Powered by Deep Web Technologies
Note: This page contains sample records for the topic "disciplines chemical dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Excursions in Chemical Dynamics  

E-Print Network (OSTI)

2009). [118] F. A. Cotton, Chemical Applications of GroupExcursions in Chemical Dynamics by Shervin Fatehi AFall 2010 Excursions in Chemical Dynamics Copyright 2010 by

Fatehi, Shervin

2010-01-01T23:59:59.000Z

2

Chemical Structure and Dynamics  

NLE Websites -- All DOE Office Websites (Extended Search)

2154-3 2154-3 UC-400 Annual Report 2000 Chemical Structure and Dynamics Steven D. Colson, Associate Director Robin S. McDowell, Program Manager and the Staff of the Chemical Structure and Dynamics Program April 2001 Prepared for the U.S. Department of Energy under Contract DE-AC06-76RL01830 Chemical Structure and Dynamics 2000 Annual Report Contents Chemical Structure and Dynamics 2000 Annual Report Chemical Structure and Dynamics 2000 Annual Report 1. Introduction Chemical Structure and Dynamics Program......................................................... 1-3 2. Reaction Mechanisms at Liquid Interfaces Structure and Reactivity of Ice Surfaces and Interfaces G. A. Kimmel, Z. Dohnálek, K. P. Stevenson, R. S. Smith,

3

Surface Chemical Dynamics  

NLE Websites -- All DOE Office Websites (Extended Search)

Surface Chemical Dynamics Surface Chemical Dynamics The goal of the Surface Chemical Dynamics Program is to elucidate the underlying physical processes that determine the products (selectivity) and yield (efficiency) of chemical transformations relevant to energy-related chemistry on catalytic and nanostructured surfaces. Achieving this end requires understanding the evolution of the reactant-molecule/surface complex as molecules adsorb, bonds dissociate, surface species diffuse, new bonds form and products desorb. The pathways and time scales of these processes are ultimately determined by a multidimensional potential energy surface that is a function of the geometric and electronic structures of the surface and the reactant, product, intermediate and transition-state molecular and atomic species.

4

Chemical Dynamics, Molecular Energetics, and Kinetics at the Synchrotron  

E-Print Network (OSTI)

novel measurements of chemical dynamics for clusters, Chemical Dynamics, Molecular Energetics, and Kinetics at theUniversity of California Chemical Sciences Division,

Leone, Stephen R.

2010-01-01T23:59:59.000Z

5

Dynamic Reduction of a CH4/Air Chemical Mechanism Appropriate...  

NLE Websites -- All DOE Office Websites (Extended Search)

Dynamic Reduction of a CH4Air Chemical Mechanism Appropriate for Investigating Vortex Flame Interactions Title Dynamic Reduction of a CH4Air Chemical Mechanism Appropriate for...

6

Chemical mechanical planarization operation via dynamic programming  

Science Conference Proceedings (OSTI)

In this paper, the impact on non-planarization index by the down force and rotational speed during a SiO"2 or Cu CMP process was investigated. Since the magnitudes of down force and rotational speed have limits, we choose the dynamic programming approach ... Keywords: Chemical mechanical planarization, Copper dishing, Dynamic programming, Non-planarization index, Oxide erosion

Chia-Shui Lin; Yung-Chou Lee

2007-12-01T23:59:59.000Z

7

Annual Report 2000. Chemical Structure and Dynamics  

Science Conference Proceedings (OSTI)

This annual report describes the research and accomplishments of the Chemical Structure and Dynamics Program in the year 2000, one of six research programs at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) - a multidisciplinary, national scientific user facility and research organization. The Chemical Structure and Dynamics (CS&D) program is meeting the need for a fundamental, molecular-level understanding by 1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; 2) developing a multidisciplinary capability for describing interfacial chemical processes relevant to environmental chemistry; and 3) developing state-of-the-art research and analytical methods for characterizing complex materials of the types found in natural and contaminated systems.

Colson, Steven D.; McDowell, Robin S.

2001-04-15T23:59:59.000Z

8

Chemical Structure and Dynamics annual report 1997  

SciTech Connect

The Chemical Structure and Dynamics (CS and D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. The authors respond to the need for a fundamental, molecular level understanding of chemistry at a wide variety of environmentally important interfaces by: (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing complex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. The focus of the research is defined primarily by DOE`s environmental problems: fate and transport of contaminants in the subsurface environment, processing and storage of waste materials, cellular effects of chemical and radiological insult, and atmospheric chemistry as it relates to air quality and global change. Twenty-seven projects are described under the following topical sections: Reaction mechanisms at interfaces; High-energy processes at environmental interfaces; Cluster models of the condensed phase; and Miscellaneous.

Colson, S.D.; McDowell, R.S.

1998-03-01T23:59:59.000Z

9

Dynamical and chemical evolution of NGC1569  

E-Print Network (OSTI)

Blue Compact Dwarf and Dwarf Irregular galaxies are generally believed to be unevolved objects, due to their blue colors, compact appearance and large gas fractions. Many of these objects show an ongoing intense burst of star formation or have experienced it in the recent past. By means of 2-D hydrodynamical simulations, coupled with detailed chemical yields originating from SNeII, SNeIa, and intermediate-mass stars, we study the dynamical and chemical evolution of model galaxies with structural parameters similar to NGC1569, a prototypical starburst galaxy. A burst of star formation with short duration is not able to account for the chemical and morphological properties of this galaxy. The best way to reproduce the chemical composition of this object is by assuming long-lasting episodes of star formation and a more recent burst, separated from the previous episodes by a short quiescent period. The last burst of star formation, in most of the explored cases, does not affect the chemical composition of the galaxy, since the enriched gas produced by young stars is in a too hot phase to be detectable with the optical spectroscopy. Models assuming the infall of a big cloud towards the center of the galaxy reproduce the chemical composition of the NGC1569, but the pressure exercised by the cloud hampers the expansion of the galactic wind, at variance with what observed in NGC1569.

S. Recchi; G. Hensler; L. Angeretti; F. Matteucci

2005-09-14T23:59:59.000Z

10

Chemical structure and dynamics. Annual report 1994  

SciTech Connect

The Chemical Structure and Dynamics program was organized as a major component of Pacific Northwest Laboratory`s Environmental and Molecular Sciences Laboratory (EMSL), a state-of-the-art collaborative facility for studies of chemical structure and dynamics. Our program responds to the need for a fundamental, molecular-level understanding of chemistry at the wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces, and (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage. This research effort was initiated in 1989 and will continue to evolve over the next few years into a program of rigorous studies of fundamental molecular processes in model systems, such as well-characterized surfaces, single-component solutions, clusters, and biological molecules; and studies of complex systems found in the environment (multispecies, multiphase solutions; solid/liquid, liquid/liquid, and gas/surface interfaces; colloidal dispersions; ultrafine aerosols; and functioning biological systems). The success of this program will result in the achievement of a quantitative understanding of chemical reactions at interfaces, and more generally in condensed media, that is comparable to that currently available for gas-phase reactions. This understanding will form the basis for the development of a priori theories for predictions of macroscopic chemical behavior in condensed and heterogeneous media, adding significantly to the value of field-scale environmental models, the prediction of short- and long-term nuclear waste storage stabilities, and other problems related to the primary missions of the DOE.

Colson, S.D.

1995-07-01T23:59:59.000Z

11

Annual Report 1998: Chemical Structure and Dynamics  

SciTech Connect

The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Labo- ratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of- the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interracial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in envi- ronmental chemistry and in nuclear waste proc- essing and storage; and (3) developing state-of- the-art analytical methods for characterizing com- plex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. Our program aims at achieving a quantitative understanding of chemical reactions at interfaces and, more generally, in condensed media, compa- rable to that currently available for gas-phase reactions. This understanding will form the basis for the development of a priori theories for pre- dicting macroscopic chemical behavior in con- densed and heterogeneous media, which will add significantly to the value of field-scale envi- ronmental models, predictions of short- and long- term nuclear waste storage stabilities, and other areas related to the primary missions of the U.S. Department of Energy (DOE).

SD Colson; RS McDowell

1999-05-10T23:59:59.000Z

12

A Decentralized Dynamic Sensor Activation Protocol for Chemical Sensor Networks  

Science Conference Proceedings (OSTI)

Due to the significant amount of energy consumed by chemical sensors for sensing, reducing sensing activity is critical for improving the lifespan of chemical sensor networks. In this paper, we consider a simple decentralized dynamic sensor activation ...

Shanika Karunasekera; Champake Mendis; Alex Skvortsov; Ajith Gunatilaka

2010-07-01T23:59:59.000Z

13

I12: Quantum Chemical Molecular Dynamics Simulations on ...  

Science Conference Proceedings (OSTI)

To achieve the fabrication with less defects, the dynamic behaviors of ions and radicals with chemical reactions should be clarified. Then, we investigate the ...

14

Chemical Dynamics, Molecular Energetics, and Kinetics at the Synchrotron  

SciTech Connect

Scientists at the Chemical Dynamics Beamline of the Advanced Light Source in Berkeley are continuously reinventing synchrotron investigations of physical chemistry and chemical physics with vacuum ultraviolet light. One of the unique aspects of a synchrotron for chemical physics research is the widely tunable vacuum ultraviolet light that permits threshold ionization of large molecules with minimal fragmentation. This provides novel opportunities to assess molecular energetics and reaction mechanisms, even beyond simple gas phase molecules. In this perspective, significant new directions utilizing the capabilities at the Chemical Dynamics Beamline are presented, along with an outlook for future synchrotron and free electron laser science in chemical dynamics. Among the established and emerging fields of investigations are cluster and biological molecule spectroscopy and structure, combustion flame chemistry mechanisms, radical kinetics and product isomer dynamics, aerosol heterogeneous chemistry, planetary and interstellar chemistry, and secondary neutral ion-beam desorption imaging of biological matter and materials chemistry.

Leone, Stephen R.; Ahmed, Musahid; Wilson, Kevin R.

2010-03-14T23:59:59.000Z

15

Dynamics of nucleation in chemical vapor deposition  

Science Conference Proceedings (OSTI)

We study the evolution of layer morphology during the early stages of metal chemical vapor deposition (CVD) onto Si(100) via pyrolysis of Fe(CO){sub 5} below 250{degrees}C. Scanning tunneling microscopy (STM) shows that nuclei formation is limited by precursor dissociation which occurs on terraces, not at step sites. Also, the average size of clusters formed during CVD is larger than for Fe growth by evaporation (a random deposition process). Based on STM data and Monte Carlo simulations, we conclude that the CVD-growth morphology is affected by preferential dissociation of Fe(CO){sub 5} molecules at existing Fe clusters -- an autocatalytic effect. We demonstrate that nucleation kinetics can be used to control formation of metal nanostructures on chemically tailored surfaces. Reactive sites on Si (001) are first passivated by hydrogen. H atoms are locally removed by electron stimulated desorption using electrons emitted from the STM tip. Subsequent pyrolysis of Fe(CO){sub 5} leads to selective nucleation and growth of Fe films in the areas where H has been removed.

Mayer, T.M.; Adams, D.P.; Swartzentruber, B.S.; Chason, E.

1995-11-01T23:59:59.000Z

16

Simulation of chemical reaction dynamics on an NMR quantum computer  

E-Print Network (OSTI)

Quantum simulation can beat current classical computers with minimally a few tens of qubits and will likely become the first practical use of a quantum computer. One promising application of quantum simulation is to attack challenging quantum chemistry problems. Here we report an experimental demonstration that a small nuclear-magnetic-resonance (NMR) quantum computer is already able to simulate the dynamics of a prototype chemical reaction. The experimental results agree well with classical simulations. We conclude that the quantum simulation of chemical reaction dynamics not computable on current classical computers is feasible in the near future.

Dawei Lu; Nanyang Xu; Ruixue Xu; Hongwei Chen; Jiangbin Gong; Xinhua Peng; Jiangfeng Du

2011-05-21T23:59:59.000Z

17

Gas-Phase Molecular Dynamics: Theoretical Studies In Spectroscopy and Chemical Dynamics  

Science Conference Proceedings (OSTI)

The main goal of this program is the development and application of computational methods for studying chemical reaction dynamics and molecular spectroscopy in the gas phase. We are interested in developing rigorous quantum dynamics algorithms for small polyatomic systems and in implementing approximate approaches for complex ones. Particular focus is on the dynamics and kinetics of chemical reactions and on the rovibrational spectra of species involved in combustion processes. This research also explores the potential energy surfaces of these systems of interest using state-of-the-art quantum chemistry methods, and extends them to understand some important properties of materials in condensed phases and interstellar medium as well as in combustion environments.

Yu H. G.; Muckerman, J.T.

2012-05-29T23:59:59.000Z

18

Gas-Phase Molecular Dynamics: Theoretical Studies in Spectroscopy and Chemical Dynamics  

SciTech Connect

The goal of this program is the development and application of computational methods for studying chemical reaction dynamics and molecular spectroscopy in the gas phase. We are interested in developing rigorous quantum dynamics algorithms for small polyatomic systems and in implementing approximate approaches for complex ones. Particular focus is on the dynamics and kinetics of chemical reactions and on the rovibrational spectra of species involved in combustion processes. This research also explores the potential energy surfaces of these systems of interest using state-of-the-art quantum chemistry methods.

Yu, H.G.; Muckerman, J.T.

2010-06-01T23:59:59.000Z

19

Quantum measurement corrections to chemically induced dynamic nuclear polarization  

E-Print Network (OSTI)

Chemically induced dynamic nuclear polarization has emerged as a universal signature of spin order in photosynthetic reaction centers. Such polarization, significantly enhanced above thermal equilibrium, is known to result from the nuclear spin sorting inherent in the radical pair mechanism underlying long-lived charge-separated states in photosynthetic reaction centers. We will here show that the recently understood fundamental quantum dynamics of radical-ion-pair reactions open up a new and completely unexpected venue towards obtaining CIDNP signals. The fundamental decoherence mechanism inherent in the recombination process of radical pairs is shown to produce nuclear spin polarizations on the order of $10^4$ times or more higher than thermal equilibrium values at low fields relevant to natural photosynthesis in earth's magnetic field. This opens up the possibility of a fundamentally new exploration of the biological significance of high nuclear polarizations in photosynthesis.

Kominis, I K

2013-01-01T23:59:59.000Z

20

NREL: Research Participant Program - Research and Deployment Disciplines  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Deployment Disciplines Research and Deployment Disciplines Participants in NREL programs are able to study a variety of disciplines within the Lab's research centers: National Bioenergy Center Biochemical engineering, microbiology, molecular biology, chemistry, and chemical engineering related to biomass and derived products. Energy Sciences Bioscience, chemical and materials science, computational science, physics, chemistry, and biological sciences. Electricity, Resources, and Building Systems Integration Physics, mechanical engineering (heat transfer emphasis), and architectural engineering. Hydrogen and Fuel Cells Research Hydrogen technologies and analysis. Materials and Computational Sciences Center Physics, materials science, chemistry, electrical engineering, and basic and applied research using high-performance computing and applied

Note: This page contains sample records for the topic "disciplines chemical dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Chemical and Dynamical Characteristics of Stratosphere-Troposphere Exchange  

E-Print Network (OSTI)

Stratosphere-troposphere exchange processes are responsible for controlling the distribution of chemically and radiatively important trace gases in the upper troposphere and lower stratosphere. Extensive characterization of exchange processes is critical to the development of our understanding and prediction of the climate system. This study examines the occurrence and dynamical and chemical characteristics related to two primary stratosphere-troposphere exchange processes: Rossby wavebreaking and moist convection. Intrusions of air from the tropical upper troposphere into the extratropical stratosphere above the subtropical jet via Rossby wavebreaking potentially have a significant impact on the composition of the lowermost stratosphere (the stratospheric part of the "middleworld"). We first present an analysis of tropospheric intrusion events observed in aircraft observations using kinematic and chemical diagnostics. The transport processes operating during each event are discussed using high-resolution model analyses and backward trajectory calculations. In situ chemical observations of the tropospheric intrusions are used to estimate the mixing timescales of the observed intrusions through use of a simple box model and trace species with different photo-chemical lifetimes. We estimate that the timescale for an intrusion to mix with the background stratospheric air is 5 to 6 days. Detailed analysis of small-scale features with tropospheric characteristics observed in the stratosphere suggests frequent irreversible transport associated with tropospheric intrusions. We also present a 30-year climatology (1981-2010) of anticyclonically and cyclonically sheared Rossby wave-breaking events along the boundary of the tropics in the 350-500 K potential temperature range from ECMWF ERA-Interim reanalyses. Lagrangian transport analyses show poleward transport at altitudes below and above the 370-390 K layer. Poleward transport at lower levels is in disagreement with previous studies and is shown to be largely dependent on the choice of tropical boundary. In addition, transport analyses reveal three modes of transport for anticyclonic wavebreaking events near the tropical tropopause (380 K): poleward, equatorward, and bidirectional. These transport modes are associated with distinct characteristics in the geometry of the mean flow. Stratospheric intrusions (tropopause folds) are known to be major contributors to stratosphere-troposphere exchange. The specific mixing processes that lead to irreversible exchange between stratospheric intrusions and the surrounding troposphere, however, are not entirely understood. This study presents direct observations of moist convection penetrating into stratospheric intrusions. The characteristics of convective injection are shown by using in situ aircraft measurements, radar reflectivities, and model analyses. Convective injection is observed at altitudes up to 5 km above the bottom of a stratospheric intrusion. Aircraft measurements show that convective injection in stratospheric intrusions can be uniquely identified by coincident observations of water vapor greater than about 100 ppmv and ozone greater than about 125 ppbv. Trajectory analyses show that convective injection can impact transport in both directions: from troposphere to stratosphere and from stratosphere to troposphere. We present a conceptual model of the synoptic meteorological conditions conducive to convective injection in stratospheric intrusions. In particular, convective injection is found to be associated with a "split front" where the upper-level frontal boundary outruns the surface cold front.

Homeyer, Cameron Ross

2012-08-01T23:59:59.000Z

22

Crossed molecular beam studies of atmospheric chemical reaction dynamics  

SciTech Connect

The dynamics of several elementary chemical reactions that are important in atmospheric chemistry are investigated. The reactive scattering of ground state chlorine or bromine atoms with ozone molecules and ground state chlorine atoms with nitrogen dioxide molecules is studied using a crossed molecular beams apparatus with a rotatable mass spectrometer detector. The Cl + O{sub 3} {yields} ClO + O{sub 2} reaction has been studied at four collision energies ranging from 6 kcal/mole to 32 kcal/mole. The derived product center-of-mass angular and translational energy distributions show that the reaction has a direct reaction mechanism and that there is a strong repulsion on the exit channel. The ClO product is sideways and forward scattered with respect to the Cl atom, and the translational energy release is large. The Cl atom is most likely to attack the terminal oxygen atom of the ozone molecule. The Br + O{sub 3} {yields} ClO + O{sub 2} reaction has been studied at five collision energies ranging from 5 kcal/mole to 26 kcal/mole. The derived product center-of-mass angular and translational energy distributions are quite similar to those in the Cl + O{sub 3} reaction. The Br + O{sub 3} reaction has a direct reaction mechanism similar to that of the Cl + O{sub 3} reaction. The electronic structure of the ozone molecule seems to play the central role in determining the reaction mechanism in atomic radical reactions with the ozone molecule. The Cl + NO{sub 2} {yields} ClO + NO reaction has been studied at three collision energies ranging from 10.6 kcal/mole to 22.4 kcal/mole. The center-of-mass angular distribution has some forward-backward symmetry, and the product translational energy release is quite large. The reaction proceeds through a short-lived complex whose lifetime is less than one rotational period. The experimental results seem to show that the Cl atom mainly attacks the oxygen atom instead of the nitrogen atom of the NO{sub 2} molecule.

Zhang, Jingsong

1993-04-01T23:59:59.000Z

23

Dynamical stabilization of an unstable equilibrium in chemical and biological systems  

Science Conference Proceedings (OSTI)

The dynamics of two-component diffusion-reaction systems is considered. Using well-known models from population dynamics and chemical physics, it is shown that for certain parameter values the systems exhibit a rather unusual behaviour: a locally unstable ... Keywords: Gray-Scott model, Predator-prey model, Reaction-diffusion systems, Wave propagation

H. Malchow; S. V. Petrovskii

2002-08-01T23:59:59.000Z

24

Crossed Molecular Beam Studies and Dynamics of Decomposition of Chemically Activated Radicals  

DOE R&D Accomplishments (OSTI)

The power of the crossed molecular beams method in the investigation of the dynamics of chemical reactions lies mainly in the direct observation of the consequences of single collisions of well controlled reactant molecules. The primary experimental observations which provide information on reaction dynamics are the measurements of angular and velocity distributions of reaction products.

Lee, Y. T.

1973-09-00T23:59:59.000Z

25

Agent-based chemical plume tracing using fluid dynamics  

Science Conference Proceedings (OSTI)

This paper presents a rigorous evaluation of a novel, distributed chemical plume tracing algorithm. The algorithm is a combination of the best aspects of the two most popular predecessors for this task. Furthermore, it is based on solid, formal principles ...

Dimitri Zarzhitsky; Diana Spears; David Thayer; William Spears

2004-04-01T23:59:59.000Z

26

Towards slime mould chemical sensor: Mapping chemical inputs onto electrical potential dynamics of Physarum Polycephalum  

E-Print Network (OSTI)

We experimentally derived a unique one-to-one mapping between a range of selected bioactive chemicals and patterns of oscillations of the slime mould's extacellular electrical potential.

Whiting, James G H; Adamatzky, Andrew

2013-01-01T23:59:59.000Z

27

Discipline  

Science Conference Proceedings (OSTI)

... In this way, a positive model is provided for ... Protect the rights of the child and others ... aggressive behavior, such as walking away, ignoring, working ...

2012-07-10T23:59:59.000Z

28

Dynamics of Chemical Equilibrium of Hadronic Matter Close to $T_c$  

E-Print Network (OSTI)

Quick chemical equilibration times of hadrons (specifically, $p\\bar{p}$, $K\\bar{K}$, $\\Lambda\\bar{\\Lambda}$, and $\\Omega\\bar{\\Omega}$ pairs) within a hadron gas are explained dynamically using Hagedorn states, which drive particles into equilibrium close to the critical temperature. Within this scheme, we use master equations and derive various analytical estimates for the chemical equilibration times. We compare our model to recent lattice results and find that for both $T_c=176$ MeV and $T_c=196$ MeV, the hadrons can reach chemical equilibrium almost immediately, well before the chemical freeze-out temperatures found in thermal fits for a hadron gas without Hagedorn states. Furthermore the ratios $p/\\pi$, $K/\\pi$, $\\Lambda/\\pi$, and $\\Omega / \\pi $ match experimental values well in our dynamical scenario.

J. Noronha-Hostler; M. Beitel; C. Greiner; I. Shovkovy

2009-09-16T23:59:59.000Z

29

Theoretical Chemical Dynamics Studies of Elementary Combustion Reactions  

SciTech Connect

The objective of this research was to develop and apply methods for more accurate predictions of reaction rates based on high-level quantum chemistry. We have developed and applied efficient, robust methods for fitting global ab initio potential energy surfaces (PESs) for both spectroscopy and dynamics calculations and for performing direct dynamics simulations. Our approach addresses the problem that high-level quantum calculations are often too costly in computer time for practical applications resulting in the use of levels of theory that are often inadequate for reactions. A critical objective was to develop practical methods that require the minimum number of electronic structure calculations for acceptable fidelity to the ab initio PES. Our method does this by a procedure that determines the optimal configurations at which ab initio points are computed, and that ensures that the final fitted PES is uniformly accurate to a prescribed tolerance. Our fitting methods can be done automatically, with little or no human intervention, and with no prior knowledge of the topology of the PES. The methods are based on local fitting schemes using interpolating moving least-squares (IMLS). IMLS has advantages over the very effective modified-Shepard methods developed by Collins and others in that higher-order polynomials can be used and does not require derivatives but can benefit from them if available.

Donald L. Thompson

2009-09-30T23:59:59.000Z

30

Extending the boundaries of the usage of NMR chemical shifts in deciphering biomolecular structure and dynamics  

E-Print Network (OSTI)

Extending the Boundaries of the Usage of NMR Chemical Shifts in Deciphering Biomolecular Structure and Dynamics Aleksandr B. Sahakyan A thesis submitted for the degree of Doctor of Philosophy Department of Chemistry University of Cambridge Darwin 9... ? and ? dihedral angles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3 The gas-phase optimised structures of the selected representative conformations of Ace-Ala-Nme with the fixed ? and ? angles and the corresponding secondary...

Sahakyan, Aleksandr B.

2012-07-03T23:59:59.000Z

31

NERSC HPSS Storage by Scientific Discipline  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage by Scientific Discipline Troubleshooting Optimizing IO performance on the Lustre file system IO Formats Science Databases Sharing Data Transferring Data Unix Groups at...

32

Discipline Policies, Successful Schools, and Racial Justice  

E-Print Network (OSTI)

January). How can we improve school discipline? Educationaldisproportionality in school punishment. Urban Review, 34,Eds. ). Preventing School Violence, in Zero Tolerance:

Losen, Daniel

2011-01-01T23:59:59.000Z

33

Disciplines | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

to NIST standards in these 29 measurement disciplines. Dimensional Angular: Angle Blocks, Optical Polygons, Rotary and Indexing Tables, Optical Wedges, Autocollimators...

34

Open Chemical Systems Theory and Its Implications to Darwinian Evolutionary Dynamics, Complex Self-Organization and Beyond  

E-Print Network (OSTI)

The study of biological cells as a nonequilibrium, nonlinear, stochastic open chemical systems provides a paradigm for other complex, self-organizing systems with short-time deterministic and long-time evolutionary dynamics.

Qian, Hong

2012-01-01T23:59:59.000Z

35

Heavy Tails: Performance Models and Scheduling Disciplines  

E-Print Network (OSTI)

Heavy Tails: Performance Models and Scheduling Disciplines Sindo N´u~nez-Queija based on joint ITC´u~nez-Queija CWI & TU/e #12;Heavy Tails: Performance Models and Scheduling Disciplines Part I ­ Introduction and Methodology Tales to tell: · traffic measurements and statistical analysis · traffic modeling · heavy

Núñez-Queija, Rudesindo

36

PhD Chemical Engineering MS Chemical Engineering  

E-Print Network (OSTI)

1 PhD Chemical Engineering MS Chemical Engineering Bylaws Gene and Linda Voiland School of ChemicalD Chemical Engineering, MS Chemical Engineering B. Discipline: Edgar, et al.1 provide a succinct description of chemical engineering: "chemical engineers seek to understand, manipulate, and control the molecular basis

Collins, Gary S.

37

Hydrodynamic slip boundary condition at chemically patterned surfaces: A continuum deduction from molecular dynamics  

E-Print Network (OSTI)

We investigate the slip boundary condition for single-phase flow past a chemically patterned surface. Molecular dynamics (MD) simulations show that modulation of fluid-solid interaction along a chemically patterned surface induces a lateral structure in the fluid molecular organization near the surface. Consequently, various forces and stresses in the fluid vary along the patterned surface. Given the presence of these lateral variations, a general scheme is developed to extract hydrodynamic information from MD data. With the help of this scheme, the validity of the Navier slip boundary condition is verified for the chemically patterned surface, where a local slip length can be defined. Based on the MD results, a continuum hydrodynamic model is formulated using the Navier-Stokes equation and the Navier boundary condition, with a slip length varying along the patterned surface. Steady-state velocity fields from continuum calculations are in quantitative agreement with those from MD simulations. It is shown that, when the pattern period is sufficiently small, the solid surface appears to be homogeneous, with an effective slip length that can be controlled by surface patterning. Such a tunable slip length may have important applications in nanofluidics.

Tiezheng Qian; Xiao-Ping Wang; Ping Sheng

2005-02-26T23:59:59.000Z

38

Models of Chemical Structure and Dynamics via Nuclear Magnetic Resonance and Ab Initio Computational Chemistry  

E-Print Network (OSTI)

Resolution NMR Theory and Chemical Application ; 3rd ed. ,Methods. In Encyclopedia of Chemical Physics and PhysicalGROUPS ON THE PHYSICAL AND CHEMICAL BEHAVIOR OF CINCHONA

Lai, Jinfeng

2009-01-01T23:59:59.000Z

39

and Chemical Engineering  

E-Print Network (OSTI)

Biological and Chemical Engineering Building #12;2 Biological and Chemical Engineering Building sta is constructing a new building that will house the Department of Chemical Engineering and the Department and Chemical Engineering Building will provide critically needed space for innovators in multiple disciplines

Prinz, Friedrich B.

40

Dynamics  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydration Hydration Water on Rutile Studied by Backscattering Neutron Spectroscopy and Molecular Dynamics Simulation E. Mamontov,* ,† D. J. Wesolowski, ‡ L. Vlcek, § P. T. Cummings, §,| J. Rosenqvist, ‡ W. Wang, ⊥ and D. R. Cole ‡ Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6473, Chemical Sciences DiVision, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110, Department of Chemical Engineering, Vanderbilt UniVersity, NashVille, Tennessee 37235-1604, Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6496, and EnVironmental Sciences DiVision, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6036 ReceiVed: December 20, 2007; ReVised Manuscript ReceiVed: June 4, 2008 The high energy resolution, coupled with the wide dynamic range, of the new backscattering

Note: This page contains sample records for the topic "disciplines chemical dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Quantitative Determination of Chemical Processes by Dynamic Nuclear Polarization Enhanced Nuclear Magnetic Resonance Spectroscopy  

E-Print Network (OSTI)

Dissolution dynamic nuclear polarization (DNP) provides several orders of magnitude of NMR signal enhancement by converting the much larger electron spin polarization to nuclear spin polarization. Polarization occurs at low temperature (1.4K) and is followed by quickly dissolving the sample for room temperature NMR detection. DNP is generally applicable to almost any small molecules and can polarize various nuclei including 1H, 19F and 13C. The large signal from DNP enhancement reduces the limit of detection to micromolar or sub-micromolar concentration in a single scan. Since DNP enhancement often provides the only source for the observable signal, it enables tracking of the polarization flow. Therefore, DNP is ideal for studying chemical processes. Here, quantitative tools are developed to separate kinetics and spin relaxation, as well as to obtain structural information from these measurements. Techniques needed for analyzing DNP polarized sample are different from those used in conventional NMR because a large, yet non-renewable hyperpolarization is available. Using small flip angle pulse excitation, the hyperpolarization can still be divided into multiple scans. Based on this principle, a scheme is presented that allows reconstruction of indirect spectral dimensions similarly to conventional 2D NMR. Additionally, small flip angle pulses can be used to obtain a succession of scans separated in time. A model describing the combined effects of the evolution of a chemical process and of spin-lattice relaxation is shown. Applied to a Diels-Alder reaction, it permitted measuring kinetics along with the effects of auto- and cross-relaxation. DNP polarization of small molecules also shows significant promise for studying protein-ligand interaction. The binding of fluorinated ligands to the protease trypsin was studied through the observation of various NMR parameter changes, such as line width, signal intensity and chemical shift of the ligands. Intermolecular polarization transfer from hyperpolarized ligand to protein can further provide information about the binding pocket of the protein. As an alternative to direct observation of protein signal, a model is presented to describe a two-step intermolecular polarization transfer between competitively binding ligands mediated through the common binding pocket of the protein. The solutions of this model relate the evolution of signal intensities to the intermolecular cross relaxation rates, which depend on individual distances in the binding epitope. In summary, DNP provides incomparable sensitivity, speed and selectivity to NMR. Quantitative models such as those discussed here enable taking full advantage of these benefits for the study of chemical processes.

Zeng, Haifeng

2012-05-01T23:59:59.000Z

42

The type discipline of behavioral separation  

Science Conference Proceedings (OSTI)

We introduce the concept of behavioral separation as a general principle for disciplining interference in higher-order imperative concurrent programs, and present a type-based approach that systematically develops the concept in the context of an ML-like ... Keywords: behavioral types, concurrency, higher order programming, interference, separation

Luís Caires; Joăo C. Seco

2013-01-01T23:59:59.000Z

43

Chemical Dynamics Beamline Publications 306. R. I. Kaiser, S. P. Krishtal, A. M. Mebel, O. Kostko, and M. Ahmed, "An Experimental and Theoretical  

E-Print Network (OSTI)

, "Chemical Sinks of Organic Aerosol: Kinetics and Products of the Heterogeneous Oxidation of Erythritol. R. Leone, M. Ahmed, K. R. Wilson, "Chemical Dynamics, Molecular Energetics, and Kinetics, J. Wang, B. Yang, N. Hansen, T. Kasper, "A Detailed Chemical Kinetic Mechanism for Oxidation of Four

44

Agility at scale: economic governance, measured improvement, and disciplined delivery  

Science Conference Proceedings (OSTI)

Agility without discipline cannot scale, and discipline without agility cannot compete. Agile methods are now mainstream. Software enterprises are adopting these practices in broad, comprehensive delivery contexts. There have been many successes, and ...

Alan W. Brown, Scott Ambler, Walker Royce

2013-05-01T23:59:59.000Z

45

Role and Discipline Relationships in a Transdisciplinary Biomedical Team: Structuration, Values Override and Context Scaffolding  

E-Print Network (OSTI)

Though accepted that "team science" is needed to tackle and conquer the health problems that are plaguing our society significant empirical evidence of team mechanisms and functional dynamics is still lacking in abundance. Through grounded methods the relationship between scientific disciplines and team roles was observed in a United States National Institutes of Health-funded (NIH) research consortium. Interviews and the Organizational Culture Assessment Instrument (OCAI) were employed.. Findings show strong role and discipline idiosyncrasies that when viewed separately provide different insights into team functioning and change receptivity. When considered simultaneously, value-latent characteristics emerged showing self-perceived contributions to the team. This micro/meso analysis suggests that individual participation in team level interactions can inform the structuration of roles and disciplines in an attempt to tackle macro level problems.

Lotrecchiano, Gaetano R

2013-01-01T23:59:59.000Z

46

The Dynamics of Fluid Flow and Associated Chemical Fluxes at Active Continental Margins  

E-Print Network (OSTI)

mixture of fluids introduced during drilling and in situdrilling and geologic setting……………………..13 1.4.2 The three fluidof drilling indicators (IR imagery and pore fluid chemical

Solomon, Evan A

2007-01-01T23:59:59.000Z

47

The Dynamics of fluid flow and associated chemical fluxes at active continental margins  

E-Print Network (OSTI)

mixture of fluids introduced during drilling and in situdrilling and geologic setting……………………..13 1.4.2 The three fluidof drilling indicators (IR imagery and pore fluid chemical

Solomon, Evan Alan

2007-01-01T23:59:59.000Z

48

Analysis of the chemical evolution of the Galactic disk via dynamical simulations of the open cluster system  

E-Print Network (OSTI)

For several decades now, open clusters have been used to study the structure and chemical evolution of the disk of our Galaxy. Due to the fact that their ages and metallicities can be determined with relatively good precision, and since they can be observed even at great distances, they are excellent tracers of the variations in the abundance of heavy chemical elements with age and position in the Galactic disk. In the present work we analyze the star formation history and the chemical evolution of the disk of the Galaxy using numerical simulations of the dynamical evolution of the system of open clusters in the Milky Way. Starting from hypotheses on the history of cluster formation and the chemical enrichment of the disk, we model the present properties of the Galactic open cluster system. The comparison of these models with the observations allows us to examine the validity of the assumed hypotheses and to improve our knowledge about the initial conditions of the chemical evolution of the Galactic disk.

T. E. Tecce; L. J. Pellizza; A. E. Piatti

2006-04-25T23:59:59.000Z

49

Development and application of chemical tools for investigating dynamic processes in cell migration  

E-Print Network (OSTI)

Cell migration is a dynamic process essential for many fundamental physiological functions, including wound repair and the immune response. Migration relies on precisely orchestrated events that are regulated in a spatially ...

Goguen, Brenda Nicole

2011-01-01T23:59:59.000Z

50

Bank Security Prices and Market Discipline  

E-Print Network (OSTI)

In recent years, policymakers and bank regulators have been warming up to the idea of leveraging market forces to enhance banking supervision.This is partly motivated by the growing complexity of large banking organizations and by concerns about limiting the cost of bank supervision as well as avoiding unduly extending the bank safety net (see Kwan 2002). In order for market discipline to work, the market prices of banking securities must contain accurate and timely information about bank risk. Researchers in banking have been studying this issue for quite some time.This Economic Letter reviews the empirical evidence on the informativeness of bank security prices, focusing on the two most obvious sources of market information—stock and

unknown authors

2002-01-01T23:59:59.000Z

51

A common-view disciplined oscillator  

SciTech Connect

This paper describes a common-view disciplined oscillator (CVDO) that locks to a reference time scale through the use of common-view global positioning system (GPS) satellite measurements. The CVDO employs a proportional-integral-derivative controller that obtains near real-time common-view GPS measurements from the internet and provides steering corrections to a local oscillator. A CVDO can be locked to any time scale that makes real-time common-view data available and can serve as a high-accuracy, self-calibrating frequency and time standard. Measurement results are presented where a CVDO is locked to UTC(NIST), the coordinated universal time scale maintained at the National Institute of Standards and Technology in Boulder, Colorado.

Lombardi, Michael A. [Time and Frequency Division, National Institute of Standards and Technology (NIST), Boulder, Colorado 80305 (United States); Dahlen, Aaron P. [Loran Support Unit, United States Coast Guard (USCG), Wildwood, New Jersey 08260 (United States)

2010-05-15T23:59:59.000Z

52

2011 Dynamics at Surfaces Gordon Research Conference (August 7-12, 2011, Salve Regina University, Newport, Rhode Island)  

SciTech Connect

The 2011 Gordon Conference on Dynamics at Surfaces is the 32nd anniversary of a meeting held every two years that is attended by leading researchers in the area of experimental and theoretical dynamics at liquid and solid surfaces. The conference focuses on the dynamics of the interaction of molecules with either liquid or solid surfaces, the dynamics of the outermost layer of liquid and solid surfaces and the dynamics at the liquid-solid interface. Specific topics that are featured include state-to-state scattering dynamics, chemical reaction dynamics, non-adiabatic effects in reactive and inelastic scattering of molecules from surfaces, single molecule dynamics at surfaces, surface photochemistry, ultrafast dynamics at surfaces, and dynamics at water interfaces. The conference brings together investigators from a variety of scientific disciplines including chemistry, physics, materials science, geology, biophysics, and astronomy.

Greg Sitz

2011-08-12T23:59:59.000Z

53

DOE O 3750.1 Chg 6, Work Force Discipline  

Directives, Delegations, and Requirements

The order provides guidance and procedures and states responsibilities for maintaining work force discipline in DOE. Chg 1, dated 3-11-85; Chg 2, dated ...

1983-03-23T23:59:59.000Z

54

Cultural Influences on the Discipline of Chemistry  

E-Print Network (OSTI)

Over the history of humankind, people have engaged in activities we associate in some way with chemistry. But people have done so within a framework of their own culture, not within a Western science cultural framework in which the discipline of chemistry exists. To understand the cultural framework of chemistry taught in universities today, we need to step out of the comfort of our own scientific culture we live in today. In other words, the cultural influences on chemistry are found by looking at alternative cultures. I am following the old adage, “If you want to learn about water, don’t ask a fish.” History is a convenient vehicle to help us understand cultural influences. Because our scientific culture today has strong Greek roots, let me first explore Aristotle’s ideas about matter and then follow those ideas when they are placed in a different culture, Arabic culture, for instance. We shall then see what gets lost in translation between Greek and Arabic cultures. This discovery will shed light on some cultural influences on today’s chemistry and will have direct implications for the instruction of students. Greek Culture Aristotle’s ideas about matter rejected an atomic-like model of matter in favour of a continuum model. His model is summarized by Figure 1, representing the four elements, which when combined in various proportions produce different qualities of matter.

Dr. Glen; S. Aikenhead

2005-01-01T23:59:59.000Z

55

Polynomial-time quantum algorithm for the simulation of chemical dynamics  

E-Print Network (OSTI)

The computational cost of exact methods for quantum simulation using classical computers grows exponentially with system size. As a consequence, these techniques can only be applied to small systems. By contrast, we demonstrate that quantum computers could exactly simulate chemical reactions in polynomial time. Our algorithm uses the split-operator approach and explicitly simulates all electron-nuclear and inter-electronic interactions in quadratic time. Surprisingly, this treatment is not only more accurate than the Born-Oppenheimer approximation, but faster and more efficient as well, for all reactions with more than about four atoms. This is the case even though the entire electronic wavefunction is propagated on a grid with appropriately short timesteps. Although the preparation and measurement of arbitrary states on a quantum computer is inefficient, here we demonstrate how to prepare states of chemical interest efficiently. We also show how to efficiently obtain chemically relevant observables, such as state-to-state transition probabilities and thermal reaction rates. Quantum computers using these techniques could outperform current classical computers with one hundred qubits.

Ivan Kassal; Stephen P. Jordan; Peter J. Love; Masoud Mohseni; Alán Aspuru-Guzik

2008-01-18T23:59:59.000Z

56

Quantum Chemical Analysis of the Excited State Dynamics of Hydrated Electrons  

E-Print Network (OSTI)

Quantum calculations are performed for an anion water cluster representing the first hydration shell of the solvated electron in solution. The absorption spectra from the ground state, the instant excited states and the relaxed excited states are calculated including CI-SD interactions. Analytic expressions for the nonadiabatic relaxation are presented. It is shown that the 50fs dynamics recently observed after s->p excitation is best accounted for if it is identified with the internal conversion, preceded by an adiabatic relaxation within the excited p state. In addition, transient absorptions found in the infrared are qualitatively reproduced by these calculations .

P. O. J. Scherer; Sighart F. Fischer

2006-02-01T23:59:59.000Z

57

Reaction Engineering International and Pacific Northwest Laboratory staff exchange: Addressing computational fluid dynamics needs of the chemical process industry  

SciTech Connect

Staff exchanges, such as the one described in this report, are intended to facilitate communications and collaboration among scientists and engineers at Department of Energy (DOE) laboratories, in US industry, and academia. Funding support for these exchanges is provided by the DOE, Office of Energy Research, Laboratory Technology Transfer Program. Funding levels for each exchange typically range from $20,000 to $40,000. The exchanges offer the opportunity for the laboratories to transfer technology and expertise to industry, gain a perspective to industry`s problems, and develop the basis for further cooperative efforts through Cooperative Research and Development Agreements (CRADAS) or other mechanisms. Information in this report on the staff exchange of the Pacific Northwest Laboratory (PNL) staff with Reaction Engineering International (REI) includes the significant accomplishments, significant problems, industry benefits realized, recommended follow-on work and potential benefit of that work. The objectives of this project were as follows: Work with REI to develop an understanding of the computational fluid dynamics (CFD) needs of the chemical process industry; assess the combined capabilities of the PNL and REI software analysis tools to address these needs; and establish a strategy for a future programmatically funded, joint effort to develop a new CFD tool for the chemical process industry.

Fort, J.A.

1995-07-01T23:59:59.000Z

58

Potential for ultrafast dynamic chemical imaging with few-cycle infrared lasers  

E-Print Network (OSTI)

We studied the photoelectron spectra generated by an intense few-cycle infrared laser pulse. By focusing on the angular distributions of the back rescattered high energy photoelectrons, we show that accurate differential elastic scattering cross sections of the target ion by free electrons can be extracted. Since the incident direction and the energy of the free electrons can be easily changed by manipulating the laser's polarization, intensity, and wavelength, these extracted elastic scattering cross sections, in combination with more advanced inversion algorithms, may be used to reconstruct the effective single-scattering potential of the molecule, thus opening up the possibility of using few-cycle infrared lasers as powerful table-top tools for imaging chemical and biological transformations, with the desired unprecedented temporal and spatial resolutions.

Morishita, T; Chen, Z; Lin, C D

2007-01-01T23:59:59.000Z

59

Applied Health Technology – a New Research Discipline at Blekinge Institute of Technology.  

E-Print Network (OSTI)

??Since spring 2008 is Applied Health Technology a new research discipline at Blekinge Institute of Technology. The discipline has been developed in collaboration between the… (more)

Olander, Ewy

2009-01-01T23:59:59.000Z

60

Social Dynamics of Science  

E-Print Network (OSTI)

The birth and decline of disciplines are critical to science and society. However, no quantitative model to date allows us to validate competing theories of whether the emergence of scientific disciplines drives or follows the formation of social communities of scholars. Here we propose an agent-based model based on a \\emph{social dynamics of science,} in which the evolution of disciplines is guided mainly by the social interactions among scientists. We find that such a social theory can account for a number of stylized facts about the relationships between disciplines, authors, and publications. These results provide strong quantitative support for the key role of social interactions in shaping the dynamics of science. A "science of science" must gauge the role of exogenous events, such as scientific discoveries and technological advances, against this purely social baseline.

Sun, Xiaoling; Milojevi?, Staša; Flammini, Alessandro; Menczer, Filippo

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "disciplines chemical dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Penn State Multi-Discipline Tribology Group and Energy Institute Studies.  

DOE Green Energy (OSTI)

This presentation is a summary of the current research activities on fuels and lubricants in the Multi-discipline Tribology group and the engine test group in the Combustion Laboratory of the Pennsylvania State University. The progress areas discussed in this summary include those found in Table 1. Table 1. RESEARCH AREAS: Diesel Engine Emission Reduction; Oxygenated Fuels; Improved Friction Fuels; Vegetable Oil Lubricants; Extended Drain Lubricants; Effect of Chemical Structure on Friction and Wear. The research is of interest either directly or indirectly to the goal of this workshop, diesel engine emissions reduction. The current projects at Penn State in the areas listed above will be discussed.

Perez, Joseph

2001-08-05T23:59:59.000Z

62

Computational fluid dynamics simulation of chemical reactors: Application of in situ adaptive tabulation to methane thermochlorination chemistry  

SciTech Connect

Recently, a novel algorithm--in situ adaptive tabulation--has been proposed to effectively incorporate detailed chemistry in computational fluid dynamics (CFD) simulations for turbulent reacting flows. In this work, detailed tests performed on a pairwise-mixing stirred reactor (PMSR) model are presented implementing methane thermochlorination chemistry to validate the in situ adaptive tabulation (ISAT) algorithm. The detailed kinetic scheme involves 3 elements (H, C, Cl) and 38 chemical species undergoing a total of 152 elementary reactions. The various performance issues (error control, accuracy, storage requirements, speed-up) involved in the implementation of detailed chemistry in particle-based methods (full PDF methods) are discussed. Using an error tolerance of {epsilon}{sub tol} = 2 x 10{sup {minus}4}, sufficiently accurate results with minimal storage requirements and significantly less computational time than would be required with direct integration are obtained. Based on numerous test simulations, an error tolerance in the range of 10{sup {minus}3}--10{sup {minus}4} is found to be satisfactory for carrying out full PDF simulations of methane thermochlorination reactors. The results presented here demonstrate that the implementation of ISAT makes possible the hitherto formidable task of implementing detailed chemistry in CFD simulations of methane thermochlorination reactors.

Shah, J.J.; Fox, R.O.

1999-11-01T23:59:59.000Z

63

Dynamic  

Office of Legacy Management (LM)

Dynamic Dynamic , and Static , Res.ponse of the Government Oil Shale Mine at ' , . , Rifle, Colorado, to the Rulison Event. , . ; . . DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. p ( y c - - a 2-1 0 -4- REPORT AT (29-2) 914 USBM 1 0 0 1 UNITED STATES DEPARTMENT O F THE I NTERIOR BUREAU OF MINES e s.09 P. L. R U S S E L L RESEARCH D l RECTOR Februory 2, lB7O DYNAMIC AND STATIC RESPONSE 'OF THE GOVERNMENT OIL SHALE MINE A T RIFLE, COLORADO, T O THE, RULISON EVENT ORDER FROM CFSTl A S ~ B ~ &J C / This page intentionally left blank CONTENTS Page . . . . . . . . . . . . . . . . . . . . . . . . . H i s t o r i c . a l Des c r i p t i o n 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Summary 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 3

64

Does the discipline of preprocessor annotations matter?: a controlled experiment  

Science Conference Proceedings (OSTI)

The C preprocessor (CPP) is a simple and language-independent tool, widely used to implement variable software systems using conditional compilation (i.e., by including or excluding annotated code). Although CPP provides powerful means ... Keywords: c preprocessor, controlled experiment, disciplined annotations, program comprehension, variability

Sandro Schulze, Jörg Liebig, Janet Siegmund, Sven Apel

2013-10-01T23:59:59.000Z

65

RCDA: Architecting as a risk- and cost management discipline  

Science Conference Proceedings (OSTI)

We propose to view architecting as a risk- and cost management discipline. This point of view helps architects identify the key concerns to address in their decision making, by providing a simple, relatively objective way to assess architectural significance. ... Keywords: Cost management, Risk Management, Software architecture

Eltjo R. Poort; Hans Van Vliet

2012-09-01T23:59:59.000Z

66

Does Competition for Capital Discipline Governments? Decentralization, Globalization and Corruption  

E-Print Network (OSTI)

Many political economists believe that competition among countries—or regions within them—to attract mobile capital should discipline their governments, rendering them less corrupt and more friendly toward business. This argument surfaces repeatedly in debates over both political decentralization and globalization. We argue that it is based on an assumption— countries or regions start out identical—that is quite unrealistic. We reexamine the standard model that predicts a disciplining effect of capital mobility, and show that if units are sufficiently heterogeneous exactly the opposite prediction often follows. If some units are exogenously much more attractive to investors than others (and competition for capital is intense), the only equilibrium under capital mobility will involve polarization. Initially disadvantaged units will actually be more corrupt, more starved of capital, and slower to grow if capital is mobile than if it is not. By contrast, exogenously attractive units will do more to woo investors, suck capital out of their lower productivity counterparts, and grow faster. We suggest this may help explain the disappointing results of liberalizing capital flows within the Russian federation and in sub-Saharan Africa.

Hongbin Cai A; Daniel Treisman B

2002-01-01T23:59:59.000Z

67

Dynamics and spike trains statistics in conductance-based Integrate-and-Fire neural networks with chemical and electric synapses  

E-Print Network (OSTI)

We investigate the effect of electric synapses (gap junctions) on collective neuronal dynamics and spike statistics in a conductance-based Integrate-and-Fire neural network, driven by a Brownian noise, where conductances depend upon spike history. We compute explicitly the time evolution operator and show that, given the spike-history of the network and the membrane potentials at a given time, the further dynamical evolution can be written in a closed form. We show that spike train statistics is described by a Gibbs distribution whose potential can be approximated with an explicit formula, when the noise is weak. This potential form encompasses existing models for spike trains statistics analysis such as maximum entropy models or Generalized Linear Models (GLM). We also discuss the different types of correlations: those induced by a shared stimulus and those induced by neurons interactions.

Rodrigo Cofré; Bruno Cessac

2012-12-14T23:59:59.000Z

68

Design of a superconducting linear accelerator for an Infrared Free Electron Laser of the proposed Chemical Dynamics Research Laboratory at LBL  

Science Conference Proceedings (OSTI)

An accelerator complex has recently been designed at LBL as part of an Infrared Free Electron Laser facility in support of a proposed Chemical Dynamics Research Laboratory. We will outline the choice of parameters and design philosophy, which are strongly driven by the demand of reliable and spectrally stable operation of the FEL for very special scientific experiments. The design is based on a 500 MHz recirculating superconducting electron linac with highest energy reach of about 60 MeV. The accelerator is injected with beams prepared by a specially designed gun-buncher system and incorporates a near-isochronous and achromatic recirculation line tunable over a wide range of beam energies. The stability issues considered to arrive at the specific design will be outlined.

Chattopadhyay, S.; Byrns, R.; Donahue, R.; Edighoffer, J.; Gough, R.; Hoyer, E.; Kim, K.J.; Leemans, W.; Staples, J.; Taylor, B.; Xie, M.

1992-08-01T23:59:59.000Z

69

Fluid dynamics, particulate segregation, chemical processes, and natural ore analog discussions that relate to the potential for criticality in Hanford tanks  

SciTech Connect

This report presents an in-depth review of the potential for nuclear criticality to occur in Hanford defense waste tanks during past, current and future safe storage and maintenance operations. The report also briefly discusses the potential impacts of proposed retrieval activities, although retrieval was not a main focus of scope. After thorough review of fluid dynamic aspects that focus on particle segregation, chemical aspects that focus on solubility and adsorption processes that might concentrate plutonium and/or separate plutonium from the neutron absorbers in the tank waste, and ore-body formation and mining operations, the interdisciplinary team has come to the conclusion that there is negligible risk of nuclear critically under existing storage conditions in Hanford site underground waste storage tanks. Further, for the accident scenarios considered an accidental criticality is incredible.

Barney, G.S.

1996-09-27T23:59:59.000Z

70

Major Facilities for Materials Research and Related Disciplines  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities for Materials Research and Related Disciplines Major Materials Facilities Committee Commission on Physical Sciences, Mathematics, and Resources National Research Council NATIONAL ACADEMY PRESS Washington, DC 1984 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. This report has been reviewed by a group other than the authors according to procedures approved by a Report Review Committee con- sisting of members of the National Academy of Sciences, the National

71

Chemistry Central Journal Commentary Chemical physics: The standing of a mature discipline  

E-Print Network (OSTI)

This is an Open Access article distributed under the terms of the Creative Commons Attribution License

Eduardo A Castro; Eduardo A Castro

2007-01-01T23:59:59.000Z

72

Browse by Discipline -- E-print Network Subject Pathways: Environmenta...  

Office of Scientific and Technical Information (OSTI)

Ray, Asok (Asok Ray) - Department of Mechanical and Nuclear Engineering, Pennsylvania State University Rochelle, Gary T. (Gary T. Rochelle) - Department of Chemical Engineering,...

73

Browse by Discipline -- E-print Network Subject Pathways: Fossil...  

Office of Scientific and Technical Information (OSTI)

O'Connor, Kim Claire (Kim Claire O'Connor) - Department of Chemical and Biomolecular Engineering, Tulane University Ostermeier, Marc (Marc Ostermeier) - Department of Biomolecular...

74

Browse by Discipline -- E-print Network Subject Pathways: Fossil...  

Office of Scientific and Technical Information (OSTI)

Xie, Xiaoliang Sunney (Xiaoliang Sunney Xie) - Department of Chemistry and Chemical Biology, Harvard University Xing, Bengang (Bengang Xing) - Division of Chemistry and Biological...

75

Browse by Discipline -- E-print Network Subject Pathways: Plasma...  

Office of Scientific and Technical Information (OSTI)

Elimelech, Menachem (Menachem Elimelech) - Department of Chemical and Environmental Engineering, Yale University Go to Individual Scientists Research Collections A | B | C | D | E...

76

Browse by Discipline -- E-print Network Subject Pathways: Biology...  

Office of Scientific and Technical Information (OSTI)

Ferguson, Robert J. (Robert J. Ferguson) - Department of Geoscience, University of Calgary Firoozabadi, Abbas (Abbas Firoozabadi) - Department of Chemical and Environmental...

77

Browse by Discipline -- E-print Network Subject Pathways: Biology...  

Office of Scientific and Technical Information (OSTI)

Walker Jr., Philip L. (Philip L. Walker Jr.) - Wildenschild, Dorthe (Dorthe Wildenschild) - School of Chemical, Biological, and Environmental Engineering, Oregon State University...

78

Browse by Discipline -- E-print Network Subject Pathways: Biology...  

Office of Scientific and Technical Information (OSTI)

Datta-Gupta, Akhil (Akhil Datta-Gupta) - Department of Petroleum Engineering, Texas A&M University Dean, Anthony M. (Anthony M. Dean) - Department of Chemical...

79

Browse by Discipline -- Subject Pathways for the E-print Network -- Energy,  

Office of Scientific and Technical Information (OSTI)

Browse by Discipline These pages contain links to thousands of servers, sites, and documents contributed by individual authors that contain e-print information in discipline areas of interest to the Department of Energy's research activities. These resources are organized into discipline-specific categories as indicated below. To view these resources and sites, simply select a discipline, browse the entries listed in alphabetical order, and click on any entry to leave the discipline you selected and enter a specific website. Use the "Back" button to return to the E-print Discipline you exited from. Biology and Medicine Biotechnology Computer Technologies and Information Sciences Chemistry Energy Storage, Conversion and Utilization Engineering Environmental Management and Restoration Technologies

80

Real-Time Chemical Imaging of Bacterial Biofilm Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Real-Time Chemical Imaging of Bacterial Biofilm Development Print Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce biofuels. Researchers from Berkeley Lab, Lawrence Livermore National Lab, and UC Berkeley coupled infrared (IR) rays from ALS Beamline 1.4.3 to the first open-channel microfluidic platform to determine the chemistry that shapes biofilm development. This combination of synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy and the microfluidic platform will have a significant impact on several scientific disciplines that require chemical-scale information on biofilm phenotype and function, including Berkeley Lab's bioenergy efforts and subsurface biogeochemical studies.

Note: This page contains sample records for the topic "disciplines chemical dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Real-Time Chemical Imaging of Bacterial Biofilm Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Real-Time Chemical Imaging of Bacterial Biofilm Development Print Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce biofuels. Researchers from Berkeley Lab, Lawrence Livermore National Lab, and UC Berkeley coupled infrared (IR) rays from ALS Beamline 1.4.3 to the first open-channel microfluidic platform to determine the chemistry that shapes biofilm development. This combination of synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy and the microfluidic platform will have a significant impact on several scientific disciplines that require chemical-scale information on biofilm phenotype and function, including Berkeley Lab's bioenergy efforts and subsurface biogeochemical studies.

82

Real-Time Chemical Imaging of Bacterial Biofilm Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Real-Time Chemical Imaging of Bacterial Biofilm Development Print Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce biofuels. Researchers from Berkeley Lab, Lawrence Livermore National Lab, and UC Berkeley coupled infrared (IR) rays from ALS Beamline 1.4.3 to the first open-channel microfluidic platform to determine the chemistry that shapes biofilm development. This combination of synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy and the microfluidic platform will have a significant impact on several scientific disciplines that require chemical-scale information on biofilm phenotype and function, including Berkeley Lab's bioenergy efforts and subsurface biogeochemical studies.

83

Real-Time Chemical Imaging of Bacterial Biofilm Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Real-Time Chemical Imaging of Bacterial Biofilm Development Print Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce biofuels. Researchers from Berkeley Lab, Lawrence Livermore National Lab, and UC Berkeley coupled infrared (IR) rays from ALS Beamline 1.4.3 to the first open-channel microfluidic platform to determine the chemistry that shapes biofilm development. This combination of synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy and the microfluidic platform will have a significant impact on several scientific disciplines that require chemical-scale information on biofilm phenotype and function, including Berkeley Lab's bioenergy efforts and subsurface biogeochemical studies.

84

Real-Time Chemical Imaging of Bacterial Biofilm Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Real-Time Chemical Imaging of Bacterial Biofilm Development Print Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce biofuels. Researchers from Berkeley Lab, Lawrence Livermore National Lab, and UC Berkeley coupled infrared (IR) rays from ALS Beamline 1.4.3 to the first open-channel microfluidic platform to determine the chemistry that shapes biofilm development. This combination of synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy and the microfluidic platform will have a significant impact on several scientific disciplines that require chemical-scale information on biofilm phenotype and function, including Berkeley Lab's bioenergy efforts and subsurface biogeochemical studies.

85

Real-Time Chemical Imaging of Bacterial Biofilm Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Real-Time Chemical Imaging of Bacterial Biofilm Development Print Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce biofuels. Researchers from Berkeley Lab, Lawrence Livermore National Lab, and UC Berkeley coupled infrared (IR) rays from ALS Beamline 1.4.3 to the first open-channel microfluidic platform to determine the chemistry that shapes biofilm development. This combination of synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy and the microfluidic platform will have a significant impact on several scientific disciplines that require chemical-scale information on biofilm phenotype and function, including Berkeley Lab's bioenergy efforts and subsurface biogeochemical studies.

86

Real-Time Chemical Imaging of Bacterial Biofilm Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Real-Time Chemical Imaging of Bacterial Biofilm Development Print Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce biofuels. Researchers from Berkeley Lab, Lawrence Livermore National Lab, and UC Berkeley coupled infrared (IR) rays from ALS Beamline 1.4.3 to the first open-channel microfluidic platform to determine the chemistry that shapes biofilm development. This combination of synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy and the microfluidic platform will have a significant impact on several scientific disciplines that require chemical-scale information on biofilm phenotype and function, including Berkeley Lab's bioenergy efforts and subsurface biogeochemical studies.

87

Real-Time Chemical Imaging of Bacterial Biofilm Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Real-Time Chemical Imaging of Bacterial Biofilm Development Print Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce biofuels. Researchers from Berkeley Lab, Lawrence Livermore National Lab, and UC Berkeley coupled infrared (IR) rays from ALS Beamline 1.4.3 to the first open-channel microfluidic platform to determine the chemistry that shapes biofilm development. This combination of synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy and the microfluidic platform will have a significant impact on several scientific disciplines that require chemical-scale information on biofilm phenotype and function, including Berkeley Lab's bioenergy efforts and subsurface biogeochemical studies.

88

Chemical Sciences Division: Introduction: Organization Chart  

NLE Websites -- All DOE Office Websites (Extended Search)

Chart Ultrafast X-Ray Science Laboratory ALS-MES Beamline Actinde Science Chemical Dynamics Beamline Centers Programs Chemical Physics The Glenn T. Seaborg Center...

89

Chemical and Engineering Materials | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the structure and dynamics...

90

West Virginia University 1 Department of Chemical Engineering  

E-Print Network (OSTI)

), Chemical looping, Fuel cells (SOFC & PEM), Optimization, Dynamic modeling of process systems, Process

Mohaghegh, Shahab

91

Argonne Chemical Sciences & Engineering - Site Index  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Laboratory Awards Catalysis and Energy Conversion Center for Electrochemical Energy Storage Ceramic Electrochemistry Chemical Dynamics Contact Us Electrochemical...

92

Browse by Discipline -- E-print Network Subject Pathways: Geosciences --  

Office of Scientific and Technical Information (OSTI)

Q R S Q R S T U V W X Y Z Palffy-Muhoray, Peter (Peter Palffy-Muhoray) - Liquid Crystal Institute, Kent State University Papoian, Garegin A. (Garegin A. Papoian) - Department of Chemistry, University of North Carolina at Chapel Hill Parent, J. Scott (J. Scott Parent) - Department of Chemical Engineering, Queen's University (Kingston) Park, Hongkun (Hongkun Park) - Department of Chemistry and Chemical Biology, Harvard University Park, Jong-Sang (Jong-Sang Park) - School of Chemistry, Seoul National University Park, Joon Taik (Joon Taik Park) - Department of Chemistry, Korea Advanced Institute of Science and Technology Parker, Carl (Carl Parker) - Division of Chemistry and Chemical Engineering, California Institute of Technology Patrick, David L. (David L. Patrick) - Department of Chemistry,

93

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Office of Scientific and Technical Information (OSTI)

O P Q R S O P Q R S T U V W X Y Z Nadgorny, Boris (Boris Nadgorny) - Department of Physics and Astronomy, Wayne State University Nadgorny, Edward M.(Edward M.Nadgorny).- Department of Physics, Michigan Technological University Nair, Sankar (Sankar Nair) - School of Chemical and Biomolecular Engineering, Georgia Institute of Technology Nairn, John A. (John A. Nairn) - Department of Wood Science and Engineering, Oregon State University Nakamura, Toshio (Toshio Nakamura) - Department of Mechanical Engineering, SUNY at Stony Brook Narayan, Jagdish (Jagdish Narayan) - Department of Materials Science and Engineering, North Carolina State University Narayan, Ramani (Ramani Narayan) - Department of Chemical Engineering and Materials Science, Michigan State University

94

Black and White Sociology: Segregation of the Discipline  

E-Print Network (OSTI)

The idea that theories of race, racial segregation and racism have played a central role in the development of sociology and that black and white sociologies have formed because of this condition is not new and has been in circulation among sociologists for some time. While a number of sociologists have examined how race has shaped the discipline, only a few have attempted to examine and define black sociology and white sociology. Despite the initial efforts of some, the two sociologies remain vague, undeveloped concepts, and thus open to skepticism and denunciation. No systematic historical-intellectual investigation of black sociology or white sociology exists and, subsequently, no in-depth comparative analysis of the two exists. Therefore, through a comparative-historical analysis and exercise in the sociology of knowledge, this work seeks to provide a more precise history and theory of black sociology and white sociology. This study argues that black sociology and white sociology represent two distinct intellectual perspectives---sets of ideas---and social practices shaped by past perspectives and practices and social-historical contexts, which are largely racially- defined. More specifically, I will demonstrate that black sociology and white sociology develop out of two approaches of thought and action primarily influenced by race, a black tradition of ideas and practices and a white tradition of thought and practices. To map these two traditions, I begin with a review and analysis of works that have discussed (directly or indirectly) black and white sociology and black and white sociologists. Next, I turn to a more focused analysis on the sociological perspectives and practices of W.E.B. Du Bois and Robert Park, examining the ideas and practices that shape each sociologist's thought and actions. I identify ways that Park incorporates and advances earlier ideas and practices of whites, and, conversely, how Du Bois incorporates and advances earlier perspectives and practices of blacks. Lastly, I point out how Du Bois' ideas and methods, shaped by an earlier black tradition, now informs what is described as black sociology, and how Park's ideas and methods, shaped by an earlier white tradition, now informs what is described as white sociology.

Elias, Sean

2009-08-01T23:59:59.000Z

95

Browse by Discipline -- E-print Network Subject Pathways: Mathematics --  

Office of Scientific and Technical Information (OSTI)

D E F G H I J K L M N O P Q R S D E F G H I J K L M N O P Q R S T U V W X Y Z Daganzo, Carlos F. (Carlos F. Daganzo) - Department of Civil and Environmental Engineering, University of California at Berkeley Dailey, Daniel J.(Daniel J.Dailey).- Department of Electrical Engineering, University of Washington at Seattle Dam, Bernard (Bernard Dam) - Department of Chemical Engineering, Technische Universiteit Delft Davison, Matt (Matt Davison) - Department of Applied Mathematics, University of Western Ontario Dean, Anthony M. (Anthony M. Dean) - Department of Chemical Engineering, Colorado School of Mines Deinert, Mark (Mark Deinert) - Department of Mechanical Engineering, University of Texas at Austin Delucchi, Mark (Mark Delucchi) - Institute of Transportation Studies, University of California, Davis

96

Browse by Discipline -- E-print Network Subject Pathways: Geosciences --  

Office of Scientific and Technical Information (OSTI)

E F G H I J K L M N O P Q R S E F G H I J K L M N O P Q R S T U V W X Y Z d'Alarcao, Marc (Marc d'Alarcao) - Department of Chemistry, Tufts University Daggett, Valerie (Valerie Daggett) - Department of Medicinal Chemistry, University of Washington at Seattle Dai, Hongjie (Hongjie Dai) - Department of Chemistry, Stanford University Daniel, Susan (Susan Daniel) - Department of Chemistry and Chemical Biology, Cornell University Dantus, Marcos (Marcos Dantus) - Department of Chemistry, Michigan State University Davis, Ben G. (Ben G. Davis) - Department of Chemistry, University of Oxford Davis, H. Floyd (H. Floyd Davis) - Department of Chemistry and Chemical Biology, Cornell University de Lijser, Peter (Peter de Lijser) - Department of Chemistry and Biochemistry, California State University, Fullerton

97

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Office of Scientific and Technical Information (OSTI)

E F G H I J K L M N O P Q R S E F G H I J K L M N O P Q R S T U V W X Y Z Eades, Alwyn (Alwyn Eades) - Department of Materials Science and Engineering, Lehigh University Eagar, Thomas W. (Thomas W. Eagar) - Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT) Economou, Demetre J. (Demetre J. Economou) - Department of Chemical Engineering, University of Houston Edwards, Sam (Sam Edwards) - Cavendish Laboratory, University of Cambridge Ehrman, Sheryl H. (Sheryl H. Ehrman) - Department of Chemical Engineering and Biomolecular Engineering, University of Maryland at College Park Einstein, Theodore L. (Theodore L. Einstein) - Department of Physics, University of Maryland at College Park Eisenberg, Eli (Eli Eisenberg) - School of Physics and Astronomy,

98

Browse by Discipline -- E-print Network Subject Pathways: Geosciences --  

Office of Scientific and Technical Information (OSTI)

E F G H I J K L M N O P Q R S E F G H I J K L M N O P Q R S T U V W X Y Z Ealick, Stephen E. (Stephen E. Ealick) - Department of Chemistry and Chemical Biology, Cornell University Earl, David J. (David J. Earl) - Rudolf Peierls Centre for Theoretical Physics, Oxford University East, Allan L. L. (Allan L. L. East) - Department of Chemistry and Biochemistry, University of Regina Eisenthal, Kenneth B. (Kenneth B. Eisenthal) - Department of Chemistry, Columbia University Eldridge, R. Bruce (R. Bruce Eldridge) - Department of Chemical Engineering, University of Texas at Austin Ellison, Barney (Barney Ellison) - Department of Chemistry and Biochemistry, University of Colorado at Boulder Elrod, Matthew J. (Matthew J. Elrod) - Department of Chemistry and Biochemistry, Oberlin College

99

Browse by Discipline -- E-print Network Subject Pathways: Geosciences --  

Office of Scientific and Technical Information (OSTI)

J K L M N O P Q R S J K L M N O P Q R S T U V W X Y Z Iglesia, Enrique (Enrique Iglesia) - Department of Chemical and Biomolecular Engineering, University of California at Berkeley Ihee, Hyotcherl (Hyotcherl Ihee) - Department of Chemistry, Korea Advanced Institute of Science and Technology Ishii, Yoshitaka (Yoshitaka Ishii) - Department of Chemistry, University of Illinois at Chicago Ismagilov, Rustem F. (Rustem F. Ismagilov) - Division of Chemistry and Chemical Engineering, California Institute of Technology Iyengar, Srinivasan S. (Srinivasan S. Iyengar) - Department of Chemistry, Indiana University Go back to Individual Researchers Collections: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Institut de Biologie Physico-Chimique CNRS, Physico-Chimie

100

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Office of Scientific and Technical Information (OSTI)

G H I J K L M N O P Q R S G H I J K L M N O P Q R S T U V W X Y Z Fahmy, Tarek (Tarek Fahmy) - Departments of Biomedical Engineering & Chemical and Environmental Engineering, Yale University Faidley, LeAnn (LeAnn Faidley) - Department of Mechanical Engineering, Iowa State University Fair, Richard (Richard Fair) - Department of Electrical and Computer Engineering, Duke University Falcon, Eric (Eric Falcon) - Laboratoire de Physique, Université Paris 7 Denis Diderot Falcon, Eric (Eric Falcon) - Laboratoire Matière et Systèmes Complexes, Université Paris 7 - Denis Diderot Faller, Roland (Roland Faller) - Department of Chemical Engineering and Materials Science, University of California, Davis Fatemi, Ali (Ali Fatemi) - Department of Mechanical, Industrial and

Note: This page contains sample records for the topic "disciplines chemical dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Office of Scientific and Technical Information (OSTI)

H I J K L M N O P Q R S H I J K L M N O P Q R S T U V W X Y Z Galbraith, Aysa Akad (Aysa Akad Galbraith) - Department of Chemical and Biomolecular Engineering, North Carolina State University Gall, Daniel (Daniel Gall) - Department of Materials Science and Engineering, Rensselaer Polytechnic Institute Gallas, Márcia Russman (Márcia Russman Gallas) - Instituto de Física, Universidade Federal do Rio Grande do Sul Gallivan, Martha A. (Martha A. Gallivan) - School of Chemical and Biomolecular Engineering, Georgia Institute of Technology Gangloff, Richard P. (Richard P. Gangloff) - Department of Materials Science and Engineering, University of Virginia Gao, Hongjun (Hongjun Gao) - Institute of Physics, Chinese Academy of Sciences Gao, Song (Song Gao) - College of Chemistry, Peking University

102

Browse by Discipline -- E-print Network Subject Pathways: Mathematics --  

Office of Scientific and Technical Information (OSTI)

X Y Z X Y Z Walker, Geoff (Geoff Walker) - School of Information Technology and Electrical Engineering, University of Queensland Wang, Yinhai (Yinhai Wang) - Department of Civil and Environmental Engineering, University of Washington at Seattle Weidner, John W. (John W. Weidner) - Department of Chemical Engineering, University of South Carolina White, Bruce (Bruce White) - Department of Mechanical and Aeronautical Engineering, University of California, Davis White, Ralph E.(Ralph E.White).- Department of Chemical Engineering, University of South Carolina Wu, Chien H. (Chien H. Wu) - Department of Civil and Materials Engineering, University of Illinois at Chicago Go back to Individual Researchers Collections: A B C D E F G H I J K L M N O P Q R S

103

Browse by Discipline -- E-print Network Subject Pathways: Geosciences --  

Office of Scientific and Technical Information (OSTI)

H I J K L M N O P Q R S H I J K L M N O P Q R S T U V W X Y Z Gao, Song (Song Gao) - College of Chemistry, Peking University Garfunkel, Eric (Eric Garfunkel) - Department of Chemistry and Chemical Biology, Rutgers University Garrison, Barbara J.(Barbara J.Garrison).- Department of Chemistry, Pennsylvania State University Gascon, Jose A. (Jose A. Gascon) - Department of Chemistry, University of Connecticut Gates, Kent. S. (Kent. S. Gates) - Departments of Chemistry & Biochemistry, University of Missouri-Columbia Geissler, Phillip (Phillip Geissler) - Department of Chemistry, University of California at Berkeley Gelb, Michael (Michael Gelb) - Departments of Chemistry & Biochemistry, University of Washington at Seattle Gellman, Andrew J. (Andrew J. Gellman) - Department of Chemical

104

Browse by Discipline -- E-print Network Subject Pathways: Mathematics --  

Office of Scientific and Technical Information (OSTI)

N O P Q R S N O P Q R S T U V W X Y Z Mahat, Pukar (Pukar Mahat) - Department of Energy Technology, Aalborg University Maheshwari, Ram Krishan (Ram Krishan Maheshwari) - Department of Energy Technology, Aalborg University Mallinson, Richard (Richard Mallinson) - School of Chemical Engineering and Materials Science, University of Oklahoma Marca, James E. (James E. Marca) - Institute of Transportation Studies, University of California, Irvine Markides, Christos Nicolaos(Christos NicolaosMarkides)s- Department of Engineering, University of Cambridge Mathe, Laszlo (Laszlo Mathe) - Department of Energy Technology, Aalborg University McCready, Mark J. (Mark J. McCready) - Department of Chemical and Biomolecular Engineering, University of Notre Dame Medvedeva, Julia E. (Julia E. Medvedeva) - Department of Physics,

105

Chemical Dynamics Beamline Publications 340. K. N. Urness, A. Golan, J. W. Daily, M. R. Nimlos, J. F. Stanton, M. Ahmed, and G. B. Ellison, "Pyrolysis  

E-Print Network (OSTI)

. Kroll, "Chemical Sinks of Organic Aerosol: Kinetics and Products of the Heterogeneous Oxidation Detailed Chemical Kinetic Mechanism for Oxidation of Four Small Alkyl Esters in Laminar Premixed Flames. Ahmed, and S. R. Leone, "The multiplexed chemical kinetic photoionization mass spectrometer: a new

106

Electrical Engineering is a diverse discipline encompassing computer and information systems, controls, lasers,  

E-Print Network (OSTI)

. Concepts in rotating machinery analysis. Direct energy conversion. Prerequisite: EE 330. 390 Special70 ELECTRICAL Electrical Engineering is a diverse discipline encompassing computer and information environmental engineering and manufacturing to semiconductors and telecommunications. The Electrical Engineering

Rohs, Remo

107

Browse by Discipline -- E-print Network Subject Pathways: Mathematics --  

Office of Scientific and Technical Information (OSTI)

S S T U V W X Y Z Sangiovanni-Vincentelli, Alberto (Alberto Sangiovanni-Vincentelli) - Department of Electrical Engineering and Computer Sciences,University of California at Berkeley Schaefer, Laura A. (Laura A. Schaefer) - Department of Mechanical Engineering and Materials Science, University of Pittsburgh Schaltz, Erik (Erik Schaltz) - Department of Energy Technology, Aalborg University Schweizer, Ben (Ben Schweizer) - Fachbereich Mathematik, Universität Dortmund Seidler, Gerald T. (Gerald T. Seidler) - Department of Physics, University of Washington at Seattle Senkan, Selim M. (Selim M. Senkan) - Department of Chemical Engineering, University of California at Los Angeles Sera, Dezso (Dezso Sera) - Department of Energy Technology, Aalborg University

108

Browse by Discipline -- E-print Network Subject Pathways: Geosciences --  

Office of Scientific and Technical Information (OSTI)

Z Z Zachariah, Michael R. (Michael R. Zachariah) - Departments of Chemistry & Mechanical Engineering, University of Minnesota Zakarian, Armen (Armen Zakarian) - Department of Chemistry and Biochemistry, Florida State University Zare, Richard N. (Richard N. Zare) - Department of Chemistry, Stanford University Zargarian, Davit (Davit Zargarian) - Département de Chimie, Université de Montréal Zeiri, Yehuda (Yehuda Zeiri) - Institute of Chemistry, Hebrew University of Jerusalem Zewail, Ahmed (Ahmed Zewail) - Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology Zhang, John Z.H. (John Z.H. Zhang) - Department of Chemistry, New York University Zhang, Qi (Qi Zhang) - Atmospheric Science Research Center, State University of New York, Albany,

109

Browse by Discipline -- E-print Network Subject Pathways: Geosciences --  

Office of Scientific and Technical Information (OSTI)

S S T U V W X Y Z Rabani, Eran (Eran Rabani) - School of Chemistry, Tel Aviv University Rabani, Eran (Eran Rabani) - School of Chemistry, Tel Aviv University Rader, Stephen (Stephen Rader) - Chemistry Program, University of Northern British Columbia Raftery, Dan (Dan Raftery) - Department of Chemistry, Purdue University Raghavan, Srinivasa (Srinivasa Raghavan) - Department of Chemical Engineering and Biomolecular Engineering, University of Maryland at College Park Raines, Ronald T. (Ronald T. Raines) - Departments of Biochemistry & Chemistry, University of Wisconsin at Madison Rainier, Jon D. (Jon D. Rainier) - Department of Chemistry, University of Utah RajanBabu, T. V. "Babu" (T. V. "Babu" RajanBabu) - Department of Chemistry, Ohio State University

110

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Office of Scientific and Technical Information (OSTI)

U V W X Y Z U V W X Y Z Tafreshi, Hooman Vahedi (Hooman Vahedi Tafreshi) - Department of Mechanical Engineering, Virginia Commonwealth University Taillefer, Louis (Louis Taillefer) - Département de physique, Université de Sherbrooke Takada, Yasutami (Yasutami Takada) - Department of Physics, University of Tokyo Tal, Oren (Oren Tal) - Department of Chemical Physics, Weizmann Institute of Science Talukder, Muhammad Anisuzzaman (Muhammad Anisuzzaman Talukder) - Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology Tan, Xiaobo (Xiaobo Tan) - Department of Electrical and Computer Engineering, Michigan State University Tang, Ben Zhong (Ben Zhong Tang) - Department of Chemistry, Hong Kong University of Science and Technology

111

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Office of Scientific and Technical Information (OSTI)

S S T U V W X Y Z Sabo, John (John Sabo) - School of Life Sciences, Arizona State University Sachdev, Subir -Department of Physics, Harvard Universit(achdev, Subir -Department of Physics, Harvard Universi)ty Sadoway, Donald Robert (Donald Robert Sadoway) - Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT) Saikin, Semion (Semion Saikin) - Department of Chemistry and Chemical Biology, Harvard University Salapaka, Murti V. (Murti V. Salapaka) - Department of Electrical and Computer Engineering, Iowa State University Sanchez, Erik (Erik Sanchez) - Department of Physics, Portland State University Sandoghdar, Vahid (Vahid Sandoghdar) - Laboratory of Physical Chemistry, Eidgenössische Technische Hochschule Zürich (ETHZ)

112

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

S S T U V W X Y Z Rahmeyer, William J. (William J. Rahmeyer) - Utah Water Research Laboratory & Department of Civil and Environmental Engineering, Utah State University Ramsay, Juliana (Juliana Ramsay) - Department of Chemical Engineering, Queen's University (Kingston) Reysenbach, Anna-Louise (Anna-Louise Reysenbach) - Department of Biology, Portland State University Ritchie, Ewen (Ewen Ritchie) - Department of Energy Technology, Aalborg University Rood, Stewart (Stewart Rood) - Department of Biological Sciences, University of Lethbridge Rosendahl, Lasse (Lasse Rosendahl) - Department of Energy Technology, Aalborg University Röder, Beate (Beate Röder) - Institut für Physik, Humboldt-Universität zu Berlin Go back to Individual Researchers Collections:

113

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Office of Scientific and Technical Information (OSTI)

Q R S Q R S T U V W X Y Z Padture, Nitin P. (Nitin P. Padture) - Department of Materials Science and Engineering, Ohio State University Paiella, Roberto (Roberto Paiella) - Department of Electrical and Computer Engineering, Boston University Paik Suh, Myunghyun (Myunghyun Paik Suh) - Department of Chemistry, Seoul National University Painter, Oskar (Oskar Painter) - Department of Applied Physics and Materials Science, California Institute of Technology Palevski, Alexander (Alexander Palevski) - School of Physics and Astronomy, Tel Aviv University Pan, Xiaoqing (Xiaoqing Pan) - Department of Materials Science and Engineering, University of Michigan Panagiotopoulos, Athanassios Z.(Athanassios Z.Panagiotopoulos).- Department of Chemical Engineering, Princeton University

114

Browse by Discipline -- E-print Network Subject Pathways: Mathematics --  

Office of Scientific and Technical Information (OSTI)

Q R S Q R S T U V W X Y Z Paik Suh, Myunghyun (Myunghyun Paik Suh) - Department of Chemistry, Seoul National University Pedersen, Henrik C. (Henrik C. Pedersen) - Department of Energy Technology, Aalborg University Perloff, Jeffrey M. (Jeffrey M. Perloff) - Department of Agricultural and Resource Economics, University of California at Berkeley Petit, Nicolas -(Nicolas -Petit)-- Centre Automatique et Systèmes, Ecole des Mines de Paris Pillai, Jayakrishnan Radhakrishna (Jayakrishnan Radhakrishna Pillai) - Department of Energy Technology, Aalborg University Pitsch, Heinz (Heinz Pitsch) - Department of Mechanical Engineering, Stanford University Popov, Branko N. (Branko N. Popov) - Center for Electrochemical Engineering & Department of Chemical Engineering, University of South

115

Browse by Discipline -- E-print Network Subject Pathways: Physics --  

Office of Scientific and Technical Information (OSTI)

Z Z Zabarankin, Michael (Michael Zabarankin) - Department of Mathematical Sciences, Stevens Institute of Technology Zadok, Avinoam (Avinoam Zadok) - Faculty of Engineering, Bar Ilan University Zahn, Jeffrey (Jeffrey Zahn) - Department of Biomedical Engineering, Rutgers University Zahn, Markus (Markus Zahn) - Laboratory for Electromagnetic and Electronic Systems, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT) Zahorian, Stephen A. (Stephen A. Zahorian) - Department of Electrical and Computer Engineering, State University of New York at Binghamton Zaidi, S. M. Javaid (S. M. Javaid Zaidi) - Department of Chemical Engineering, King Fahd University of Petroleum and Minerals Zakhor, Avideh (Avideh Zakhor) - Department of Electrical

116

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Office of Scientific and Technical Information (OSTI)

S S T U V W X Y Z Rabani, Eran (Eran Rabani) - School of Chemistry, Tel Aviv University Rabani, Eran (Eran Rabani) - School of Chemistry, Tel Aviv University Rabson, David A. (David A. Rabson) - Department of Physics, University of South Florida Radhakrishnan, Ravi (Ravi Radhakrishnan) - Department of Bioengineering, University of Pennsylvania Raghavan, Srinivasa (Srinivasa Raghavan) - Department of Chemical Engineering and Biomolecular Engineering, University of Maryland at College Park Ramesh, R. (R. Ramesh) - Department of Materials Science and Engineering, University of California at Berkeley Ramsak, Anton (Anton Ramsak) - Department of Theoretical Physics, Jozef Stefan Institute Rangan, Chitra (Chitra Rangan) - Department of Physics, University of Windsor

117

Browse by Discipline -- E-print Network Subject Pathways: Geosciences --  

Office of Scientific and Technical Information (OSTI)

W X Y Z W X Y Z Van Duyne, Richard P.(Richard P.Van Duyne).- Department of Chemistry, Northwestern University Vardi, Amichay (Amichay Vardi) - Department of Chemistry, Ben-Gurion University Velev, Orlin D. (Orlin D. Velev) - Department of Chemical and Biomolecular Engineering, North Carolina State University Venkataraman, Dhandapani "DV" (Dhandapani "DV" Venkataraman) - Department of Chemistry, University of Massachusetts at Amherst Venkataraman, Latha (Latha Venkataraman) - Department of Applied Physics and Applied Mathematics, Columbia University Vertes, Akos (Akos Vertes) - Department of Chemistry, George Washington University Vicic, David A. (David A. Vicic) - Department of Chemistry, University of Hawai'i at Manoa Viola, Ronald (Ronald Viola) - Department of Chemistry, University

118

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Office of Scientific and Technical Information (OSTI)

Z Z Zabaras, Nicholas J. (Nicholas J. Zabaras) - Sibley School of Mechanical and Aerospace Engineering, Cornell University Zaccarelli, Emanuela (Emanuela Zaccarelli) - Dipartimento di Fisica, UniversitĂ  di Roma "La Sapienza" Zachariah, Michael R. (Michael R. Zachariah) - Departments of Chemistry & Mechanical Engineering, University of Minnesota Zaidi, S. M. Javaid (S. M. Javaid Zaidi) - Department of Chemical Engineering, King Fahd University of Petroleum and Minerals Zarestky, Jerel (Jerel Zarestky) - Oak Ridge National Laboratory Zbib, Hussein M. (Hussein M. Zbib) - School of Mechanical and Materials Engineering, Washington State University Zbigniew, Postawa (Postawa Zbigniew) - Instytut Fizyki, Uniwersytet Jagiellonski Zehnder, Alan (Alan Zehnder) - Department of Theoretical and Applied

119

Browse by Discipline -- E-print Network Subject Pathways: Engineering --  

Office of Scientific and Technical Information (OSTI)

S S T U V W X Y Z Scharer, John E. (John E. Scharer) - Center for Plasma Theory and Computation & Department of Electrical and Computer Engineering, University of Wisconsin at Madison Shumlak, Uri (Uri Shumlak) - Department of Aeronautics and Astronautics, University of Washington at Seattle Shvets, Gennady (Gennady Shvets) - Department of Physics, University of Texas at Austin Singh, Kunwar Pal (Kunwar Pal Singh) - Computational Plasma Dynamics Laboratory, Kettering University Smolyakov, Andrei (Andrei Smolyakov) - Department of Physics and Engineering Physics, University of Saskatchewan Snipes, Joseph A. (Joseph A. Snipes) - Plasma Science and Fusion Center, Massachusetts Institute of Technology (MIT) Sovinec, Carl (Carl Sovinec) - Department of Engineering Physics,

120

Chemical leukoderma  

E-Print Network (OSTI)

the first report, to date, of chemical leukoderma that wasreview on biological, chemical and clinical aspects. Pigment4. Briganti S, et al. Chemical and instrumental approaches

O'Reilly, Kathryn E; Patel, Utpal; Chu, Julie; Patel, Rishi; Machler, Brian C

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "disciplines chemical dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Microscopic Models for Chemical Thermodynamics  

E-Print Network (OSTI)

We introduce an infinite particle system dynamics, which includes stochastic chemical kinetics models, the classical Kac model and free space movement. We study energy redistribution between two energy types (kinetic and chemical) in different time scales, similar to energy redistribution in the living cell. One example is considered in great detail, where the model provides main formulas of chemical thermodynamics.

Malyshev, V A

2011-01-01T23:59:59.000Z

122

Microscopic Models for Chemical Thermodynamics  

E-Print Network (OSTI)

We introduce an infinite particle system dynamics, which includes stochastic chemical kinetics models, the classical Kac model and free space movement. We study energy redistribution between two energy types (kinetic and chemical) in different time scales, similar to energy redistribution in the living cell. One example is considered in great detail, where the model provides main formulas of chemical thermodynamics.

V. A. Malyshev

2011-12-08T23:59:59.000Z

123

Browse by Discipline -- E-print Network Subject Pathways: Geosciences --  

Office of Scientific and Technical Information (OSTI)

D E F G H I J K L M N O P Q R S D E F G H I J K L M N O P Q R S T U V W X Y Z Cai, Long (Long Cai) - Division of Chemistry and Chemical Engineering, California Institute of Technology Cairo, Christopher W. (Christopher W. Cairo) - Department of Chemistry, University of Alberta Calhoun, David H. (David H. Calhoun) - Department of Chemistry, City College, City University of New York Callis, Patrik R. (Patrik R. Callis) - Department of Chemistry and Biochemistry, Montana State University Cammers, Arthur (Arthur Cammers) - Department of Chemistry, University of Kentucky Campbell, Charles T. (Charles T. Campbell) - Department of Chemistry, University of Washington at Seattle Campbell, Robert E. (Robert E. Campbell) - Department of Chemistry, University of Alberta Cantor, Robert S. (Robert S. Cantor) - Department of Chemistry,

124

Browse by Discipline -- E-print Network Subject Pathways: Geosciences --  

Office of Scientific and Technical Information (OSTI)

H I J K L M N O P Q R S H I J K L M N O P Q R S T U V W X Y Z Ha, Taekjip (Taekjip Ha) - Department of Physics, University of Illinois at Urbana-Champaign Haas, Yehuda (Yehuda Haas) - Institute of Chemistry, Hebrew University of Jerusalem Hagadorn, John R. (John R. Hagadorn) - Department of Chemistry and Biochemistry, University of Colorado at Boulder Hahn, David W. (David W. Hahn) - Department of Mechanical and Aerospace Engineering, University of Florida Haller, Gary L. (Gary L. Haller) - Department of Chemical and Environmental Engineering, Yale University Hammes-Schiffer, Sharon (Sharon Hammes-Schiffer) - Department of Chemistry, Pennsylvania State University Han, Jeong Woo (Jeong Woo Han) - Laboratory for Electrochemical Interfaces, Massachusetts Institute of Technology (MIT)

125

Browse by Discipline -- E-print Network Subject Pathways: Geosciences --  

Office of Scientific and Technical Information (OSTI)

W X Y Z W X Y Z Walker, Suzanne (Suzanne Walker) - Departments of Microbiology and Molecular Genetics & Chemistry and Chemical Biology, Harvard University Wallace, Bonnie Ann (Bonnie Ann Wallace) - School of Crystallography, Birkbeck College, University of London Wallace, Mark (Mark Wallace) - Department of Chemistry, University of Oxford Walsh, Patrick J. (Patrick J. Walsh) - Department of Chemistry, University of Pennsylvania Walter, Nils G. (Nils G. Walter) - Department of Chemistry, University of Michigan Wan, Xin-hua (Xin-hua Wan) - Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Wang, Guan-Wu (Guan-Wu Wang) - Department of Chemistry, University of Science and Technology of China Wang, Jianbo (Jianbo Wang) - College of Chemistry, Peking University

126

Browse by Discipline -- E-print Network Subject Pathways: Geosciences --  

Office of Scientific and Technical Information (OSTI)

G H I J K L M N O P Q R S G H I J K L M N O P Q R S T U V W X Y Z Fackler, John P. (John P. Fackler) - Department of Chemistry, Texas A&M University Faeder, Jim (Jim Faeder) - Department of Chemical Physics, Weizmann Institute of Science Farantos, Stavros C. (Stavros C. Farantos) - Foundation of Research and Technology, Hellas & Department of Chemistry, University of Crete Farrar, Christian (Christian Farrar) - NMR Athinoula A. Martinos Center, Massachusetts General Hospital, Harvard University Farrar, James M. (James M. Farrar) - Department of Chemistry, University of Rochester Fayer, Michael D. (Michael D. Fayer) - Department of Chemistry, Stanford University Feig, Andrew (Andrew Feig) - Department of Chemistry, Wayne State University Fenteany, Gabriel (Gabriel Fenteany) - Department of Chemistry,

127

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

B C D E F G H I J K L M N O P Q R S B C D E F G H I J K L M N O P Q R S T U V W X Y Z Allen, John F. (John F. Allen) - School of Biological and Chemical Sciences, Queen Mary, University of London Angenent, Lars T. (Lars T. Angenent) - Department of Biological and Environmental Engineering, Cornell University Archer, Cristina Lozej (Cristina Lozej Archer) - College of Earth, Ocean, and Environment, University of Delaware Armanini, David G (David G Armanini) - Canadian Rivers Institute, University of New Brunswick Go back to Individual Researchers Collections: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z American University of Beirut, Faculty of Engineering and Architecture, Energy Research Group Australian Cooperative Research Centre for Renewable Energy, ACRELab

128

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

X Y Z X Y Z Walker, Geoff (Geoff Walker) - School of Information Technology and Electrical Engineering, University of Queensland Wang, Chao-Yang (Chao-Yang Wang) - Electrochemical Engine Center, Pennsylvania State University Wood, Thomas K. (Thomas K. Wood) - Department of Chemical Engineering, Pennsylvania State University Wu, Chenye (Chenye Wu) - Institute for Interdisciplinary Information Sciences, Tsinghua University Wu, Junqiao (Junqiao Wu) - Department of Materials Science and Engineering, University of California at Berkeley Wurtele, Eve Syrkin (Eve Syrkin Wurtele) - Department of Genetics, Development and Cell Biology, Iowa State University Go back to Individual Researchers Collections: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

129

Browse by Discipline -- E-print Network Subject Pathways: -- Energy,  

Office of Scientific and Technical Information (OSTI)

P Q R S P Q R S T U V W X Y Z O'Brien, Richard (Richard O'Brien) - Departments of Neurology & Neuroscience, Johns Hopkins University O'Callaghan, James P. (James P. O'Callaghan) - CDC-NIOSH & Center for Neuroscience, West Virginia University O'Connor, Kim Claire (Kim Claire O'Connor) - Department of Chemical and Biomolecular Engineering, Tulane University O'Connor, Mary (Mary O'Connor) - Department of Zoology, University of British Columbia O'Connor-Giles, Kate (Kate O'Connor-Giles) - Neuroscience Training Program & Laboratory of Molucular Biology, University of Wisconsin at Madison O'Donnell, James M. (James M. O'Donnell) - Center for Neuroscience, Departments of Behavioral Medicine & Psychiatry, West Virginia University O'Gara, Bruce A. (Bruce A. O'Gara) - Department of Biological

130

Browse by Discipline -- E-print Network Subject Pathways: Geosciences --  

Office of Scientific and Technical Information (OSTI)

L M N O P Q R S L M N O P Q R S T U V W X Y Z Kahn, Kalju (Kalju Kahn) - Department of Chemistry and Biochemistry, University of California at Santa Barbara Kais, Sabre (Sabre Kais) - Birck Nanotechnology Center & Department of Chemistry, Purdue University Kaiser, Ralf I. (Ralf I. Kaiser) - Department of Chemistry, University of Hawai'i at Manoa Kalodimos, Charalampos "Babis" (Charalampos "Babis" Kalodimos) - Department of Chemistry and Chemical Biology, Rutgers University Kambhampati, Patanjali (Patanjali Kambhampati) - Department of Chemistry, McGill University Kaminsky, Werner (Werner Kaminsky) - Center for Nanotechnology and NanoTechnology & Department of Chemistry, University of Washington at Seattle Kan, Lou-sing (Lou-sing Kan) - Institute of Chemistry, Academia

131

Browse by Discipline -- E-print Network Subject Pathways: Geosciences --  

Office of Scientific and Technical Information (OSTI)

B C D E F G H I J K L M N O P Q R S B C D E F G H I J K L M N O P Q R S T U V W X Y Z Baer, Roi (Roi Baer) - Institute of Chemistry, Hebrew University of Jerusalem Baik, Mu-Hyun (Mu-Hyun Baik) - School of Informatics & Department of Chemistry, Indiana University Baker, David (David Baker) - Center for Nanotechnology and NanoTechnology & Department of Biochemistry, University of Washington at Seattle Baltisberger, Jay H. (Jay H. Baltisberger) - Department of Chemistry, Berea College Bang, Duhee (Duhee Bang) - Department of Chemistry, Yonsei University Bao, Xinhe (Xinhe Bao) - State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics Barash, Danny (Danny Barash) - Department of Computer Science, Ben Gurion University Barbas III, Carlos F. (Carlos F. Barbas III) - Departments of

132

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Office of Scientific and Technical Information (OSTI)

D E F G H I J K L M N O P Q R S D E F G H I J K L M N O P Q R S T U V W X Y Z Cabral, Marco (Marco Cabral) - Instituto de Matemática, Universidade Federal do Rio de Janeiro Çagin, Tahir (Tahir Çagin) - Materials and Process Simulation Center, California Institute of Technology Cahay, Marc (Marc Cahay) - Department of Electrical and Computer Engineering, University of Cincinnati Cahill, David G. (David G. Cahill) - Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign Cai, Wei (Wei Cai) - Department of Mechanical Engineering, Stanford University Caldarelli, Guido (Guido Caldarelli) - Dipartimento di Fisica, Università di Roma "La Sapienza" Camesano, Terri (Terri Camesano) - Department of Chemical Engineering, Worcester Polytechnic Institute

133

Browse by Discipline -- E-print Network Subject Pathways: Geosciences --  

Office of Scientific and Technical Information (OSTI)

K L M N O P Q R S K L M N O P Q R S T U V W X Y Z Jackson, Sophie (Sophie Jackson) - Department of Chemistry, University of Cambridge Jacobsen, Eric N. (Eric N. Jacobsen) - Department of Chemistry and Chemical Biology, Harvard University Jacobson, Matthew P. (Matthew P. Jacobson) - Department of Pharmaceutical Chemistry, University of California at San Francisco Jardim, Wilson de Figueiredo (Wilson de Figueiredo Jardim) - Instituto de QuĂ­mica, Universidade Estadual de Campinas Jasperse, Craig P. (Craig P. Jasperse) - Department of Chemistry, Minnesota State University Moorhead Jayaraman, Sivaguru (Sivaguru Jayaraman) - Department of Chemistry and Molecular Biology, North Dakota State University Jelinek, Raz (Raz Jelinek) - Department of Chemistry, Ben-Gurion

134

Browse by Discipline -- E-print Network Subject Pathways: Physics --  

Office of Scientific and Technical Information (OSTI)

I J K L M N O P Q R S I J K L M N O P Q R S T U V W X Y Z Iceland, University of (University of Iceland) - Earthquake Engineering Research Centre Ida, Nathan (Nathan Ida) - Department of Electrical and Computer Engineering, University of Akron Ierapetritou, Marianthi G.(Marianthi G.Ierapetritou).- Department of Chemical and Biochemical Engineering, Rutgers University Iglic, Ales (Ales Iglic) - Faculty of Electrical Engineering, University of Ljubljana Ilchmann, Achim (Achim Ilchmann) - Institut für Mathematik, Technische Universität Ilmenau Ilg, Winfried (Winfried Ilg) - Centre for Integrated Neuroscience, University Clinic Tübingen Ilic, Marija D. (Marija D. Ilic) - Department of Electrical and Computer Engineering, Carnegie Mellon University Ilow, Jacek (Jacek Ilow) - Department of Electrical and Computer

135

Browse by Discipline -- E-print Network Subject Pathways: Geosciences --  

Office of Scientific and Technical Information (OSTI)

N O P Q R S N O P Q R S T U V W X Y Z MacMillan, Andrew (Andrew MacMillan) - Department of Biochemistry, University of Alberta MacMillan, David W. C. (David W. C. MacMillan) - Department of Chemistry, Princeton University Macmillan, Derek (Derek Macmillan) - Department of Chemistry, University College London Magee, Joseph W. (Joseph W. Magee) - Experimental Properties of Fluids Group, Physical and Chemical Properties Division, National Institute of Standards and Technology Magliery, Thomas J. (Thomas J. Magliery) - Departments of Chemistry & Biochemistry, Ohio State University Maier, John Paul (John Paul Maier) - Department of Chemistry, Universität Basel Majda, Marcin (Marcin Majda) - Department of Chemistry, University of California at Berkeley Makri, Nancy (Nancy Makri) - Departments of Chemistry & Physics,

136

Browse by Discipline -- E-print Network Subject Pathways: Geosciences --  

Office of Scientific and Technical Information (OSTI)

O P Q R S O P Q R S T U V W X Y Z Narevicius, Edvardas (Edvardas Narevicius) - Department of Chemical Physics, Weizmann Institute of Science Nazar, Linda F. (Linda F. Nazar) - Department of Chemistry, University of Waterloo Nazarenko, Alexander (Alexander Nazarenko) - Department of Chemistry, Buffalo State College Nelsen, Steve (Steve Nelsen) - Department of Chemistry, University of Wisconsin at Madison Nelson, Peter Hugo (Peter Hugo Nelson) - Physical Sciences, Benedictine University Nelson, Scott (Scott Nelson) - Department of Chemistry, University of Pittsburgh Nerukh, Dmitry (Dmitry Nerukh) - Non-linearity and Complexity Research Group (NCRG), Aston University Nesnas, Nasri (Nasri Nesnas) - Department of Chemistry, Florida Institute of Technology Neumark, Daniel M. (Daniel M. Neumark) - Lawrence Berkeley National

137

Browse by Discipline -- E-print Network Subject Pathways: -- Energy,  

Office of Scientific and Technical Information (OSTI)

D E F G H I J K L M N O P Q R S D E F G H I J K L M N O P Q R S T U V W X Y Z Cabeza, Roberto (Roberto Cabeza) - Center for Cognitive Neuroscience, Duke University Cabrera, Javier (Javier Cabrera) - Department of Statistics, Rutgers University Caflisch, Amedeo (Amedeo Caflisch) - Department of Biochemistry, Universität Zürich Cai, Long (Long Cai) - Division of Chemistry and Chemical Engineering, California Institute of Technology Caillaud, Marina (Marina Caillaud) - Biology Department, Ithaca College Cairo, Christopher W. (Christopher W. Cairo) - Department of Chemistry, University of Alberta Cajal Medrano, Ramón (Ramón Cajal Medrano) - Facultad de Ciencias Marinas, Universidad Autonoma de Baja California Calabrese, Ronald (Ronald Calabrese) - Department of Biology, Emory

138

Browse by Discipline -- E-print Network Subject Pathways: Geosciences --  

Office of Scientific and Technical Information (OSTI)

M N O P Q R S M N O P Q R S T U V W X Y Z Lagalante, Anthony F. (Anthony F. Lagalante) - Department of Chemistry, Villanova University Latturner, Susan (Susan Latturner) - Department of Chemistry and Biochemistry, Florida State University Laude, David A.(David A.Laude).- Department of Chemistry and Biochemistry, University of Texas at Austin Lawson, Catherine L. (Catherine L. Lawson) - Department of Chemistry and Chemical Biology, Rutgers University Lazaridis, Themis (Themis Lazaridis) - Department of Chemistry, City College, City University of New York Le Roy, Robert J. (Robert J. Le Roy) - Department of Chemistry, University of Waterloo Leatherbarrow, Robin J. (Robin J. Leatherbarrow) - Department of Chemistry, Imperial College, London Lectka, Thomas (Thomas Lectka) - Department of Chemistry, Johns

139

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

N O P Q R S N O P Q R S T U V W X Y Z Macdonald, Daniel (Daniel Macdonald) - College of Engineering and Computer Science, Australian National University Macdonald, Ellen (Ellen Macdonald) - Department of Renewable Resources, University of Alberta Mallick, Rajib B. (Rajib B. Mallick) - Department of Civil and Environmental Engineering, Worcester Polytechnic Institute McCready, Mark J. (Mark J. McCready) - Department of Chemical and Biomolecular Engineering, University of Notre Dame Michel Jr., Frederick C. (Frederick C. Michel Jr.) - Department of Food, Agricultural, and Biological Engineering, Ohio State University Mitchell, Paul D. (Paul D. Mitchell) - Department of Agricultural and Applied Economics, University of Wisconsin at Madison Mitchell, Stephen (Stephen Mitchell) - Department of Forest

140

Browse by Discipline -- E-print Network Subject Pathways: Physics --  

Office of Scientific and Technical Information (OSTI)

M N O P Q R S M N O P Q R S T U V W X Y Z La Porta, Tom (Tom La Porta) - Networking and Security Research Center & Department of Computer Science and Engineering, Pennsylvania State University Labossière, Pierre (Pierre Labossière) - Département de génie civil, Université de Sherbrooke Labrunie, Simon (Simon Labrunie) - Département Génie Civil, Université Henri Poincaré -Nancy-Université Lachenbruch, Barbara (Barbara Lachenbruch) - Department of Wood Science and Engineering, Oregon State University Lacroix, Mathieu (Mathieu Lacroix) - Laboratoire d'Informatique, Institut Galilée, Université Paris 13 Nord Ladd, Anthony J.C. (Anthony J.C. Ladd) - Chemical Engineering Department, University of Florida Lagoa, Constantino (Constantino Lagoa) - Department of Electrical

Note: This page contains sample records for the topic "disciplines chemical dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Browse by Discipline -- E-print Network Subject Pathways: -- Energy,  

Office of Scientific and Technical Information (OSTI)

G H I J K L M N O P Q R S G H I J K L M N O P Q R S T U V W X Y Z Fabrizio, Mary C. (Mary C. Fabrizio) - Virginia Institute of Marine Science, College of William and Mary Fabry, Zsuzsanna (Zsuzsanna Fabry) - Neuroscience Training Program & Departments of Pathology & Laboratory Medicine, University of Wisconsin at Madison Fadool, Debra Ann (Debra Ann Fadool) - Program in Neuroscience & Department of Biological Science, Florida State University Faeder, James R. (James R. Faeder) - Department of Computational Biology, University of Pittsburgh Fahlman, Andreas (Andreas Fahlman) - Department of Zoology, University of British Columbia Fahmy, Tarek (Tarek Fahmy) - Departments of Biomedical Engineering & Chemical and Environmental Engineering, Yale University

142

Browse by Discipline -- E-print Network Subject Pathways: Mathematics --  

Office of Scientific and Technical Information (OSTI)

I J K L M N O P Q R S I J K L M N O P Q R S T U V W X Y Z Haile, Sossina M. (Sossina M. Haile) - Departments of Chemical Engineering & Materials Science, California Institute of Technology Hallett, William L.H. (William L.H. Hallett) - Department of Mechanical Engineering, University of Ottawa Handy, Susan L. (Susan L. Handy) - Department of Environmental Science and Policy, University of California, Davis He, Zhen "Jason" (Zhen "Jason" He) - Department of Civil Engineering and Mechanics, University of Wisconsin-Milwaukee Hedrick, J. Karl (J. Karl Hedrick) - Department of Mechanical Engineering, University of California at Berkeley Heinz, Stefan (Stefan Heinz) - Department of Mathematics, University of Wyoming Hickman, Mark (Mark Hickman) - Department of Civil Engineering and

143

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Office of Scientific and Technical Information (OSTI)

J K L M N O P Q R S J K L M N O P Q R S T U V W X Y Z Iba, Yukito (Yukito Iba) - Institute of Statistical Mathematics (Japan) Ichiki, Kengo (Kengo Ichiki) - National Institute for Nanotechnology & Department of Mechanical Engineering, University of Alberta Idzerda, Yves (Yves Idzerda) - Magnetic Nanostructure Growth and Characterization Facility & Department of Physics, Montana State University Iglesia, Enrique (Enrique Iglesia) - Department of Chemical and Biomolecular Engineering, University of California at Berkeley Iglesias, José Roberto (José Roberto Iglesias) - Instituto de Física, Universidade Federal do Rio Grande do Sul Ihn, Thomas (Thomas Ihn) - Departement Physik, Eidgenössische Technische Hochschule Zürich (ETHZ) Imamoglu, Atac (Atac Imamoglu) - Departement Physik, Eidgenössische

144

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Office of Scientific and Technical Information (OSTI)

Materials Science Materials Science Go to Research Groups Preprints Provided by Individual Scientists: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Abécassis, Benjamin (Benjamin Abécassis) - Laboratoire de Physique des Solides, Université de Paris-Sud 11 Ackland, Graeme (Graeme Ackland) - Centre for Materials Science and Engineering & School of Physics, University of Edinburgh Adams, James B (James B Adams) - Department of Chemical and Materials Engineering, Arizona State University Adams, Philip W. (Philip W. Adams) - Department of Physics and Astronomy, Louisiana State University Adeyeye, Adekunle (Adekunle Adeyeye) - Department of Electrical and Computer Engineering, National University of Singapore Agrawal, Dinesh (Dinesh Agrawal) - Microwave Processing and

145

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

D E F G H I J K L M N O P Q R S D E F G H I J K L M N O P Q R S T U V W X Y Z Cao, Quang V. (Quang V. Cao) - School of Renewable Natural Resources, Louisiana State University Chaudhary, Sanjay (Sanjay Chaudhary) - Department of Energy Technology, Aalborg University Chee-Sanford, Joanne (Joanne Chee-Sanford) - Department of Crop Sciences, University of Illinois at Urbana-Champaign Chen, Wilfred (Wilfred Chen) - Department of Chemical and Biomolecular Engineering, University of Delaware Chen, Zhe (Zhe Chen) - Department of Energy Technology, Aalborg University Connor, Peter M. (Peter M. Connor) - Camborne School of Mines, University of Exeter in Cornwall Go back to Individual Researchers Collections: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

146

Browse by Discipline -- E-print Network Subject Pathways: Physics --  

Office of Scientific and Technical Information (OSTI)

Q R S Q R S T U V W X Y Z Paar, Christof (Christof Paar) - Fakultät für Elektrotechnik und Informationstechnik, Ruhr-Universität Bochum Paasch, Robert K.(Robert K.Paasch).- School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University Paden, Brad (Brad Paden) - Department of Mechanical and Environmental Engineering, University of California at Santa Barbara Padgett, Jamie Ellen (Jamie Ellen Padgett) - Department of Civil and Environmental Engineering, Rice University Padgett, Miles (Miles Padgett) - Department of Physics and Astronomy, University of Glasgow Páez Chávez, Joseph (Joseph Páez Chávez) - Centre for Applied Dynamics Research, School of Engineering, University of Aberdeen Pagilla, Prabhakar R. (Prabhakar R. Pagilla) - School of Mechanical

147

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

E F G H I J K L M N O P Q R S E F G H I J K L M N O P Q R S T U V W X Y Z D'Andrea, Fabio (Fabio D'Andrea) - Laboratoire de Météorologie Dynamique, Ecole Normale Supérieure D'Odorico, Paolo (Paolo D'Odorico) - Department of Environmental Sciences, University of Virginia Dacre, Helen (Helen Dacre) - Department of Meteorology, University of Reading Daczko, Nathan (Nathan Daczko) - Department of Earth and Planetary Sciences, Macquarie University Dai, Aiguo (Aiguo Dai) - Climate and Global Dynamics Division, National Center for Atmospheric Research Daly, Christopher (Christopher Daly) - Department of Geosciences, Oregon State University Damm, Bodo (Bodo Damm) - Institut für Geographie, Universität Regensburg Damoah, Richard (Richard Damoah) - School of GeoSciences, University

148

Browse by Discipline -- E-print Network Subject Pathways: Power  

Office of Scientific and Technical Information (OSTI)

B C D E F G H I J K L M N O P Q R S B C D E F G H I J K L M N O P Q R S T U V W X Y Z Badyaev, Alex (Alex Badyaev) - Department of Ecology and Evolutionary Biology, University of Arizona Baes, Fred (Fred Baes) - Life Sciences Division, Oak Ridge National Laboratory Bahn, Volker (Volker Bahn) - Department of Biological Sciences, Wright State University Bailey, Donovan (Donovan Bailey) - Department of Biology, New Mexico State University Baird, Mark (Mark Baird) - Climate and Environmental Dynamics Laboratory, School of Mathematics and Statistics, University of New South Wales Baird, Robin W. (Robin W. Baird) - Cascadia Research Collective Baker, Andrew C. (Andrew C. Baker) - Rosenstiel School of Marine and Atmospheric Sciences, University of Miami Baker, Robert J. (Robert J. Baker) - Museum of Texas Tech University

149

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

B C D E F G H I J K L M N O P Q R S B C D E F G H I J K L M N O P Q R S T U V W X Y Z Babin, Marcel (Marcel Babin) - Laboratoire d'Océanographie de Villefranche Backe, Knut (Knut Backe) - Department of Petroleum Engineering and Applied Geophysics, Norwegian University of Science and Technology Baer, Ferdinand (Ferdinand Baer) - Department of Atmospheric and Oceanic Science, University of Maryland at College Park Bagtzoglou, Amvrossios C. (Amvrossios C. Bagtzoglou) - Department of Civil and Environmental Engineering, University of Connecticut Baird, Mark (Mark Baird) - Climate and Environmental Dynamics Laboratory, School of Mathematics and Statistics, University of New South Wales Baldwin, Mark (Mark Baldwin) - Northwest Research Associates, Inc. Balland, Pierre-Alexandre (Pierre-Alexandre Balland) - Faculty of

150

Browse by Discipline -- E-print Network Subject Pathways: Mathematics --  

Office of Scientific and Technical Information (OSTI)

B C D E F G H I J K L M N O P Q R S B C D E F G H I J K L M N O P Q R S T U V W X Y Z Al-Ghadhban, Samir (Samir Al-Ghadhban) - Electrical Engineering Department, King Fahd University of Petroleum and Minerals Andersen, Torben Ole (Torben Ole Andersen) - Department of Energy Technology, Aalborg University Anderson, Larry G.(Larry G.Anderson).- Department of Chemistry, University of Colorado at Denver Anderson, Scott L. (Scott L. Anderson) - Department of Chemistry, University of Utah Andreasen, Søren Juhl (Søren Juhl Andreasen) - Department of Energy Technology, Aalborg University Arno, Gehrer (Gehrer Arno) - Institute for Thermal Turbomachinery and Machine Dynamics, Technical University Graz Artuso, Florinda (Florinda Artuso) - Unit for Environment and Energy Modeling, ENEA

151

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

W X Y Z W X Y Z Vainchtein, Dmitri (Dmitri Vainchtein) - Center for Nonlinear Science, School of Physics, Georgia Institute of Technology Vajda, Vivi (Vivi Vajda) - Department of Earth and Ecosystem Sciences, Lunds Universitet Vali, Gabor (Gabor Vali) - Department of Atmospheric Science, University of Wyoming Valkó, Peter (Peter Valkó) - Department of Petroleum Engineering, Texas A&M University Vallée, Martin (Martin Vallée) - Laboratoire Géosciences Azur, Université de Nice Sophia Antipolis Vallis, Geoff (Geoff Vallis) - Geophysical Fluid Dynamics Laboratory & Program in Atmospheric and Oceanic Sciences, Princeton University van der Baan, Mirko (Mirko van der Baan) - Department of Physics, University of Alberta van der Beek, Peter (Peter van der Beek) - Institut des Sciences de

152

DOE Chair of Excellence Professorship in Environmental Disciplines  

Science Conference Proceedings (OSTI)

The United States (US) nuclear weapons program during the Cold War left a legacy of radioactive, hazardous, chemical wastes and facilities that may seriously harm the environment and people even today. Widespread public concern about the environmental pollution has created an extraordinary demand for the treatment and disposal of wastes in a manner to protect the public health and safety. The pollution abatement and environmental protection require an understanding of technical, regulatory, economic, permitting, institutional, and public policy issues. Scientists and engineers have a major role in this national effort to clean our environment, especially in developing alternative solutions and evaluation criteria and designing the necessary facilities to implement the solutions. The objective of the DOE Chair of Excellence project is to develop a high quality educational and research program in environmental engineering at North Carolina A&T State University (A&T). This project aims to increase the number of graduate and undergraduate students trained in environmental areas while developing a faculty concentrated in environmental education and research. Although A&T had a well developed environmental program prior to the Massie Chair grant, A&T's goal is to become a model of excellence in environmental engineering through the program's support. The program will provide a catalyst to enhance collaboration of faculty and students among various engineering departments to work together in a focus research area. The collaboration will be expanded to other programs at A&T. The past research focus areas include: hazardous and radioactive waste treatment and disposal fate and transport of hazardous chemicals in the environment innovative technologies for hazardous waste site remediation pollution prevention Starting from 2005, the new research focus was in the improvement of accuracy for radioactive contaminant transport models by ensemble based data assimilation. The specific objectives are to: 1). improve model accuracy for use in minimizing health and environmental risk, and 2). improve the decision making process in the selection and application of available technologies for long-term monitoring and safeguard operation at NNSA sites.

Shoou-Yuh Chang

2013-01-31T23:59:59.000Z

153

Assimilation of Stratospheric Chemical Tracer Observations Using a Kalman Filter. Part II: ?2-Validated Results and Analysis of Variance and Correlation Dynamics  

Science Conference Proceedings (OSTI)

A Kalman filter system designed for the assimilation of limb-sounding observations of stratospheric chemical tracers, which has four tunable covariance parameters, was developed in Part I of this two-part paper. The assimilation results of CH4 ...

Richard Ménard; Lang-Ping Chang

2000-08-01T23:59:59.000Z

154

Label-free Chemical and Biological Sensors Based on Self ...  

Science Conference Proceedings (OSTI)

Chemical Synthesis and Structural Analysis of Gd2O3 Nanoparticles for Optical Applications · Complex Crystallization Dynamics in Amorphous Germanium ...

155

Factsheet Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

disciplines include heat transfer, physics, fluid dynamics, solid mechanicsstructural analysis, chemical process modeling, molecular modeling, discrete event simulation,...

156

Argonne Chemical Sciences & Engineering - Fundamental Interactions  

NLE Websites -- All DOE Office Websites (Extended Search)

* Chemical Dynamics * Chemical Dynamics * Solar Conversion Fundamental Interactions flame photosynthesis icon Chemical Dynamics Work focuses on theoretical and experimental investigation of the thermochemistry, dynamics, and kinetics of chemcial reactions in the gas phase, with a particular emphasis on reactions that are important to understanding combusion. Solar Conversion Work focuses on developing a fundamental understanding of structure-function relationships in biological photosynthesis and establishing principles for the design of biomimetic systems for solar energy conversion. Current funding for this work comes primarily from the Department of Energy Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Divisions. April 2011

157

Corrosion Experiences in the Chemical Process Industry  

Science Conference Proceedings (OSTI)

Oct 18, 2010 ... Under extremely dynamic and technological conditions, every chemical company must remain able to counteract the challenges of the new ...

158

Electrical Engineering (EE) is a diverse discipline encompassing computer and information systems, controls,  

E-Print Network (OSTI)

and multiply excited systems. Concepts in rotating machinery analysis. Direct energy conversion. Prerequisite70 electrical Electrical Engineering (EE) is a diverse discipline encompassing computer information processing. ProgrAmS AVAilAble · ElectricalEngineering Bachelor of Science 131 units · Computer

Rohs, Remo

159

Electrical Engineering (EE) is a diverse discipline encompassing computer and information systems, controls,  

E-Print Network (OSTI)

in singly and multiply excited systems. Concepts in rotating machinery analysis. Direct energy conversion70 electrical Electrical Engineering (EE) is a diverse discipline encompassing computer information processing. ProgrAmS AVAilAble · ElectricalEngineering Bachelor of Science 131 units · Computer

Rohs, Remo

160

Computational Mechanics: A Core Discipline in Com-putational Science and Engineering  

E-Print Network (OSTI)

Computational Mechanics: A Core Discipline in Com- putational Science and Engineering Theoretical and Applied Mechanics (TAM) is the branch of applied science concerned with the study of mechanical phenomena area that affects our lives, security, and well being. Computational Mechanics (CM) is that sub

Thompson, Lonny L.

Note: This page contains sample records for the topic "disciplines chemical dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The NU Transportation Center Icarus Society presents.... "Airline Capacity Discipline: Where and  

E-Print Network (OSTI)

The NU Transportation Center Icarus Society presents.... "Airline Capacity Discipline: Where and to What Extent? Aaron J. Gellman Professor of Transportation Northwestern University Transportation Center and Kellogg School of Management Thursday Nov. 29, 2012 3:00 pm Location: Transportation Center Chambers Hall

Bustamante, Fabián E.

162

CSD: Research Programs: Chemical Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

CSD: Research: Chemical Physics CSD: Research Programs: Chemical Physics CSD: Research: Chemical Physics CSD: Research Programs: Chemical Physics LBL Logo A-Z CSD Research Highlights CSD Directory Chemical Sciences Division A-Z Index Phone Book Search Berkeley Lab INTRODUCTION TO CSD NATIONAL FACILITIES & CENTERS RESEARCH PROGRAMS Atomic, Molecular & Optical Sciences Catalytic Science Chemical Physics The Glenn T. Seaborg Center (GTSC) STUDENT & POSTDOCTORAL OPPORTUNITIES NEWS & EVENTS CSD CONTACTS LBNL HOME Privacy & Security Notice DOE UC Berkeley CSD > Research Programs > Chemical Physics The Chemical Physics Program of the Chemical Science Division of LBNL is concerned with the development of both experimental and theoretical methodologies for studying molecular structure and dynamical processes at the most fundamental level, and with the application of these to specific

163

Evaluating Chemical Persistence in a Multimedia Environment: A CART Analysis  

E-Print Network (OSTI)

Multimedia Fate Of Organic Chemicals - A Level- Ill FugacityBennett DH, McKone TE. 1998. Chemical Dynamics of PersistentLBNL-42897 Evaluating Chemical Persistence in a Multimedia

Bennett, D.H.

2011-01-01T23:59:59.000Z

164

Dynamic neurotransmitter interactions measured with PET  

SciTech Connect

Positron emission tomography (PET) has become a valuable interdisciplinary tool for understanding physiological, biochemical and pharmacological functions at a molecular level in living humans, whether in a healthy or diseased state. The utility of tracing chemical activity through the body transcends the fields of cardiology, oncology, neurology and psychiatry. In this, PET techniques span radiochemistry and radiopharmaceutical development to instrumentation, image analysis, anatomy and modeling. PET has made substantial contributions in each of these fields by providing a,venue for mapping dynamic functions of healthy and unhealthy human anatomy. As diverse as the disciplines it bridges, PET has provided insight into an equally significant variety of psychiatric disorders. Using the unique quantitative ability of PET, researchers are now better able to non-invasively characterize normally occurring neurotransmitter interactions in the brain. With the knowledge that these interactions provide the fundamental basis for brain response, many investigators have recently focused their efforts on an examination of the communication between these chemicals in both healthy volunteers and individuals suffering from diseases classically defined as neurotransmitter specific in nature. In addition, PET can measure the biochemical dynamics of acute and sustained drug abuse. Thus, PET studies of neurotransmitter interactions enable investigators to describe a multitude of specific functional interactions in the human brain. This information can then be applied to understanding side effects that occur in response to acute and chronic drug therapy, and to designing new drugs that target multiple systems as opposed to single receptor types. Knowledge derived from PET studies can be applied to drug discovery, research and development (for review, see (Fowler et al., 1999) and (Burns et al., 1999)). Here, we will cover the most substantial contributions of PET to understanding biologically distinct neurochemical systems that interact to produce a variety of behaviors and disorders. Neurotransmitters are neither static nor isolated in their distribution. In fact, it is through interactions with other neurochemically distinct systems that the central nervous system (CNS) performs its vital role in sustaining life. Exclusive quantitative capabilities intrinsic to PET make this technology a suitable experimental tool to measure not only the regional distribution of specific receptors and their subtypes, but also the dynamic properties of neuroreceptors and their inherent influence on related neurotransmitter pathways. The ability to investigate dynamic properties in a non-invasive and reproducible manner provides a powerful tool that can extend our current knowledge of these interactions. Coupled with innovative paradigms including pharmacologic manipulations, physiologic models and reconstruction theories, knowledge derived from PET studies can greatly advance our understanding of normal and abnormal brain function.

Schiffer, W.K.; Dewey, S.L.

2001-04-02T23:59:59.000Z

165

Chemical Science  

NLE Websites -- All DOE Office Websites (Extended Search)

reactor concept for deep space exploration Research directions Weapons chemistry and nuclear performance Radiological, nuclear, and chemical signatures Energy production,...

166

Photoconduction efficiencies and dynamics in GaN nanowires grown by chemical vapor deposition and molecular beam epitaxy: A comparison study  

Science Conference Proceedings (OSTI)

The normalized gains, which determines the intrinsic photoconduction (PC) efficiencies, have been defined and compared for the gallium nitride (GaN) nanowires (NWs) grown by chemical vapor deposition (CVD) and molecular beam epitaxy (MBE). By excluding the contributions of experimental parameters and under the same light intensity, the CVD-grown GaN NWs exhibit the normalized gain which is near two orders of magnitude higher than that of the MBE-ones. The temperature-dependent time-resolved photocurrent measurement further indicates that the higher photoconduction efficiency in the CVD-GaN NWs is originated from the longer carrier lifetime induced by the higher barrier height ({phi}{sub B} = 160 {+-} 30 mV) of surface band bending. In addition, the experimentally estimated barrier height at 20 {+-} 2 mV for the MBE-GaN NWs, which is much lower than the theoretical value, is inferred to be resulted from the lower density of charged surface states on the non-polar side walls.

Chen, R. S. [Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Tsai, H. Y. [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Huang, Y. S. [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Chen, Y. T. [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China); Chen, L. C. [Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan (China); Chen, K. H. [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China); Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan (China)

2012-09-10T23:59:59.000Z

167

Chemical microsensors  

DOE Patents (OSTI)

An article of manufacture is provided including a substrate having an oxide surface layer and a selective thin film of a cyclodextrin derivative chemically bound upon said substrate, said film is adapted for the inclusion of a selected organic compound therewith. Such an article can be either a chemical sensor capable of detecting a resultant mass change from inclusion of the selected organic compound or a chemical separator capable of reversibly selectively separating a selected organic compound.

Li, DeQuan (Los Alamos, NM); Swanson, Basil I. (Los Alamos, NM)

1995-01-01T23:59:59.000Z

168

Chemical & EngChemical/Engineering Materials Division | Neutron Science |  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Engineering Materials Division Chemical and Engineering Materials Division SHARE Chemical and Engineering Materials Division CEMD Director Mike Simonson The Chemical and Engineering Materials Division (CEMD) supports neutron-based research at SNS and HFIR in understanding the structure and dynamics of chemical systems and novel engineering materials. The user community takes advantage of division-supported capabilities of neutron scattering for measurements over wide ranges of experimental and operating conditions, including studies of chemical and physical changes in situ. User experiments with diffraction, small-angle scattering, inelastic and quasielastic scattering, and neutron imaging instruments address a range of problems in chemistry and in engineering materials research. Current areas of research supported by the division include the structure

169

DOE contractor's meeting on chemical toxicity  

Science Conference Proceedings (OSTI)

The Office of Health and Environmental Research (OHER) is required to determine the potential health and environmental effects associated with energy production and use. To ensure appropriate communication among investigators and scientific disciplines that these research studies represent, OHER has sponsored workshops. This document provides a compilation of activities at the Third Annual DOE/OHER Workshop. This year's workshop was broadened to include all OHER activities identified as within the chemical effects area. The workshop consisted of eight sessions entitled Isolation and Detection of Toxic chemicals; Adduct Formation and Repair; Chemical Toxicity (Posters); Metabolism and Genotoxicity; Inhalation Toxicology; Gene Regulation; Metals Toxicity; and Biological Mechanisms. This document contains abstracts of the information presented by session.

Not Available

1987-01-01T23:59:59.000Z

170

Chemical sensors  

DOE Patents (OSTI)

Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising (a) a mechanochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, operatively coupled to (b) a transducer capable of directly converting said expansion or contraction to a measurable electrical response.

Lowell, Jr., James R. (Bend, OR); Edlund, David J. (Bend, OR); Friesen, Dwayne T. (Bend, OR); Rayfield, George W. (Bend, OR)

1991-01-01T23:59:59.000Z

171

Chemical preconcentrator  

DOE Patents (OSTI)

A chemical preconcentrator is disclosed with applications to chemical sensing and analysis. The preconcentrator can be formed by depositing a resistive heating element (e.g. platinum) over a membrane (e.g. silicon nitride) suspended above a substrate. A coating of a sorptive material (e.g. a microporous hydrophobic sol-gel coating or a polymer coating) is formed on the suspended membrane proximate to the heating element to selective sorb one or more chemical species of interest over a time period, thereby concentrating the chemical species in the sorptive material. Upon heating the sorptive material with the resistive heating element, the sorbed chemical species are released for detection and analysis in a relatively high concentration and over a relatively short time period. The sorptive material can be made to selectively sorb particular chemical species of interest while not substantially sorbing other chemical species not of interest. The present invention has applications for use in forming high-sensitivity, rapid-response miniaturized chemical analysis systems (e.g. a "chem lab on a chip").

Manginell, Ronald P. (Albuquerque, NM); Frye-Mason, Gregory C. (Cedar Crest, NM)

2001-01-01T23:59:59.000Z

172

CHEMICAL ENGINEERING AND MANUFACTURING CHEMICAL ENGINEERING  

E-Print Network (OSTI)

CHEMICAL ENGINEERING AND MANUFACTURING CHEMICAL ENGINEERING Objective Chemical Engineers of chemicals. This lesson introduces students to one component of chemical engineering: food processing, and a chemical engineer 2. How chemical engineers are involved in food production 3. That chemical engineers need

Provancher, William

173

Chemical engineers design, control and optimize large-scale chemical, physicochemical and  

E-Print Network (OSTI)

Chemical Process and Plant Design (3, Sp) Applications of unit operations, ther-mo-dynamics, kinetics by petition only. 405 Applications of Probability and Statistics for Chemical Engineers (3, Fa) Principles of probability and statistics, random variables and random functions. Application to chemical engineering

Wang, Hai

174

Application of mixed-integer programming in chemical engineering  

E-Print Network (OSTI)

. . . . . . . . . . . . 14 2.3.1.3 Hybrid methods . . . . . . . . . . . . . . . . . . 18 vi Table of contents 2.3.2 Heuristic approaches . . . . . . . . . . . . . . . . . . . . . 19 2.4 Travelling Salesman & Computational Complexity Theory . . . . 19 2.5 Applications... 1 1. Introduction disciplines. Those related to Chemical Engineering include the vehicle routing problem, machine scheduling problem and genome mapping. Hitherto, all existing mathematical formulations of the Travelling Salesman Problem have required...

Pogiatzis, Thomas

2013-06-11T23:59:59.000Z

175

Chemical Activation  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Activation of Single-walled Carbon Nanotubes for Hydrogen Adsorption Milton R. Smith, Jr., 1 Edward W. Bittner, 1 Wei Shi, 1, 2 J. Karl Johnson, 1, 2 and Bradley C....

176

Frontiers in Chemical Physics and Analysis Seminar Series  

E-Print Network (OSTI)

Frontiers in Chemical Physics and Analysis Seminar Series Aqueous Solvation in Extreme Conditions the application of classical chemical dynamics simulations possible for a broad range of problems. However, since

177

Chemical & Engineering Materials | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Engineering Materials Chemical and Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the structure and dynamics of chemical systems and novel engineering materials. The user community takes advantage of capabilities of neutron scattering for measurements over wide ranges of experimental and operating conditions, including studies of chemical and physical changes in situ. User experiments with diffraction, small-angle scattering, inelastic and quasi-elastic scattering, and neutron imaging instruments address a range of problems in chemistry and in engineering materials research. Current areas of research supported within Chemical and Engineering Materials include: The structure and dynamics of electrical energy storage materials

178

Chemical and Engineering Materials | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Engineering Materials Chemical and Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the structure and dynamics of chemical systems and novel engineering materials. The user community takes advantage of capabilities of neutron scattering for measurements over wide ranges of experimental and operating conditions, including studies of chemical and physical changes in situ. User experiments with diffraction, small-angle scattering, inelastic and quasi-elastic scattering, and neutron imaging instruments address a range of problems in chemistry and in engineering materials research. Current areas of research supported within Chemical and Engineering Materials include: The structure and dynamics of electrical energy storage materials

179

Chemical & Engineering Materials | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Engineering Materials Chemical and Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the structure and dynamics of chemical systems and novel engineering materials. The user community takes advantage of capabilities of neutron scattering for measurements over wide ranges of experimental and operating conditions, including studies of chemical and physical changes in situ. User experiments with diffraction, small-angle scattering, inelastic and quasi-elastic scattering, and neutron imaging instruments address a range of problems in chemistry and in engineering materials research. Current areas of research supported within Chemical and Engineering Materials include: The structure and dynamics of electrical energy storage materials

180

Chemical sensors  

DOE Patents (OSTI)

Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising a mechanicochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, either operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical or optical response, or adhered to a second inert polymeric strip, or doped with a conductive material. 12 figs.

Lowell, J.R. Jr.; Edlund, D.J.; Friesen, D.T.; Rayfield, G.W.

1992-06-09T23:59:59.000Z

Note: This page contains sample records for the topic "disciplines chemical dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Chemical sensors  

DOE Patents (OSTI)

Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising a mechanicochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, either operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical or optical response, or adhered to a second inert polymeric strip, or doped with a conductive material.

Lowell, Jr., James R. (Bend, OR); Edlund, David J. (Bend, OR); Friesen, Dwayne T. (Bend, OR); Rayfield, George W. (Eugene, OR)

1992-01-01T23:59:59.000Z

182

Chemical and Engineering Materials Division | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

and Engineering Materials Division (CEMD) supports neutron-based research at SNS and HFIR in understanding the structure and dynamics of chemical systems and novel engineering...

183

Studying the Solar System's Chemical Recipe  

NLE Websites -- All DOE Office Websites (Extended Search)

asteroids, and interplanetary ice and dust, a team of scientists from the University of California, San Diego is using ALS Chemical Dynamics Beamline 9.0.2 to mimic radiation...

184

Argonne Chemical Sciences & Engineering - Fundamental Interactions...  

NLE Websites -- All DOE Office Websites (Extended Search)

cf3 radical An image of the CF3 radicals produced by the photodissociation of CF3I. Chemical Dynamics The goal of this effort is to investigate the unimolecular and bimolecular...

185

Chemical Sciences Division: Directory  

NLE Websites -- All DOE Office Websites (Extended Search)

INTRODUCTION INTRODUCTION TO CSD NATIONAL FACILITIES & CENTERS RESEARCH STUDENT & POSTDOCTORAL OPPORTUNITIES NEWS & EVENTS CSD CONTACTS LBNL HOME Privacy & Security Notice DOE UC Berkeley CSD Directory A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Rebecca Abergel CSD Project Scientist; The Glenn T. Seaborg Center. Musahid Ahmed CSD Staff Scientist, Chemical Physics Program/Chemical Dynamics Beamline Publications Richard A. Andersen Professor of Chemistry, UC Berkeley; CSD Senior Faculty Scientist, The Glenn T. Seaborg Center Publications John Arnold Professor of Chemistry, UC Berkeley; CSD Faculty Scientist, Catalytic Science Program Publications B Ali Belkacem CSD Deputy and Senior Staff Scientist; Atomic, Molecular and Optical Sciences Program Leader

186

Development of a chemical vision spectrometer to detect chemical agents.  

DOE Green Energy (OSTI)

This paper describes initial work in developing a no-moving-parts hyperspectral-imaging camera that provides both a thermal image and specific identification of chemical agents, even in the presence of nontoxic plumes. The camera uses enhanced stand-off chemical agent detector (ESCAD) technology based on a conventional thermal-imaging camera interfaced with an acousto-optical tunable filter (AOTF). The AOTF is programmed to allow selected spectral frequencies to reach the two dimensional array detector. These frequencies are combined to produce a spectrum that is used for identification. If a chemical agent is detected, pixels containing the agent-absorbing bands are given a colored hue to indicate the presence of the agent. In test runs, two thermal-imaging cameras were used with a specially designed vaporizer capable of controlled low-level (low ppm-m) dynamic chemical releases. The objective was to obtain baseline information about detection levels. Dynamic releases allowed for realistic detection scenarios such as low sky, grass, and wall structures, in addition to reproducible laboratory releases. Chemical releases consisted of dimethylmethylphosphonate (DMMP) and methanol. Initial results show that the combination of AOTF and thermal imaging will produce a chemical image of a plume that can be detected in the presence of interfering substances.

Demirgian, J.

1999-02-23T23:59:59.000Z

187

Chemical sciences, annual report 1993  

SciTech Connect

The Chemical Sciences Division (CSD) is one of eleven research Divisions of the Lawrence Berkeley Laboratory, a DOE National Laboratory. In FY 1993, the Division made considerable progress on developing two end-stations and a beamline to advance combustion dynamics at the Advanced Light Source (ALS). In support of DOE`s national role in combustion research and chemical science, the beamline effort will enable researchers from around the world to make fundamental advances in understanding the structure and reactivity of critical reaction intermediates and transients, and in understanding the dynamics of elementary chemical reactions. The Division has continued to place a strong emphasis on full compliance with environmental health and safety guidelines and regulations and has made progress in technology transfer to industry. Finally, the Division has begun a new program in advanced battery research and development that should help strengthen industrial competitiveness both at home and abroad.

1994-10-01T23:59:59.000Z

188

Chemical dynamics in time and energy space  

Science Conference Proceedings (OSTI)

The development of a versatile picosecond ultraviolet/vacuum ultraviolet temporal spectrometer and its potential use for measuring internal energy redistribution in isolated molecules are described in detail. A detailed description of the double-pass Nd:YAG amplifier and the dye amplifiers is given with the pulse energies achieved in the visible, ultraviolet, and vacuum ultraviolet. The amplified visible pulses are shown to be of sub-picosecond duration and near transform limited. The instrument`s temporal response ({le}10 ps) is derived from an instrument limited measurement of the dissociation lifetime of methyl iodide at 266 nm. The methyl iodide experiment is used to discuss the various sources of noise and background signals that are intrinsic to this type of experiment. Non-time-resolved experiments measuring the branching ratio and kinetic energy distributions of products from the 193 nm photodissociation of cyclopentadiene and thiophene are presented. These studies were done using the molecular beam Photofragment Translational Spectroscopy (PTS) technique. The results from the cyclopentadiene experiment confirm that H atom elimination to yield the cyclopentadienyl radical is the dominant dissociation channel. A barrier of {ge}5 kcal/mol can be understood in terms of the delocalization of the radical electron of the cyclopentadienyl fragment. A concerted elimination yielding cyclopropene and acetylene was also observed and is proposed to occur via a bicyclo-[2.1.0]pent-2-ene intermediate. Two other channels, yielding acetylene plus the CH{sub 2}CHCH triplet carbene, and CH{sub 2} plus 1-buten-3-yne, are postulated to occur via ring opening. The implications of the experimental results for bulk thermal oxidation and pyrolysis models are discussed. The thiophene experiment shows six competing dissociation channels. The postulated intermediates for the various thiophene dissociation channels include bicyclo, ring opened, and possibly ring contracted forms.

Myers, J.D.

1993-04-01T23:59:59.000Z

189

Chemical Evolution  

E-Print Network (OSTI)

In this series of lectures we first describe the basic ingredients of galactic chemical evolution and discuss both analytical and numerical models. Then we compare model results for the Milky Way, Dwarf Irregulars, Quasars and the Intra-Cluster- Medium with abundances derived from emission lines. These comparisons allow us to put strong constraints on the stellar nucleosynthesis and the mechanisms of galaxy formation.

Francesca Matteucci

2007-04-05T23:59:59.000Z

190

Chemical Biodynamics Division. Annual report 1979  

DOE Green Energy (OSTI)

The Chemical Biodynamics Division of LBL continues to conduct basic research on the dynamics of living cells and on the interaction of radiant energy with organic matter. Many aspects of this basic research are related to problems of environmental and health effects of fossil fuel combustion, solar energy conversion and chemical/ viral carcinogenesis.

Not Available

1980-08-01T23:59:59.000Z

191

The Suntory and Toyota International Centres for Economics and Related Disciplines Statistical Tests of Agreement between Observation and Hypothesis  

E-Print Network (OSTI)

The Suntory and Toyota International Centres for Economics and Related Disciplines Statistical of Economics and Political Science and The Suntory and Toyota International Centres for Economics and Related, The London School of Economics and Political Science, The Suntory and Toyota International Centres

Masci, Frank

192

From Theory to Application: Extreme Fire, Resilience, Restoration, and Education in Social-Ecological Disciplines  

E-Print Network (OSTI)

Conceptual and theoretical advancements have been developed in recent years to break down the assumptions and traditional boundaries that establish seemingly independent disciplines, and the research outlined in this dissertation aspires to build on these advancements to provide innovative solutions to a broad array of modern problems in social-ecological. I used a variety of techniques to address challenges ranging from disconnections between theory and application, perceived versus realized roles of prescribed fire in resprouting shrublands, and the need for broader participation in research as part of undergraduate education. The chapters in this dissertation serve as a case-study approach across multiple scientific disciplines that overcome the traditions and assumptions that conflict with our ability to develop innovative solutions to modern social-ecological problems. First, I bridge theoretical and applied concepts by showing how recent theoretical advancements in resilience can be integrated into a predictive framework for environmental managers. Second, experimental data from multiple experiments were collected in two ecological regions of Texas to assess the potential for using extreme fire, in isolation and in combination with herbicide, as a novel intervention approach in resprouting shrublands of the southern Great Plains. The findings from these experiments demonstrate the importance of moving past traditional assumptions of when prescribed fire should be applied to demonstrate new patterns of woody plant responses to the applications of “more extreme” prescribed fires while not causing undesirable invasions by exotic grasses and exotic insects. Finally, I initiated a PhD instructed course on undergraduate research that sought to increase undergraduate participation while lowering the costs of conducting research. This chapter shows how traditional approaches of supporting undergraduate research are incapable of meeting the broader goals established by society and reveal a novel approach that can provide an additional pathway for supporting undergraduate student participation at large, research-based universities. Ultimately, this research suggests that our capacity to enhance services in social-ecological systems ultimately hinges upon the integration of theoretical and applied concepts that drive policy and governance and overcoming the assumptions and traditions that limit their integration.

Twidwell, Dirac

2012-05-01T23:59:59.000Z

193

Bütschli dynamic droplet system  

Science Conference Proceedings (OSTI)

Dynamical oil-water systems such as droplets display lifelike properties and may lend themselves to chemical programming to perform useful work, specifically with respect to the built environment. We present Bütschli water-in-oil droplets as a model ... Keywords: Otto Bütschli, architecture, droplet, living technology, olive oil, origins of life

Rachel Armstrong; Martin Hanczyc

2013-10-01T23:59:59.000Z

194

About Chemical Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Hazards What Is a Chemical Hazard? chemical hazards.jpg A chemical hazard is any substance that can cause harm, primarily to people. Chemicals of all kinds are stored in...

195

Browse by Discipline -- E-print Network Subject Pathways: Plasma Physics  

Office of Scientific and Technical Information (OSTI)

X Y Z X Y Z Wang, Zhi "Luke" (Zhi "Luke" Wang) - Department of Earth and Environmental Sciences, California State University, Fresno Wania, Frank (Frank Wania) - Departments of Chemistry & Chemical Engineering and Applied Chemistry, University of Toronto Wells, Scott A. (Scott A. Wells) - Department of Civil Engineering and Environmental Sciences, Portland State University Wilde, Gene (Gene Wilde) - Department of Biological Sciences, Texas Tech University Wildenschild, Dorthe (Dorthe Wildenschild) - School of Chemical, Biological, and Environmental Engineering, Oregon State University Wilkinson, Mark (Mark Wilkinson) - School of GeoSciences, University of Edinburgh Woltemade, Christopher J. (Christopher J. Woltemade) - Department of Geography-Earth Science, Shippensburg University

196

Browse by Discipline -- E-print Network Subject Pathways: Fossil Fuels --  

Office of Scientific and Technical Information (OSTI)

S S T U V W X Y Z Sabatti, Chiara (Chiara Sabatti) - Division of Biostatistics, Stanford University Salem, Aliasger K. (Aliasger K. Salem) - Chemical and Biochemical Engineering Department, University of Iowa Sali, Andrej (Andrej Sali) - Department of Biochemistry and Biophysics, University of California at San Francisco Salzberg, Steven (Steven Salzberg) - Center for Bioinformatics and Computational Biology & Department of Computer Science, University of Maryland at College Park Samudrala, Ram (Ram Samudrala) - Department of Microbiology, University of Washington at Seattle Sandelin, Erik (Erik Sandelin) - Stockholm Bioinformatics Center, StockholmUniversity Schaffer, David V. (David V. Schaffer) - Department of Chemical and Biomolecular Engineering, University of California at Berkeley

197

Chemical vapor deposition sciences  

SciTech Connect

Chemical vapor deposition (CVD) is a widely used method for depositing thin films of a variety of materials. Applications of CVD range from the fabrication of microelectronic devices to the deposition of protective coatings. New CVD processes are increasingly complex, with stringent requirements that make it more difficult to commercialize them in a timely fashion. However, a clear understanding of the fundamental science underlying a CVD process, as expressed through computer models, can substantially shorten the time required for reactor and process development. Research scientists at Sandia use a wide range of experimental and theoretical techniques for investigating the science of CVD. Experimental tools include optical probes for gas-phase and surface processes, a range of surface analytic techniques, molecular beam methods for gas/surface kinetics, flow visualization techniques and state-of-the-art crystal growth reactors. The theoretical strategy uses a structured approach to describe the coupled gas-phase and gas-surface chemistry, fluid dynamics, heat and mass transfer of a CVD process. The software used to describe chemical reaction mechanisms is easily adapted to codes that model a variety of reactor geometries. Carefully chosen experiments provide critical information on the chemical species, gas temperatures and flows that are necessary for model development and validation. This brochure provides basic information on Sandia`s capabilities in the physical and chemical sciences of CVD and related materials processing technologies. It contains a brief description of the major scientific and technical capabilities of the CVD staff and facilities, and a brief discussion of the approach that the staff uses to advance the scientific understanding of CVD processes.

1992-12-31T23:59:59.000Z

198

Chemical Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Science Chemical Science Compton double ionization of helium in the region of the cross-section maximum B. Krässig, R.W. Dunford, D.S. Gemmell, S. Hasegawa, E.P. Kanter, H. Schmidt-Böcking, W. Schmitt, S.H. Southworth, Th. Weber, and L. Young Crystal structure analysis of microporous Na16Nb12.8Ti3.2O44.8(OH)3.2l8H2O and Na/Nb/Zr/O/H2O phases A. Tripathi, J. Parise, M. Nyman, T.M. Nenoff, and W. Harrison Double K-photoionization of heavy atoms R.W. Dunford, D.S. Gemmell, E.P. Kanter, B. Krässig, and S.H. Southworth Forward-backward asymmetries of atomic photoelectrons S.H. Southworth, B. Krässig, E.P. Kanter, J.C. Bilheux, R.W. Dunford, D.S. Gemmell, S. Hasegawa, and L. Young In situreduction of various iron oxides to form high-surface-area Fe-metal catalysts as studied by high-resolution powder diffraction

199

Chemical Education Today 1466 Journal of Chemical Education Vol. 78 No. 11 November 2001 JChemEd.chem.wisc.edu  

E-Print Network (OSTI)

Ed.chem.wisc.edu Chemical Kinetics and Reaction Dynamics by Paul L. Houston McGraw-Hill Higher Education: New York, 2001 (chapters on kinetic theory, reaction rates, theories of chemical reaction, and transport properties of modern chemical kinetics. The level of treatment is on par with that in most physical chemistry textbooks

Houston, Paul L.

200

Dynamic replication in a data grid using a Modified BHR Region Based Algorithm  

Science Conference Proceedings (OSTI)

Grid computing is emerging as a key part of the infrastructure for a wide range of disciplines in science and engineering, including astronomy, high energy physics, molecular biology and earth sciences. These applications handle large data sets that ... Keywords: Data grid, Dynamic replication, Grid computing, Static replication

K. Sashi; Antony Selvadoss Thanamani

2011-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "disciplines chemical dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Gas Phase Chemical Physics | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Gas Phase Chemical Physics Gas Phase Chemical Physics Chemical Sciences, Geosciences, & Biosciences (CSGB) Division CSGB Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs Scientific Highlights Reports & Activities Principal Investigators' Meetings BES Home Research Areas Gas Phase Chemical Physics Print Text Size: A A A RSS Feeds FeedbackShare Page Gas Phase Chemical Physics (GPCP) research emphasizes studies of the dynamics and rates of chemical reactions at energies characteristic of combustion, and the chemical and physical properties of key combustion intermediates. The overall aim is the development of a fundamental understanding of chemical reactivity enabling validated theories, models and computational tools for predicting rates, products, and dynamics of

202

Enseignement-apprentissage d'une discipline linguistique et non-linguistique ŕ l'école primaire : analyse de l'action conjointe professeurs-élčves dans des classes primaires bilingues en Thaďlande.  

E-Print Network (OSTI)

??Notre thčse vise ŕ étudier et caractériser les situations didactiques mises en oeuvre pour l'enseignement de l'anglais, une discipline linguistique, et des sciences, une discipline… (more)

Kewara, Punwalai

2012-01-01T23:59:59.000Z

203

Browse by Discipline -- E-print Network Subject Pathways: Fossil Fuels --  

Office of Scientific and Technical Information (OSTI)

M N O P Q R S M N O P Q R S T U V W X Y Z Lan, Ruiting (Ruiting Lan) - School of Biotechnology and Biomolecular Sciences, University of New South Wales Lang, Matthew (Matthew Lang) - Department of Chemical and Biomolecular Engineering, Vanderbilt University Langmead, Christopher James (Christopher James Langmead) - Ray and Stephanie Lane Center for Computational Biology & School of Computer Science, Carnegie Mellon University Laurenzi, Ian J. (Ian J. Laurenzi) - Department of Chemical Engineering, Lehigh University Laux, Thomas (Thomas Laux) - Institut für Biologie III, Albert-Ludwigs-Universität Freiburg Lebendiker, Mario (Mario Lebendiker) - Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem Lee, Doheon (Doheon Lee) - Department of Bio and Brain Engineering,

204

Chemical Sciences Division: Research: Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Programs Programs The Chemical Sciences Division (CSD) is one of Berkeley Laboratory's basic research divisions. The CSD is composed of individual research groups that conduct research in the areas of chemical physics and the dynamics of chemical reactions, the structure and reactivity of transient species, electron spectroscopy, surface chemistry and catalysis, electrochemistry, chemistry of the actinide elements and their relationship to environmental issues, and atomic physics. The division's 28 principal investigators, many of whom are on the faculty of the University of California at Berkeley, direct the individual research projects and the work of 6 staff scientists, 41 postdoctoral researchers, and 75 graduate students. Our research staff continues to achieve fundamental advances in understanding the structure and reactivity of critical reaction intermediates and transients using both state-of-the-art experimental and theoretical methods. In addition, the division supports a strong effort in heterogeneous and homogeneous catalysis.

205

??dynamics: A new approach to free energy calculations  

Science Conference Proceedings (OSTI)

We present a novel and efficient method for performing free energy calculations. Treating the conventional ? variables associated with the ‘‘progress’’ in the chemical coordinates dynamically

Xianjun Kong; Charles L. Brooks III

1996-01-01T23:59:59.000Z

206

From the portfolio to the diagram : architectural discourse and the transformation of the discipline of architecture in America, 1918-1943  

E-Print Network (OSTI)

This dissertation is an historical inquiry into the concomitant transformations of architectural discourse and the discipline of architecture in America. It proceeds on the theoretical assumption that the documents produced ...

Pae, Hy?ng-min.

1993-01-01T23:59:59.000Z

207

Argonne Chemical Sciences & Engineering - Fundamental Interactions -  

NLE Websites -- All DOE Office Websites (Extended Search)

tranter shock tube tranter shock tube A shock tube for high temperature studies of chemical reaction kinetics. Overview The goal of this program is to develop a fundamental understanding of the elementary chemical reactions, non-reactive energy transfer processes, and coupled kinetics processes involved in combustion. The basic scientific approach is to combine a theoretical effort in the energetics, dynamics, and kinetics of chemical reactions with an experimental effort in thermochemistry, dynamics, and kinetics. Both the theoretical and experimental components of the program are vertically integrated to span a wide range of phenomena relevant to the study of chemical reactivity. This integrated approach produces synergy that results from the strong interaction between the theoretical and experimental efforts. Taken as a

208

Gas-Phase Molecular Dynamics  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas-Phase Molecular Dynamics Gas-Phase Molecular Dynamics The Gas-Phase Molecular Dynamics Group is dedicated to developing and applying spectroscopic and theoretical tools to challenging problems in chemical physics related to reactivity, structure, dynamics and kinetics of transient species. Recent theoretical work has included advances in exact variational solution of vibrational quantum dynamics, suitable for up to five atoms in systems where large amplitude motion or multiple strongly coupled modes make simpler approximations inadequate. Other theoretical work, illustrated below, applied direct dynamics, quantum force trajectory calculations to investigate a series of reactions of the HOCO radical. The potential energy surface for the OH + CO/ H + CO2 reaction, showing two barriers (TS1 and TS2) and the deep HOCO well along the minimum energy pathway. The inset figure shows the experimental and calculated reactivity of HOCO with selected collision partners. See J.S. Francisco, J.T. Muckerman and H.-G. Yu, "HOCO radical chemistry,"

209

Browse by Discipline -- E-print Network Subject Pathways: Fossil Fuels --  

Office of Scientific and Technical Information (OSTI)

V W X Y Z V W X Y Z Vaisman, Iosif (Iosif Vaisman) - Bioinformatics and Computational Biology Program, School of Computational Sciences, George Mason University Vajda, Sandor (Sandor Vajda) - Department of Biomedical Engineering, Boston University Vazquez, Mariel (Mariel Vazquez) - Department of Mathematics, San Francisco State University Vekilov, Peter (Peter Vekilov) - Department of Chemical Engineering, University of Houston Vitkup, Dennis (Dennis Vitkup) - Center for Computational Biology and Bioinformatics & Department of Biomedical Informatics, Columbia University Vogel, Christine (Christine Vogel) - Center for Genomics and Systems Biology & Department of Biology, New York University Voigt, Chris (Chris Voigt) - Department of Biological Engineering,

210

Browse by Discipline -- E-print Network Subject Pathways: Energy Storage,  

Office of Scientific and Technical Information (OSTI)

U V W X Y Z U V W X Y Z Tadmor, Eitan (Eitan Tadmor) - Center for Scientific Computation and Mathematical Modeling & Department of Mathematics, University of Maryland at College Park Taillefer, Louis (Louis Taillefer) - Département de physique, Université de Sherbrooke Takamura, Shuichi (Shuichi Takamura) - Department of Energy Engineering and Science, Nagoya University Takeuchi, Yasuo (Yasuo Takeuchi) - Kamioka Observatory Tal, Oren (Oren Tal) - Department of Chemical Physics, Weizmann Institute of Science Tamblyn, Peter (Peter Tamblyn) - Department of Space Studies, Southwest Research Institute Tanas, Ryszard (Ryszard Tanas) - Nonlinear Optics Division, Institute of Physics, Adam Mickiewicz University Tancredi, Gonzalo (Gonzalo Tancredi) - Instituto de Física

211

Browse by Discipline -- E-print Network Subject Pathways: Plasma Physics  

Office of Scientific and Technical Information (OSTI)

S S T U V W X Y Z Sagarin, Rafe (Rafe Sagarin) - Institute of the Environment, University of Arizona Selin, Noelle Eckley (Noelle Eckley Selin) - Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology (MIT) Selker, John (John Selker) - Department of Biological and Ecological Engineering, Oregon State University Semprini, Lewis (Lewis Semprini) - School of Chemical, Biological, and Environmental Engineering, Oregon State University Semprini, Lewis (Lewis Semprini) - Western Region Hazardous Substance Research Center & Department of Civil, Construction and Environmental Engineering, Oregon State University Small, Randall (Randall Small) - Department of Ecology and Evolutionary Biology, University of Tennessee

212

Browse by Discipline -- E-print Network Subject Pathways: Fossil Fuels --  

Office of Scientific and Technical Information (OSTI)

Z Z Zaki, Mohammed Javeed (Mohammed Javeed Zaki) - Department of Computer Science, Rensselaer Polytechnic Institute Zand, Robert (Robert Zand) - Macromolecular Science and Engineering Center & Department of Biological Chemistry, University of Michigan Zandstra, Peter W. (Peter W. Zandstra) - Department of Chemical Engineering and Applied Chemistry, University of Toronto Zhang, Aidong (Aidong Zhang) - Department of Computer Science and Engineering, State University of New York at Buffalo Zhang, David Yu (David Yu Zhang) - Department of Bioengineering, Rice University Zhang, Michael Q.(Michael Q.Zhang).- Watson School of Biological Sciences, Cold Spring Harbor Laboratory Zhang, Yang (Yang Zhang) - Departments of Computational Medicine and Bioinformatics & Biological Chemistry, University of Michigan

213

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

S S T U V W X Y Z Rabaey, Jan M. (Jan M. Rabaey) - Department of Electrical Engineering and Computer Sciences, University of California at Berkeley Rabbah, Rodric (Rodric Rabbah) - Dynamic Optimization Group, IBM T.J. Watson Research Center Rabbat, Michael (Michael Rabbat) - Department of Electrical and Computer Engineering, McGill University Rabhi, Fethi A. (Fethi A. Rabhi) - School of Information Systems, Technology and Management, University of New South Wales Rabie, Tamer (Tamer Rabie) - College of Information Technology, United Arab Emirates University Rabinovich, Alexander (Alexander Rabinovich) - School of Computer Science, Tel Aviv University Rabinovich, Michael "Misha" (Michael "Misha" Rabinovich) - Department of Electrical Engineering and Computer Sciences, Case Western

214

Project title: A UK masters course in Advanced Chemical Engineering Practice  

E-Print Network (OSTI)

program design to share courses wherever possible, and bring together students from different disciplines. Joint delivery of management and technical material in order to focus innovation into more high-value areas of problem definition and needs... -related subjects. Benefits to companies Companies can benefit from this programme in two main ways. The first is by direct recruitment of the very highly trained and motivated chemical engineers who complete the programme. The second is by hosting...

2009-07-10T23:59:59.000Z

215

Chemical Accelerators The phrase "chemical accelerators"  

E-Print Network (OSTI)

by one of us for devices that produce beams of chemically interesting species at relative kinetic energies of a few electron volts. Most studies of chemical kinetics made by traditional thermochemical. It is obvious that while some methods of theoretical chemical kinetics (for instance, "absolute" rate theory

Zare, Richard N.

216

Browse by Discipline -- E-print Network Subject Pathways: Fossil Fuels --  

Office of Scientific and Technical Information (OSTI)

Q R S Q R S T U V W X Y Z Pachter, Lior (Lior Pachter) - Department of Mathematics, University of California at Berkeley Page Jr., C. David (C. David Page Jr.) - Departments of Biostatistics and Medical Informatics & Computer Sciences, University of Wisconsin Pande, Vijay S. (Vijay S. Pande) - Departments of Chemistry & Structural Biology, Stanford University Park, Je-Kyun (Je-Kyun Park) - Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology Park, Sheldon (Sheldon Park) - Department of Chemical and Biological Engineering, State University of New York at Buffalo Pasquali, Samuela (Samuela Pasquali) - Laboratoire de Biochimie Théorique, Université Denis Diderot Paris 7 Pe'er, Dana (Dana Pe'er) - Department of Biological Sciences,

217

Browse by Discipline -- E-print Network Subject Pathways: Plasma Physics  

Office of Scientific and Technical Information (OSTI)

D E F G H I J K L M N O P Q R S D E F G H I J K L M N O P Q R S T U V W X Y Z Cal, Mark P. (Mark P. Cal) - Department of Civil and Environmental Engineering, New Mexico Institute of Mining and Technology Charles, Anthony (Anthony Charles) - Environmental Science Program, Saint Mary's University Chen, Wilfred (Wilfred Chen) - Department of Chemical and Biomolecular Engineering, University of Delaware Childress, Amy (Amy Childress) - Department of Civil and Environmental Engineering, University of Nevada, Reno Chorover, Jon (Jon Chorover) - Department of Soil, Water, and Environmental Science, University of Arizona Chu, Kung-Hui "Bella" (Kung-Hui "Bella" Chu) - Department of Civil Engineering, Texas A&M University Clement, Prabhakar (Prabhakar Clement) - Department of Civil

218

Browse by Discipline -- E-print Network Subject Pathways: Fossil Fuels --  

Office of Scientific and Technical Information (OSTI)

B C D E F G H I J K L M N O P Q R S B C D E F G H I J K L M N O P Q R S T U V W X Y Z Carleton, Karen L. (Karen L. Carleton) - Department of Biology, University of Maryland at College Park Carson, William Michael (William Michael Carson) - Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham Chandonia, John-Marc (John-Marc Chandonia) - Structural Genomics Center, Lawrence Berkeley National Laboratory Chee, Peng W. (Peng W. Chee) - Department of Crop and Soil Sciences, University of Georgia Chen, Brian Y. (Brian Y. Chen) - Department of Computer Science and Engineering, Lehigh University Chen, Ting (Ting Chen) - Department of Biological Sciences, University of Southern California Chen, Wilfred (Wilfred Chen) - Department of Chemical and

219

Browse by Discipline -- E-print Network Subject Pathways: Plasma Physics  

Office of Scientific and Technical Information (OSTI)

E F G H I J K L M N O P Q R S E F G H I J K L M N O P Q R S T U V W X Y Z Dahlhoff, Elizabeth (Elizabeth Dahlhoff) - Biology Program, College of Arts and Sciences, Santa Clara University Darnall, Nicole (Nicole Darnall) - Department of Environmental Science and Policy, George Mason University Davis, Trisha N. (Trisha N. Davis) - Department of Biochemistry, University of Washington at Seattle Deshusses, Marc (Marc Deshusses) - Department of Chemical and Environmental Engineering, Duke University Doty, Sharon Lafferty (Sharon Lafferty Doty) - School of Forest Resources, University of Washington Dupont, R. Ryan (R. Ryan Dupont) - Department of Civil and Environmental Engineering, Utah State University Go back to Individual Researchers Collections: A B C D E F G H I J K L M N O P Q R S

220

Browse by Discipline -- E-print Network Subject Pathways: Energy Storage,  

Office of Scientific and Technical Information (OSTI)

M N O P Q R S M N O P Q R S T U V W X Y Z La Porta, Arthur (Arthur La Porta) - Institute for Physical Science and Technology & Department of Physics, University of Maryland at College Park La Rosa, Andres H. (Andres H. La Rosa) - Department of Physics, Portland State University Lacoste, David (David Lacoste) - Laboratoire de Physico-Chimie Théorique, École Supérieure de Physique et Chimie Industrielles Ladd, Anthony J.C. (Anthony J.C. Ladd) - Chemical Engineering Department, University of Florida Ladd, Edwin Fremont (Edwin Fremont Ladd) - Department of Physics, Bucknell University Lagendijk, Ad (Ad Lagendijk) - Complex Photonic Systems (COPS), Department of Science and Technology,Universiteit Twente Lagrée, Pierre-Yves (Pierre-Yves Lagrée) - Institut Jean Le Rond

Note: This page contains sample records for the topic "disciplines chemical dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Browse by Discipline -- E-print Network Subject Pathways: Plasma Physics  

Office of Scientific and Technical Information (OSTI)

L M N O P Q R S L M N O P Q R S T U V W X Y Z Kagami, Maiko (Maiko Kagami) - Department of Environmental Science, Toho University Kalinichev, Andrey G. (Andrey G. Kalinichev) - Departments of Chemistry and Geological Sciences, Michigan State University, Kasher, Roni (Roni Kasher) - Zuckerberg Institute for Water Research, Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research Kelly, John J. (John J. Kelly) - Department of Biology, Loyola University Chicago Kemner, Ken (Ken Kemner) - Biosciences Division, Argonne National Laboratory Kern, Michel (Michel Kern) - INRIA Paris-Rocquencourt Kilpatrick, Peter K. (Peter K. Kilpatrick) - Department of Chemical and Biomolecular Engineering, North Carolina State University Go back to Individual Researchers

222

Browse by Discipline -- E-print Network Subject Pathways: Fossil Fuels --  

Office of Scientific and Technical Information (OSTI)

B C D E F G H I J K L M N O P Q R S B C D E F G H I J K L M N O P Q R S T U V W X Y Z Babu, M. Madan (M. Madan Babu) - Laboratory of Molecular Biology, MRC Badger, Jonathan (Jonathan Badger) - Institute for Genomic Research, Rockville Bailey, Timothy L. (Timothy L. Bailey) - Institute for Molecular Bioscience, University of Queensland Baker, Barbara (Barbara Baker) - Department of Plant and Microbial Biology, University of California at Berkeley Baker, David (David Baker) - Center for Nanotechnology and NanoTechnology & Department of Biochemistry, University of Washington at Seattle Baltimore, David (David Baltimore) - Division of Biology, California Institute of Technology Bang, Duhee (Duhee Bang) - Department of Chemistry, Yonsei University Banta, Scott (Scott Banta) - Department of Chemical Engineering,

223

Browse by Discipline -- E-print Network Subject Pathways: Renewable Energy  

Office of Scientific and Technical Information (OSTI)

Renewable Energy Renewable Energy Go to Research Groups Preprints Provided by Individual Scientists: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Allen, John F. (John F. Allen) - School of Biological and Chemical Sciences, Queen Mary, University of London Angenent, Lars T. (Lars T. Angenent) - Department of Biological and Environmental Engineering, Cornell University Archer, Cristina Lozej (Cristina Lozej Archer) - College of Earth, Ocean, and Environment, University of Delaware Armanini, David G (David G Armanini) - Canadian Rivers Institute, University of New Brunswick Go back to Individual Researchers Collections: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z American University of Beirut, Faculty of Engineering and

224

Browse by Discipline -- E-print Network Subject Pathways: Biology and  

Office of Scientific and Technical Information (OSTI)

S S T U V W X Y Z Schechter, David S. (David S. Schechter) - Department of Petroleum Engineering, Texas A&M University Schramm, Laurier L. (Laurier L. Schramm) - Chemistry Department, University of Calgary Shaw, John (John Shaw) - Department of Chemical and Materials Engineering, University of Alberta Go back to Individual Researchers Collections: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Stanford University - Department of Energy Resources Engineering, Reservoir Simulation Research Stanford University - Department of Energy Resources Engineering, SUPRI-HW: Advanced Wells Stanford University Petroleum Research Institute -SUPRI-D Innovation in Well Testing Stanford University Petroleum Research Institute, SUPRI-A Group

225

Browse by Discipline -- E-print Network Subject Pathways: Fossil Fuels --  

Office of Scientific and Technical Information (OSTI)

O P Q R S O P Q R S T U V W X Y Z Najmanovich, Rafael (Rafael Najmanovich) - European Bioinformatics Institute, Wellcome Trust Genome Campus Cambridge Navarra-Madsen, Junalyn (Junalyn Navarra-Madsen) - Department of Mathematics and Computer Science, Texas Woman's University Nawroth, Janna C. (Janna C. Nawroth) - Biological Propulsion Laboratory, California Institute of Technology Nédellec, Claire -Laboratoire Mathématique Informatique et Génome, INR(édellec, Claire -Laboratoire Mathématique Informatique et Génome, IN)RA Nelson, Celeste M. (Celeste M. Nelson) - Departments of Molecular Biology & Chemical Engineering, Princeton University Nerenberg, Robert (Robert Nerenberg) - Department of Civil Engineering and Geological Sciences, University of Notre Dame

226

Browse by Discipline -- E-print Network Subject Pathways: Biology and  

Office of Scientific and Technical Information (OSTI)

Fossil Fuels Fossil Fuels Go to Research Groups Preprints Provided by Individual Scientists: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Abu-Khamsin, Sidqi (Sidqi Abu-Khamsin) - Department of Petroleum Engineering, King Fahd University of Petroleum and Minerals Al-Khattaf, Sulaiman (Sulaiman Al-Khattaf) - Department of Chemical Engineering, King Fahd University of Petroleum and Minerals Al-Majed, Abdulaziz Abdullah (Abdulaziz Abdullah Al-Majed) - Center for Petroleum and Minerals at the Research Institute & Department of Petroleum Engineering, King Fahd University of Petroleum and Minerals Ali, Mohammed (Mohammed Ali) - Petroleum Institute (Abu Dhabi) Go back to Individual Researchers Collections: A B C D E F G H I J K L M N O P Q R S

227

Browse by Discipline -- E-print Network Subject Pathways: Fossil Fuels --  

Office of Scientific and Technical Information (OSTI)

I J K L M N O P Q R S I J K L M N O P Q R S T U V W X Y Z Halgamuge, Saman (Saman Halgamuge) - Department of Mechanical Engineering, University of Melbourne Hamelryck, Thomas (Thomas Hamelryck) - Bioinformatics Centre, Københavns Universitets Hammock, Bruce D. (Bruce D. Hammock) - Department of Entomology, University of California, Davis Hancock, William O. (William O. Hancock) - Department of Biomedical Engineering, Pennsylvania State University Hanes, Justin (Justin Hanes) - Department of Biomolecular and Chemical Engineering, Johns Hopkins University Hansen, Carl L. (Carl L. Hansen) - Departments of Electrical and Computer Engineering & Physics and Astronomy, University of British Columbia Harbury, Pehr A. B. (Pehr A. B. Harbury) - Department of Biochemistry, Stanford University

228

Browse by Discipline -- E-print Network Subject Pathways: Fossil Fuels --  

Office of Scientific and Technical Information (OSTI)

H I J K L M N O P Q R S H I J K L M N O P Q R S T U V W X Y Z Georgiadis, Rosina M. (Rosina M. Georgiadis) - Department of Chemistry, Boston University Georgiou, George (George Georgiou) - Departments of Biomedical Engineering, & Chemical Engineering, University of Texas at Austin Gerstein, Mark (Mark Gerstein) - Department of Molecular Biophysics and Biochemistry, Yale University Gieg, Lisa (Lisa Gieg) - Department of Biological Sciences, University of Calgary Gifford, David K. (David K. Gifford) - Computer Science and Artificial Intelligence Laboratory & Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT) Gill, Kulvinder (Kulvinder Gill) - Department of Crop and Soil Sciences, Washington State University

229

Browse by Discipline -- E-print Network Subject Pathways: Fossil Fuels --  

Office of Scientific and Technical Information (OSTI)

E F G H I J K L M N O P Q R S E F G H I J K L M N O P Q R S T U V W X Y Z D'haeseleer, Patrik (Patrik D'haeseleer) - Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory Dabiri, John O. (John O. Dabiri) - Department of Aerospace, California Institute of Technology Dai, Yang (Yang Dai) - Department of Bioengineering, University of Illinois at Chicago Dal PalĂą, Alessandro (Alessandro Dal PalĂą) - Dipartimento di Matematica, UniversitĂ  degli Studi di Parma Dalkilic, Mehmet (Mehmet Dalkilic) - Center for Genomics and Bioinformatics & School of Informatics, Indiana University Daub, Margaret (Margaret Daub) - Center for Integrated Fungal Research & Department of Plant Biology, North Carolina State University Daugulis, Andrew J. (Andrew J. Daugulis) - Department of Chemical

230

Browse by Discipline -- E-print Network Subject Pathways: Fossil Fuels --  

Office of Scientific and Technical Information (OSTI)

Fossil Fuels Fossil Fuels Go to Research Groups Preprints Provided by Individual Scientists: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Abu-Khamsin, Sidqi (Sidqi Abu-Khamsin) - Department of Petroleum Engineering, King Fahd University of Petroleum and Minerals Al-Khattaf, Sulaiman (Sulaiman Al-Khattaf) - Department of Chemical Engineering, King Fahd University of Petroleum and Minerals Al-Majed, Abdulaziz Abdullah (Abdulaziz Abdullah Al-Majed) - Center for Petroleum and Minerals at the Research Institute & Department of Petroleum Engineering, King Fahd University of Petroleum and Minerals Ali, Mohammed (Mohammed Ali) - Petroleum Institute (Abu Dhabi) Go back to Individual Researchers Collections: A B C D E F G H I J K L M N O P Q R S

231

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

Materials Science Materials Science Go to Research Groups Preprints Provided by Individual Scientists: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Abécassis, Benjamin (Benjamin Abécassis) - Laboratoire de Physique des Solides, Université de Paris-Sud 11 Ackland, Graeme (Graeme Ackland) - Centre for Materials Science and Engineering & School of Physics, University of Edinburgh Adams, James B (James B Adams) - Department of Chemical and Materials Engineering, Arizona State University Adams, Philip W. (Philip W. Adams) - Department of Physics and Astronomy, Louisiana State University Adeyeye, Adekunle (Adekunle Adeyeye) - Department of Electrical and Computer Engineering, National University of Singapore Agrawal, Dinesh (Dinesh Agrawal) - Microwave Processing and

232

Browse by Discipline -- E-print Network Subject Pathways: Fossil Fuels --  

Office of Scientific and Technical Information (OSTI)

N O P Q R S N O P Q R S T U V W X Y Z Ma, Bin (Bin Ma) - School of Computer Science, University of Waterloo Ma, Ping (Ping Ma) - Department of Statistics, University of Illinois at Urbana-Champaign MacCallum, Bob (Bob MacCallum) - Stockholm Bioinformatics Center, Stockholms Universitet Macmillan, Derek (Derek Macmillan) - Department of Chemistry, University College London Magwene, Paul M, (Paul M, Magwene) - Department of Biology, Duke University Majoros, Bill (Bill Majoros) - Institute for Genome Sciences and Policy, Duke University Maranas, Costas (Costas Maranas) - Department of Chemical Engineering, Pennsylvania State University Mariño-Ramírez, Leonardo (Leonardo Mariño-Ramírez) - Computational Biology Branch, National Center for Biotechnology Information

233

Browse by Discipline -- E-print Network Subject Pathways: Energy Storage,  

Office of Scientific and Technical Information (OSTI)

W X Y Z W X Y Z Vaidman, Lev (Lev Vaidman) - School of Physics and Astronomy, Tel Aviv University Vainchtein, Dmitri (Dmitri Vainchtein) - Center for Nonlinear Science, School of Physics, Georgia Institute of Technology Valentijn, Edwin A.(Edwin A.Valentijn).- Kapteyn Astronomical Institute, Rijksuniversiteit Groningen van Baal, Pierre (Pierre van Baal) - Leiden Institute of Physics, Universiteit Leiden van Belle, Gerard (Gerard van Belle) - Lowell Observatory van de Walle, Axel (Axel van de Walle) - Division of Engineering, Brown University van den Brink, Jeroen (Jeroen van den Brink) - Leiden Institute of Physics, Universiteit Leiden van der Heijden, Gert (Gert van der Heijden) - Centre for Nonlinear Dynamics and its Applications, University College London van der Marel, Roeland (Roeland van der Marel) - Space Telescope

234

Browse by Discipline -- E-print Network Subject Pathways: Energy Storage,  

Office of Scientific and Technical Information (OSTI)

S S T U V W X Y Z Rabson, David A. (David A. Rabson) - Department of Physics, University of South Florida Rácz, Zoltán (Zoltán Rácz) - Institute for Theoretical Physics, Eötvös University Raczkowski, David (David Raczkowski) - Computational Research Division, Lawrence Berkeley National Laboratory Radenovic, Aleksandra (Aleksandra Radenovic) - Laboratory of Nanoscale Biology, Ecole Polytechnique Fédérale de Lausanne Radziwill, Nicole (Nicole Radziwill) - National Radio Astronomy Observatory Rafkin, Scot C. R. (Scot C. R. Rafkin) - Department of Space Studies, Southwest Research Institute Raizen, Mark G. (Mark G. Raizen) - Center for Nonlinear Dynamics, University of Texas at Austin Ramaprakash, A. N. (A. N. Ramaprakash) - Inter-University Centre for

235

Browse by Discipline -- E-print Network Subject Pathways: Energy Storage,  

Office of Scientific and Technical Information (OSTI)

Energy Storage, Conversion and Utilization Energy Storage, Conversion and Utilization Go to Research Groups Preprints Provided by Individual Scientists: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Al-Ghadhban, Samir (Samir Al-Ghadhban) - Electrical Engineering Department, King Fahd University of Petroleum and Minerals Andersen, Torben Ole (Torben Ole Andersen) - Department of Energy Technology, Aalborg University Anderson, Larry G.(Larry G.Anderson).- Department of Chemistry, University of Colorado at Denver Anderson, Scott L. (Scott L. Anderson) - Department of Chemistry, University of Utah Andreasen, Søren Juhl (Søren Juhl Andreasen) - Department of Energy Technology, Aalborg University Arno, Gehrer (Gehrer Arno) - Institute for Thermal Turbomachinery and Machine Dynamics, Technical University Graz

236

Chemical Sciences Division annual report 1994  

SciTech Connect

The division is one of ten LBL research divisions. It is composed of individual research groups organized into 5 scientific areas: chemical physics, inorganic/organometallic chemistry, actinide chemistry, atomic physics, and chemical engineering. Studies include structure and reactivity of critical reaction intermediates, transients and dynamics of elementary chemical reactions, and heterogeneous and homogeneous catalysis. Work for others included studies of superconducting properties of high-{Tc} oxides. In FY 1994, the division neared completion of two end-stations and a beamline for the Advanced Light Source, which will be used for combustion and other studies. This document presents summaries of the studies.

NONE

1995-06-01T23:59:59.000Z

237

Chemical Product and Process Volume 2, Issue 1 2007 Article 10  

E-Print Network (OSTI)

chemical entities (NCEs) is a kinetic model of the reaction system. Once obtained, this allows the chemical for the kinetic terms Ri will be unknown. It is therefore difficult, especially when each chemical species may, the dynamics of well- mixed chemical systems typically obey the law of mass action kinetics and hence

Newcastle upon Tyne, University of

238

Microfluidic chemical reaction circuits  

DOE Patents (OSTI)

New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

Lee, Chung-cheng (Irvine, CA); Sui, Guodong (Los Angeles, CA); Elizarov, Arkadij (Valley Village, CA); Kolb, Hartmuth C. (Playa del Rey, CA); Huang, Jiang (San Jose, CA); Heath, James R. (South Pasadena, CA); Phelps, Michael E. (Los Angeles, CA); Quake, Stephen R. (Stanford, CA); Tseng, Hsian-rong (Los Angeles, CA); Wyatt, Paul (Tipperary, IE); Daridon, Antoine (Mont-Sur-Rolle, CH)

2012-06-26T23:59:59.000Z

239

Laser induced chemical reactions  

E-Print Network (OSTI)

of Basic Energy Sciences, Chemical Sciences Division of theINFRARED LASER ENHANCEMENT OF CHEMICAL REACTIONS A. B. C. D.Laser Inhibition of Chemical Reaction Effect of Isotopic

Orel, Ann E.

2010-01-01T23:59:59.000Z

240

Information Retrieval Information retrieval is a dynamic area of research, which forms the basis for many of today's  

E-Print Network (OSTI)

Information Retrieval Information retrieval is a dynamic area of research, which forms the basis contains a selection of the papers accepted for the annually organized Dutch-Belgian Information Retrieval of information retrieval and related disciplines, can exchange information and present new research developments

Hiemstra, Djoerd

Note: This page contains sample records for the topic "disciplines chemical dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Searching for the Solar System's Chemical Recipe  

NLE Websites -- All DOE Office Websites (Extended Search)

Searching for the Solar System's Searching for the Solar System's Chemical Recipe Searching for the Solar System's Chemical Recipe Print Wednesday, 20 February 2013 00:00 The ratio of isotopes in elements like oxygen, sulfur, and nitrogen were once thought to be much the same everywhere, determined only by their different masses. Then isotope ratios in meteorites, interplanetary dust and gas, and the sun itself were found to differ from those on Earth. Planetary researchers like UC San Diego's Mark Thiemens and his colleagues, working with Musa Ahmed of the Chemical Sciences Division, are now using the Chemical Dynamics Beamline at the Advanced Light Source to study these "mass-independent" effects and their origins in the chemical processes of the early solar system.

242

Exhibitor: MURLIN CHEMICAL INC.  

Science Conference Proceedings (OSTI)

Murlin Chemical, Inc. manufactures Bone Ash at its plant located in West Conshohocken, Pennsylvania, USA. Established in 1978, Murlin Chemical supplies ...

243

Optimal control for maximum power in thermal and chemical systems  

Science Conference Proceedings (OSTI)

This research treats power optimization for energy converters, such like thermal, solar and chemical engines. Thermodynamic analyses lead to converter's efficiency and limiting power. Steady and dynamic systems are investigated. Static optimization of ...

Stanislaw Sieniutycz

2009-09-01T23:59:59.000Z

244

Chemical Safety Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Program Home Chemical Safety Topical Committee Library Program Contacts Related Links Site Map Tools 2013 Chemical Safety Workshop Archived Workshops Contact Us Health and Safety HSS Logo Chemical Safety Program logo The Department of Energy's (DOE's) Chemical Safety web pages provide a forum for the exchange of best practices, lessons learned, and guidance in the area of chemical management. This page is supported by the Chemical Safety Topical Committee which was formed to identify chemical safety-related issues of concern to the DOE and pursue solutions to issues identified. Noteworthy products are the Chemical Management Handbooks and the Chemical Lifecycle Cost Analysis Tool, found under the TOOLS menu. Chemical Management Handbook Vol (1) Chemical Management Handbook Vol (2)

245

MATHEMATICS Price dynamics in political prediction markets  

E-Print Network (OSTI)

- gate the price dynamics of prediction markets with the goal of developing methods to identify the trulyAPPLIED MATHEMATICS POLITICAL SCIENCES Price dynamics in political prediction markets Saikat Ray City, IA 52242; and d Department Chemical and Biological Engineering, Northwestern University, Evanston

Amaral, Luis A.N.

246

Chapter 13. Chemical Kinetics  

E-Print Network (OSTI)

of chemical reactions. · Only gases, for which the kinetic theory of Chapter 4 is applicable, are consideredChapter 13. Chemical Kinetics #12;· Why do some chemical reactions proceed with lighting speed when the way in which molecules combine to form products? · All of these questions involve chemical kinetics

Ihee, Hyotcherl

247

Chemical Sciences Division Homepage  

Science Conference Proceedings (OSTI)

... Development of Measurements and Standards for Biofuels; Chemical Metrology in Support of the US Hydrogen Infrastructure; ...

2013-06-07T23:59:59.000Z

248

About Chemical Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Hazards Chemical Hazards What Is a Chemical Hazard? chemical hazards.jpg A chemical hazard is any substance that can cause harm, primarily to people. Chemicals of all kinds are stored in our homes and can result in serious injuries if not properly handled. Household items such as bleach can result in harmful chlorine gas or hydrochloric acid if carelessly used. Gasoline fumes from containers for lawnmowers or boats can result in major health hazards if inhaled. DOE Oak Ridge uses thousands of chemicals in its varied research and other operations. New chemicals are or can be created as a result of the research or other activities. DOE follows national safety requirements in storing and handling these chemicals to minimize the risk of injuries from its chemical usage. However, accidents can occur despite careful attention to proper handling and storage procedures.

249

Dislocation Dynamics  

Science Conference Proceedings (OSTI)

Mar 7, 2013 ... Recent Progress in Dislocation Dynamics: Sylvie Aubry1; Athanasios Arsenlis1; Wei Cai2; Steve Fitzgerald3; 1LLNL; 2Stanford University; ...

250

CCE CHEMICAL SAFETY MANUAL CHEMICAL SAFETY MANUAL  

E-Print Network (OSTI)

. Chemicals--Safety measures. 3. Hazardous wastes. I. National Research Council (U.S.). Committee on Prudent) produced two major reports on laboratory safety and laboratory waste disposal: Prudent Practices Nanomaterials, 77 4.G Biohazards, 79 4.H Hazards from Radioactivity, 79 5 Management of Chemicals 83 5.A

Tai, Yu-Chong

251

Chemical Reference Data Group Homepage  

Science Conference Proceedings (OSTI)

Chemical Reference Data Group. Welcome. The Chemical Reference Data Group compiles, evaluates, correlates and measures ...

2013-07-10T23:59:59.000Z

252

GAS-PHASE MOLECULAR DYNAMICS: VIBRATIONAL DYNAMICS OF POLYATOMIC MOLECULES  

SciTech Connect

The goal of this research is the understanding of elementary chemical and physical processes important in the combustion of fossil fuels. Interest centers on reactions and properties of short-lived chemical intermediates. High-resolution, high-sensitivity, laser absorption methods are augmented by high-temperature, flow-tube reaction kinetics studies with mass-spectrometric sampling. These experiments provide information on the energy levels, structures and reactivity of molecular free radical species and, in turn, provide new tools for the study of energy flow and chemical bond cleavage in radicals involved in chemical systems. The experimental work is supported by theoretical studies using time-dependent quantum wavepacket calculations, which provide insight into energy flow among the vibrational modes of polyatomic molecules and interference effects in multiple-surface dynamics.

MUCKERMAN,J.T.

1999-06-09T23:59:59.000Z

253

Gas-Phase Molecular Dynamics: Vibrational Dynamics of Polyatomic Molecules  

SciTech Connect

The goal of this research is the understanding of elementary chemical and physical processes important in the combustion of fossil fuels. Interest centers on reactions and properties of short-lived chemical intermediates. High-resolution, high-sensitivity, laser absorption methods are augmented by high- temperature, flow-tube reaction kinetics studies with mass-spectrometic sampling. These experiments provide information on the energy levels, structures and reactivity of molecular free radical species and in turn, provide new tools for the study of energy flow and chemical bond cleavage in the radicals involved in chemical systems. The experimental work is supported by theoretical studies using time-dependent quantum wavepacket calculations, which provide insight into energy flow among the vibrational modes of polyatomic molecules and interference effects in multiple-surface dynamics.

Muckerman, J.T.

1999-05-21T23:59:59.000Z

254

Chemical Lifecycle Management Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Lifecycle Management Cost Presented by: J.M. Hieb, CH2M HILL Plateau Remediation Company CHPRC1204-04 Chemical Lifecycle Management Cost Everyone is trying to stretch a...

255

Chemical Physics Portal  

Science Conference Proceedings (OSTI)

... spectroscopy. Ultrafast lasers are used to … more. >> see all Chemical Physics programs and projects ... *. Bookmark and Share. ...

2010-10-01T23:59:59.000Z

256

Chemical Sciences Division - CSD  

NLE Websites -- All DOE Office Websites (Extended Search)

CSD Chemical Sciences Division CSD Organization Contact List Search Other Links Research Areas Research Highlights Organization Contacts Publications Awards Employment...

257

Simple Dynamic Gasifier Model That Runs in Aspen Dynamics  

SciTech Connect

Gasification (or partial oxidation) is a vital component of 'clean coal' technology. Sulfur and nitrogen emissions can be reduced, overall energy efficiency is increased, and carbon dioxide recovery and sequestration are facilitated. Gasification units in an electric power generation plant produce a fuel for driving combustion turbines. Gasification units in a chemical plant generate gas, which can be used to produce a wide spectrum of chemical products. Future plants are predicted to be hybrid power/chemical plants with gasification as the key unit operation. The widely used process simulator Aspen Plus provides a library of models that can be used to develop an overall gasifier model that handles solids. So steady-state design and optimization studies of processes with gasifiers can be undertaken. This paper presents a simple approximate method for achieving the objective of having a gasifier model that can be exported into Aspen Dynamics. The basic idea is to use a high molecular weight hydrocarbon that is present in the Aspen library as a pseudofuel. This component should have the same 1:1 hydrogen-to-carbon ratio that is found in coal and biomass. For many plantwide dynamic studies, a rigorous high-fidelity dynamic model of the gasifier is not needed because its dynamics are very fast and the gasifier gas volume is a relatively small fraction of the total volume of the entire plant. The proposed approximate model captures the essential macroscale thermal, flow, composition, and pressure dynamics. This paper does not attempt to optimize the design or control of gasifiers but merely presents an idea of how to dynamically simulate coal gasification in an approximate way.

Robinson, P.J.; Luyben, W.L. [Lehigh University, Bethlehem, PA (United States). Dept. of Chemical Engineering

2008-10-15T23:59:59.000Z

258

Chemical Engineering & Processing Thermodynamics ...  

Science Conference Proceedings (OSTI)

... Engineering & Processing Thermodynamics Information at ... Phase Equilibrium Data (01/30 ... Connecting Thermodynamic and Dynamic Properties of ...

2010-09-24T23:59:59.000Z

259

CHEMICAL SAFETY Emergency Numbers  

E-Print Network (OSTI)

- 1 - CHEMICAL SAFETY MANUAL 2010 #12;- 2 - Emergency Numbers UNBC Prince George Campus Security Prince George Campus Chemstores 6472 Chemical Safety 6472 Radiation Safety 5530 Biological Safety 5530 use, storage, handling, waste and emergency management of chemicals on the University of Northern

Bolch, Tobias

260

Chemical biology drug discovery  

E-Print Network (OSTI)

Keywords Chemical biology drug discovery high-throughput screening protein ligands proteases novel chemical and biochemical methods for the identification and optimization of protein ligands us of pro- tein ligands. Results of this research are translated into protein-specific, chemical probes

SchĂĽler, Axel

Note: This page contains sample records for the topic "disciplines chemical dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Chemical engineering Research !!  

E-Print Network (OSTI)

Chemical engineering Research !! www.chemeng.lth.se Updated August 2012 #12;WWT Fermentation University/Faculty of Engineering-LTH/Department of Chemical Engineering Membrane Group Ann-Sofi Jönsson More research projects. #12;Lund University/Faculty of Engineering-LTH/Department of Chemical Engineering

262

Chemical Zeolites Combinatorial . . .  

E-Print Network (OSTI)

Chemical Zeolites Combinatorial . . . Realization 2d Zeolites Finite Zeolites The Layer . . . Holes University (Brigitte Servatius -- WPI) #12;Chemical Zeolites Combinatorial . . . Realization 2d Zeolites. Chemical Zeolites · crystalline solid · units: Si + 4O Si O O O O · two covalent bonds per oxygen #12

Servatius, Brigitte

263

CHEMICAL AND PAPER ENGINEERING  

E-Print Network (OSTI)

SAFETY HANDBOOK For CHEMICAL AND PAPER ENGINEERING 2010-2011 #12;Page 1 Safety Guidelines Department of Chemical and Paper Engineering Miami University - Oxford, Ohio 45056 The following safety and Laboratory Coordinator Responsibilities III. Emergency Procedures IV. Chemical Storage V. Routine

Dollar, Anna

264

CCE CHEMICAL SAFETY MANUAL CHEMICAL SAFETY MANUAL  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . 11 VIII. Electrical Equipment . . . . . . . . . . . . . . . . . . . . . . . . 12 IX. Hazardous Waste: Hazardous Chemicals Data . . . . . . . . . . . . . . . . . . 51 Appendix B: Means of Lab Waste Disposal . . . . . . . . . . . . . . . . . 53 Appendix C: Where to put specific wastes . . . . . . . . . . . . . . . . . . 54 Appendix D

Elowitz, Michael

265

Efficieny handling effluent gases through chemical scrubbing  

SciTech Connect

This paper is presented as an information source for efficiencies of chemical scrubbing. In it, we will discuss the specific problems of scrubbing silane, disilane, diborane, phosphine, hydrogen selenide and arsine. We will explain the scrubber dynamics, gases and flow rates used along with liquid mediums. The equipment and procedures used for testing, as well as the determination of the results, will be discussed. We intend to give examples of possible reactions and documentation of our efficiencies. Installation and maintenance will be touched, as well as our experiments into accidental catastrophic releases. From all of this we will derive conclusions as to the best possible means of wet chemical scrubbing.

Herman, T.; Soden, S.

1988-07-15T23:59:59.000Z

266

Siphons in Chemical Reaction Networks  

E-Print Network (OSTI)

credited. Siphons in Chemical Reaction Networks Referencesfor a class of nonlinear chemical equations. SIAM J. Appl.to persistence analysis in chemical reaction networks. In:

Shiu, Anne; Sturmfels, Bernd

2010-01-01T23:59:59.000Z

267

Chemical Hygiene and Safety Plan  

E-Print Network (OSTI)

V. , Ed. , Safety in the Chemical Laboratory. J. Chem.Łd. Amer/can Chemical Society. Easlon. PA. 18042. Vol. Lof Laboratory Safety. the Chemical Rubber Company Cleveland.

Ricks Editor, R.

2009-01-01T23:59:59.000Z

268

Chemical exchange program analysis.  

SciTech Connect

As part of its EMS, Sandia performs an annual environmental aspects/impacts analysis. The purpose of this analysis is to identify the environmental aspects associated with Sandia's activities, products, and services and the potential environmental impacts associated with those aspects. Division and environmental programs established objectives and targets based on the environmental aspects associated with their operations. In 2007 the most significant aspect identified was Hazardous Materials (Use and Storage). The objective for Hazardous Materials (Use and Storage) was to improve chemical handling, storage, and on-site movement of hazardous materials. One of the targets supporting this objective was to develop an effective chemical exchange program, making a business case for it in FY07, and fully implementing a comprehensive chemical exchange program in FY08. A Chemical Exchange Program (CEP) team was formed to implement this target. The team consists of representatives from the Chemical Information System (CIS), Pollution Prevention (P2), the HWMF, Procurement and the Environmental Management System (EMS). The CEP Team performed benchmarking and conducted a life-cycle analysis of the current management of chemicals at SNL/NM and compared it to Chemical Exchange alternatives. Those alternatives are as follows: (1) Revive the 'Virtual' Chemical Exchange Program; (2) Re-implement a 'Physical' Chemical Exchange Program using a Chemical Information System; and (3) Transition to a Chemical Management Services System. The analysis and benchmarking study shows that the present management of chemicals at SNL/NM is significantly disjointed and a life-cycle or 'Cradle-to-Grave' approach to chemical management is needed. This approach must consider the purchasing and maintenance costs as well as the cost of ultimate disposal of the chemicals and materials. A chemical exchange is needed as a mechanism to re-apply chemicals on site. This will not only reduce the quantity of unneeded chemicals and the amount spent on new purchases, but will also avoid disposal costs. If SNL/NM were to realize a 5 percent reduction in chemical inventory and a 10 percent reduction in disposal of unused chemicals the total savings would be $189, 200 per year.

Waffelaert, Pascale

2007-09-01T23:59:59.000Z

269

DOI: 10.1002/chem.200900805 Seeking the Chemical Roots of Darwinism: Bridging between Chemistry and  

E-Print Network (OSTI)

--thermodynamic stability, associat- ed with "regular" chemical systems, and dynamic kinetic stability, associated that Darwinian theory can be generalized and shown to be part of established chemical kinetic theory that is readily derived from standard chemical kinetic theory, and, in true reduc- tionist spirit, attempt

Pross, Addy

270

Argonne Chemical Sciences & Engineering - Publications - Fundamental  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Dynamics Chemical Dynamics 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 2013 The Miltiradical Character of One- and Two-Dimensional Graphene Nanoribbons, F. Plasser, H. Pašalić, M. H. Gerzabek, F. Libisch, R. Reiter, J. Burgdörfer, T. Müller, R. Shepard, and H. Lischka, Angewandte Chemie International Edition 52, 1-5 (2013). Der Multiradikalcharakter ein- und zweidimensionaler Graphen-Nanobänder, F. Plasser, H. Pašalić, M. H. Gerzabek, F. Libisch, R. Reiter, J. Burgdörfer, T. Müller, R. Shepard, and H. Lischka, Angewandte Chemie 125, 1-5 (2013). Active Thermochemical Tables: Water and Water Dimer, B. Ruscic, J. Phys. Chem. A (in press). The Photodissociation of Anisole and the Absolute Photoionization Cross Section of the Phenoxy Radical, H. Xu and S. T. Pratt, J. Phys. Chem. (in press).

271

Dudley Herschbach: Chemical Reactions and Molecular Beams  

NLE Websites -- All DOE Office Websites (Extended Search)

Dudley Herschbach: Dudley Herschbach: Chemical Reactions and Molecular Beams Resources with Additional Information Dudley Herschbach Courtesy of Texas A&M University As a co-recipient of the 1986 Nobel Prize in Chemistry, 'Dudley Herschbach was cited for "providing a much more detailed understanding of how chemical reactions take place". Using molecular beams, he studied elementary reactions such as K + CH3I and K + Br2, where it became possible to correlate reaction dynamics with the electronic structures of reactants and products. Exchanges proceeded through a persistent complex that lasted for many rotational periods, with product angular distributions reflecting the degree of reagent entanglement. Later this work was extended to H + Cl2, Cl + HI, halogen substitution reactions with vinyl and allyl halides, as well as such systems as Xe + Ar2 → XeAr + Ar. Herschbach has been a pioneer in the measurement and theoretical interpretation of vector properties of reaction dynamics, a field known as "molecular stereodynamics".

272

Chemical evolution STRUCTURE OF GALAXIES  

E-Print Network (OSTI)

Outline Absorption Chemical evolution STRUCTURE OF GALAXIES 8. Absorption; chemical evolution Piet Piet van der Kruit, Kapteyn Astronomical Institute Absorption; chemical evolution #12;Outline Absorption Chemical evolution Outline Absorption Holmberg's analysis Analysis of Disney et al. Edge

Kruit, Piet van der

273

ENHANCED CHEMICAL CLEANING CORROSION TESTING  

Enhanced Chemical Cleaning Corrosion Testing 3 Background: Enhanced Chemical Cleaning Process Treatment Tank Deposition Tank 3000 gpm Mixers Oxalic ...

274

Chemical Hygiene and Safety Plan  

E-Print Network (OSTI)

Safety Plan m Chemical$torase Guidelines Chemical Is Incompatible llll i With ii Hydrocarbons (such as butane, propane,

Ricks Editor, R.

2009-01-01T23:59:59.000Z

275

Beamline 6.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Beamline 6.0.2 Print Tuesday, 20 October 2009 08:40 UltrafastFemtosecond Dynamics Soft X Ray Scientific disciplines: Chemical dynamics, materials science, surfaces, interfaces...

276

Chemical Testing of Textiles  

Science Conference Proceedings (OSTI)

Chemical Testing of Textiles is edited by Qinguo Fan and covers more subjects than the title implies. These subjects include fiber and yarn identification, ...

277

American Chemical Society  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. American Chemical Society (ACS). Purpose: Air and water mediate chemistry on Earth. ... Related Project(s): ACS. Details: ...

2011-08-29T23:59:59.000Z

278

Apparatus for chemical synthesis  

DOE Patents (OSTI)

A method and apparatus for forming a chemical hydride is described and which includes a pseudo-plasma-electrolysis reactor which is operable to receive a solution capable of forming a chemical hydride and which further includes a cathode and a movable anode, and wherein the anode is moved into and out of fluidic, ohmic electrical contact with the solution capable of forming a chemical hydride and which further, when energized produces an oxygen plasma which facilitates the formation of a chemical hydride in the solution.

Kong, Peter C. (Idaho Falls, ID); Herring, J. Stephen (Idaho Falls, ID); Grandy, Jon D. (Idaho Falls, ID)

2011-05-10T23:59:59.000Z

279

Chemical Sciences Division  

NLE Websites -- All DOE Office Websites (Extended Search)

& CENTERS RESEARCH STUDENT & POSTDOCTORAL OPPORTUNITIES NEWS & EVENTS CSD CONTACTS LBNL HOME logo Privacy & Security Notice DOE UC Berkeley Chemical Sciences Division imagemap...

280

Chemical Name Search  

Science Conference Proceedings (OSTI)

... Enter a chemical species name or pattern: (eg, methane, *2-hexene); Select the desired units for thermodynamic data: SI calorie-based; ...

2013-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "disciplines chemical dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Biomass pyrolysis for chemicals.  

E-Print Network (OSTI)

??Biomass Pyrolysis for Chemicals The problems associated with the use of fossil fuels demand a transition to renewable sources (sun, wind, water, geothermal, biomass) for… (more)

Wild, Paul de

2011-01-01T23:59:59.000Z

282

Brookhaven Chemical Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Physics While the field of physics generally strives to find compact and universal explanations for how the components of our universe interact, chemistry is traditionally...

283

Earth materials and earth dynamics  

Science Conference Proceedings (OSTI)

In the project ''Earth Materials and Earth Dynamics'' we linked fundamental and exploratory, experimental, theoretical, and computational research programs to shed light on the current and past states of the dynamic Earth. Our objective was to combine different geological, geochemical, geophysical, and materials science analyses with numerical techniques to illuminate active processes in the Earth. These processes include fluid-rock interactions that form and modify the lithosphere, non-linear wave attenuations in rocks that drive plate tectonics and perturb the earth's surface, dynamic recrystallization of olivine that deforms the upper mantle, development of texture in high-pressure olivine polymorphs that create anisotropic velocity regions in the convecting upper mantle and transition zone, and the intense chemical reactions between the mantle and core. We measured physical properties such as texture and nonlinear elasticity, equation of states at simultaneous pressures and temperatures, magnetic spins and bonding, chemical permeability, and thermal-chemical feedback to better characterize earth materials. We artificially generated seismic waves, numerically modeled fluid flow and transport in rock systems and modified polycrystal plasticity theory to interpret measured physical properties and integrate them into our understanding of the Earth. This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

Bennett, K; Shankland, T. [and others

2000-11-01T23:59:59.000Z

284

Atoms of multistationarity in chemical reaction networks  

E-Print Network (OSTI)

Chemical reaction networks taken with mass-action kinetics are dynamical systems that arise in chemical engineering and systems biology. Deciding whether a chemical reaction network admits multiple positive steady states is to determine existence of multiple positive solutions to a system of polynomials with unknown coefficients. In this work, we consider the question of whether the minimal (in a precise sense) networks, which we propose to call `atoms of multistationarity,' characterize the entire set of multistationary networks. We show that if a subnetwork admits multiple nondegenerate positive steady states, then these steady states can be extended to establish multistationarity of a larger network, provided that the two networks share the same stoichiometric subspace. Our result provides the mathematical foundation for a technique used by Siegal-Gaskins et al. of establishing bistability by way of `network ancestry.' Here, our main application is for enumerating small multistationary continuous-flow stir...

Joshi, Badal

2011-01-01T23:59:59.000Z

285

Studying the Solar System's Chemical Recipe  

NLE Websites -- All DOE Office Websites (Extended Search)

Studying the Solar System's Chemical Recipe Print Studying the Solar System's Chemical Recipe Print To study the origins of different isotope ratios among the elements that make up today's smorgasbord of planets, moons, comets, asteroids, and interplanetary ice and dust, a team of scientists from the University of California, San Diego is using ALS Chemical Dynamics Beamline 9.0.2 to mimic radiation from the protosun when the solar system was forming. For more than three decades, Mark Thiemens, Dean of the Division of Physical Sciences at UCSD, has worked to learn how our solar system evolved. Now he and his colleagues Teresa Jackson and Subrata Chakraborty (who won the David A. Shirley Award for Outstanding Scientific Achievement at the ALS in 2011) are using ALS Beamline 9.0.2 to see if photochemistry can explain the differences in isotope ratios between elements on Earth and what's found in meteorites and interplanetary dust particles. The Chemical Dynamics Beamline generates intense beams of vacuum ultraviolet light (VUV) that can be precisely tuned to mimic the radiation from the protosun. It is powerful enough to dissociate gas molecules like carbon monoxide, hydrogen sulfide, and nitrogen, providing information about gas-phase photodynamics.

286

Studying the Solar System's Chemical Recipe  

NLE Websites -- All DOE Office Websites (Extended Search)

Studying the Solar System's Chemical Recipe Print Studying the Solar System's Chemical Recipe Print To study the origins of different isotope ratios among the elements that make up today's smorgasbord of planets, moons, comets, asteroids, and interplanetary ice and dust, a team of scientists from the University of California, San Diego is using ALS Chemical Dynamics Beamline 9.0.2 to mimic radiation from the protosun when the solar system was forming. For more than three decades, Mark Thiemens, Dean of the Division of Physical Sciences at UCSD, has worked to learn how our solar system evolved. Now he and his colleagues Teresa Jackson and Subrata Chakraborty (who won the David A. Shirley Award for Outstanding Scientific Achievement at the ALS in 2011) are using ALS Beamline 9.0.2 to see if photochemistry can explain the differences in isotope ratios between elements on Earth and what's found in meteorites and interplanetary dust particles. The Chemical Dynamics Beamline generates intense beams of vacuum ultraviolet light (VUV) that can be precisely tuned to mimic the radiation from the protosun. It is powerful enough to dissociate gas molecules like carbon monoxide, hydrogen sulfide, and nitrogen, providing information about gas-phase photodynamics.

287

Studying the Solar System's Chemical Recipe  

NLE Websites -- All DOE Office Websites (Extended Search)

Studying the Solar System's Chemical Recipe Print Studying the Solar System's Chemical Recipe Print To study the origins of different isotope ratios among the elements that make up today's smorgasbord of planets, moons, comets, asteroids, and interplanetary ice and dust, a team of scientists from the University of California, San Diego is using ALS Chemical Dynamics Beamline 9.0.2 to mimic radiation from the protosun when the solar system was forming. For more than three decades, Mark Thiemens, Dean of the Division of Physical Sciences at UCSD, has worked to learn how our solar system evolved. Now he and his colleagues Teresa Jackson and Subrata Chakraborty (who won the David A. Shirley Award for Outstanding Scientific Achievement at the ALS in 2011) are using ALS Beamline 9.0.2 to see if photochemistry can explain the differences in isotope ratios between elements on Earth and what's found in meteorites and interplanetary dust particles. The Chemical Dynamics Beamline generates intense beams of vacuum ultraviolet light (VUV) that can be precisely tuned to mimic the radiation from the protosun. It is powerful enough to dissociate gas molecules like carbon monoxide, hydrogen sulfide, and nitrogen, providing information about gas-phase photodynamics.

288

Chemical energy in an introductory physics course for the life sciences  

E-Print Network (OSTI)

Energy is a complex idea that cuts across scientific disciplines. For life science students, an approach to energy that incorporates chemical bonds and chemical reactions is better equipped to meet the needs of life sciences students than a traditional introductory physics approach that focuses primarily on mechanical energy. We present a curricular sequence, or thread, designed to build up students' understanding of chemical energy in an introductory physics course for the life sciences. This thread is designed to connect ideas about energy from physics, biology, and chemistry. We describe the kinds of connections among energetic concepts that we intended to develop to build interdisciplinary coherence, and present some examples of curriculum materials and student data that illustrate our approach.

Dreyfus, Benjamin W; Geller, Benjamin D; Sawtelle, Vashti; Turpen, Chandra; Redish, Edward F

2013-01-01T23:59:59.000Z

289

Chemical Plume Source Localization  

Science Conference Proceedings (OSTI)

This paper addresses the problem of estimating a likelihood map for the location of the source of a chemical plume using an autonomous vehicle as a sensor probe in a fluid flow. The fluid flow is assumed to have a high Reynolds number. Therefore, the ... Keywords: Autonomous vehicles, Bayesian inference methods, chemical plume tracing, online mapping, online planning, plume source localization

Shuo Pang; J. A. Farrell

2006-10-01T23:59:59.000Z

290

Enhanced Chemical Cleaning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chemical Cleaning Chemical Cleaning Renee H. Spires Enhanced Chemical Cleaning Project Manager July 29, 2009 Tank Waste Corporate Board 2 Objective Provide an overview of the ECC process and plan 3 Chemical Cleaning * Oxalic Acid can get tanks clean - Tank 16 set a standard in 1982 - Tanks 5-6 Bulk OA cleaning results under evaluation * However, the downstream flowsheet and financial impacts of handling the spent acid were unacceptable Before After Tank 16 Tank 16 4 Oxalic Acid Flowsheet Impacts Evap Sludge Washing Evap Feed/Drop Tank 8 Wt% Oxalic Acid Neutralization Tank Solids Liquid High oxalate concentration Negligible oxalate concentration * Oxalates from chemical cleaning impact salt processing * A process change was needed Evaporator Saltstone Vaults DWPF Filled Canisters 5 Vision * Eliminate the impacts to the Tank Farm

291

Modelling the chemical evolution  

E-Print Network (OSTI)

Advanced observational facilities allow to trace back the chemical evolution of the Universe, on the one hand, from local objects of different ages and, secondly, by direct observations of redshifted objects. The chemical enrichment serves as one of the cornerstones of cosmological evolution. In order to understand this chemical evolution in morphologically different astrophysical objects models are constructed based on analytical descriptions or numerical methods. For the comparison of their chemical issues, as there are element abundances, gradients, and ratios, with observations not only the present-day values are used but also their temporal evolution from the first era of metal enrichment. Here we will provide some insight into basics of chemical evolution models, highlight advancements, and discuss a few applications.

Hensler, Gerhard

2010-01-01T23:59:59.000Z

292

Argonne Chemical Sciences & Engineering - People - Fundamental Interactions  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Dynamics Chemical Dynamics Stephen T. Pratt, Senior Chemist and Group Leader phone: 630/252-4199, fax: 630/252-9292, e-mail: stpratt@anl.gov Michael J. Davis, Senior Chemist phone: 630/252-4802, fax: 630/252-9292, e-mail: davis@tcg.anl.gov Yuri Georgievski, Computational Chemistry Specialist phone: 630/252-3706, e-mail: ygeorgi@anl.gov Lawrence B. Harding, Argonne Distinguished Fellow phone: 630/252-3591, fax: 630/252-9292, email: harding@anl.gov Ph.D., Chemistry, California Institute of Technology Applications of ab initio electronic structure theory Theoretical chemical kinetics Stephen J. Klippenstein, Argonne Distinguished Fellow phone: 630/252-3596, fax: 630/252-9292, e-mail: sjk@anl.gov Ph.D., Theoretical Chemistry, California Institute of Technology Theoretical chemical kinetics

293

Dynamic tariffs  

SciTech Connect

The general theoretical models of dynamic tariffs, such as spot pricing, are extended in this paper to include the issues of optimal response of industrial consumers and the effect of large scale penetration of these tariffs on the utility load curve. If such tariffs are to serve their purpose consumers need to acquire the ability for flexible and dynamic response. While the hardware for this is readily available the theoretical models and software systems are not. These issues are examined and correlated with industrial site studies. A systematic analysis of the effect of significant consumer response on the system load curve is next undertaken. A methodologically sound approach to system load and price forecasting is presented.

David, A.K.; Lee, Y.C.

1989-08-01T23:59:59.000Z

294

Chemical engineers design, control and optimize large-scale chemical,  

E-Print Network (OSTI)

by petition only. 405 Applications of Probability and Statistics for Chemical Engineers (3, Fa) Principles of probability and statistics, random variables and random functions. Application to chemical engineering Chemical Reactor Analysis (3, Fa) Basic concepts of chemical kinetics and chemical reactor design

Wang, Hai

295

Chemical engineers design, control and optimize large-scale chemical,  

E-Print Network (OSTI)

. Enrollment by petition only. CHE 405 Applications of Probability and Statistics for Chemical Engineers (3, Fa) Principles of probability and statistics, random variables and random functions. Application to chemical) CHE 442 Chemical Reactor Analysis (3, Fa) Basic concepts of chemical kinetics and chemical reactor

Wang, Hai

296

Chemical process hazards analysis  

SciTech Connect

The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

NONE

1996-02-01T23:59:59.000Z

297

Chemicals from coal  

Science Conference Proceedings (OSTI)

This chapter contains sections titled: Chemicals from Coke Oven Distillate; The Fischer-Tropsch Reaction; Coal Hydrogenation; Substitute Natural Gas (SNG); Synthesis Gas Technology; Calcium Carbide; Coal and the Environment; and Notes and References

Harold A. Wittcoff; Bryan G. Reuben; Jeffrey S. Plotkin

2004-12-01T23:59:59.000Z

298

Chiral magnetic effect in lattice QCD with chiral chemical potential  

E-Print Network (OSTI)

We perform a first lattice QCD simulation including two-flavor dynamical fermion with chiral chemical potential. Because the chiral chemical potential gives rise to no sign problem, we can exactly analyze a chirally asymmetric QCD matter by the Monte Carlo simulation. By applying an external magnetic field to this system, we obtain a finite induced current along the magnetic field, which corresponds to the chiral magnetic effect. The obtained induced current is proportional to the magnetic field and to the chiral chemical potential, which is consistent with an analytical prediction.

Yamamoto, Arata

2011-01-01T23:59:59.000Z

299

Chemical Hygiene and Safety Plan  

E-Print Network (OSTI)

towards shop operations. H-1 Chemic_l Hygiene and Safety ,of this section, any chemic:ads per kflop'am of body welshtUNSUPPORTED CHEMIC. -M. VITON NITrlI.E NATI'R.4I. BUTYL

Ricks Editor, R.

2009-01-01T23:59:59.000Z

300

An Observational and Numerical Study of the Nocturnal Sea Breeze. Part II: Chemical Transport  

Science Conference Proceedings (OSTI)

Chemical transport at the Savannah River Site (SRS) in South Carolina during nocturnal sea-breeze passage is examined using simulations from a three-dimensional mesoscale dynamic model [(RAMS) Regional Atmospheric Modeling System] and a ...

Robert L. Buckley; Robert J. Kurzeja

1997-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "disciplines chemical dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Femtosecond transient absorption studies in cadmium selenide nanocrystal thin films prepared by chemical bath deposition method  

Science Conference Proceedings (OSTI)

Dynamics of photo-excited carrier relaxation processes in cadmium selenide nanocrystal thin films prepared by chemical bath deposition method have been studied by nondegenerate femtosecond transient pump-probe spectroscopy. The carriers were generated ...

M. C. Rath; J. A. Mondal; D. K. Palit; T. Mukherjee; H. N. Ghosh

2007-01-01T23:59:59.000Z

302

Gas-Phase Molecular Dynamics: High Resolution Spectroscopy and Collision Dynamics of Transient Species  

SciTech Connect

This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. High-resolution spectroscopy, augmented by theoretical and computational methods, is used to investigate the structure and collision dynamics of chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry. Applications and methods development are equally important experimental components of this work.

Hall,G.E.; Sears, T.J.

2009-04-03T23:59:59.000Z

303

The Chemical Composition of Local Group Dwarf Spheroidals  

E-Print Network (OSTI)

I will review the progress of VLT spectroscopy of large numbers of individual stars in nearby dwarf spheroidal galaxies. This spectroscopy has allowed us to obtain detailed insights into the chemical and dynamical properties of the resolved stellar population in these nearby systems.

Eline Tolstoy

2005-06-21T23:59:59.000Z

304

Chemically enhanced oil recovery  

Science Conference Proceedings (OSTI)

Yet when conducted according to present state of the art, chemical flooding (i.e., micellar/polymer flooding, surfactant/polymer flooding, surfactant flooding) can mobilize more residual crude oil than any other method of enhanced oil recovery. It also is one of the most expensive methods of enhanced oil recovery. This contribution will describe some of the technology that comprises the state of the art technology that must be adhered to if a chemical flood is to be successful. Although some of the efforts to reduce cost and other points are discussed, the principle focus is on technical considerations in designing a good chemical flooding system. The term chemical flooding is restricted here to methods of enhanced oil recovery that employs a surfactant, either injected into the oil reservoir or generated in situ, primarily to reduce oil-water interfacial tension. Hence, polymer-water floods for mobility or profile control, steam foams, and carbon dioxide foams are excluded. Some polymer considerations are mentioned because they apply to providing mobility control for chemical flooding systems.

Nelson, R.C.

1989-03-01T23:59:59.000Z

305

Information flow within stochastic dynamical systems  

E-Print Network (OSTI)

Information flow or information transfer is an important concept in dynamical systems which has applications in a wide variety of scientific disciplines. In this study, we show that a rigorous formalism can be established in the context of a generic stochastic dynamical system. The resulting measure of of information transfer possesses a property of transfer asymmetry and, when the stochastic perturbation to the receiving component does not rely on the giving component, has a form same as that for the corresponding deterministic system. An application with a two-dimensional system is presented, and the resulting transfers are just as expected. A remarkable observation is that, for two highly correlated time series, there could be no information transfer from one certain series, say $x_2$, to the other ($x_1$). That is to say, the evolution of $x_1$ may have nothing to do with $x_2$, even though $x_1$ and $x_2$ are highly correlated. Information transfer analysis thus extends the traditional notion of correlation analysis by providing a quantitative measure of causality between time series.

X. San Liang

2007-10-04T23:59:59.000Z

306

Stochastic Chemical Reactions in Micro-domains  

E-Print Network (OSTI)

Traditional chemical kinetics may be inappropriate to describe chemical reactions in micro-domains involving only a small number of substrate and reactant molecules. Starting with the stochastic dynamics of the molecules, we derive a master-diffusion equation for the joint probability density of a mobile reactant and the number of bound substrate in a confined domain. We use the equation to calculate the fluctuations in the number of bound substrate molecules as a function of initial reactant distribution. A second model is presented based on a Markov description of the binding and unbinding and on the mean first passage time of a molecule to a small portion of the boundary. These models can be used for the description of noise due to gating of ionic channels by random binding and unbinding of ligands in biological sensor cells, such as olfactory cilia, photo-receptors, hair cells in the cochlea.

D. Holcman; Z. Schuss

2004-12-25T23:59:59.000Z

307

New Initiatives on RR Lyrae Chemical Compositions  

E-Print Network (OSTI)

The serendipitous discovery by Preston and colleagues of the neutron-capture-enhanced RR Lyrae variable star TY Gru (a.k.a. CS 22881-071 in the "HK" survey of very metal-poor halo stars) has resulted in a growing set of initiatives on the chemical compositions of RR Lyrae stars and their application to broader topics in Galactic halo structure. Here we summarize the main aspects of our work on TY Gru, including a new discussion of our search for possible orbital motion of this star around a putative unseen companion. Then we describe a few of the results of a newly-completed intensive spectroscopic investigation of 10 additional field RR Lyr stars. We finish by outlining current projects that seek to contrast the atmospheres and chemical compositions of RRc stars with those of the RRab stars, and that employ a much larger RRab sample in a chemo-dynamical study of Galactic halo RR Lyr.

Sneden, Christopher; Preston, George W

2011-01-01T23:59:59.000Z

308

Idaho Chemical Processing Plant safety document ICPP hazardous chemical evaluation  

Science Conference Proceedings (OSTI)

This report presents the results of a hazardous chemical evaluation performed for the Idaho Chemical Processing Plant (ICPP). ICPP tracks chemicals on a computerized database, Haz Track, that contains roughly 2000 individual chemicals. The database contains information about each chemical, such as its form (solid, liquid, or gas); quantity, either in weight or volume; and its location. The Haz Track database was used as the primary starting point for the chemical evaluation presented in this report. The chemical data and results presented here are not intended to provide limits, but to provide a starting point for nonradiological hazards analysis.

Harwood, B.J.

1993-01-01T23:59:59.000Z

309

Chemical profiles of switchgrass  

NLE Websites -- All DOE Office Websites (Extended Search)

profiles profiles of switchgrass Zhoujian Hu a,b , Robert Sykes a,c , Mark F. Davis a,c , E. Charles Brummer a,d , Arthur J. Ragauskas a,b,e, * a BioEnergy Science Center, USA b School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA 30332, USA c National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401, USA d Institute for Plant Breeding, Genetics, and Genomics, Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA e Forest Products and Chemical Engineering Department, Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden a r t i c l e i n f o Article history: Received 15 April 2009 Received in revised form 10 December 2009 Accepted 10 December 2009 Available online 13 January 2010 Keywords: Switchgrass Morphological components Chemical

310

Carbon Emissions: Chemicals Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Chemicals Industry Chemicals Industry Carbon Emissions in the Chemicals Industry The Industry at a Glance, 1994 (SIC Code: 28) Total Energy-Related Emissions: 78.3 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 21.1% -- Nonfuel Emissions: 12.0 MMTC Total First Use of Energy: 5,328 trillion Btu -- Pct. of All Manufacturers: 24.6% Energy Sources Used As Feedstocks: 2,297 trillion Btu -- LPG: 1,365 trillion Btu -- Natural Gas: 674 trillion Btu Carbon Intensity: 14.70 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 78.3 Natural Gas 32.1

311

Chemical Cleaning Program Review  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chemical Cleaning Chemical Cleaning Program Review Neil Davis Deputy Program Manager Waste Removal & Tank Closure July 29, 2009 SRR-STI-2009-00464 2 Contents Regulatory drivers Process overview Preliminary results Lessons learned Path forward 3 Regulatory Drivers The Federal Facilities Agreement establishes milestones for the removal of bulk waste and closure of each non-compliant tank Per the Dispute Resolution: - "DOE shall complete operational closure of Tanks 19 and 18 by 12/31/2012" - "DOE shall complete operational closure of 4 tanks by 9/30/2015" SRR intention to close 4 tanks by 9/30/2010, or as soon as possible Tanks 5 & 6 will be 2 of the 4 tanks 4 Tank Closure Process Bulk Waste Removal Mechanical Heel Removal Chemical Cleaning Annulus

312

Chemical Label Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Label Information Chemical Label Information Chemical Name CAS No. NFPA 704 Label Data Hazard Information Health Fire Reactivity Other acetone 67641 1 3 0 Eye, skin and mucous membrane irritatiion. Central nervous system depression. chloroform 67663 2 0 0 CAR [1] and TERAT [2] Liver and kidney disorders. Eye and skin irritation. Central nervous system depression. Cardiac arrythmia. ethanol 64175 0 3 0 Skin and eye irritation. ethyl alcohol 64175 0 3 0 Skin and eye irritation. hydrofluoric acid 7664393 4 0 0 Acute [3] - Skin contact can lead to bone damage. Skin, eye and mucous membrane irritation. hydrogen peroxide (35 to 52%) 7722841 2 0 1 OX Very irritating to the skin, eye and respiratory tract. hydrogen peroxide (> 52%) 7722841 2 0 3 OX Extremely irritating to the skin, eye and respiratory tract.

313

Chemical Storage-Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage - Storage - Overview Ali T-Raissi, FSEC Hydrogen Storage Workshop Argonne National Laboratory, Argonne, Illinois August 14-15, 2002 Hydrogen Fuel - Attributes * H 2 +½ O 2 → H 2 O (1.23 V) * High gravimetric energy density: 27.1 Ah/g, based on LHV of 119.93 kJ/g * 1 wt % = 189.6 Wh/kg (0.7 V; i.e. η FC = 57%) * Li ion cells: 130-150 Wh/kg Chemical Hydrides - Definition * They are considered secondary storage methods in which the storage medium is expended - primary storage methods include reversible systems (e.g. MHs & C-nanostructures), GH 2 & LH 2 storage Chemical Hydrides - Definition (cont.) * The usual chemical hydride system is reaction of a reactant containing H in the "-1" oxidation state (hydride) with a reactant containing H in the "+1" oxidation

314

Physical and Chemical Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

data image data image Physical and Chemical Applications Research in this area includes: Chemical analysis (femtosecond laser ablation). Advanced sensors (laser ultrasonics). Advanced materials and nanotechnology for clean energy- hydrogen storage, nanostructured organic light-emitting diodes, nanowires, and nanoparticles). Photons to fuels (biosynthetic pathways for generating hydrocarbon biofuels in photosynthetic organisms). Advanced Sensor Development Sensor-based control of industrial processes can help companies: Decrease production costs; Reduce waste of raw materials on manufacturing lines; Lower manufacturing downtime from equipment maintenance; Increase the energy efficiency of manufacturing processes; Detect equipment failure early, before it becomes a major liability;

315

Chemical Logging | Open Energy Information  

Open Energy Info (EERE)

Chemical Logging Chemical Logging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Chemical Logging Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Presence and geochemical composition of fluid producing zones Thermal: Calcium-alkalinity ratios versus depth assist in defining warm and hot water aquifers Dictionary.png Chemical Logging: Chemical logging produces a chemical profile of the formation fluid within a well based on the measurement of changes in the chemical composition of the drilling fluid during drilling operations.

316

Chemical Conversion Coating  

Science Conference Proceedings (OSTI)

Table 16   Applications of aluminum using chemical conversion coatings...doors 6063 Acrylic paint (b) Cans 3004 Sanitary lacquer Fencing 6061 None applied Chromate conversion coatings Aircraft fuselage skins 7075 clad with 7072 Zinc chromate primer Electronic chassis 6061-T4 None applied Cast missile bulkhead 356-T6 None applied Screen 5056 clad with 6253 Clear varnish...

317

Development of Java multi-threaded simulation for chemical reacting flow of ethanol  

Science Conference Proceedings (OSTI)

Multi-threading in Java enhances computational performance and facilitates the development of parallel software. To obtain high performance on multi-core systems, this study develops a multi-threaded simulation code using Java for the chemical reacting ... Keywords: Benchmark, Chemical reaction, Computational fluid dynamics, Ethanol detonation, Java, Multi-thread

E. Yamada; T. Shimada; A. K. Hayashi

2012-12-01T23:59:59.000Z

318

Dynamic Glazing from a Material Science Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

Dynamic Glazing from a Material Science Perspective Dynamic Glazing from a Material Science Perspective Speaker(s): Sunnie Lim Date: February 16, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Dragan Charlie Curcija Advanced window technology has been identified as a component which can greatly reduce the energy consumption of the building envelope. The next generation of advanced windows will involve a "smart-coating" technology where the optical and solar properties can be dynamically controlled. The performance of such coating is ultimately linked to its materials properties such as chemical composition and microstructure. These properties are directly influenced by the deposition process conditions. A promising dynamic windows technology is based upon the electrochromism process. An electrochromic window system consists of a sandwich of

319

Active Brownian Particles. From Individual to Collective Stochastic Dynamics  

E-Print Network (OSTI)

We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical beha...

Romanczuk, Pawel; Ebeling, Werner; Lindner, Benjamin; Schimansky-Geier, Lutz

2012-01-01T23:59:59.000Z

320

Equation of state at finite temperature and chemical potential, lattice QCD results  

E-Print Network (OSTI)

We present an N_t=4 lattice study for the equation of state of 2+1 flavour staggered, dynamical QCD at finite temperature and chemical potential. We use the overlap improving multi-parameter reweighting technique to extend the equation of state for non-vanishing chemical potentials. The results are obtained on the line of constant physics and our physical parameters extend in temperature and baryon chemical potential upto \\approx 500-600 MeV.

F. Csikor; G. I. Egri; Z. Fodor; S. D. Katz; K. K. Szabo; A. I. Toth

2004-01-09T23:59:59.000Z

Note: This page contains sample records for the topic "disciplines chemical dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Work Practices for Chemical Fumehoods  

NLE Websites -- All DOE Office Websites (Extended Search)

Practices for Chemical Fumehoods Practices for Chemical Fumehoods (Reviewed May 16, 2011) Always use a chemical fumehood when working with toxic and/or volatile chemicals, not on an open bench. Chemical fumehoods are designed to provide protection for the user from chemical and radiological contaminants. However, they do not absolutely eliminate exposure, even under ideal conditions. Careless work practices can result in considerable exposure to users who may believe they are protected. To optimize the performance of the chemical hood, adhere to the following work practices: 1. Ensure that your chemical hood has a current inspection sticker (dated within the last year). The face velocity should be between 80 and 120 linear feet per minute (lfpm). 2. Verify that the chemical hood is drawing air.

322

TABLE OF CONTENTS I. PHYSICAL & CHEMICAL ...  

Science Conference Proceedings (OSTI)

Page 1. Chemical Science and Technology Laboratory Page 1 Technical Activities Report Physical & Chemical Properties Division ...

2001-06-12T23:59:59.000Z

323

Chemical Engineering & Processing Humidity Information at ...  

Science Conference Proceedings (OSTI)

NIST Home > Chemical Engineering & Processing Humidity Information at NIST. Chemical Engineering & Processing Humidity Information at NIST. ...

2010-09-24T23:59:59.000Z

324

Dynamic Operational Risk Assessment with Bayesian Network  

E-Print Network (OSTI)

Oil/gas and petrochemical plants are complicated and dynamic in nature. Dynamic characteristics include ageing of equipment/components, season changes, stochastic processes, operator response times, inspection and testing time intervals, sequential dependencies of equipment/components and timing of safety system operations, all of which are time dependent criteria that can influence dynamic processes. The conventional risk assessment methodologies can quantify dynamic changes in processes with limited capacity. Therefore, it is important to develop method that can address time-dependent effects. The primary objective of this study is to propose a risk assessment methodology for dynamic systems. In this study, a new technique for dynamic operational risk assessment is developed based on the Bayesian networks, a structure optimal suitable to organize cause-effect relations. The Bayesian network graphically describes the dependencies of variables and the dynamic Bayesian network capture change of variables over time. This study proposes to develop dynamic fault tree for a chemical process system/sub-system and then to map it in Bayesian network so that the developed method can capture dynamic operational changes in process due to sequential dependency of one equipment/component on others. The developed Bayesian network is then extended to the dynamic Bayesian network to demonstrate dynamic operational risk assessment. A case study on a holdup tank problem is provided to illustrate the application of the method. A dryout scenario in the tank is quantified. It has been observed that the developed method is able to provide updated probability different equipment/component failure with time incorporating the sequential dependencies of event occurrence. Another objective of this study is to show parallelism of Bayesian network with other available risk assessment methods such as event tree, HAZOP, FMEA. In this research, an event tree mapping procedure in Bayesian network is described. A case study on a chemical reactor system is provided to illustrate the mapping procedure and to identify factors that have significant influence on an event occurrence. Therefore, this study provides a method for dynamic operational risk assessment capable of providing updated probability of event occurrences considering sequential dependencies with time and a model for mapping event tree in Bayesian network.

Barua, Shubharthi

2012-08-01T23:59:59.000Z

325

Resistance to Chemicals  

Science Conference Proceedings (OSTI)

Table 14   Corrosion of lead in chemical process fluids...� � 76.2 3 Tallow � � 304.8 12 Olive � � 76.2 3 Cod liver � � 152.4 6 Neatsfoot � � 279.4 11 Fish � � 279.4 11 Vegetable � � 584.2 23 Peanut � � 457.2 18 Sulfonation with

326

Chemical composition of melanin  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical composition of melanin Chemical composition of melanin Name: Peggy M Siemers Status: N/A Age: N/A Location: N/A Country: N/A Date: N/A Question: What is the chemical composition of Melanin by specific amino acids, or the DNA code for melanin? Replies: This is a good question! The answer is somewhat complex and I'm sure I don't have all the details but here goes... First, there is not a specific DNA code for melanin because like many biomolecules, it is not the result of a single gene product. People that are deficient in melanin are oculo/dermal albinos and I believe there have been seven different types of mutations. These different mutations reflect the multiple steps required to produce melanin. The original building block for melanin is tyrosine, one of the amino acids. This amino acid is modified by enzymes to produce the building block (monomer) for melanin synthesis by a process called polymerization that is also controlled by an enzyme. The polymers ,I believe, can attain diff3erent lengths and they can also form aggregates of different sizes alone and in combination with other molecules such as proteins. This is in part responsible for differences in coloration seen within and between individuals. NEWTON RULES

327

Chemical engineers design, control and optimize large-scale chemical,  

E-Print Network (OSTI)

Chemical Process and Plant Design (3, Sp) Applications of unit opera- tions, thermodynamics, kinetics variables and random functions. Application to chemical engineering problems, including process design concepts of chemical kinetics and chemi- cal reactor design. Prerequisite: MATH 245. coUrSeS of in

Wang, Hai

328

Information extraction from chemical patents  

E-Print Network (OSTI)

........................................................................................................................................ vii Glossary .................................................................................................................................................. ix 1. Introduction... .................................................................... 211 Figure 6-2: Diagrammatic illustration of PatentEye Repository RDF .................................................. 212 ix Glossary API Application Programming Interface CAS Chemical Abstracts Service ChEBI Chemical Entities...

Jessop, David M

2011-03-15T23:59:59.000Z

329

Devices for collecting chemical compounds  

SciTech Connect

A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from a fixed surface so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

Scott, Jill R; Groenewold, Gary S

2013-12-24T23:59:59.000Z

330

Chemical Informatics Research - Staff Directory  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Chemical Informatics Research Group. William E. Wallace III (Group Leader) Laurell R. Phillips (Office ...

2013-08-29T23:59:59.000Z

331

Chemical Transformations of Nanostructured Materials  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2013. Symposium, Solution-based Processing for Ceramic Materials. Presentation Title, Chemical ...

332

Chemical Sciences Division - Staff Directory  

Science Conference Proceedings (OSTI)

Chemical Sciences Division. Carlos A. Gonzalez (Division Chief) Carol A. Driver (Office Manager) Division Office Staff Directory. ...

2013-08-15T23:59:59.000Z

333

Argonne Chemical Sciences & Engineering - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalysis & Energy Conversion Electrochemical Energy Storage Nuclear & Environmental Processes National Security Institute for Atom-Efficient Chemical Transformations Center for...

334

LLNL Chemical Kinetics Modeling Group  

DOE Green Energy (OSTI)

The LLNL chemical kinetics modeling group has been responsible for much progress in the development of chemical kinetic models for practical fuels. The group began its work in the early 1970s, developing chemical kinetic models for methane, ethane, ethanol and halogenated inhibitors. Most recently, it has been developing chemical kinetic models for large n-alkanes, cycloalkanes, hexenes, and large methyl esters. These component models are needed to represent gasoline, diesel, jet, and oil-sand-derived fuels.

Pitz, W J; Westbrook, C K; Mehl, M; Herbinet, O; Curran, H J; Silke, E J

2008-09-24T23:59:59.000Z

335

Experimental Datasets from Chemical Thermodynamics  

E-Print Network (OSTI)

Mar 29, 2005 ... Optimization Online. Experimental Datasets from Chemical Thermodynamics. Evgenii Rudnyi (Evgenii ***at*** Rudnyi.Ru). Abstract: I have ...

336

Principles of Chemical Vapor Deposition  

Science Conference Proceedings (OSTI)

...as well as the fluid dynamic aspects of the reactor system, to improve process efficiency. Many computational

337

AGRI-SCIENCE CHEMICAL BIOLOGY  

E-Print Network (OSTI)

AGRI-SCIENCE CHEMICAL BIOLOGY NETWORK Vehicle for translation: Pioneering a cross-academic, -industry and -government network Chemical Biology Community Agri- Sciences Community Industry Policy makers), with multidisciplinary approaches being the drivers enabling this. Chemical Biology through physical science innovation

338

Chemical sensing flow probe  

DOE Patents (OSTI)

A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir.

Laguna, George R. (Albuquerque, NM); Peter, Frank J. (Albuquerque, NM); Butler, Michael A. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

339

Chemical sensing flow probe  

DOE Patents (OSTI)

A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir. 7 figs.

Laguna, G.R.; Peter, F.J.; Butler, M.A.

1999-02-16T23:59:59.000Z

340

Chemical sensor system  

DOE Patents (OSTI)

An implantable chemical sensor system for medical applications is described which permits selective recognition of an analyte using an expandable biocompatible sensor, such as a polymer, that undergoes a dimensional change in the presence of the analyte. The expandable polymer is incorporated into an electronic circuit component that changes its properties (e.g., frequency) when the polymer changes dimension. As the circuit changes its characteristics, an external interrogator transmits a signal transdermally to the transducer, and the concentration of the analyte is determined from the measured changes in the circuit. This invention may be used for minimally invasive monitoring of blood glucose levels in diabetic patients.

Darrow, Christopher B. (Pleasanton, CA); Satcher, Jr., Joe H. (Modesto, CA); Lane, Stephen M. (Oakland, CA); Lee, Abraham P. (Walnut Creek, CA); Wang, Amy W. (Berkeley, CA)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "disciplines chemical dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Areawide chemical contamination  

SciTech Connect

Nine case histories illustrate the mounting problems owing to chemical contamination that often extends beyond the workplace into the community. The effects include not only carcinogenesis and teratogenesis, so much in the public's mind, but also severe neurological and gonadal disabilities immediately after exposure. Recognition of causal relationships is often made by astute clinicians. The experience of the Atomic Bomb Casualty Commission in studying Japanese survivors in Hiroshima and Nagasaki serves as a model for future studies of communities exposed to unusual environmental contamination.

Miller, R.W.

1981-04-17T23:59:59.000Z

342

Dynamic simulation recalls condensate piping event  

Science Conference Proceedings (OSTI)

This article describes how experience gained from simulating and reconstructing a condensate piping event will be used by Consolidated Edison to analyze control system problems. A cooperative effort by Con Edison and the Chemical Engineering Department at Polytechnic University used modular modeling system to investigate the probable cause of a Con Edison condensate piping event. Con Edison commissioned the work to serve as a case study for the more general problem of control systems analysis using dynamic simulation and MMS.

Farrell, R.J.; Reneberg, K.O. (Polytechnic Univ., Brooklyn, NY (United States)); Moy, H.C. (Consolidated Edison Co., New York, NY (United States))

1994-05-01T23:59:59.000Z

343

Chemical Reactions in DSMC  

Science Conference Proceedings (OSTI)

DSMC simulations of chemically reacting gas flows have generally employed procedures that convert the macroscopic chemical rate equations to reaction cross-sections at the microscopic level. They therefore depend on the availability of experimental data that has been fitted to equations of the Arrhenius form. This paper presents a physical model for dissociation and recombination reactions and a phenomenological model for exchange and chain reactions. These are based on the vibrational states of the colliding molecules and do not require any experimentally-based data. The simplicity of the models allows the corresponding rate equations to be written down and, while these are not required for the implementation of the models, they facilitate their validation. The model is applied to a typical hypersonic atmospheric entry problem and the results are compared with the corresponding results from the traditional method. It is also used to investigate both spontaneous and forced ignition as well as the structure of a deflagration wave in an oxygen-hydrogen mixture.

Bird, G. A. [GAB Consulting Pty Ltd, 144/110 Sussex Street, Sydney NSW 2000 (Australia)

2011-05-20T23:59:59.000Z

344

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

345

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

346

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1981-01-01T23:59:59.000Z

347

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

348

Chemical Resources | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Resources Chemical Resources Chemical Inventory All Sample Preparation Labs are stocked with an assortment of common solvents, acids, bases, buffers, and other reagents. See our Chemical Inventories for a list of available reagents. If you need large quantities of any chemicals, please order or bring your own supply (see below). Chemical Inventories Standard Operating Procedures (SOPs) If you will be working with any samples or reagents that are significantly toxic, reactive, corrosive, flammable, or otherwise especially hazardous, we may require an approved SOP before you can begin work. Examples: Reagents with an NFPA Rating of 3 or 4 in any category, nanomaterials, heavy metals, pyrophoric materials, water reactive materials. BLANK SOP SSRL BLANK SOP LCLS Ordering Chemicals

349

Radiolabelling of chemicals. [Chemical additives used in geothermal operations  

DOE Green Energy (OSTI)

Labeling of chemical additives with radioactive isotopes can solve numerous problems in geothermal operations. The physical and chemical behavior of many chemicals slated for geothermal operations can be studied with the required detail at the extremely low concentration of the commercially available (non-labeled) compounds. The problems of labeling and the basics of these radioactively labeled chemicals are described in this report. Conclusions of this study are: (1) chemicals labeled with radioactive isotopes can be used to investigate the chemical and physical behavior of chemical additives used in geothermal operations. The high detection limits make this technology superior to conventional analytical and monitoring methods; (2) severe difficulties exist for utilizing of radioactively labeled chemicals in geothermal operations. The labeling itself can cause technical problems. Another host of problems is caused by the reluctance of chemical manufacturers to release the necessary proprietary information on their chemicals required for proper labeling; and (3) previous attempts to manufacture radioactively labeled flocculants and to utilize them in a geothermal operation were prematurely abandoned for a number of reasons.

Vetter, O.J.; Kandarpa, V.

1982-06-22T23:59:59.000Z

350

Interested Parties - Dow Chemical | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dow Chemical Interested Parties - Dow Chemical 06-10-10DowChemical.pdf More Documents & Publications Interested Parties - Myriant Interested Parties - XtremePower Interested...

351

Chemical Sciences Division: Introduction: Director's Statement  

NLE Websites -- All DOE Office Websites (Extended Search)

Division Overview Under Construction Ali Belkacem Chemical Sciences Division Director Chemical Sciences Division Research Affiliations Our four core programs-Chemical Physics; The...

352

Chemical Methods for Imaging Glycans during Development  

E-Print Network (OSTI)

Bertozzi, C. R. (2004) Chemical remodelling of cell surfacesand Bertozzi, C. R. (2006) Chemical technologies for probingcycloaddition reactions in chemical biology, Chem. Soc. Rev.

Dehnert, Karen Worthington

2011-01-01T23:59:59.000Z

353

Interested Parties - Eastman Chemical | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Eastman Chemical Interested Parties - Eastman Chemical 06-22-10EastmanChemical.pdf More Documents & Publications Interested Parties - Clean Skies Interested Parties - Myriant...

354

Dynamics of inelastic and reactive gas-surface collisions  

DOE Green Energy (OSTI)

The dynamics of inelastic and reactive collisions in atomic beam-surface scattering are presented. The inelastic scattering of hyperthermal rare gaseous atoms from three alkali halide surfaces (LiF, NaCl, GI)was studied to understand mechanical energy transfer in unreactive systems. The dynamics of the chemical reaction in the scattering of H(D) atoms from the surfaces of LIF(001) and the basal plane of graphite were also studied.

Smoliar, L.A.

1995-04-01T23:59:59.000Z

355

Imaginary chemical potentials and the phase of the fermionic determinant  

E-Print Network (OSTI)

A numerical technique is proposed for an efficient numerical determination of the average phase factor of the fermionic determinant continued to imaginary values of the chemical potential. The method is tested in QCD with eight flavors of dynamical staggered fermions. A direct check of the validity of analytic continuation is made on small lattices and a study of the scaling with the lattice volume is performed.

Simone Conradi; Massimo D'Elia

2007-07-13T23:59:59.000Z

356

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

Greiner, Leonard (2750-C Segerstrom Ave., Santa Ana, CA 92704)

1980-01-01T23:59:59.000Z

357

Drum-boiler dynamics  

Science Conference Proceedings (OSTI)

A nonlinear dynamic model for natural circulation drum-boilers is presented. The model describes the complicated dynamics of the drum, downcomer, and riser components. It is derived from first principles, and is characterized by a few physical parameters. ...

K. J. íStröM; R. D. Bell

2000-03-01T23:59:59.000Z

358

Dynamic Residential Window prototype  

NLE Websites -- All DOE Office Websites (Extended Search)

to have dynamic seasonal solar control: high solar gains in the winter with high insulation and low solar gains in the summer. Dynamic, high performance products can be based...

359

General Dynamics, Electric Boat  

Science Conference Proceedings (OSTI)

General Dynamics, Electric Boat. NVLAP Lab Code: 100560-0. Address and Contact Information: 75 Eastern Point Road ...

2013-08-16T23:59:59.000Z

360

NIST Photovoltaic carrier dynamics  

Science Conference Proceedings (OSTI)

... carrier dynamics in novel electronic photovoltaic materials being considered and developed for future solar cell and energy capture applications. ...

2013-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "disciplines chemical dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Dynamic Models for the Subgrid-Scale Mixing of Reactants in Atmospheric Turbulent Reacting Flows  

Science Conference Proceedings (OSTI)

The effects of the subgrid scales on chemical transformations in large-eddy simulations of the convective atmospheric boundary layer (CBL) are investigated. Dynamic similarity subgrid-scale models are formulated and used to calculate the subgrid-...

Jean-François Vinuesa; Fernando Porté-Agel

2008-05-01T23:59:59.000Z

362

Combustion Chamber Fluid Dynamics and Hypergolic Gel Propellant Chemistry Simulations for Selectable Thrust Rocket Engines  

Science Conference Proceedings (OSTI)

This paper describes the application of high performance computing to accelerate the development of hypergolic propulsion systems for tactical missiles. Computational fluid dynamics is employed to model the chemically reacting flow within a system's ...

M. Nusca; C.-C. Chen; M. McQuaid

2007-06-01T23:59:59.000Z

363

Combustion Chamber Fluid Dynamics and Hypergolic Gel Propellant Chemistry Simulations for Selectable Thrust Rocket Engines  

Science Conference Proceedings (OSTI)

This paper describes the development and application of high performance computing for the acceleration of tactical missile hypergolic propulsion system development. Computational fluid dynamics is employed to model the chemically reacting flow within ...

Michael J. Nusca; Michael J. McQuaid

2006-06-01T23:59:59.000Z

364

Combustion Chamber Fluid Dynamics and Hypergolic Gel Propellant Chemistry Simulations for Selectable Thrust Rocket Engines  

Science Conference Proceedings (OSTI)

This paper describes the development and application of high performance computing for the acceleration of tactical missile hypergolic propulsion system development. Computational fluid dynamics (CFD) is employed to model the chemically reacting flow ...

Michael J. Nusca; Michael J. McQuaid

2005-06-01T23:59:59.000Z

365

Combustion Chamber Fluid Dynamics and Hypergolic Gel Propellant Chemistry Simulations for Selectable Thrust Rocket Engines  

Science Conference Proceedings (OSTI)

This paper describes the application of high performance computing to accelerate the development of hypergolic propulsion systems for tactical missiles. Computational fluid dynamics is employed to model the chemically reacting flow within a system’s ...

Michael J. Nusca; Chiung-Chu Chen; Michael J. McQuaid

2008-07-01T23:59:59.000Z

366

Identifying, Indexing, and Ranking Chemical Formulae and Chemical Names in Digital Documents  

Science Conference Proceedings (OSTI)

End-users utilize chemical search engines to search for chemical formulae and chemical names. Chemical search engines identify and index chemical formulae and chemical names appearing in text documents to support efficient search and retrieval in the ... Keywords: Chemical name, chemical formula, conditional random fields, entity extraction, hierarchical text segmentation, independent frequent subsequence, index pruning, query models, ranking, similarity search, support vector machines

Bingjun Sun; Prasenjit Mitra; C. Lee Giles; Karl T. Mueller

2011-04-01T23:59:59.000Z

367

Chemical and Paper Engineering Student Handbook  

E-Print Network (OSTI)

Chemical and Paper Engineering Student Handbook 2010-2011 #12;i Table of Contents 2010-2011 Letter-2011.......................................................................... 32 Chemical Engineering Major Curriculum .......................................... 2010.............................. Double Major: Chemical Engineering and Paper Science and Engineering......... 60 Chemical Engineering

Dollar, Anna

368

Customer A arrives at a service facility with 3 servers at time t = 0 and finds all the servers are busy and 4 other customers waiting for service in the queue. The service discipline is  

E-Print Network (OSTI)

state is defined as n, the number of total customers in the queue, n = 0, 1, 2, · · · , 8. The stateQuestion 1 Customer A arrives at a service facility with 3 servers at time t = 0 and finds all the servers are busy and 4 other customers waiting for service in the queue. The service discipline is FCFS

Shihada, Basem

369

A Chemical Kinetic Model of Transcriptional Elongation  

E-Print Network (OSTI)

A chemical kinetic model of the elongation dynamics of RNA polymerase along a DNA sequence is introduced. The proposed model governs the discrete movement of the RNA polymerase along a DNA template, with no consideration given to elastic effects. The model's novel concept is a ``look-ahead'' feature, in which nucleotides bind reversibly to the DNA prior to being incorporated covalently into the nascent RNA chain. Results are presented for specific DNA sequences that have been used in single-molecule experiments of the random walk of RNA polymerase along DNA. By replicating the data analysis algorithm from the experimental procedure, the model produces velocity histograms, enabling direct comparison with these published results.

Yujiro Richard Yamada; Charles S. Peskin

2006-03-12T23:59:59.000Z

370

Mallinckrodt Chemical Co., Former Construction Worker Screening...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mallinckrodt Chemical Co., Former Construction Worker Screening Projects Mallinckrodt Chemical Co., Former Construction Worker Screening Projects Project Name: Building Trades...

371

Chemically-Functionalized Microcantilevers for Detection of ...  

Chemically-Functionalized Microcantilevers for Detection of Chemical, Biological, and Explosive Material Note: The technology described above is an ...

372

Handbook of Chemical and Biological Warfare Agent ...  

U.S. Energy Information Administration (EIA)

Free ebook Handbook of Chemical and Biological Warfare Agent Decontamination pdf download.Handbook of Chemical and Biological Warfare Agent ...

373

Chemical Engineering | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Engineering Materials Clean Energy Nuclear Sciences Computer Science Earth and Atmospheric Sciences Materials Science and Engineering Mathematics Physics More Science Home | Science & Discovery | More Science | Engineering SHARE Engineering Engineering at ORNL is integrated with nearly all of the scientific research areas and user facilities. In particular, ORNL has core capabilities chemical engineering and systems engineering. Chemical engineering moves knowledge gained from fundamental chemical research toward applications. For example, this capability supports the development of fuel reprocessing techniques and enables radioisotope production, isotope separation, and development of isotope applications. This capacity also contributes to advances in energy efficiency, renewable

374

Chemical Informatics Research Group Homepage  

Science Conference Proceedings (OSTI)

... variety of chemical and physical properties of gas, liquid, and ... Density Functional Tight Binding Methods—Density Functional Tight Binding (DFTB ...

2013-08-27T23:59:59.000Z

375

Portable Chemical Sensors for Environmental  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Sensors for Environmental and State of Health Monitoring Emerging nano technologies are transforming microsensor research and development, a key enabler of Sandia's...

376

Chemical/Biochemical Microsensor Science  

Science Conference Proceedings (OSTI)

... (b) An example of the power of the Event ... stability, speed and reproducibility of sensing materials are critical to next-generation chemical sensing ...

2012-10-02T23:59:59.000Z

377

ITP Chemicals: Metal Dusting Phenomenon  

NLE Websites -- All DOE Office Websites (Extended Search)

IL DuPont Central Research Wilmington, DE Duraloy Technologies, Inc. Scottsdale, PA Exxon Chemical Company Baytown, TX Haynes International, Inc. Kokomo, IN Sandvik Steel...

378

FAQS Reference Guide- Chemical Processing  

Energy.gov (U.S. Department of Energy (DOE))

This reference guide addresses the competency statements in the February 2010 edition of DOE-STD-1176-2010, Chemical Processing Functional Area Qualification Standard.

379

CHEMICAL ENGINEERING DIVISION SUMMARY REPORT  

DOE Green Energy (OSTI)

Work reported includes: Chemical-Metallurgical Processing; Fuel Cycle Applications of Volatility and Fluidization Techniques; Calorimetry; Reactor Safety; Energy Conversion; and Determination of Nuclear Constants.

Lawroski, S.; Vogel, R. C.; Levenson, Milton; Munnecke, V. H.

1963-07-01T23:59:59.000Z

380

Universal chemical freeze-out as a phase transition signature  

E-Print Network (OSTI)

It is shown that kinetic freeze-out in relativistic heavy-ion collisions invariably entails a non-trivial dependence of the freeze-out temperature on the collision centrality. The centrality independence of the chemical freeze-out temperature observed in Au+Au collisions at RHIC is therefore inconsistent with the hypothesis that hadron abundances decouple kinetically from inelastic hadron-hadron interactions. On the other hand, it is consistent with the hypothesis that chemical decoupling is driven by the quark-hadron phase transition, and that the observed universal chemical freeze-out reflects its critical temperature, independent of the dynamical state of the collision fireball as it passes through the phase transition.

Ulrich Heinz; Gregory Kestin

2006-12-26T23:59:59.000Z

Note: This page contains sample records for the topic "disciplines chemical dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Simulated Annealing For The Optimization Of Chemical Batch Production Processes  

E-Print Network (OSTI)

Batch distillation processes are widely used in chemical industry. In this work, we consider the optimization of such processes by simulated annealing. Although this method is stochastically in nature, it has two evitable advantages: it can be readily connected to highly sophisticated simulation codes and it converges towards a global optimum. According to the characteristics of batch distillation operation we propose to use a two-step computation approach. A feasible strategy (admissible control) will be searched for in the first step and it will be optimized in the second step. The approach has been applied to three models of batch distillation ranging from a simple test example to a real production system. These results show the potential of the method for developing optimal operation strategies for batch chemical processes. Keywords: batch distillation, simulated annealing, dynamic optimization. 1 Introduction The determination of optimal control strategies for chemical processe...

Michael Hanke; Pu Li

1998-01-01T23:59:59.000Z

382

A new local concept of chemical potential and chemical hardness  

E-Print Network (OSTI)

The definition of local hardness by the derivative of the chemical potential with respect to the electron density has raised several questions, and its applicability as the local counterpart of chemical hardness has proved to be limited to (globally) hard molecules. Here, we propose that instead of defining a local hardness from the chemical potential in the above way, first a local chemical potential should be defined from the ground-state energy by its derivative with respect to the electron density, from which then the corresponding local hardness can be gained just as the hardness is obtained from the chemical potential - namely, by a simple differentiation with respect to the electron number. In this way, one does not neglect potentially important terms in the local hardness expression.

Gal, Tamas

2011-01-01T23:59:59.000Z

383

Reactive dynamics of inertial particles in nonhyperbolic chaotic flows  

E-Print Network (OSTI)

Anomalous kinetics of infective (e.g., autocatalytic) reactions in open, nonhyperbolic chaotic flows are important for many applications in biological, chemical, and environmental sciences. We present a scaling theory for the singular enhancement of the production caused by the universal, underlying fractal patterns. The key dynamical invariant quantities are the effective fractal dimension and effective escape rate, which are primarily determined by the hyperbolic components of the underlying dynamical invariant sets. The theory is general as it includes all previously studied hyperbolic reactive dynamics as a special case. We introduce a class of dissipative embedding maps for numerical verification.

Adilson E. Motter; Ying-Cheng Lai; Celso Grebogi

2003-11-26T23:59:59.000Z

384

AVESTAR® - Dynamic Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

Dynamic Modeling Dynamic Modeling The AVESTAR team is pursuing research on the dynamic modeling and simulation of advanced energy systems ranging from power plants to power grids. Dynamic models provide a continuous view of energy systems in action by calculating their transient behavior over time. Plant-wide Models For power plants, dynamic models are used to analyze a wide variety of operating scenarios, including normal base load operation, startup, shutdown, feedstock switchovers, cycling, and load-following. Dynamic process and control models are also essential for analyzing plant responses to setpoint changes and disturbances, as well as malfunctions and abnormal situations. Other applications of plant-wide dynamic models include controllability and operational flexibility analyses, environmental studies, safety evaluations, and risk mitigation.

385

Enhancing chemical reactions  

SciTech Connect

Methods of enhancing selected chemical reactions. The population of a selected high vibrational energy state of a reactant molecule is increased substantially above its population at thermal equilibrium by directing onto the molecule a beam of radiant energy from a laser having a combination of frequency and intensity selected to pump the selected energy state, and the reaction is carried out with the temperature, pressure, and concentrations of reactants maintained at a combination of values selected to optimize the reaction in preference to thermal degradation by transforming the absorbed energy into translational motion. The reaction temperature is selected to optimize the reaction. Typically a laser and a frequency doubler emit radiant energy at frequencies of .nu. and 2.nu. into an optical dye within an optical cavity capable of being tuned to a wanted frequency .delta. or a parametric oscillator comprising a non-centrosymmetric crystal having two indices of refraction, to emit radiant energy at the frequencies of .nu., 2.nu., and .delta. (and, with a parametric oscillator, also at 2.nu.-.delta.). Each unwanted frequency is filtered out, and each desired frequency is focused to the desired radiation flux within a reaction chamber and is reflected repeatedly through the chamber while reactants are fed into the chamber and reaction products are removed therefrom.

Morrey, John R. (Richland, WA)

1978-01-01T23:59:59.000Z

386

Langevin molecular dynamics derived from Ehrenfest dynamics  

E-Print Network (OSTI)

Stochastic Langevin molecular dynamics for nuclei is derived from quantum classical molecular dynamics, also called Ehrenfest dynamics, at positive temperature, assuming that the molecular bulk system is in equilibrium and that the initial data for the electrons is stochastically perturbed from the ground state. The initial electron probability distribution is derived from the Liouville equilibrium solution generated by the nuclei acting as a heat bath for the electrons. The diffusion and friction coefficients in the Langevin equation satisfy Einstein's fluctuation-dissipation relation. The fluctuating initial data yields, in addition to the fluctuating diffusion terms, also a contribution to the drift, modifying the standard ab initio Born-Oppenheimer solution at zero temperature, where the electrons are in their ground state for the current nuclear configuration. The dissipative friction mechanism comes from the evolution of the electron ground state, due to slow dynamics of the nuclei, while the modified d...

Szepessy, Anders

2007-01-01T23:59:59.000Z

387

Spectroscopical Analysis of Mechano-chemically Activated Surfaces  

E-Print Network (OSTI)

Mechano-chemical activation is fundamentally different than chemical activation in that energy is added to alter the state of bond energy instead of exciting electrons to produce a chemical reaction. Mechano-chemical activation has demonstrated to alter the chemical reaction and rates. There remains no development of a model to quantify the changes in reactions due to mechano-chemical activation. This research aims in expanding our understanding of the influence of mechanochemical activation methods. The dynamics and kinetics of mechano-chemically activated surfaces will be studied using x-ray spectroscopy methods. Mechano-chemical interactions can be quantified through the study of electron energies. X-ray spectroscopy is a useful method of analyzing and quantifying electron energy states. X-ray absorbance is used to study the valence state electron shells of iron undergone activation through sliding friction of naturally produced wax. In-situ x-ray photoemission spectroscopy is employed to instantaneously characterize single crystal tantalum samples of each principal crystallographic orientation during oxidation. Sliding friction of the naturally produced wax resulted in a reduction in the binding energy of the iron 2p electrons by approximately one electron-volt. This reduction in binding energy is attributed to ferrocene which is an organo-metallic alloy, Fe(C5H5)2. Mechanical strain of the crystal lattices of tantalum resulted in altered activation energies. Activation energy increased with the application of lattice strain. At increasing strain, oxide properties become more dependent on the lattice strain than the crystal orientation and temperature. A model system is developed incorporating mechanical strain into the prediction of activation energy and rates.

Cooper, Rodrigo

2011-08-01T23:59:59.000Z

388

Chemically capping copper with cobalt  

Science Conference Proceedings (OSTI)

Amorphous cobalt-phosphorus alloy is grown on SiO"2 and Cu by chemical vapor deposition from dicobaltoctacarbonyl and trimethylphosphine at 250^oC, 300^oC, and 350^oC. Film properties most relevant to adoption into back-end chip fabrication have been ... Keywords: Chemical vapor deposition, Cobalt alloys, Selective deposition

Lucas B. Henderson; John G. Ekerdt

2010-04-01T23:59:59.000Z

389

Gas-Phase Molecular Dynamics: High Resolution Spectroscopy and Collision Dynamics of Transient Species  

SciTech Connect

This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. Chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry are investigated by high resolution spectroscopic tools. Production, reaction, and energy transfer processes are investigated by transient, double resonance, polarization and saturation spectroscopies, with an emphasis on technique development and connection with theory, as well as specific molecular properties.

Hall, G.E.

2011-05-31T23:59:59.000Z

390

Gas-Phase Molecular Dynamics: High Resolution Spectroscopy and Collision Dynamics of Transient Species  

SciTech Connect

This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. Chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry are investigated by high resolution spectroscopic tools. Production, reaction, and energy transfer processes are investigated by transient, double resonance, polarization and saturation spectroscopies, with an emphasis on technique development and connection with theory, as well as specific molecular properties.

Hall G. E.; Goncharov, V.

2012-05-29T23:59:59.000Z

391

Discrete Thermodynamics of Chemical Equilibria  

E-Print Network (OSTI)

The paper sets forth comprehensive basics of Discrete Thermodynamics of Chemical Equilibria (DTD), developed by the author during the last decade and spread over series of publications. Based on the linear equations of irreversible thermodynamics, De Donder's definition of the thermodynamic force, and the Le Chatelier principle, DTD brings forward a notion of chemical equilibrium as a balance of internal and external thermodynamic forces, acting against a chemical system. The basic expression of DTD is a logistic map that ties together energetic characteristics of the chemical transformation in the system, its deviation from true thermodynamic equilibrium, and the sum of thermodynamic forces, causing that deviation. System deviation from thermodynamic equilibrium is the major variable of the theory. Solutions to the basic map define the chemical system domain of states comprising bifurcation diagrams with four areas, from true thermodynamic equilibrium to chaos, having specific distinctive meaning for chemica...

Zilbergleyt, B

2008-01-01T23:59:59.000Z

392

Life Cycle of a Minimal Protocell---A Dissipative Particle Dynamics Study  

Science Conference Proceedings (OSTI)

Cross-reactions and other systematic difficulties generated by the coupling of functional chemical subsystems pose the largest challenge for assembling a viable protocell in the laboratory. Our current work seeks to identify and clarify such key issues ... Keywords: Artificial life, chemical reactions, dissipative particle dynamics, minimal protocell self-assembly

Harold Fellermann; Steen Rasmussen; Hans-Joachim Ziock; Ricard V. Solé

2007-10-01T23:59:59.000Z

393

NIST Forensic Science -- other disciplines  

Science Conference Proceedings (OSTI)

HomeResearchNIST Forensic PublicationsConferences and EventsReference Materials and StandardsReference DataForensic Science News. ...

2013-09-13T23:59:59.000Z

394

Abstracts by Day/Discipline  

Science Conference Proceedings (OSTI)

... Keywords Extraction, efficiency, recovery ... emerging technologies that enable enhanced security screening ... were prepared by an oil/water emulsion ...

2012-11-27T23:59:59.000Z

395

ROSSLER NONLINEAR DYNAMICAL MACHINE FOR CRYPTOGRAPHY APPLICATIONS Sunil Pandey  

E-Print Network (OSTI)

of chemical kinetics. The Rossler system is described by a system of 3 coupled nonlinear ordinary differentialROSSLER NONLINEAR DYNAMICAL MACHINE FOR CRYPTOGRAPHY APPLICATIONS Sunil Pandey * M.Tech. (Info Sec Author e-mail: algosunil@yahoo.co.in ABSTRACT In many of the cryptography applications like password

International Association for Cryptologic Research (IACR)

396

Method of forming a chemical composition  

DOE Patents (OSTI)

A method of forming a chemical composition such as a chemical hydride is described and which includes the steps of selecting a composition having chemical bonds and which is capable of forming a chemical hydride; providing a source of hydrogen; and exposing the selected composition to an amount of ionizing radiation to encourage the changing of the chemical bonds of the selected composition, and chemically reacting the selected composition with the source of hydrogen to facilitate the formation of a chemical hydride.

Bingham, Dennis N. (Idaho Falls, ID); Wilding, Bruce M. (Idaho Falls, ID); Klingler, Kerry M. (Idaho Falls, ID); Zollinger, William T. (Idaho Falls, ID); Wendt, Kraig M. (Idaho Falls, ID)

2007-10-09T23:59:59.000Z

397

The Multiplexed Chemical Kinetic Photoionization Mass Spectrometer: A New Approach To Isomer-resolved Chemical Kinetics  

E-Print Network (OSTI)

instruments applied to analysis of complex chemical mixturesrelies on chemical separation (by chromatography) into pureThe multiplexed chemical kinetic photoionization mass

Osborne, David L.

2009-01-01T23:59:59.000Z

398

Protein Dynamics and Biocatalysis  

NLE Websites -- All DOE Office Websites (Extended Search)

The methods we use are based on the physical and chemical principles of statistical mechanics and quantum mechanics, and they are implemented in computational form using...

399

Dynamic Instruction Fusion  

E-Print Network (OSTI)

SANTA CRUZ DYNAMIC INSTRUCTION FUSION A thesis submitted in4 2.2 Instruction Fusion & Complex10 3.1 Fusion Selection

Lee, Ian

2012-01-01T23:59:59.000Z

400

Fundamentals of Dynamic Behavior  

Science Conference Proceedings (OSTI)

Feb 28, 2011 ... Atomistically-Informed Dislocation Dynamics Simulations of High Rate Deformation of Single fcc Crystals: Zhiqiang Wang1; 1University of North ...

Note: This page contains sample records for the topic "disciplines chemical dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Dynamic Windows.pdf  

NLE Websites -- All DOE Office Websites (Extended Search)

including products with improved fixed or static properties and products with dynamic solar heat gain proper- ties. Nine representative window products are examined in eight...

402

Gas Phase Moleculer Dynamics (GPMD) Group | Chemistry Department |  

NLE Websites -- All DOE Office Websites (Extended Search)

Group Members Group Members Greg Hall (Group Leader) Chemical dynamics of unimolecular and bimolecular reactions. High resolution spectroscopic probes of collisional energy transfer processes. Elastic and inelastic interactions responsible for pressure broadening, saturation relaxation and depolarization. Non-adiabatic reactions and multiple surface interactions. Vector correlations and angular momentum polarization probes of chemical dynamics. Applied laser spectroscopy. Trevor Sears (PI) Use of frequency comb techniques for precision spectroscopic measurements in chemical systems. Development of new high resolution and high sensitivity spectroscopic techniques. Free radical spectroscopy relevant to combustion chemistry. Characterization of collisional phenomena and their effects on spectroscopic lineshapes, pressure broadening and sub-Doppler measurements. Hyperfine spectroscopy of 207PbF for potential e-EDM measurements

403

chemical (CHE) CHE overview programs available  

E-Print Network (OSTI)

. Enrollment by petition only. 405 Applications of Probability and Statistics for Chemical Engineers (3, Fa) Principles of probability and statis- tics, random variables and random functions. Application to chemical, Fa) Basic concepts of chemical kinetics and chemical reactor design. Prerequisite: MATH 245. 443UnitOperationsofChemical

Wang, Hai

404

Coatings with controlled porosity and chemical properties  

DOE Patents (OSTI)

Coatings and sensors are described having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

Frye, G.C.; Brinker, C.J.; Doughty, D.H.; Bein, T.; Moller, K.

1993-07-06T23:59:59.000Z

405

Coatings with controlled porosity and chemical properties  

DOE Patents (OSTI)

Coatings and sensors having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

Frye, Gregory C. (P.O. Box 763, Cedar Crest, NM 87008); Brinker, C. Jeffrey (14 Eagle Nest Dr., NE., Albuquerque, NM 87122); Doughty, Daniel H. (11724 Woodmar La., NE., Albuquerque, NM 87111); Bein, Thomas (1114 Princeton Dr., NE., Albuquerque, NM 87106); Moller, Karin (1114 Princeton Dr., NE., Albuquerque, NM 87106)

1993-01-01T23:59:59.000Z

406

Coatings with controlled porosity and chemical properties  

DOE Patents (OSTI)

Coatings and sensors having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

Frye, Gregory C. (Bernalillo County, NM); Brinker, C. Jeffrey (Albuquerque, NM); Doughty, Daniel H. (Albuquerque, NM); Bein, Thomas (Albuquerque, NM); Moller, Karin (Albuquerque, NM)

1996-01-01T23:59:59.000Z

407

Chemical Hydrogen Storage Center Center of Excellence  

E-Print Network (OSTI)

Source Hydrogen H2 storage Hydrogen Stored Energy Point-of-use Chemical hydrogen storage #12;5 ChemicalChemical Hydrogen Storage Center Center of Excellence for Chemical Hydrogen Storage William Tumas proprietary or confidential information #12;2 Chemical Hydrogen Storage Center Overview Project Start Date: FY

Carver, Jeffrey C.

408

Sources of toxicity and exposure information for identifying chemicals of high concern to children  

SciTech Connect

Due to the large number of chemicals in commerce without adequate toxicity characterization data, coupled with an ineffective federal policy for chemical management in the United States, many states are grappling with the challenge to identify toxic chemicals that may pose a risk to human health and the environment. Specific populations (e.g., children, elderly) are particularly sensitive to these toxic chemicals. In 2008, the Children's Safe Product Act (CSPA) was passed in Washington State. The CSPA included specific requirements to identify High Priority Chemicals (HPCs) and Chemicals of High Concern to Children (CHCCs). To implement this legislation, a methodology was developed to identify HPCs from authoritative scientific and regulatory sources on the basis of toxicity criteria. Another set of chemicals of concern was then identified from authoritative sources, based on their potential exposure to children. Exposure potential was evaluated by identifying chemicals detected in biomonitoring studies (i.e., human tissues), as well as those present in residential exposure media (e.g., indoor air, house dust, drinking water, consumer products). Accordingly, CHCCs were defined as HPCs that also appear in biomonitoring studies or relevant exposure media. For chemicals with unique Chemical Abstracts Service (CAS) numbers, we identified 2044 HPCs and 2219 chemicals with potential exposure to children, resulting in 476 CHCCs. The process of chemical identification is dynamic, so that chemicals may be added or subtracted as new information becomes available. Although beyond the scope of this paper, the 476 CHCCs will be prioritized in a more detailed assessment, based on the strength and weight of evidence of toxicity and exposure data. Our approach was developed to be flexible which allows the addition or removal of specific sources of toxicity or exposure information, as well as transparent to allow clear identification of inputs. Although the methodology was constrained by specific requirements in the CSPA, the intent of this work was to identify HPCs and CHCCs that might guide future regulatory actions and inform chemical management policies, aimed at protecting children's health.

Stone, Alex, E-mail: alst461@ecy.wa.go [Washington State Department of Ecology, P.O. Box 47600, Olympia, WA 98504-7600 (United States); Delistraty, Damon, E-mail: ddel461@ecy.wa.go [Washington State Department of Ecology, Spokane, WA 99205-1295 (United States)

2010-11-15T23:59:59.000Z

409

Partial Dynamical Symmetry and Mixed Dynamics  

E-Print Network (OSTI)

Partial dynamical symmetry describes a situation in which some eigenstates have a symmetry which the quantum Hamiltonian does not share. This property is shown to have a classical analogue in which some tori in phase space are associated with a symmetry which the classical Hamiltonian does not share. A local analysis in the vicinity of these special tori reveals a neighbourhood of phase space foliated by tori. This clarifies the suppression of classical chaos associated with partial dynamical symmetry. The results are used to divide the states of a mixed system into ``chaotic'' and ``regular'' classes.

A. Leviatan; N. D. Whelan

1996-08-24T23:59:59.000Z

410

Coupled Thermal-Chemical-Mechanical Modeling of Validation Cookoff Experiments  

DOE Green Energy (OSTI)

The cookoff of energetic materials involves the combined effects of several physical and chemical processes. These processes include heat transfer, chemical decomposition, and mechanical response. The interaction and coupling between these processes influence both the time-to-event and the violence of reaction. The prediction of the behavior of explosives during cookoff, particularly with respect to reaction violence, is a challenging task. To this end, a joint DoD/DOE program has been initiated to develop models for cookoff, and to perform experiments to validate those models. In this paper, a series of cookoff analyses are presented and compared with data from a number of experiments for the aluminized, RDX-based, Navy explosive PBXN-109. The traditional thermal-chemical analysis is used to calculate time-to-event and characterize the heat transfer and boundary conditions. A reaction mechanism based on Tarver and McGuire's work on RDX{sup 2} was adjusted to match the spherical one-dimensional time-to-explosion data. The predicted time-to-event using this reaction mechanism compares favorably with the validation tests. Coupled thermal-chemical-mechanical analysis is used to calculate the mechanical response of the confinement and the energetic material state prior to ignition. The predicted state of the material includes the temperature, stress-field, porosity, and extent of reaction. There is little experimental data for comparison to these calculations. The hoop strain in the confining steel tube gives an estimation of the radial stress in the explosive. The inferred pressure from the measured hoop strain and calculated radial stress agree qualitatively. However, validation of the mechanical response model and the chemical reaction mechanism requires more data. A post-ignition burn dynamics model was applied to calculate the confinement dynamics. The burn dynamics calculations suffer from a lack of characterization of the confinement for the flaw-dominated failure mode experienced in the tests. High-pressure burning rates are needed for more detailed post-ignition studies. Sub-models for chemistry, mechanical response and burn dynamics need to be validated against data from less complex experiments. The sub-models can then be used in integrated analysis for comparison with experimental data taken during integrated tests.

ERIKSON,WILLIAM W.; SCHMITT,ROBERT G.; ATWOOD,A.I.; CURRAN,P.D.

2000-11-27T23:59:59.000Z

411

Mass-sensitive chemical preconcentrator  

DOE Patents (OSTI)

A microfabricated mass-sensitive chemical preconcentrator actively measures the mass of a sample on an acoustic microbalance during the collection process. The microbalance comprises a chemically sensitive interface for collecting the sample thereon and an acoustic-based physical transducer that provides an electrical output that is proportional to the mass of the collected sample. The acoustic microbalance preferably comprises a pivot plate resonator. A resistive heating element can be disposed on the chemically sensitive interface to rapidly heat and release the collected sample for further analysis. Therefore, the mass-sensitive chemical preconcentrator can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

Manginell, Ronald P. (Albuquerque, NM); Adkins, Douglas R. (Albuquerque, NM); Lewis, Patrick R. (Albuquerque, NM)

2007-01-30T23:59:59.000Z

412

ARM - Measurement - Inorganic chemical composition  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsInorganic chemical composition ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send...

413

New Science for Chemicals Policy  

E-Print Network (OSTI)

of the State-of-the-Science of Endocrine Disruptors (WHO,461, 472 (2009). 17. NRC, Science and Decisions: AdvancingPOLICYFORUM SCIENCE AND REGULATION New Science for Chemicals

2009-01-01T23:59:59.000Z

414

Theoretical Studies in Chemical Kinetics  

NLE Websites -- All DOE Office Websites (Extended Search)

Theoretical Studies in Chemical Kinetics ^ ^ iCi| Theoretical Studies in Chemical Kinetics ^ ^ iCi| under AEC Contract A T (30-1)-3780 " â–  ' Annual Report (1970) Principal In-vestigator: Martin Karpins Institution: Harvard University The research performed under this contract can best be sunmarized under several headings. (a) Alkali-Halideg Alkali-Halide (MX^ M*X*) Exchange Reactions. This project is being continued. A careful study of certain

415

Towards dynamic collaboration architectures  

Science Conference Proceedings (OSTI)

In this paper, we introduce the concept of dynamically changing between centralized, replicated, and hybrid collaboration architectures. It is implemented by providing users a function that dynamically changes the mapping between user-interface and program ... Keywords: ad-hoc collaboration, application sharing, collaboration architecture, latecomers, mobile collaboration

Goopeel Chung; Prasun Dewan

2004-11-01T23:59:59.000Z

416

Chemical and Biological Engineering Department Code 1 Department of Chemical & Biological Engineering  

E-Print Network (OSTI)

Chemical and Biological Engineering Department Code 1 CODE of the Department of Chemical of Chemical & Biological Engineering. For clarity of presentation, some passages are copied directly from shall offer an undergraduate chemical and biological engineering program of technological, scientific

417

Chemical & Engineering News Serving the chemical, life sciences and laboratory worlds  

E-Print Network (OSTI)

Chemical & Engineering News Serving the chemical, life sciences and laboratory worlds Science the hydroxyl oxygen and alcoholic hydrogen stabilizes the transition state. Chemical & Engineering News ISSN 0009-2347 Copyright © 2010 American Chemical Society #12;

Truhlar, Donald G

418

Status of Chemical Freeze-Out  

E-Print Network (OSTI)

The status of the energy dependence of the chemical freeze-out temperature and chemical potential obtained in heavy ion collisions is presented. Recent proposals for chemical freeze-out conditions are compared.

J. Cleymans; H. Oeschler; K. Redlich; S. Wheaton

2006-07-14T23:59:59.000Z

419

CHEMICAL BIODYNAMICS DIVISION ANNUAL REPORT 1978  

E-Print Network (OSTI)

in Energy and the Chemical Sciences, Proc. 1st Karcherpp. 1-30. 15. M. Calvin, Chemical Carcinogenesis, frog.z ARTlFlCIAL PHOTOSYNTHESIS I CHEMICAL CARCINOGENESIS J. C.

Authors, Various

2011-01-01T23:59:59.000Z

420

CHEMICAL PROCESS RESEARCH AND DEVELOPMENT PROGRAM  

E-Print Network (OSTI)

U.S. Dept. of Energy. Chemical Marketing Reporter, JanuaryUniv. of Calif. Dept. of Chemical Engineering (March 1977).Ergun et aL, "Analysis of Chemical Coal Cleaning Processes,"

Authors, Various

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "disciplines chemical dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Tribo-Chemical Modeling of Copper CMP  

E-Print Network (OSTI)

TRIBO-CHEMICAL MODELING OF COPPER CMP Shantanu Tripathi 1 ,an integrated tribo-chemical model of copper CMP thatThe role of glycine in the chemical mechanical planarization

Tripathi, Shantanu; Doyle, Fiona; Dornfeld, David

2006-01-01T23:59:59.000Z

422

CHEMICAL ENGINEERING Fall 2013-Winter 2014  

E-Print Network (OSTI)

ADVANCED CHEMICAL ENGINEERING Fall 2013-Winter 2014 Certificate Program CONTINUING AND PROFESSIONAL EDUCATIONCONTINUING AND PROFESSIONAL EDUCATION #12;About the Advanced Chemical Engineering Certificate Program The new Advanced Chemical Engineering Certificate Program offers professionals in chemi- cal engineering

California at Davis, University of

423

Langevin molecular dynamics derived from Ehrenfest dynamics  

E-Print Network (OSTI)

Stochastic Langevin molecular dynamics for nuclei is derived from the Ehrenfest Hamiltonian system (also called quantum classical molecular dynamics) in a Kac-Zwanzig setting, with the initial data for the electrons stochastically perturbed from the ground state and the ratio, $M$, of nuclei and electron mass tending to infinity. The Ehrenfest nuclei dynamics is approximated by the Langevin dynamics with accuracy $o(M^{-1/2})$ on bounded time intervals and by $o(1)$ on unbounded time intervals, which makes the small $\\mathcal{O}(M^{-1/2})$ friction and $o(M^{-1/2})$ diffusion terms visible. The initial electron probability distribution is a Gibbs density at low temperture, derived by a stability and consistency argument: starting with any equilibrium measure of the Ehrenfest Hamiltonian system, the initial electron distribution is sampled from the equilibrium measure conditioned on the nuclei positions, which after long time leads to the nuclei positions in a Gibbs distribution (i.e. asymptotic stability); by consistency the original equilibrium measure is then a Gibbs measure.The diffusion and friction coefficients in the Langevin equation satisfy the Einstein's fluctuation-dissipation relation.

Anders Szepessy

2007-12-21T23:59:59.000Z

424

Chemical Homogeneity in Collinder 261 and Implications for Chemical Tagging  

E-Print Network (OSTI)

This paper presents abundances for 12 red giants of the old open cluster Collinder 261 based on spectra from VLT/UVES. Abundances were derived for Na, Mg, Si, Ca, Mn, Fe, Ni, Zr and Ba. We find the cluster has a solar-level metallicity of [Fe/H] = -0.03 dex. However some alpha elements were found to be enhanced. The star-to-star scatter was consistent with the expected measurement uncertainty for all elements. The observed rms scatter is as follows: Na = 0.07, Mg = 0.05, Si = 0.06, Ca = 0.05, Mn = 0.03, Fe = 0.02, Ni = 0.04, Zr = 0.12, and Ba = 0.03 dex. The intrinsic scatter was estimated to be less than 0.05 dex. Such high levels of homogeneity indicate that chemical information remains preserved in this old open cluster. We use the chemical homogeneity we have now established in Cr 261, Hyades and the HR1614 moving group to examine the uniqueness of the individual cluster abundance patterns, ie. chemical signatures. We demonstrate that the three studied clusters have unique chemical signatures, and discuss how other such signatures may be searched for in the future. Our findings support the prospect of chemically tagging disk stars to common formation sites in order to unravel the dissipative history of the Galactic disk.

G. M. De Silva; K. C. Freeman; M. Asplund; J. Bland-Hawthorn; M. S. Bessell; R. Collet

2006-11-28T23:59:59.000Z

425

Simplifying the Jacobian Criterion for precluding multistationarity in chemical reaction networks  

E-Print Network (OSTI)

Chemical reaction networks taken with mass-action kinetics are dynamical systems that arise in chemical engineering and systems biology. In general, determining whether a chemical reaction network admits multiple steady states is difficult, as this requires determining existence of multiple positive solutions to a large system of polynomials with unknown coefficients. However, in certain cases, various easy criteria can be applied. One such test is the Jacobian Criterion, due to Craciun and Feinberg, which gives sufficient conditions for ruling out the possibility of multiple steady states. A chemical reaction network is said to pass the Jacobian Criterion if all terms in the determinant expansion of its parametrized Jacobian matrix have the same sign. In this article, we present a procedure which simplifies the application of the Jacobian Criterion, and as a result, we identify a new class of networks for which multiple steady states is precluded: those in which all chemical species have total molecularity o...

Joshi, Badal

2011-01-01T23:59:59.000Z

426

CHEN 3600 Computer-Aided Chemical Engineering Chemical Engineering Department Notes 4  

E-Print Network (OSTI)

CHEN 3600 ­ Computer-Aided Chemical Engineering Chemical Engineering Department Notes 4 EWE-Aided Chemical Engineering Chemical Engineering Department Notes 4 EWE: "Engineering With Excel" Larsen Page 2 will be added using "cutting and pasting". #12;CHEN 3600 ­ Computer-Aided Chemical Engineering Chemical

Clement, Prabhakar

427

Division of Chemical & Biological Sciences | Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Division of Chemical & Biological Sciences Division of Chemical & Biological Sciences Image Welcome Research teams in this Division conduct fundamental and applied studies of how...

428

Chemical Sciences, Geosciences, & Biosciences Program | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

BES Chemical Sciences, Geosciences, and Biosciences Program SHARE BES Chemical Sciences, Geosciences, and Biosciences Program The Department of Energy's Office of Basic Energy...

429

Climate VISION: Private Sector Initiatives: Chemical Manufacturing...  

Office of Scientific and Technical Information (OSTI)

with American Chemistry Council to develop a technology strategy. Council for Chemical Research Vision2020 partner. American Institute for Chemical Engineers Vision2020...

430

NRG Chemical Engineering | Open Energy Information  

Open Energy Info (EERE)

Chemical Engineering Jump to: navigation, search Name NRG Chemical Engineering Place United Kingdom Sector Biofuels Product UK-based firm which in May 2007 signed an agreement with...

431

Sandia Researchers Develop Promising Chemical Technology for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Researchers Develop Promising Chemical Technology for Energy Storage Sandia Researchers Develop Promising Chemical Technology for Energy Storage March 7, 2012 - 9:50am Addthis...

432

Coal Direct Chemical Looping (CDCL) Process Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Direct Chemical Looping (CDCL) Retrofit to Pulverized Coal Power Plants for In-Situ CO 2 Capture William G. Lowrie Department of Chemical & Biomolecular Engineering The Ohio...

433

Sandia National Laboratories: Careers: Chemistry & Chemical Engineerin...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry & Chemical Engineering Chemistry research photo Sandia's Combustion Research Facility pioneered the use of chemical-imaging tools, such as laser diagnostics, for...

434

Chemical and Materials Sciences Building | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Building provides modern laboratory and office space for researchers studying and developing materials and chemical processes for energy-related technologies. The Chemical...

435

Chemical Agent Decontamination Composition Comprising A ...  

U.S. Energy Information Administration (EIA)

Chemical warfare agents are stockpiled ... but also in today's climate of terrorist threats of WMD chemical attacks.Methods for decontamination of che ...

436

Nanometric Optical Imaging Frontiers in Chemical Imaging  

E-Print Network (OSTI)

Nanometric Optical Imaging Frontiers in Chemical Imaging Seminar Series Presented by... Professor thermal imaging, chemical delivery and other new horizons. Finally, as part of this lecture, Lewis

437

ORISE: Chemical Stockpile Emergency Preparedness Program (CSEPP...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Stockpile Emergency Preparedness Program (CSEPP) Training The Oak Ridge Institute for Science and Education (ORISE) works closely with the Chemical Stockpile Emergency...

438

Predictability of Total Ozone Using a Global Three-Dimensional Chemical Transport Model Coupled with the MRI/JMA98 GCM  

Science Conference Proceedings (OSTI)

A global three-dimensional chemical transport model is being developed for forecasting total ozone. The model includes detailed stratospheric chemistry and transport and couples with a dynamical module of the Meteorological Research Institute/...

T. T. Sekiyama; K. Shibata

2005-08-01T23:59:59.000Z

439

Solar Dynamics | Open Energy Information  

Open Energy Info (EERE)

Dynamics Jump to: navigation, search Name Solar Dynamics Place Ottumwa, Iowa Zip IA 52501 Sector Solar Product Solar Dynamics is a US-based solar powered attic roof vents...

440

Detailed Simulations of Atmospheric Flow and Dispersion in Downtown Manhattan: An Application of Five Computational Fluid Dynamics Models  

Science Conference Proceedings (OSTI)

Computational fluid dynamics (CFD) model simulations of urban boundary layers have improved in speed and accuracy so that they are useful in assisting in planning emergency response activities related to releases of chemical or biological agents ...

Steven R. Hanna; Michael J. Brown; Fernando E. Camelli; Stevens T. Chan; William J. Coirier; Sura Kim; Olav R. Hansen; Alan H. Huber; R. Michael Reynolds

2006-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "disciplines chemical dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Dynamic Behavior of Materials V  

Science Conference Proceedings (OSTI)

Dynamic Characterization of Cast and Wrought Uranium-Niobium Metals · Dynamic Deformation Response of High-Strength Ni-Containing Steels.

442

At Rice, the Department of Electrical and Computer Engineering (ECE) is a dynamic and broad disci-pline that uses principles in mathematics, physics, and chemistry to address the challenges in engineer-  

E-Print Network (OSTI)

Surapaneni and Radu Teodorescu Department of Computer Science and Engineering Department of Electrical-based models that are trained at runtime. Compared to static dual modular redundancy (DMR), our system reduces a sim- ple checker that verifies execution of the main processor as in DIVA [5]. Timing speculation has

443

At Rice, the Department of Electrical and Computer Engineering (ECE) is a dynamic and broad disci-pline that uses principles in mathematics, physics, and chemistry to address the challenges in engineer-  

E-Print Network (OSTI)

. However, the number of trained therapists is being outpaced by the number of individuals who suffer from is with the Department of Electrical Engineer- ing, University of Southern California, Los Angeles, CA 90089, USA to more challenging fine motor tasks such as stacking checkers, picking up paper clips, and folding

Mellor-Crummey, John

444

At Rice, the Department of Electrical and Computer Engineering (ECE) is a dynamic and broad disci-pline that uses principles in mathematics, physics, and chemistry to address the challenges in engineer-  

E-Print Network (OSTI)

in the forthcoming research training group on the algorithmic synthesis of reactive systems. Joost-Pieter Katoen to the PRISM tool, a model-checker for probabilistic timed systems, developed at the University Birmingham, UK. Furthermore, we plan to connect MODEST to the UPPAAL model checker. Timed Model-Based Testing H. Bohnenkamp, A

Mellor-Crummey, John

445

At Rice, the Department of Electrical and Computer Engineering (ECE) is a dynamic and broad disci-pline that uses principles in mathematics, physics, and chemistry to address the challenges in engineer-  

E-Print Network (OSTI)

languages in the world have no written tradition For many others, limited literacy, or no electricity let, especially for phones Spelling and grammar checkers Online dictionaries and thesauri Translation software generated this way Upshot: lots of text needed for training... #12;An Crúbadán Web crawler that seeks out

Palem, Krishna V.

446

Chemical Science | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chemical Science Chemical Science Chemical Science Plant fatty acids are used in a vast range of products, from polymers to plastics and soaps to industrial feed stocks -- making up an estimated $150 billion market annually. A new discovery of inserting double bonds in the fatty acids could show the way to the designer production of plant fatty acids, and, in turn, to new industrial applications and new products. Read more. Plant fatty acids are used in a vast range of products, from polymers to plastics and soaps to industrial feed stocks -- making up an estimated $150 billion market annually. A new discovery of inserting double bonds in the fatty acids could show the way to the designer production of plant fatty

447

Chemical Looping | Open Energy Information  

Open Energy Info (EERE)

Looping Looping Jump to: navigation, search Contents 1 Introduction 2 Process Description 3 Benefits 4 Oxygen Carriers 5 Multimedia 6 Patents 7 References 8 External Links Introduction Chemical looping or chemical looping combustion (CLC) is a novel technology that could provide the means to convert fossil fuels to electricity and provide carbon capture without significant efficiency or cost penalties. Chemical looping combustion is very similar to oxy-fuel combustion where there is no direct contact between air and fuel.[1] Oxygen is extracted from air, then the oxygen is reacted with the hydrocarbon fuel producing an exhaust gas composed of carbon dioxide and water vapor.[2] The water vapor is condensed out of the gas resulting in near 100% carbon dioxide stream that could be sequestered in the ground.

448

Chemical Inventory | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Inventory Chemical Inventory Use the following dropdown menus to filter the results for chemical records. To reset the results clear the entries and click "update". Facility - Any - SSRL LCLS Building - Any - 120 131 999 Room - Any - 109 113 209 257 Storage Area Storage Category Apply Title Facility Building Room Storage Area Storage Category Available to All Qty. Size Units Responsible Person 1,3-cyclohexadiene SSRL 131 209 CI L No 1 25 milliliters (ml) Tsu-Chien Weng 1,4- dioxane SSRL 120 257 CB1 L Yes 1 1 liters (l) Cynthia Patty 1,8-Octanedithiol SSRL 131 209 CA3 L No 1 5 grams (g) Schmidt 1-Chloronapthalene SSRL 131 209 CA3 L No 1 100 grams (g) Schmidt 1-Propanol LCLS 999 109 B1 L Yes 1 4 liters (l) Lisa Hammon

449

Chemical Hygiene and Safety Plan  

SciTech Connect

The objective of this Chemical Hygiene and Safety Plan (CHSP) is to provide specific guidance to all LBL employees and contractors who use hazardous chemicals. This Plan, when implemented, fulfills the requirements of both the Federal OSHA Laboratory Standard (29 CFR 1910.1450) for laboratory workers, and the Federal OSHA Hazard Communication Standard (29 CFR 1910.1200) for non-laboratory operations (e.g., shops). It sets forth safety procedures and describes how LBL employees are informed about the potential chemical hazards in their work areas so they can avoid harmful exposures and safeguard their health. Generally, communication of this Plan will occur through training and the Plan will serve as a the framework and reference guide for that training.

Berkner, K.

1992-08-01T23:59:59.000Z

450

Spontaneous motion of a droplet coupled with a chemical wave  

E-Print Network (OSTI)

We propose a novel framework for the spontaneous motion of a droplet coupled with internal dynamic patterns generated in a reaction-diffusion system. The spatio-temporal order of the chemical reaction gives rise to inhomogeneous surface tension and results in self-propulsion driven by the surrounding flow due to the Marangoni effect. Numerical calculations of internal patterns together with theoretical results of the flow fields at low Reynolds number well reproduces the experimental results obtained using a droplet of Belousov-Zhabotinsky (BZ) reaction medium.

Hiroyuki Kitahata; Natsuhiko Yoshinaga; Ken H. Nagai; Yutaka Sumino

2010-12-13T23:59:59.000Z

451

Chemical Hygiene Plan i January 2013 Chemical Hygiene Plan  

E-Print Network (OSTI)

in their laboratory research or other work procedures prior to conducting work; 5. Utilizing appropriate measures. The UC-system wide SDS library has the capability of developing new SDSs based on the known chemical, neurotoxins, agents which act on the hematopoietic systems, and agents which damage the lungs, skin, eyes

El Zarki, Magda

452

POISON SPIDER FIELD CHEMICAL FLOOD PROJECT, WYOMING  

Science Conference Proceedings (OSTI)

A reservoir engineering and geologic study concluded that approximate 7,852,000 bbls of target oil exits in Poison Spider. Field pore volume, OOIP, and initial oil saturation are defined. Potential injection water has a total dissolved solids content of 1,275 mg/L with no measurable divalent cations. If the Lakota water consistently has no measurable cations, the injection water does not require softening to dissolve alkali. Produced water total dissolved solids were 2,835 mg/L and less than 20 mg/L hardness as the sum of divalent cations. Produced water requires softening to dissolve chemicals. Softened produced water was used to dissolve chemicals in these evaluations. Crude oil API gravity varies across the field from 19.7 to 22.2 degrees with a dead oil viscosity of 95 to 280 cp at 75 F. Interfacial tension reductions of up to 21,025 fold (0.001 dyne/cm) were developed with fifteen alkaline-surfactant combinations at some alkali concentration. An additional three alkaline-surfactant combinations reduced the interfacial tension greater than 5,000 fold. NaOH generally produced the lowest interfacial tension values. Interfacial tension values of less than 0.021 dyne/cm were maintained when the solutions were diluted with produced water to about 60%. Na{sub 2}CO{sub 3} when mixed with surfactants did not reduce interfacial tension values to levels at which incremental oil can be expected. NaOH without surfactant interfacial tension reduction is at a level where some additional oil might be recovered. Most of the alkaline-surfactant-polymer solutions producing ultra low interfacial tension gave type II- phase behavior. Only two solutions produced type III phase behavior. Produced water dilution resulted in maintenance of phase type for a number of solutions at produced water dilutions exceeding 80% dilution. The average loss of phase type occurred at 80% dilution. Linear corefloods were performed to determine relative permeability end points, chemical-rock compatibility, polymer injectivity, dynamic chemical retention by rock, and recommended injected polymer concentration. Average initial oil saturation was 0.796 Vp. Produced water injection recovered 53% OOIP leaving an average residual oil saturation of 0.375 Vp. Poison Spider rock was strongly water-wet with a mobility ratio for produced water displacing the 280 cp crude oil of 8.6. Core was not sensitive to either alkali or surfactant injection. Injectivity increased 60 to 80% with alkali plus surfactant injection. Low and medium molecular weight polyacrylamide polymers (Flopaam 3330S and Flopaam 3430S) dissolved in either an alkaline-surfactant solution or softened produced water injected and flowed through Poison Spider rock. Recommended injected polyacrylamide concentration is 2,100 mg/L for both polymers for a unit mobility ratio. Radial corefloods were performed to evaluate oil recovery efficiency of different chemical solutions. Waterflood oil recovery averaged 46.4 OOIP and alkaline-surfactant-polymer flood oil recovery averaged an additional 18.1% OIP for a total of 64.6% OOIP. Oil cut change due to injection of a 1.5 wt% Na{sub 2}CO{sub 3} plus 0.05 wt% Petrostep B-100 plus 0.05 wt% Stepantan AS1216 plus 2100 mg/L Flopaam 3430S was from 2% to a peak of 23.5%. Additional study might determine the impact on oil recovery of a lower polymer concentration. An alkaline-surfactant-polymer flood field implementation outline report was written.

Douglas Arnell; Malcolm Pitts; Jie Qi

2004-11-01T23:59:59.000Z

453

GAS PHASE MOLECULAR DYNAMICS  

SciTech Connect

The goal of this research is the understanding of elementary chemical and physical processes important in the combustion of fossil fuels. Interest centers on reactions involving short-lived chemical intermediates and their properties. High-resolution, high-sensitivity, laser absorption methods are augmented by high temperature flow-tube reaction kinetics studies with mass-spectrometric sampling. These experiments provide information on the energy levels, structures and reactivity of molecular free radical species and, in turn, provide new tools for the study of energy flow and chemical bond cleavage in the radicals in chemical systems. The experimental work is supported by theoretical and computational work using time-dependent quantum wavepacket calculations that provide insights into energy flow between the vibrational modes of the molecule. The work of group members Fockenberg and Muckerman is described in separate abstracts of this volume.

SEARS,T.J.; HALL,G.E.; PRESES,J.M.; WESTON,R.E.,JR.

1999-06-09T23:59:59.000Z

454

Gas Phase Molecular Dynamics  

Science Conference Proceedings (OSTI)

The goal of this research is the understanding of elementary chemical and physical processes important in the combustion of fossil fuels. Interest centers on reactions involving short-lived chemical intermediates and their properties. High-resolution high-sensitivity laser absorption methods are augmented by high temperature flow-tube reaction kinetics studies with mass spectrometric sampling. These experiments provide information on the energy levels, structures and reactivity of molecular flee radical species and, in turn, provide new tools for the study of energy flow and chemical bond cleavage in the radicals in chemical systems. The experimental work is supported by theoretical and computational work using time-dependent quantum wavepacket calculations that provide insights into energy flow between the vibrational modes of the molecule.

Hall, G.E.; Prrese, J.M.; Sears, T.J.; Weston, R.E.

1999-05-21T23:59:59.000Z

455

Microreactor for fast chemical kinetics  

E-Print Network (OSTI)

The chemical reaction process in a T-shaped microchannel is studied experimentally through the reaction of Ca++ with a fluorescent tracer, Calcium-green. For thin channels (10 um), diffusion of species is found to behave in a way independent of the thickness direction. In such a situation, simulations of a two-dimensional reaction-diffusion model agree remarkably well with the experimental measurements. The comparison of experiments and simulations is used to measure the chemical kinetic constant, which we find to be k=3.2 x 10^5 dm^3/(mol s). Applications of the analysis to faster reactions and to micro-titration are also discussed.

Baroud, C N; Menetrier, L; Tabeling, P; Baroud, Charles N.; Okkels, Fridolin; Menetrier, Laure; Tabeling, Patrick

2003-01-01T23:59:59.000Z

456

Cirrus Outflow Dynamics  

Science Conference Proceedings (OSTI)

Cirrus outflow from deep convection are analyzed as dynamically and thermodynamically active systems. The initial outflow is considered as an analog to wake collapse, in which a neutrally buoyant flow intrusion is flattened and stretched by its ...

Douglas K. Lilly

1988-05-01T23:59:59.000Z

457

WORKSHOP ON NUCLEAR DYNAMICS  

E-Print Network (OSTI)

Complete Events in Medium-Energy Nuclear Collisions" C-Y.+ corrections. (A) The nuclear potential-energy problem isquantum dynamics in high-energy nuclear collisions. We have

Myers, W.D.

2010-01-01T23:59:59.000Z

458

Optical dynamic circuit services  

Science Conference Proceedings (OSTI)

IP service, leased-line service and POTS service have been the three long-standing communication service offerings of providers. Recently, both commercial and research-andeducation network providers have started offering optical dynamic circuit services. ...

Malathi Veeraraghavan; Mark Karol; George Clapp

2010-11-01T23:59:59.000Z

459

A Molecular Dynamics Simulation  

Science Conference Proceedings (OSTI)

Ab Initio Local Energy and Local Stress Calculations: Applications to Materials ... Computational Fluid Dynamics and Experimental Results for the Horizontal .... Films and Applications to a New Generation of Multifunctional Devices/Systems.

460

A Molecular Dynamics  

Science Conference Proceedings (OSTI)

A Tale of Two States and More: Modeling of New Generation of Lattice Stability from Zero ... Analysis of Nano Fluid Using CFD-A Hybrid Approach for Cooling Purpose ... Molecular Dynamics Simulations of Grain Boundary Free Energy and

Note: This page contains sample records for the topic "disciplines chemical dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

A Molecular Dynamic Study  

Science Conference Proceedings (OSTI)

A Tale of Two States and More: Modeling of New Generation of Lattice Stability from Zero ... Analysis of Nano Fluid Using CFD-A Hybrid Approach for Cooling Purpose ... Molecular Dynamics Simulations of Grain Boundary Free Energy and

462

Frontal Geostrophic Dynamics  

Science Conference Proceedings (OSTI)

From the primitive equations simplified dynamics are derived that apply to frontal situations in which interface slopes are important. The formalism, which eliminates inertial motions, is not Unlike the derivation of the quasi-geostrophic ...

Benoit Cushman-Roisin

1986-01-01T23:59:59.000Z

463

Method of producing a chemical hydride  

DOE Patents (OSTI)

A method of producing a chemical hydride is described and which includes selecting a composition having chemical bonds and which is capable of forming a chemical hydride; providing a source of a hydrocarbon; and reacting the composition with the source of the hydrocarbon to generate a chemical hydride.

Klingler, Kerry M. (Idaho Falls, ID); Zollinger, William T. (Idaho Falls, ID); Wilding, Bruce M. (Idaho Falls, ID); Bingham, Dennis N. (Idaho Falls, ID); Wendt, Kraig M. (Idaho Falls, ID)

2007-11-13T23:59:59.000Z

464

Missouri Department of Transportation, Chemical Laboratory  

Science Conference Proceedings (OSTI)

Missouri Department of Transportation, Chemical Laboratory. NVLAP Lab Code: 200544-0. Address and Contact Information: ...

2014-01-03T23:59:59.000Z

465

Chemical agent decontamination composition comprising a ...  

U.S. Energy Information Administration (EIA)

Title: Chemical agent decontamination composition comprising a perfluorinated alkyl bromide Date: 05/13/2008

466

The Mork Family Department of Chemical  

E-Print Network (OSTI)

CHE The Mork Family Department of Chemical Engineering and Materials Science #12;Chemical engineers design, control and optimize large-scale chemical, physiochemical and biochemical processes in automotive and space-related industries to materials used in the biomedical and electronics elds. Chemical

Rohs, Remo

467

CHEMICAL HYGIENE PLAN HAZARD COMMUNICATION PLAN  

E-Print Network (OSTI)

CHEMICAL HYGIENE PLAN AND HAZARD COMMUNICATION PLAN Occupational Exposures to Hazardous Chemicals and Safety Numbers Research Safety 2723 Environmental Health/Safety Chemical Hygiene Officer Radiation Safety Human Resources (Accident Reports) 4589 Clinical Engineering 2964 #12;TABLE OF CONTENTS CHEMICAL HYGIENE

Oliver, Douglas L.

468

CHEMICAL HYGIENE PLAN LAB SPECIFIC INFORMATION  

E-Print Network (OSTI)

CHEMICAL HYGIENE PLAN (CHP) LAB SPECIFIC INFORMATION & STANDARD OPERATING PROCEDURES (SOPs/23/09 This is the Chemical Hygiene Plan (CHP) for the Materials Research Laboratory (MRL) Spectroscopy Facility. All labs using chemicals are required by Cal-OSHA to have a written safety plan (CHP) in place for chemical

Bigelow, Stephen

469

CHEMICAL HYGIENE PLAN HAZARD COMMUNICATION PLAN  

E-Print Network (OSTI)

CHEMICAL HYGIENE PLAN AND HAZARD COMMUNICATION PLAN Occupational Exposures to Hazardous Chemicals Safety 2723 Environmental Health/Safety Chemical Hygiene Officer Radiation Safety Officer Biological (Accident Reports) 2204 Bioengineering 2965 #12;TABLE OF CONTENTS CHEMICAL HYGIENE PLAN (CHP) (4/2007) 1

Oliver, Douglas L.

470

CHEMICAL HYGIENE PLAN HAZARD COMMUNICATION PLAN  

E-Print Network (OSTI)

CHEMICAL HYGIENE PLAN AND HAZARD COMMUNICATION PLAN Occupational Exposures to Hazardous Chemicals and Safety Numbers Research Safety 2723 Environmental Health/Safety Chemical Hygiene Officer Radiation Safety Human Resources (Accident Reports) 4589 Bioengineering 2965 #12;TABLE OF CONTENTS CHEMICAL HYGIENE PLAN

Kim, Duck O.

471

Chemical Exergy of Canola Biomass Components  

Science Conference Proceedings (OSTI)

... LS Karpushenkova Chemical Faculty, Belarusian State University, Minsk, Belarus Thermodynamic properties of canola biomass components: seeds ...

2006-07-20T23:59:59.000Z

472

Homeland Security Chemical/Biological/Radiological/Nuclear ...  

Science Conference Proceedings (OSTI)

... Information at NIST. Homeland Security Chemical/Biological/Radiological/ Nuclear/Explosives (CBRNE) Information at NIST. ...

2010-09-24T23:59:59.000Z

473

TSCA and the regulation of renewable chemicals  

Science Conference Proceedings (OSTI)

Biobased chemicals represent a multi-billion pound chemical business, and their share of the global chemical industry is expected to grow from 2% to 22% by 2025 TSCA and the regulation of renewable chemicals Publications aocs articles book books c

474

Chemical Sciences Division | Advanced Materials |ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Sciences Chemical Sciences Division SHARE Chemical Sciences Division The Chemical Sciences Division performs discovery and uses inspired research to understand, predict, and control the physical processes and chemical transformations at multiple length and time scales, especially at interfaces. The foundation of the division is a strong Basic Energy Sciences (BES) portfolio that pushes the frontiers of catalysis, geosciences, separations and analysis, chemical imaging, neutron science, polymer science, and interfacial science. Theory is closely integrated with materials synthesis and characterization to gain new insights into chemical transformations and processes with the ultimate goal of predictive insights. Applied research programs naturally grow out of our fundamental

475

Definition: Chemical energy | Open Energy Information  

Open Energy Info (EERE)

energy energy Energy stored in chemical bonds between atoms within molecules. When a chemical reaction occurs, the chemical energy within a molecule can increase or that energy can be released into its surroundings as another form of energy (e.g., heat or light). Fuel combustion is example of the conversion of chemical energy to another form of energy.[1][2] View on Wikipedia Wikipedia Definition In chemistry, Chemical energy is the potential of a chemical substance to undergo a transformation through a chemical reaction or, to transform other chemical substances. Examples include batteries and light bulbs and cells etc. Breaking or making of chemical bonds involves energy, which may be either absorbed or evolved from a chemical system Energy that can be released (or absorbed) because of a reaction between a set of

476

Ultrafast Core-Hole Induced Dynamics in Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultrafast Core-Hole Induced Ultrafast Core-Hole Induced Dynamics in Water Ultrafast Core-Hole Induced Dynamics in Water Print Wednesday, 22 February 2006 00:00 A thorough understanding of the chemical processes that are initiated when radiation interacts with aqueous systems is essential for many diverse fields, from condensed matter physics to medicine to environmental science. An incoming photon with enough energy to produce a core hole in a water molecule sets off motions that can affect bonding configurations, which in turn affect subsequent chemical-reaction pathways. However, it is a fundamental challenge for the radiation chemistry community to unravel the early time dynamics of electronically excited states in water because their short (femtosecond) time scales are difficult to access directly with pump-probe measurements. Using a combination of isotope substitution experiments and molecular dynamics simulations, researchers from Sweden, Germany, and the U.S. have shown that the ultrafast (0- to 10-fs) dissociation dynamics of liquid water can be successfully probed with x-ray emission spectroscopy.

477

Ultrafast Core-Hole Induced Dynamics in Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultrafast Core-Hole Induced Dynamics in Water Print Ultrafast Core-Hole Induced Dynamics in Water Print A thorough understanding of the chemical processes that are initiated when radiation interacts with aqueous systems is essential for many diverse fields, from condensed matter physics to medicine to environmental science. An incoming photon with enough energy to produce a core hole in a water molecule sets off motions that can affect bonding configurations, which in turn affect subsequent chemical-reaction pathways. However, it is a fundamental challenge for the radiation chemistry community to unravel the early time dynamics of electronically excited states in water because their short (femtosecond) time scales are difficult to access directly with pump-probe measurements. Using a combination of isotope substitution experiments and molecular dynamics simulations, researchers from Sweden, Germany, and the U.S. have shown that the ultrafast (0- to 10-fs) dissociation dynamics of liquid water can be successfully probed with x-ray emission spectroscopy.

478

Ultrafast Core-Hole Induced Dynamics in Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultrafast Core-Hole Induced Dynamics in Water Print Ultrafast Core-Hole Induced Dynamics in Water Print A thorough understanding of the chemical processes that are initiated when radiation interacts with aqueous systems is essential for many diverse fields, from condensed matter physics to medicine to environmental science. An incoming photon with enough energy to produce a core hole in a water molecule sets off motions that can affect bonding configurations, which in turn affect subsequent chemical-reaction pathways. However, it is a fundamental challenge for the radiation chemistry community to unravel the early time dynamics of electronically excited states in water because their short (femtosecond) time scales are difficult to access directly with pump-probe measurements. Using a combination of isotope substitution experiments and molecular dynamics simulations, researchers from Sweden, Germany, and the U.S. have shown that the ultrafast (0- to 10-fs) dissociation dynamics of liquid water can be successfully probed with x-ray emission spectroscopy.

479

Active Brownian Particles. From Individual to Collective Stochastic Dynamics  

E-Print Network (OSTI)

We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.

Pawel Romanczuk; Markus Bär; Werner Ebeling; Benjamin Lindner; Lutz Schimansky-Geier

2012-02-11T23:59:59.000Z

480

Ultrafast Core-Hole Induced Dynamics in Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultrafast Core-Hole Induced Dynamics in Water Print Ultrafast Core-Hole Induced Dynamics in Water Print A thorough understanding of the chemical processes that are initiated when radiation interacts with aqueous systems is essential for many diverse fields, from condensed matter physics to medicine to environmental science. An incoming photon with enough energy to produce a core hole in a water molecule sets off motions that can affect bonding configurations, which in turn affect subsequent chemical-reaction pathways. However, it is a fundamental challenge for the radiation chemistry community to unravel the early time dynamics of electronically excited states in water because their short (femtosecond) time scales are difficult to access directly with pump-probe measurements. Using a combination of isotope substitution experiments and molecular dynamics simulations, researchers from Sweden, Germany, and the U.S. have shown that the ultrafast (0- to 10-fs) dissociation dynamics of liquid water can be successfully probed with x-ray emission spectroscopy.

Note: This page contains sample records for the topic "disciplines chemical dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Quantum effects in unimolecular reaction dynamics  

SciTech Connect

This work is primarily concerned with the development of models for the quantum dynamics of unimolecular isomerization and photodissociation reactions. We apply the rigorous quantum methodology of a Discrete Variable Representation (DVR) with Absorbing Boundary Conditions (ABC) to these models in an attempt to explain some very surprising results from a series of experiments on vibrationally excited ketene. Within the framework of these models, we are able to identify the experimental signatures of tunneling and dynamical resonances in the energy dependence of the rate of ketene isomerization. Additionally, we investigate the step-like features in the energy dependence of the rate of dissociation of triplet ketene to form {sup 3}B{sub 1} CH{sub 2} + {sup 1}{sigma}{sup +} CO that have been observed experimentally. These calculations provide a link between ab initio calculations of the potential energy surfaces and the experimentally observed dynamics on these surfaces. Additionally, we develop an approximate model for the partitioning of energy in the products of photodissociation reactions of large molecules with appreciable barriers to recombination. In simple bond cleavage reactions like CH{sub 3}COCl {yields} CH{sub 3}CO + Cl, the model does considerably better than other impulsive and statistical models in predicting the energy distribution in the products. We also investigate ways of correcting classical mechanics to include the important quantum mechanical aspects of zero-point energy. The method we investigate is found to introduce a number of undesirable dynamical artifacts including a reduction in the above-threshold rates for simple reactions, and a strong mixing of the chaotic and regular energy domains for some model problems. We conclude by discussing some of the directions for future research in the field of theoretical chemical dynamics.

Gezelter, J.D.

1995-12-01T23:59:59.000Z

482

Apparatus and methods for detecting chemical permeation  

DOE Patents (OSTI)

Apparatus and methods for detecting the permeation of hazardous or toxic chemicals through protective clothing are disclosed. The hazardous or toxic chemicals of interest do not possess the spectral characteristic of luminescence. The apparatus and methods utilize a spectrochemical modification technique to detect the luminescence quenching of an indicator compound which upon permeation of the chemical through the protective clothing, the indicator is exposed to the chemical, thus indicating chemical permeation.

Vo-Dinh, Tuan (Knoxville, TN)

1994-01-01T23:59:59.000Z

483

Asteroseismology of chemically peculiar stars  

E-Print Network (OSTI)

Pulsational variability is observed in several types of main sequence stars with anomalous chemical abundances. In this contribution I summarize the relationship between pulsations and chemical peculiarities, giving special emphasis to rapid oscillations in magnetic Ap stars. These magneto-acoustic pulsators provide unique opportunities to study the interaction of pulsations, chemical inhomogeneities, and strong magnetic fields. Time-series monitoring of rapidly oscillating Ap stars using high-resolution spectrometers at large telescopes and ultra-precise space photometry has led to a number of important breakthroughs in our understanding of these interesting objects. Interpretation of the roAp frequency spectra has allowed constraining fundamental stellar parameters and probing poorly known properties of the stellar interiors. At the same time, investigation of the pulsational wave propagation in chemically stratified atmospheres of roAp stars has been used as a novel asteroseismic tool to study pulsations as a function of atmospheric height and to map in detail the horizontal structure of the magnetically-distorted p-modes.

O. Kochukhov

2008-12-01T23:59:59.000Z

484

Chemical Engineering and Materials Science  

E-Print Network (OSTI)

from vegetable oil. Earn a degree in chemical engineering, and you could enjoy a career working to commercialize new ideas, technologies and products. Students learn to solve problems and bring inventions through tissue engineering of large vessels and heart valves, or inventing clean-burning alternative fuel

Chinnam, Ratna Babu

485

Dynamic manipulability of multifingered grasping  

Science Conference Proceedings (OSTI)

In this paper, we extend the concept of dynamic manipulability to evaluate the dynamic property of multifingered grasping systems consisting of amultifingered hand and a grasped object, and propose a measure of dynamic manipulability of multifingered ... Keywords: dynamic manipulability, grasping, internal force, multifingered hand, omnidirectionality

Yasuyoshi Yokokohji; Jose San Martin; Masaki Fujiwara

2009-08-01T23:59:59.000Z

486

Chemicals  

DOE Green Energy (OSTI)

Yeasts were engineered to increase rates for fermentation of xylose (a common biomass derived sugar) to lactic acid or ethanol.

Suominen, Pirkko; Glassner, David; Kean, Robert

2005-01-14T23:59:59.000Z

487

Chemical Disposal The Office of Environmental Health & Safety operates a Chemical Waste Disposal Program  

E-Print Network (OSTI)

Chemical Disposal Dec, 2011 Chemicals: The Office of Environmental Health & Safety operates a Chemical Waste Disposal Program where all University chemical waste is picked up and sent out for proper disposal. (There are some chemicals that they will not take because of their extreme hazards

Machel, Hans

488

CHEMICAL WASTE RECYCLING PROGRAM EMPTY CHEMICAL BOTTLES: which include all glass, plastic and metal bottles that  

E-Print Network (OSTI)

CHEMICAL WASTE RECYCLING PROGRAM EMPTY CHEMICAL BOTTLES: which include all glass, plastic and metal bottles that previously contained chemicals (hazardous or non-hazardous) are collected by CWS for recycling. Bottles should be dry and empty without chemical residue. Rinse and collect rinsate in chemical

Ungerleider, Leslie G.

489

CHEMICAL ENGINEERING AT McGILL Bachelor of Engineering in Chemical Engineering  

E-Print Network (OSTI)

CHEMICAL ENGINEERING AT McGILL Bachelor of Engineering in Chemical Engineering What is chemical engineering? Chemical engineers design processes and systems that produce everything from plastics and paper to pharmaceuticals, processed foods and advanced materials.What a chemist might produce in a test tube, chemical

Barthelat, Francois

490

Chemical Spills In the event of a spill involving hazardous chemicals  

E-Print Network (OSTI)

Chemical Spills In the event of a spill involving hazardous chemicals: 1. Keep a safe distance from. From a safe distance, try to gather as much information on the spilled chemical as possible. If the chemical name can be found, look up its MSDS and determine the PPE required. If the chemical is very

de Lijser, Peter

491

The Dynamical Discrete Web  

E-Print Network (OSTI)

The dynamical discrete web (DDW), introduced in recent work of Howitt and Warren, is a system of coalescing simple symmetric one-dimensional random walks which evolve in an extra continuous dynamical parameter s. The evolution is by independent updating of the underlying Bernoulli variables indexed by discrete space-time that define the discrete web at any fixed s. In this paper, we study the existence of exceptional (random) values of s where the paths of the web do not behave like usual random walks and the Hausdorff dimension of the set of such exceptional s. Our results are motivated by those about exceptional times for dynamical percolation in high dimension by H\\"aggstrom, Peres and Steif, and in dimension two by Schramm and Steif. The exceptional behavior of the walks in DDW is rather different from the situation for dynamical random walks of Benjamini, H\\"aggstrom, Peres and Steif. In particular, we prove that there are exceptional values of s for which the walk from the origin S^s(n) has limsup S^s(n)/\\sqrt n \\leq K with a nontrivial dependence of the Hausdorff dimension on K. We also discuss how these and other results extend to the dynamical Brownian web, a natural scaling limit of DDW. The scaling limit is the focus of a paper in preparation; it was studied by Howitt and Warren and is related to the Brownian net of Sun and Swart.

L. R. G. Fontes; C. M. Newman; K. Ravishankar; E. Schertzer

2007-04-20T23:59:59.000Z

492

Local Polarization Dynamics in Ferroelectric Materials  

SciTech Connect

Ferroelectrics and multiferroics have recently emerged as perspective materials for information technology and data storage applications. The combination of extremely narrow domain wall width and the capability to manipulate polarization by electric field opens the pathway towards ultrahigh (>10 TBit/in2) storage densities and small (sub-10 nm) feature sizes. The coupling between polarization and chemical and transport properties enables applications in ferroelectric lithography and electroresistive devices. The progress in these applications, as well as fundamental studies of polarization dynamics and the role of defects and disorder on domain nucleation and wall motion, requires the capability to probe these effects on the nanometer scale. In this review, we summarize recent progress in applications of Piezoresponse Force Microscopy (PFM) for imaging, manipulation, and spectroscopy of ferroelectric switching processes. We briefly introduce the principles and relevant instrumental aspects of PFM, with special emphasis on resolution and information limits. The local imaging studies of domain dynamics, including local switching and relaxation accessed through imaging experiments, and spectroscopic studies of polarization switching, are discussed in detail. Finally, we briefly review the recent progress on photochemical processes on ferroelectric surfaces, the role of surface adsorbates, and imaging and switching in liquids. Beyond classical applications, probing local bias-induced transition dynamics by PFM opens the pathway to studies of the influence of a single defect on electrochemical and solid state processes, thus providing model systems for batteries, fuel cells, and supercapacitor applications.

Kalinin, Sergei V [ORNL; Morozovska, A. N. [National Academy of Science of Ukraine, Kiev, Ukraine; Chen, L. Q. [Pennsylvania State University; Rodriguez, Brian J [ORNL

2010-01-01T23:59:59.000Z

493

Stochastic kinetic models: Dynamic independence, modularity and graphs  

E-Print Network (OSTI)

The dynamic properties and independence structure of stochastic kinetic models (SKMs) are analyzed. An SKM is a highly multivariate jump process used to model chemical reaction networks, particularly those in biochemical and cellular systems. We identify SKM subprocesses with the corresponding counting processes and propose a directed, cyclic graph (the kinetic independence graph or KIG) that encodes the local independence structure of their conditional intensities. Given a partition $[A,D,B]$ of the vertices, the graphical separation $A\\perp B|D$ in the undirected KIG has an intuitive chemical interpretation and implies that $A$ is locally independent of $B$ given $A\\cup D$. It is proved that this separation also results in global independence of the internal histories of $A$ and $B$ conditional on a history of the jumps in $D$ which, under conditions we derive, corresponds to the internal history of $D$. The results enable mathematical definition of a modularization of an SKM using its implied dynamics. Gra...

Bowsher, Clive G

2010-01-01T23:59:59.000Z

494

MAX Fluid Dynamics facility  

NLE Websites -- All DOE Office Websites (Extended Search)

MAX Fluid Dynamics facility MAX Fluid Dynamics facility Capabilities Engineering Experimentation Reactor Safety Testing and Analysis Overview Nuclear Reactor Severe Accident Experiments MAX NSTF SNAKE Aerosol Experiments System Components Laser Applications Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr MAX Fluid Dynamics facility Providing high resolution data for development of computational tools that model fluid flow and heat transfer within complex systems such as the core of a nuclear reactor. 1 2 3 4 5 Hot and cold air jets are mixed within a glass tank while laser-based anemometers and a high-speed infrared camera characterize fluid flow and heat transfer behavior. Click on image to view larger size image.

495

OSHA List of Hazardous Chemicals  

NLE Websites -- All DOE Office Websites (Extended Search)

OSHA List of Hazardous Chemicals OSHA List of Hazardous Chemicals ACETALDEHYDE ACETAMIDE ACETIC ACID ACETIC ANHYDRIDE ACETONE ACETONItr ILE ACETYLAMINOFLUORENE, 2- ACETYLENE ACETYLENE DICHLORIDE ACETYLENE TETRABROMIDE ACETYLSALICYLIC ACID (ASPIRIN) ACROLEIN ACRYLAMIDE ACRYLIC ACID ACRYLONITRILE ACTINOMYCIN D ADRIAMYCIN AFLATOXINS ALDRIN ALLYL ALCOHOL ALLYL CHLORIDE ALLYL GLYCIDYL ETHER (AGE) ALLYL PROPYL DISULFIDE ALUMINA ALUMINUM, METAL DUST, AS AL ALUMINUM, PYRO POWDERS, AS AL ALUMINUM, SOLUBLE SALTS, AS AL ALUMINUM, WELDING FUMES, AS AL ALUMINUM, ALKYLS, NOT OTHERWISE CLASSIFIED, AS AL ALUMINUM OXIDE, AS AL AMINOANTHRAQUINONE (AAQ), AMINOAZOTOLUENE, O- AMINOBIPHENYL, 4- AMINOETHANOL, 2- AMINO-2-METHYLANTHRAQUINONE, 1- AMINO-5-(5-NITRO-2-FURYL)- -1, 3,4-THIADIADIAZOLE, 2- AMINOPYRIDINE, 2- AMINO-1,2,4-TRIAZOLE, 3-

496

Geometric description of chemical reactions  

E-Print Network (OSTI)

We use the formalism of Geometrothermodynamics to describe chemical reactions in the context of equilibrium thermodynamics. Any chemical reaction in a closed system is shown to be described by a geodesic in a $2-$dimensional manifold that can be interpreted as the equilibrium space of the reaction. We first show this in the particular cases of a reaction with only two species corresponding to either two ideal gases or two van der Waals gases. We then consider the case of a reaction with an arbitrary number of species. The initial equilibrium state of the geodesic is determined by the initial conditions of the reaction. The final equilibrium state, which follows from a thermodynamic analysis of the reaction, is shown to correspond to a coordinate singularity of the thermodynamic metric which describes the equilibrium manifold.

Hernando Quevedo; Diego Tapias

2013-01-02T23:59:59.000Z

497

Platts 2nd Annual Renewable Chemicals Conference  

Gasoline and Diesel Fuel Update (EIA)

Sugars, Renewable Chemicals & Fuels Sugars, Renewable Chemicals & Fuels US EIA AEO 2013 Biofuels Worshop Washington, DC March 2013 1 * PROMOTUM is a management consulting firm focused on the chemicals, fuels and materials industries. We help clients analyze markets and technology, develop strategy, and conduct business development. 2 1. Comparison of the first wave of Biotechnology with today's wave of Industrial Biotechnology 2. Where are we status of: C-Sugars, Renewable Chemicals & Advanced Biofuels 3. Derivates as chemical building blocks - butanol an example 3 Sugar, Fuel & Chemical Agenda - Where are we? 4 Aggregate Biotechnology Industry Performance - The First 30 Years 5 "There is little doubt that, since the invention of genetic

498

Chemical and Materials Sciences Building | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Research Areas Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and Conferences Supporting Organizations Advanced Materials Home | Science & Discovery | Advanced Materials | Facilities and Capabilities SHARE Chemical and Materials Sciences Building Chemical and Materials Sciences Building, 411 ORNL's Chemical and Materials Sciences Building provides modern laboratory and office space for researchers studying and developing materials and chemical processes for energy-related technologies. The Chemical and Materials Sciences Building is a 160,000 square foot facility that provides modern laboratory and office space for ORNL researchers who are studying and developing materials and chemical

499

Passive in-situ chemical sensor  

DOE Patents (OSTI)

A chemical sensor for assessing a chemical of interest. In typical embodiments the chemical sensor includes a first thermocouple and second thermocouple. A reactive component is typically disposed proximal to the second thermal couple, and is selected to react with the chemical of interest and generate a temperature variation that may be detected by a comparison of a temperature sensed by the second thermocouple compared with a concurrent temperature detected by the first thermocouple. Further disclosed is a method for assessing a chemical of interest and a method for identifying a reaction temperature for a chemical of interest in a system.

Morrell, Jonathan S. (Farragut, TN); Ripley, Edward B. (Knoxville, TN)

2012-02-14T23:59:59.000Z

500

Chemical logging of geothermal wells  

DOE Patents (OSTI)

The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

Allen, Charles A. (Idaho Falls, ID); McAtee, Richard E. (Idaho Falls, ID)

1981-01-01T23:59:59.000Z