit a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI.

Goodson, Boyd M.

1999-12-01T23:59:59.000Z

19

Magnetism in Non-Traditional Materials  

SciTech Connect (OSTI)

We performed a systematic microscopic investigation of two completely dissimilar materials (namely, ZnO and rhombohedral-C{sub 60} polymers) exhibiting ferromagnetism in the presence of defects, and showed that this new phenomena has a common origin and the mechanism responsible can be used as a powerful tool for inducing and tailoring magnetic features in systems which are not magnetic otherwise. Based on our findings we proposed a general recipe for developing ferromagnetism in new materials of great technological interest. Our results support the role of complimentary pairs of defects in inducing magnetism in otherwise non-magnetic materials belonging to two widely differing classes with no apparent correlation between them. In both classes, ferromagnetism is found to be enhanced when the two kinds of defects form structures (pathways) of alternating effective donor and acceptor crystal sites leading to the development of electron charge and spin density like waves. Using ab initio density functional theory calculations we predicted the existence of a new class of carbon cages formed via hybrid connection between planar graphene sheets and carbon nanotubes. The resulting novel structure has the appearance of ?nano-drum? and offers the exciting prospect of integrating useful device properties of both graphene as well as the nanotube into a single unit with tunable electronic properties. Creation of a hexagonal hole in the graphene portion of this structure results in significant magnetic moments for the edge atoms. The structure appears to be capable of sustaining ferrimagnetic state with the assistance of topological defects. The charge and spin distributions obtained in our calculations for the nano-drums are in striking contrast to those in planar graphene nanoribbons with a central hole. In this case, the central hole appears as the complimentary defect to those of the ribbon edges. Similar situation is found in case of the nano-drum in which the complimentary to the hole defects appear to be the pentagons along the curved surface of the drum. Charge oscillations found in the nano-drum are minimized in the nanoribbons. But more importantly, the hole edge atoms in the nano-drums retain significant magnetic moments; almost twice those of the corresponding ones in hydrogenated graphene nanoribbons (H-GNRs). These results suggest that the topological defects in the nano-drums may act like blocks to keep magnetic moments from ?leaking? out from the hole defects. This may have significant implications for the the use of nano-drums in magnetic storage technology where the ratio, magnetic-moment/weight, is of paramount importance in any futuristic device applications. One of the basic problems of the DFT/LSDA+U theory is the efficient evaluation of the U-term. With this in mind we proposed an alternative approach for its calculation which is based on the knowledge of the Hartree-Fock wave functions of the system under consideration. As a result, the proposed approach is closer to the basic definition of the DFT/LSDA+U scheme and its hybrid-DFT nature. According to our approach, the U value is obtained in a consistent and ab-initio way using the self-consistently calculated wave functions of the given system at the level of the HF approximation. Our method is applicable for systems which include more than one type of elements with localized d-orbitals. The method has been applied the case of the doped Zn(Co)O systems successfully. Currently, theories based on conventional superexchange or double-exchange interactions cannot explain long range magnetic order at concentrations below percolation threshold in dilute magnetic semiconductors. On the other hand, the codoping induced magnetism, which can justify magnetic interactions below percolation threshold, has eluded explanation. With this in mind, we proposed that defect-induced magnetism in codoped non-magnetic materials can be viewed within a molecular generalization of the atomic double-exchange and superexchange interactions applied to an arbitrary bipartite lattice host

Menon, Madhu

2013-09-17T23:59:59.000Z

20

REACT: Alternatives to Critical Materials in Magnets  

SciTech Connect (OSTI)

REACT Project: The 14 projects that comprise ARPA-Es REACT Project, short for Rare Earth Alternatives in Critical Technologies, are developing cost-effective alternatives to rare earths, the naturally occurring minerals with unique magnetic properties that are used in electric vehicle (EV) motors and wind generators. The REACT projects will identify low-cost and abundant replacement materials for rare earths while encouraging existing technologies to use them more efficiently. These alternatives would facilitate the widespread use of EVs and wind power, drastically reducing the amount of greenhouse gases released into the atmosphere.

None

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "disciplines magnetism materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Journal of Magnetism and Magnetic Materials 281 (2004) 272275 Effects of high magnetic field annealing on texture and  

E-Print Network [OSTI]

Journal of Magnetism and Magnetic Materials 281 (2004) 272­275 Effects of high magnetic field annealing on texture and magnetic properties of FePd D.S. Lia, *, H. Garmestania , Shi-shen Yanb , M of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr. N.W., Atlanta, GA

Garmestani, Hamid

22

Thermal Stability of MnBi Magnetic Materials. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MnBi attracts great attention in recent years for its great potential as permanent magnet materials. It is unique because its coercivity increases with increasing temperature,...

23

Journal of Magnetism and Magnetic Materials 286 (2005) 324328 Light-free magnetic resonance force microscopy for studies of  

E-Print Network [OSTI]

Journal of Magnetism and Magnetic Materials 286 (2005) 324­328 Light-free magnetic resonance force for Physical Sciences, College Park, MD, USA Available online 4 November 2004 Abstract Magnetic resonance force microscopy is a scanned probe technique capable of three-dimensional magnetic resonance imaging. Its

24

National High Magnetic Field Laboratory - Magnets and Materials...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Applied Superconductivity Center, please see the center's group members page. Magnet Science & Technology Group Members Senior Personnel Bai, Hongyu Research Faculty II Phone:...

25

National High Magnetic Field Laboratory - Magnets and Materials...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

which joined the Magnet Lab and Florida State University in 2006. The ASC advances the science and technology of superconductivity by investigating low temperature and high...

26

Magnetic refrigeration apparatus with belt of ferro or paramagnetic material  

DOE Patents [OSTI]

A magnetic refrigerator operating in the 12 to 77 K range utilizes a belt which carries ferromagnetic or paramagnetic material and which is disposed in a loop which passes through the center of a solenoidal magnet to achieve cooling. The magnetic material carried by the belt, which can be blocks in frames of a linked belt, can be a mixture of substances with different Curie temperatures arranged such that the Curie temperatures progressively increase from one edge of the belt to the other. This magnetic refrigerator can be used to cool and liquefy hydrogen or other fluids.

Barclay, J.A.; Stewart, W.F.; Henke, M.D.; Kalash, K.E.

1986-04-03T23:59:59.000Z

27

National High Magnetic Field Laboratory - Magnets and Materials...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

W.D. and Weijers, H.W., Helium gas bubble trapped in liquid helium in high magnetic field, Appl. Phys. Lett., 104, 133511 (2014) read online 2 Bai, H.; Marshall, W.S.; Bird,...

28

Nonlinear Vibration Energy Harvesting with High-Permeability Magnetic Materials  

Science Journals Connector (OSTI)

In this chapter, we introduce the recent demonstrations of high energy density nonlinear vibration energy harvesting with high-permeability magnetic materials, which show great promise for compact and wideband vi...

Xing Xing; Nian X. Sun

2013-01-01T23:59:59.000Z

29

Argonne CNM: Electronic and Magnetic Materials and Devices Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electronic & Magnetic Materials & Devices Electronic & Magnetic Materials & Devices Group Leader: Saw-Wai Hla The objective of the Electronic and Magnetic Materials and Devices (EMMD) group at the CNM is to discover, understand, and utilize new electron and spin-based materials and phenomena in constrained geometries. Potential benefits include reduced power dissipation, new medical imaging methods and therapies, improved efficiency of data storage by spin current and electrical field-assisted writing, and enhanced energy conversion in photovoltaic devices. Research Activities Understanding complex magnetic order and coupling phenomena: Magnetic nanostructures are prone to complex magnetic ordering phenomena that do not occur in the bulk and that will have strong impact on the further development of functional magnetic nanostructures. Basic science on the influence of demagnetizing effects, geometrical frustration, next-nearest neighbor exchange interactions, unusual anisotropy values, and the spin-orbit interaction at reduced dimensionality are performed with a special focus on temperature-dependent magnetic order-disorder transitions.

30

Exploring nanoscale magnetism in advanced materials with polarized X-rays  

E-Print Network [OSTI]

Stoehr and H.C. Siegmann, Magnetism, Springer (2006) [93]Exploring nanoscale magnetism in advanced materials withABSTRACT Nanoscale magnetism is of paramount scientific

Fischer, Peter

2012-01-01T23:59:59.000Z

31

Materials science: Radicals promote magnetic gel assembly  

Science Journals Connector (OSTI)

... are assembled from smaller components, may thus be better suited for replicating biological complexity. 3D printing, in which the direct deposition of material creates precise 3D structures, embodies this strategy ... material creates precise 3D structures, embodies this strategy. Recent advances in technology have allowed 3D printing of tissues through the deposition of cellular aggregates or cell-laden materials. However, these ...

Christopher B. Rodell; Jason A. Burdick

2014-10-29T23:59:59.000Z

32

Digital lock-in detection of site-specific magnetism in magnetic materials  

DOE Patents [OSTI]

The polarization and diffraction characteristics of x-rays incident upon a magnetic material are manipulated to provide a desired magnetic sensitivity in the material. The contrast in diffracted intensity of opposite helicities of circularly polarized x-rays is measured to permit separation of magnetic signals by element type and by atomic environment. This allows for the direct probing of magnetic signals from elements of the same species in nonequivalent atomic environments to better understand the behavior and characteristics of permanent magnetic materials. By using known crystallographic information together with manipulation of the polarization of x-rays having energies tuned near element-specific electronic excitations and by detecting and comparing the incident and diffracted photons at the same frequency, more accurate magnetic measurements can be made over shorter observation periods.

Haskel, Daniel (Naperville, IL); Lang, Jonathan C. (Naperville, IL); Srajer, George (Oak Park, IL)

2008-07-22T23:59:59.000Z

33

Administering Workforce Discipline  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To provide requirements and responsibilities for administering workforce discipline that includes disciplinary, adverse, and alternative corrective actions in the Department of Energy (DOE).

2014-10-27T23:59:59.000Z

34

Crystallographic Boundary in a Magnetic Shape Memory Material  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Crystallographic Boundary in a Crystallographic Boundary in a Magnetic Shape Memory Material Crystallographic Boundary in a Magnetic Shape Memory Material Print Wednesday, 18 April 2012 11:37 A research team has shown the existence of a special structural boundary in an intermetallic compound by combining the unique measurement facilities at the ALS, the single-crystal production capabilities of Tohoku University (Japan), and the materials science expertise of Johannes-Gutenberg-University (Germany). Conventional shape memory materials, such as the commercially available Nitinol (an alloy of nickel and titanium used in microsensing, actuation, and medical devices), undergo a phase transformation with cooling or heating when large areas of a sample distort along a single axis, and where the atomic-unit cell "stretching" from a cube to a rectangular prism occurs. In contrast, magnetic shape memory (MSM) materials are much more rare but have an advantage: The axis of magnetic anisotropy is coupled to the direction of stretching, so a perfect MSM crystal can be made to flex and bend reversibly by applying an external magnetic field.

35

Materials Physics Applications: The National High Magnetic Field Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Search National High Magnetic Field Laboratory, NHMFL Home About Us Organization DIVISION Materials Physics and Applications Division GROUPS Superconductivity Technology Center Condensed Matter and Magnet Science Center for Integrated Nanotechnologies Sensors & Electrochemical Devices Materials Chemistry CONTACTS Group Leader Mike Hundley Director, NHMFL-PFF/Deputy Group Leader Chuck Mielke Head of Users Program Operations Jon Betts Professional Staff Assistant Julie T. Gallegos TA-03 Group Office TA-03, Building 0034, Room 101 Office Administrator Juanita Armijo TA-35 Group Office TA-35, Building 0127, Room C117 Office Administrator Angeline Willow 505-667-5032 National High Magnetic Field Laboratory, Pulsed Field Facility The Pulsed Field Facility at Los Alamos National Laboratory in Los Alamos, New Mexico, is one of three campuses of the National High Magnetic Field Laboratory (NHMFL), the other two being at Florida State University, Tallahassee (continuous fields, magnetic resonance, and general headquarters) and the University of Florida ,Gainesville(ultra-low temperatures at high magnetic fields). The NHMFL is sponsored primarily by the National Science Foundation, Division of Materials Research, with additional support from the State of Florida and the US Department of Energy.

36

Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 MAG LAB REPORTS Volume 18 No. 1 CONDENSED MATTER SCIENCE Technique development, graphene, magnetism & magnetic materials, topological insulators, quantum fl uids & solids,...

37

A Simple Apparatus for the Direct Measurement of Magnetic Forces and Magnetic Properties of Materials  

E-Print Network [OSTI]

In this paper, we describe a simple apparatus consisting of a scale, capable of a one milligram resolution, and a commonly obtainable magnet to measure magnetic forces. This simple apparatus is capable of measuring magnetic properties of materials in either a research or an instructional laboratory. We illustrate the capability of this apparatus by the measurement of the force of iron samples exerted on the magnet, the force of a paramagnetic sample, that by a current carrying wire, and the force of a high temperature superconductor.

Makkinje, Jan A

2014-01-01T23:59:59.000Z

38

Thermal stability of MnBi magnetic materials  

SciTech Connect (OSTI)

MnBi has attracted much attention in recent years due to its potential as a rare-earth-free permanent magnet material. It is unique because its coercivity increases with increasing temperature, which makes it a good hard phase material for exchange coupling nanocomposite magnets. MnBi phase is difficult to obtain, partly because the reaction between Mn and Bi is peritectic, and partly because Mn reacts readily with oxygen. MnO formation is irreversible and harmful to magnet performance. In this paper, we report our efforts toward developing MnBi permanent magnets. To date, high purity MnBi (>90%) can be routinely produced in large quantities. The produced powder exhibits 74:6 emu g1 saturation magnetization at room temperature with 9 T applied field. After proper alignment, the maximum energy product (BH) max of the powder reached 11.9 MGOe, and that of the sintered bulk magnet reached 7.8 MGOe at room temperature. A comprehensive study of thermal stability shows that MnBi powder is stable up to 473 K in air.

Cui, Jinfang [Pacific Northwest National Laboratory; Choi, J. P. [Pacific Northwest National Laboratory; Li, G. [Pacific Northwest National Laboratory; Polikarpov, E. [Pacific Northwest National Laboratory; Darsell, J. [Pacific Northwest National Laboratory; Overman, N. [Pacific Northwest National Laboratory; Olszta, M. [Pacific Northwest National Laboratory; Schreiber, D. [Pacific Northwest National Laboratory; Bowden, M. [Environmental Molecular Sciences Laboratory; Droubay, T. [Pacific Northwest National Laboratory; Kramer, Matthew J. [Ames Laboratory; Zarkevich, Nikolay A. [Ames Laboratory; Wang, L L. [Ames Laboratory; Johnson, Duane D. [Ames Laboratory; Marinescu, M. [Electron Energy Corporation; Takeuchi, I. [University of Maryland; Huang, Q. Z. [National Institute of Standards and Technology; Wu, H. [University of Maryland; Reeve, H. [United Technologies Research Center; Vuong, N. V. [University of Texas; Liu, J P. [University of Texas

2014-01-27T23:59:59.000Z

39

How Does the Distribution of External Magnetic Lines of Force Influence the Growth of Ferromagnetic Material?  

Science Journals Connector (OSTI)

As one of the most important ferromagnetic materials, nickel shows applications in many fields including catalysis,(15) magnet sensors,(16) magnetic recording media,(17) conduction materials,(18) and ferrofluids. ... When an external magnetic field is applied, the directions of the self-generated magnetic fields could be adjusted to be the same by the external magnetic field, conducing one-dimensional structures along the external magnetic lines of force. ... Since these quasi-one-dimensional magnets are parallel to each other, the interaction caused by the self-generated magnetic fields between the quasi-one-dimensional magnets which are aligned in different magnetic lines of force could be ignored. ...

Rui-Ping Ji; Ji-Sen Jiang; Ming Hu

2010-06-28T23:59:59.000Z

40

Ultra-low field nuclear magnetic resonance and magnetic resonance imaging to discriminate and identify materials  

DOE Patents [OSTI]

An ultra-low magnetic field NMR system can non-invasively examine containers. Database matching techniques can then identify hazardous materials within the containers. Ultra-low field NMR systems are ideal for this purpose because they do not require large powerful magnets and because they can examine materials enclosed in conductive shells such as lead shells. The NMR examination technique can be combined with ultra-low field NMR imaging, where an NMR image is obtained and analyzed to identify target volumes. Spatial sensitivity encoding can also be used to identify target volumes. After the target volumes are identified the NMR measurement technique can be used to identify their contents.

Kraus, Robert H. (Los Alamos, NM); Matlashov, Andrei N. (Los Alamos, NM); Espy, Michelle A. (Los Alamos, NM); Volegov, Petr L. (Los Alamos, NM)

2010-03-30T23:59:59.000Z

Note: This page contains sample records for the topic "disciplines magnetism materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Liquid metal MHD studies with non-magnetic and ferro-magnetic structural material  

Science Journals Connector (OSTI)

Abstract In most of the liquid metal MHD experiments reported in the literature to study liquid breeder blanket performance, SS316/SS304 grade steels are used as the structural material which is non-magnetic. On the other hand, the structural material for fusion blanket systems has been proposed to be ferritic martensitic grade steel (FMS) which is ferromagnetic in nature. In the recent experimental campaign, liquid metal MHD experiments have been carried out with two identical test sections: one made of SS316L (non-magnetic) and another with SS430 (ferromagnetic), to compare the effect of structural materials on MHD phenomena for various magnetic fields (up to 4T). The maximum Hartmann number and interaction number are 1047 and 300, respectively. Each test section consists of square channel (25mmנ25mm) cross-section with two U bends, with inlet and outlet at the middle portion of two horizontal legs, respectively. PbLi enters into the test section through a square duct and distributed into two parallel paths through a partition plate. In each parallel path, it travels ?0.28m length in plane perpendicular to the magnetic field and faces two 90 bends before coming out of the test section through a single square duct. The wall electrical potential and MHD pressure drop across the test sections are compared under identical experimental conditions. Similar MHD behavior is observed with both the test section at higher value of the magnetic field (>2T).

A. Patel; R. Bhattacharyay; P.K. Swain; P. Satyamurthy; S. Sahu; E. Rajendrakumar; S. Ivanov; A. Shishko; E. Platacis; A. Ziks

2014-01-01T23:59:59.000Z

42

Work Force Discipline  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order provides guidance and procedures and states responsibilities for maintaining work force discipline in DOE. Chg 1, dated 3-11-85; Chg 2, dated 1-6-86; Chg 3, dated 3-21-89; Chg 4, dated 8-2-90; Chg 5, dated 3-9-92; Chg 6, dated 8-21-92, cancels Chg 5.

1983-03-23T23:59:59.000Z

43

Journal of Magnetism and Magnetic Materials 293 (2005) 578583 Theoretical comparison of magnetic and hydrodynamic  

E-Print Network [OSTI]

?, Mikkel Fougt Hansen, Henrik Bruus MIC--Department of Micro and Nanotechnology, Technical University). #12;inhomogeneous magnetic field created by micro- structures that are magnetized by either electro wish to highlight the importance of hydro- dynamic interactions in connection with bead capturing

44

Apparatus for magnetic separation of paramagnetic and diamagnetic material  

DOE Patents [OSTI]

The present invention relates to methods and apparatus for segregating paramagnetic from diamagnetic particles in particulate material and, in particular, to the open gradient magnetic separation of ash producing components and pyritic sulfur from coal. The apparatus includes a vertical cylinder and a rotatable vertical screw positioned within the cylinder, the screw having a helical blade angled downwardly and outwardly from the axis. Rotation of the vertical screw causes denser particles, which in the case of coal include pyritic sulfur and ash, which are paramagnetic, to migrate to the outside of the screw, and less dense particles, such as the low sulfur organic portion of the coal, which are diamagnetic, to migrate towards the center of the screw. A vibration mechanism attached to the screw causes the screw to vibrate during rotation, agitating and thereby accommodating further segregation of the particles. An open gradient magnetic field is applied circumferentially along the entire length of the screw by a superconducting quadropole magnet. The open gradient magnetic field further segregates the paramagnetic particles from the diamagnetic particles. The paramagnetic particles may then be directed from the cylinder into a first storage bin, and the diamagnetic particles, which are suitable for relatively clean combustion, may be directed into a second storage bin.

Doctor, Richard D. (Glen Ellyn, IL)

1988-01-01T23:59:59.000Z

45

Magnetic preferential orientation of metal oxide superconducting materials  

DOE Patents [OSTI]

A superconductor comprised of a polycrystalline metal oxide such as YBa[sub 2]Cu[sub 3]O[sub 7[minus]X] (where 0 < X < 0.5) exhibits superconducting properties and is capable of conducting very large current densities. By aligning the two-dimensional Cu-O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the conduction of high current densities. The highly anisotropic diamagnetic susceptibility of the polycrystalline metal oxide material permits the use of an applied magnetic field to orient the individual crystals when in the superconducting state to substantially increase current transport between adjacent grains. In another embodiment, the anisotropic paramagnetic susceptibility of rare-earth ions substituted into the oxide material is made use of as an applied magnetic field orients the particles in a preferential direction. This latter operation can be performed with the material in the normal (non-superconducting) state. 4 figs.

Capone, D.W.; Dunlap, B.D.; Veal, B.W.

1990-07-17T23:59:59.000Z

46

Magnetic preferential orientation of metal oxide superconducting materials  

DOE Patents [OSTI]

A superconductor comprised of a polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0material permits the use of an applied magnetic field to orient the individual crystals when in the superconducting state to substantially increase current transport between adjacent grains. In another embodiment, the anisotropic paramagnetic susceptibility of rare-earth ions substituted into the oxide material is made use of as an applied magnetic field orients the particles in a preferential direction. This latter operation can be performed with the material in the normal (non-superconducting) state.

Capone, Donald W. (Bolingbrook, IL); Dunlap, Bobby D. (Bolingbrook, IL); Veal, Boyd W. (Downers Grove, IL)

1990-01-01T23:59:59.000Z

47

Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials  

E-Print Network [OSTI]

materials science for electronic, magnetic, optical, and energy-related materials. It is expected that high, and energy-related materials Martin L. Green, Ichiro Takeuchi, and Jason R. Hattrick-Simpers Citation: J) methodologies to electronic, magnetic, optical, and energy-related materials Martin L. Green,1 Ichiro Takeuchi,2

Rubloff, Gary W.

48

Development of Superconducting Materials for Use in Magnet Applications: Nb3Sn Flux Pinning and Bi-2212 Magnetic Texturing  

E-Print Network [OSTI]

DEVELOPMENT OF SUPERCONDUCTING MATERIALS FOR USE IN MAGNET APLICATIONS: Nb3Sn FLUX PINING AND Bi-212 MAGNETIC TEXTURING Major: Physics April 2010 Submitted to the Office of Undergraduate Research Texas A&M University... in partial fulfillment of the requirements for the designation as UNDERGRADUATE RESEARCH SCHOLAR A Senior Scholars Thesis by DAVID GABRIEL RAHMANI DEVELOPMENT OF SUPERCONDUCTING MATERIALS FOR USE IN MAGNET APLICATIONS: Nb3Sn FLUX...

Rahmani, David G.

2010-07-14T23:59:59.000Z

49

Argonne CNM: Electronic & Magnetic Materials & Devices Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electronic & Magnetic Materials & Devices Capabilities Synthesis Colloidal chemistry and self-assembly techniques Complex oxide film synthesis via molecular beam epitaxy (DCA R450 Custom) Physical vapor deposition (Lesker CMS 18 and PVD 250) Spin coating (Laurell WS-400) Characterization Variable-temperature (VT) scanning tunneling microscope with atomic force microscopy capabilities (Omicron VT-AFM/STM), operates in an ultrahigh vacuum (UHV) environment with a base pressure of < 1E-10 mbar and 55-400 K. Atomic resolution is routinely obtained at room temperature and below. The AFM capabilities support a range of scanning modes. The analysis chamber also houses a LEED/Auger with an attached preparation chamber for sample cleaning and deposition (sputter cleaning, direct current heating, e-beam heating stage, metal deposition, etc.)

50

NREL: Research Participant Program - Research and Deployment Disciplines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Deployment Disciplines Research and Deployment Disciplines Participants in NREL programs are able to study a variety of disciplines within the Lab's research centers: National Bioenergy Center Biochemical engineering, microbiology, molecular biology, chemistry, and chemical engineering related to biomass and derived products. Energy Sciences Bioscience, chemical and materials science, computational science, physics, chemistry, and biological sciences. Electricity, Resources, and Building Systems Integration Physics, mechanical engineering (heat transfer emphasis), and architectural engineering. Hydrogen and Fuel Cells Research Hydrogen technologies and analysis. Materials and Computational Sciences Center Physics, materials science, chemistry, electrical engineering, and basic and applied research using high-performance computing and applied

51

Novel Magnetic Materials Including Organic I S. Shaheen, Chairman Magnetic ordering in M,,ox...,,bpy... system ,,MFe, Co, Ni; oxC2O4  

E-Print Network [OSTI]

Novel Magnetic Materials Including Organic I S. Shaheen, Chairman Magnetic ordering in M of the magnetization have been measured to investigate the magnetic properties of the first oxalate­bpy mixed , in which the magnetic M ions form one-dimensional chains along the a axis. Spontaneous magnetic orderings

Li, Jing

52

Magnetic mesoporous material for the sequestration of algae  

DOE Patents [OSTI]

The present invention provides a magnetic mesoporous nanoparticle that includes a mesoporous silicate nanoparticle and iron oxide. The present invention also provides a method of using magnetic mesoporous nanoparticles to sequester microorganisms from a media.

Trewyn, Brian G.; Kandel, Kapil; Slowing, Igor Ivan; Lee, Show-Ling

2014-09-09T23:59:59.000Z

53

Monte Carlo Study of the Spin Transport in Magnetic Materials , K. Akablia,b  

E-Print Network [OSTI]

Monte Carlo Study of the Spin Transport in Magnetic Materials Y. Magnina , K. Akablia,b , H. T of Natural Science and Technology, Okayama University 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.. Abstract The resistivity in magnetic materials has been theoretically shown to depend on the spin

54

Magnetic Shape Memory Alloys as smart materials for micro-positioning devices , N. Calchand1  

E-Print Network [OSTI]

Magnetic Shape Memory Alloys as smart materials for micro-positioning devices A. Hubert1 , N reports recent results obtained using a new type of smart material called Magnetic Shape Memory Alloy-mail: arnaud.hubert@femto-st.fr Abstract In the field of microrobotics, actuators based on smart ma- terials

Paris-Sud XI, Université de

55

Iron-Nickel-Based SuperMagnets: Multiscale Development of L10 Materials for Rare Earth-Free Permanent Magnets  

SciTech Connect (OSTI)

REACT Project: Northeastern University will develop bulk quantities of rare-earth-free permanent magnets with an iron-nickel crystal structure for use in the electric motors of renewable power generators and EVs. These materials could offer magnetic properties that are equivalent to todays best commercial magnets, but with a significant cost reduction and diminished environmental impact. This iron-nickel crystal structure, which is only found naturally in meteorites and developed over billions of years in space, will be artificially synthesized by the Northeastern University team. Its material structure will be replicated with the assistance of alloying elements introduced to help it achieve superior magnetic properties. The ultimate goal of this project is to demonstrate bulk magnetic properties that can be fabricated at the industrial scale.

None

2012-01-01T23:59:59.000Z

56

A New Class of Magnetic Materials with Novel Structural Order | U.S. DOE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A New Class of Magnetic Materials with Novel Structural Order A New Class of Magnetic Materials with Novel Structural Order Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) News & Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » June 2013 A New Class of Magnetic Materials with Novel Structural Order The discovery of the first binary magnetic quasicrystals will enable the unraveling of the fundamental relationship between the structure and magnetism in aperiodic materials. Print Text Size: A A A Subscribe FeedbackShare Page

57

Final Scientific/Technical Report for DOE/EERE project Advanced Magnetic Refrigerant Materials  

SciTech Connect (OSTI)

A team led by GE Global Research developed new magnetic refrigerant materials needed to enhance the commercialization potential of residential appliances such as refrigerators and air conditioners based on the magnetocaloric effect (a nonvapor compression cooling cycle). The new magnetic refrigerant materials have potentially better performance at lower cost than existing materials, increasing technology readiness level. The performance target of the new magnetocaloric material was to reduce the magnetic field needed to achieve 4 C adiabatic temperature change from 1.5 Tesla to 0.75 Tesla. Such a reduction in field minimizes the cost of the magnet assembly needed for a magnetic refrigerator. Such a reduction in magnet assembly cost is crucial to achieving commercialization of magnetic refrigerator technology. This project was organized as an iterative alloy development effort with a parallel material modeling task being performed at George Washington University. Four families of novel magnetocaloric alloys were identified, screened, and assessed for their performance potential in a magnetic refrigeration cycle. Compositions from three of the alloy families were manufactured into regenerator components. At the beginning of the project a previously studied magnetocaloric alloy was selected for manufacturing into the first regenerator component. Each of the regenerators was tested in magnetic refrigerator prototypes at a subcontractor at at GE Appliances. The property targets for operating temperature range, operating temperature control, magnetic field sensitivity, and corrosion resistance were met. The targets for adiabatic temperature change and thermal hysteresis were not met. The high thermal hysteresis also prevented the regenerator components from displaying measurable cooling power when tested in prototype magnetic refrigerators. Magnetic refrigerant alloy compositions that were predicted to have low hysteresis were not attainable with conventional alloy processing methods. Preliminary experiments with rapid solidification methods showed a path towards attaining low hysteresis compositions should this alloy development effort be continued.

Johnson, Francis

2014-06-30T23:59:59.000Z

58

Use of magnetic carbon composites from renewable resource materials for oil spill clean up and recovery  

DOE Patents [OSTI]

A method for separating a liquid hydrocarbon material from a body of water. In one embodiment, the method includes the steps of mixing a plurality of magnetic carbon-metal nanocomposites with a liquid hydrocarbon material dispersed in a body of water to allow the plurality of magnetic carbon-metal nanocomposites each to be adhered by an amount of the liquid hydrocarbon material to form a mixture, applying a magnetic force to the mixture to attract the plurality of magnetic carbon-metal nanocomposites each adhered by an amount of the liquid hydrocarbon material, and removing said plurality of magnetic carbon-metal nanocomposites each adhered by an amount of the liquid hydrocarbon material from said body of water while maintaining the applied magnetic force, wherein the plurality of magnetic carbon-metal nanocomposites is formed by subjecting one or more metal lignosulfonates or metal salts to microwave radiation, in presence of lignin/derivatives either in presence of alkali or a microwave absorbing material.

Viswanathan, Tito

2014-02-11T23:59:59.000Z

59

Magnet Exploration: Pre and Post Materials for Classroom Visit...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

. . . . . . . . Contact us 3 5 7 8 9 11 12 13 14 3 What is the NHMFL? * The National High Magnetic Field Laboratory is a working science research laboratory utilizing...

60

UHV-compatible magnetic material for atom optics  

Science Journals Connector (OSTI)

Magnetic videotape is of great interest for trapping and guiding cold atomic vapors, but was hitherto considered unsuitable for manipulating BoseEinstein condensates (BEC) because of the presumed evolution of...

S.A. Hopkins; E.A. Hinds; M.G. Boshier

2001-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "disciplines magnetism materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Condensed Matter and Magnetic Science, MPA-CMMS: Materials Physics and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

feature banner feature banner banner Condensed Matter and Magnet Science The Condensed Matter and Magnet Science Group (MPA-CMMS) is comprised of research scientists, technicians, postdocs, and students specializing in experimental physics research, with a strong emphasis on fundamental condensed matter physics with complimentary thrusts in correlated electron materials, high magnetic-field science and technology, thermal physics, and actinide chemistry. MPA-CMMS hosts the Pulsed Field Facility of the National High Magnetic Field Laboratory (NHMFL-PFF) located at TA-35 while new material synthesis, low temperature expertise, and various low-energy spectroscopies are located at TA-3. Our actinide chemistry activities occur at RC-1 (TA-48). The NHMFL-PFF is a national user facility for high magnetic field science sponsored primarily by the National Science Foundation's Division of Materials Research, with branches at Florida State University, the University of Florida, and Los Alamos National Laboratory. (Check out NHMFL Web site for more details.)

62

Effect of Composition and Heat Treatment on MnBi Magnetic Materials...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Abstract: The metallic compound MnBi is a promising rare-earth-free permanent magnet material. Compare to other rare-earth-free candidates, MnBi stands out for its high...

63

3.15 Electrical, Optical & Magnetic Materials and Devices, Fall 2003  

E-Print Network [OSTI]

Explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. Features a device-motivated ...

Ross, Caroline A.

64

ELSEWER Journal of Magnetism and Magnetic Materials 169 (1997) 261-270 Superparamagnetic behavior of Fe,GaAs precipitates in GaAs  

E-Print Network [OSTI]

ELSEWER Journal of Magnetism and Magnetic Materials 169 (1997) 261-270 Superparamagnetic behavior; revised 6 December 1996 Abstract We present magnetization measurements on Fe3GaAs clusters distributed-dependent magnetization well above the blocking temperature indicate a particle size distribution in agreement

Woodall, Jerry M.

65

Exploring Ultrahigh Magnetic Field Processing of Materials for Developing Customized Microstructures and Enhanced Performance  

SciTech Connect (OSTI)

Thermodynamic calculations based on Gibbs free energy in the magnetization-magnetic intensity-temperature (M-H-T) magnetic equation of state space demonstrate that significantly different phase equilibria may result for those material systems where the product and parent phases exhibit different magnetization responses. These calculations show that the Gibbs free energy is changed by a factor equal to -MdH, where M and H are the magnetization and applied field strength, respectively. Magnetic field processing is directly applicable to a multitude of alloys and compounds for dramatically influencing phase stability and phase transformations. This ability to selectively control microstructural stability and alter transformation kinetics through appropriate selection of the magnetic field strength promises to provide a very robust mechanism for developing and tailoring enhanced microstructures (and even nanostructures through accelerated kinetics) with superior properties for a broad spectrum of material applications. For this Industrial Materials for the Future (IMF) Advanced Materials for the Future project, ferrous alloys were studied initially since this alloy family exhibits ferromagnetism over part of its temperature range of stability and therefore would demonstrate the maximum impact of this novel processing mechanism. Additionally, with these ferrous alloys, the high-temperature parent phase, austenite, exhibits a significantly different magnetization response from the potential product phases, ferrite plus carbide or martensite; and therefore, the solid-state transformation behavior of these alloys will be dramatically influenced by the presence of ultrahigh magnetic fields. Finally, a thermodynamic calculation capability (within ThermoCalc for example) was developed during this project to enable parametric studies to be performed to predict the magnitude of the influence of magnetic processing variables on the phase stability (phase diagrams) in ferromagnetic materials of relevance to the Industries of the Future (IOF).

Ludtka, GERALD M.

2005-03-31T23:59:59.000Z

66

398 IEEE TRANSACTIONS ON MAGNETICS, VOL. 42, NO. 3, MARCH 2006 Introducing Dynamic Behavior of Magnetic Materials  

E-Print Network [OSTI]

of Magnetic Materials Into a Model of a Switched Reluctance Motor Drive F. Sixdenier, L. Morel, and J. P, we present the model of an ultrafast switched reluctance motor, in which the control of the power switched reluctance motor (SRM) drive [9], [10] designed by the Labora- toire de genie industriel et

Boyer, Edmond

67

Mesoporous Multifunctional Upconversion Luminescent and Magnetic Nanorattle Materials for Targeted Chemotherapy  

Science Journals Connector (OSTI)

The material emits visible luminescence upon NIR excitation and can be directed by an external magnetic field to a specific target, making it an attractive system for a variety of biological applications. ... (5-10) Along these lines, luminescent and magnetic nanoparticles have been used as biolabeling and contrast agents, and for magnetic resonance imaging (MRI), leading recently to major advances in biological and biomedical imaging. ... Field-dependent magnetization curves of the MUC-F-NR were recorded using a superconducting quantum interference device (SQUID) magnetometer with fields up to 5 T (Figure 2b). ...

Fan Zhang; Gary B. Braun; Alessia Pallaoro; Yichi Zhang; Yifeng Shi; Daxiang Cui; Martin Moskovits; Dongyuan Zhao; Galen D. Stucky

2011-12-01T23:59:59.000Z

68

An in-situ accelerator-based diagnostic for plasma-material interactions science in magnetic fusion devices  

E-Print Network [OSTI]

Plasma-material interactions (PMI) in magnetic fusion devices such as fuel retention, material erosion and redeposition, and material mixing present significant scientific and engineering challenges, particularly for the ...

Hartwig, Zachary Seth

2014-01-01T23:59:59.000Z

69

Dynamic high pressure process for fabricating superconducting and permanent magnetic materials  

DOE Patents [OSTI]

Shock wave formation of thin layers of materials with improved superconducting and permanent magnetic properties and improved microstructures is disclosed. The material fabrication system includes a sandwiched structure including a powder material placed between two solid members to enable explosive shock consolidation. The two solid members are precooled to about 80--100 K to reduce the residual temperatures attained as a result of the shock wave treatment, and thereby increase the quench rate of the consolidated powder. 9 figs.

Nellis, W.J.; Geballe, T.H.; Maple, M.B.

1990-03-13T23:59:59.000Z

70

Fundamental study of magnetic field-assisted micro-EDM for non-magnetic materials.  

E-Print Network [OSTI]

??Micro-Electrical Discharge Machining (??-EDM) is a unique machining method capable of removing material in the sub-grain size range (0.1-10 ??m) from materials irrespective of their (more)

Heinz, Kenneth G., Jr.

2010-01-01T23:59:59.000Z

71

Nuclear Magnetic Resonance Studies of Some Materials Containing Divalent Europium  

Science Journals Connector (OSTI)

This paper reports the results of a low-temperature NMR experiment on Eu153 in EuO. The data, which are assumed to be linear with magnetization, are compared with calculated values using spin-wave theory. Values of J1kb=0.7500.0025K and J2kb=-0.09750.004K are found to give a good description of EuO. This paper also reports the results of NMR studies of the ligands F19 and Cs137 in EuF2 and CsEuF3. These experiments indicate that there is a reversal in sign of the unpaired spin density of the europium ion. The same results are obtained with europium-bearing glasses. This effect is discussed in terms of the Freeman-Watson model of Gd3+ and in terms of a virtual 5d state in Eu2+.

E. L. Boyd

1966-05-06T23:59:59.000Z

72

THERMAL IMAGING OF ACTIVE MAGNETIC REGERNERATOR MCE MATERIALS DURING OPERATION  

SciTech Connect (OSTI)

An active magnetic regenerator (AMR) prototype was constructed that incorporates a Gd sheet into the regenerator wall to enable visualization of the system s thermal transients. In this experiment, the thermal conditions inside the AMR are observed under a variety of operating conditions. An infrared (IR) camera is employed to visualize the thermal transients within the AMR. The IR camera is used to visually and quantitatively evaluate the temperature difference and thus giving means to calculate the performance of the system under the various operating conditions. Thermal imaging results are presented for two differing experimental test runs. Real time imaging of the thermal state of the AMR has been conducted while operating the system over a range of conditions. A 1 Tesla twin-coil electromagnet (situated on a C frame base) is used for this experiment such that all components are stationary during testing. A modular, linear reciprocating system has been realized in which the effects of regenerator porosity and utilization factor can be investigated. To evaluate the performance variation in porosity and utilization factor the AMR housing was constructed such that the plate spacing of the Gd sheets may be varied. Each Gd sheet has dimensions of 38 mm wide and 66 mm long with a thickness of 1 mm and the regenerator can hold a maximum of 29 plates with a spacing of 0.25 mm. Quantitative and thermal imaging results are presented for several regenerator configurations.

Shassere, Benjamin [ORNL] [ORNL; West, David L [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Evans III, Boyd Mccutchen [ORNL] [ORNL

2012-01-01T23:59:59.000Z

73

Plutonium less mysterious with nuclear magnetic resonance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plutonium less mysterious with nuclear magnetic resonance Plutonium less mysterious with nuclear magnetic resonance Plutonium less mysterious with nuclear magnetic resonance For more than 50 years, chemists and physicists have been searching for the plutonium-239 magnetic resonance signal. May 21, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

74

Magnetic resonance studies of cement based materials in inhomogeneous magnetic fields  

SciTech Connect (OSTI)

Single-sided magnets give hope that Nuclear Magnetic Resonance (NMR) might in future be used for in situ characterisation of hydration and water transport in the surface layers of concrete slabs. Towards that end, a portable NMR-MOUSE (MObile Universal Surface Explorer) has been used to follow the hydration of gypsum based plaster, a Portland cement paste and concrete mortar. The results compare favourably to those obtained using a standard laboratory bench-top spectrometer. Further, stray field imaging (STRAFI) based methods have been used with embedded NMR detector coils to study water transport across a mortar/topping interface. The measured signal amplitudes are found to correlate with varying sample conditions.

Boguszynska, Joanna [Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, Poznan (Poland); Brown, Marc C.A. [School of Physical Sciences, University of Kent, Canterbury, Kent, CT2 7NR (United Kingdom); McDonald, Peter J. [School of Electronics and Physical Sciences, University of Surrey, Surrey, GU2 7XH (United Kingdom)]. E-mail: p.mcdonald@surrey.ac.uk; Mitchell, Jonathan [School of Electronics and Physical Sciences, University of Surrey, Surrey, GU2 7XH (United Kingdom); Mulheron, Mike [School of Engineering, University of Surrey, Surrey, GU2 7XH (United Kingdom); Tritt-Goc, Jadwiga [Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, Poznan (Poland); Verganelakis, Dimitris A. [Department of Chemical Engineering, University of Cambridge, Cambridge, CB2 3RA (United Kingdom)

2005-10-01T23:59:59.000Z

75

Transition-metal silicides as materials for magnet-semiconductor heterostructures*  

E-Print Network [OSTI]

Transition-metal silicides as materials for magnet-semiconductor heterostructures* Peter Kratzer as of binary late transition metal monosilicides, in contact with the Si surface. For the Heusler alloy Co2MnSi, we could show that the 001 surface retains the half-metallic character of the bulk if a fully Mn

76

Trends and Future perspective of Electronic, Electro-Optic and Magnetic Materials  

Science Journals Connector (OSTI)

The approach and challenge of innovation through cross-discipline research will be presented to demonstrate the feasibility of achieving major advancement in both fundamental science...

Chang, Jim J

77

Ultra-low field nuclear magnetic resonance and magnetic resonance imaging to discriminate and identify materials  

DOE Patents [OSTI]

Method comprising obtaining an NMR measurement from a sample wherein an ultra-low field NMR system probes the sample and produces the NMR measurement and wherein a sampling temperature, prepolarizing field, and measurement field are known; detecting the NMR measurement by means of inductive coils; analyzing the NMR measurement to obtain at least one measurement feature wherein the measurement feature comprises T1, T2, T1.rho., or the frequency dependence thereof; and, searching for the at least one measurement feature within a database comprising NMR reference data for at least one material to determine if the sample comprises a material of interest.

Matlashov, Andrei Nikolaevich; Urbaitis, Algis V.; Savukov, Igor Mykhaylovich; Espy, Michelle A.; Volegov, Petr Lvovich; Kraus, Jr., Robert Henry

2013-03-05T23:59:59.000Z

78

Los Alamos achieves world-record pulsed magnetic field  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Los Alamos achieves world-record pulsed magnetic field Los Alamos achieves world-record pulsed magnetic field Los Alamos achieves world-record pulsed magnetic field Researchers have set a new world record for the strongest magnetic field produced by a nondestructive magnet. August 23, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

79

End station for nanoscale magnetic materials study: Combination of scanning tunneling microscopy and soft X-ray magnetic circular dichroism spectroscopy  

SciTech Connect (OSTI)

We have constructed an end station for nanoscale magnetic materials study at the soft X-ray beamline HiSOR BL-14 at Hiroshima Synchrotron Radiation Center. An ultrahigh-vacuum scanning tunneling microscope (STM) was installed for an in situ characterization of nanoscale magnetic materials in combination with soft X-ray magnetic circular dichroism (XMCD) spectroscopy experiment. The STM was connected to the XMCD experimental station via damper bellows to isolate it from environmental vibrations, thus achieving efficient spatial resolution for observing Si(111) surface at atomic resolution. We performed an in situ experiment with STM and XMCD spectroscopy on Co nanoclusters on an Au(111) surface and explored its practical application to investigate magnetic properties for well-characterized nanoscale magnetic materials.

Ueno, Tetsuro; Sawada, Masahiro; Namatame, Hirofumi [Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima 739-0046 (Japan); Kishimizu, Yusuke; Kimura, Akio [Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526 (Japan); Taniguchi, Masaki [Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima 739-0046 (Japan); Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526 (Japan)

2012-12-15T23:59:59.000Z

80

Estimation of quantum correlations in magnetic materials by neutron scattering data  

Science Journals Connector (OSTI)

Abstract We demonstrate that inelastic neutron scattering technique can be used to indirectly detect and measure the macroscopic quantum correlations quantified by both entanglement and discord in a quantum magnetic material, VODPO 4 ? 1 2 D 2 O . The amount of quantum correlations is obtained by analyzing the neutron scattering data of magnetic excitations in isolated V4+ spin dimers. Our quantitative analysis shows that the critical temperature of this material can reach as high as T c = 82.5 K , where quantum entanglement drops to zero. Significantly, quantum discord can even survive at T c = 300 K and may be used in room temperature quantum devices. Taking into account the spinorbit (SO) coupling, we also predict theoretically that entanglement can be significantly enhanced and the critical temperature T c increases with the strength of spinorbit coupling.

Ben-Qiong Liu; Lian-Ao Wu; Guo-Mo Zeng; Jian-Ming Song; Wei Luo; Yang Lei; Guang-Ai Sun; Bo Chen; Shu-Ming Peng

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "disciplines magnetism materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

System and method for non-destructive evaluation of surface characteristics of a magnetic material  

DOE Patents [OSTI]

A system and a related method for non-destructive evaluation of the surface characteristics of a magnetic material. The sample is excited by an alternating magnetic field. The field frequency, amplitude and offset are controlled according to a predetermined protocol. The Barkhausen response of the sample is detected for the various fields and offsets and is analyzed. The system produces information relating to the frequency content, the amplitude content, the average or RMS energy content, as well as count rate information, for each of the Barkhausen responses at each of the excitation levels applied during the protocol. That information provides a contiguous body of data, heretofore unavailable, which can be analyzed to deduce information about the surface characteristics of the material at various depths below the surface.

Jiles, David C. (Ames, IA); Sipahi, Levent B. (Ames, IA)

1994-05-17T23:59:59.000Z

82

Disciplined Message Passing Edward A. Lee  

E-Print Network [OSTI]

Program, and the following companies: Agilent, Bosch, HSBC, Lockheed-Martin, National Instruments: Agilent, Bosch, HSBC, Lockheed-Martin, National Instruments, and Toyota. #12;Disciplined Message Passing 2

83

Cryogenic Properties of Inorganic Insulation Materials for ITER Magnets: A Review  

SciTech Connect (OSTI)

Results of a literature search on the cryogenic properties of candidate inorganic insulators for the ITER TF magnets are reported. The materials investigated include: Al{sub 2}O{sub 3}, AlN, MgO, porcelain, SiO{sub 2}, MgAl{sub 2}O{sub 4}, ZrO{sub 2}, and mica. A graphical presentation is given of mechanical, elastic, electrical, and thermal properties between 4 and 300 K. A companion report reviews the low temperature irradiation resistance of these materials.

Simon, N.J.

1994-12-01T23:59:59.000Z

84

Method of making active magnetic refrigerant materials based on Gd-Si-Ge alloys  

DOE Patents [OSTI]

An alloy made of heat treated material represented by Gd.sub.5(Si.sub.xGe.sub.1-x).sub.4 where 0.47.ltoreq.x.ltoreq.0.56 that exhibits a magnetic entropy change (-.DELTA.S.sub.m) of at least 16 J/kg K, a magnetostriction of at least 2000 parts per million, and a magnetoresistance of at least 5 percent at a temperature of about 300K and below, and method of heat treating the material between 800 to 1600 degrees C. for a time to this end.

Pecharsky, Alexandra O. (Ames, IA); Gschneidner, Jr., Karl A. (Ames, IA); Pecharsky, Vitalij K. (Ames, IA)

2006-10-03T23:59:59.000Z

85

Academic Handbook, Appeals, Scholastic Discipline for Undergraduate Students Page 1 Issued: 2011 05  

E-Print Network [OSTI]

, including laboratory reports, diagrams, and computer projects. Students wishing more detailed information or falsifying material subject to academic evaluation. 3. Submitting false or fraudulent assignments, Scholastic Discipline for Undergraduate Students Page 2 Issued: 2011 05 PROCEDURES FOR HANDLING SCHOLASTIC

Denham, Graham

86

W.E. Henry Symposium compendium: The importance of magnetism in physics and material science  

SciTech Connect (OSTI)

This compendium contains papers presented at the W. E. Henry Symposium, The Importance of Magnetism in Physics and Material Science. The one-day symposium was conducted to recognize the achievements of Dr. Warren Elliot Henry as educator, scientist, and inventor in a career spanning almost 70 years. Dr. Henry, who is 88 years old, attended the symposium. Nobel Laureate, Dr. Glenn Seaborg, a friend and colleague for over 40 years, attended the event and shared his personal reminiscences. Dr. Seaborg is Associate Director-At-Large at the Lawrence Berkeley National Laboratory. The Compendium begins with three papers which demonstrate the ongoing importance of magnetism in physics and material science. Other contributions cover the highlights of Dr. Henry`s career as a researcher, educator, and inventor. Colleagues and former students share insights on the impact of Dr. Henry`s research in the field of magnetism, low temperature physics, and solid state physics; his influence on students as an educator; and his character, intellect and ingenuity, and passion for learning and teaching. They share a glimpse of the environment and times that molded him as a man, and the circumstances under which he made his great achievements despite the many challenges he faced.

Carwell, H.

1997-09-19T23:59:59.000Z

87

Effect of Composition and Heat Treatment on MnBi Magnetic Materials  

SciTech Connect (OSTI)

The metallic compound MnBi is a promising rare-earth-free permanent magnet material. Compare to other rare-earth-free candidates, MnBi stands out for its high intrinsic coercivity (Hci) and its large positive temperature coefficient. Several groups have demonstrated that the Hci of MnBi compound in thin film or in powder form can exceed 12 kOe and 26 kOe at 300 K and 523 K, respectively. Such steep increase in Hci with increasing temperature is unique to MnBi. Consequently, MnBi is a highly sought-after hard phase for exchange coupling nanocomposite magnets. The reaction between Mn and Bi is peritectic, so Mn tends to precipitate out of the MnBi liquid during the solidification process. As result, the composition of the Mn-Bi alloy with the largest amount of the desired LTP (low temperature phase) MnBi and highest saturation magnetization will be over-stoichiometric and rich in Mn. The amount of additional Mn required to compensate the Mn precipitation depends on solidification rate: the faster the quench speed, the less Mn precipitates. Here we report a systematic study of the effect of composition and heat treatments on the phase contents and magnetic properties of Mn-Bi alloys. In this study, Mn-Bi alloys with 14 compositions were prepared using conventional metallurgical methods such as arc melting and vacuum heat treatment, and the obtained alloys were analyzed for compositions, crystal structures, phase content, and magnetic properties. The results show that the composition with 55 at.% Mn exhibits the highest LTP MnBi content and the highest magnetization. The sample with this composition shows >90 wt.% LTP MnBi content. Its measured saturation magnetization is 68 emu/g with 2.3 T applied field at 300 K; its coercivity is 13 kOe and its energy product is 12 MGOe at 300 K. A bulk magnet fabricated using this powder exhibits an energy product of 8.2 MGOe.

Cui, Jun; Choi, Jung-Pyung; Polikarpov, Evgueni; Bowden, Mark E.; Xie, Wei; Li, Guosheng; Nie, Zimin; Zarkevich, Nikolai; Kramer, Matthew J.; Johnson, Duane D.

2014-08-17T23:59:59.000Z

88

Impact of fluorine based reactive chemistry on structure and properties of high moment magnetic material  

SciTech Connect (OSTI)

The impact of the fluorine-based reactive ion etch (RIE) process on the structural, electrical, and magnetic properties of NiFe and CoNiFe-plated materials was investigated. Several techniques, including X-ray fluorescence, 4-point-probe, BH looper, transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS), were utilized to characterize both bulk film properties such as thickness, average composition, Rs, ?, Bs, Ms, and surface magnetic dead layers' properties such as thickness and element concentration. Experimental data showed that the majority of Rs and Bs changes of these bulk films were due to thickness reduction during exposure to the RIE process. ? and Ms change after taking thickness reduction into account were negligible. The composition of the bulk films, which were not sensitive to surface magnetic dead layers with nano-meter scale, showed minimum change as well. It was found by TEM and EELS analysis that although both before and after RIE there were magnetic dead layers on the top surface of these materials, the thickness and element concentration of the layers were quite different. Prior to RIE, dead layer was actually native oxidation layers (about 2?nm thick), while after RIE dead layer consisted of two sub-layers that were about 6?nm thick in total. Sub-layer on the top was native oxidation layer, while the bottom layer was RIE damaged layer with very high fluorine concentration. Two in-situ RIE approaches were also proposed and tested to remove such damaged sub-layers.

Yang, Xiaoyu, E-mail: xiaoyu.yang@wdc.com; Chen, Lifan; Han, Hongmei; Fu, Lianfeng; Sun, Ming; Liu, Feng; Zhang, Jinqiu [Western Digital Corporation, 44100 Osgood Road, Fremont, California 94539 (United States)

2014-05-07T23:59:59.000Z

89

Effect of composition and heat treatment on MnBi magnetic materials  

SciTech Connect (OSTI)

The metallic compound MnBi is a promising rare-earth-free permanent magnet material, unique among all candidates for its high intrinsic coercivity (Hci) and its large positive temperature coefficient. The Hci of MnBi in thin-film or powder form can exceed 12 and 26 kOe at 300 and 523 K, respectively. Such a steep rise in Hci with increasing temperature is unique to MnBi. Consequently, MnBi is a highly sought-after hard phase for exchange coupling nanocomposite magnets. However, the reaction between Mn and Bi is peritectic, and hence Mn tends to precipitate out of the MnBi liquid during the solidification process. As result, when the alloy is prepared using conventional induction or arc-melting casting methods, additional Mn is required to compensate the precipitation of Mn. In addition to composition, post-casting annealing plays an important role in obtaining a high content of MnBi low-temperature phase (LTP) because the annealing encourages the Mn precipitates and the unreacted Bi to react, forming the desired LTP phase. Here we report a systematic study of the effect of composition and heat treatments on the phase content and magnetic properties of MnBi alloys. In this study, 14 compositions were prepared using conventional metallurgical methods, and the compositions, crystal structures, phase content and magnetic properties of the resulting alloys were analyzed. The results show that the composition with 55 at.% Mn exhibits both the highest LTP content (93 wt.%) and magnetization (74 emu g?1 with 9 T applied field at 300 K).

Cui, Jun [Pacific Northwest National Laboratory; Choi, Jung-Pyung [Pacific Northwest National Laboratory; Polikarpov, Evgueni [Pacific Northwest National Laboratory; Bowden, Mark E [Pacific Northwest National Laboratory; Xie, Wei [Pacific Northwest National Laboratory; Li, Guosheng [Pacific Northwest National Laboratory; Nie, Zimin [Pacific Northwest National Laboratory; Zarkevich, Nikolai [Ames Laboratory; Kramer, Matthew J [Ames Laboratory; Johnson, Duane [Ames Laboratory

2014-10-01T23:59:59.000Z

90

residual magnetism  

Science Journals Connector (OSTI)

The magnetization, i.e., the magnetic polarization, that remains in a magnetized material after all attempts to remove the magnetization have been made. Note: An example of residual magnetization is the magnetiza...

2001-01-01T23:59:59.000Z

91

INDIVIDUAL DISCIPLINES: HUMAN RESOURCES DIVISION MARKETING  

E-Print Network [OSTI]

INDIVIDUAL DISCIPLINES: HUMAN RESOURCES DIVISION MARKETING AND RECRUITMENT CAMPAIGN STAFF .:|:. Client: Y. Mankin, Computing Sciences #12;DESIGN MAIN MENU 1 2 344 4 5WEBSITES Joint BioEnergy Institute

92

Magnetic resonance imaging (MRI) of solid materials entails numerous problems from short longitudinal relaxation (T2) times to  

E-Print Network [OSTI]

. Solid-State STRAFI NMR Probe for Material Imaging of Quadrupolar Nuclei, J. Magn. Reson. httpMagnetic resonance imaging (MRI) of solid materials entails numerous problems from short for broadband tuning, sample translation along z-axis, and electrodes for in situ battery studies. An Alderman

Weston, Ken

93

Multi-discipline Waste Acceptance Process at the Nevada National Security Site - 13573  

SciTech Connect (OSTI)

The Nevada National Security Site low-level radioactive waste disposal facility acceptance process requires multiple disciplines to ensure the protection of workers, the public, and the environment. These disciplines, which include waste acceptance, nuclear criticality, safety, permitting, operations, and performance assessment, combine into the overall waste acceptance process to assess low-level radioactive waste streams for disposal at the Area 5 Radioactive Waste Management Site. Four waste streams recently highlighted the integration of these disciplines: the Oak Ridge Radioisotope Thermoelectric Generators and Consolidated Edison Uranium Solidification Project material, West Valley Melter, and classified waste. (authors)

Carilli, Jhon T. [US Department Of Energy, Nevada Site Office, P. O. Box 98518, Las Vegas, Nevada 89193-8518 (United States)] [US Department Of Energy, Nevada Site Office, P. O. Box 98518, Las Vegas, Nevada 89193-8518 (United States); Krenzien, Susan K. [Navarro-Intera, LLC, P. O. Box 98952, Las Vegas, Nevada 89193-8952 (United States)] [Navarro-Intera, LLC, P. O. Box 98952, Las Vegas, Nevada 89193-8952 (United States)

2013-07-01T23:59:59.000Z

94

Scientists use world's fastest supercomputer to explore magnetic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Supercomputer to explore magnetic reconnection Supercomputer to explore magnetic reconnection Scientists use world's fastest supercomputer to explore magnetic reconnection The focus is to understand the three-dimensional evolution of thin electrical current layers where magnetic reconnection initially develops. October 30, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

95

Global phase diagram for magnetism and lattice distortion of iron-pnictide materials  

Science Journals Connector (OSTI)

We study the global phase diagram of magnetic orders and lattice structure in the Fe-pnictide materials at zero temperature within one unified theory tuned by both electron doping and pressure. On the low doping and high-pressure side of the phase diagram, there is one single transition, which is described by a z=2 mean-field theory with very weak run-away flows; on the high doping and low-pressure side, the transition is expected to split to two transitions, with one O(3) spin-density wave transition followed by a z=3 quantum Ising transition at larger doping. The fluctuation of the strain field of the lattice will not affect the spin-density wave transition but will likely drive the Ising nematic order transition a mean-field transition through a linear coupling, as observed experimentally in BaFe2?xCoxAs2.

Yang Qi and Cenke Xu

2009-09-04T23:59:59.000Z

96

Rare?Earth?Free Permanent Magnets for Electrical Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn?Bi and M?type Hexaferrite  

SciTech Connect (OSTI)

The research we conducted focuses on the rare-earth (RE)-free permanent magnet by modeling, simulating, and synthesizing exchange coupled two-phase (hard/soft) RE-free core-shell nano-structured magnet. The RE-free magnets are made of magnetically hard core materials (high anisotropy materials including Mn-Bi-X and M-type hexaferrite) coated by soft shell materials (high magnetization materials including Fe-Co or Co). Therefore, our research helps understand the exchange coupling conditions of the core/shell magnets, interface exchange behavior between core and shell materials, formation mechanism of core/shell structures, stability conditions of core and shell materials, etc.

Hong, Yang-Ki [University of Alabama] [University of Alabama; Haskew, Timothy [University of Alabama] [University of Alabama; Myryasov, Oleg [University of Alabama] [University of Alabama; Jin, Sungho [University of California San Diego] [University of California San Diego; Berkowitz, Ami [University of California San Diego] [University of California San Diego

2014-06-05T23:59:59.000Z

97

Magnetic Processing A Pervasive Energy Efficient Technology for Next Generation Materials for Aerospace and Specialty Steel Markets  

SciTech Connect (OSTI)

Thermomagnetic Magnetic Processing is an exceptionally fertile, pervasive and cross-cutting technology that is just now being recognized by several major industry leaders for its significant potential to increase energy efficiency and materials performance for a myriad of energy intensive industries in a variety of areas and applications. ORNL has pioneered the use and development of large magnetic fields in thermomagnetically processing (T-MP) materials for altering materials phase equilibria and transformation kinetics. ORNL has discovered that using magnetic fields, we can produce unique materials responses. T-MP can produce unique phase stabilities & microstructures with improved materials performance for structural and functional applications not achieved with traditional processing techniques. These results suggest that there are unprecedented opportunities to produce significantly enhanced materials properties via atomistic level (nano-) microstructural control and manipulation. ORNL (in addition to others) have shown that grain boundary chemistry and precipitation kinetics are also affected by large magnetic fields. This CRADA has taken advantage of ORNLs unique, custom-designed thermo-magnetic, 9 Tesla superconducting magnet facility that enables rapid heating and cooling of metallic components within the magnet bore; as well as ORNLs expertise in high magnetic field (HMF) research. Carpenter Technologies, Corp., is a a US-based industrial company, that provides enhanced performance alloys for the Aerospace and Specialty Steel products. In this CRADA, Carpenter Technologies, Corp., is focusing on applying ORNLs Thermomagnetic Magnetic Processing (TMP) technology to improve their current and future proprietary materials product performance and open up new markets for their Aerospace and Specialty Steel products. Unprecedented mechanical property performance improvements have been demonstrated for a high strength bainitic alloy industrial/commercial alloy that is envisioned to provide the potential for new markets for this alloy. These thermomechanical processing results provide these alloys with a major breakthrough demonstrating that simultaneous improvements in yield strength and ductility are achieved: 12 %, 10%, 13%, and 22% increases in yield strength, elongation, reduction-in-area, and impact energy respectively. In addition, TMP appears to overcome detrimental chemical homogeneity impacts on uniform microstructure evolution.

Mackiewicz-Ludtka, G.; Ludtka, G.M.; Ray, P. (Carpenter Technologies, Inc.); Magee, J. (Carpenter Technologies, Inc.)

2010-09-10T23:59:59.000Z

98

Investigation of anisotropic photonic band gaps in three-dimensional magnetized plasma photonic crystals containing the uniaxial material  

SciTech Connect (OSTI)

In this paper, the dispersive properties of three-dimensional (3D) magnetized plasma photonic crystals (MPPCs) composed of anisotropic dielectric (the uniaxial material) spheres immersed in homogeneous magnetized plasma background with face-centered-cubic (fcc) lattices are theoretically investigated by the plane wave expansion method, as the Voigt effects of magnetized plasma are considered. The equations for calculating the anisotropic photonic band gaps (PBGs) in the first irreducible Brillouin zone are theoretically deduced. The anisotropic PBGs and two flatbands regions can be obtained. The effects of the ordinary-refractive index, extraordinary-refractive index, filling factor, plasma frequency, and external magnetic field on the dispersive properties of the 3D MPPCs are investigated in detail, respectively, and some corresponding physical explanations are also given. The numerical results show that the anisotropy can open partial band gaps in 3D MPPCs with fcc lattices and the complete PBGs can be found compared to the conventional 3D MPPCs doped by the isotropic material. The bandwidths of PBGs can be tuned by introducing the magnetized plasma into 3D PCs containing the uniaxial material. It is also shown that the anisotropic PBGs can be manipulated by the ordinary-refractive index, extraordinary-refractive index, filling factor, plasma frequency, and external magnetic field, respectively. The locations of flatbands regions cannot be manipulated by any parameters except for the plasma frequency and external magnetic field. Introducing the uniaxial material can obtain the complete PBGs as the 3D MPPCs with high symmetry and also provides a way to design the tunable devices.

Zhang, Hai-Feng [College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China) [College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Nanjing Artillery Academy, Nanjing 211132 (China)] [China; Liu, Shao-Bin; Kong, Xiang-Kun [College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)] [College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

2013-09-15T23:59:59.000Z

99

Far-Infrared Studies of Spin-Peierls Materials in a Magnetic Field  

Science Journals Connector (OSTI)

Both a 20 T superconducting magnet and a 33 T resistive magnet were employed for the magnetic field work. ... Bottom panel:? dashed line, absolute transmission spectra of MEM(TCNQ)2 at 300 K and zero field; solid lines, 5 K transmission ratios of MEM(TCNQ)2 taken as a function of applied magnetic field. ... (47)?Ng, H. K.; Wang, Y. J. Proceedings of the Physical Phenomena at High Magnetic Fields II Conference, Tallahassee, FL, Fisk, Z., Ed.; 1995. ...

G. Li; J. S. Lee; V. C. Long; J. L. Musfeldt; Y. J. Wang; M. Almeida; A. Revcolevschi; G. Dhalenne

1998-03-04T23:59:59.000Z

100

Discipline and Liberty within the Social System  

Science Journals Connector (OSTI)

... progress has been made in the past decade towards achieving an order in which personal liberty and personal discipline fit harmoniously, or towards recognizing that the primary issue is not ... must live, and on the necessity for such understanding for the existence of initiative and liberty within a social system; while Hayek's insistence on the limitations of reason and ...

1953-08-29T23:59:59.000Z

Note: This page contains sample records for the topic "disciplines magnetism materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Magnetism  

Science Journals Connector (OSTI)

Historically, magnetism is related to rock magnetism, due to a few minerals exhibiting spontaneous magnetization. Attractive properties of magnetite were already known in Antiquity and were used for navigation...

Guillaume Morin

1998-01-01T23:59:59.000Z

102

magnetism  

Science Journals Connector (OSTI)

magnetism [A class of physical phenomena associated with moving electricity, including the mutual mechanical forces among magnets and electric currents] ? Magnetismus m

2014-08-01T23:59:59.000Z

103

Maximizing Hysteretic Losses in Magnetic Ferrite Nanoparticles via Model-Driven Synthesis and Materials Optimization  

E-Print Network [OSTI]

This article develops a set of design guidelines for maximizing heat dissipation characteristics of magnetic ferrite MFe[subscript 2]O[subscript 4] (M = Mn, Fe, Co) nanoparticles in alternating magnetic fields. Using ...

Chen, Ritchie

104

Dynamic high pressure process for fabricating superconducting and permanent magnetic materials  

DOE Patents [OSTI]

Shock wave formation of superconductive ceramic oxide electric and magnetic circuit elements with improved microstructures and mechanical properties. 10 figs.

Nellis, W.J.; Maple, M.B.; Geballe, T.H.

1987-10-23T23:59:59.000Z

105

Magnetism Digest  

Science Journals Connector (OSTI)

... and Institute of Electrical and Electronic Engineers, on the occasion of their annual conferences on magnetism and magnetic materials in the United States, have sponsored the production of a Magnetic ... references, drawn from a large number of sources, to work in the field of magnetism and magnetic materials published in the preceding year. They therefore provide a very convenient ...

J. H. PHILLIPS

1966-06-25T23:59:59.000Z

106

Removal of radioactive materials and heavy metals from water using magnetic resin  

DOE Patents [OSTI]

Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately. 9 figs.

Kochen, R.L.; Navratil, J.D.

1997-01-21T23:59:59.000Z

107

Magnetism  

Science Journals Connector (OSTI)

... dipoles in applied fields". It deals with the classical (Langevin) theory of para-magnetism, anisotropy fields and magnetic measurements. In the next chapter "Atomic structure" the author ... special relevance to ferrites and the inclusion of a quite lengthy discussion of Pauli para-magnetism and of Stoner's treatment of itinerant electron ferromagnetism, though it does much to ...

E. W. LEE

1972-03-31T23:59:59.000Z

108

Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process  

DOE Patents [OSTI]

Active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing.

Gschneidner, Jr., Karl A. (Ames, IA); Pecharsky, Vitalij K. (Ames, IA)

1998-04-28T23:59:59.000Z

109

Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process  

DOE Patents [OSTI]

Active magnetic regenerator and method using Gd{sub 5} (Si{sub x}Ge{sub 1{minus}x}){sub 4}, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd{sub 5} (Si{sub x} Ge{sub 1{minus}x}){sub 4}, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing. 27 figs.

Gschneidner, K.A. Jr.; Pecharsky, V.K.

1998-04-28T23:59:59.000Z

110

Plasma-materials interactions and impurity control in magnetically confined thermonuclear fusion machines  

Science Journals Connector (OSTI)

Progress achieved in plasma heating and magnetic confinement during the past decade has brought to the fore a number of problems which have to be solved if controlled thermonuclear fusion is to become an economic...

Dieter M. Gruen; Stanislav Vep?ek; Randy B. Wright

1980-01-01T23:59:59.000Z

111

E-Print Network 3.0 - advanced magnetic materials Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

B. ParkerJ. Cozzolino S. Peggs... W. Louie E. WillenJ. Muratore 12;Construction and Test of the Magnetic Mirror Model of the HTS RIA Source: Gupta, Ramesh - Superconducting...

112

Development of accelerator based spatially resolved ion beam analysis techniques for the study of plasma materials interactions in magnetic fusion devices  

E-Print Network [OSTI]

Plasma-material interactions (PMI) in magnetic fusion devices pose significant scientific and engineering challenges for the development of steady-state fusion power reactors. Understanding PMI is crucial for the develpment ...

Barnard, Harold Salvadore

2014-01-01T23:59:59.000Z

113

Magnetism  

Science Journals Connector (OSTI)

... THIS is a good book, and we are glad to see the subject of magnetism fully treated in a popularly written text-book. It is a second edition of ... of importance, accuracy, and exhaustiveness, places the present treatise, as far as terrestrial magnetism is concerned, much before any similar book with which we are acquainted. The correction ...

JAMES STUART

1872-03-07T23:59:59.000Z

114

Temperature and magnetic field dependent optical spectral weight in the cation-deficient colossal-magnetoresistance material La0.936Mn0.982O3  

E-Print Network [OSTI]

with the general arguments, a broad peak has been observed in 1 various Mn-based CMR materials by several groupsTemperature and magnetic field dependent optical spectral weight in the cation-deficient colossal on single-crystal samples as a function of temperature and at zero and 0.5 T magnetic fields

Homes, Christopher C.

115

Interplay of superconductivity, magnetism, and density waves in rare-earth tritellurides and iron-based superconducting materials  

E-Print Network [OSTI]

3. Magnetism in Metals . . . . . . . . . . . . . . . . .IV Superconductivity and Magnetism in Iron-PnictideIII Superconductivity, Magnetism and Charge-Density Waves in

Zocco, Diego Andrs

2011-01-01T23:59:59.000Z

116

Using Magnetic Levitation for Three Dimensional Self-Assembly SUPPORTI G O LI E MATERIAL  

E-Print Network [OSTI]

063-N50; rectangular prisms: grade N42, 4 in ? 2 in ? 1 in, Model# NB079) were purchased from Applied from Utrecht (Cambridge, MA; www.utrechtart.com). Polyvinyl chloride tape (PVC) and aluminum tape were sink to the bottom of the container in the absence of an applied magnetic field. B) Positioning

Aizenberg, Joanna

117

Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Materials and methods are available as supplementary materials on Science Online. 16. W. Benz, A. G. W. Cameron, H. J. Melosh, Icarus 81, 113 (1989). 17. S. L. Thompson, H. S. Lauson, Technical Rep. SC-RR-710714, Sandia Nat. Labs (1972). 18. H. J. Melosh, Meteorit. Planet. Sci. 42, 2079 (2007). 19. S. Ida, R. M. Canup, G. R. Stewart, Nature 389, 353 (1997). 20. E. Kokubo, J. Makino, S. Ida, Icarus 148, 419 (2000). 21. M. M. M. Meier, A. Reufer, W. Benz, R. Wieler, Annual Meeting of the Meteoritical Society LXXIV, abstr. 5039 (2011). 22. C. B. Agnor, R. M. Canup, H. F. Levison, Icarus 142, 219 (1999). 23. D. P. O'Brien, A. Morbidelli, H. F. Levison, Icarus 184, 39 (2006). 24. R. M. Canup, Science 307, 546 (2005). 25. J. J. Salmon, R. M. Canup, Lunar Planet. Sci. XLIII, 2540 (2012). Acknowledgments: SPH simulation data are contained in tables S2 to S5 of the supplementary materials. Financial support

118

DRAFT - DOE O 333.1, Administering Work Force Discipline  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To provide requirements and responsibilities for administering workforce discipline that includes disciplinary, adverse, and alternative corrective actions in the Department of Energy (DOE).

119

Learning About Magnets!  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the the National High Magnetic Field Laboratory Learning About Name A magnet is a material or object that creates a magnetic fi eld. This fi eld is invisible, but it creates a force that can "attract" or "repel" other magnets and magnetic materials, like iron or nickel. What is a Magnet? This bar magnet is a permanent magnet. Permanent magnets can be found in the Earth as rocks and metals. Magnets have

120

Incorporation of 4d and 5d Transition Metal Cyanometallates into Magnetic Clusters and Materials.  

E-Print Network [OSTI]

AND PENTADECANUCLEAR CLUSTERS BASED ON MV(CN)8 (M = Mo, W) AND NiII .............. 35 Introduction .................................................................................... 35 Experimental Section... scheme of Prussian Blue analogs, M' = V,Cr, Fe, Co, M = V, Cr, Mn, Fe, Ni , L = labile ligand or solvent molecule. 6 cancel, and the remaining unpaired spins align with the field as a ferromagnet does (Scheme 2a). Although these magnetic...

Hilfiger, Matthew Gary

2011-08-08T23:59:59.000Z

Note: This page contains sample records for the topic "disciplines magnetism materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Supplementary Material An ion-channel-containing model membrane: structural determination by magnetic contrast  

E-Print Network [OSTI]

by magnetic contrast neutron reflectometry Stephen A. Holt,*a Anton P. Le Brun,b Charles F. Majkrzak,c Duncan, UK.; E-mail: Anton.Le-Brun@newcastle.ac.uk: j.h.lakey@ncl.ac.uk c NIST Center for Neutron Research, Auckland 1142, NZ.; E-mail: d.mcgillivray@auckland.ac.nz Keywords: OmpF; Outer membrane; porin; neutron

Loesche, Mathias

122

Control of magnetic vortex chirality in square ring micromagnets Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 and Materials Science  

E-Print Network [OSTI]

Control of magnetic vortex chirality in square ring micromagnets A. Libála Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 and Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 M. Grimsditch Materials Science Division, Argonne National Laboratory

Metlushko, Vitali

123

Plutonium less mysterious with nuclear magnetic resonance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory...

124

Information systems as a reference discipline for new product development  

Science Journals Connector (OSTI)

Baskerville and Myers (2002) recently suggested that the information systems (IS) field has "come of age" and that it can now serve as a reference discipline for other fields. In this article, the discourse about their vision is extended by considering ... Keywords: IS research agenda, IS research issues, IT infusion, diffusion of research, knowledge network, new product development, reference discipline

Satish Nambisan

2003-03-01T23:59:59.000Z

125

NiFe2O4/activated carbon nanocomposite as magnetic material from petcoke  

Science Journals Connector (OSTI)

Abstract Nickel ferrite (NiFe2O4) was supported on activated carbon (AC) from petroleum coke (petcoke). Potassium hydroxide (KOH) was employed with petcoke to produce activated carbon. NiFe2O4 were synthesized using PEG-Oleic acid assisted hydrothermal method. The structural and magnetic properties were determined using thermogravimetric and differential thermal analysis (TGADTA), X-ray diffraction (XRD), Fourier Transform Infrared (IR-FT), surface area (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). XRD analysis revealed the cubic spinel structure and ferrite phase with high crystallinity. IR-FT studies showed that chemical modification promoted the formation of surface oxygen functionalities. Morphological investigation by SEM showed conglomerates of spherical nanoparticles with an average particle size of 72nm and TEM showed the formation of NiFe2O4/carbon nanofibers. Chemical modification and activation temperature of 800C prior to activation dramatically increased the BET surface area of the resulting activated carbon to 842.4m2/g while the sulfur content was reduced from 6 to 1%. Magnetic properties of nanoparticles show strong dependence on the particle size.

Sarah Briceo; W. Brmer-Escamilla; P. Silva; J. Garca; H. Del Castillo; M. Villarroel; J.P. Rodriguez; M.A. Ramos; R. Morales; Y. Diaz

2014-01-01T23:59:59.000Z

126

Rare-Earth-Free Nanostructure Magnets: Rare-Earth-Free Permanent Magnets for Electric Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn-Bi and M-type Hexaferrite  

SciTech Connect (OSTI)

REACT Project: The University of Alabama is developing new iron- and manganese-based composite materials for use in the electric motors of EVs and renewable power generators that will demonstrate magnetic properties superior to todays best rare-earth-based magnets. Rare earths are difficult and expensive to refine. EVs and renewable power generators typically use rare earths to make their electric motors smaller and more powerful. The University of Alabama has the potential to improve upon the performance of current state-of-the-art rare-earth-based magnets using low-cost and more abundant materials such as manganese and iron. The ultimate goal of this project is to demonstrate improved performance in a full-size prototype magnet at reduced cost.

None

2012-01-01T23:59:59.000Z

127

magnets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

I I Painless Physics Articles BEAM COOLING August 2, 1996 By Leila Belkora, Office of Public Affairs ACCELERATION August 16, 1996 By Dave Finley, Accelerator Division Head RF August 30, 1996 By Pat Colestock, Accelerator Division FIXED TARGET PHYSICS September 20, 1996 By Peter H. Garbincius, Physics Section FIXED TARGET PHYSICS PART DEUX October 16, 1996 By Peter H. Garbincius, Physics Section and Leila Belkora, Office of Public Affaris CROSS SECTION November 1, 1996 By Doreen Wackeroth, Theoretical Physics Edited by Leila Belkora, Office of Public Affaris MAGNETS PART I November 15, 1996 By Hank Glass, Technical Support Section Edited by Donald Sena, Office of Public Affairs MAGNETS PART II January 10, 1997 By Hank Glass, Technical Support Section Edited by Donald Sena, Office of Public Affairs

128

Magnetism  

Science Journals Connector (OSTI)

In our previous discussions of the electronic structure of materials we have assumed the one-electron approximation. The energy levels and the bandstructure were calculated for an electron in an effective pote...

Professor Dr. Harald Ibach; Professor Dr. Dr. h.c. Hans Lth

2009-01-01T23:59:59.000Z

129

Method of making active magnetic refrigerant, colossal magnetostriction and giant magnetoresistive materials based on Gd-Si-Ge alloys  

DOE Patents [OSTI]

Method of making an active magnetic refrigerant represented by Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4 alloy for 0.ltoreq.x.ltoreq.1.0 comprising placing amounts of the commercially pure Gd, Si, and Ge charge components in a crucible, heating the charge contents under subambient pressure to a melting temperature of the alloy for a time sufficient to homogenize the alloy and oxidize carbon with oxygen present in the Gd charge component to reduce carbon, rapidly solidifying the alloy in the crucible, and heat treating the solidified alloy at a temperature below the melting temperature for a time effective to homogenize a microstructure of the solidified material, and then cooling sufficiently fast to prevent the eutectoid decomposition and improve magnetocaloric and/or the magnetostrictive and/or the magnetoresistive properties thereof.

Gschneidner, Jr., Karl A. (Ames, IA); Pecharsky, Alexandra O. (Ames, IA); Pecharsky, Vitalij K. (Ames, IA)

2003-07-08T23:59:59.000Z

130

Characterization of proton exchange membrane materials for fuel cells by solid state nuclear magnetic resonance  

SciTech Connect (OSTI)

Solid-state nuclear magnetic resonance (NMR) has been used to explore the nanometer-scale structure of Nafion, the widely used fuel cell membrane, and its composites. We have shown that solid-state NMR can characterize chemical structure and composition, domain size and morphology, internuclear distances, molecular dynamics, etc. The newly-developed water channel model of Nafion has been confirmed, and important characteristic length-scales established. Nafion-based organic and inorganic composites with special properties have also been characterized and their structures elucidated. The morphology of Nafion varies with hydration level, and is reflected in the changes in surface-to-volume (S/V) ratio of the polymer obtained by small-angle X-ray scattering (SAXS). The S/V ratios of different Nafion models have been evaluated numerically. It has been found that only the water channel model gives the measured S/V ratios in the normal hydration range of a working fuel cell, while dispersed water molecules and polymer ribbons account for the structures at low and high hydration levels, respectively.

Kong, Zueqian

2010-03-15T23:59:59.000Z

131

Potential hazards and artifacts of ferromagnetic and nonferromagnetic surgical and dental materials and devices in nuclear magnetic resonance imaging  

SciTech Connect (OSTI)

The risks to patients with metal surgical implants who are undergoing nuclear magnetic resonance (NMR) imaging and the artifacts caused by such implants were studied. Twenty-one aneurysm and other hemostatic clips and a variety of other materials (e.g., dental amalgam, 14 karat gold) were used. Longitudinal forces and torques were found to be exerted upon 16 of the 21 clips. With five aneurysm clips, forces and torques sufficient to produce risk of hemorrhage from dislocation of the clip from the vessel or aneurysm, or cerebral injury by clip displacement without dislodgement were identified. The induced ferromagnetism was shown to be related to the composition of the alloys from which the clips were manufactured. Clips with 10-14% nickel are evidently without sufficient induced ferromagnetism to cause hazard. The extent of NMR imaging artifacts was greater for materials with measurable ferromagnetic properties, but metals without measurable ferromagnetism in our tests also resulted in significant artifacts. Dental amalgam and 14 karat gold produced no imaging artifacts, but stainless steels in dentures and orthodontic braces produced extensive artifacts in the facial region.

New, P.F.J. (Massachusetts General Hospital, Boston, MA); Rosen, B.R.; Brady, T.J.; Buonanno, F.S.; Kistler, J.P.; Burt, C.T.; Hinshaw, W.S.; Newhouse, J.H.; Pohost, G.M.; Taveras, J.M.

1983-04-01T23:59:59.000Z

132

Browse by Discipline -- E-print Network Subject Pathways: Biology...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home About Advanced Search Browse by Discipline Scientific Societies E-print Alerts Add E-prints FAQ * HELP * SITE MAP * CONTACT US Enter Search Terms Search Advanced Search...

133

Browse by Discipline -- E-print Network Subject Pathways: Plasma...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home About Advanced Search Browse by Discipline Scientific Societies E-print Alerts Add E-prints FAQ * HELP * SITE MAP * CONTACT US Enter Search Terms Search Advanced Search...

134

The Disciplines of Engineering and History: Some Common Ground  

Science Journals Connector (OSTI)

The nature of engineering and history as disciplines are explored and found to ... on the particulars of given situations. The history of technology is paid special attention, because ... made for giving historic...

Priyan Dias

2014-06-01T23:59:59.000Z

135

Electrical Engineering is a diverse discipline encompassing computer and information  

E-Print Network [OSTI]

70 ELECTRICAL Electrical Engineering is a diverse discipline encompassing computer and information environmental engineering and manufacturing to semiconductors and telecommunications. The Electrical Engineering Technology and the Signal and Image Processing institute. PROGRAMS AVAILABLE Electrical Engineering Bachelor

Rohs, Remo

136

Electrical Engineering is a diverse discipline encompassing computer and information  

E-Print Network [OSTI]

70 ELECTRICAL Electrical Engineering is a diverse discipline encompassing computer and information environmental engineering and manufacturing to semiconductors and telecommunications. The Electrical Engineering Technology and the Signal and Image Processing institute. PROGRAMS AVAILABLE · Electrical Engineering

Rohs, Remo

137

Browse by Discipline -- E-print Network Subject Pathways: Power...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home About Advanced Search Browse by Discipline Scientific Societies E-print Alerts Add E-prints FAQ * HELP * SITE MAP * CONTACT US Enter Search Terms Search Advanced Search...

138

Research in Related Disciplines and Non-Anglophone Areas  

Science Journals Connector (OSTI)

This chapter discusses developments which have taken place, more or less independently, outside the research traditions treated in the earlier chapters. First, attention is paid to research in some disciplines...

Frans H. van Eemeren; Bart Garssen

2014-03-01T23:59:59.000Z

139

Research in Related Disciplines and Non-Anglophone Areas  

Science Journals Connector (OSTI)

This chapter discusses developments which have taken place, more or less independently, outside the research traditions treated in the earlier chapters. First, attention is paid to research in some disciplines...

Frans H. van Eemeren; Bart Garssen; Erik C. W. Krabbe

2014-06-01T23:59:59.000Z

140

Los Alamos achieves world-record pulsed magnetic field  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory...

Note: This page contains sample records for the topic "disciplines magnetism materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Magnetic shielding  

DOE Patents [OSTI]

A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient magnetic field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines. 3 figs.

Kerns, J.A.; Stone, R.R.; Fabyan, J.

1987-10-06T23:59:59.000Z

142

Magnetic shielding  

DOE Patents [OSTI]

A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient magnetic field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.

Kerns, John A. (Livermore, CA); Stone, Roger R. (Walnut Creek, CA); Fabyan, Joseph (Livermore, CA)

1987-01-01T23:59:59.000Z

143

Magnetic Materials (MM)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beam Time Contacts Calendars Community Scientific Access Site Access Training Science & Education Science & Research Highlights Conferences Seminars Publications Annual Reports...

144

Experimental Investigation of Magnetic, Superconducting, and other Phase Transitions in novel F-Electron Materials at Ultra-high Pressures - Final Progress Report  

SciTech Connect (OSTI)

This grant, entitled Experimental investigation of magnetic, superconducting and other phase transitions in novel f-electron materials at ultrahigh pressures, spanned the funding period from May 1st, 2003 until April 30th, 2006. The major goal of this grant was to develop and utilize an ultrahigh pressure facilitycapable of achieving very low temperatures, high magnetic fields, and extreme pressures as well as providing electrical resistivity, ac susceptibility, and magnetization measurement capabilities under pressurefor the exploration of magnetic, electronic, and structural phases and any corresponding interactions between these states in novel f-electron materials. Realizing this goal required the acquisition, development, fabrication, and implementation of essential equipment, apparatuses, and techniques. The following sections of this report detail the establishment of an ultrahigh pressure facility (Section 1) and measurements performed during the funding period (Section 2), as well as summarize the research project (Section 3), project participants and their levels of support (Section 4), and publications and presentations (Section 5).

Maple, Brian; Jeffires, Jason

2006-07-28T23:59:59.000Z

145

Towards a Common Terminology in the Discipline of Enterprise Architecture  

Science Journals Connector (OSTI)

This paper presents a literature analysis considering 126 references to support a common terminology in the discipline of Enterprise Architecture (EA). In a first step, it surveys EA-Drivers, addressed architectural layers and the differentiation of ... Keywords: Architecture Layers, Drivers, Enterprise Architecture, Terminology

Marten Schenherr

2009-04-01T23:59:59.000Z

146

GUIDELINES FOR STUDENTS AND STAFF ON STUDENT DISCIPLINE PROCEDURES  

E-Print Network [OSTI]

GUIDELINES FOR STUDENTS AND STAFF ON STUDENT DISCIPLINE PROCEDURES Contents 1. Introduction 2. Definition of Disciplinary Offences 3. Preliminary Procedures for Considering Disciplinary Offences 4. Procedures for the Consideration of Minor Offences 5. Procedures for the Consideration of Category B Offences

Greenaway, Alan

147

Computing Across the Disciplines: Using Cell Phones in Experiments  

E-Print Network [OSTI]

Computing Across the Disciplines: Using Cell Phones in Experiments Robert Juranitch University School of Milw. rjuranitch@usmk12.org #12;Apology #12;A High School Student #12;Cell Phone Saturation · 31 percent of teens between 14 and 17 years old have a smart phone. · Usage has tripled every two

Brylow, Dennis

148

Magnetic shielding  

DOE Patents [OSTI]

A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.

Kerns, J.A.; Stone, R.R.; Fabyan, J.

1985-02-12T23:59:59.000Z

149

Journal of Magnetism and Magnetic Materials 272276 (2004) e1333e1334 Non-local Hall resistance measured in submicron-scale  

E-Print Network [OSTI]

succeeded in detecting the spin- accumulation signal in the normal metal by the non- local spin-valve-related phenomenon like a spin-valve effect. When the spin-polarized electrons accumulate in a non-magnetic metal coefficient of 8:40 ? 10?11 A=cm3 ; indicating the effect of the stray filed from the ferromagnetic layer

Otani, Yoshichika

150

Breaking symmetries in ordered materials : spin polarized light transport in magnetized noncentrosymmetric 1D photonic crystals, and photonic gaps and fabrication of quasiperiodic structured materials from interference lithography  

E-Print Network [OSTI]

Effects of breaking various symmetries on optical properties in ordered materials have been studied. Photonic crystals lacking space-inversion and time-reversal symmetries were shown to display nonreciprocal dispersion ...

Bita, Ion

2006-01-01T23:59:59.000Z

151

Learning About Magnets!  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by the National High Magnetic Field Laboratory Learning About Name A magnet is a material or object that creates a magnetic fi eld. This fi eld is invisible, but it creates a...

152

E-Print Network 3.0 - amino-functionalized magnetic nano-adsorbent...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

How do we measure magnetic properties... ? What are the atomic reasons for magnetism? How are magnetic material classified? Materials design... for magnetic...

153

Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture Systems ~ Wildlife Silvicultural Treatments for Enhancing  

E-Print Network [OSTI]

Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture Scientist, Ecological Processes Research Branch BC Ministry of Forests and Range P.O. Box 9519, Stn Prov TR-033 March 2006 Research Section, Coast Forest Region, BCMOF 1 Research Disciplines: Ecology

154

Experimental Investigation of Magnetic Superconducting, and other Phase Transitions in Novel f-Electron Materials at Ultra-high Pressures Using Designer Diamond Anvils  

SciTech Connect (OSTI)

Pressure is a powerful control parameter, owing to its ability to affect crystal and electronic structure without introducing defects, for the investigation of condensed matter systems. Some f-electron, heavy-fermion materials display interesting and novel behavior when exposed to pressures achievable with conventional experimental techniques; however, a growing number of condensed matter systems require extreme conditions such as ultrahigh pressures, high magnetic fields, and ultralow temperatures to sufficiently explore the important properties. To that end, we have been funded to develop an ultrahigh pressure facility at the University of California, San Diego (UCSD) in order to investigate superconductivity, magnetism, non-Fermi liquid behavior, and other phenomena under extreme conditions. Our goals for the second year of this grant were as follows: (a) perform electrical resistivity measurements on novel samples at a myriad of pressures using conventional piston-cylinder techniques, Bridgman anvil techniques, and diamond anvil cell technology; (b) install, commission, and operate an Oxford Kelvinox MX-100 dilution refrigerator for access to ultralow temperatures and high magnetic fields. (c) continue the development of diamond anvil cell (DAC) technology. During the past year, we have successfully installed the Oxford Kelvinox MX-100 dilution refrigerator and verified its operability down to 12 mK. We have begun an experimental program to systematically investigate the f-electron compound URu2Si2 under pressure and in the presence of magnetic fields. We have also continued our collaborative work with Sam Weir at Lawrence Livermore National Laboratory (LLNL) on Au4V and implemented a new corollary study on Au1-xVx using ultrahigh pressures. We have continued developing our DAC facility by designing and constructing an apparatus for in situ pressure measurement as well as designing high pressure cells. This report serves to highlight the progress we have made towards developing an ultrahigh pressure research facility at UCSD, the research performed in the past year, as well as future directions we plan to pursue.

Maple, M. Brian

2005-09-13T23:59:59.000Z

155

Magnetism Highlights| Neutron Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Magnetism Magnetism SHARE Magnetism Highlights 1-5 of 5 Results ARCS maps collaborative magnetic spin behavior in iron telluride December 01, 2011 - Researchers have long thought that magnetism and superconductivity are mutually exclusive. The former typically involves localized atomic electrons. The latter requires freely propagating, itinerant electrons. Unexpected Magnetic Excitations in Doped Insulator Surprise Researchers October 01, 2011 - When doping a disordered magnetic insulator material with atoms of a nonmagnetic material, the conventional wisdom is that the magnetic interactions between the magnetic ions in the material will be weakened. Neutron Analysis Reveals Unique Atomic-Scale Behavior of "Cobalt Blue" September 01, 2011 - Neutron scattering studies of "cobalt blue," a

156

Magnetically attached sputter targets  

DOE Patents [OSTI]

An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material is described. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly. 11 figures.

Makowiecki, D.M.; McKernan, M.A.

1994-02-15T23:59:59.000Z

157

AutoCAD discipline layering convention. Revision 1  

SciTech Connect (OSTI)

This document is a user`s guide to establishing layering standards for drawing development. Uniform layering standards are established to exchange of AutoCAD datasets between organizations and companies. Consistency in the layering conventions assists the user through logical separation and identification of drawing data. This allows the user to view and plot related aspects of a drawing separately or in combination. The use of color and Linetype by layer is the preferred layering convention method, however to accommodate specific needs, colors and linetypes can also be assigned on an entity basis. New drawing setup files (also identified in AutoCAD documentation as Prototype drawings) use this layering convention to establish discipline drawing layers that are routinely used. Additions, deletions or revisions to the layering conventions are encourage.

Nielsen, B.L.

1995-05-17T23:59:59.000Z

158

Browse by Discipline -- Subject Pathways for the E-print Network -- Energy,  

Office of Scientific and Technical Information (OSTI)

Browse by Discipline These pages contain links to thousands of servers, sites, and documents contributed by individual authors that contain e-print information in discipline areas of interest to the Department of Energy's research activities. These resources are organized into discipline-specific categories as indicated below. To view these resources and sites, simply select a discipline, browse the entries listed in alphabetical order, and click on any entry to leave the discipline you selected and enter a specific website. Use the "Back" button to return to the E-print Discipline you exited from. Biology and Medicine Biotechnology Computer Technologies and Information Sciences Chemistry Energy Storage, Conversion and Utilization Engineering Environmental Management and Restoration Technologies

159

Ch 20. Magnetism Liu UCD Phy1B 2012 1  

E-Print Network [OSTI]

Ch 20. Magnetism Liu UCD Phy1B 2012 1 #12;I. MagnetI. Magnet Poles of a magnet: magnetic effect is strongest When the magnet is freely suspended North pole: pointing to north South pole: pointing to south Poles always come in pairs Liu UCD Phy1B 2012 2 #12;Magnetic MaterialsMagnetic Materials Magnetite Fe3O4

Yoo, S. J. Ben

160

In-situ magnetization of NdFeB magnets for permanent magnet machines  

SciTech Connect (OSTI)

In-situ magnetizers are needed to facilitate the assembly of permanent magnet machines and to remagnetize the magnets after weakening due to a fault condition. The air-core magnetizer in association with the silicon steel lamination structure of the rotor has advantages over its iron-core counterpart. This novel method has been used to magnetize the NdFeB magnets in a 30-hp permanent magnet synchronous motor. The magnetizing capability for different magnetizer geometries was investigated for the magnetization of NdFeB material. The design, testing, and operation of this magnetizer are reported in this paper.

Chang, L.; Eastham, T.R.; Dawson, G.E. (Dept. of Electrical Engineering, Queen's Univ., Kingston, Ontario K7L 3N6 (CA))

1991-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "disciplines magnetism materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

G H I J K L M N O P Q R S G H I J K L M N O P Q R S T U V W X Y Z Faber, Ted (Ted Faber) - Information Sciences Institute, University of Southern California Fábián, Csaba I. (Csaba I. Fábián) - Institute of Mathematics, Eötvös Loránd University Fabrikant, Alex (Alex Fabrikant) - Department of Computer Science, Princeton University Fabrikant, Sara Irina (Sara Irina Fabrikant) - Department of Geography, Universität Zürich Faella, Marco (Marco Faella) - Computer Science Division, Dipartimento di Scienze Fisiche, Università degli Studi di Napoli "Federico II" Fagg, Andrew H. (Andrew H. Fagg) - School of Computer Science, University of Oklahoma Fagin, Ron (Ron Fagin) - IBM Almaden Research Center Fahlman, Scott E. (Scott E. Fahlman) - Language Technologies

162

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

Z Z Zabih, Ramin (Ramin Zabih) - Department of Computer Science, Cornell University Zabulis, Xenophon (Xenophon Zabulis) - Institute of Computer Science, Foundation of Research and Technology, Hellas Zacchiroli, Stefano (Stefano Zacchiroli) - Laboratoire Preuves, Programmes et Systèmes, Université Paris 7 - Denis Diderot Zachmann, Gabriel (Gabriel Zachmann) - Institut für Informatik, Technische Universität Clausthal Zadok, Erez (Erez Zadok) - Department of Computer Science, SUNY at Stony Brook Zaffalon, Marco (Marco Zaffalon) - Istituto Dalle Molle di Studi sull' Intelligenza Artificiale (IDSIA) Zahorian, Stephen A. (Stephen A. Zahorian) - Department of Electrical and Computer Engineering, State University of New York at Binghamton Zahorjan, John (John Zahorjan) - Department of Computer Science and

163

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

S S T U V W X Y Z Sabelfeld, Andrei (Andrei Sabelfeld) - Department of Computer Science and Engineering, Chalmers University of Technology Saber, Eli (Eli Saber) - Department of Electrical Engineering, Rochester Institute of Technology Saberi, Amin (Amin Saberi) - Institute for Computational and Mathematical Engineering, Stanford University Sabharwal, Ashutosh (Ashutosh Sabharwal) - Department of Electrical and Computer Engineering, Rice University Sabry, Amr (Amr Sabry) - Computer Science Department, Indiana University Sabuncu, Mert Rory (Mert Rory Sabuncu) - NMR Athinoula A. Martinos Center, Massachusetts General Hospital, Harvard University Sadayappan, P. "Saday" (P. "Saday" Sadayappan) - Department of Computer Science and Engineering, Ohio State University

164

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

D E F G H I J K L M N O P Q R S D E F G H I J K L M N O P Q R S T U V W X Y Z Cabalar, Pedro (Pedro Cabalar) - Departamento de Computación, Universidade da Coruña Caballero, Juan (Juan Caballero) - Madrid Institute for Advanced Studies in Software Development Technologies (IMDEA Software Institute) Cabellos-Aparicio, Albert (Albert Cabellos-Aparicio) - Departament d'Arquitectura de Computadors, Universitat Politècnica de Catalunya Cachin, Christian (Christian Cachin) - IBM Zurich Research Laboratory Cadar, Cristian (Cristian Cadar) - Department of Computing, Imperial College, London Caduff, David (David Caduff) - Department of Geography, Universität Zürich Caesar, Matthew (Matthew Caesar) - Department of Computer Science, University of Illinois at Urbana-Champaign

165

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

C D E F G H I J K L M N O P Q R S C D E F G H I J K L M N O P Q R S T U V W X Y Z Babai, László (László Babai) - Departments of Computer Science & Mathematics, University of Chicago Babaoglu, Ozalp (Ozalp Babaoglu) - Dipartimento di Informatica: Scienza e Ingegneria, Università di Bologna Bacardit, Jaume (Jaume Bacardit) - School of Computer Science, University of Nottingham Bacchus, Fahiem (Fahiem Bacchus) - Department of Computer Science, University of Toronto Bach, Francis (Francis Bach) - Département d'Informatique, École Normale Supérieure Bachmat, Eitan (Eitan Bachmat) - Department of Computer Science, Ben-Gurion University Back, Godmar (Godmar Back) - Department of Computer Science, Virginia Tech Back, Jonathan (Jonathan Back) - UCL Interaction Centre, University

166

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

X Y Z X Y Z Wachsmut, Ipke (Ipke Wachsmut) - Technischen Fakultät, Universität Bielefeld Wactlar, Howard D. (Howard D. Wactlar) - School of Computer Science, Carnegie Mellon University Wadler, Philip (Philip Wadler) - School of Informatics, University of Edinburgh Waern, Annika (Annika Waern) - Human-Computer Interaction and Language Engineering Laboratory, Swedish Institute of Computer Science Wagner, Alan (Alan Wagner) - Department of Computer Science, University of British Columbia Wagner, David (David Wagner) - Department of Electrical Engineering and Computer Sciences, University of California at Berkeley Wagner, Flávio Rech (Flávio Rech Wagner) - Instituto de Informática, Universidade Federal do Rio Grande do Sul Wagner, Paul J. (Paul J. Wagner) - Department of Computer Science,

167

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

V W X Y Z V W X Y Z Vaandrager, Frits (Frits Vaandrager) - Institute for Computing and Information Sciences, Radboud Universiteit Vadhan, Salil (Salil Vadhan) - Electrical Engineering and Computer Science, School of Engineering and Applied Sciences, Harvard University Vahdat, Amin (Amin Vahdat) - Department of Computer Science and Engineering, University of California at San Diego Vahid, Frank (Frank Vahid) - Department of Computer Science and Engineering, University of California at Riverside Vaidyanathan, Ramachandran "Vaidy" (Ramachandran "Vaidy" Vaidyanathan) - Department of Electrical and Computer Engineering, Louisiana State University Vajnovszki, Vincent (Vincent Vajnovszki) - Laboratoire Electronique, Informatique et Image, Université de Bourgogne

168

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

Computer Technologies and Information Sciences Computer Technologies and Information Sciences Go to Research Groups Preprints Provided by Individual Scientists: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Aalst, W.M.P.van der (W.M.P.van der Aalst) - Wiskunde en Informatica, Technische Universiteit Eindhoven Aamodt, Agnar (Agnar Aamodt) - Department of Computer and Information Science, Norwegian University of Science and Technology Aamodt, Tor (Tor Aamodt) - Department of Electrical and Computer Engineering, University of British Columbia Aardal, Karen (Karen Aardal) - Centrum voor Wiskunde en Informatica Aaronson, Scott (Scott Aaronson) - Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT) Aazhang, Behnaam (Behnaam Aazhang) - Department of Electrical and

169

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

U V W X Y Z U V W X Y Z Ta-Shma, Amnon (Amnon Ta-Shma) - School of Computer Science, Tel Aviv University Tabatabaee, Vahid (Vahid Tabatabaee) - Department of Computer Science, University of Maryland at College Park Tacchella, Armando (Armando Tacchella) - Dipartimento di Informatica Sistemistica e Telematica, Università degli Studi di Genova Tachi, Susumu (Susumu Tachi) - Graduate School of Media Design, Keio University Tadepalli, Prasad (Prasad Tadepalli) - School of Electrical Engineering and Computer Science, Oregon State University Tadmor, Eitan (Eitan Tadmor) - Center for Scientific Computation and Mathematical Modeling & Department of Mathematics, University of Maryland at College Park Taft, Nina -Technicolor Palo Alt(aft, Nina -Technicolor Palo Al)to

170

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

K L M N O P Q R S K L M N O P Q R S T U V W X Y Z Jaakkola, Tommi S. (Tommi S. Jaakkola) - Computer Science and Artificial Intelligence Laboratory & Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT) Jackson, Daniel (Daniel Jackson) - Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT) Jackson, Jeffrey (Jeffrey Jackson) - Department of Mathematics and Computer Science, Duquesne University Jackson, Paul (Paul Jackson) - School of Informatics, University of Edinburgh Jacob, Bruce (Bruce Jacob) - Institute for Advanced Computer Studies & Department of Electrical and Computer Engineering, University of Maryland at College Park Jacob, Christian (Christian Jacob) - Department of Computer Science,

171

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

Y Z Y Z Xi, Hongwei (Hongwei Xi) - Department of Computer Science, Boston University Xia, Ge "Frank" (Ge "Frank" Xia) - Department of Computer Science, Lafayette College Xia, Xiang-Gen (Xiang-Gen Xia) - Department of Electrical and Computer Engineering, University of Delaware Xiang, Yang (Yang Xiang) - Department of Computing and Information Science, University of Guelph Xiao, Bin (Bin Xiao) - Department of Computing, Hong Kong Polytechnic University Xiao, Jing (Jing Xiao) - Department of Computer Science, University of North Carolina at Charlotte Xiao, Li (Li Xiao) - Department of Computer Science and Engineering, Michigan State University Xie, Fei (Fei Xie) - Department of Computer Science, Portland State University Xie, Geoffrey (Geoffrey Xie) - Department of Computer Science, Naval

172

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

M N O P Q R S M N O P Q R S T U V W X Y Z L'Ecuyer, Pierre (Pierre L'Ecuyer) - Département d'Informatique et recherche opérationnelle, Université de Montréal la Cour-Harbo, Anders (Anders la Cour-Harbo) - Department of Control Engineering, Aalborg University La Porta, Tom (Tom La Porta) - Networking and Security Research Center & Department of Computer Science and Engineering, Pennsylvania State University La, Richard J. (Richard J. La) - Institute for Systems Research & Department of Electrical and Computer Engineering, University of Maryland at College Park Laadan, Oren (Oren Laadan) - Department of Computer Science, Columbia University Labahn, George (George Labahn) - School of Computer Science, University of Waterloo LaBean, Thomas H. (Thomas H. LaBean) - Department of Computer

173

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

S S T U V W X Y Z Rabaey, Jan M. (Jan M. Rabaey) - Department of Electrical Engineering and Computer Sciences, University of California at Berkeley Rabbah, Rodric (Rodric Rabbah) - Dynamic Optimization Group, IBM T.J. Watson Research Center Rabbat, Michael (Michael Rabbat) - Department of Electrical and Computer Engineering, McGill University Rabhi, Fethi A. (Fethi A. Rabhi) - School of Information Systems, Technology and Management, University of New South Wales Rabie, Tamer (Tamer Rabie) - College of Information Technology, United Arab Emirates University Rabinovich, Alexander (Alexander Rabinovich) - School of Computer Science, Tel Aviv University Rabinovich, Michael "Misha" (Michael "Misha" Rabinovich) - Department of Electrical Engineering and Computer Sciences, Case Western

174

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

H I J K L M N O P Q R S H I J K L M N O P Q R S T U V W X Y Z Gabbard, Joseph L. (Joseph L. Gabbard) - Department of Computer Science, Virginia Tech Gabor, Adriana (Adriana Gabor) - Wiskunde en Informatica, Technische Universiteit Eindhoven Gaborit, Philippe (Philippe Gaborit) - Département Maths Informatique, Université de Limoges Gaborski, Roger S. (Roger S. Gaborski) - Department of Computer Science, Rochester Institute of Technology Gabow, Harold (Harold Gabow) - Department of Computer Science, University of Colorado at Boulder Gabriel, Edgar (Edgar Gabriel) - Department of Computer Science, University of Houston Gacek, Andrew (Andrew Gacek) - Department of Computer Science and Engineering, University of Minnesota Gacs, Peter (Peter Gacs) - Department of Computer Science, Boston

175

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

F G H I J K L M N O P Q R S F G H I J K L M N O P Q R S T U V W X Y Z Eager, Derek (Derek Eager) - Department of Computer Science, University of Saskatchewan Easterbrook, Steve (Steve Easterbrook) - Department of Computer Science, University of Toronto Eberle, William (William Eberle) - Department of Computer Science, Tennessee Technological University Eberlein, Armin (Armin Eberlein) - Department of Electrical and Computer Engineering, University of Calgary Ebert, David S. (David S. Ebert) - School of Electrical and Computer Engineering, Purdue University Ebert, Todd (Todd Ebert) - Department of Computer Engineering and Computer Science, California State University, Long Beach Ebnenasir, Ali (Ali Ebnenasir) - Department of Computer Science, Michigan Technological University

176

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

Q R S Q R S T U V W X Y Z Pace, Gordon J. (Gordon J. Pace) - Department of Computer Science, University of Malta Pach, János (János Pach) - Department of Mathematics, Courant Institute of Mathematical Sciences, New York University Padawitz, Peter (Peter Padawitz) - Fachbereich Informatik, Universität Dortmund Padgham, Lin (Lin Padgham) - School of Computer Science and Information Technology, RMIT University Padmanabhan, Venkata N. (Venkata N. Padmanabhan) - Microsoft Research Padó, Sebastian (Sebastian Padó) - Institut für Maschinelle Sprachverarbeitung, Universität Stuttgart Padua, David (David Padua) - Siebel Center for Computer Science, University of Illinois at Urbana-Champaign Paech, Barbara (Barbara Paech) - Interdisziplinäres Zentrum für

177

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

J K L M N O P Q R S J K L M N O P Q R S T U V W X Y Z Iacono, John (John Iacono) - Department of Computer Science and Engineering, Polytechnic Institute of New York University Iamnitchi, Adriana (Adriana Iamnitchi) - Computer Science and Engineering, University of South Florida Iannone, Luigi (Luigi Iannone) - Institut Deutsche Telekom Laboratories, Technische Universität Berlin Ìayr, Richard (Richard Ìayr) - School of Informatics, University of Edinburgh Ibarra, Louis (Louis Ibarra) - School of Computer Science, Telecommunications and Information Systems, DePaul University Ichimura, Naoyuki (Naoyuki Ichimura) - Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Ide, Nancy (Nancy Ide) - Department of Computer Science, Vassar

178

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

V W X Y Z V W X Y Z Uçar, Bora (Bora Uçar) - Laboratoire de l'Informatique du Parallélisme, Ecole Normale Supérieure de Lyon Uchiyama, Hiroyuki (Hiroyuki Uchiyama) - Department of Information and Computer Science, Kagoshima University Ucoluk, Gokturk (Gokturk Ucoluk) - Department of Computer Engineering, Middle East Technical University Ueda, Kazunori (Kazunori Ueda) - Department of Computer Science and Engineering, Waseda University Uhl, Andreas (Andreas Uhl) - Department of Computer Sciences, Universität Salzburg Uhlig, Steve (Steve Uhlig) - Institut Deutsche Telekom Laboratories, Technische Universität Berlin Uht, Augustus K. (Augustus K. Uht) - Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island Ulidowski, Irek (Irek Ulidowski) - Department of Computer Science,

179

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

O P Q R S O P Q R S T U V W X Y Z Nachman, Iftach (Iftach Nachman) - Department of Molecular Genetics and Biochemistry, Tel Aviv University Nack, Frank (Frank Nack) - Research Institute Computer Science, Universiteit van Amsterdam Nadal, Jean-Pierre (Jean-Pierre Nadal) - Laboratoire de Physique Statistique, Département de Physique, École Normale Supérieure Nadathur, Gopalan (Gopalan Nadathur) - Department of Computer Science and Engineering, University of Minnesota Nadeau, David R. (David R. Nadeau) - San Diego Supercomputer Center, University of California at San Diego Nagpal, Radhika (Radhika Nagpal) - School of Engineering and Applied Sciences, Harvard University Nagurney, Anna (Anna Nagurney) - Isenberg School of Management, University of Massachusetts at Amherst

180

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

E F G H I J K L M N O P Q R S E F G H I J K L M N O P Q R S T U V W X Y Z D'Ambrosio, Donato (Donato D'Ambrosio) - Dipartimento di Matematica, Università della Calabria d'Avila Garcez, Artur (Artur d'Avila Garcez) - School of Informatics, City University London D'Azevedo, Ed (Ed D'Azevedo) - Computer Science and Mathematics Division, Oak Ridge National Laboratory d'Inverno, Mark (Mark d'Inverno) - Department of Computing, Goldsmiths College, University of London D'Souza, Raissa (Raissa D'Souza) - Departments of Computer Science and Engineering and Mechanical and Aeronautical Engineering , University of California, Davis da Silva, Alberto Rodrigues (Alberto Rodrigues da Silva) - Departamento de Engenharia Informática, Universidade Técnica de Lisboa da Silva, Paulo Pinheiro (Paulo Pinheiro da Silva) - Department of

Note: This page contains sample records for the topic "disciplines magnetism materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

H I J K L M N O P Q R S H I J K L M N O P Q R S T U V W X Y Z Ha, Phuong H. (Phuong H. Ha) - Department of Computer Science, Universitetet i Tromsø Ha, Soonhoi (Soonhoi Ha) - School of Computer Science and Engineering, Seoul National University Haarslev, Volker (Volker Haarslev) - Department of Computer Science and Software Engineering, Concordia University Habash, Nizar (Nizar Habash) - Center for Computational Learning Systems, Columbia University Habel, Annegret (Annegret Habel) - Department für Informatik, Carl von Ossietzky Universität Oldenburg Habra, Naji (Naji Habra) - Faculté d'informatique, Facultés Universitaires Notre-Dame de la Paix Habrard, Amaury (Amaury Habrard) - Centre de Mathématiques et Informatique, Université de Provence Hachenberger, Peter (Peter Hachenberger) - Wiskunde en Informatica,

182

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

N O P Q R S N O P Q R S T U V W X Y Z Ma, Bin (Bin Ma) - School of Computer Science, University of Waterloo Ma, Jinwen (Jinwen Ma) - School of Mathematical Sciences, Peking University Ma, Kwan-Liu (Kwan-Liu Ma) - Institute for Ultra-Scale Visualization & Department of Computer Science, University of California, Davis Ma, Qing (Qing Ma) - Department of Applied Mathematics and Informatics, Ryukoku University Ma, Xiaosong (Xiaosong Ma) - Center for High Performance Simulation & Department of Computer Science, North Carolina State University Ma, Yi (Yi Ma) - Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign Maass, Wolfgang (Wolfgang Maass) - Institute for Theoretical Computer Science, Technische Universität Graz

183

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

L M N O P Q R S L M N O P Q R S T U V W X Y Z Kaâniche, Mohamed (Mohamed Kaâniche) - Laboratoire d'Analyse et d'Architecture des Systèmes du CNRS Kaasbøll, Jens (Jens Kaasbøll) - Institutt for Informatikk, Universitetet i Oslo Kabal, Peter (Peter Kabal) - Department of Electrical and Computer Engineering, McGill University Kaban, Ata (Ata Kaban) - School of Computer Science, University of Birmingham Kabanets, Valentine (Valentine Kabanets) - School of Computing Science, Simon Fraser University Kabanza, Froduald (Froduald Kabanza) - Département d'informatique, Université de Sherbrooke Kabara, Joseph (Joseph Kabara) - School of Information Sciences, University of Pittsburgh Kachroo, Pushkin (Pushkin Kachroo) - Department of Electrical and Computer Engineering, University of Nevada at Las Vegas

184

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

Z Z Yaakobi, Eitan (Eitan Yaakobi) - Department of Electrical Engineering, California Institute of Technology Yacci, Michael (Michael Yacci) - Department of Information Technology, Rochester Institute of Technology Yacef, Kalina (Kalina Yacef) - School of Information Technologies, University of Sydney Yacoob, Yaser (Yaser Yacoob) - Institute for Advanced Computer Studies, University of Maryland at College Park Yakovenko, Sergei (Sergei Yakovenko) - Department of Mathematics, Weizmann Institute of Science Yamamoto, Hitoshi (Hitoshi Yamamoto) - University of Electro-Communications Yamamoto, Mikio (Mikio Yamamoto) - Department of Computer Science, University of Tsukuba Yamashita, Yoichi (Yoichi Yamashita) - Department of Computer Science, Ritsumeikan University

185

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

P Q R S P Q R S T U V W X Y Z Ó Conaire, Ciarán (Ciarán Ó Conaire) - Centre for Digital Video Processing, University College Dublin O'Boyle, Michael (Michael O'Boyle) - School of Informatics, University of Edinburgh O'Brien, James F. (James F. O'Brien) - Department of Electrical Engineering and Computer Sciences, University of California at Berkeley O'Connell, Tom (Tom O'Connell) - Department of Mathematics and Computer Science, Skidmore College O'Connor, Rory (Rory O'Connor) - School of Computing, Dublin City University O'Donnell, John (John O'Donnell) - Department of Computing Science, University of Glasgow O'Donnell, Michael J. (Michael J. O'Donnell) - Department of Computer Science, University of Chicago O'Donnell, Ryan (Ryan O'Donnell) - School of Computer Science,

186

Clusters: A bridge across the disciplines of environment, materials science, and biology  

Science Journals Connector (OSTI)

...as in case of malignant melanoma, BNCT is the only alternative. BNCT involves the capture of thermal neutrons by boron-10 ( 10 B) nuclei because of the property of the boron nuclei. However, the delivery of the boron to the tumor is administered...

A. W. Castleman; Jr.; Puru Jena

2006-01-01T23:59:59.000Z

187

Symmetry breaking in the formation of magnetic vortex states in a permalloy nanodisk  

E-Print Network [OSTI]

structure of magnetic vortex cores. Science 298, 6. Fischer,Magnetic Material Center, National Institute for Materials Science (Magnetic vortex core observation in circular dots of Permalloy. Science

Im, Mi-Young

2014-01-01T23:59:59.000Z

188

Cite this: Lab Chip, 2013, 13, 1457 Unconventional microfluidics: expanding the discipline  

E-Print Network [OSTI]

Cite this: Lab Chip, 2013, 13, 1457 Unconventional microfluidics: expanding the discipline DOI: 10*a Since its inception, the discipline of microfluidics has been harnessed for innovations-effect of stereotyping microfluidics as a platform for medical diagnostics and miniaturized lab processes

189

Graded Materials for Resistance to Contact Deformation and Damage  

E-Print Network [OSTI]

Graded Materials for Resistance to Contact Deformation and Damage S. Suresh The mechanical response, materials sci- entists increasingly aim to engineer graded materials that are more damage-resistant than of materials with spatial gradients in composition and structure is of considerable interest in disciplines

Suresh, Subra

190

Nuclear Magnetic Resonance Studies of Macroscopic Morphology and Dynamics  

E-Print Network [OSTI]

Applications in Materials Magnetic Science, Agriculture andApplications in Materials Magnetic Science, Agriculture andMagnetic Resonance Studies of Macroscopic Morphology and Dynamics Geoffrey Alden Barrali Department of Chemistry University of California, Berkeley and Materials Sciences

Barrall, G.A.

2010-01-01T23:59:59.000Z

191

Introduction The essence of pharmaceutical materi-  

E-Print Network [OSTI]

, crystalline, and amorphous materials of relevance to the pharmaceutical industry. Like its parent discipline of pharmaceutical dosage forms. However, it was not until the early 1950s that the pharmaceutical industry beganIntroduction The essence of pharmaceutical materi- als science is the application of fundamen- tal

Elliott, James

192

MagLab - MagLab Dictionary: Permanent Magnet (Transcript)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by Scott Hannahs, DC Facilities & Instrumentation director. Permanent magnet Field lines of a permanent magnet go from north to south. Permanent magnets are materials where...

193

Flipping the switch on magnetism in strontium titanate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Flipping the switch on magnetism in strontium titanate Flipping the switch on magnetism in strontium titanate Researchers have found a way to magnetize this material using light,...

194

Controlled interface profile in SmCo/Fe exchange-spring magnets Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439  

E-Print Network [OSTI]

-spring permanent magnets enhances the exchange coupling effectiveness without modifying the local composition are complementary or even mutually exclusive. Exchange-spring nanocomposite magnets1,2 consist of exchange coupled of the exchange-spring magnets. For example, interfacial condi- tions influence the exchange coupling

Liu, J. Ping

195

Fusion Nuclear Science and Technology Research Needed Now for Magnetic  

E-Print Network [OSTI]

Chamber Research Plasma Chamber Research embodies the scientific and engineering disciplines required Chamber · Plasma Heating/Fueling/CD · Safety · Tritium · Materials · Design Studies #12;Scope of Plasma

196

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Office of Scientific and Technical Information (OSTI)

Q R S Q R S T U V W X Y Z Padture, Nitin P. (Nitin P. Padture) - Department of Materials Science and Engineering, Ohio State University Paiella, Roberto (Roberto Paiella) - Department of Electrical and Computer Engineering, Boston University Paik Suh, Myunghyun (Myunghyun Paik Suh) - Department of Chemistry, Seoul National University Painter, Oskar (Oskar Painter) - Department of Applied Physics and Materials Science, California Institute of Technology Palevski, Alexander (Alexander Palevski) - School of Physics and Astronomy, Tel Aviv University Pan, Xiaoqing (Xiaoqing Pan) - Department of Materials Science and Engineering, University of Michigan Panagiotopoulos, Athanassios Z.(Athanassios Z.Panagiotopoulos).- Department of Chemical Engineering, Princeton University

197

Irreversible Thermodynamics and Smart Materials Systems Modelling. Example of  

E-Print Network [OSTI]

Irreversible Thermodynamics and Smart Materials Systems Modelling. Example of Magnetic Shape Memory mechanisms in smart materials. This procedure is applied to Magnetic Shape Memory Alloys actuators of complex active materials for smart systems. Keywords: Smart material systems, Actuator design

Paris-Sud XI, Université de

198

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Office of Scientific and Technical Information (OSTI)

W X Y Z W X Y Z Vahala, Kerry J. -Department of Applied Physics and Materials Science, California Institute of Technolog(ahala, Kerry J. -Department of Applied Physics and Materials Science, California Institute of Technolo)gy Vakni, David (David Vakni) - Ames Laboratory van de Walle, Axel (Axel van de Walle) - Division of Engineering, Brown University van der Wal, Caspar H. (Caspar H. van der Wal) - Zernike Institute for Advanced Materials & Department of Physics, Rijksuniversiteit Groningen Van Driel, Henry M. (Henry M. Van Driel) - Department of Physics, University of Toronto van Duin, Adri (Adri van Duin) - Materials and Molecules Simulation Center, California Institute of Technology Van Harlingen, Dale J. (Dale J. Van Harlingen) - Department of Physics, University of Illinois at Urbana-Champaign

199

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Office of Scientific and Technical Information (OSTI)

Materials Science Materials Science Go to Research Groups Preprints Provided by Individual Scientists: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Abécassis, Benjamin (Benjamin Abécassis) - Laboratoire de Physique des Solides, Université de Paris-Sud 11 Ackland, Graeme (Graeme Ackland) - Centre for Materials Science and Engineering & School of Physics, University of Edinburgh Adams, James B (James B Adams) - Department of Chemical and Materials Engineering, Arizona State University Adams, Philip W. (Philip W. Adams) - Department of Physics and Astronomy, Louisiana State University Adeyeye, Adekunle (Adekunle Adeyeye) - Department of Electrical and Computer Engineering, National University of Singapore Agrawal, Dinesh (Dinesh Agrawal) - Microwave Processing and

200

BEPC-II Magnet Project | Superconducting Magnet Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BEPC-II Magnet Project BEPC-II Magnet Project Project Overview The BEPC-II magnets are Interaction Region magnets to be used as part of an upgrade to the Beijing Electron Positron Collider. Two magnets will be produced, both of which will be inserted within the solenoidal detector at one of the collision points. Since the best use of the quadrupole focusing in this case requires placing the magnet as close to the collision point as possible, these magnets will be used within the magnetic field of the detector. This constrains the materials that can be used for construction to only non-magnetic materials. It also places severe demands on the structure of the magnet and it's holding supports due to the reaction forces between the solenoid and the magnet. To create the coil pattern for the final magnet, the coils will be

Note: This page contains sample records for the topic "disciplines magnetism materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Magnetism in metal-organic capsules  

E-Print Network [OSTI]

Quantum Spin Chains in Magnetism: Molecules to Materials, J.Magnetism in metal-organic capsules Jerry L. Atwood,* a Euan

Atwood, Jerry L.

2010-01-01T23:59:59.000Z

202

Magnetic Material for PM Motors  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

203

Magnetic Material for PM Motors  

Broader source: Energy.gov [DOE]

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

204

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Office of Scientific and Technical Information (OSTI)

O P Q R S O P Q R S T U V W X Y Z Nadgorny, Boris (Boris Nadgorny) - Department of Physics and Astronomy, Wayne State University Nadgorny, Edward M.(Edward M.Nadgorny).- Department of Physics, Michigan Technological University Nair, Sankar (Sankar Nair) - School of Chemical and Biomolecular Engineering, Georgia Institute of Technology Nairn, John A. (John A. Nairn) - Department of Wood Science and Engineering, Oregon State University Nakamura, Toshio (Toshio Nakamura) - Department of Mechanical Engineering, SUNY at Stony Brook Narayan, Jagdish (Jagdish Narayan) - Department of Materials Science and Engineering, North Carolina State University Narayan, Ramani (Ramani Narayan) - Department of Chemical Engineering and Materials Science, Michigan State University

205

Browse by Discipline -- E-print Network Subject Pathways: Physics --  

Office of Scientific and Technical Information (OSTI)

O P Q R S O P Q R S T U V W X Y Z Naddef, Denis (Denis Naddef) - Laboratoire des Sciences pour la Conception, l'Optimisation et la Production de Grenoble & Institut polytechnique de Grenoble Nagamune, Ryozo (Ryozo Nagamune) - Department of Mechanical Engineering, University of British Columbia Nagarajaiah, Satish (Satish Nagarajaiah) - Department of Civil and Environmental Engineering & Mechanical Engineering and Materials Science, Rice University Naghshineh, Koorosh (Koorosh Naghshineh) - Department of Mechanical and Aeronautical Engineering, Western Michigan University Nagi, Rakesh (Rakesh Nagi) - Department of Industrial and Systems Engineering, State University of New York at Buffalo Nagib, Hassan M. (Hassan M. Nagib) - Mechanical, Materials, and

206

Does competition for capital discipline governments? The role of fiscal equalization  

Science Journals Connector (OSTI)

Competition for capital is known to have important disciplining effect on governments expenditure behavior. This is so because the fear of capital outflows motivates governments to invest more in ... such as inf...

Yongzheng Liu

2014-06-01T23:59:59.000Z

207

From Theory to Application: Extreme Fire, Resilience, Restoration, and Education in Social-Ecological Disciplines  

E-Print Network [OSTI]

fire in resprouting shrublands, and the need for broader participation in research as part of undergraduate education. The chapters in this dissertation serve as a case-study approach across multiple scientific disciplines that overcome the traditions...

Twidwell, Dirac

2012-07-16T23:59:59.000Z

208

electrical engineering (EE) Electrical Engineering is a diverse discipline encompassing computer and  

E-Print Network [OSTI]

to students in the School of Engineering (these students should pursue the Multimedia and Creative62 electrical engineering (EE) Electrical Engineering is a diverse discipline encompassing computer environmental engineering and manufacturing to semiconductors and telecommunications. The Electrical Engineering

Rohs, Remo

209

electrical (EE) Electrical Engineering is a diverse discipline encompassing computer and  

E-Print Network [OSTI]

66 electrical (EE) Electrical Engineering is a diverse discipline encompassing computer environmental engineering and manufacturing to semiconductors and telecommunica- tions. The Electrical Technology and the Signal and Image Processing institute. Programs Available · Electrical Engineering

Rohs, Remo

210

Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture Systems ~ Wildlife Biology, Ecology, and Management  

E-Print Network [OSTI]

Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture Systems ~ Wildlife Biology, Ecology, and Management of Western Hemlock Dwarf Mistletoe in Coastal British.W. Negrave. 2007. Biology, Ecology, and Management of Western Hemlock Dwarf Mistletoe in Coastal British

211

Los Alamos identifies internal material control issue  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Internal material control issue Internal material control issue Los Alamos identifies internal material control issue The error relates to internal inventory and accounting that documents movement of sensitive materials within a small portion of Technical Area 55. February 26, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

212

Scientists produce transparent, light-harvesting material  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transparent, light-harvesting material Transparent, light-harvesting material Scientists produce transparent, light-harvesting material The material could be used in development of transparent solar panels. November 3, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact James E. Rickman Communications Office (505) 665-9203

213

E-Print Network 3.0 - amorphous soft magnetic Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Materials Science and Engineering, Carnegie Mellon University Collection: Materials Science 5 Magnetic Nanocomposite Materials for High Temperature Applications Frank...

214

Nanocomposite Magnets: Transformational Nanostructured Permanent Magnets  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: GE is using nanomaterials technology to develop advanced magnets that contain fewer rare earth materials than their predecessors. Nanomaterials technology involves manipulating matter at the atomic or molecular scale, which can represent a stumbling block for magnets because it is difficult to create a finely grained magnet at that scale. GE is developing bulk magnets with finely tuned structures using iron-based mixtures that contain 80% less rare earth materials than traditional magnets, which will reduce their overall cost. These magnets will enable further commercialization of HEVs, EVs, and wind turbine generators while enhancing U.S. competitiveness in industries that heavily utilize these alternatives to rare earth minerals.

None

2010-10-01T23:59:59.000Z

215

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

P Q R S P Q R S T U V W X Y Z O'Driscoll, Michael. A. -Department of Geological Sciences, East Carolina Universit('Driscoll, Michael. A. -Department of Geological Sciences, East Carolina Universi)ty O'Driscoll, Nelson (Nelson O'Driscoll) - Department of Earth and Environmental Sciences, Acadia University O'Gorman, Paul (Paul O'Gorman) - Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology (MIT) O'Hara, Kieran (Kieran O'Hara) - Department of Earth and Environmental Sciences, University of Kentucky O'Neil, Jonathan (Jonathan O'Neil) - Department of Terrestrial Magnetism, Carnegie Institution for Science Occhipinti, Giovanni "Ninto" (Giovanni "Ninto" Occhipinti) - Institut de Physique du Globe de Paris

216

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Office of Scientific and Technical Information (OSTI)

J K L M N O P Q R S J K L M N O P Q R S T U V W X Y Z Iba, Yukito (Yukito Iba) - Institute of Statistical Mathematics (Japan) Ichiki, Kengo (Kengo Ichiki) - National Institute for Nanotechnology & Department of Mechanical Engineering, University of Alberta Idzerda, Yves (Yves Idzerda) - Magnetic Nanostructure Growth and Characterization Facility & Department of Physics, Montana State University Iglesia, Enrique (Enrique Iglesia) - Department of Chemical and Biomolecular Engineering, University of California at Berkeley Iglesias, José Roberto (José Roberto Iglesias) - Instituto de Física, Universidade Federal do Rio Grande do Sul Ihn, Thomas (Thomas Ihn) - Departement Physik, Eidgenössische Technische Hochschule Zürich (ETHZ) Imamoglu, Atac (Atac Imamoglu) - Departement Physik, Eidgenössische

217

Browse by Discipline -- E-print Network Subject Pathways: Engineering --  

Office of Scientific and Technical Information (OSTI)

N O P Q R S N O P Q R S T U V W X Y Z Maqueda, Ricardo J. "Ricky" (Ricardo J. "Ricky" Maqueda) - Magnetic Fusion Energy Experiments, P-24 Plasma Physics, Los Alamos National Laboratory Marchand, Richard (Richard Marchand) - Department of Physics, University of Alberta Marjoribanks, Robin S. (Robin S. Marjoribanks) - Department of Physics, University of Toronto Martín-Solís, José Ramón (José Ramón Martín-Solís) - Grupo de Fusión, Universidad Carlos III de Madrid Mauel, Michael E. (Michael E. Mauel) - Department of Applied Physics and Applied Mathematics, Columbia University Mazzucato, Ernesto (Ernesto Mazzucato) - Princeton Plasma Physics Laboratory Milchberg, Howard (Howard Milchberg) - Institute for Physical Science and Technology & Department of Physics, University of Maryland at

218

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Office of Scientific and Technical Information (OSTI)

I J K L M N O P Q R S I J K L M N O P Q R S T U V W X Y Z Haas, Stephan (Stephan Haas) - Department of Physics and Astronomy, University of Southern California Hague, Jim (Jim Hague) - Department of Physics and Astronomy, Open University Hall, Christopher (Christopher Hall) - Centre for Materials Science and Engineering, University of Edinburgh Halloran, John (John Halloran) - Department of Materials Science and Engineering, University of Michigan Ham, Donhee (Donhee Ham) - Electrical Engineering and Computer Science, School of Engineering and Applied Sciences, Harvard University Hammel, Chris (Chris Hammel) - Condensed Matter and Thermal Physics, Los Alamos National Laboratory Hammerstrom, Dan (Dan Hammerstrom) - Department of Electrical and Computer Engineering, Portland State University

219

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Office of Scientific and Technical Information (OSTI)

H I J K L M N O P Q R S H I J K L M N O P Q R S T U V W X Y Z Galbraith, Aysa Akad (Aysa Akad Galbraith) - Department of Chemical and Biomolecular Engineering, North Carolina State University Gall, Daniel (Daniel Gall) - Department of Materials Science and Engineering, Rensselaer Polytechnic Institute Gallas, Márcia Russman (Márcia Russman Gallas) - Instituto de Física, Universidade Federal do Rio Grande do Sul Gallivan, Martha A. (Martha A. Gallivan) - School of Chemical and Biomolecular Engineering, Georgia Institute of Technology Gangloff, Richard P. (Richard P. Gangloff) - Department of Materials Science and Engineering, University of Virginia Gao, Hongjun (Hongjun Gao) - Institute of Physics, Chinese Academy of Sciences Gao, Song (Song Gao) - College of Chemistry, Peking University

220

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Office of Scientific and Technical Information (OSTI)

X Y Z X Y Z Wadley, Haydn (Haydn Wadley) - Intelligent Processing of Materials Laboratory & Department of Materials Science and Engineering, University of Virginia Walker, Michael B. (Michael B. Walker) - Department of Physics, University of Toronto Wallin, Mats (Mats Wallin) - Department of Physics, Royal Institute of Technology, Sweden Wallraff, Andreas (Andreas Wallraff) - Departement Physik, Eidgenössische Technische Hochschule Zürich (ETHZ) Wan, Xin-hua (Xin-hua Wan) - Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Wang, Deli (Deli Wang) - Department of Electrical and Computer Engineering, University of California at San Diego Wang, Gwo-Ching (Gwo-Ching Wang) - Department of Physics, Applied

Note: This page contains sample records for the topic "disciplines magnetism materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Office of Scientific and Technical Information (OSTI)

E F G H I J K L M N O P Q R S E F G H I J K L M N O P Q R S T U V W X Y Z Eades, Alwyn (Alwyn Eades) - Department of Materials Science and Engineering, Lehigh University Eagar, Thomas W. (Thomas W. Eagar) - Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT) Economou, Demetre J. (Demetre J. Economou) - Department of Chemical Engineering, University of Houston Edwards, Sam (Sam Edwards) - Cavendish Laboratory, University of Cambridge Ehrman, Sheryl H. (Sheryl H. Ehrman) - Department of Chemical Engineering and Biomolecular Engineering, University of Maryland at College Park Einstein, Theodore L. (Theodore L. Einstein) - Department of Physics, University of Maryland at College Park Eisenberg, Eli (Eli Eisenberg) - School of Physics and Astronomy,

222

Browse by Discipline -- E-print Network Subject Pathways: Mathematics --  

Office of Scientific and Technical Information (OSTI)

M N O P Q R S M N O P Q R S T U V W X Y Z Lazzaro, John (John Lazzaro) - Department of Electrical Engineering and Computer Sciences, University of California at Berkeley Lee, Tonghun (Tonghun Lee) - Department of Mechanical Engineering, Michigan State University Li, Ying (Ying Li) - Department of Mechanical Engineering, University of Wisconsin-Milwaukee Liso, Vincenzo (Vincenzo Liso) - Department of Energy Technology, Aalborg University Liu, Fuqiang (Fuqiang Liu) - Department of Material Science and Engineering, University of Texas at Arlington Logan, Bruce E.(Bruce E.Logan).- Department of Civil and Environmental Engineering, Pennsylvania State University Long, Marshall B. (Marshall B. Long) - Department of Mechanical Engineering and Materials Science, Yale University

223

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Office of Scientific and Technical Information (OSTI)

D E F G H I J K L M N O P Q R S D E F G H I J K L M N O P Q R S T U V W X Y Z Cabral, Marco (Marco Cabral) - Instituto de Matemática, Universidade Federal do Rio de Janeiro Çagin, Tahir (Tahir Çagin) - Materials and Process Simulation Center, California Institute of Technology Cahay, Marc (Marc Cahay) - Department of Electrical and Computer Engineering, University of Cincinnati Cahill, David G. (David G. Cahill) - Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign Cai, Wei (Wei Cai) - Department of Mechanical Engineering, Stanford University Caldarelli, Guido (Guido Caldarelli) - Dipartimento di Fisica, Università di Roma "La Sapienza" Camesano, Terri (Terri Camesano) - Department of Chemical Engineering, Worcester Polytechnic Institute

224

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Office of Scientific and Technical Information (OSTI)

S S T U V W X Y Z Rabani, Eran (Eran Rabani) - School of Chemistry, Tel Aviv University Rabani, Eran (Eran Rabani) - School of Chemistry, Tel Aviv University Rabson, David A. (David A. Rabson) - Department of Physics, University of South Florida Radhakrishnan, Ravi (Ravi Radhakrishnan) - Department of Bioengineering, University of Pennsylvania Raghavan, Srinivasa (Srinivasa Raghavan) - Department of Chemical Engineering and Biomolecular Engineering, University of Maryland at College Park Ramesh, R. (R. Ramesh) - Department of Materials Science and Engineering, University of California at Berkeley Ramsak, Anton (Anton Ramsak) - Department of Theoretical Physics, Jozef Stefan Institute Rangan, Chitra (Chitra Rangan) - Department of Physics, University of Windsor

225

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Office of Scientific and Technical Information (OSTI)

Z Z Zabaras, Nicholas J. (Nicholas J. Zabaras) - Sibley School of Mechanical and Aerospace Engineering, Cornell University Zaccarelli, Emanuela (Emanuela Zaccarelli) - Dipartimento di Fisica, Università di Roma "La Sapienza" Zachariah, Michael R. (Michael R. Zachariah) - Departments of Chemistry & Mechanical Engineering, University of Minnesota Zaidi, S. M. Javaid (S. M. Javaid Zaidi) - Department of Chemical Engineering, King Fahd University of Petroleum and Minerals Zarestky, Jerel (Jerel Zarestky) - Oak Ridge National Laboratory Zbib, Hussein M. (Hussein M. Zbib) - School of Mechanical and Materials Engineering, Washington State University Zbigniew, Postawa (Postawa Zbigniew) - Instytut Fizyki, Uniwersytet Jagiellonski Zehnder, Alan (Alan Zehnder) - Department of Theoretical and Applied

226

Browse by Discipline -- E-print Network Subject Pathways: Mathematics --  

Office of Scientific and Technical Information (OSTI)

S S T U V W X Y Z Sangiovanni-Vincentelli, Alberto (Alberto Sangiovanni-Vincentelli) - Department of Electrical Engineering and Computer Sciences,University of California at Berkeley Schaefer, Laura A. (Laura A. Schaefer) - Department of Mechanical Engineering and Materials Science, University of Pittsburgh Schaltz, Erik (Erik Schaltz) - Department of Energy Technology, Aalborg University Schweizer, Ben (Ben Schweizer) - Fachbereich Mathematik, Universität Dortmund Seidler, Gerald T. (Gerald T. Seidler) - Department of Physics, University of Washington at Seattle Senkan, Selim M. (Selim M. Senkan) - Department of Chemical Engineering, University of California at Los Angeles Sera, Dezso (Dezso Sera) - Department of Energy Technology, Aalborg University

227

Browse by Discipline -- E-print Network Subject Pathways: Physics --  

Office of Scientific and Technical Information (OSTI)

R S R S T U V W X Y Z Qian, Dong (Dong Qian) - Department of Mechanical, Industrial and Nuclear Engineering, University of Cincinnati Qian, Gang (Gang Qian) - Department of Electrical Engineering, Arizona State University Qian, Li (Li Qian) - Department of Electrical and Computer Engineering, University of Toronto Qian, Xiaoning (Xiaoning Qian) - Department of Computer Science and Engineering, University of South Florida Qian, Xiaoping (Xiaoping Qian) - Mechanical, Materials, and Aerospace Engineering Department, Illinois Institute of Technology Qiao, Li (Li Qiao) - School of Aeronautics and Astronautics, Purdue University Qiao, Pizhong (Pizhong Qiao) - Department of Civil Engineering, University of Akron Qin, Qinghua (Qinghua Qin) - College of Engineering and Computer

228

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Office of Scientific and Technical Information (OSTI)

S S T U V W X Y Z Sabo, John (John Sabo) - School of Life Sciences, Arizona State University Sachdev, Subir -Department of Physics, Harvard Universit(achdev, Subir -Department of Physics, Harvard Universi)ty Sadoway, Donald Robert (Donald Robert Sadoway) - Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT) Saikin, Semion (Semion Saikin) - Department of Chemistry and Chemical Biology, Harvard University Salapaka, Murti V. (Murti V. Salapaka) - Department of Electrical and Computer Engineering, Iowa State University Sanchez, Erik (Erik Sanchez) - Department of Physics, Portland State University Sandoghdar, Vahid (Vahid Sandoghdar) - Laboratory of Physical Chemistry, Eidgenössische Technische Hochschule Zürich (ETHZ)

229

Comparison of radiation safety and nuclear explosive safety disciplines  

SciTech Connect (OSTI)

In August 1945, U.S. Navy Captain William Parsons served as the weaponeer aboard the Enola Gay for the mission to Hiroshima (Shelton 1988). In view of the fact that four B-29s had crashed and burned on takeoff from Tinian the night before, Captain Parsons made the decision to arm the gun-type weapon after takeoff for safety reasons (15 kilotons of TNT equivalent). Although he had no control over the success of the takeoff, he could prevent the possibility of a nuclear detonation on Tinian by controlling what we now call the nuclear explosive. As head of the Ordnance Division at Los Alamos and a former gunnery officer, Captain Parsons clearly understood the role of safety in his work. The advent of the pre-assembled implosion weapon where the high explosive and nuclear materials are always in an intimate configuration meant that nuclear explosive safety became a reality at a certain point in development and production not just at the time of delivery by the military. This is the only industry where nuclear materials are intentionally put in contact with high explosives. The agency of the U.S. Government responsible for development and production of U.S. nuclear weapons is the Department of Energy (DOE) (and its predecessor agencies). This paper will be limited to nuclear explosive safety as it is currently practiced within the DOE nuclear weapons

Winstanley, J. L.

1998-10-10T23:59:59.000Z

230

Materials/Condensed Matter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials/Condensed Matter Print Materials/Condensed Matter Print Materials research provides the foundation on which the economic well being of our high-tech society rests. The impact of advanced materials ranges dramatically over every aspect of our modern world from the minutiae of daily life to the grand scale of our national economy. Invariably, however, breakthroughs to new technologies trace their origin both to fundamental research in the basic properties of condensed matter and to applied research aimed at manipulating properties (structural, physical, chemical, electrical, magnetic, optical, etc.). Increasingly, the frontiers of materials research include materials that are "strongly correlated," characterized by strong coupling between a material's electrons with other electrons, magnetism, or the material lattice itself. This coupling often results in novel behavior, such as superconductivity, that may lead to technologically important applications.

231

Browse by Discipline -- E-print Network Subject Pathways: Mathematics --  

Office of Scientific and Technical Information (OSTI)

L M N O P Q R S L M N O P Q R S T U V W X Y Z Karlsson, Anette M. (Anette M. Karlsson) - Department of Mechanical Engineering, University of Delaware Kazachkov, Ivan (Ivan Kazachkov) - Department of Energy Technology, Royal Institute of Technology (KTH) Kerekes, Tamas (Tamas Kerekes) - Department of Energy Technology, Aalborg University Kherani, Nazir P. (Nazir P. Kherani) - Departments of Electrical and Computer Engineering & Materials Science and Engineering, University of Toronto Kim, ZuWhan (ZuWhan Kim) - Institute of Transportation Studies, University of California at Berkeley Kissock, Kelly (Kelly Kissock) - Industrial Assessment Center & Department of Mechanical and Aerospace Engineering, University of Dayton Kockelman, Kara M. (Kara M. Kockelman) - Department of Civil,

232

Browse by Discipline -- E-print Network Subject Pathways: Mathematics --  

Office of Scientific and Technical Information (OSTI)

X Y Z X Y Z Walker, Geoff (Geoff Walker) - School of Information Technology and Electrical Engineering, University of Queensland Wang, Yinhai (Yinhai Wang) - Department of Civil and Environmental Engineering, University of Washington at Seattle Weidner, John W. (John W. Weidner) - Department of Chemical Engineering, University of South Carolina White, Bruce (Bruce White) - Department of Mechanical and Aeronautical Engineering, University of California, Davis White, Ralph E.(Ralph E.White).- Department of Chemical Engineering, University of South Carolina Wu, Chien H. (Chien H. Wu) - Department of Civil and Materials Engineering, University of Illinois at Chicago Go back to Individual Researchers Collections: A B C D E F G H I J K L M N O P Q R S

233

Browse by Discipline -- E-print Network Subject Pathways: Physics --  

Office of Scientific and Technical Information (OSTI)

Engineering Engineering Go to Research Groups Preprints Provided by Individual Scientists: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Aamodt, Tor (Tor Aamodt) - Department of Electrical and Computer Engineering, University of British Columbia Aazhang, Behnaam (Behnaam Aazhang) - Department of Electrical and Computer Engineering, Rice University Abate, Alessandro (Alessandro Abate) - Faculty of Mechanical, Maritime and Materials Engineering, Technische Universiteit Delft Abbott, Derek (Derek Abbott) - School of Electrical and Electronic Engineering, University of Adelaide Abdallah, Chaouki T(Chaouki TAbdallah)T- Electrical and Computer Engineering Department, University of New Mexico Abdel-Malek, Karim (Karim Abdel-Malek) - Departments of Biomedical

234

Browse by Discipline -- E-print Network Subject Pathways: Mathematics --  

Office of Scientific and Technical Information (OSTI)

N O P Q R S N O P Q R S T U V W X Y Z Mahat, Pukar (Pukar Mahat) - Department of Energy Technology, Aalborg University Maheshwari, Ram Krishan (Ram Krishan Maheshwari) - Department of Energy Technology, Aalborg University Mallinson, Richard (Richard Mallinson) - School of Chemical Engineering and Materials Science, University of Oklahoma Marca, James E. (James E. Marca) - Institute of Transportation Studies, University of California, Irvine Markides, Christos Nicolaos(Christos NicolaosMarkides)s- Department of Engineering, University of Cambridge Mathe, Laszlo (Laszlo Mathe) - Department of Energy Technology, Aalborg University McCready, Mark J. (Mark J. McCready) - Department of Chemical and Biomolecular Engineering, University of Notre Dame Medvedeva, Julia E. (Julia E. Medvedeva) - Department of Physics,

235

Browse by Discipline -- E-print Network Subject Pathways: Mathematics --  

Office of Scientific and Technical Information (OSTI)

I J K L M N O P Q R S I J K L M N O P Q R S T U V W X Y Z Haile, Sossina M. (Sossina M. Haile) - Departments of Chemical Engineering & Materials Science, California Institute of Technology Hallett, William L.H. (William L.H. Hallett) - Department of Mechanical Engineering, University of Ottawa Handy, Susan L. (Susan L. Handy) - Department of Environmental Science and Policy, University of California, Davis He, Zhen "Jason" (Zhen "Jason" He) - Department of Civil Engineering and Mechanics, University of Wisconsin-Milwaukee Hedrick, J. Karl (J. Karl Hedrick) - Department of Mechanical Engineering, University of California at Berkeley Heinz, Stefan (Stefan Heinz) - Department of Mathematics, University of Wyoming Hickman, Mark (Mark Hickman) - Department of Civil Engineering and

236

Browse by Discipline -- E-print Network Subject Pathways: Mathematics --  

Office of Scientific and Technical Information (OSTI)

D E F G H I J K L M N O P Q R S D E F G H I J K L M N O P Q R S T U V W X Y Z Ceder, Gerbrand (Gerbrand Ceder) - Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT) Chang, Ho-Myung (Ho-Myung Chang) - Department of Mechanical Engineering, Hongik University Chen, Junhong (Junhong Chen) - Department of Mechanical Engineering, University of Wisconsin-Milwaukee Chen, Zheng (Zheng Chen) - Department of Mechanics and Aerospace Engineering, Peking University Coifman, Benjamin (Benjamin Coifman) - Departments of Electrical Engineering & Civil and Environmental Engineering and Geodetic Science, Ohio State University Corbett, James J. (James J. Corbett) - Graduate College of Marine Studies, University of Delaware Go back to Individual Researchers

237

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

X Y Z X Y Z Walker, Geoff (Geoff Walker) - School of Information Technology and Electrical Engineering, University of Queensland Wang, Chao-Yang (Chao-Yang Wang) - Electrochemical Engine Center, Pennsylvania State University Wood, Thomas K. (Thomas K. Wood) - Department of Chemical Engineering, Pennsylvania State University Wu, Chenye (Chenye Wu) - Institute for Interdisciplinary Information Sciences, Tsinghua University Wu, Junqiao (Junqiao Wu) - Department of Materials Science and Engineering, University of California at Berkeley Wurtele, Eve Syrkin (Eve Syrkin Wurtele) - Department of Genetics, Development and Cell Biology, Iowa State University Go back to Individual Researchers Collections: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

238

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Office of Scientific and Technical Information (OSTI)

K L M N O P Q R S K L M N O P Q R S T U V W X Y Z Jacobs, Heiko O. (Heiko O. Jacobs) - Department of Electrical and Computer Engineering, University of Minnesota Jaeger, Heinrich M. (Heinrich M. Jaeger) - Department of Physics, University of Chicago Jakli, Antal (Antal Jakli) - Liquid Crystal Institute, Kent State University Jalali. Bahram (UniJalali. Bahram - Electrical Engineering Department) - Electrical Engineering Department, University of California at Los Angeles Jaszczak, John A. (John A. Jaszczak) - Department of Physics, Michigan Technological University Javey, Ali (Ali Javey) - Department of Electrical Engineering and Computer Sciences, University of California at Berkeley Jayaraman, Arthi (Arthi Jayaraman) - Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign

239

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Office of Scientific and Technical Information (OSTI)

N O P Q R S N O P Q R S T U V W X Y Z MacDonald, Noel C. (Noel C. MacDonald) - Materials Department, University of California at Santa Barbara Maggs, Anthony (Anthony Maggs) - Laboratoire de Physico-Chimie Théorique, École Supérieure de Physique et Chimie Industrielles Mahadevan, L. (L. Mahadevan) - School of Engineering and Applied Sciences, Harvard University Mahmoodi, Hamid (Hamid Mahmoodi) - School of Engineering and Computer Science, San Francisco State University Majós, Antonio Badía (Antonio Badía Majós) - Departamento de Física de la Materia Condensada, Universidad de Zaragoza Mallouk, Thomas E.(Thomas E.Mallouk).- Department of Chemistry, Pennsylvania State University Malovichko, Galina (Galina Malovichko) - Department of Physics, Montana State University

240

Browse by Discipline -- E-print Network Subject Pathways: Engineering --  

Office of Scientific and Technical Information (OSTI)

Engineering Engineering Go to Research Groups Preprints Provided by Individual Scientists: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Aamodt, Tor (Tor Aamodt) - Department of Electrical and Computer Engineering, University of British Columbia Aazhang, Behnaam (Behnaam Aazhang) - Department of Electrical and Computer Engineering, Rice University Abate, Alessandro (Alessandro Abate) - Faculty of Mechanical, Maritime and Materials Engineering, Technische Universiteit Delft Abbott, Derek (Derek Abbott) - School of Electrical and Electronic Engineering, University of Adelaide Abdallah, Chaouki T(Chaouki TAbdallah)T- Electrical and Computer Engineering Department, University of New Mexico Abdel-Malek, Karim (Karim Abdel-Malek) - Departments of Biomedical

Note: This page contains sample records for the topic "disciplines magnetism materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Office of Scientific and Technical Information (OSTI)

P Q R S P Q R S T U V W X Y Z O'Hern, Corey S. (Corey S. O'Hern) - Department of Mechanical Engineering and Materials Science, Yale University O'Keeffe, Michael (Michael O'Keeffe) - Department of Chemistry and Biochemistry, Arizona State University Ocko, Ben (Ben Ocko) - Department of Physics, Brookhaven National Laboratory Odom, Teri W. (Teri W. Odom) - Department of Chemistry, Northwestern University Oganov, Artem R. (Artem R. Oganov) - Departments of Geosciences & Physics and Astronomy, SUNY at Stony Brook Oh, Se-Jung (Se-Jung Oh) - School of Physics and Astronomy, Seoul National University Ohio State University, Fontana Corrosion Cente(hio State University, Fontana Corrosion Cent)er Okamoto, Koichi (Koichi Okamoto) - Department of Electrical Engineering, California Institute of Technology

242

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Office of Scientific and Technical Information (OSTI)

G H I J K L M N O P Q R S G H I J K L M N O P Q R S T U V W X Y Z Fahmy, Tarek (Tarek Fahmy) - Departments of Biomedical Engineering & Chemical and Environmental Engineering, Yale University Faidley, LeAnn (LeAnn Faidley) - Department of Mechanical Engineering, Iowa State University Fair, Richard (Richard Fair) - Department of Electrical and Computer Engineering, Duke University Falcon, Eric (Eric Falcon) - Laboratoire de Physique, Université Paris 7 Denis Diderot Falcon, Eric (Eric Falcon) - Laboratoire Matière et Systèmes Complexes, Université Paris 7 - Denis Diderot Faller, Roland (Roland Faller) - Department of Chemical Engineering and Materials Science, University of California, Davis Fatemi, Ali (Ali Fatemi) - Department of Mechanical, Industrial and

243

National High Magnetic Field Laboratory - Mission  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

research to serve an interdisciplinary scientific user community spanning materials science, condensed matter physics, magnet technology, chemistry, and biology. Provide...

244

DOE Chair of Excellence in Environmental Disciplines-Final Technical Report  

SciTech Connect (OSTI)

The report Massie Chair of Excellence Program at Universidad del Turabo, contract DE-FG02-95EW12610, during the period of 9/29/1995 to 9/29/2011. The initial program aims included development of academic programs in the Environmental Sciences and Engineering, and Research and Development focused initially on environmentally friendly processes and later revised also include: renewable energy and international cooperation. From 1995 -2005, the Program at UT lead the establishment of the new undergraduate program in electrical engineering at the School of Engineering (SoE), worked on requirements to achieve ABET accreditation of the SoE B.S. Mechanical Engineering and B.S. Electrical Engineering programs, mentored junior faculty, taught undergraduate courses in electrical engineering, and revised the electrical engineering curriculum. Engineering undergraduate laboratories were designed and developed. The following research sub-project was developed: Research and development of new perovskite-alumina hydrogen permeable asymmetrical nanostructured membranes for hydrogen purification, and extremely high specific surface area silica materials for hydrogen storage in the form of ammonia, Dr. Rolando Roque-Malherbe Subproject PI, Dr. Santander Nieto and Mr. Will Gmez Research Assistants. In 2006, the Massie Chair of Excellence Program was transferred to the National Nuclear Security Agency, NNSA and DNN. DoE required a revised proposal aligned with the priorities of the Administration. The revised approved program aims included: (1) Research (2) Student Development: promote the development of minority undergraduate and graduate students through research teams, internships, conferences, new courses; and, (3) Support: (a) Research administration and (b) Dissemination through international conferences, the UT Distinguished Lecturer Series in STEM fields and at the annual Universidad del Turabo (UT) Researchers Conference. Research included: Sub-Project 1: Synthesis and Characterization of low Refractive Index Aerogel Silica for Cherenkov Counters- Dr. Rolando Roque-Malherbe Sub-project PI, Dr. Jose Duconge Sub-project Co-PI, Dr. Santander Nieto Assistant Researcher, Francisco Diaz and Carlos Neira Associate Researchers. The initial aim of this sub-project was changed to the synthesis and characterization of extremely high specific surface area aerogel silica for gas storage. A high specific surface area silica gel that has applications in gas drying, cleaning operation useful in nuclear industry in process was developed. Sub-Project 2: Investigation Study of Magnetic and Electronic Transport Properties at Material Interfaces in Magnetic Multilayer Heterostructure using Gd. Dr. Yazan Hijazi, Sub-project Co-PI. UT developed the capability and infrastructure to produce high quality thin-film magnetic films and magnetic multilayer structures with fine control over film quality and thickness using sputter deposition capability to perform in-house electric and magnetic characterization of these films. The research experimentally quantified the effect of Gd incorporation within the magnetic multilayer structure and produce magnetic media with exchanged decoupled multilevel magnetic anisotropy. From September 2006 to September 2011 the Massie Chair produced nineteen (19) publications, (including 3 books), five (5) presentations and three (3) international conferences abstracts. A total of fourteen (14) undergraduates and (6) graduate students acquired research experience. Two Ph.D. students presented their dissertations on topics related to nuclear energy and graduated as follows: Mara Cotto (May 2009) and Eric Caldern (May 2011). Five of the participating undergraduate students graduated: Ramon Polanco (BSME, May 2009), Jason Prez (BSEE, May 2008), Rafael Coln (BSME, May 2008), Jessenia Marfisi (BS Chemistry, May 2008). Eleven (11) students were sent to National Laboratories (LANL, SNL and LLNL), NNSA and DoE facilities for summer internships. Twenty eight (28) undergraduate students participated in Summer Internships (2010,

Kurunganty, Sastry; Lorn, Roberto; Roque-Malherbe, Rolando; Hijazi, Yazan; Nieto, Santander; Gmez, Will A.; Ducong, Jos; Cotto, Mara del C.; Muiz, Carlos; Daz, Francisco J.; Neira, Carlos F.; Mrquez, Francisco; Del Valle, W.; Thommes, M.

2014-02-19T23:59:59.000Z

245

Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization  

DOE Patents [OSTI]

In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.

Doughty, Frank C. (Plano, TX); Spencer, John E. (Plano, TX)

2000-12-19T23:59:59.000Z

246

Cool Magnetic Molecules  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cool Magnetic Molecules Cool Magnetic Molecules Cool Magnetic Molecules Print Wednesday, 25 May 2011 00:00 Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

247

Superconducting Magnet Safety Nuclear Magnetic Resonance (NMR) facilities present unique hazards not found in most  

E-Print Network [OSTI]

Superconducting Magnet Safety Nuclear Magnetic Resonance (NMR) facilities present unique hazards or steel reinforced concrete, these ferromagnetic materials may have an effect on the magnetic field environmental temperature control is required (2) Structural support for heavy equipment and vibration control

Maroncelli, Mark

248

Magnetic Exchange Coupling and Single-Molecule Magnetism in Uranium Complexes  

E-Print Network [OSTI]

J. -P. ; Kahn, M. L. In Magnetism: Molecules to Materials V.R. Simple Models of Magnetism; Oxford University Press:for interpreting uranium magnetism and will be discussed in

Rinehart, Jeffrey Dennis

2010-01-01T23:59:59.000Z

249

Materials Science Division - Argonne National Laboratories, Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home Home About MSD Information Awards Visit MSD Administrative Staff Division Personnel Research Research Groups Condensed Matter Theory Emerging Materials Energy Conversion and Storage Magnetic Films Molecular Materials Neutron and X-ray Scattering Superconductivity and Magnetism Surface Chemistry Synchrotron Radiation Studies Threat Detection and Analysis Group Research Areas Careers in MSD Internal Sites Search Front Slide 1 November 2013 - Patricia Dehmer (second from right), Deputy Director of Science Programs, DOE Office of Science, joined Argonne Director Eric Isaacs(left) and Associate Laboratory Director for Physical Sciences and Engineering Peter Littlewood(second from left) to tour the recently-opened Energy Sciences Building. Among Dehmer's stops was the crystal growth

250

Critical Materials Strategy Summary  

Broader source: Energy.gov (indexed) [DOE]

diplomacy. As the nation's leading funder of research on the physical sciences, DOE's capabilities with respect to materials research are substantial. Topics identified for priority research attention include rare earth substitutes in magnets, batteries, photovoltaic films and phosphors; environmentally sound mining and materials processing; and recycling. The eight programs and policies address risks, con- straints and opportunities across the supply chain,

251

Critical Materials Strategy Summary  

Broader source: Energy.gov (indexed) [DOE]

diplomacy. As the nation's leading funder of research on the physical sciences, DOE's capabilities with respect to materials research are substantial. Topics identified for priority research attention include rare earth substitutes in magnets, batteries, photovoltaic films and phosphors; environmentally sound mining and materials processing; and recycling. The eight programs and policies address risks, con- straints and opportunities across the supply chain,

252

Magnetic structure and hysteresis in hard magnetic nanocrystalline film: Computer simulation  

E-Print Network [OSTI]

Magnetic structure and hysteresis in hard magnetic nanocrystalline film: Computer simulation Taylor Road, Piscataway, New Jersey 08854 Andrei Kazaryan and Yunzhi Wang Department of Materials Science of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 Armen G

Laughlin, David E.

253

The NU Transportation Center Icarus Society presents.... "Airline Capacity Discipline: Where and  

E-Print Network [OSTI]

The NU Transportation Center Icarus Society presents.... "Airline Capacity Discipline: Where and to What Extent? Aaron J. Gellman Professor of Transportation Northwestern University Transportation Center and Kellogg School of Management Thursday Nov. 29, 2012 3:00 pm Location: Transportation Center Chambers Hall

Bustamante, Fabián E.

254

EARTH SCIENCESEARTH SCIENCESEARTH SCIENCES This major includes a spectrum of disciplines focused on understanding the  

E-Print Network [OSTI]

EARTH SCIENCESEARTH SCIENCESEARTH SCIENCES This major includes a spectrum of disciplines focused this understanding to read the record of earth history written in rocks and sediments, and on developing models by humans. Opportunities for Students Sigma Gamma Epsilon: The Omega Chapter of the national honorary earth

Krylov, Anna I.

255

AVAILABILITY OF UNIVERSITY DATA FOR ACADEMIC PROGRAM REVIEW draft 8/22/11 Discipline (CIP)  

E-Print Network [OSTI]

AVAILABILITY OF UNIVERSITY DATA FOR ACADEMIC PROGRAM REVIEW draft 8/22/11 Discipline (CIP) Degree with a sufficient n. 2. CIP=federal taxonomy called Classification of Instructional Programs; some depts have multiple CIPS, and some CIPS are represented by multiple departments. CIP does not map cleanly

256

The Innovation Paradox: Reconciling Creativity & Discipline How Winning Organizations Combine Inspiration With Perspiration  

E-Print Network [OSTI]

microprocessor was designed by a handful of engineers; the Centrioo required several hundred.] Yet creativityThe Innovation Paradox: Reconciling Creativity & Discipline How Winning Organizations Combine products globally find that their very size inhibits the creativity needed to invent such products

Kolodny, Avinoam

257

The Disciplined Flood Protocol in Sensor Networks Young-ri Choi and Mohamed G. Gouda  

E-Print Network [OSTI]

The Disciplined Flood Protocol in Sensor Networks Young-ri Choi and Mohamed G. Gouda Department of Computing Science University of Alberta, Canada ehab@cs.ualberta.ca Abstract-- Flood is a communication to every sensor in the network. When a flood of some message is initiated, the message is forwarded

Gouda, Mohamed G.

258

Effect of magnetic anisotropy on magnetic shaking E. Papernoa)  

E-Print Network [OSTI]

Effect of magnetic anisotropy on magnetic shaking E. Papernoa) and I. Sasada Department of Applied Science for Electronics and Materials, Kyushu University, 6-1 Kasuga-Koen, Kasuga-Shi, Fukuoka 816-8580, Japan The effect of magnetic shaking on both the transverse and axial shielding factors TSF and ASF

Paperno, Eugene

259

Browse by Discipline -- E-print Network Subject Pathways: Energy Storage,  

Office of Scientific and Technical Information (OSTI)

P Q R S P Q R S T U V W X Y Z O'Connell, Robert F. (Robert F. O'Connell) - Department of Physics and Astronomy, Louisiana State University O'Connell, Robert W. (Robert W. O'Connell) - Department of Astronomy, University of Virginia O'Dea, Christopher (Christopher O'Dea) - Department of Physics, Rochester Institute of Technology O'Hern, Corey S. (Corey S. O'Hern) - Department of Mechanical Engineering and Materials Science, Yale University O'Neil, Jonathan (Jonathan O'Neil) - Department of Terrestrial Magnetism, Carnegie Institution for Science O'Neil, Karen (Karen O'Neil) - National Radio Astronomy Observatory Oberlack, Uwe (Uwe Oberlack) - High Energy and Particle Astrophysics Lab , Rice University Odom, Brian (Brian Odom) - Department of Physics and Astronomy,

260

Synthesis, crystal structure and magnetic property of a new 1D molecular material [1-(4'-chlorobenzyl)-4-aminopyridinium](+) bis(maleonitriledithiolato)nickel(-)  

SciTech Connect (OSTI)

A new ion-pair complex, [1-(4'-chlorobenzyl)-4-aminopyridinium](+)bis(maleonitrile-dithiolato) nickel(-),[ClbzPyNH{sub 2}][Ni(mnt){sub 2}] (1), has been prepared and characterized. X-ray single crystal structure conforms that the Ni(mnt){sub 2}{sup -} anions and [ClbzPyNH{sub 2}]{sup +} cations of 1 form completely segregated uniform stacking columns with the Ni...Ni distance 3.944A in the Ni(mnt){sub 2}{sup -} stacking column. The temperature dependence of the magnetic susceptibility reveals that 1 undergoes a magnetic transition, and exhibits ferromagnetic interaction in the high-temperature phase and spin gap system in the low-temperature phase.

Ni Chunlin [State Key Laboratory of Coordination Chemistry, Department of Chemistry, Coordination Chemistry Institute, Nanjing University, Hankou Road, Number 22, Nanjing city, Jiangsu province 210093 (China); Dang Dongbin [State Key Laboratory of Coordination Chemistry, Department of Chemistry, Coordination Chemistry Institute, Nanjing University, Hankou Road, Number 22, Nanjing city, Jiangsu province 210093 (China); Li Yizhi [State Key Laboratory of Coordination Chemistry, Department of Chemistry, Coordination Chemistry Institute, Nanjing University, Hankou Road, Number 22, Nanjing city, Jiangsu province 210093 (China); Gao Song [State Key Laboratory of Rare Earth Materials Chemistry and Applications, Peking University, 100 871 Beijing (China); Ni Zhaoping [State Key Laboratory of Coordination Chemistry, Department of Chemistry, Coordination Chemistry Institute, Nanjing University, Hankou Road, Number 22, Nanjing city, Jiangsu province 210093 (China); Tian Zhengfang [State Key Laboratory of Coordination Chemistry, Department of Chemistry, Coordination Chemistry Institute, Nanjing University, Hankou Road, Number 22, Nanjing city, Jiangsu province 210093 (China); Meng Qingjin [State Key Laboratory of Coordination Chemistry, Department of Chemistry, Coordination Chemistry Institute, Nanjing University, Hankou Road, Number 22, Nanjing city, Jiangsu province 210093 (China)]. E-mail: njuchem1024@163.com

2005-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "disciplines magnetism materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

National High Magnetic Field Laboratory - Science Starts Here...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

matter physicist who investigates magnetism of nanostructured objects including magnetic nanoparticles, biomolecules and biologically inspired materials. In her own words I...

262

Cool Magnetic Molecules  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

263

Cool Magnetic Molecules  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

264

Cool Magnetic Molecules  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

265

Cool Magnetic Molecules  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

266

Cool Magnetic Molecules  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

267

Power-Invariant Magnetic System Modeling  

E-Print Network [OSTI]

properties and characteristics. Progress in magnetism was made after Oersted discovered in 1820 that a magnetic field could be generated with an electric current. Famous scientists, including Gauss, Maxwell and Faraday, tackled the phenomenon of magnetism... flows in the material. Meanwhile, in magnetic circuits, the reluctance is a measure of magnetic energy storage rather than being a measure of magnetic energy dissipation. 2. The Permeance-Capacitor Model In 1969, Dr. R.W. Buntenbach from...

Gonzalez Dominguez, Guadalupe Giselle

2012-10-19T23:59:59.000Z

268

Argonne CNM: Materials Synthesis Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Synthesis Facilities Materials Synthesis Facilities Capabilities biosynthesis View larger image. Biosynthesis Methods Peptide and DNA synthesis (E. Rozhkova, Nanobio Interfaces Group) Nanobio hybrid synthesis (T. Rajh, Nanobio Interfaces Group) Hierarchal assembly View larger image. Hierarchical Assembly Bottom-up polymeric and bio-templating as well as lithographically directed self-assembly (S. Darling, Electronic & Magnetic Materials & Devices Group; E. Rozhkova, Nanobio Interfaces Group) Molecular beam epitaxy View high-resolution image. Molecular Beam Epitaxy Complex oxide nanoferroelectric and nanoferromagnetic materials and devices created using a DCA R450D Custom MBE instrument (A. Bhattacharya, Electronic & Magnetic Materials & Devices Group) Nanoparticle synthesis

269

Department of Advanced Materials Science  

E-Print Network [OSTI]

@k.u-tokyo.ac.jpe-mail 04-7136-3781T E L Environmental-friendly materials process, Metal smelting and re ning process of Advanced Materials Science masashi@issp.u-tokyo.ac.jpe-mail 04-7136-3225T E L Nuclear magnetic resonance New Materials Synthesis, Superconductivity, Quantum Spin Liquid,Topological Hall Effect takatama

Katsumoto, Shingo

270

Materialism and materiality  

Science Journals Connector (OSTI)

Accountants and auditors in recent financial scandals have been pictured as materialistic, simply calculating consequences and ignoring duties. This paper potentially explains this apparently materialistic behaviour in what has historically been a truthtelling profession. Materiality, which drives audit priorities, has been institutionalised in accounting and auditing standards. But a materiality focus inherently implies that all amounts that are not 'materially' misstated are equally true. This leads to habitual immaterial misstatements and promotes the view that auditors do not care about truth at all. Auditors' lack of commitment to truth undermines their claim to be professionals in the classic sense.

Michael K. Shaub

2005-01-01T23:59:59.000Z

271

Magnetic Spinner  

Science Journals Connector (OSTI)

A science toy sometimes called the magnetic spinner is an interesting class demonstration to illustrate the principles of magnetic levitation. It can also be used to demonstrate Faraday's law and a horizontally suspended physical pendulum. The levitated part contains two circular magnets encased in a plastic housing. Each magnet stays above two triangular magnets fixed to the base. The magnetic repulsive force experienced by the circular magnets is independent of their orientation; therefore the holder of these magnets can be rotated without affecting its stability. The holder with the circular magnets can be oscillated up and down as a horizontally suspended physical pendulum.

P. J. Ouseph

2006-01-01T23:59:59.000Z

272

The problems of the evolution of theoretical positions in the disciplines of the documental-information cycle (a review)  

Science Journals Connector (OSTI)

This paper considers the problems of the creation and development of the documental-information theory for the cycle of disciplines that have a documental character (with the code 05.25.00), formulates the mai...

E. A. Pleshkevich

2009-08-01T23:59:59.000Z

273

Large Superconducting Magnet Systems  

E-Print Network [OSTI]

The increase of energy in accelerators over the past decades has led to the design of superconducting magnets for both accelerators and the associated detectors. The use of Nb?Ti superconducting materials allows an increase in the dipole field by up to 10 T compared with the maximum field of 2 T in a conventional magnet. The field bending of the particles in the detectors and generated by the magnets can also be increased. New materials, such as Nb3Sn and high temperature superconductor (HTS) conductors, can open the way to higher fields, in the range 1320 T. The latest generations of fusion machines producing hot plasma also use large superconducting magnet systems.

Vdrine, P

2014-01-01T23:59:59.000Z

274

Magnetic Force Between Magnetic Nano Probes at Optical Frequency  

E-Print Network [OSTI]

Magnetic force microscopy based on the interaction of static magnetic materials was demonstrated in the past with resolutions in the order of nanometers. Measurement techniques based on forces between electric dipoles oscillating at optical frequencies have been also demonstrated leading to the standard operation of the scanning force microscope (SFM). However the investigations of a SFM based on the magnetic force generated by magnetic dipole moments oscillating at optical frequencies has not been tackled yet. With this goal in mind we establish a theoretical model towards observable magnetic force interaction between two magnetically polarizable nanoparticles at optical frequency and show such a force to be in the order of piconewtons which could be in principle detected by conventional microscopy techniques. Two possible principles for conceiving magnetically polarizable nano probes able to generate strong magnetic dipoles at optical frequency are investigated based on silicon nanoparticles and on clusters...

Guclu, Caner; Capolino, Filippo

2014-01-01T23:59:59.000Z

275

Acta Physicae Superficierum Vol VII 2004 EXPLORING ARTIFICIAL MAGNETISM  

E-Print Network [OSTI]

Acta Physicae Superficierum · Vol VII · 2004 EXPLORING ARTIFICIAL MAGNETISM FROM THIN FILMS of artificially structured, new magnetic materials play a fundamental role in modern science and technology. From thin films to patterned magnetic nano-structures, these magnetic materials and systems can be utilized

Rau, Carl

276

Permanent magnet multipole with adjustable strength  

DOE Patents [OSTI]

Two or more magnetically soft pole pieces are symmetrically positioned along a longitudinal axis to provide a magnetic field within a space defined by the pole pieces. Two or more permanent magnets are mounted to an external magnetically-soft cylindrical sleeve which rotates to bring the permanent magnets into closer coupling with the pole pieces and thereby adjustably control the field strength of the magnetic field produced in the space defined by the pole pieces. The permanent magnets are preferably formed of rare earth cobalt (REC) material which has a high remanent magnetic field and a strong coercive force. The pole pieces and the permanent magnets have corresponding cylindrical surfaces which are positionable with respect to each other to vary the coupling therebetween. Auxiliary permanent magnets are provided between the pole pieces to provide additional magnetic flux to the magnetic field without saturating the pole pieces.

Halbach, Klaus (Berkeley, CA)

1985-01-01T23:59:59.000Z

277

Permanent-magnet multipole with adjustable strength  

DOE Patents [OSTI]

Two or more magnetically soft pole pieces are symmetrically positioned along a longitudinal axis to provide a magnetic field within a space defined by the pole pieces. Two or more permanent magnets are mounted to an external magnetically-soft cylindrical sleeve which rotates to bring the permanent magnets into closer coupling with the pole pieces and thereby adjustably control the field strength of the magnetic field produced in the space defined by the pole pieces. The permanent magnets are preferably formed of rare earth cobalt (REC) material which has a high remanent magnetic field and a strong coercive force. The pole pieces and the permanent magnets have corresponding cylindrical surfaces which are positionable with respect to each other to vary the coupling there between. Auxiliary permanent magnets are provided between the pole pieces to provide additional magnetic flux to the magnetic field without saturating the pole pieces.

Halbach, K.

1982-09-20T23:59:59.000Z

278

Superconducting Magnet Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 - 6/13/06 3 - 6/13/06 Superconducting Magnet Division S&T Committee Program Review June 22-23, 2006 Conference Room A, Bldg. 725, BNL DRAFT AGENDA Thursday, June 22 0830 Executive Session to address the charge S. Aronson (25 min) 0855 Welcome S. Aronson (5 min) 0900 Superconducting Magnet Division Status & M. Harrison (45 + 15 min) Issues - mission statement, core competencies, themes, program, problems, etc. 1000 Themes - Nb3Sn, HTS, Direct wind, Accelerator integration, P. Wanderer (20 + 10 min) rapid cycling Core Competencies 1030 Superconducting Materials A. Ghosh (20 + 5 min) 1055 Break 1110 Magnetic Design R. Gupta (20 + 5 min) 1135 Magnet Construction M. Anerella (20 + 5 min) 1200 Magnet Testing G. Ganetis (20 + 5 min)

279

Electric-Field Control of Magnetism Intrinsic magnetoelectric coupling describes the microscopic interaction between magnetic and  

E-Print Network [OSTI]

Electric-Field Control of Magnetism Intrinsic magnetoelectric coupling describes the microscopic interaction between magnetic and electric polarization in a single-phase material. The control of the magnetic state of a material with an electric field is an enticing prospect for device engineering. MRSEC

Maroncelli, Mark

280

Research - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Research Groups in the Materials Science Division Condensed Matter Theory Carries out theoretical work on superconductivity, electronic structure and magnetism. Emerging Materials Emphasizes an integrated materials synthesis and science program that focuses on correlated electron transition metal oxides, chalcogenides with enhanced thermoelectric performance, and novel superconductors, including pnictides and cuprates. Energy Conversion and Storage The energy conversion and storage group focuses on charge-transfer processes, as well as the chemical environment in the vicinity of electrode surfaces. Magnetic Films Research to develop, characterize and investigate the properties of magnetic thin films and superlattices. Molecular Materials Synthesis and characterization of molecular materials that have novel

Note: This page contains sample records for the topic "disciplines magnetism materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Critical Materials Hub  

Broader source: Energy.gov [DOE]

Critical materials, including some rare earth elements that possess unique magnetic, catalytic, and luminescent properties, are key resources needed to manufacture products for the clean energy economy. These materials are so critical to the technologies that enable wind turbines, solar panels, electric vehicles, and energy-efficient lighting that DOE's 2010 and 2011 Critical Materials Strategy reported that supply challenges for five rare earth metalsdysprosium, neodymium, terbium, europium, and yttriumcould affect clean energy technology deployment in the coming years.1, 2

282

Method for obtaining large levitation pressure in superconducting magnetic bearings  

DOE Patents [OSTI]

A method and apparatus are disclosed for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap. 4 figs.

Hull, J.R.

1997-08-05T23:59:59.000Z

283

Materials Characterization | Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electron Microscopy X-ray Scattering Neutron Scattering Mechanical Properties Thermal Optical Spectroscopy Nuclear Magnetic Resonance Macromolecular Characterization Nuclear...

284

Magnetic nanoworms Systematic Surface Engineering of Magnetic Nanoworms  

E-Print Network [OSTI]

Magnetic nanoworms Systematic Surface Engineering of Magnetic Nanoworms for in vivo Tumor Targeting and nanoparticle chemistry for tumor targeting. full papers [?] Prof. M. J. Sailor, J.-H. Park Materials Science, Dr. T. J. Harris Harvard-MIT Division of Health Sciences and Technology Massachusetts Institute

Bhatia, Sangeeta

285

Magnetism.1  

Science Journals Connector (OSTI)

... each complete magnets with a pair of poles. The general character of the earth's magnetism has long been knownthat the earth behaves with regard to magnets as though it ... and that these poles have a slow secular motion. For many years the earth's magnetism has been the subject of careful study by the most powerful minds. Gauss organized ...

1890-01-16T23:59:59.000Z

286

MAGNETIC NEUTRON SCATTERING  

SciTech Connect (OSTI)

Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern science, ranging from large-scale structures and dynamics of polymers and biological systems, to electronic properties of today's technological materials. Neutron scattering developed into a vast field, encompassing many different experimental techniques aimed at exploring different aspects of matter's atomic structure and dynamics. Modern magnetic neutron scattering includes several specialized techniques designed for specific studies and/or particular classes of materials. Among these are magnetic reflectometry aimed at investigating surfaces, interfaces, and multilayers, small-angle scattering for the large-scale structures, such as a vortex lattice in a superconductor, and neutron spin-echo spectroscopy for glasses and polymers. Each of these techniques and many others offer exciting opportunities for examining magnetism and warrant extensive reviews, but the aim of this chapter is not to survey how different neutron-scattering methods are used to examine magnetic properties of different materials. Here, we concentrate on reviewing the basics of the magnetic neutron scattering, and on the recent developments in applying one of the oldest methods, the triple axis spectroscopy, that still is among the most extensively used ones. The developments discussed here are new and have not been coherently reviewed. Chapter 2 of this book reviews magnetic small-angle scattering, and modern techniques of neutron magnetic reflectometry are discussed in Chapter 3.

ZALIZNYAK,I.A.; LEE,S.H.

2004-07-30T23:59:59.000Z

287

Earths magnetism  

Science Journals Connector (OSTI)

Earths magnetism, geomagnetism, terrestrial magnetism [The magnetism of the Earth] ? Erdmagnetismus m, Geomagnetismus

2014-08-01T23:59:59.000Z

288

Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science Materials Science Materials Science1354608000000Materials ScienceSome of these resources are LANL-only and will require Remote Access./No/Questions? 667-5809library@lanl.gov Materials Science Some of these resources are LANL-only and will require Remote Access. Key Resources Data Sources Reference Organizations Journals Key Resources CINDAS Materials Property Databases video icon Thermophysical Properties of Matter Database (TPMD) Aerospace Structural Metals Database (ASMD) Damage Tolerant Design Handbook (DTDH) Microelectronics Packaging Materials Database (MPMD) Structural Alloys Handbook (SAH) Proquest Technology Collection Includes the Materials Science collection MRS Online Proceedings Library Papers presented at meetings of the Materials Research Society Data Sources

289

Magnetism in bcc cobalt  

Science Journals Connector (OSTI)

Local-spin-density-approximation-based calculations, performed using a general-potential linearized augmented-plane-wave method, are presented for bcc Co. The ground-state properties and magnetization energies are reported. It is found that the moment is strongly suppressed in constrained antiferromagnetic calculations, indicating that a local-moment picture is less appropriate for this material than for bcc iron.

D. J. Singh

1992-02-01T23:59:59.000Z

290

Reference Material  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reference Materials There are a variety of reference materials the NSSAB utilizes and have been made available on its website. Documents Fact Sheets - links to Department of Energy...

291

Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science science-innovationassetsimagesicon-science.jpg Materials Science National security depends on science and technology. The United States relies on Los Alamos...

292

High Field Magnetic Resonance Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HFMRF Overview HFMRF Overview Section 2-3-1 High Field Magnetic Resonance Facility The High Field Magnetic Resonance Facility (HFMRF) focuses a significant portion of its research on developing a fundamental, molecular-level understanding of biochemical and biological systems and their response to environmental effects. A secondary focus is materials science, including catalysis and chemical mechanisms and processes. Staff and science consultants within this facility offer expertise in the areas of structural biology, solid-state materials characterization, and magnetic resonance imaging (MRI) techniques. Research activities in the HFMRF include: * structure determination of large molecular assemblies such as protein-DNA (normal and damaged DNA) and protein-RNA complexes

293

E-Print Network 3.0 - applied homogeneous magnetic Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Karsten - Physikalisches Institut, Universitt Bonn Collection: Physics ; Materials Science 6 Magnetic anisotropy in Fe-25Cr-12Co-1Si alloy induced by external magnetic field...

294

DEARING, J. A., AND R. J. FLOWER. The magnetic susceptibility of ...  

Science Journals Connector (OSTI)

Jun 2, 1981 ... The magnetic susceptibility of sedimenting material trapped in ... magnetic susceptibility of ..... the soil and its significance in soil science: A.

2000-01-19T23:59:59.000Z

295

E-Print Network 3.0 - anomalous magnetic behavior Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Physics, University of Maryland at College Park Collection: Engineering ; Materials Science 3 Probing the magnetic microstructure of an amorphous GdFe system with magnetic...

296

E-Print Network 3.0 - artificial molecular magnets Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ligands. The calculations show that the inherent spin magnetic... for new nanoscale magnetic materials. Single molecular ... Source: Kern, Klaus - Nanoscale Science...

297

Localized Magnetic States in Graphene  

Science Journals Connector (OSTI)

We examine the conditions necessary for the presence of localized magnetic moments on adatoms with inner shell electrons in graphene. We show that the low density of states at the Dirac point, and the anomalous broadening of the adatom electronic level, lead to the formation of magnetic moments for arbitrarily small local charging energy. As a result, we obtain an anomalous scaling of the boundary separating magnetic and nonmagnetic states. We show that, unlike any other material, the formation of magnetic moments can be controlled by an electric field effect.

Bruno Uchoa; Valeri N. Kotov; N. M. R. Peres; A. H. Castro Neto

2008-07-11T23:59:59.000Z

298

Modern Magnetism  

Science Journals Connector (OSTI)

... BATESS "Modern Magnetism", first published in 1939, is widely appreciated as a general survey in which ... grateful to the author for collecting together so much interesting information about recent work in magnetism. ...

E. C. S.

1948-06-05T23:59:59.000Z

299

Velocity damper for electromagnetically levitated materials  

DOE Patents [OSTI]

A system for damping oscillatory and spinning motions induced in an electromagnetically levitated material is disclosed. Two opposed field magnets are located orthogonally to the existing levitation coils for providing a DC quadrupole field (cusp field) around the material. The material used for generating the DC quadrupole field must be nonconducting to avoid eddy-current heating and of low magnetic permeability to avoid distorting the induction fields providing the levitation. 1 fig.

Fox, R.J.

1994-06-07T23:59:59.000Z

300

Disorder-Induced Microscopic Magnetic Memory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Disorder-Induced Microscopic Magnetic Memory Print Disorder-Induced Microscopic Magnetic Memory Print The magnetic-recording industry deliberately introduces carefully controlled disorder into its materials to obtain the desired magnetic properties. But as the density of magnetic disks climbs, the size of the magnetic domains responsible for storage must decrease, posing new challenges. Beautiful theories based on random microscopic disorder have been developed over the past ten years. To directly compare these theories with precise experiments, an American-European team, led by researchers from the University of Washington, Seattle, first developed and then applied coherent x-ray speckle metrology to microscopic magnetic domains in a series of thin multilayer perpendicular magnetic materials of varying disorder. Their results, at odds with all previous theories, have set a new reference point for future theories.

Note: This page contains sample records for the topic "disciplines magnetism materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Disorder-Induced Microscopic Magnetic Memory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Disorder-Induced Microscopic Disorder-Induced Microscopic Magnetic Memory Disorder-Induced Microscopic Magnetic Memory Print Wednesday, 26 October 2005 00:00 The magnetic-recording industry deliberately introduces carefully controlled disorder into its materials to obtain the desired magnetic properties. But as the density of magnetic disks climbs, the size of the magnetic domains responsible for storage must decrease, posing new challenges. Beautiful theories based on random microscopic disorder have been developed over the past ten years. To directly compare these theories with precise experiments, an American-European team, led by researchers from the University of Washington, Seattle, first developed and then applied coherent x-ray speckle metrology to microscopic magnetic domains in a series of thin multilayer perpendicular magnetic materials of varying disorder. Their results, at odds with all previous theories, have set a new reference point for future theories.

302

Disorder-Induced Microscopic Magnetic Memory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Disorder-Induced Microscopic Magnetic Memory Print Disorder-Induced Microscopic Magnetic Memory Print The magnetic-recording industry deliberately introduces carefully controlled disorder into its materials to obtain the desired magnetic properties. But as the density of magnetic disks climbs, the size of the magnetic domains responsible for storage must decrease, posing new challenges. Beautiful theories based on random microscopic disorder have been developed over the past ten years. To directly compare these theories with precise experiments, an American-European team, led by researchers from the University of Washington, Seattle, first developed and then applied coherent x-ray speckle metrology to microscopic magnetic domains in a series of thin multilayer perpendicular magnetic materials of varying disorder. Their results, at odds with all previous theories, have set a new reference point for future theories.

303

Bipolar pulse field for magnetic refrigeration  

DOE Patents [OSTI]

A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies. 2 figs.

Lubell, M.S.

1994-10-25T23:59:59.000Z

304

Migratory magnetism  

Science Journals Connector (OSTI)

... in tune with the Earth's magnetic field. But how, exactly, do creatures sense magnetism? This is one of the most intriguing questions in modern biology - and also ... move preferentially in a north-south direction. This finding hints at the possible influence of magnetism on their movements. ...

Henry Gee

1999-10-06T23:59:59.000Z

305

Materials science: The pull of stronger magnets  

Science Journals Connector (OSTI)

... in the 1990s. The limit has hampered efforts to make high-tech products such as electric cars more efficient. And in the past two years, the cost of the rare-earth ... . And many devices that are part of the green economy require substantial amounts: an electric car carries a few kilograms of rare-earth elements, and a 3-megawatt wind turbine ...

Nicola Jones

2011-04-06T23:59:59.000Z

306

A study of magnetically annealed ferromagnetic materials  

E-Print Network [OSTI]

are face centered cubics like the crystals of the mineral spinel. This is why they are called ferrospinels. The spinel structure of a ferromagnetic can be formed with several metallic cations as long as these cations are smaller than the oxygen anion.... These are called hexagonal ferrites such as BaO. 6Fe 0 and P 0. 6Fe 0 There are two possible distributions of the metallic cations with respect to the oxygen ions. The normal spinel crystal structure occurs when all the divalent ions are in the tetrahedral...

Ramos, Domingo

2012-06-07T23:59:59.000Z

307

Non-Rare Earth magnetic materials  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

308

Magnetic spectroscopy and microscopy of functional materials  

E-Print Network [OSTI]

apparatus employed to expose UHV-clean surfaces for poly- orMn 0.6 Si ?lms fabricated by UHV sputtering [51]. However,In an ultra-high vacuum (UHV) chamber with good base

Jenkins, C.A.

2012-01-01T23:59:59.000Z

309

Linear Collider Final Focus Magnet Construction | Superconducting Magnet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Linear Collider Final Focus Magnet Construction Linear Collider Final Focus Magnet Construction The final focus magnets for the International Linear Collider require very small quadrupoles be placed within the detector background field for both the entrance and exit beams. The use of superconducting magnets for this function provide solutions to several problems confronting the machine designers. One constraint is the operation within the 3 tesla detector field. The direct wind magnets are capable of operation without the use of magnetic materials in their construction, making them ideal for compact focussing solutions within detectors. The second constraint is the small physical size dictated by the crossing angle of the beams and proximity to the IR within the detector solenoid. The Direct Wind design does not require a collar to withstand Lorentz

310

Design improvements of a permanent magnet active magnetic refrigerator  

Science Journals Connector (OSTI)

Abstract A second-generation room-temperature permanent magnet active magnetic regenerator test apparatus using Halbach arrays is described. The magnet arrays consist of three concentric cylinders. Each cylinder is constructed using 12 permanent magnet segments. The inner magnet array is stationary while the intermediate and outer arrays are designed to rotate in opposite directions so as to create a sinusoidal magnetic field waveform with a stationary field direction. The fluid flow system utilizes a novel check valve configuration so that fluid dead volumes are minimized. The system construction is modular to allow for quick replacement of material or system components. Fringing fields near the outer and inner diameters of the arrays are found to create large forces between arrays leading to large torques. Test results using 650g of gadolinium spheres produce a no-load temperature span of 33K at 0.8Hz.

D.S. Arnold; A. Tura; A. Ruebsaat-Trott; A. Rowe

2014-01-01T23:59:59.000Z

311

Large Magnetization at Carbon Surfaces  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Magnetization at Carbon Large Magnetization at Carbon Surfaces Large Magnetization at Carbon Surfaces Print Wednesday, 31 August 2011 00:00 From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

312

Magnetic Testing of Bonded Magnets  

Science Journals Connector (OSTI)

Many techniques exist to characterize the magnetic properties of bonded magnets. We will review the common and not so common techniques in use, with emphasis on the advantages and disadvantages of each one, an...

S. R. Trout

2003-01-01T23:59:59.000Z

313

Materials sciences programs, Fiscal year 1997  

SciTech Connect (OSTI)

The Division of Materials Sciences is responsible for basic research and research facilities in materials science topics important to the mission of the Department of Energy. The programmatic divisions under the Office of Basic Energy Sciences are Chemical Sciences, Engineering and Geosciences, and Energy Biosciences. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship among synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences subfields include: physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 517 research programs including 255 at 14 DOE National Laboratories, 262 research grants (233 of which are at universities), and 29 Small Business Innovation Research Grants. Five cross-cutting indices located at the rear of this book identify all 517 programs according to principal investigator(s), materials, techniques, phenomena, and environment.

NONE

1998-10-01T23:59:59.000Z

314

Computer Science Curriculum Revision Undergraduate programs in computing-related disciplines began to emerge in the 1960s. At  

E-Print Network [OSTI]

1 Computer Science Curriculum Revision Background Undergraduate programs in computing-related disciplines began to emerge in the 1960s. At that time there were only three kinds of computing-related programs: computer science, electrical engineering, and information systems. Each program covered a well

Zanibbi, Richard

315

Vortex Dynamics in NanoScale Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Into the Vortex: Dynamics in Nanoscale Materials Into the Vortex: Dynamics in Nanoscale Materials Micron and nanosized magnets are of great interest for their potential applications in new electronic devices, such as magnetic random access memories. As the size of magnets is reduced to a 1-micron scale and below, the boundaries (surfaces, perimeters, etc) of the objects begin to profoundly influence both the static and dynamic behavior of the materials. Researchers from Argonne's Materials Science Division (MSD), Center for Nanoscale Materials (CNM), and Advanced Photon Source (APS) have recently examined the dynamics of 3- to 7-micron-diameter NiFe alloy disks with a combination of theoretical calculations and a new time-resolved magnetic imaging technique using synchrotron-based x-ray photoemission electron

316

Lesson Summary Students will learn about the magnetic fields of  

E-Print Network [OSTI]

Knowledge & Skills Understanding of: · Magnetic field lines · Magnetic field strength decreases class period Materials per student · NASA STERO mission story · Diagrams of the magnetic field linesLesson Summary Students will learn about the magnetic fields of the Sun and Earth. This activity

Mojzsis, Stephen J.

317

Aesthetic Evaluation Differences between two Interrelated Disciplines: A Comparative Study on Architecture and Civil Engineering Students  

Science Journals Connector (OSTI)

The study presented in this paper aims to discuss the need and value of interdisciplinary collaboration between architecture and civil engineering students while executing the differences and similarities between their aesthetic evaluations and visual preferences. A research was conducted to evaluate and compare the aesthetic evaluations of architecture and civil engineering students through selected architectural buildings. It is hypothesised that there would be a difference between the two groups evaluations and descriptions of the visual attributes. Photographs of 6 different buildings were chosen which had different characteristics related with their structure, form and context; and a questionnaire was designed. 35 architecture and 30 civil engineering students were asked to describe the selected buildings. A Visual Evaluation Test, which included photographs of the selected buildings was used within the questionnaire. Additionally, the participants were asked to rank 6 buildings due to their aesthetic preferences. Data was statistically analysed through semantic differential scales, and Mann Whitney U Test. Results from the two groups of respondents had some similarities and differences. Despite the two different groups described the settings with similar adjectives, they gave different responses on choosing the buildings as like or dislike. Besides, the two groups responses to the questions which they ranked the buildings due to their aesthetic preferences differed substantially. In relation with the findings, the educational processes of two disciplines were discussed and some suggestions were given.

Ervin Garip; Banu Garip

2012-01-01T23:59:59.000Z

318

Combinatorial synthesis of novel materials  

DOE Patents [OSTI]

Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Menlo Park, CA)

2001-01-01T23:59:59.000Z

319

Combinatorial synthesis of novel materials  

DOE Patents [OSTI]

Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Alameda, CA)

2002-02-12T23:59:59.000Z

320

Combinatorial synthesis of novel materials  

DOE Patents [OSTI]

Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Menlo Park, CA)

1999-12-21T23:59:59.000Z

Note: This page contains sample records for the topic "disciplines magnetism materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Combinatorial sythesis of organometallic materials  

DOE Patents [OSTI]

Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Alameda, CA)

2002-07-16T23:59:59.000Z

322

Effect of oxygen concentration on the magnetic properties of La2CoMnO6 Center for Materials for Information Technology and Department of Chemistry, University of Alabama,  

E-Print Network [OSTI]

Effect of oxygen concentration on the magnetic properties of La2CoMnO6 thin films H. Z. Guo Center; published online 16 November 2007 The dependence of the magnetic properties on oxygen concentration the oxygen background pressure during growth using pulsed laser deposition. Two distinct ferromagnetic FM

Pennycook, Steve

323

Texas AgriLife Research Procedure 32.02.02.A1.01 Discipline and Dismissal Page 1 of 2 Texas AgriLife Research Procedures  

E-Print Network [OSTI]

Texas AgriLife Research Procedure 32.02.02.A1.01 Discipline and Dismissal Page 1 of 2 Texas AgriLife Research Procedures 32.02.02.A1.01 DISCIPLINE AND DISMISSAL Approved: June 2, 2000 Revised: November 15, 2001 October 3, 2007 March 21, 2011 Next Scheduled Review: March 21, 2013 PROCEDURE STATEMENT

324

Annealing effects on magnetic properties of silicone-coated iron-based soft magnetic composites  

E-Print Network [OSTI]

Annealing effects on magnetic properties of silicone-coated iron-based soft magnetic composites , Alex A. Volinsky b a School of Material Science and Engineering, University of Science and Technology Available online 1 October 2011 Keywords: Silicone resin Soft magnetic composites Annealing treatment

Volinsky, Alex A.

325

Materializing energy  

Science Journals Connector (OSTI)

Motivated and informed by perspectives on sustainability and design, this paper draws on a diverse body of scholarly works related to energy and materiality to articulate a perspective on energy-as-materiality and propose a design approach of ... Keywords: design, design theory, energy, materiality, sustainability

James Pierce; Eric Paulos

2010-08-01T23:59:59.000Z

326

Large Magnetization at Carbon Surfaces  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Magnetization at Carbon Surfaces Print Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

327

Large Magnetization at Carbon Surfaces  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Magnetization at Carbon Surfaces Print Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

328

Large Magnetization at Carbon Surfaces  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Magnetization at Carbon Surfaces Print Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

329

Large Magnetization at Carbon Surfaces  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Magnetization at Carbon Surfaces Print Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

330

Magnetic neutron scattering (invited)  

Science Journals Connector (OSTI)

The application of neutron scattering techniques to magnetic problems is reviewed. We will first discuss diffraction techniques used to solve magnetic structures as well as to measure magnetic form factors order parameters critical phenomena and the scattering from low?dimensional systems. We will also discuss inelastic scattering techniques including polarized beam methods utilized to determine the spin dynamics of various materials. Information will be provided about the types of spectrometers available at the user?oriented national facilities located at Argonne National Laboratory Brookhaven National Laboratory Los Alamos National Laboratory The National Institute of Standards and Technology and Oak Ridge National Laboratory as well as the spectrometers at the Missouri University Research Reactor.

J. W. Lynn

1994-01-01T23:59:59.000Z

331

Magnetic anisotropy in Fe-25Cr-12Co-1Si alloy induced by external magnetic field  

E-Print Network [OSTI]

Magnetic anisotropy in Fe-25Cr-12Co-1Si alloy induced by external magnetic field ZHEN Liang( )1 of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; 2. Department. Curriculum in Applied and Materials Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC

Qin, Lu-Chang

332

Strange Magnetism  

E-Print Network [OSTI]

We present an analytic and parameter-free expression for the momentum dependence of the strange magnetic form factor of the nucleon and its corresponding radius which has been derived in Heavy Baryon Chiral Perturbation Theory. We also discuss a model-independent relation between the isoscalar magnetic and the strange magnetic form factors of the nucleon based on chiral symmetry and SU(3) only. These limites are used to derive bounds on the strange magnetic moment of the proton from the recent measurement by the SAMPLE collaboration.

Thomas R. Hemmert; Ulf-G. Meissner; Sven Steininger

1998-11-09T23:59:59.000Z

333

Optical Magnetism  

Science Journals Connector (OSTI)

Magnetic dipole radiation one fourth as intense as electric dipole radiation, as well as a novel nonlinear magneto-optical effect are reported in dielectric media.

Oliveira, Samuel L; Rand, Stephen C

334

Magnetic Field Safety Magnetic Field Safety  

E-Print Network [OSTI]

Magnetic Field Safety Training #12;Magnetic Field Safety Strong Magnetic Fields exist around energized magnets. High magnetic fields alone are a recognized hazard only for personnel with certain medical conditions such as pacemakers, magnetic implants, or embedded shrapnel. In addition, high magnetic

McQuade, D. Tyler

335

Magnetic Field Safety Training  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety Training Magnetic Field Safety Strong Magnetic Fields exist around energized magnets. High magnetic fields alone are a recognized hazard only for personnel with certain...

336

Geometric accuracy of 3D coordinates of the Leksell stereotactic skull frame in 1.5 Tesla- and 3.0 Tesla-magnetic resonance imaging: a comparison of three different fixation screw materials  

Science Journals Connector (OSTI)

......In addition, spatial accuracy over the entire brain is necessary when multiple metastatic brain tumors are being treated. Regarding image distortion...magnetic resonance imaging for postimplantation deep brain stimulator lead localization. Neurosurgery......

Hisato Nakazawa; Yoshimasa Mori; Osamu Yamamuro; Masataka Komori; Yuta Shibamoto; Yukio Uchiyama; Takahiko Tsugawa; Masahiro Hagiwara

2014-11-01T23:59:59.000Z

337

New Model for Amorphous Magnetism  

Science Journals Connector (OSTI)

We propose a new model for magnetism in an amorphous material. The model is particularly appropriate for rare-earth compounds such as TbF2. It is a Heisenberg model in which each ionic spin is subjected to a local anisotropy field of random orientation. We discuss the magnetic properties of two simple ionic configurations, and show that the model is in qualitative agreement with the experimental data.

R. Harris; M. Plischke; M. J. Zuckermann

1973-07-16T23:59:59.000Z

338

Magnetic Quantum Oscillations in SrFe2As2 2009 NHMFL Science Highlight for NSF  

E-Print Network [OSTI]

Magnetic Quantum Oscillations in SrFe2As2 2009 NHMFL Science Highlight for NSF DMR-Award 0654118 at Los Alamos (through a collaboration with the material science group, MPA-10). Magnetic quantum materials by measuring the Fermi surface of the parent magnetic state. Examples of the magnetic quantum

Weston, Ken

339

Magnetic insulation  

Science Journals Connector (OSTI)

... by Winterberg1, led me to look into the background of the idea of 'magnetic insulation'. The purpose of this letter is to point out that the scheme described in ... were presented earlier in a longer article2. In that article he suggested that 'magnetic insulation' might make possible a transformer for 109 V. A year later the same objections ...

JOHN P. BLEWETT

1974-06-28T23:59:59.000Z

340

Magnetism1  

Science Journals Connector (OSTI)

... is reached, the rate of diminution becomes very rapid indeed, until, finally, the magnetism of the iron disappears at the same time as for small forces. Instead of ... a lower maximum, and its rise is less rapid. The critical temperature at which magnetism disappears changes rapidly with the composition of the steel. For very soft charcoal iron ...

1890-01-23T23:59:59.000Z

Note: This page contains sample records for the topic "disciplines magnetism materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Magnetism Group  

Science Journals Connector (OSTI)

... of the Institute of Physics and the Physical Society has announced the establishment of a Magnetism Group. The aim of the new Group is to further interest in ... Group. The aim of the new Group is to further interest in magnetism by holding regular discussion meetings and in other ways. It is intended that these ...

1965-09-04T23:59:59.000Z

342

Terrestrial Magnetism*  

Science Journals Connector (OSTI)

... A similar investigation of the effect of the moon's action on terrestrial magnetism requires a series of observations made at much less distant intervals than the monthly ones ... heat, from the central body of our system, or merely having its own inherent magnetism modified by solar action, then we must choose as our unit the lunation, or ...

1873-01-09T23:59:59.000Z

343

Terrestrial Magnetism*  

Science Journals Connector (OSTI)

... IN bringing before you this evening, gentlemen, the subject of terrestrial magnetism, it is not my intention to attempt to present you with an exhaustive paper ... clearly as I am able, what is the actual condition of our knowledge respecting the magnetism of the globe, and what the nature of its complex variations, without, however, ...

1873-01-02T23:59:59.000Z

344

Terrestrial Magnetism  

Science Journals Connector (OSTI)

... THE present activity of the department of terrestrial magnetism of the Carnegie Institution of Washington and the largeness of its future aims are alike ... a progress report which he contributes to the latest (March) number of Terrestrial Magnetism. The department, which has lately entered on its eleventh year, has under construetion ...

C. CHREE

1914-07-23T23:59:59.000Z

345

Remanent Magnetism  

Science Journals Connector (OSTI)

... STUDY of the natural remanent magnetism of rocks is becoming a familiar method for determining the direction of the Earth's ... the geomagnetic poles or of the continents themselves. An alternative use for measurements of remanent magnetism, namely, the determination of the temperature of formation of pyroclastic deposits, is described ...

1958-03-22T23:59:59.000Z

346

Scintillator material  

DOE Patents [OSTI]

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

1992-01-01T23:59:59.000Z

347

Scintillator material  

DOE Patents [OSTI]

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

Anderson, D.F.; Kross, B.J.

1994-06-07T23:59:59.000Z

348

Scintillator material  

DOE Patents [OSTI]

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

Anderson, D.F.; Kross, B.J.

1992-07-28T23:59:59.000Z

349

Scintillator material  

DOE Patents [OSTI]

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

1994-01-01T23:59:59.000Z

350

Advanced Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials Advanced Materials Advanced Materials Express Licensing Active Terahertz Metamaterial Devices Express Licensing Anion-Conducting Polymer, Composition, And Membrane Express Licensing Analysis Of Macromolecule, Liggands And Macromolecule-Lingand Complexes Express Licensing Carbon Microtubes Express Licensing Chemical Synthesis Of Chiral Conducting Polymers Express Licensing Forming Adherent Coatings Using Plasma Processing Express Licensing Hydrogen Scavengers Express Licensing Laser Welding Of Fused Quartz Express Licensing Multiple Feed Powder Splitter Negotiable Licensing Boron-10 Neutron Detectors for Helium-3 Replacement Negotiable Licensing Insensitive Extrudable Explosive Negotiable Licensing Durable Fuel Cell Membrane Electrode Assembly (MEA) Express Licensing Method of Synthesis of Proton Conducting Materials

351

Critical Materials:  

Office of Environmental Management (EM)

lighting. 14 (bottom) Criticality ratings of shortlisted raw 76 materials. 15 77 2. Technology Assessment and Potential 78 This section reviews the major trends within...

352

Superconducting Magnets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mit Hilfe der Technologie supraleitender Magnete lassen sich in Mit Hilfe der Technologie supraleitender Magnete lassen sich in Ringbeschleunigern höhere Energien erreichen. Weil supraleitende Spulen keinen elektrischen Widerstand aufweisen, können damit stärkere Magnetfelder erzeugt werden. In normal leitenden Elektromagneten wird - wegen des elektrischen Widerstands der Drähte - die Spule aufgeheizt. Auf diese Weise geht sehr viel Energie in Form von Wärme verloren, was die Energiekosten dieser Magnete in die Höhe treibt. Supraleitende Spulen erlauben es, Magnete grosser Feldstärke unter günstigen Bedingungen zu betreiben und damit die Energiekosten zu senken. Durch den Einbau supraleitender Spulen in den Ringbeschleuniger von Fermilab konnte dessen Energie verdoppelt werden.Auch der im Bau befindliche "Large Hadron Collider" am CERN wird supraleitende Magnete

353

Magnetic nanotubes  

DOE Patents [OSTI]

A magnetic nanotube includes bacterial magnetic nanocrystals contacted onto a nanotube which absorbs the nanocrystals. The nanocrystals are contacted on at least one surface of the nanotube. A method of fabricating a magnetic nanotube includes synthesizing the bacterial magnetic nanocrystals, which have an outer layer of proteins. A nanotube provided is capable of absorbing the nanocrystals and contacting the nanotube with the nanocrystals. The nanotube is preferably a peptide bolaamphiphile. A nanotube solution and a nanocrystal solution including a buffer and a concentration of nanocrystals are mixed. The concentration of nanocrystals is optimized, resulting in a nanocrystal to nanotube ratio for which bacterial magnetic nanocrystals are immobilized on at least one surface of the nanotubes. The ratio controls whether the nanocrystals bind only to the interior or to the exterior surfaces of the nanotubes. Uses include cell manipulation and separation, biological assay, enzyme recovery, and biosensors.

Matsui, Hiroshi (Glen Rock, NJ); Matsunaga, Tadashi (Tokyo, JP)

2010-11-16T23:59:59.000Z

354

Modeling of magnetostrictive materials and structures  

SciTech Connect (OSTI)

The constitutive model for a magnetostrictive material and its effect on the structural response is presented in this article. The example of magnetostrictive material considered is the TERFENOL-D. As like the piezoelectric material, this material has two constitutive laws, one of which is the sensing law and the other is the actuation law, both of which are highly coupled and non-linear. For the purpose of analysis, the constitutive laws can be characterized as coupled or uncoupled and linear or non linear. Coupled model is studied without assuming any explicit direct relationship with magnetic field. In the linear coupled model, which is assumed to preserve the magnetic flux line continuity, the elastic modulus, the permeability and magnetoelastic constant are assumed as constant. In the nonlinear-coupled model, the nonlinearity is decoupled and solved separately for the magnetic domain and the mechanical domain using two nonlinear curves, namely the stress vs. strain curve and the magnetic flux density vs. magnetic field curve. This is performed by two different methods. In the first, the magnetic flux density is computed iteratively, while in the second, the artificial neural network is used, where in the trained network will give the necessary strain and magnetic flux density for a given magnetic field and stress level. The effect of nonlinearity is demonstrated on a simple magnetostrictive rod.

Gopalakrishnan, S. [Department of Aerospace Engineering Indian Institute of Science Bangalore 560 012 (India)

2008-07-29T23:59:59.000Z

355

Reversal of patterned Co/Pd multilayers with graded magnetic anisotropy  

E-Print Network [OSTI]

Magnetic Materials Group, Metallurgy Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA Center for Nanoscale Science

2011-01-01T23:59:59.000Z

356

Ramesh Gupta | Superconducting Magnet Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ramesh Gupta Ramesh Gupta Ramesh Gupta has always been a leader in the world of superconducting magnets, which are essential to great modern accelerators such as the Relativistic Heavy Ion Collider at BNL, and the Large Hadron Collider at CERN, Switzerland. For the past decade, Lab researchers have been exploring the use of new materials that become superconducting at higher temperatures. Gupta, head of the High Temperature Superconductor (HTS) Research and Development Group in the Superconducting Magnet Division, is among those exploring avenues for HTS magnets that are energy efficient and have magnetic fields that are a million times stronger than the Earth's. These new magnets could revolutionize use in future accelerators, play a key role in energy efficiency and storage, and make possible new

357

Science at the Edge Traditionally distinct scientific disciplines are merging to create new  

E-Print Network [OSTI]

Lattice Engineering for Solar Cells - Addressing the High-Efficiency Low-Cost Paradox for PhotovoltaicGrange, Condensed Matter and Materials Division, Lawrence Livermore National Laboratory Imaging Rapid, Irreversible

358

Materials for Advanced Energy Technologies  

Science Journals Connector (OSTI)

...sources such as sunlight or wind become more at-tractive with...are: magnetic confinement, laser fusion, and electron beam fusion...working tem-perature of the turbine blade 10 C per year, but for...High-Tem-perature Materials in Gas Turbines (Elsevier, Am-sterdam...

Richard S. Claassen

1976-02-20T23:59:59.000Z

359

Department of Advanced Materials Science  

E-Print Network [OSTI]

device, Bioconjugate matsuura@k.u-tokyo.ac.jpe-mail 04-7136-3781T E L Environmental-friendly materials Nuclear magnetic resonance, Quantum spin systems, Low temperature physics, Strongly correlated electron Effect takatama@spring8.or.jpe-mail 0791-58-2942T E L Synchrotron Radiation, X-ray Free Electron Laser

Katsumoto, Shingo

360

Magnetic Structure Determination from Neutron Diffraction Data  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

logo logo Magnetic Structure Determination from Neutron Diffraction Data September 17 - 20, 2012 logo Oak Ridge National Laboratory - Oak Ridge, Tennessee, USA About the Workshop Program Lecture Notes Useful Links Organizers Travel & Lodging Wireless Networking Photos filler About the Workshop molecule The Magnetic Structure Determination Workshop 2012 concluded on September 20. The aim of this workshop was to enhance the community studying magnetism in materials by learning from experts the essential theoretical foundations to magnetic representation analysis and work through real examples to gain experience in solving and refining magnetic structures from neutron powder and single crystal diffraction data. Invited speakers: Juan Rodríguez-Carvajal (ILL, Grenoble)

Note: This page contains sample records for the topic "disciplines magnetism materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Fundamentals of materials accounting for nuclear safeguards  

SciTech Connect (OSTI)

Materials accounting is essential to providing the necessary assurance for verifying the effectiveness of a safeguards system. The use of measurements, analyses, records, and reports to maintain knowledge of the quantities of nuclear material present in a defined area of a facility and the use of physical inventories and materials balances to verify the presence of special nuclear materials are collectively known as materials accounting for nuclear safeguards. This manual, prepared as part of the resource materials for the Safeguards Technology Training Program of the US Department of Energy, addresses fundamental aspects of materials accounting, enriching and complementing them with the first-hand experiences of authors from varied disciplines. The topics range from highly technical subjects to site-specific system designs and policy discussions. This collection of papers is prepared by more than 25 professionals from the nuclear safeguards field. Representing research institutions, industries, and regulatory agencies, the authors create a unique resource for the annual course titled ''Materials Accounting for Nuclear Safeguards,'' which is offered at the Los Alamos National Laboratory.

Pillay, K.K.S. (comp.)

1989-04-01T23:59:59.000Z

362

High magnetic field processing of liquid crystalline polymers  

DOE Patents [OSTI]

A process of forming bulk articles of oriented liquid crystalline thermoset material, the material characterized as having an enhanced tensile modulus parallel to orientation of an applied magnetic field of at least 25 percent greater than said material processed in the absence of a magnetic field, by curing a liquid crystalline thermoset precursor within a high strength magnetic field of greater than about 2 Tesla, is provided, together with a resultant bulk article of a liquid crystalline thermoset material, said material processed in a high strength magnetic field whereby said material is characterized as having a tensile modulus parallel to orientation of said field of at least 25 percent greater than said material processed in the absence of a magnetic field.

Smith, M.E.; Benicewicz, B.C.; Douglas, E.P.

1998-11-24T23:59:59.000Z

363

Fabrication of thin films for a small alternating gradient field magnetometer for biomedical magnetic sensing applications  

E-Print Network [OSTI]

. This is due to the addition of Cr, which decreases the magnetic moment of the films; magnetoelas- tic coupling magnetometers (AGFM) composed of permanent magnets are being developed for measuring magnetic moments in soil Si membrane with a cylindrical SmCo permanent magnet.2,3 The magnetic material attached

McHenry, Michael E.

364

OBSERVATIONAL CONSEQUENCES OF A MAGNETIC FLUX ROPE EMERGING INTO THE CORONA S. E. Gibson,1  

E-Print Network [OSTI]

of magnetic field lines that collectively wind about a central, axial field line. Such a magnetic We show that a numerical simulation of a magnetic flux rope emerging into a coronal magnetic field headinggs: MHD -- Sun: corona -- Sun: coronal mass ejections (CMEs) -- Sun: magnetic fields Online material

Demoulin, Pascal

365

Linear chain magnetism  

Science Journals Connector (OSTI)

Linear chain magnetism ... A brief introduction to this concept, which is also called lower dimensional magnetism. ...

Richard L. Carlin

1991-01-01T23:59:59.000Z

366

MagLab - Pioneers in Electricity and Magnetism: Walther Meissner  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Meissner and Robert Ochsenfeld began their work with superconducting materials and magnetism. In the course of their investigations, the pair discovered that superconductors...

367

National High Magnetic Field Laboratory: Museum of Electricity...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Car batteries contain from 60 to 80 percent recycled materials. Related Electricity & Magnetism Pages Interactive Java Tutorials: Daniell Cell Interactive Java Tutorials: Simple...

368

Saturable inductor and transformer structures for magnetic pulse compression  

DOE Patents [OSTI]

Saturable inductor and transformer for magnetic compression of an electronic pulse, using a continuous electrical conductor looped several times around a tightly packed core of saturable inductor material.

Birx, Daniel L. (Londonderry, NH); Reginato, Louis L. (Orinda, CA)

1990-01-01T23:59:59.000Z

369

Methods and apparatus for altering material using ion beams  

DOE Patents [OSTI]

A method and apparatus for treating material surfaces using a repetitively pulsed ion beam. In particular, a method of treating magnetic material surfaces in order to reduce surface defects, and produce amorphous fine grained magnetic material with properties that can be tailored by adjusting treatment parameters of a pulsed ion beam. In addition to a method of surface treating materials for wear and corrosion resistance using pulsed particle ion beams.

Bloomquist, Douglas D. (Albuquerque, NM); Buchheit, Rudy (Albuquerque, NM); Greenly, John B. (Lansing, NY); McIntyre, Dale C. (Albuquerque, NM); Neau, Eugene L. (Albuquerque, NM); Stinnett, Regan W. (Albuquerque, NM)

1996-01-01T23:59:59.000Z

370

Low dimensional magnetism  

E-Print Network [OSTI]

Magnetism in Ultracold Gases 4 Magnetic phase diagram of aMagnetism . . . . . . . . . . . .1.3 Magnetism in condensedIntroduction 1 Brief introduction to magnetism 1.1 Classic

Kjall, Jonas Alexander

2012-01-01T23:59:59.000Z

371

Materials - Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* Coatings & Lubricants * Coatings & Lubricants * Nanofluids * Deformation Joining * Recycling * Catalysts * Assessment * Illinois Center for Advanced Tribology Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Materials ring on liner reciprocating tester Tribology Lab: Ring-on-liner reciprocating tester. Argonne National Laboratory plays an important role in the Department of Energy's (DOE's) efforts to develop advanced materials for transportation. The materials are developed with DOE support from the EERE Office of Vehicle Technology and Office of Hydrogen, Fuel Cells, and Infrastructure Technologies in collaboration with worldwide industrial partners. Examples

372

Magnetic Viscosity  

Science Journals Connector (OSTI)

1 January 1893 research-article Magnetic Viscosity J. Hopkinson E. Wilson F. Lydall The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Proceedings of the Royal Society of London. www.jstor.org

1893-01-01T23:59:59.000Z

373

Rock magnetism  

Science Journals Connector (OSTI)

The past three decades have witnessed a new paradigm, the plate tectonics paradigm, in Earth sciences. The record of the Earth's magnetic field stored in rocks played a major role in the establishment of this par...

Ronald T. Merrill

1989-01-01T23:59:59.000Z

374

Magnetic Particle Process Improvement  

SciTech Connect (OSTI)

The magnetic particle testing process is performed to find linear, surface and near surface discontinuities in ferromagnetic test materials. A wet fluorescent method is used at Honeywell Federal Manufacturing & Technologies (FM&T). This method employs a liquid carrier mixed with iron oxide particles in suspension, and the particles used in the method are coated with a fluorescent dye to make them visible under a black light. The process in its current state employs the use of a tank of liquid solution of a mineral oil carrier with iron oxide particles in suspension. The change to the use of an aerosol delivery system with the same material reduces the amount of waste involved in the process while preserving the sensitivity of the testing, shortens the flowtime for the test, and saves labor and material costs.

Hubert, R.R.

2002-08-13T23:59:59.000Z

375

Complex Materials  

SciTech Connect (OSTI)

Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

Cooper, Valentino

2014-04-17T23:59:59.000Z

376

Complex Materials  

ScienceCinema (OSTI)

Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

Cooper, Valentino

2014-05-23T23:59:59.000Z

377

Controlling Magnetism at the Nanoscale  

E-Print Network [OSTI]

Manipulation of Magnetism - External148 Conclusion A The Magnetism Cheat Sheet A.1 Magnetic157 A.2 Magnetism Unit Conversion

Wong, Jared

2012-01-01T23:59:59.000Z

378

Permanent magnet edge-field quadrupole  

DOE Patents [OSTI]

Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs.

Tatchyn, R.O.

1997-01-21T23:59:59.000Z

379

From the portfolio to the diagram : architectural discourse and the transformation of the discipline of architecture in America, 1918-1943  

E-Print Network [OSTI]

This dissertation is an historical inquiry into the concomitant transformations of architectural discourse and the discipline of architecture in America. It proceeds on the theoretical assumption that the documents produced ...

Pae, Hy?ng-min.

1993-01-01T23:59:59.000Z

380

A Small Scale Magnetic Particle Relaxometer  

E-Print Network [OSTI]

Magnetic Particle Imaging (MPI) is a newly found imaging modality. It utilizes superparamagnetic materials as tracers in the blood stream to obtain very high resolutions. MPI promises to have high sensitivity, high spatial resolution...

El Ghamrawy, Ahmed

2013-12-09T23:59:59.000Z

Note: This page contains sample records for the topic "disciplines magnetism materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Materializing Energy  

E-Print Network [OSTI]

Motivated and informed by perspectives on sustainability and design, this paper draws on a diverse body of scholarly works related to energy and materiality to articulate a perspective on energy-as-materiality and propose a design approach of materializing energy. Three critical themes are presented: the intangibility of energy, the undifferentiatedness of energy, and the availability of energy. Each theme is developed through combination of critical investigation and design exploration, including the development and deployment of several novel design artifacts: Energy Mementos and The Local Energy Lamp. A framework for interacting with energy-as-materiality is proposed involving collecting, keeping, sharing, and activating energy. A number of additional concepts are also introduced, such as energy attachment, energy engagement, energy attunement, local energy and energy meta-data. Our work contributes both a broader, more integrative design perspective on energy and materiality as well as a diversity of more specific concepts and artifacts that may be of service to designers and researchers of interactive systems concerned with sustainability and energy. Author Keywords Sustainability, energy, materiality, design, design theory

James Pierce; Eric Paulos

382

A 10-year content analysis to assess research theme areas in agricultural education: gap analysis of future research priorities in the discipline.  

E-Print Network [OSTI]

A 10?YEAR CONTENT ANALYSIS TO ASSESS RESEARCH THEME AREAS IN AGRICULTURAL EDUCATION: GAP ANALYSIS OF FUTURE RESEARCH PRIORITIES IN THE DISCIPLINE A Dissertation by LESLIE DAWN JENKINS EDGAR Submitted to the Office of Graduate... IN AGRICULTURAL EDUCATION: GAP ANALYSIS OF FUTURE RESEARCH PRIORITIES IN THE DISCIPLINE A Dissertation by LESLIE DAWN JENKINS EDGAR Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements...

Edgar, Leslie Dawn

2009-05-15T23:59:59.000Z

383

Solar Magnetic Flux Ropes  

E-Print Network [OSTI]

The most probable initial magnetic configuration of a CME is a flux rope consisting of twisted field lines which fill the whole volume of a dark coronal cavity. The flux ropes can be in stable equilibrium in the coronal magnetic field for weeks and even months, but suddenly they loose their stability and erupt with high speed. Their transition to the unstable phase depends on the parameters of the flux rope (i.e., total electric current, twist, mass loading etc.), as well as on the properties of the ambient coronal magnetic field. One of the major governing factors is the vertical gradient of the coronal magnetic field which is estimated as decay index (n). Cold dense prominence material can be collected in the lower parts of the helical flux tubes. Filaments are therefore good tracers of the flux ropes in the corona, which become visible long before the beginning of the eruption. The perspectives of the filament eruptions and following CMEs can be estimated by the comparison of observed filament heights with...

Filippov, Boris; Srivastava, Abhishek K; Uddin, Wahab

2015-01-01T23:59:59.000Z

384

MECHATRONICS ASPECTS OF SMART MATERIALS INDUCED STRAIN ACTUATION Victor Giurgiutiu  

E-Print Network [OSTI]

1 MECHATRONICS ASPECTS OF SMART MATERIALS INDUCED STRAIN ACTUATION Victor Giurgiutiu University-777-0106, email victorg@sc.edu Abstract: The mechatronics aspects of smart materials induced-strain actuation are investigated. Smart materials, a.k.a. active materials, are able to transform electric, magnetic, thermal

Giurgiutiu, Victor

385

Neutrino magnetic moment in a magnetized plasma  

E-Print Network [OSTI]

The contribution of a magnetized plasma to the neutrino magnetic moment is calculated. It is shown that only part of the additional neutrino energy in magnetized plasma connecting with its spin and magnetic field strength defines the neutrino magnetic moment. It is found that the presence of magnetized plasma does not lead to the considerable increase of the neutrino magnetic moment in contrast to the results presented in literature previously.

N. V. Mikheev; E. N. Narynskaya

2010-11-08T23:59:59.000Z

386

Review of activities in USA on HTS materials  

SciTech Connect (OSTI)

Rapid progress in attaining practical applications of High Temperature Superconductors (HTS) has been made since the discovery of these new materials. Many critical parameters influencing HTS powder synthesis and wire processing have been identified through a combination of fundamental exploration and applied research. The complexity of these novel materials with regard to phase behavior and physical properties has become evident as a result of these careful studies. Achieving optimal mechanical and superconducting properties in wires and tapes will require further understanding and synergy among several different technical disciplines. Highlights of efforts towards producing practical superconductors for electric power applications based on rare earth-, bismuth-, and thallium-based systems are reviewed.

Peterson, D.E.

1995-02-01T23:59:59.000Z

387

Magnetism of carbon clusters  

Science Journals Connector (OSTI)

The ?-electron ring current magnetic susceptibilities and endohedral chemical shifts of the fullerenes are calculated with the London theory. The diamagnetism calculated for the fullerenes that have been characterized to date does not show a monotonic increase toward the graphite value. By carrying out calculations on high-symmetry giant fullerenes (Cn) in the size regime 100magnetic susceptibility of graphite on a per carbon basis. Endohedral chemical shifts are predicted to be invariant to cluster size, but subject to the quantum size effects seen in smaller fullerenes and metallic clusters. The fullerenes are different from the metallic clusters because the finite band gap in conjugated carbon compounds allows the diamagnetic term to dominate at large cluster size. The experimentally observed decrease in nanotube material diamagnetism with temperature is attributed to the increased importance of the Van Vleck term due to finite-temperature effects.

R. C. Haddon and Alfredo Pasquarello

1994-12-01T23:59:59.000Z

388

Exchange-Spring Magnets: Nanocomposite Exchange-Spring Magnets for Motor and Generator Applications  

SciTech Connect (OSTI)

REACT Project: ANL will develop a cost-effective exchange-spring magnet to use in the electric motors of wind generators and EVs that uses no rare earth materials. This ANL exchange-spring magnet combines a hard magnetic outer shell with a soft magnetic inner corecoupling these together increases the performance (energy density and operating temperature). The hard and soft magnet composite particles would be created at the molecular level, followed by consolidation in a magnetic field. This process allows the particles to be oriented to maximize the magnetic properties of low-cost and abundant metals, eliminating the need for expensive imported rare earths. The ultimate goal of this project is to demonstrate this new type of magnet in a prototype electric motor.

None

2012-01-01T23:59:59.000Z

389

Fullerton-120811 - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fullerton-120811 Fullerton-120811 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Professor Eric Fullerton University of California, San Diego TITLE: "Spin-transfer phenomena in high-anisotropy magnetic nanostructures" DATE: Thursday, December 8, 2011 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Olle Heinonen Refreshments will be served at 10:45 a.m. ABSTRACT: In most magnetic applications the orientations of the magnetic elements are controlled by external magnetic fields. However, it has recently been appreciated that the relative orientations of nano-magnets can be controlled directly by the injection of spin polarized currents known as spin transfer effects. The ability of a spin-polarized current to reverse the magnetization orientation of a nanomagnets should enable a

390

Petroglyphs, Lighting, and Magnetism  

E-Print Network [OSTI]

1950 Electricity and Magnetism: Theory and Applications.I Petroglyphs, Lightning, and Magnetism | Walker Figure 8.I Petroglyphs, Lightning, and Magnetism | Walker Figure IL

Walker, Merle F

2007-01-01T23:59:59.000Z

391

MAGNETISM AND ELECTRON TRANSPORT IN MAGNETORESISTIVE LANTHANUM CALCIUM  

E-Print Network [OSTI]

MAGNETISM AND ELECTRON TRANSPORT IN MAGNETORESISTIVE LANTHANUM CALCIUM MANGANITE A DISSERTATION have been reported that this material is being considered for use as a magnetic field sensor. However, there are many variables such as temperature, magnetic field, chemical composition and processing that greatly

392

Materials Handbook  

Science Journals Connector (OSTI)

... THE sub title of this handbook gives the clue to the mode of treatment of the subject matter, and so ... seventeen to 'alkalis'; in fact, a better title for the book would be "Handbook of Engineering Materials". British trade names are conspicuously few, but no doubt a ...

E. H. TRIPP

1942-08-15T23:59:59.000Z

393

Los Alamos Lab: Materials Physics & Applications Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ADEPS Materials Physics and Applications, MPA ADEPS Materials Physics and Applications, MPA About Us Organization Jobs Materials Physics & Applications Home Center for Integrated Nanotechnologies Superconductivity Technology Center Condensed Matter and Magnet Science Sensors & Electrochemical Devices Materials Chemistry CONTACTS Division Leader Antoinette Taylor Deputy Division Leader David Watkins Point of Contact Susan Duran 505-665-1131 Materials Physics and Applications Division serves as the Laboratory's focal point for fundamental materials physics and materials chemistry, provides world-class user facilities, unique experimental capabilities, and the scientific talent and infrastructure to facilitate understanding and control of materials properties, and develops and apply materials-based solutions

394

Browse by Discipline -- E-print Network Subject Pathways: Energy Storage,  

Office of Scientific and Technical Information (OSTI)

Q R S Q R S T U V W X Y Z Pachucki, Krzysztof (Krzysztof Pachucki) - Instytut Fizyki Teoretycznej, Uniwersytet Warszawski Packard, Richard E. (Richard E. Packard) - Department of Physics, University of California at Berkeley Padgett, Miles (Miles Padgett) - Department of Physics and Astronomy, University of Glasgow Padmanabhan, Janardhan (Janardhan Padmanabhan) - Astronomy and Astrophysics Division, Physical Research Laboratory, Ahmedabad Page, John (John Page) - Department of Physics and Astronomy, University of Manitoba Paiella, Roberto (Roberto Paiella) - Department of Electrical and Computer Engineering, Boston University Painter, Oskar (Oskar Painter) - Department of Applied Physics and Materials Science, California Institute of Technology Pak, Hyuk Kyu (Hyuk Kyu Pak) - Department of Physics, Pusan National

395

Fiber Optic Cryogenic Sensors for Superconducting Magnets and Superconducting Power Transmission lines at CERN  

E-Print Network [OSTI]

The design, fabrication and tests of a new generation of superconducting magnets for the upgrade of the LHC require the support of an adequate, robust and reliable sensing technology. The use of Fiber Optic Sensors is becoming particularly challenging for applications in extreme harsh environments such as ultra-low temperatures, high electromagnetic fields and strong mechanical stresses offering perspectives for the development of technological innovations in several applied disciplines.

Chiuchiolo, A; Cusano, A; Bajko, M; Perez, J C; Bajas, H; Giordano, M; Breglio, G; Palmieri, L

2014-01-01T23:59:59.000Z

396

Magnetic Catalysis vs Magnetic Inhibition  

E-Print Network [OSTI]

We discuss the fate of chiral symmetry in an extremely strong magnetic field B. We investigate not only quark fluctuations but also neutral meson effects. The former would enhance the chiral-symmetry breaking at finite B according to the Magnetic Catalysis, while the latter would suppress the chiral condensate once B exceeds the scale of the hadron structure. Using a chiral model we demonstrate how neutral mesons are subject to the dimensional reduction and the low dimensionality favors the chiral-symmetric phase. We point out that this effect, the Magnetic Inhibition, can be a feasible explanation for recent lattice-QCD data indicating the decreasing behavior of the chiral-restoration temperature with increasing B.

Kenji Fukushima; Yoshimasa Hidaka

2012-09-06T23:59:59.000Z

397

Magnetic Stereoscopy  

E-Print Network [OSTI]

The space mission STEREO will provide images from two viewpoints. An important aim of the STEREO mission is to get a 3D view of the solar corona. We develop a program for the stereoscopic reconstruction of 3D coronal loops from images taken with the two STEREO spacecraft. A pure geometric triangulation of coronal features leads to ambiguities because the dilute plasma emissions complicates the association of features in image 1 with features in image 2. As a consequence of these problems the stereoscopic reconstruction is not unique and multiple solutions occur. We demonstrate how these ambiguities can be resolved with the help of different coronal magnetic field models (potential, linear and non-linear force-free fields). The idea is that, due to the high conductivity in the coronal plasma, the emitting plasma outlines the magnetic field lines. Consequently the 3D coronal magnetic field provides a proxy for the stereoscopy which allows to eliminate inconsistent configurations. The combination of stereoscopy and magnetic modelling is more powerful than one of these tools alone. We test our method with the help of a model active region and plan to apply it to the solar case as soon as STEREO data become available.

Thomas Wiegelmann; Bernd Inhester

2006-12-21T23:59:59.000Z

398

Titan's New Build Attracts Magnetic Systems Research Impossible Until Now  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Titan's New Build Attracts Magnetic Systems Research Impossible Until Now Titan's New Build Attracts Magnetic Systems Research Impossible Until Now November 01, 2013 Researchers using Titan are studying the behavior of magnetic systems by simulating nickel atoms as they reach their Curie temperature-the threshold between order (right) and disorder (left) when atoms spin into random magnetic directions of fluctuating magnetic strengths, causing the material to lose its magnetism. As simple as magnets seemed during school science lessons (opposites attract, likes repel), improving the performance of magnetic materials and creating new alloys is so complicated Markus Eisenbach, computational scientist at Oak Ridge National Laboratory, has been waiting for a computer that can perform as many as twenty quadrillion calculations per second to

399

Grid-Related Materials Development Across the NETL-RUA: A Proposed Integrated Materials Development Initiative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Related Materials Development Across the NETL-RUA: Related Materials Development Across the NETL-RUA: A Proposed Integrated Materials Development Initiative Office of Research & Development Activities Relevant Centers and Expertise Within the Regional University Alliance Needs for Advanced Materials in Grid Applications Forward Looking Vision: Integrated Development Initiative Active / Passive Components in Power Electronics Sensors for Power Flow Control and Condition Monitoring Grid-Scale Energy Storage Enduring Expertise in Electrochemical Materials Emerging Expertise in Magnetic and Optical Materials EPRI Report 1016921 EPRI Report 1020619 Energy Storage Energy Storage Grid of The Future 1) High Renewable Penetration 2) Active Power Flow Control 3) High Electric Vehicle Deployment 4)

400

Magnetocaloric materials and the optimization of cooling power density  

Science Journals Connector (OSTI)

Abstract The magnetocaloric effect is the thermal response of a material to an external magnetic field. This manuscript focuses on the physics and the properties of materials which are commonly used for magnetic refrigeration at cryogenic temperatures. After a brief overview of the magnetocaloric effect and associated thermodynamics, typical requirements on refrigerants are discussed from a standpoint of cooling power density optimization. Finally, a compilation of the most important properties of several common magnetocaloric materials is presented.

Patrick Wikus; Edgar Canavan; Sarah Trowbridge Heine; Koichi Matsumoto; Takenori Numazawa

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "disciplines magnetism materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Functional Materials for Energy | Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermoelectrics Separations Materials Catalysis Sensor Materials Polymers and Composites Carbon Fiber Related Research Chemistry and Physics at Interfaces Materials Synthesis from...

402

Browse by Discipline -- E-print Network Subject Pathways: Biology and  

Office of Scientific and Technical Information (OSTI)

All Societies TOP - A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Intl Abrasive Engineering Society (AES) Academia de Ciencias de America Latina (ACAL) Academia de Stiinte a Moldovei / Academy of Sciences of Moldovia (ASM) Academia Mexicana de Ciencias (AMC) Academie voor Mineralogie / Academy for Mineralogy (ACAM) Academy of Certified Hazardous Materials Managers (ACHMM) Academy of Molecular Imaging (AMI) Academy of Sciences of Albania Acadian Entomological Society Académie des Sciences / French Academy of Sciences Académie Tunisienne des Sciences, des Lettres et des Arts / Tunisian Academy of the Sciences, Letters and Arts Acarological Society of Japan Accademia Italiana di Scienze Forestali / Italian Academy of Forest

403

Browse by Discipline -- E-print Network Subject Pathways: Biology and  

Office of Scientific and Technical Information (OSTI)

S S T U V W X Y Z Schechter, David S. (David S. Schechter) - Department of Petroleum Engineering, Texas A&M University Schramm, Laurier L. (Laurier L. Schramm) - Chemistry Department, University of Calgary Shaw, John (John Shaw) - Department of Chemical and Materials Engineering, University of Alberta Go back to Individual Researchers Collections: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Stanford University - Department of Energy Resources Engineering, Reservoir Simulation Research Stanford University - Department of Energy Resources Engineering, SUPRI-HW: Advanced Wells Stanford University Petroleum Research Institute -SUPRI-D Innovation in Well Testing Stanford University Petroleum Research Institute, SUPRI-A Group

404

Magnetic domain structures of focused ion beam-patterned cobalt films using scanning ion microscopy with polarization analysis  

E-Print Network [OSTI]

Magnetic domain structures of focused ion beam-patterned cobalt films using scanning ion microscopy Studies of magnetic domain distributions in patterned magnetic materials are of pivotal importance in the areas of ultrahigh density magnetic recording, MRAM design, and miniaturized magnetic sensor arrays

Rau, Carl

405

Assembly and magnetic properties of nickel nanoparticles on silicon nanowires  

SciTech Connect (OSTI)

The directed assembly of magnetic Ni nanoparticles at the tips of silicon nanowires is reported. Using electrodeposition Ni shells of thickness from 10 to 100 nm were selectively deposited on Au catalytic seeds at the ends of nanowires. Magnetic characterization confirms a low coercivity ({approx}115 Oe) ferromagnetic behavior at 300 K. This approach to multifunctional magnetic-semiconducting nanostructure assembly could be extended to electrodeposition of other materials on the nanowire ends, opening up novel ways of device integration. Such magnetically functionalized nanowires offer a new approach to developing novel highly localized magnetic probes for high resolution magnetic resonance force microscopy.

Picraux, Samuel T [Los Alamos National Laboratory; Manandhar, Pradeep [Los Alamos National Laboratory; Nazaretski, E [Los Alamos National Laboratory; Thompson, J [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

406

Thermomagnetic burn control for magnetic fusion reactor  

DOE Patents [OSTI]

Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors (30a, 30b, etc.) formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma (12) and a toroidal field coil (18). A mechanism (60) for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.

Rawls, John M. (Del Mar, CA); Peuron, Unto A. (Solana Beach, CA)

1982-01-01T23:59:59.000Z

407

Thermomagnetic burn control for magnetic fusion reactor  

DOE Patents [OSTI]

Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma and a toroidal field coil. A mechanism for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.

Rawls, J.M.; Peuron, A.U.

1980-07-01T23:59:59.000Z

408

Wheel-type magnetic refrigerator  

DOE Patents [OSTI]

The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load. 7 figs.

Barclay, J.A.

1983-10-11T23:59:59.000Z

409

Functional Materials for Energy | Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Fuel Cells Thermoelectrics Separations Materials Catalysis Sensor Materials Polymers and Composites Carbon Fiber Related Research Chemistry and Physics at Interfaces Materials Synthesis from Atoms to Systems Materials Characterization Materials Theory and Simulation Energy Frontier Research Centers Advanced Materials Home | Science & Discovery | Advanced Materials | Research Areas | Functional Materials for Energy SHARE Functional Materials for Energy The concept of functional materials for energy occupies a very prominent position in ORNL's research and more broadly the scientific research sponsored by DOE's Basic Energy Sciences. These materials facilitate the capture and transformation of energy, the storage of energy or the efficient release and utilization of stored energy. A different kind of

410

magnets2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

II II Painless Physics Articles BEAM COOLING August 2, 1996 By Leila Belkora, Office of Public Affairs ACCELERATION August 16, 1996 By Dave Finley, Accelerator Division Head RF August 30, 1996 By Pat Colestock, Accelerator Division FIXED TARGET PHYSICS September 20, 1996 By Peter H. Garbincius, Physics Section FIXED TARGET PHYSICS PART DEUX October 16, 1996 By Peter H. Garbincius, Physics Section and Leila Belkora, Office of Public Affaris CROSS SECTION November 1, 1996 By Doreen Wackeroth, Theoretical Physics Edited by Leila Belkora, Office of Public Affaris MAGNETS PART I November 15, 1996 By Hank Glass, Technical Support Section Edited by Donald Sena, Office of Public Affairs MAGNETS PART II January 10, 1997 By Hank Glass, Technical Support Section Edited by Donald Sena, Office of Public Affairs

411

Combinatorial synthesis of inorganic or composite materials  

DOE Patents [OSTI]

Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials or, alternatively, allowing the components to interact to form at least two different materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, nonbiological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

Goldwasser, Isy (Palo Alto, CA); Ross, Debra A. (Mountain Ranch, CA); Schultz, Peter G. (La Jolla, CA); Xiang, Xiao-Dong (Danville, CA); Briceno, Gabriel (Baldwin Park, CA); Sun, Xian-Dong (Fremont, CA); Wang, Kai-An (Cupertino, CA)

2010-08-03T23:59:59.000Z

412

Magnetic Reconnection  

SciTech Connect (OSTI)

We review the fundamental physics of magnetic reconnection in laboratory and space plasmas, by discussing results from theory, numerical simulations, observations from space satellites, and the recent results from laboratory plasma experiments. After a brief review of the well-known early work, we discuss representative recent experimental and theoretical work and attempt to interpret the essence of significant modern findings. In the area of local reconnection physics, many significant findings have been made with regard to two- uid physics and are related to the cause of fast reconnection. Profiles of the neutral sheet, Hall currents, and the effects of guide field, collisions, and micro-turbulence are discussed to understand the fundamental processes in a local reconnection layer both in space and laboratory plasmas. While the understanding of the global reconnection dynamics is less developed, notable findings have been made on this issue through detailed documentation of magnetic self-organization phenomena in fusion plasmas. Application of magnetic reconnection physics to astrophysical plasmas is also brie y discussed.

Masaaki Yamada, Russell Kulsrud and Hantao Ji

2009-09-17T23:59:59.000Z

413

Iron-Nitride-Based Magnets: Synthesis and Phase Stabilization of Body Center Tetragonal (BCT) Metastable Fe-N Anisotropic Nanocomposite Magnet- A Path to Fabricate Rare Earth Free Magnet  

SciTech Connect (OSTI)

REACT Project: The University of Minnesota will develop an early stage prototype of an iron-nitride permanent magnet material for EVs and renewable power generators. This new material, comprised entirely of low-cost and abundant resources, has the potential to demonstrate the highest energy potential of any magnet to date. This project will provide the basis for an entirely new class of rare-earth-free magnets capable of generating power without costly and scarce rare earth materials. The ultimate goal of this project is to demonstrate a prototype with magnetic properties exceeding state-of-the-art commercial magnets.

None

2012-01-01T23:59:59.000Z

414

Materials Under Extremes | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home | Science & Discovery | Advanced Materials | Research Areas | Materials Under Extremes SHARE Materials Under Extremes Materials that can withstand extreme conditions such...

415

Photovoltaic Materials  

SciTech Connect (OSTI)

The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNLs unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporations Electronic, Color and Glass Materials (ECGM) business unit is currently the worlds largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferros ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

2012-10-15T23:59:59.000Z

416

Method for deriving information regarding stress from a stressed ferromagnetic material  

DOE Patents [OSTI]

A nondestructive evaluation technique is disclosed for deriving stress in ferromagnetic materials including deriving anhysteretic and hysteresis magnetization curves for the material in both unstressed and stressed states. The anhysteretic curve is expressed as a Langevin function. The stress is expressed as an equivalent magnetic field dependent on stress and change of magnetostriction with magnetization. By measurement of these bulk magnetic properties, stress can be derived.

Jiles, D.C.

1991-04-30T23:59:59.000Z

417

Method for deriving information regarding stress from a stressed ferromagnetic material  

DOE Patents [OSTI]

A non-destructive evaluation technique for deriving stress in ferromagnetic materials including deriving anhysteretic and hysteresis magnetization curves for the material in both unstressed and stressed states. The anhysteretic curve is expressed as a Langevin function. The stress is expressed as an equivalent magnetic field dependent on stress and change of magnetostriction with magnetization. By measurement of these bulk magnetic properties, stress can be derived.

Jiles, David C. (Ames, IA)

1991-04-30T23:59:59.000Z

418

Preparation and screening of crystalline inorganic materials  

DOE Patents [OSTI]

Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

Schultz, Peter G. (La Jolla, CA); Xiang, Xiaodong (Danville, CA); Goldwasser, Isy (Palo Alto, CA); Brice{hacek over (n)}o, Gabriel (Baldwin Park, CA); Sun, Xiao-Dong (Fremont, CA); Wang, Kai-An (Cupertino, CA)

2008-10-28T23:59:59.000Z

419

Combinatorial screening of inorganic and organometallic materials  

DOE Patents [OSTI]

Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Alameda, CA)

2002-01-01T23:59:59.000Z

420

BEAMLINE 11-3 Materials Diffraction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 CURRENT STATUS: Open SUPPORTED TECHNIQUES: X-ray scattering Thin film diffraction MAIN SCIENTIFIC DISCIPLINES: Materials / Environmental / Biology % TIME GENERAL USE: 100% SCHEDULING: Proposal Submittal and Scheduling Procedures Current SPEAR and Beam Line Schedules SOURCE: 26-pole, 2.0-Tesla ID Side Station BEAM LINE SPECIFICATIONS: energy range resolution DE/E spot size flux angular acceptance focused 12735 eV ~5 x 10-4 3.1 x 0.15 mm Usable 0.15 x 0.15 mm OPTICS: Single-crystal Si, Rh-coated - vertically focusing mirror MONOCHROMATOR: Bent cube-root I_beam Si(311), Side deflecting Monochromator Crystal Glitch Library Crystal changes need to be scheduled and coordinated in advance with BL support staff. ABSORPTION: INSTRUMENTATION: Standard detector: MAR345 Imaging Plate - 345 mm

Note: This page contains sample records for the topic "disciplines magnetism materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Magnetic Reconnection in Astrophysical and  

E-Print Network [OSTI]

Magnetic Reconnection in Astrophysical and Laboratory Plasmas Ellen G. Zweibel1 and Masaaki Yamada2 astrophysics, magnetic fields, magnetic reconnection Abstract Magnetic reconnection is a topological rearrangement of magnetic field that converts magnetic energy to plasma energy. Astrophysical flares, from

422

Electronic Structure and Magnetism in Diluted Magnetic Semiconductors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print Wednesday, 29 November 2006 00:00...

423

National High Magnetic Field Laboratory Audio Dictionary: Magnetic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Links Magnets from Mini to Mighty Meet the Magnets How to Make an Electromagnet (audio slideshow) Compasses in Magnetic Fields (interactive tutorial) Magnetic Field Around a...

424

Materials Science and Technology Teachers Handbook  

SciTech Connect (OSTI)

The Materials Science and Technology (MST) Handbook was developed by Pacific Northwest National Laboratory, in Richland, Washington, under support from the U.S. Department of Energy. Many individuals have been involved in writing and reviewing materials for this project since it began at Richland High School in 1986, including contributions from educators at the Northwest Regional Education Laboratory, Central Washington University, the University of Washington, teachers from Northwest Schools, and science and education personnel at Pacific Northwest National Laboratory. Support for its development was also provided by the U.S. Department of Education. This introductory course combines the academic disciplines of chemistry, physics, and engineering to create a materials science and technology curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking, solve problems related to materials science and technology. The MST Teacher Handbook contains a course description, philosophy, student learning objectives, and instructional approach and processes. Science and technology teachers can collaborate to build the course from their own interests, strengths, and experience while incorporating existing school and community resources. The course is intended to meet local educational requirements for technology, vocational and science education.

Wieda, Karen J.; Schweiger, Michael J.; Bliss, Mary; Pitman, Stan G.; Eschbach, Eugene A.

2008-09-04T23:59:59.000Z

425

Manganese-Aluminum-Based Magnets: Nanocrystalline t-MnAI Permanent Magnets  

SciTech Connect (OSTI)

REACT Project: Dartmouth is developing specialized alloys with magnetic properties superior to the rare earths used in todays best magnets. EVs and renewable power generators typically use rare earths to turn the axles in their electric motors due to the magnetic strength of these minerals. However, rare earths are difficult and expensive to refine. Dartmouth will swap rare earths for a manganese-aluminum alloy that could demonstrate better performance and cost significantly less. The ultimate goal of this project is to develop an easily scalable process that enables the widespread use of low-cost and abundant materials for the magnets used in EVs and renewable power generators.

None

2012-01-01T23:59:59.000Z

426

Cerium-Based Magnets: Novel High Energy Permanent Magnet Without Critical Elements  

SciTech Connect (OSTI)

REACT Project: Ames Laboratory will develop a new class of permanent magnets based on the more commonly available element cerium for use in both EVs and renewable power generators. Cerium is 4 times more abundant and significantly less expensive than the rare earth element neodymium, which is frequently used in todays most powerful magnets. Ames Laboratory will combine other metal elements with cerium to create a new magnet that can remain stable at the high temperatures typically found in electric motors. This new magnetic material will ultimately be demonstrated in a prototype electric motor, representing a cost-effective and efficient alternative to neodymium-based motors.

None

2012-01-01T23:59:59.000Z

427

Critical Materials Workshop  

Broader source: Energy.gov [DOE]

Presentations during the Critical Materials Workshop held on April 3, 2012 overviewing critical materials strategies

428

Accelerator Quality HTS Dipole Magnet Demonstrator designs for the EuCARD-2, 5 Tesla 40 mm Clear Aperture Magnet  

E-Print Network [OSTI]

Future high-energy accelerators will need very high magnetic fields in the range of 20 T. The EuCARD-2 work-package-10 is a collaborative push to take HTS materials into an accelerator quality demonstrator magnet. The demonstrator will produce 5 T standalone and between 17 T and 20 T, when inserted into the 100 mm aperture of Fresca-2 high field out-sert magnet. The HTS magnet will demonstrate the field strength and field quality that can be achieved. An effective quench detection and protection system will have to be developed to operate with the HTS superconducting materials. This paper presents a ReBCO magnet design using multi strand Roebel cable that develops a stand-alone field of 5 T in a 40 mm clear aperture and discusses the challenges associated with good field quality using this type of material. A selection of magnet designs is presented as result of a first phase of development.

Kirby, G; Ballarino, A; Bottura, L; Chouika, N; Clement, S; Datskov, V; Fajardo, L; Fleiter, J; Gauthier, R; Lambert, L; Lopes, M; Perez, J; DeRijk, G; Rijllart, A; Rossi, L; Ten Kate, H; Durante, M; Fazilleau, P; Lorin, C; Haro, E; Stenvall, A; Caspi, S; Marchevsky, M; Goldacker, W; Kario, A

2014-01-01T23:59:59.000Z

429

Critical Materials Institute  

ScienceCinema (OSTI)

Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

Alex King

2013-06-05T23:59:59.000Z

430

Tunable dynamic response of magnetic gels: impact of structural properties and magnetic fields  

E-Print Network [OSTI]

Ferrogels and magnetic elastomers feature mechanical properties that can be reversibly tuned from outside through magnetic fields. Here we concentrate on the question how their dynamic response can be adjusted. The influence of three factors on the dynamic behavior is demonstrated using appropriate minimal models: first, the orientational memory imprinted into one class of the materials during their synthesis; second, the structural arrangement of the magnetic particles in the materials; and third, the strength of an external magnetic field. To illustrate the latter point, structural data are extracted from a real experimental sample and analyzed. Understanding how internal structural properties and external influences impact the dominant dynamical properties helps to design materials that optimize the requested behavior.

Mitsusuke Tarama; Peet Cremer; Dmitry Y. Borin; Stefan Odenbach; Hartmut Lwen; Andreas M. Menzel

2014-06-26T23:59:59.000Z

431

Superconducting magnet  

DOE Patents [OSTI]

A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.

Satti, John A. (Naperville, IL)

1980-01-01T23:59:59.000Z

432

Hermetically sealed superconducting magnet motor  

DOE Patents [OSTI]

A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit.

DeVault, Robert C. (Knoxville, TN); McConnell, Benjamin W. (Knoxville, TN); Phillips, Benjamin A. (Benton Harbor, MI)

1996-01-01T23:59:59.000Z

433

Hermetically sealed superconducting magnet motor  

DOE Patents [OSTI]

A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit. 6 figs.

DeVault, R.C.; McConnell, B.W.; Phillips, B.A.

1996-07-02T23:59:59.000Z

434

Fundamental and Magnetic-Hardening Studies of Rare-Earth and Nanocomposite Magnets  

SciTech Connect (OSTI)

In this project we study new nanocrystalline and nanocomposite structures that have high potential for permanent-magnet development. These materials, which can be synthesized to have either very high or intermediate coercivities, have many applications in electric power, transportation, and information-storage industries. There is great interest in further development of understanding and application of these materials.

Sellmyer, David J.

2003-12-22T23:59:59.000Z

435

Magnetism and Superconductivity in Iron Pnictides  

SciTech Connect (OSTI)

The discovery of high temperature superconductivity in iron pnictides and chalcogenides has resulted in surprising new insights into high temperature superconductivity and its relationship with magnetism. Here we provide an overview of some of what is known about these materials and in particular about the interplay of magnetism and superconductivity in them. Similarities and contrasts with cuprate superconductors are emphasized and the superconducting pairing is discussed within the framework of spin fluctuation induced pairing.

Singh, David J [ORNL

2012-01-01T23:59:59.000Z

436

New directions in materials for thermomagnetic cooling  

SciTech Connect (OSTI)

The authors review thermoelectric effects in a magnetic field at a phenomenological level. Discussions of the difficulties in computing the limiting performance for both Peltier and Ettingshausen coolers are presented. New principles are discussed to guide the materials scientist in the search for better Ettingshausen materials. These principals are based on the tensor transport and solid state electronic properties of Bi{sub 1{minus}x}Sb{sub x} alloys. A brief review of the subtle measurement problems is presented.

Migliori, A.; Freibert, F.; Darling, T.W. [and others

1998-12-31T23:59:59.000Z

437

Gas storage materials, including hydrogen storage materials  

DOE Patents [OSTI]

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2014-11-25T23:59:59.000Z

438

Interface Magnetism in Multiferroics  

E-Print Network [OSTI]

1.2.1 Magnetism . . . . . . . . . . . . . . . . . . . 1.2.2domain walls . . . . . 3 Magnetism of domain walls in BiFeOof electrical control of magnetism in mixed phase BiFeO 3

He, Qing

2011-01-01T23:59:59.000Z

439

Materials Science & Tech Division | Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

production of battery cells, magnetic field processing, specialized rolling technologies, additive manufacturing, etc. Laboratories for comprehensive evaluations of low-level...

440

Compressible Turbulence and Interactions with Shock Waves and Material  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Compressible Turbulence Compressible Turbulence and Interactions with Shock Waves and Material Interfaces Compressible Turbulence and Interactions with Shock Waves and Material Interfaces Lele.jpg Alternate Title: High-fidelity simulations of supersonic turbulent mixing and combustion Key Challenges: Direct numerical simulation (DNS) of isotropic turbulence interacting with a normal shock wave and turbulent multi-material mixing in the Richtmyer-Meshkov instability (RMI) Why it Matters: Shock/turbulence interaction is a fundamental phenomenon in fluid mechanics that occurs in a wide range of interesting problems in various disciplines, including supernova explosions, inertial confinement fusion, hypersonic flight and propulsion, and shock wave lithotripsy. Accomplishments: A novel solution-adaptive algorithm that applies different

Note: This page contains sample records for the topic "disciplines magnetism materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Hidden Rotational Symmetries in Magnetic Domain Patterns  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hidden Rotational Symmetries in Magnetic Domain Patterns Print Hidden Rotational Symmetries in Magnetic Domain Patterns Print Magnetic thin films have complicated domain patterns that may or may not repeat with each cycle through a hysteresis loop. A magnetic thin film with perpendicular anisotropy, such as that used in computer hard drives, for example, commonly exhibits labyrinthine domain patterns. These patterns are disordered over a macroscopic length scale, and intuitively we do not expect to observe any symmetry in such systems. Scientists at the ALS, the University of Oregon, and the University of California, San Diego, have recently used coherent soft x-ray scattering with angular Fourier analysis to discover that the disordered domain patterns do, in fact, exhibit rotational symmetries, which can be as small as two-fold or as large as 30-fold. Their study of magnetic symmetries gives scientists a toolbox for discovering hidden symmetries in diverse material systems.

442

HERA Upgrade Project | Superconducting Magnet Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HERA Upgrade Project HERA Upgrade Project As part of the HERA luminosity upgrade, 6 superconducting Interaction Region quadrupoles were delivered, accepted, and are in service. These 6 layer magnets were designed to include the main quadrupole focus, a skew quad, a normal and skew dipole, and a final sextupole layer. Because of the physical space constraints imposed by the existing detector region components, the DESY magnets were of necessity designed to be very compact. In addition, they are also are required to operate within the solenoidal detector fields at the collision points, so all construction materials had to be non magnetic. Two types of DESY magnets were fabricated. The first, designated as G0, was a two meter long, constant radius magnet. The second, designated GG, is a

443

Hidden Rotational Symmetries in Magnetic Domain Patterns  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hidden Rotational Symmetries in Hidden Rotational Symmetries in Magnetic Domain Patterns Hidden Rotational Symmetries in Magnetic Domain Patterns Print Wednesday, 27 June 2012 00:00 Magnetic thin films have complicated domain patterns that may or may not repeat with each cycle through a hysteresis loop. A magnetic thin film with perpendicular anisotropy, such as that used in computer hard drives, for example, commonly exhibits labyrinthine domain patterns. These patterns are disordered over a macroscopic length scale, and intuitively we do not expect to observe any symmetry in such systems. Scientists at the ALS, the University of Oregon, and the University of California, San Diego, have recently used coherent soft x-ray scattering with angular Fourier analysis to discover that the disordered domain patterns do, in fact, exhibit rotational symmetries, which can be as small as two-fold or as large as 30-fold. Their study of magnetic symmetries gives scientists a toolbox for discovering hidden symmetries in diverse material systems.

444

Magnetic field decay in model SSC dipoles  

SciTech Connect (OSTI)

We have observed that some of our model SSC dipoles have long time constant decays of the magnetic field harmonics with amplitudes large enough to result in significant beam loss, if they are not corrected. The magnets were run at constant current at the SSC injection field level of 0.3 tesla for one to three hours and changes in the magnetic field were observed. One explanation for the observed field decay is time dependent superconductor magnetization. Another explanation involves flux creep or flux flow. Data are presented on how the decay changes with previous flux history. Similar magnets with different Nb-Ti filament spacings and matrix materials have different long time field decay. A theoretical model using proximity coupling and flux creep for the observed field decay is discussed. 10 refs., 5 figs., 2 tabs.

Gilbert, W.S.; Althaus, R.F.; Barale, P.J.; Benjegerdes, R.W.; Green, M.A.; Green, M.I.; Scanlan, R.M.

1988-08-01T23:59:59.000Z

445

New classes of magnetoelectric materials promise advances in computing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New classes of magnetoelectric materials promise advances in computing New classes of magnetoelectric materials promise advances in computing technology By Jared Sagoff * February 7, 2013 Tweet EmailPrint ARGONNE, Ill. - Although scientists have been aware that magnetism and electricity are two sides of the same proverbial coin for almost 150 years, researchers are still trying to find new ways to use a material's electric behavior to influence its magnetic behavior, or vice versa. Thanks to new research by an international team of researchers led by the U.S. Department of Energy's Argonne National Laboratory, physicists have developed new methods for controlling magnetic order in a particular class of materials known as "magnetoelectrics." Magnetoelectrics get their name from the fact that their magnetic and electric properties are coupled to each other. Because this physical link

446

Fundamental Scientific Problems in Magnetic Recording  

SciTech Connect (OSTI)

Magnetic data storage technology is presently leading the high tech industry in advancing device integration--doubling the storage density every 12 months. To continue these advancements and to achieve terra bit per inch squared recording densities, new approaches to store and access data will be needed in about 3-5 years. In this project, collaboration between Oak Ridge National Laboratory (ORNL), Center for Materials for Information Technology (MINT) at University of Alabama (UA), Imago Scientific Instruments, and Seagate Technologies, was undertaken to address the fundamental scientific problems confronted by the industry in meeting the upcoming challenges. The areas that were the focus of this study were to: (1) develop atom probe tomography for atomic scale imaging of magnetic heterostructures used in magnetic data storage technology; (2) develop a first principles based tools for the study of exchange bias aimed at finding new anti-ferromagnetic materials to reduce the thickness of the pinning layer in the read head; (3) develop high moment magnetic materials and tools to study magnetic switching in nanostructures aimed at developing improved writers of high anisotropy magnetic storage media.

Schulthess, T.C.; Miller, M.K.

2007-06-27T23:59:59.000Z

447

Detection of magnetic resonance signals using a magnetoresistive sensor  

DOE Patents [OSTI]

A method and apparatus are described wherein a micro sample of a fluidic material may be assayed without sample contamination using NMR techniques, in combination with magnetoresistive sensors. The fluidic material to be assayed is first subject to pre-polarization, in one embodiment, by passage through a magnetic field. The magnetization of the fluidic material is then subject to an encoding process, in one embodiment an rf-induced inversion by passage through an adiabatic fast-passage module. Thereafter, the changes in magnetization are detected by a pair of solid-state magnetoresistive sensors arranged in gradiometer mode. Miniaturization is afforded by the close spacing of the various modules.

Budker, Dmitry; Pines, Alexander; Xu, Shoujun; Hilty, Christian; Ledbetter, Micah P; Bouchard, Louis S

2013-10-01T23:59:59.000Z

448

Superconducting materials for large scale applications  

SciTech Connect (OSTI)

Significant improvements in the properties ofsuperconducting materials have occurred recently. These improvements arebeing incorporated into the latest generation of wires, cables, and tapesthat are being used in a broad range of prototype devices. These devicesinclude new, high field accelerator and NMR magnets, magnets for fusionpower experiments, motors, generators, and power transmission lines.These prototype magnets are joining a wide array of existing applicationsthat utilize the unique capabilities of superconducting magnets:accelerators such as the Large Hadron Collider, fusion experiments suchas ITER, 930 MHz NMR, and 4 Tesla MRI. In addition, promising newmaterials such as MgB2 have been discovered and are being studied inorder to assess their potential for new applications. In this paper, wewill review the key developments that are leading to these newapplications for superconducting materials. In some cases, the key factoris improved understanding or development of materials with significantlyimproved properties. An example of the former is the development of Nb3Snfor use in high field magnets for accelerators. In other cases, thedevelopment is being driven by the application. The aggressive effort todevelop HTS tapes is being driven primarily by the need for materialsthat can operate at temperatures of 50 K and higher. The implications ofthese two drivers for further developments will be discussed. Finally, wewill discuss the areas where further improvements are needed in order fornew applications to be realized.

Scanlan, Ronald M.; Malozemoff, Alexis P.; Larbalestier, David C.

2004-05-06T23:59:59.000Z

449

X-Ray Diffraction Microscopy of Magnetic Structures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

X-Ray Diffraction Microscopy of Magnetic Structures Print X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the electron density of complicated molecules. The formula used to make these calculations contains terms that relate to the electron spin of magnetic atoms, but these terms are traditionally ignored since coherent x-ray diffraction has not been used to retrieve magnetic information. Using the full formula allows for the determination of not only the electron density, but also the magnetic spin distribution and its orientation.

450

X-Ray Diffraction Microscopy of Magnetic Structures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

X-Ray Diffraction Microscopy of Magnetic Structures Print X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the electron density of complicated molecules. The formula used to make these calculations contains terms that relate to the electron spin of magnetic atoms, but these terms are traditionally ignored since coherent x-ray diffraction has not been used to retrieve magnetic information. Using the full formula allows for the determination of not only the electron density, but also the magnetic spin distribution and its orientation.

451

X-Ray Diffraction Microscopy of Magnetic Structures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

X-Ray Diffraction Microscopy of Magnetic Structures Print X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the electron density of complicated molecules. The formula used to make these calculations contains terms that relate to the electron spin of magnetic atoms, but these terms are traditionally ignored since coherent x-ray diffraction has not been used to retrieve magnetic information. Using the full formula allows for the determination of not only the electron density, but also the magnetic spin distribution and its orientation.

452

Transport of Paramagnetic Liquids under Nonuniform High Magnetic Field  

Science Journals Connector (OSTI)

The recent development of numerous superconducting magnets led to remarkable increment of the investigations under high magnetic field intensities in particular in chemistry, physics and biology.1 The application of high magnetic fields clarified the existence of the magnetic force acting on any kind of nonmagnetic (paramagnetic or diamagnetic) materials. ... In the experimental conditions where the bore axis of the superconducting magnet is set vertically, the magnetic field takes a parabolic distribution in a horizontal direction with rotational symmetry, such as where B0 is the magnetic flux density in the center of the bore, ? the coefficient characterizing the parabolic shape of the magnetic field distribution, and r the coordinate of the radial axis. ... T. Dashed lines are fitted curves from eq 17. ...

Olivier Devos; Ryoichi Aogaki

2000-05-10T23:59:59.000Z

453

Superconducting magnetic energy storage  

SciTech Connect (OSTI)

Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

Hassenzahl, W.

1988-08-01T23:59:59.000Z

454

The magnetic properties of nanocrystalline CoLa0.1Fe1.9O4 ferrite under an external AC magnetic field  

Science Journals Connector (OSTI)

Development of morphology-controlled synthesis methodologies is of great interest in materials science [13...]. Ferrites are important materials, which are broadly used in magnetic fields, including ferrofluid t...

Lijun Zhao; Hua Yang; Lei Lu

2008-10-01T23:59:59.000Z

455

Joining of parts via magnetic heating of metal aluminum powders  

DOE Patents [OSTI]

A method of joining at least two parts includes steps of dispersing a joining material comprising a multi-phase magnetic metal-aluminum powder at an interface between the at least two parts to be joined and applying an alternating magnetic field (AMF). The AMF has a magnetic field strength and frequency suitable for inducing magnetic hysteresis losses in the metal-aluminum powder and is applied for a period that raises temperature of the metal-aluminum powder to an exothermic transformation temperature. At the exothermic transformation temperature, the metal-aluminum powder melts and resolidifies as a metal aluminide solid having a non-magnetic configuration.

Baker, Ian

2013-05-21T23:59:59.000Z

456

Femtosecond Opto-Magnetism  

Science Journals Connector (OSTI)

We demonstrate that circularly polarized laser pulses may selectively excite different modes of magnetic resonance, realize quantum control of magnons, trigger magnetic phase...

Kimel, Alexey; Kirilyuk, A; Rasing, Th

457

Magnets for Muon 6D Cooling Channels  

SciTech Connect (OSTI)

The Helical Cooling Channel (HCC), an innovative technique for six-dimensional (6D) cooling of muon beams using a continuous absorber inside superconducting magnets, has shown considerable promise based on analytic and simulation studies. The implementation of this revolutionary method of muon cooling requires high field superconducting magnets that provide superimposed solenoid, helical dipole, and helical quadrupole fields. Novel magnet design concepts are required to provide HCC magnet systems with the desired fields for 6D muon beam cooling. New designs feature simple coil configurations that produce these complex fields with the required characteristics, where new high field conductor materials are particularly advantageous. The object of the program was to develop designs and construction methods for HCC magnets and design a magnet system for a 6D muon beam cooling channel. If successful the program would develop the magnet technologies needed to create bright muon beams for many applications ranging from scientific accelerators and storage rings to beams to study material properties and new sources of energy. Examples of these applications include energy frontier muon colliders, Higgs and neutrino factories, stopping muon beams for studies of rare fundamental interactions and muon catalyzed fusion, and muon sources for cargo screening for homeland security.

Johnson, Rolland [Muons, Inc.; Flanagan, Gene [Muons, Inc.

2014-09-10T23:59:59.000Z

458

Superconducting Magnet Technology for Future Hadron Colliders  

SciTech Connect (OSTI)

The application of superconducting magnets to large-scale particle accelerators was successfully demonstrated with the completion of the Tevatron at Fermilab in 1983. This machine, utilizing dipole magnets operating at 4.5 T, has been operating successfully for the past 12 years. This success was followed a few years later by HERA, an electron-proton collider that uses superconducting quadrupoles and dipoles of a design similar to those in the Tevatron. The next major project was the ill-fated SSC, which was cancelled in 1993. However, the SSC R&D effort did succeed in demonstrating the reliable operation of dipole magnets up to 6.6 T. The LHC, now under construction, pushes the ductile superconductor, NbTi, to its limit in dipoles designed to operate at fields of 8.6 T at 1.8 K. Several recent studies have addressed the issues involved in taking the next step beyond the LHC. The Division of Particles and Fields Workshop on Future Hadron Facilities in the U.S., held at Indiana U. in 1994, examined two possible facilities--a 2-TeV on 2-TeV collider and a 30-Tev on 30-Tev collider. The participants arrived at the following conclusions with regard to superconducting magnets: (1) Superconducting magnets are the enabling technology for high energy colliders. As such, the highest priority for the future of hadron facilities in the U.S. is the reassembly of a U.S. superconducting magnet R&D program. (2) emphasis on conductor development and new magnet designs; and (3) goals of such a program might be (a) the development of a 9-10 Tesla magnet based on NbTi technology; (b) the development of high quality quadrupoles with gradients in the range 250-300 T/m; and (c) initiation of R&D activities aimed at moving beyond the existing technology as appears to be required for the development of a magnet operating at 12-15 Tesla. In order to reach fields above 10 T, magnet designers must turn to new materials with higher critical fields than that of NbTi. Several candidate conductors exist; unfortunately, all of these new materials are brittle, and thus pose new challenges to the magnet designers. At the same time that the forces on the magnet windings are increasing due to the higher Lorentz force associated with the higher magnetic fields, the conductor tensile strain must be limited to less than about 0.5% to prevent damage to the brittle superconducting material. Also, coil fabrication methods must be changed. If the superconductor is in the reacted, or brittle, state, the coil winding procedure must be modified to prevent overstraining. If the alternative wind and react approach is used, new insulating materials must be used that can survive the high temperature reactions (650 to 800 C) necessary to form the superconducting compounds. The issues associated with high-field dipole magnets have been discussed at a number of workshops, including those at DESY in 1991 and LBL in 1992. These workshops were extremely useful in defining the problems and focusing the attention of both materials and magnet experts on high-field dipole magnets; however, since neither set of proceedings was published, the information is not readily available. More recently, a workshop was held in Erice, Italy, under the sponsorship of the Ettore Maiorana Center for Scientific Culture. This international workshop was attended by 20 scientists from Europe, Japan, and the U.S., and the summary of that work, which represents the most recent and thorough assessment of the status of high-field magnets for accelerator magnets, is presented.

Scanlan, R.M.; Barletta, W.A.; Dell'Orco, D.; McInturff, A.D.; Asner, A.; Collings, E.W.; Dahl, P.F.; Desportes, H.; Devred, A.; Garre, R.; Gregory, E.; Hassenzahl, W.; Lamm, M.; Larbalestier, D.; Leory, D.; McIntyre, P.; Miller, J.; Shintomi, T.; ten Kate, H.; Wipf, S.

1994-10-01T23:59:59.000Z

459

The IceCube Data Acquisition Software: Lessons Learned during Distributed, Collaborative, Multi-Disciplined Software Development.  

SciTech Connect (OSTI)

In this experiential paper we report on lessons learned during the development ofthe data acquisition software for the IceCube project - specifically, how to effectively address the unique challenges presented by a distributed, collaborative, multi-institutional, multi-disciplined project such as this. While development progress in software projects is often described solely in terms of technical issues, our experience indicates that non- and quasi-technical interactions play a substantial role in the effectiveness of large software development efforts. These include: selection and management of multiple software development methodologies, the effective useof various collaborative communication tools, project management structure and roles, and the impact and apparent importance of these elements when viewed through the differing perspectives of hardware, software, scientific and project office roles. Even in areas clearly technical in nature, success is still influenced by non-technical issues that can escape close attention. In particular we describe our experiences on software requirements specification, development methodologies and communication tools. We make observations on what tools and techniques have and have not been effective in this geographically disperse (including the South Pole) collaboration and offer suggestions on how similarly structured future projects may build upon our experiences.

Beattie, Keith S; Beattie, Keith; Day Ph.D., Christopher; Glowacki, Dave; Hanson Ph.D., Kael; Jacobsen Ph.D., John; McParland, Charles; Patton Ph.D., Simon

2007-09-21T23:59:59.000Z

460

Multi Material Paradigm  

Energy Savers [EERE]

Multi Material Paradigm Glenn S. Daehn Department of Materials Science and Engineering, The Ohio State University Advanced Composites (FRP) Steel Spaceframe Multi Material Concept...

Note: This page contains sample records for the topic "disciplines magnetism materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Institute of Materials, Minerals and Mining 2009 DOI 10.1179/174327909X441081 Published by Maney on behalf of the Institute  

E-Print Network [OSTI]

© Institute of Materials, Minerals and Mining 2009 DOI 10.1179/174327909X441081 Published by Maney on behalf of the Institute INTERDISCIPLINARY SCIENCE REVIEWS, Vol. 34 No. 2­3, 2009, 154­171 Modelling (Pegg 2009). Recording on various media soon became a standard tool of the discipline, and so became

Veltkamp, Remco

462

Determining the minimum mass and cost of a magnetic refrigerator  

E-Print Network [OSTI]

An expression is determined for the mass of the magnet and magnetocaloric material needed for a magnetic refrigerator and these are determined using numerical modeling for both parallel plate and packed sphere bed regenerators as function of temperature span and cooling power. As magnetocaloric material Gd or a model material with a constant adiabatic temperature change, representing a infinitely linearly graded refrigeration device, is used. For the magnet a maximum figure of merit magnet or a Halbach cylinder is used. For a cost of \\$40 and \\$20 per kg for the magnet and magnetocaloric material, respectively, the cheapest 100 W parallel plate refrigerator with a temperature span of 20 K using Gd and a Halbach magnet has 0.8 kg of magnet, 0.3 kg of Gd and a cost of \\$35. Using the constant material reduces this cost to \\$25. A packed sphere bed refrigerator with the constant material costs \\$7. It is also shown that increasing the operation frequency reduces the cost. Finally, the lowest cost is also found a...

Bjrk, R; Bahl, C R H; Pryds, N

2014-01-01T23:59:59.000Z

463

Texas AgriLife Extension Service Procedure 32.02.02.X1.01 Discipline and Dismissal Page 1 of 2 Texas AgriLife Extension Service Procedures  

E-Print Network [OSTI]

Texas AgriLife Extension Service Procedure 32.02.02.X1.01 Discipline and Dismissal Page 1 of 2 Texas AgriLife Extension Service Procedures 32.02.02.X1.01 DISCIPLINE AND DISMISSAL Approved: March 27 PROCEDURE STATEMENT This procedure delineates the delegation of authority to approve dismissals

464

"Health, Aging and Environments" aims to bring together the resonant fields of health studies, gerontology, aging studies and other disciplines that focus on social studies of health, aging, and  

E-Print Network [OSTI]

"Health, Aging and Environments" aims to bring together the resonant fields of health studies, gerontology, aging studies and other disciplines that focus on social studies of health, aging, and environments, in the broadest sense. Such disciplines include, but are not limited to, health and social

Haykin, Simon

465

E-Print Network 3.0 - alternating magnetic properties Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

56 nature materials | VOL 6 | JANUARY 2007 | www.nature.comnaturematerials 13 REVIEW ARTICLE Summary: -sought control of electric properties by magnetic fields was...

466

A Snowflake-Shaped Magnetic Field Holds Promise for Taming Harsh...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Snowflake-Shaped Magnetic Field Holds Promise for Taming Harsh Fusion Plasmas Recent experiments have confirmed the great potential of a novel plasma-material interface concept....

467

E-Print Network 3.0 - axial magnetic bearing Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- Department of Physics, University of Central Florida Collection: Physics ; Materials Science 3 Magnetic Pressure and Shape of Ferrofluid Seals in Cylindrical Structures...

468

E-Print Network 3.0 - ac magnetic susceptibility Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Spinu, Leonard - Department of Physics, University of New Orleans Collection: Materials Science ; Engineering 2 Fig. 1. Scanning electron micrograph of magnetic spherules...

469

E-Print Network 3.0 - ac magnetization measurements Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering Department, Sungkyunkwan University Collection: Materials Science 79 TEST RESULTS OF HTS COILS AND AN R&D MAGNET FOR RIA* , M. Anerella, M. Harrison, J....

470

E-Print Network 3.0 - acceleration magnetic field Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Electronic Engineering, Tohoku University Collection: Physics ; Materials Science 86 TEST RESULTS OF HTS COILS AND AN R&D MAGNET FOR RIA* , M. Anerella, M. Harrison, J....

471

Nuclear Reactor Materials and Fuels  

Science Journals Connector (OSTI)

Nuclear reactor materials and fuels can be classified into six categories: Nuclear fuel materials Nuclear clad materials Nuclear coolant materials Nuclear poison materials Nuclear moderator materials

Dr. James S. Tulenko

2012-01-01T23:59:59.000Z

472

Magnetorheological materials, method for making, and applications thereof  

SciTech Connect (OSTI)

A magnetorheological material comprises a magnetic particle and a ceramic material, wherein the magnetorheological material is in a dried form and further wherein a portion of the ceramic material is in the form of a nanocrystalline coating over the entire exterior surface of the magnetic particle and another portion of the ceramic material is in the form of a free nanocrystal. A magnetorheological material comprises a magnetic particle having a ceramic material coating over an external surface thereof as a result of a coating process, and a free nanocrystal of the ceramic material in the form of a residual by-product of the coating process. A sol-gel process for making a magnetorheological product comprises providing a sol of a desired ceramic coating material; combining a desired quantity of carbonyl iron (CI) particles with the sol to coat the CI particles with the ceramic coating material; creating a resulting quantity of nanocrystalline ceramic material-coated CI particles and a quantity of free nanocrystals of the ceramic material; and, drying the resulting quantity of coated CI particles and free nanocrystals to a moisture content equal to or less than 2 wt %.

Shen, Rui; Yang, Hong; Shafrir, Shai N.; Miao, Chunlin; Wang, Mimi; Mici, Joni; Lambropoulos, John C.; Jacobs, Stephen D.

2014-08-19T23:59:59.000Z

473

Process and apparatus for preparing textured crystalline materials using anisotropy in the paramagnetic susceptibility  

DOE Patents [OSTI]

The present invention discloses a process and apparatus for forming textures in materials. The process comprises heating a material having an anisotropy in the paramagnetic or diamagnetic susceptibility within a magnetic field. The material is heated to a temperature approaching its melting point while a magnetic field of at least 10[sup 4]Oe is simultaneously applied. The process and apparatus produce highly textured bulk and elongated materials with high current densities below critical superconducting temperatures. 6 figs.

Holloway, A.

1992-01-07T23:59:59.000Z

474

2598 IEEE TRANSACTIONS ON MAGNETICS, VOL. 38, NO. 5, SEPTEMBER 2002 Interparticle Interactions in Annealed FePt  

E-Print Network [OSTI]

are also known to be permanent magnetic materials [5]. The energy products of hard­soft exchange coupled Fe for producing hard magnetic nanocomposites. Index Terms--Exchange coupling, FePt nanoparticles, magneti- zation offer a novel and convenient approach for producing permanent magnetic materials. However, to reach

Wang, Zhong L.

475

Argonne CNM Highlight: Biofunctionalized magnetic-vortex microdiscs for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction Magnetic microdisks Reflection optical microscope image of a dried suspension of the discs prepared via magnetron sputtering and optical lithography. Magnetic spin vortex Model of magnetic-vortex spin distribution in a disc. Users from Argonne's Materials Science Division and University of Chicago's Pritzker School of Medicine, working collaboratively on a user science project with CNM's Nanobio Interfaces Group, have discovered that nanostructured magnetic materials offer exciting avenues for probing cell mechanics, activating mechanosensitive ion channels, and advancing potential cancer therapies. Their new report describes an approach based on interfacing cells with lithographically defined microdiscs (1-micron

476

System Cost Analysis for an Interior Permanent Magnet Motor  

SciTech Connect (OSTI)

The objective of this program is to provide an assessment of the cost structure for an interior permanent magnet ('IPM') motor which is designed to meet the 2010 FreedomCAR specification. The program is to evaluate the range of viable permanent magnet materials for an IPM motor, including sintered and bonded grades of rare earth magnets. The study considers the benefits of key processing steps, alternative magnet shapes and their assembly methods into the rotor (including magnetization), and any mechanical stress or temperature limits. The motor's costs are estimated for an annual production quantity of 200,000 units, and are broken out into such major components as magnetic raw materials, processing and manufacturing. But this is essentially a feasibility study of the motor's electromagnetic design, and is not intended to include mechanical or thermal studies as would be done to work up a selected design for production.

Peter Campbell

2008-08-01T23:59:59.000Z

477

The discipline of epidemiology  

Science Journals Connector (OSTI)

...address: http://www.aaas.org Other Internet addresses: science-editors@ aaas...confusion. However, this is more an abuse of epidemi-ologic evidence than a problem...field of epide-miology is relatively young. The study of disease inci-dence...

W Willett; S Greenland; B MacMahon; D Trichopoulos; K Rothman; D Thomas; M Thun; N Weiss

1995-09-08T23:59:59.000Z

478

STRATEGIESEMPLOYERS ANY CHEMISTRY DISCIPLINE  

E-Print Network [OSTI]

Service Industries: chemical, pharmaceutical, waste man- agement, environmental, food, feed, healthcare Quality Assurance/Quality Control Management Government agencies: U.S. Food and Drug Administration U departments Industries: Chemical, pharmaceutical, biotechnology, food, feed, cosmetics, agricultural

New Hampshire, University of

479

Disciplined heterogeneous modeling  

Science Journals Connector (OSTI)

Complex systems demand diversity in the modeling mechanisms. One way to deal with a diversity of requirements is to create flexible modeling frameworks that can be adapted to cover the field of interest. The downside of this approach is a weakening of ...

Edward A. Lee

2010-10-01T23:59:59.000Z

480

Patch antennas with new artificial magnetic layers  

E-Print Network [OSTI]

A new type of high-impedance surfaces (HIS) has been introduced by C.R. Simovski et al. recently. In this paper, we propose to use such layers as artificial magnetic materials in the design of patch antennas. The new HIS is simulated and patch antennas partially filled by these composite layers are measured in order to test how much the antenna dimensions can be reduced. In order to experimentally investigate the frequency behavior of the material, different sizes of the patches are designed and tested with the same material layer. Also the height of the patch is changed in order to find the best possible position for minimizing the antenna size. This composite layer of an artificial magnetic material has made the antenna smaller while keeping the bandwidth characteristics of the antenna about the same. About 40% of size reduction has been achieved.

M. Ermutlu; C. R. Simovski; M. Karkainen; P. Ikonen; A. A. Sochava; S. A. Tretyakov

2005-04-11T23:59:59.000Z

Note: This page contains sample records for the topic "disciplines magnetism materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Quadrupole magnets measurement  

SciTech Connect (OSTI)

A rotating coil setup is designed for quadrupole magnet measurement at the Accelerator Test Facility (ATF); Hall probe measurement was also performed for one of each type of quadrupole magnet. Both mechanical and magnetic properties of the quadrupole magnets were measured, the results are reported here. 5 refs., 12 figs., 12 tabs.

Wang, Xijie (California Univ., Los Angeles, CA (USA). Center for Advanced Accelerators Physics); Sylvester, C. (Brookhaven National Lab., Upton, NY (USA))

1991-01-01T23:59:59.000Z

482

Magnetic Imaging Wolfgang Kuch  

E-Print Network [OSTI]

Magnetic Imaging Wolfgang Kuch Freie Universit¨at Berlin, Institut f¨ur Experimentalphysik, Arnimallee 14, 14195 Berlin, Germany kuch@physik.fu-berlin.de Abstract. Imaging of magnetic domains has- ern techniques is used nowadays routinely for magnetic imaging of magnetic ma- terials

Kuch, Wolfgang

483

Magnetism in Nanocrystalline Gold  

Science Journals Connector (OSTI)

Magnetism in Nanocrystalline Gold ... Bridging the current gap in experimental study of magnetism in bare gold nanomaterials, we report here on magnetism in gold nanocrystalline films produced by cluster deposition in the aggregate form that can be considered as a crossover state between a nanocluster and a continuous film. ... gold; nanocrystalline film; magnetism; cluster deposition; SQUID magnetometry ...

Vladimir Tuboltsev; Alexander Savin; Alexandre Pirojenko; Jyrki Risnen

2013-07-07T23:59:59.000Z

484

Magnetism of spiral galaxies  

Science Journals Connector (OSTI)

... magnetic fields of spiral galaxies has taken a special place in the study of cosmic magnetism, but magnetic fields are a universal property of all galactic-type objects, as is ... . The past ten years have been notable for rapid, qualitative progress in understanding the magnetism of spiral galaxies, a result of both theoretical and observational developments. A few decades ...

Alexander Ruzmaikin; Dmitry Sokoloff; Anvar Shukurov

1988-11-24T23:59:59.000Z

485

Magnetism in microquasars  

Science Journals Connector (OSTI)

...Lynden-Bell, E. R. Priest and N. O. Weiss Magnetism in microquasars I. F. Mirabel Centre...binaries|magnetic field|plasma physics| Magnetism in microquasars By I. F. Mirabel Centre...Trans. R. Soc. Lond. A (2000) Magnetism in microquasars 843 At rst glance it...

2000-01-01T23:59:59.000Z

486

Early History of Magnetism  

Science Journals Connector (OSTI)

... 2, Dr. J. B. Kramer read a paper on The Early History of Magnetism, in which he discussed the various accounts of the first discovery of a magnet ... accounts of the first discovery of a magnet, and the development of the science of magnetism down to A.D. 1600. His remarks were divided into five sections, the ...

1932-03-19T23:59:59.000Z

487

Intermediate wavelength magnetic anomalies over ocean basins  

SciTech Connect (OSTI)

We have examined three very long magnetic field profiles taken over ocean basins for the presence of intermediate wavelength magnetic anomalies. One profile was from the Atlantic Ocean in the Transatlantic Geotraverse area, one ran along latitude 35/sup 0/S in the SE Pacific, and one ran along 150/sup 0/W in the Pacific. All three profiles show the presence of intermediate wavelength (65--1500 km) magnetic anomalies generated in the crust or upper mantle. The analysis of magnetic field power spectra shows that the core field becomes unimportant at about a wavelength of 1500 km. Sea floor spreading anomalies should produce a maximum in power at about a wavelength of 65 km. Between these two wavelengths there should be a minimum in power which is not seen on observed records. Inverting the anomalous field to obtain some idea of the magnetization necessary to explain these intermediate wavelength magnetic anomalies shows that values of magnetization in excess of 1 A m/sup -1/ are needed if the magnetized layer is as thick as the ocean crust. Alternatively, rather large thicknesses of upper mantle material with lower intensities of magnetization need to be used. The reason why such magnetization variations exist is not known. It can be shown that upward continuation of the magnetic anomaly signature to an altitude of 350 km (about the perihelion altitude of MAGSAT) will produce anomalies up to 10 nT in amplitude. These should be capable of being seen by MAGSAT, and thus allow us to determine the spatial arrangement of the intermediate wavelength anomalies and hence, hopefully, a clue as to their origin.

Harrison, C.G.A.; Carle, H.M.

1981-12-10T23:59:59.000Z

488

Dynamic flying characteristics of an air bearing slider over a disk with grooves and distribution of material properties  

Science Journals Connector (OSTI)

Bit-patterned media (BPM) consisting of land parts for read/writing and grooves, which are almost filled with non-magnetic materials to prevent magnetic interference between recording bits, are considered to be p...

Shigehisa Fukui; Atsusi Oono; Hiroshige Matsuoka

2013-09-01T23:59:59.000Z

489

Interface structures in FePtFe3Pt hard-soft exchange-coupled magnetic nanocomposites  

E-Print Network [OSTI]

Interface structures in FePt?Fe3Pt hard-soft exchange-coupled magnetic nanocomposites Jing Li with sizes 10 nm. This ensures the effective exchange coupling of magnetically hard and soft phases. High magnetic materials, the performance of conventional bulk permanent magnetic ma- terials is limited by its

Liu, J. Ping

490

Modeling bubbles and droplets in magnetic fluids Mark S. Korlie, Arup Mukherjee, Bogdan G. Nita, John G.  

E-Print Network [OSTI]

and linear magnetic material are assumed and uniform imposed magnetic fields are considered, although of vertical fields, due to a combination of elongation along the field lines and the fluid dynamics. In both cases, #12;Modeling bubbles and droplets in magnetic fluids 2 an imposed magnetic field, even

Yecko, Philip

491

Questions and Answers - Why is a non-permanent, but long lasting, magnet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Which jobs use electromagnets? Which jobs use electromagnets? Previous Question (Which jobs use electromagnets?) Questions and Answers Main Index Next Question (Can you turn something into a magnet by banging on it in a specific way?) Can you turn something into a magnetby banging on it in a specific way? Why is a non-permanent, but long lasting, magnet called a permanent magnet? Permanent magnets are magnets that you don't have to use energy to make them magnetic. Some types of permanent magnets, relative to the length of lives of humans, are pretty close to permanent. They decay slowly, but they do decay. When most of the magnetic domains in a material align in one direction you can call that a magnet. It helps if you can imagine a magnet as being made up of a bunch of little magnets. Each one has tiny North and

492

Method for forming materials  

DOE Patents [OSTI]

A material-forming tool and a method for forming a material are described including a shank portion; a shoulder portion that releasably engages the shank portion; a pin that releasably engages the shoulder portion, wherein the pin defines a passageway; and a source of a material coupled in material flowing relation relative to the pin and wherein the material-forming tool is utilized in methodology that includes providing a first material; providing a second material, and placing the second material into contact with the first material; and locally plastically deforming the first material with the material-forming tool so as mix the first material and second material together to form a resulting material having characteristics different from the respective first and second materials.

Tolle, Charles R. (Idaho Falls, ID); Clark, Denis E. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID); Miller, Karen S. (Idaho Falls, ID)

2009-10-06T23:59:59.000Z

493

Method to manufacture bit patterned magnetic recording media  

DOE Patents [OSTI]

A method to increase the storage density on magnetic recording media by physically separating the individual bits from each other with a non-magnetic medium (so-called bit patterned media). This allows the bits to be closely packed together without creating magnetic "cross-talk" between adjacent bits. In one embodiment, ferromagnetic particles are submerged in a resin solution, contained in a reservoir. The bottom of the reservoir is made of piezoelectric material.

Raeymaekers, Bart; Sinha, Dipen N

2014-05-13T23:59:59.000Z

494

Spin microscope based on optically detected magnetic resonance  

DOE Patents [OSTI]

The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

Berman, Gennady P. (Los Alamos, NM); Chernobrod, Boris M. (Los Alamos, NM)

2007-12-11T23:59:59.000Z

495

Spin microscope based on optically detected magnetic resonance  

DOE Patents [OSTI]

The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

Berman, Gennady P. (Los Alamos, NM); Chernobrod, Boris M. (Los Alamos, NM)

2010-06-29T23:59:59.000Z

496

Spin microscope based on optically detected magnetic resonance  

DOE Patents [OSTI]

The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of impaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

Berman, Gennady P. (Los Alamos, NM); Chernobrod, Boris M. (Los Alamos, NM)

2009-11-10T23:59:59.000Z

497

Spin microscope based on optically detected magnetic resonance  

DOE Patents [OSTI]

The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

Berman, Gennady P. (Los Alamos, NM); Chernobrod, Boris M. (Los Alamos, NM)

2009-10-27T23:59:59.000Z

498

Wafer-Scale Synthesis of Monodisperse Synthetic Magnetic Multilayer Nanorods  

Science Journals Connector (OSTI)

Wafer-Scale Synthesis of Monodisperse Synthetic Magnetic Multilayer Nanorods ... Department of Materials Science and Engineering, Department of Mechanical Engineering, and Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States ...

Mingliang Zhang; Daniel J. B. Bechstein; Robert J. Wilson; Shan X. Wang

2013-12-12T23:59:59.000Z

499

Solar nebula magnetic fields recorded in the Semarkona meteorite  

E-Print Network [OSTI]

Magnetic fields are proposed to have played a critical role in some of the most enigmatic processes of planetary formation by mediating the rapid accretion of disk material onto the central star and the formation of the ...

Fu, Roger Rennan

500

Thin magnetic crystals are path to ferromagnetic graphene | ornl...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Functional Materials for Energy Thin magnetic crystals are path to ferromagnetic graphene January 23, 2015 The crystal structure of CrI3 includes hexagonal nets formed by Cr atoms...