National Library of Energy BETA

Sample records for discharge lighting metal

  1. Light metal production

    DOE Patents [OSTI]

    Fan, Qinbai

    2016-04-19

    An electrochemical process for the production of light metals, particularly aluminum. Such a process involves contacting a light metal source material with an inorganic acid to form a solution containing the light metal ions in high concentration. The solution is fed to an electrochemical reactor assembly having an anode side containing an anode and a cathode side containing a cathode, with anode side and the cathode side separated by a bipolar membrane, with the solution being fed to the anode side. Light metal ions are electrochemically transferred through the bipolar membrane to the cathode side. The process further involves reducing the light metal ions to light metal powder. An associated processing system is also provided.

  2. Large area, surface discharge pumped, vacuum ultraviolet light source

    DOE Patents [OSTI]

    Sze, R.C.; Quigley, G.P.

    1996-12-17

    Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source is disclosed. A contamination-free VUV light source having a 225 cm{sup 2} emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm{sup 2} at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing. 3 figs.

  3. Large area, surface discharge pumped, vacuum ultraviolet light source

    DOE Patents [OSTI]

    Sze, Robert C.; Quigley, Gerard P.

    1996-01-01

    Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source. A contamination-free VUV light source having a 225 cm.sup.2 emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm.sup.2 at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing.

  4. Light metal explosives and propellants

    DOE Patents [OSTI]

    Wood, Lowell L.; Ishikawa, Muriel Y.; Nuckolls, John H.; Pagoria, Phillip F.; Viecelli, James A.

    2005-04-05

    Disclosed herein are light metal explosives, pyrotechnics and propellants (LME&Ps) comprising a light metal component such as Li, B, Be or their hydrides or intermetallic compounds and alloys containing them and an oxidizer component containing a classic explosive, such as CL-20, or a non-explosive oxidizer, such as lithium perchlorate, or combinations thereof. LME&P formulations may have light metal particles and oxidizer particles ranging in size from 0.01 .mu.m to 1000 .mu.m.

  5. High-Intensity Discharge Lighting Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Intensity Discharge Lighting Basics High-Intensity Discharge Lighting Basics August 15, 2013 - 5:59pm Addthis Illustration of a high-intensity discharge (HID) lIllustration amp. The lamp is a tall cylindrical shape, and a cutout of the outer tube shows the materials inside. A long, thin cylinder called the arc tube runs through the lamp between two electrodes. The space around the arc tube is labeled as a vacuum. High-intensity discharge (HID) lighting can provide high efficacy and long

  6. Enhancement of the EUV emission of a metallic capillary discharge operated with argon ambient gas

    SciTech Connect (OSTI)

    Chan, L. S. Tan, D. Saboohi, S. Yap, S. L. Wong, C. S.

    2014-03-05

    In this work, the metallic capillary discharge is operated with two different ambients: air and argon. In the experiments reported here, the chamber is first evacuated to 10{sup ?5} mbar. The discharge is initiated by the transient hollow cathode effect generated electron beam, with either air ambient or argon ambient at 10{sup ?4} mbar. The bombardment of electron beam at the tip of the stainless steel anode gives rise to a metallic vapor, which is injected into the capillary and initiates the main discharge through the capillary. The EUV emission is measured for different discharge voltages for both conditions and compared. It is found that the metallic capillary discharge with argon ambientis able to produce higher EUV energy compared to that with air ambient.

  7. Emission of Visible Light by Hot Dense Metals (Conference) |...

    Office of Scientific and Technical Information (OSTI)

    TRANSPORT THEORY Incandescent emission of light, polarized emission, pyrometry, hot metals, warm dense matter. Word Cloud More Like This Full Text preview image File size N...

  8. Optical pumping in a microfabricated Rb vapor cell using a microfabricated Rb discharge light source

    SciTech Connect (OSTI)

    Venkatraman, V.; Kang, S.; Affolderbach, C.; Mileti, G.; Shea, H.

    2014-02-03

    Miniature (light sources. Here, we report on the demonstration of optical pumping in a microfabricated alkali vapor resonance cell using (1) a microfabricated Rb discharge lamp light source, as well as (2) a conventional glass-blown Rb discharge lamp. The microfabricated Rb lamp cell is a dielectric barrier discharge (DBD) light source, having the same inner cell volume of around 40 mm{sup 3} as that of the resonance cell, both filled with suitable buffer gases. A miniature (∼2 cm{sup 3} volume) test setup based on the M{sub z} magnetometer interrogation technique was used for observation of optical-radiofrequency double-resonance signals, proving the suitability of the microfabricated discharge lamp to introduce efficient optical pumping. The pumping ability of this light source was found to be comparable to or even better than that of a conventional glass-blown lamp. The reported results indicate that the micro-fabricated DBD discharge lamp has a high potential for the development of a new class of miniature atomic clocks, magnetometers, and quantum sensors.

  9. Diagnostic of the self-healing of metallized polypropylene film by modeling of the broadening emission lines of aluminum emitted by plasma discharge

    SciTech Connect (OSTI)

    Tortai, J.-H.; Bonifaci, N.; Denat, A.; Trassy, C.

    2005-03-01

    Metallized-film capacitors have the property, even under high continuous voltage, to self-heal i.e., to clear a defect in the dielectric. The self-healing process is a consequence of a transient arc discharge. It has been previously shown that during the discharge, due to Joule effect, the metal is vaporized until the arc extinguishes. The discharge duration has been found to be inversely proportional to the mechanical pressure applied on the layers of metallized films making up a capacitor. The aim of this study is to understand the physical processes involved in this spontaneous extinction of the arc discharge. Emission spectroscopy has been used to provide information about the physical properties (temperatures, electronic and neutral particles densities, etc.) of the plasma induces by a self-healing. An analysis, based on the broadenings and shifts of Al atomic lines, of the experimental light spectra obtained has shown that the self-healing process leads to the generation, from the vaporized metal, of a high-density and relatively weakly ionized aluminum plasma. The plasma density increases with the pressure applied on the film layers and, consequently, the density power needed to extend the plasma zone increases as well and the arc discharge goes out faster as experimentally observed.

  10. Investigation of ionized metal flux in enhanced high power impulse magnetron sputtering discharges

    SciTech Connect (OSTI)

    Stranak, Vitezslav; Hubicka, Zdenek; Cada, Martin; Drache, Steffen; Hippler, Rainer; Tichy, Milan

    2014-04-21

    The metal ionized flux fraction and production of double charged metal ions Me{sup 2+} of different materials (Al, Cu, Fe, Ti) by High Power Impulse Magnetron Sputtering (HiPIMS) operated with and without a pre-ionization assistance is compared in the paper. The Electron Cyclotron Wave Resonance (ECWR) discharge was employed as the pre-ionization agent providing a seed of charge in the idle time of HiPIMS pulses. A modified grid-free biased quartz crystal microbalance was used to estimate the metal ionized flux fraction ξ. The energy-resolved mass spectrometry served as a complementary method to distinguish particular ion contributions to the total ionized flux onto the substrate. The ratio between densities of doubly Me{sup 2+} and singly Me{sup +} charged metal ions was determined. It is shown that ECWR assistance enhances Me{sup 2+} production with respect of absorbed rf-power. The ECWR discharge also increases the metal ionized flux fraction of about 30% especially in the region of lower pressures. Further, the suppression of the gas rarefaction effect due to enhanced secondary electron emission of Me{sup 2+} was observed.

  11. Evaluation of Metal Halide, Plasma, and LED Lighting Technologies for a Hydrogen Fuel Cell Mobile Light (H 2 LT)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miller, L. B.; Donohoe, S. P.; Jones, M. H.; White, W. A.; Klebanoff, L. E.; Velinsky, S. A.

    2015-04-22

    This article reports on the testing and comparison of a prototype hydrogen fuel cell light tower (H2LT) and a conventional diesel-powered metal halide light trailer for use in road maintenance and construction activities. The prototype was originally outfitted with plasma lights and then with light-emitting diode (LED) luminaires. Light output and distribution, lighting energy efficiency (i.e., efficacy), power source thermal efficiency, and fuel costs are compared. The metal halide luminaires have 2.2 and 3.1 times more light output than the plasma and LED luminaires, respectively, but they require more power/lumen to provide that output. The LED luminaires have 1.6 timesmore » better light efficacy than either the metal halide or plasma luminaires. The light uniformity ratios produced by the plasma and LED towers are acceptable. The fuel cell thermal efficiency at the power required to operate the plasma lights is 48%, significantly higher than the diesel generator efficiency of 23% when operating the metal halide lights. Due to the increased efficiency of the fuel cell and the LED lighting, the fuel cost per lumen-hour of the H2LT is 62% of the metal halide diesel light tower assuming a kilogram of hydrogen is twice the cost of a gallon of diesel fuel.« less

  12. METAL REMOVAL FROM PROCESS AND STORMWATER DISCHARGES BY CONSTRUCTED TREATMENT WETLANDS

    SciTech Connect (OSTI)

    NELSON, ERIC

    2004-11-02

    The A-01 NPDES outfall at the Savannah River Site receives process wastewater and stormwater which passes through a wetland treatment system (WTS) prior to discharge. The overall objective of our research is to better understand the mechanisms of operation of the A-01 WTS in order to provide better input to the design of future systems. The system is a vegetated surface flow wetland and has a retention time of approximately 48 hours. Sampling conducted during the fourth year of operation validated continued wetland performance, and assessed the fate of a larger suite of metals present in the water. Copper and mercury removal efficiencies were still very high, both in excess of 80 per cent removal from the water after passage through the wetland system. Lead removal from the water by the system was 83 per cent, zinc removal was 60 per cent, and nickel was generally unaffected. Nitrates entering into the wetland cells are almost immediately removed from the water column and generally no nitrates are discharged from the A cells. The wetland cells are very anaerobic and the sediments have negative redox potentials. As a result, manganese and iron mineral phases in the sediments have been reduced to soluble forms and increase in the water during passage through the wetland system. Dissolved organic carbon in the water column is also increased by the system and reduces toxicity of the effluent. Operation and maintenance of the system is minimal, and consists of checking for growth of the vegetation and free flow of the water through the system.

  13. Radionuclides, Metals, and Hydrocarbons in Oil and Gas Operational Discharges and Environmental Samples Associated with Offshore Production Facilities on the Texas/Louisiana Continental Shelf with an Environmental Assessment of Metals and Hydrocarbons.

    SciTech Connect (OSTI)

    1997-06-01

    This report presents concentrations of radionuclides, metals, and hydrocarbons in samples of produced water and produced sand from oil and gas production platforms located offshore Texas and Louisiana. concentrations in produced water discharge plume / receiving water, ambient seawater, sediment, interstitial water, and marine animal tissue samples collected in the vicinity of discharging platforms and reference sites distant from discharges are also reported and discussed. An environmental risk assessment is made on the basis of the concentration of metals and hydrocarbons determined in the samples.

  14. Radionuclides, Metals, and Hydrocarbons in Oil and Gas Operational Discharges and Environmental Samples Associated with Offshore Production Facilities on the Texas/Louisiana Continental Shelf with an Environmental Assessment of Metals and Hydrocarbons

    SciTech Connect (OSTI)

    Continental Shelf Associates, Inc.

    1999-08-16

    This report presents concentrations of radionuclides, metals, and hydrocarbons in samples of produced water and produced sand from oil and gas production platforms located offshore Texas and Louisiana. Concentrations in produced water discharge plume/receiving water, ambient seawater, sediment, interstitial water, and marine animal tissue samples collected in the vicinity of discharging platforms and reference sites distant from discharges are also reported and discussed. An environmental risk assessment is made on the basis of the concentrations of metals and hydrocarbons determined in the samples.

  15. Evaluation of Metal Halide, Plasma, and LED Lighting Technologies for a Hydrogen Fuel Cell Mobile Light (H 2 LT)

    SciTech Connect (OSTI)

    Miller, L. B.; Donohoe, S. P.; Jones, M. H.; White, W. A.; Klebanoff, L. E.; Velinsky, S. A.

    2015-04-22

    This article reports on the testing and comparison of a prototype hydrogen fuel cell light tower (H2LT) and a conventional diesel-powered metal halide light trailer for use in road maintenance and construction activities. The prototype was originally outfitted with plasma lights and then with light-emitting diode (LED) luminaires. Light output and distribution, lighting energy efficiency (i.e., efficacy), power source thermal efficiency, and fuel costs are compared. The metal halide luminaires have 2.2 and 3.1 times more light output than the plasma and LED luminaires, respectively, but they require more power/lumen to provide that output. The LED luminaires have 1.6 times better light efficacy than either the metal halide or plasma luminaires. The light uniformity ratios produced by the plasma and LED towers are acceptable. The fuel cell thermal efficiency at the power required to operate the plasma lights is 48%, significantly higher than the diesel generator efficiency of 23% when operating the metal halide lights. Due to the increased efficiency of the fuel cell and the LED lighting, the fuel cost per lumen-hour of the H2LT is 62% of the metal halide diesel light tower assuming a kilogram of hydrogen is twice the cost of a gallon of diesel fuel.

  16. INNOVATIVE APPROACHES TO COMPLYING WITH VERY LOW NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) PERMIT LIMITS FOR METALS

    SciTech Connect (OSTI)

    Payne, B

    2009-06-26

    The NPDES permit issued to the Savannah River Site (SRS) in 2003 contained very low metals limits for several outfalls. Copper, lead and zinc limits were as low as seven micrograms per liter (7 ug/l), 1 ug/l, and 100 ug/l, respectively. The permit contained compliance schedules that provided SRS with only three to five years to select and implement projects that would enable outfall compliance. Discharges from a few outfalls were eliminated or routed into other locations relatively inexpensively. However, some outfall problems were much more difficult to correct. SRS personnel implemented several innovative projects in order to meet compliance schedule deadlines as inexpensively as possible. These innovations included (1) connecting several outfall discharges to the site's Central Sanitary Wastewater Treatment Facility (CSWTF), (2) constructing a treatment wetlands and completing a water-effects ratio (WER) on its effluent, (3) installing a stannous chloride feed system to remove mercury in an existing air stripper, and (4) constructing a humic acid feed system to increase effluent dissolved organic carbon (DOC) content and take advantage of biotic ligand modeling to raise effluent limits.

  17. Metal-halide perovskites for photovoltaic and light-emitting devices* |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MIT-Harvard Center for Excitonics Metal-halide perovskites for photovoltaic and light-emitting devices* September 15, 2015 at 4:30 pm/36-428 Sam Stranks Massachusetts Institute of Technology stranks.02 Metal halide perovskites are exotic hybrid crystalline materials developed out of curiosity. Unexpectedly, solar cells incorporating these perovskites are rapidly emerging as serious contenders to rival the leading photovoltaic technologies. Power conversion efficiencies have jumped from 3% to

  18. Spectral light separator based on deep-subwavelength resonant apertures in a metallic film

    SciTech Connect (OSTI)

    Bykalp, Yasin; Catrysse, Peter B. Shin, Wonseok; Fan, Shanhui

    2014-07-07

    We propose to funnel, select, and collect light spectrally by exploiting the unique properties of deep-subwavelength resonant apertures in a metallic film. In our approach, each aperture has an electromagnetic cross section that is much larger than its physical size while the frequency of the collected light is controlled by its height through the Fabry-Prot resonance mechanism. The electromagnetic crosstalk between apertures remains low despite physical separations in the deep-subwavelength range. The resulting device enables an extremely efficient, subwavelength way to decompose light into its spectral components without the loss of photons and spatial coregistration errors. As a specific example, we show a subwavelength-size structure with three deep-subwavelength slits in a metallic film designed to operate in the mid-wave infrared range between 3 and 5.5??m.

  19. Tritium production from a low voltage deuterium discharge on palladium and other metals

    SciTech Connect (OSTI)

    Claytor, T.N.; Jackson, D.D.; Tuggle, D.G.

    1995-09-01

    Over the past year the authors have been able to demonstrate that a plasma loading method produces an exciting and unexpected amount of tritium from small palladium wires. In contrast to electrochemical hydrogen or deuterium loading of palladium, this method yields a reproducible tritium generation rate when various electrical and physical conditions are met. Small diameter wires (100--250 microns) have been used with gas pressures above 200 torr at voltages and currents of about 2,000 V at 3--5 A. By carefully controlling the sputtering rate of the wire, runs have been extended to hundreds of hours allowing a significant amount (> 10`s nCi) of tritium to accumulate. they show tritium generation rates for deuterium-palladium foreground runs that are up to 25 times larger than hydrogen-palladium control experiments using materials from the same batch. They illustrate the difference between batches of annealed palladium and as received palladium from several batches as well as the effect of other metals (Pt, Ni, Nb, Zr, V, W, Hf) to demonstrate that the tritium generation rate can vary greatly from batch to batch.

  20. White organic light-emitting diodes with 4 nm metal electrode

    SciTech Connect (OSTI)

    Lenk, Simone; Schwab, Tobias; Schubert, Sylvio; Müller-Meskamp, Lars; Leo, Karl; Reineke, Sebastian; Gather, Malte C.

    2015-10-19

    We investigate metal layers with a thickness of only a few nanometers as anode replacement for indium tin oxide (ITO) in white organic light-emitting diodes (OLEDs). The ultrathin metal electrodes prove to be an excellent alternative that can, with regard to the angular dependence and efficiency of the OLED devices, outperform the ITO reference. Furthermore, unlike ITO, the thin composite metal electrodes are readily compatible with demanding architectures (e.g., top-emission or transparent OLEDs, device unit stacking, etc.) and flexible substrates. Here, we compare the sheet resistance of both types of electrodes on polyethylene terephthalate for different bending radii. The electrical performance of ITO breaks down at a radius of 10 mm, while the metal electrode remains intact even at radii smaller than 1 mm.

  1. Creation of Light and/or Surface Plasmons with Heated Metallic Films -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Solar Thermal Solar Thermal Find More Like This Return to Search Creation of Light and/or Surface Plasmons with Heated Metallic Films DOE Grant Recipients University of Minnesota Contact University of Minnesota About This Technology <span id="Caption"><span id="ctl00_MainContentHolder_zoomimage_defaultCaption">Ultrasmooth thin metal films with a nanoscale bull&rsquo;s eye pattern of circular concentric grooves produce a

  2. Highly Active TiO2-Based Visible-Light Photocatalyst with Nonmetal Doping and Plasmonic Metal Decoration

    SciTech Connect (OSTI)

    Zhang, Qiao; Lima, Diana Q.; Chi, Miaofang; Yin, Yadong

    2011-01-01

    A sandwich-structured photocatalyst shows an excellent performance in degradation reactions of a number of organic compounds under UV, visible light, and direct sunlight (see picture). The catalyst was synthesized by a combination of nonmetal doping and plasmonic metal decoration of TiO2 nanocrystals, which improves visible-light activity and enhances light harvesting and charge separation, respectively.

  3. Nanostructure of Metallic Particles in Light Water Reactor Used Nuclear Fuel

    SciTech Connect (OSTI)

    Buck, Edgar C.; Mausolf, Edward J.; Mcnamara, Bruce K.; Soderquist, Chuck Z.; Schwantes, Jon M.

    2015-03-11

    The extraordinary nano-structure of metallic particles in light water reactor fuels points to possible high reactivity through increased surface area and a high concentration of high energy defect sites. We have analyzed the metallic epsilon particles from a high burn-up fuel from a boiling water reactor using transmission electron microscopy and have observed a much finer nanostructure in these particles than has been reported previously. The individual round particles that varying in size between ~20 and ~50 nm appear to consist of individual crystallites on the order of 2-3 nm in diameter. It is likely that in-reactor irradiation induce displacement cascades results in the formation of the nano-structure. The composition of these metallic phases is variable yet the structure of the material is consistent with the hexagonal close packed structure of epsilon-ruthenium. These findings suggest that unusual catalytic behavior of these materials might be expected, particularly under accident conditions.

  4. Properties of near-net shape metallic components made by the directed light fabrication process

    SciTech Connect (OSTI)

    Lewis, G.K.; Milewski, J.O.; Thoma, D.B.; Nemec, R.B.

    1997-10-01

    Directed Light Fabrication (DLF) is a process invented at Los Alamos National Laboratory that can be used to fuse any metal powder directly to a fully dense, near-net shape component with full structural integrity. A solid model design of a desired component is first developed on a computer work station. A motion path, produced from the solid model definition, is translated to actual machine commands through a post-processor, specific to the deposition equipment. The DLF process uses a multi-axis positioning system to move the laser focal zone over the part cross section defined by the part boundaries and desired layer thickness. Metal powders, delivered in an argon stream, enter the focal zone where they melt and continuously form a molten pool of material that moves with the laser focal spot. Position and movement of the spot is controlled through the post-processor. Successive cross-sectional layers are added by advancing the spot one layer thickness beyond the previous layer until the entire part is deposited. The system has 4 powder feeders attached for co-deposition of multiple materials to create alloys at the focal zone or form dissimilar metal joint combinations by changing powder composition from one material to another. Parts produced by the DLF process vary in complexity from simple bulk solid forms to detailed components fabricated from difficult to process metals and alloys. Parts have been deposited at rates up to 33 cm{sup 3}/hr with 12 cm{sup 3}/hr more typical. Feasibility of processing any metal ranging in melting point from aluminium to tungsten has been demonstrated. Mechanical properties for bulk DLF deposits of three alloy powders were measured for this study. Ti-6Al-4V and 316 stainless steel powders were fabricated into rectangular bar, and Inconel 690 powder was fabricated into a solid cylinder.

  5. Insights for aging management of light water reactor components: Metal containments. Volume 5

    SciTech Connect (OSTI)

    Shah, V.N.; Sinha, U.P.; Smith, S.K.

    1994-03-01

    This report evaluates the available technical information and field experience related to management of aging damage to light water reactor metal containments. A generic aging management approach is suggested for the effective and comprehensive aging management of metal containments to ensure their safe operation. The major concern is corrosion of the embedded portion of the containment vessel and detection of this damage. The electromagnetic acoustic transducer and half-cell potential measurement are potential techniques to detect corrosion damage in the embedded portion of the containment vessel. Other corrosion-related concerns include inspection of corrosion damage on the inaccessible side of BWR Mark I and Mark II containment vessels and corrosion of the BWR Mark I torus and emergency core cooling system piping that penetrates the torus, and transgranular stress corrosion cracking of the penetration bellows. Fatigue-related concerns include reduction in the fatigue life (a) of a vessel caused by roughness of the corroded vessel surface and (b) of bellows because of any physical damage. Maintenance of surface coatings and sealant at the metal-concrete interface is the best protection against corrosion of the vessel.

  6. Lighting

    Broader source: Energy.gov [DOE]

    One of the simplest ways to save energy and money is to switch to energy-efficient lights. Learn about your lighting choices that can save you money.

  7. Photoelectron emission from metal surfaces induced by VUV-emission of filament driven hydrogen arc discharge plasma

    SciTech Connect (OSTI)

    Laulainen, J.; Kalvas, T.; Koivisto, H.; Komppula, J.; Tarvainen, O.

    2015-04-08

    Photoelectron emission measurements have been performed using a filament-driven multi-cusp arc discharge volume production H{sup ?} ion source (LIISA). It has been found that photoelectron currents obtained with Al, Cu, Mo, Ta and stainless steel (SAE 304) are on the same order of magnitude. The photoelectron currents depend linearly on the discharge power. It is shown experimentally that photoelectron emission is significant only in the short wavelength range of hydrogen spectrum due to the energy dependence of the quantum efficiency. It is estimated from the measured data that the maximum photoelectron flux from plasma chamber walls is on the order of 1 A per kW of discharge power.

  8. Visible-light-induced instability in amorphous metal-oxide based TFTs for transparent electronics

    SciTech Connect (OSTI)

    Ha, Tae-Jun

    2014-10-15

    We investigate the origin of visible-light-induced instability in amorphous metal-oxide based thin film transistors (oxide-TFTs) for transparent electronics by exploring the shift in threshold voltage (V{sub th}). A large hysteresis window in amorphous indium-gallium-zinc-oxide (a-IGZO) TFTs possessing large optical band-gap (≈3 eV) was observed in a visible-light illuminated condition whereas no hysteresis window was shown in a dark measuring condition. We also report the instability caused by photo irradiation and prolonged gate bias stress in oxide-TFTs. Larger V{sub th} shift was observed after photo-induced stress combined with a negative gate bias than the sum of that after only illumination stress and only negative gate bias stress. Such results can be explained by trapped charges at the interface of semiconductor/dielectric and/or in the gate dielectric which play a role in a screen effect on the electric field applied by gate voltage, for which we propose that the localized-states-assisted transitions by visible-light absorption can be responsible.

  9. Coupling mid-infrared light from a photonic crystal waveguide to metallic transmission lines

    SciTech Connect (OSTI)

    Blanco-Redondo, Andrea E-mail: r.hillenbrand@nanogune.eu; Dpto. Electronica y Telecom., E.T.S. Ingeniera Bilbao, UPV Sarriugarte, Paulo; Garcia-Adeva, Angel; Zubia, Joseba; IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Bizkaia

    2014-01-06

    We propose and theoretically study a hybrid structure consisting of a photonic crystal waveguide (PhC-wg) and a two-wire metallic transmission line (TL), engineered for efficient transfer of mid-infrared (mid-IR) light between them. An efficiency of 32% is obtained for the coupling from the transverse magnetic (TM) photonic mode to the symmetric mode of the TL, with a predicted intensity enhancement factor of 53 at the transmission line surface. The strong coupling is explained by the small phase velocity mismatch and sufficient spatial overlapping between the modes. This hybrid structure could find applications in highly integrated mid-IR photonic-plasmonic devices for biological and gas sensing, among others.

  10. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Light Metals Permanent Mold Casting

    SciTech Connect (OSTI)

    Fasoyinu, Yemi

    2014-03-31

    Current vehicles use mostly ferrous components for structural applications. It is possible to reduce the weight of the vehicle by substituting these parts with those made from light metals such as aluminum and magnesium. Many alloys and manufacturing processes can be used to produce these light metal components and casting is known to be most economical. One of the high integrity casting processes is permanent mold casting which is the focus of this research report. Many aluminum alloy castings used in automotive applications are produced by the sand casting process. Also, aluminum-silicon (Al-Si) alloys are the most widely used alloy systems for automotive applications. It is possible that by using high strength aluminum alloys based on an aluminum-copper (Al-Cu) system and permanent mold casting, the performance of these components can be enhanced significantly. This will also help to further reduce the weight. However, many technological obstacles need to be overcome before using these alloys in automotive applications in an economical way. There is very limited information in the open literature on gravity and low-pressure permanent mold casting of high strength aluminum alloys. This report summarizes the results and issues encountered during the casting trials of high strength aluminum alloy 206.0 (Al-Cu alloy) and moderate strength alloy 535.0 (Al-Mg alloy). Five engineering components were cast by gravity tilt-pour or low pressure permanent mold casting processes at CanmetMATERIALS (CMAT) and two production foundries. The results of the casting trials show that high integrity engineering components can be produced successfully from both alloys if specific processing parameters are used. It was shown that a combination of melt processing and mold temperature is necessary for the elimination of hot tears in both alloys.

  11. Metamaterial-based theoretical description of light scattering by metallic nano-hole array structures

    SciTech Connect (OSTI)

    Singh, Mahi R.; Najiminaini, Mohamadreza; Carson, Jeffrey J. L.; Balakrishnan, Shankar

    2015-05-14

    We have experimentally and theoretically investigated the light-matter interaction in metallic nano-hole array structures. The scattering cross section spectrum was measured for three samples each having a unique nano-hole array radius and periodicity. Each measured spectrum had several peaks due to surface plasmon polaritons. The dispersion relation and the effective dielectric constant of the structure were calculated using transmission line theory and Bloch's theorem. Using the effective dielectric constant and the transfer matrix method, the surface plasmon polariton energies were calculated and found to be quantized. Using these quantized energies, a Hamiltonian for the surface plasmon polaritons was written in the second quantized form. Working with the Hamiltonian, a theory of scattering cross section was developed based on the quantum scattering theory and Green's function method. For both theory and experiment, the location of the surface plasmon polariton spectral peaks was dependant on the array periodicity and radii of the nano-holes. Good agreement was observed between the experimental and theoretical results. It is proposed that the newly developed theory can be used to facilitate optimization of nanosensors for medical and engineering applications.

  12. HIGH ENERGY GASEOUS DISCHARGE DEVICES

    DOE Patents [OSTI]

    Josephson, V.

    1960-02-16

    The high-energy electrical discharge device described comprises an envelope, a pair of main discharge electrodes supported in opposition in the envelope, and a metallic shell symmetrically disposed around and spaced from the discharge path between the electrodes. The metallic shell comprises a first element of spaced helical turns of metallic material and a second element of spaced helical turns of methllic material insulatedly supported in superposition outside the first element and with the turns overlapping the gap between the turns of the first element.

  13. Separation and Recovery of Uranium Metal from Spent Light Water Reactor Fuel via Electrolytic Reduction and Electrorefining

    SciTech Connect (OSTI)

    S. D. Herrmann; S. X. Li

    2010-09-01

    A series of bench-scale experiments was performed in a hot cell at Idaho National Laboratory to demonstrate the separation and recovery of uranium metal from spent light water reactor (LWR) oxide fuel. The experiments involved crushing spent LWR fuel to particulate and separating it from its cladding. Oxide fuel particulate was then converted to metal in a series of six electrolytic reduction runs that were performed in succession with a single salt loading of molten LiCl 1 wt% Li2O at 650 C. Analysis of salt samples following the series of electrolytic reduction runs identified the diffusion of select fission products from the spent fuel to the molten salt electrolyte. The extents of metal oxide conversion in the post-test fuel were also quantified, including a nominal 99.7% conversion of uranium oxide to metal. Uranium metal was then separated from the reduced LWR fuel in a series of six electrorefining runs that were performed in succession with a single salt loading of molten LiCl-KCl-UCl3 at 500 C. Analysis of salt samples following the series of electrorefining runs identified additional partitioning of fission products into the molten salt electrolyte. Analyses of the separated uranium metal were performed, and its decontamination factors were determined.

  14. EMISSION OF VISIBLE LIGHT BY HOT DENSE METALS By R M. More, M...

    Office of Scientific and Technical Information (OSTI)

    ... It is typically about 10 % of the black-body emission. The droplet calculations are only ... For a uniform metal plate (having constant composition, density and temperature) the ...

  15. Handling and characterization of glow-discharge polymer samples...

    Office of Scientific and Technical Information (OSTI)

    of glow-discharge polymer samples for the light gas gun Citation Details In-Document Search Title: Handling and characterization of glow-discharge polymer samples for the light ...

  16. The dynamic behavior of thin-film ionic transition metal complex-based light-emitting electrochemical cells

    SciTech Connect (OSTI)

    Meier, Sebastian B. E-mail: wiebke.sarfert@siemens.com; Hartmann, David; Sarfert, Wiebke E-mail: wiebke.sarfert@siemens.com; Winnacker, Albrecht

    2014-09-14

    Light-emitting electrochemical cells (LECs) have received increasing attention during recent years due to their simple architecture, based on solely air-stabile materials, and ease of manufacture in ambient atmosphere, using solution-based technologies. The LEC's active layer offers semiconducting, luminescent as well as ionic functionality resulting in device physical processes fundamentally different as compared with organic light-emitting diodes. During operation, electrical double layers (EDLs) form at the electrode interfaces as a consequence of ion accumulation and electrochemical doping sets in leading to the in situ development of a light-emitting p-i-n junction. In this paper, we comment on the use of impedance spectroscopy in combination with complex nonlinear squares fitting to derive key information about the latter events in thin-film ionic transition metal complex-based light-emitting electrochemical cells based on the model compound bis-2-phenylpyridine 6-phenyl-2,2´-bipyridine iridium(III) hexafluoridophosphate ([Ir(ppy)₂(pbpy)][PF₆]). At operating voltages below the bandgap potential of the ionic complex used, we obtain the dielectric constant of the active layer, the conductivity of mobile ions, the transference numbers of electrons and ions, and the thickness of the EDLs, whereas the transient thickness of the p-i-n junction is determined at voltages above the bandgap potential. Most importantly, we find that charge transport is dominated by the ions when carrier injection from the electrodes is prohibited, that ion movement is limited by the presence of transverse internal interfaces and that the width of the intrinsic region constitutes almost 60% of the total active layer thickness in steady state at a low operating voltage.

  17. Impact of Fuel Metal Impurities on the Durability of a Light-Duty Diesel Aftertreatment System

    SciTech Connect (OSTI)

    Williams, A.; Burton, J.; McCormick, R. L.; Toops, T.; Wereszczak, A. A.; Fox, E. E.; Lance, M. J.; Cavataio, G.; Dobson, D.; Warner, J.; Brezny, R.; Nguyen, K.; Brookshear, D. W.

    2013-04-01

    Alkali and alkaline earth metal impurities found in diesel fuels are potential poisons for diesel exhaust catalysts. A set of diesel engine production exhaust systems was aged to 150,000 miles. These exhaust systems included a diesel oxidation catalyst, selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF). Four separate exhaust systems were aged, each with a different fuel: ultralow sulfur diesel containing no measureable metals, B20 (a common biodiesel blend) containing sodium, B20 containing potassium, and B20 containing calcium, which were selected to simulate the maximum allowable levels in B100 according to ASTM D6751. Analysis included Federal Test Procedure emissions testing, bench-flow reactor testing of catalyst cores, electron probe microanalysis (EPMA), and measurement of thermo-mechanical properties of the DPFs. EPMA imaging found that the sodium and potassium penetrated into the washcoat, while calcium remained on the surface. Bench-flow reactor experiments were used to measure the standard nitrogen oxide (NOx) conversion, ammonia storage, and ammonia oxidation for each of the aged SCR catalysts. Vehicle emissions tests were conducted with each of the aged catalyst systems using a chassis dynamometer. The vehicle successfully passed the 0.2 gram/mile NOx emission standard with each of the four aged exhaust systems.

  18. Investigation of Heat Transfer at the Mold/Metal Interface in Permanent Mold Casting of Light Alloys

    SciTech Connect (OSTI)

    Robert D. Pehlke; John T. Berry

    2005-12-16

    Accurate modeling of the metal casting process prior to creating a mold design demands reliable knowledge of the interfacial heat transfer coefficient at the mold metal interface as a function of both time and location. The phenomena concerned with the gap forming between the mold and the solidifying metal are complex but need to be understood before any modeling is attempted. The presence of mold coatings further complicates the situation. A commercial casting was chosen and studied in a gravity permanent mold casting process. The metal/mold interfacial heat transfer coefficient (IHTC) was the focus of the research. A simple, direct method has been used to evaluate the IHTC. Both the simulation and experiments have shown that a reasonably good estimate of the heat transfer coefficient could be made in the case studied. It has been found that there is a good agreement between experiments and simulations in the temperature profiles during the solidification process, given that the primary mechanism of heat transfer across the gap in permanent mold casting of light alloys is by conduction across the gap. The procedure utilized to determine the interfacial heat transfer coefficient can be applied to other casting processes. A recently completed project involving The University of Michigan and Mississippi State University, together with several industrial partners, which was supported by the USDOE through the Cast Metals Coalition, examined a number of cases of thermal contact. In an investigation which gave special consideration to the techniques of measurement, several mold coatings were employed and results presented as a function of time. Realistic conditions of coating thickness and type together with an appropriate combination of mold preheat and metal pouring temperature were strictly maintained throughout the investigation. Temperature sensors, in particular thermocouples, play an important part in validating the predictions of solidification models. Cooling

  19. WASTE HEAT RECOVERY USING THERMOELECTRIC DEVICES IN THE LIGHT METALS INDUSTRY

    SciTech Connect (OSTI)

    Choate, William T.; Hendricks, Terry J.; Majumdar, Rajita

    2007-05-01

    Recently discovered thermoelectric materials and associated manufacturing techniques (nanostructures, thin-film super lattice, quantum wells...) have been characterized with thermal to electric energy conversion efficiencies of 12-25+%. These advances allow the manufacture of small-area, high-energy flux (350 W/cm2 input) thermoelectric generating (TEG) devices that operate at high temperatures (~750C). TEG technology offers the potential for large-scale conversion of waste heat from the exhaust gases of electrolytic cells (e.g., Hall-Hroult cells) and from aluminum, magnesium, metal and glass melting furnaces. This paper provides an analysis of the potential energy recovery and of the engineering issues that are expected when integrating TEG systems into existing manufacturing processes. The TEG module must be engineered for low-cost, easy insertion and simple operation in order to be incorporated into existing manufacturing operations. Heat transfer on both the hot and cold-side of these devices will require new materials, surface treatments and design concepts for their efficient operation.

  20. Discharge cell for ozone generator

    DOE Patents [OSTI]

    Nakatsuka, Suguru

    2000-01-01

    A discharge cell for use in an ozone generator is provided which can suppress a time-related reduction in ozone concentration without adding a catalytic gas such as nitrogen gas to oxygen gas as a raw material gas. The discharge cell includes a pair of electrodes disposed in an opposed spaced relation with a discharge space therebetween, and a dielectric layer of a three-layer structure consisting of three ceramic dielectric layers successively stacked on at least one of the electrodes, wherein a first dielectric layer of the dielectric layer contacting the one electrode contains no titanium dioxide, wherein a second dielectric layer of the dielectric layer exposed to the discharge space contains titanium dioxide in a metal element ratio of not lower than 10 wt %.

  1. Titania Composites with 2 D Transition Metal Carbides as Photocatalysts for Hydrogen Production under Visible-Light Irradiation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Hui; Peng, Rui; Hood, Zachary D.; Naguib, Michael; Adhikari, Shiba P.; Wu, Zili

    2016-05-24

    In the MXenes family of two-dimensional transition-metal carbides there were successful demonstrations of co-catalysts with rutile TiO2 for visible-light-induced solar hydrogen production from water splitting. The physicochemical properties of Ti3C2Tx MXene coupled with TiO2 were investigated by a variety of characterization techniques. The effect of the Ti3C2Tx loading on the photocatalytic performance of the TiO2/Ti3C2Tx composites was elucidated. Moreover, with an optimized Ti3C2Tx content of 5 wt %, the TiO2/Ti3C2Tx composite shows a 400 % enhancement in the photocatalytic hydrogen evolution reaction compared with that of pure rutile TiO2. We also expanded our exploration to other MXenes (Nb2CTx and Ti2CTx)more » as co-catalysts coupled with TiO2, and these materials also exhibited enhanced hydrogen production. These results manifest the generality of MXenes as effective co-catalysts for solar hydrogen production.« less

  2. Lighting Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homes & Buildings » Lighting & Daylighting » Lighting Basics Lighting Basics August 15, 2013 - 5:12pm Addthis Text Version There are many different types of artificial lights (formally called "lamps" in the lighting industry,) which have different applications and uses. Types of lighting include: Fluorescent Lighting High-intensity Discharge Lighting Incandescent Lighting LED Lighting. New lamp designs that use energy-efficient technology are now readily available in the

  3. WASP-36b: A NEW TRANSITING PLANET AROUND A METAL-POOR G-DWARF, AND AN INVESTIGATION INTO ANALYSES BASED ON A SINGLE TRANSIT LIGHT CURVE

    SciTech Connect (OSTI)

    Smith, A. M. S.; Anderson, D. R.; Hellier, C.; Maxted, P. F. L.; Smalley, B.; Southworth, J.; Collier Cameron, A.; Gillon, M.; Jehin, E.; Lendl, M.; Queloz, D.; Triaud, A. H. M. J.; Pepe, F.; Segransan, D.; Udry, S.; West, R. G.; Barros, S. C. C.; Pollacco, D.; Street, R. A.

    2012-04-15

    We report the discovery, from WASP and CORALIE, of a transiting exoplanet in a 1.54 day orbit. The host star, WASP-36, is a magnitude V = 12.7, metal-poor G2 dwarf (T{sub eff} = 5959 {+-} 134 K), with [Fe/H] =-0.26 {+-} 0.10. We determine the planet to have mass and radius, respectively, 2.30 {+-} 0.07 and 1.28 {+-} 0.03 times that of Jupiter. We have eight partial or complete transit light curves, from four different observatories, which allow us to investigate the potential effects on the fitted system parameters of using only a single light curve. We find that the solutions obtained by analyzing each of these light curves independently are consistent with our global fit to all the data, despite the apparent presence of correlated noise in at least two of the light curves.

  4. Powerful glow discharge excilamp

    DOE Patents [OSTI]

    Tarasenko, Victor F.; Panchenko, Aleksey N.; Skakun, Victor S.; Sosnin, Edward A.; Wang, Francis T.; Myers, Booth R.; Adamson, Martyn G.

    2002-01-01

    A powerful glow discharge lamp comprising two coaxial tubes, the outer tube being optically transparent, with a cathode and anode placed at opposite ends of the tubes, the space between the tubes being filled with working gas. The electrodes are made as cylindrical tumblers placed in line to one other in such a way that one end of the cathode is inserted into the inner tube, one end of the anode coaxially covers the end of the outer tube, the inner tube penetrating and extending through the anode. The increased electrodes' surface area increases glow discharge electron current and, correspondingly, average radiation power of discharge plasma. The inner tube contains at least one cooling liquid tube placed along the axis of the inner tube along the entire lamp length to provide cathode cooling. The anode has a circumferential heat extracting radiator which removes heat from the anode. The invention is related to lighting engineering and can be applied for realization of photostimulated processes under the action of powerful radiation in required spectral range.

  5. Surface plasmon dispersion engineering via double-metallic AU/AG layers for nitride light-emitting diodes

    DOE Patents [OSTI]

    Tansu, Nelson; Zhao, Hongping; Zhang, Jing; Liu, Guangyu

    2014-04-01

    A double-metallic deposition process is used whereby adjacent layers of different metals are deposited on a substrate. The surface plasmon frequency of a base layer of a first metal is tuned by the surface plasmon frequency of a second layer of a second metal formed thereon. The amount of tuning is dependent upon the thickness of the metallic layers, and thus tuning can be achieved by varying the thicknesses of one or both of the metallic layers. In a preferred embodiment directed to enhanced LED technology in the green spectrum regime, a double-metallic Au/Ag layer comprising a base layer of gold (Au) followed by a second layer of silver (Ag) formed thereon is deposited on top of InGaN/GaN quantum wells (QWs) on a sapphire/GaN substrate.

  6. Types of Lighting in Commercial Buildings - Table L3

    U.S. Energy Information Administration (EIA) Indexed Site

    Any Lighting Lighted Area Only Area Lit by Each Type of Light Incan- descent Standard Fluor-escent Compact Fluor- escent High Intensity Discharge Halogen All...

  7. Types of Lighting in Commercial Buildings - Table L1

    U.S. Energy Information Administration (EIA) Indexed Site

    Any Lighting Lighted Area Only Area Lit by Each Type of Light Incan- descent Standard Fluor-escent Compact Fluor- escent High Intensity Discharge Halogen All...

  8. Types of Lighting in Commercial Buildings - Table L2

    U.S. Energy Information Administration (EIA) Indexed Site

    Any Lighting Lighted Area Only Area Lit by Each Type of Light Incan- descent Standard Fluor-escent Compact Fluor- escent High Intensity Discharge Halogen All Buildings*...

  9. Ultraviolet radiation induced discharge laser

    DOE Patents [OSTI]

    Gilson, Verle A.; Schriever, Richard L.; Shearer, James W.

    1978-01-01

    An ultraviolet radiation source associated with a suitable cathode-anode electrode structure, disposed in a gas-filled cavity of a high pressure pulsed laser, such as a transverse electric atmosphere (TEA) laser, to achieve free electron production in the gas by photoelectric interaction between ultraviolet radiation and the cathode prior to the gas-exciting cathode-to-anode electrical discharge, thereby providing volume ionization of the gas. The ultraviolet radiation is produced by a light source or by a spark discharge.

  10. Constricted glow discharge plasma source

    DOE Patents [OSTI]

    Anders, Andre; Anders, Simone; Dickinson, Michael; Rubin, Michael; Newman, Nathan

    2000-01-01

    A constricted glow discharge chamber and method are disclosed. The polarity and geometry of the constricted glow discharge plasma source is set so that the contamination and energy of the ions discharged from the source are minimized. The several sources can be mounted in parallel and in series to provide a sustained ultra low source of ions in a plasma with contamination below practical detection limits. The source is suitable for applying films of nitrides such as gallium nitride and oxides such as tungsten oxide and for enriching other substances in material surfaces such as oxygen and water vapor, which are difficult process as plasma in any known devices and methods. The source can also be used to assist the deposition of films such as metal films by providing low-energy ions such as argon ions.

  11. Handling and characterization of glow-discharge polymer samples...

    Office of Scientific and Technical Information (OSTI)

    for the light gas gun Citation Details In-Document Search Title: Handling and characterization of glow-discharge polymer samples for the light gas gun Authors: Akin, M C ; ...

  12. Laser activated diffuse discharge switch

    DOE Patents [OSTI]

    Christophorou, Loucas G. (Oak Ridge, TN); Hunter, Scott R. (Oak Ridge, TN)

    1988-01-01

    The invention is a gas mixture for a diffuse discharge switch which is capable of changing from a conducting state to an insulating state in the presence of electrons upon the introduction of laser light. The mixture is composed of a buffer gas such as nitrogen or argon and an electron attaching gas such as C.sub.6 H.sub.5 SH, C.sub.6 H.sub.5 SCH.sub.3, CH.sub.3 CHO and CF.sub.3 CHO wherein the electron attachment is brought on by indirect excitation of molecules to long-lived states by exposure to laser light.

  13. Reinvestigation of the charge density distribution in arc discharge fusion system

    SciTech Connect (OSTI)

    Sheng, Lin Horng; Yee, Lee Kim; Nan, Phua Yeong; Thung, Yong Yun; Khok, Yong Thian; Rahman, Faidz Abd

    2015-04-24

    A continual arc discharge system has been setup and the light intensity of arc discharge has been profiled. The mathematical model of local energy density distribution in arc discharge fusion has been simulated which is in good qualitative agreement with light intensity profile of arc discharge in the experiments. Eventually, the local energy density distribution of arc discharge system is able to be precisely manipulated to act as heat source in the fabrication of fused fiber devices.

  14. Metal-free g-C{sub 3}N{sub 4} photocatalyst by sulfuric acid activation for selective aerobic oxidation of benzyl alcohol under visible light

    SciTech Connect (OSTI)

    Zhang, Ligang; Liu, Di; Guan, Jing; Chen, Xiufang; Guo, Xingcui; Zhao, Fuhua; Hou, Tonggang; Mu, Xindong

    2014-11-15

    Highlights: A novel visible-light-driven acid-modified g-C{sub 3}N{sub 4} was prepared. The texture, electronic and surface property were tuned by acid modification. Acid-modified g-C{sub 3}N{sub 4} shows much higher activity for photocatalytic activity. Acid sites on the surface of g-C{sub 3}N{sub 4} favor efficient charge separation. - Abstract: In this work, modification of graphitic carbon nitride photocatalyst with acid was accomplished with a facile method through reflux in different acidic substances. The g-C{sub 3}N{sub 4}-based material was found to be a metal-free photocatalyst useful for the selective oxidation of benzyl alcohol with dioxygen as the oxidant under visible light irradiation. Acid modification had a significant influence on the photocatalytic performance of g-C{sub 3}N{sub 4}. Among all acid tested, sulfuric acid-modified g-C{sub 3}N{sub 4} showed the highest catalytic activity and gave benzaldehyde in 23% yield for 4 h under visible light irradiation, which was about 2.5 times higher than that of g-C{sub 3}N{sub 4}. The acid modification effectively improved surface area, reduced structural size, enlarged band gap, enhanced surface chemical state, and facilitated photoinduced charge separation, contributing to the enhanced photocatalytic activity. It is hoped that our work can open promising prospects for the utilization of metal free g-C{sub 3}N{sub 4}-based semiconductor as visible-light photocatalyst for selective organic transformation.

  15. Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors

    SciTech Connect (OSTI)

    Liu, Chao; Cai, Yuefei; Liu, Zhaojun; Ma, Jun; Lau, Kei May

    2015-05-04

    We report a metal-interconnection-free integration scheme for InGaN/GaN light emitting diodes (LEDs) and AlGaN/GaN high electron mobility transistors (HEMTs) by combining selective epi removal (SER) and selective epitaxial growth (SEG) techniques. SER of HEMT epi was carried out first to expose the bottom unintentionally doped GaN buffer and the sidewall GaN channel. A LED structure was regrown in the SER region with the bottom n-type GaN layer (n-electrode of the LED) connected to the HEMTs laterally, enabling monolithic integration of the HEMTs and LEDs (HEMT-LED) without metal-interconnection. In addition to saving substrate real estate, minimal interface resistance between the regrown n-type GaN and the HEMT channel is a significant improvement over metal-interconnection. Furthermore, excellent off-state leakage characteristics of the driving transistor can also be guaranteed in such an integration scheme.

  16. Light-induced hysteresis and recovery behaviors in photochemically activated solution-processed metal-oxide thin-film transistors

    SciTech Connect (OSTI)

    Jo, Jeong-Wan; Park, Sung Kyu E-mail: skpark@cau.ac.kr; Kim, Yong-Hoon E-mail: skpark@cau.ac.kr

    2014-07-28

    In this report, photo-induced hysteresis, threshold voltage (V{sub T}) shift, and recovery behaviors in photochemically activated solution-processed indium-gallium-zinc oxide (IGZO) thin-film transistors (TFTs) are investigated. It was observed that a white light illumination caused negative V{sub T} shift along with creation of clockwise hysteresis in electrical characteristics which can be attributed to photo-generated doubly ionized oxygen vacancies at the semiconductor/gate dielectric interface. More importantly, the photochemically activated IGZO TFTs showed much reduced overall V{sub T} shift compared to thermally annealed TFTs. Reduced number of donor-like interface states creation under light illumination and more facile neutralization of ionized oxygen vacancies by electron capture under positive gate potential are claimed to be the origin of the less V{sub T} shift in photochemically activated TFTs.

  17. THE ORIGINS OF LIGHT AND HEAVY R-PROCESS ELEMENTS IDENTIFIED BY CHEMICAL TAGGING OF METAL-POOR STARS

    SciTech Connect (OSTI)

    Tsujimoto, Takuji; Shigeyama, Toshikazu

    2014-11-01

    Growing interests in neutron star (NS) mergers as the origin of r-process elements have sprouted since the discovery of evidence for the ejection of these elements from a short-duration ?-ray burst. The hypothesis of a NS merger origin is reinforced by a theoretical update of nucleosynthesis in NS mergers successful in yielding r-process nuclides with A >130. On the other hand, whether the origin of light r-process elements are associated with nucleosynthesis in NS merger events remains unclear. We find a signature of nucleosynthesis in NS mergers from peculiar chemical abundances of stars belonging to the Galactic globular cluster M15. This finding combined with the recent nucleosynthesis results implies a potential diversity of nucleosynthesis in NS mergers. Based on these considerations, we are successful in the interpretation of an observed correlation between [light r-process/Eu] and [Eu/Fe] among Galactic halo stars and accordingly narrow down the role of supernova nucleosynthesis in the r-process production site. We conclude that the tight correlation by a large fraction of halo stars is attributable to the fact that core-collapse supernovae produce light r-process elements while heavy r-process elements such as Eu and Ba are produced by NS mergers. On the other hand, stars in the outlier, composed of r-enhanced stars ([Eu/Fe] ?+1) such as CS22892-052, were exclusively enriched by matter ejected by a subclass of NS mergers that is inclined to be massive and consist of both light and heavy r-process nuclides.

  18. Nonsputtering impulse magnetron discharge

    SciTech Connect (OSTI)

    Khodachenko, G. V.; Mozgrin, D. V.; Fetisov, I. K.; Stepanova, T. V.

    2012-01-15

    Experiments with quasi-steady high-current discharges in crossed E Multiplication-Sign B fields in various gases (Ar, N{sub 2}, H{sub 2}, and SF{sub 6}) and gas mixtures (Ar/SF{sub 6} and Ar/O{sub 2}) at pressures from 10{sup -3} to 5 Torr in discharge systems with different configurations of electric and magnetic fields revealed a specific type of stable low-voltage discharge that does not transform into an arc. This type of discharge came to be known as a high-current diffuse discharge and, later, a nonsputtering impulse magnetron discharge. This paper presents results from experimental studies of the plasma parameters (the electron temperature, the plasma density, and the temperature of ions and atoms of the plasma-forming gas) of a high-current low-pressure diffuse discharge in crossed E Multiplication-Sign B fields.

  19. Discharge lamp with reflective jacket

    DOE Patents [OSTI]

    MacLennan, Donald A.; Turner, Brian P.; Kipling, Kent

    2001-01-01

    A discharge lamp includes an envelope, a fill which emits light when excited disposed in the envelope, a source of excitation power coupled to the fill to excite the fill and cause the fill to emit light, and a reflector disposed around the envelope and defining an opening, the reflector being configured to reflect some of the light emitted by the fill back into the fill while allowing some light to exit through the opening. The reflector may be made from a material having a similar thermal index of expansion as compared to the envelope and which is closely spaced to the envelope. The envelope material may be quartz and the reflector material may be either silica or alumina. The reflector may be formed as a jacket having a rigid structure which does not adhere to the envelope. The lamp may further include an optical clement spaced from the envelope and configured to reflect an unwanted component of light which exited the envelope back into the envelope through the opening in the reflector. Light which can be beneficially recaptured includes selected wavelength regions, a selected polarization, and selected angular components.

  20. Electrochemical cell assembled in discharged state

    DOE Patents [OSTI]

    Yao, Neng-Ping; Walsh, William J.

    1976-01-01

    A secondary, electrochemical cell is assembled in a completely discharged state within a sealed containment. As assembled, the cell includes a positive electrode separated from a negative electrode by a molten salt electrolyte. The positive electrode is contained within a porous structure, permitting passage of molten electrolyte, and includes one or more layers of a metallic mesh, e.g. iron, impregnated with an intimate mixture of lithium sulfide and the electrolyte. The negative electrode is a porous plaque of aluminum metal. Prior to using the cell, an electrical charge forms lithium-aluminum alloy within the negative electrode and metal sulfide within the positive electrode.

  1. Longitudinal discharge laser electrodes

    DOE Patents [OSTI]

    Warner, B.E.; Miller, J.L.; Ault, E.R.

    1994-08-23

    The improved longitudinal discharge laser electrode with IR baffle includes an electrode made up of washers spaced along the laser axis in order to form inter-washer spaces for hollow cathode discharge to take place and for IR radiation to be trapped. Additional IR baffles can be placed between the electrode ann the window. 2 figs.

  2. Longitudinal discharge laser electrodes

    DOE Patents [OSTI]

    Warner, Bruce E.; Miller, John L.; Ault, Earl R.

    1994-01-01

    The improved longitudinal discharge laser electrode with IR baffle includes an electrode made up of washers spaced along the laser axis in order to form inter-washer spaces for hollow cathode discharge to take place and for IR radiation to be trapped. Additional IR baffles can be placed between the electrode ann the window.

  3. Co-axial discharges

    DOE Patents [OSTI]

    Luce, J. S.; Smith, L. P.

    1960-11-22

    An apparatus is described for producing coaxial arc discharges in an evacuated enclosure and within a strong, confining magnetic field. The arcs are maintained at a high potential difference. Electrons diffuse to the more positive arc from the negative arc, and positive ions diffuse from the more positive arc to the negative arc. Coaxial arc discharges have the advantuge that ions that return to strike the positive arc discharge will lose no energy since they do not strike a solid wall or electrode. These discharges are useful in confining an ionized plasma between the discharges and have the advantage of preventing impurities from the walls of the enclosure from entering the plasma area because of the arc barrier set up by the cylindrical outer arc. (auth)

  4. HOLLOW CARBON ARC DISCHARGE

    DOE Patents [OSTI]

    Luce, J.S.

    1960-10-11

    A device is described for producing an energetic, direct current, hollow, carbon-arc discharge in an evacuated container and within a strong magnetic field. Such discharges are particularly useful not only in dissociation and ionization of high energy molecular ion beams, but also in acting as a shield or barrier against the instreaming of lowenergy neutral particles into a plasma formed within the hollow discharge when it is used as a dissociating mechanism for forming the plasma. There is maintained a predetermined ratio of gas particles to carbon particles released from the arc electrodes during operation of the discharge. The carbon particles absorb some of the gas particles and are pumped along and by the discharge out of the device, with the result that smaller diffusion pumps are required than would otherwise be necessary to dispose of the excess gas.

  5. CO-AXIAL DISCHARGES

    DOE Patents [OSTI]

    Luce, J.S.; Smith, L.P.

    1960-11-22

    A method and apparatus are given for producing coaxial arc discharges in an evacuated enclosure and within a strong, confining magnetic field. The arcs are maintained at a high potential difference. Electrons will diffuse to the more positive arc from the negative arc, and positive ions will diffuse from the more positive arc to the negative arc. Coaxial arc discharges have the advantage that ions which return to strike the positive arc discharge will lose no energy since they do not strike a solid wall or electrode. Those discharges are useful in confining an ionized plasma between the discharges, and have the advantage of preventing impurities from the walls of the enclosure from entering ihe plasma area because of the arc barrier set up bv the cylindrical outer arc.

  6. Glow discharge detector

    DOE Patents [OSTI]

    Koo, Jackson C.; Yu, Conrad M.

    2002-01-01

    A highly sensitive electronic ion cell for the measurement of trace elements in He carrier gas which involves glow discharge. A constant wave (CW) glow discharge detector which is controlled through a biased resistor, can detect the change of electron density caused by impurities in the He carrier gas by many orders of magnitude larger than that caused by direct ionization or electron capture. The glow discharge detector utilizes a floating pseudo-electrode to form a probe in or near the plasma. By using this probe, the large variation of electron density due to trace amounts of impurities can be directly measured.

  7. Effects of discharge voltage waveform on the discharge characteristics...

    Office of Scientific and Technical Information (OSTI)

    atmospheric plasma jet Citation Details In-Document Search Title: Effects of discharge voltage waveform on the discharge characteristics in a helium atmospheric plasma jet We ...

  8. Lighting In the Library: A Student Energy Audit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Homes & Buildings » Lighting & Daylighting » Lighting Basics Lighting Basics August 15, 2013 - 5:12pm Addthis Text Version There are many different types of artificial lights (formally called "lamps" in the lighting industry,) which have different applications and uses. Types of lighting include: Fluorescent Lighting High-intensity Discharge Lighting Incandescent Lighting LED Lighting. New lamp designs that use energy-efficient technology are now readily available in the

  9. Oxidative processes occurring when pulsed high voltage discharges degrade phenol in aqueous solution

    SciTech Connect (OSTI)

    Sun, B.; Sato, Masayuki; Clements, J.S.

    2000-02-01

    In this investigation, results obtained using a pulsed discharge for organic compound removal are presented. The degradation of phenol by a streamer corona discharge and spark discharge, the effects of hydrogen peroxide additive on removal efficiency, and photochemical oxidation by ultraviolet light from the discharge plasma channel were investigated. The intermediate products and final byproducts formed by the spark discharge were also studied. A preliminary study of the degradation mechanism inside and outside the plasma channel was carried out. It was found that the removal efficiency of organic contaminants in the aqueous solution was higher for the spark discharge than for the streamer corona discharge and was greatly influenced by the discharge type and additive. The energy efficiency was the highest for the case with hydrogen peroxide injection and spark discharge. The main intermediate products produced by the spark discharge during the treatment process were hydroquinone, pyrocatechol, and p-benzoquinone. These intermediate products disappeared when the treatment time was increased.

  10. Light Metals Permanent Mold Casting

    SciTech Connect (OSTI)

    None

    2004-11-01

    The research will develop the gravity and/or low-pressure permanent-mold casting processes with sand or permanent-mold cores for aluminum and magnesium based alloys.

  11. Stable glow discharge detector

    DOE Patents [OSTI]

    Koo, Jackson C.; Yu, Conrad M.

    2004-05-18

    A highly sensitive electronic ion cell for the measurement of trace elements in He carrier gas which involves glow discharge. A constant wave (CW) stable glow discharge detector which is controlled through a biased resistor, can detect the change of electron density caused by impurities in the He carrier gas by many orders of magnitude larger than that caused by direct ionization or electron capture. The stable glow discharge detector utilizes a floating pseudo-electrode to form a probe in or near the plasma and a solid rod electrode. By using this probe, the large variation of electron density due to trace amounts of impurities can be directly measured. The solid rod electrode provides greater stability and thus easier alignment.

  12. Understanding the Electrical Interplay Between a Firing Set and Exploding Metal.

    SciTech Connect (OSTI)

    O'Malley, Patrick D.; Garasi, Christopher J.

    2015-02-01

    There is a significant body of work going back centuries that describes in detail the workings of metals that are rapidly transitioned from a solid to a vapor and beyond. These are known as exploding metals and have a variety of applications. A common way to cause metals to explode is through the use of a capacitive discharge circuit (CDC). In the past, methods have been used to simplify the complex, non-linear interaction between the CDC and the metal but in the process some important physics has been lost. This report provides insight into the complex interplay of the metal and the various elements of the CDC. In explaining the basic phenomena in greater detail than has been done before, other interesting cases such as "dwell" are understood in a new light. The net result is a detailed look at the mechanisms which shape the current pulses that scientists and engineers have observed for many decades.

  13. Method for forming metal contacts

    DOE Patents [OSTI]

    Reddington, Erik; Sutter, Thomas C; Bu, Lujia; Cannon, Alexandra; Habas, Susan E; Curtis, Calvin J; Miedaner, Alexander; Ginley, David S; Van Hest, Marinus Franciscus Antonius Maria

    2013-09-17

    Methods of forming metal contacts with metal inks in the manufacture of photovoltaic devices are disclosed. The metal inks are selectively deposited on semiconductor coatings by inkjet and aerosol apparatus. The composite is heated to selective temperatures where the metal inks burn through the coating to form an electrical contact with the semiconductor. Metal layers are then deposited on the electrical contacts by light induced or light assisted plating.

  14. Metal Hydride Hydrogen Storage Research and Development

    Broader source: Energy.gov [DOE]

    DOE's research on complex metal hydrides targets the development of advanced metal hydride materials including light-weight complex hydrides, destabilized binary hydrides, intermetallic hydrides,...

  15. Longitudinal discharge laser baffles

    DOE Patents [OSTI]

    Warner, B.E.; Ault, E.R.

    1994-06-07

    The IR baffles placed between the window and the electrode of a longitudinal discharge laser improve laser performance by intercepting off-axis IR radiation from the laser and in doing so reduce window heating and subsequent optical distortion of the laser beam. 1 fig.

  16. Longitudinal discharge laser baffles

    DOE Patents [OSTI]

    Warner, Bruce E.; Ault, Earl R.

    1994-01-01

    The IR baffles placed between the window and the electrode of a longitudinal discharge laser improve laser performance by intercepting off-axis IR radiation from the laser and in doing so reduce window heating and subsequent optical distortion of the laser beam.

  17. Pulsed chemical HF laser with a large discharge gap

    SciTech Connect (OSTI)

    Azarov, M A; Klimuk, Evgenii A; Kutumov, Konstantin A; Troshchinenko, G A; Lacour, Bernard M

    2004-11-30

    The characteristics of the radiation emitted by an electric-discharge pulsed chemical HF laser with a discharge gap of 10 cm are studied. The discharge was stabilised by a semiconducting ferroelectric ceramic layer deposited on plane metal electrodes. The specific energy and technical efficiency were 3 J L{sup -1} and 3.4%, respectively, for a laser operating on a nonchain reaction in SF{sub 6}-H{sub 2} mixture and 25 J L{sup -1} and 26%, respectively, for a laser operating on a chain reaction in F{sub 2}-O{sub 2}-SF{sub 6}-H{sub 2} mixture. (lasers)

  18. Capacitor discharge process for welding braided cable

    DOE Patents [OSTI]

    Wilson, Rick D.

    1995-01-01

    A capacitor discharge process for welding a braided cable formed from a plurality of individual cable strands to a solid metallic electrically conductive member comprises the steps of: (a) preparing the electrically conductive member for welding by bevelling one of its end portions while leaving an ignition projection extending outwardly from the apex of the bevel; (b) clamping the electrically conductive member in a cathode fixture; (c) connecting the electrically conductive member clamped in the cathode fixture to a capacitor bank capable of being charged to a preselected voltage value; (d) preparing the braided cable for welding by wrapping one of its end portions with a metallic sheet to form a retaining ring operable to maintain the individual strands of the braided cable in fixed position within the retaining ring; (e) clamping the braided cable and the retaining ring as a unit in an anode fixture so that the wrapped end portion of the braided cable faces the ignition projection of the electrically conductive member; and (f) moving the cathode fixture towards the anode fixture until the ignition projection of the electrically conductive member contacts the end portion of the braided cable thereby allowing the capacitor bank to discharge through the electrically conductive member and through the braided cable and causing the electrically conductive member to be welded to the braided cable via capacitor discharge action.

  19. Plasma mixing glow discharge device for analytical applications

    DOE Patents [OSTI]

    Pinnaduwage, Lal A.

    1999-01-01

    An instrument for analyzing a sample has an enclosure that forms a chamber containing an anode which divides the chamber into a discharge region and an analysis region. A gas inlet and outlet are provided to introduce and exhaust a rare gas into the discharge region. A cathode within the discharge region has a plurality of pins projecting in a geometric pattern toward the anode for exciting the gas and producing a plasma discharge between the cathode and the anode. Low energy electrons (e.g. <0.5 eV) pass into the analysis region through an aperture. The sample to be analyzed is placed into the analysis region and bombarded by the metastable rare gas atoms and the low energy electrons extracted into from the discharge region. A mass or optical spectrometer can be coupled to a port of the analysis region to analyze the resulting ions and light emission.

  20. Plasma mixing glow discharge device for analytical applications

    DOE Patents [OSTI]

    Pinnaduwage, L.A.

    1999-04-20

    An instrument for analyzing a sample has an enclosure that forms a chamber containing an anode which divides the chamber into a discharge region and an analysis region. A gas inlet and outlet are provided to introduce and exhaust a rare gas into the discharge region. A cathode within the discharge region has a plurality of pins projecting in a geometric pattern toward the anode for exciting the gas and producing a plasma discharge between the cathode and the anode. Low energy electrons (e.g. <0.5 eV) pass into the analysis region through an aperture. The sample to be analyzed is placed into the analysis region and bombarded by the metastable rare gas atoms and the low energy electrons extracted into from the discharge region. A mass or optical spectrometer can be coupled to a port of the analysis region to analyze the resulting ions and light emission. 3 figs.

  1. Microsoft Word - Groundwater Discharge Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    State Renews Groundwater Discharge Permit for WIPP CARLSBAD, N.M., September 11, 2008 - The New Mexico Environment Department (NMED) has renewed the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) groundwater discharge permit until 2013. The permit regulates the discharge of water from WIPP facilities and operations to lined ponds, which protect groundwater resources. The permit allows WIPP to discharge domestic wastewater, non-hazardous wastewater and storm water into 13

  2. High intensity discharge device containing oxytrihalides

    DOE Patents [OSTI]

    Lapatovich, Walter P.; Keeffe, William M.; Liebermann, Richard W.; Maya, Jakob

    1987-01-01

    A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO.sub.2, with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube.

  3. High intensity discharge device containing oxytrihalides

    DOE Patents [OSTI]

    Lapatovich, W.P.; Keeffe, W.M.; Liebermann, R.W.; Maya, J.

    1987-06-09

    A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO[sub 2], with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube. 7 figs.

  4. Laser activated diffuse discharge switch (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Laser activated diffuse discharge switch Title: Laser activated diffuse discharge switch The invention is a gas mixture for a diffuse discharge switch which is capable of changing ...

  5. Particle growth in silane-hydrogen discharges

    SciTech Connect (OSTI)

    Kujundzic, Damir; Gallagher, Alan

    2006-02-01

    The growth of silicon particles has been measured in silane-hydrogen radio-frequency (rf) discharges using a typical hydrogen/silane dilution ratio (20) and the pressure range (1.2-2.2 Torr) used for the production of amorphous and microcrystalline silicon films and devices. By operating brief discharges without gas flow, the particle size is obtained from the afterglow diffusion and the particle density from the scattered-light intensity. These small-reactor data thus provide the expected particle size and density versus location-in a commercial large-area-isothermal-flowing-gas reactor. Particle growth rate is a strong function of pressure, whereas film growth rate is almost independent of pressure. Both growth rates are sensitive to rf voltage, although particle growth is more sensitive.

  6. Photonic crystal light source

    DOE Patents [OSTI]

    Fleming, James G.; Lin, Shawn-Yu; Bur, James A.

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  7. Continuous pile discharging machine

    DOE Patents [OSTI]

    Smith, Phillips P.

    1976-05-11

    A device for discharging cartridges from tubes under fluid pressure includes a cylindrical housing adapted to be seated in a leak-tight manner on the end of one of the tubes, a chute depending from the cylindrical housing near the end seated on the end of the tube, a rotatable piston having a wrench on the forward end thereof disposed in the cylindrical housing and adapted to manipulate a plug in the end of the tube, and a telescopic hydraulic ram adapted to move the piston toward the plug. In addition the wrench contains a magnet which prevents inadvertent uncoupling of the wrench and the plug.

  8. Oregon Industrial Stormwater Discharge Monitoring Report (DEQ...

    Open Energy Info (EERE)

    discharge. Form Type ApplicationNotice Form Topic Industrial Stormwater Discharge Monitoring Report Organization Oregon Department of Environmental Quality Published...

  9. Condenser for extreme-UV lithography with discharge source

    DOE Patents [OSTI]

    Sweatt, William C.; Kubiak, Glenn D.

    2001-01-01

    Condenser system, for use with a ringfield camera in projection lithography, employs quasi grazing-incidence collector mirrors that are coated with a suitable reflective metal such as ruthenium to collect radiation from a discharge source to minimize the effect of contaminant accumulation on the collecting mirrors.

  10. Technical Feasibility Assessment of LED Roadway Lighting on the...

    Office of Scientific and Technical Information (OSTI)

    Technical Feasibility Assessment of LED Roadway Lighting on the Golden Gate Bridge Tuenge, Jason R. LED; induction; ceramic metal halide; plasma; roadway lighting; Golden Gate...

  11. Degenerate doping of metallic anodes

    SciTech Connect (OSTI)

    Friesen, Cody A; Zeller, Robert A; Johnson, Paul B; Switzer, Elise E

    2015-05-12

    Embodiments of the invention relate to an electrochemical cell comprising: (i) a fuel electrode comprising a metal fuel, (ii) a positive electrode, (iii) an ionically conductive medium, and (iv) a dopant; the electrodes being operable in a discharge mode wherein the metal fuel is oxidized at the fuel electrode and the dopant increases the conductivity of the metal fuel oxidation product. In an embodiment, the oxidation product comprises an oxide of the metal fuel which is doped degenerately. In an embodiment, the positive electrode is an air electrode that absorbs gaseous oxygen, wherein during discharge mode, oxygen is reduced at the air electrode. Embodiments of the invention also relate to methods of producing an electrode comprising a metal and a doped metal oxidation product.

  12. Historical Liquid Discharges and Outfalls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    liquids were discharged to Pueblo and Los Alamos Canyons. August 1, 2013 Contamination from the Acid Canyon outfall has been clean up to below residential levels...

  13. Max Tech and Beyond: High-Intensity Discharge Lamps

    SciTech Connect (OSTI)

    Scholand, Michael

    2012-04-01

    High-intensity discharge (HID) lamps are most often found in industrial and commercial applications, and are the light source of choice in street and area lighting, and sports stadium illumination. HID lamps are produced in three types - mercury vapor (MV), high pressure sodium (HPS) and metal halide (MH). Of these, MV and MH are considered white-light sources (although the MV exhibits poor color rendering) and HPS produces a yellow-orange color light. A fourth lamp, low-pressure sodium (LPS), is not a HID lamp by definition, but it is used in similar applications and thus is often grouped with HID lamps. With the notable exception of MV which is comparatively inefficient and in decline in the US from both a sales and installed stock point of view; HPS, LPS and MH all have efficacies over 100 lumens per watt. The figure below presents the efficacy trends over time for commercially available HID lamps and LPS, starting with MV and LPS in 1930's followed by the development of HPS and MH in the 1960's. In HID lamps, light is generated by creating an electric arc between two electrodes in an arc tube. The particles in the arc are partially ionized, making them electrically conductive, and a light-emitting 'plasma' is created. This arc occurs within the arc tube, which for most HID lamps is enclosed within an evacuated outer bulb that thermally isolates and protects the hot arc tube from the surroundings. Unlike a fluorescent lamp that produces visible light through down-converting UV light with phosphors, the arc itself is the light source in an HID lamp, emitting visible radiation that is characteristic of the elements present in the plasma. Thus, the mixture of elements included in the arc tube is one critical factor determining the quality of the light emitted from the lamp, including its correlated color temperature (CCT) and color rendering index (CRI). Similar to fluorescent lamps, HID lamps require a ballast to start and maintain stable operating conditions, and

  14. Non-linear macro evolution of a dc driven micro atmospheric glow discharge

    SciTech Connect (OSTI)

    Xu, S. F.; Zhong, X. X.

    2015-10-15

    We studied the macro evolution of the micro atmospheric glow discharge generated between a micro argon jet into ambient air and static water. The micro discharge behaves similarly to a complex ecosystem. Non-linear behaviors are found for the micro discharge when the water acts as a cathode, different from the discharge when water behaves as an anode. Groups of snapshots of the micro discharge formed at different discharge currents are captured by an intensified charge-coupled device with controlled exposure time, and each group consisted of 256 images taken in succession. Edge detection methods are used to identify the water surface and then the total brightness is defined by adding up the signal counts over the area of the micro discharge. Motions of the water surface at different discharge currents show that the water surface lowers increasingly rapidly when the water acts as a cathode. In contrast, the water surface lowers at a constant speed when the water behaves as an anode. The light curves are similar to logistic growth curves, suggesting that a self-inhibition process occurs in the micro discharge. Meanwhile, the total brightness increases linearly during the same time when the water acts as an anode. Discharge-water interactions cause the micro discharge to evolve. The charged particle bomb process is probably responsible for the different behaviors of the micro discharges when the water acts as cathode and anode.

  15. Differential pressure pin discharge apparatus

    DOE Patents [OSTI]

    Oakley, D.J.

    1984-05-30

    Disclosed is a discharge assembly for allowing elongate pins to be discharged from an area of relatively low pressure to an area of relatively greater pressure. The discharge assembly includes a duck valve having a lip piece made of flexible material. The flexible lip piece responds to a fluctuating pressure created downstream by an aspirator. The aspirator reduces the downstream pressure sensed by the duck valve when the discharge assembly is in the open position. This allows elongate pins to be moved through the duck valve with no backflow because the aspirator pressure is less than the pressure in the low pressure area from which the pins originate. Closure of the assembly causes the aspirator static pressure to force the flexible duck valve lip piece into a tightly sealed position also preventing backflow. The discharge assembly can be easily controlled using a single control valve which blocks the flow of aspirator gas and closes the pins passageway extending through the assembly.

  16. Capillary discharge source

    DOE Patents [OSTI]

    Bender, III, Howard Albert

    2003-11-25

    Debris generation from an EUV electric discharge plasma source device can be significantly reduced or essentially eliminated by encasing the electrodes with dielectric or electrically insulating material so that the electrodes are shielded from the plasma, and additionally by providing a path for the radiation to exit wherein the electrodes are not exposed to the area where the radiation is collected. The device includes: (a) a body, which is made of an electrically insulating material, that defines a capillary bore that has a proximal end and a distal end and that defines at least one radiation exit; (b) a first electrode that defines a first channel that has a first inlet end that is connected to a source of gas and a first outlet end that is in communication with the capillary bore, wherein the first electrode is positioned at the distal end of the capillary bore; (c) a second electrode that defines a second channel that has a second inlet end that is in communication with the capillary bore and an outlet end, wherein the second electrode is positioned at the proximal end of the capillary bore; and (d) a source of electric potential that is connected across the first and second electrodes, wherein radiation generated within the capillary bore is emitted through the at least one radiation exit and wherein the first electrode and second electrode are shielded from the emitted radiation.

  17. Multifunctional bulk plasma source based on discharge with electron injection

    SciTech Connect (OSTI)

    Klimov, A. S.; Medovnik, A. V.; Tyunkov, A. V.; Savkin, K. P.; Shandrikov, M. V.; Vizir, A. V.

    2013-01-15

    A bulk plasma source, based on a high-current dc glow discharge with electron injection, is described. Electron injection and some special design features of the plasma arc emitter provide a plasma source with very long periods between maintenance down-times and a long overall lifetime. The source uses a sectioned sputter-electrode array with six individual sputter targets, each of which can be independently biased. This discharge assembly configuration provides multifunctional operation, including plasma generation from different gases (argon, nitrogen, oxygen, acetylene) and deposition of composite metal nitride and oxide coatings.

  18. Historical Liquid Discharges and Outfalls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This drop-down provides the most current six months and six years of data for the table below. For complete history do one of the following: Click on a cell value in the table for the history of an individual data series. Click on the "Download All History" link for all data series shown in the table. Close Window

    Historical Liquid Discharges and Outfalls Historical Liquid Discharges and Outfalls During the 1940s and 1950s, untreated radioactive liquids were discharged to Pueblo and

  19. DISCHARGE DEVICE FOR RADIOACTIVE MATERIAL

    DOE Patents [OSTI]

    Ohlinger, L.A.

    1958-09-23

    A device is described fur unloading bodies of fissionable material from a neutronic reactor. It is comprised essentially of a wheeled flat car having a receptacle therein containing a liquid coolant fur receiving and cooling the fuel elements as they are discharged from the reactor, and a reciprocating plunger fur supporting the fuel element during discharge thereof prior to its being dropped into the coolant. The flat car is adapted to travel along the face of the reactor adjacent the discharge ends of the coolant tubes.

  20. Commercial Lighting

    Broader source: Energy.gov [DOE]

    Commercial lighting accounts for more than 20 percent of total commercial building energy use. The Energy Department works to reduce lighting energy use through research and deployment.

  1. Microwave-driven ultraviolet light sources

    DOE Patents [OSTI]

    Manos, Dennis M.; Diggs, Jessie; Ametepe, Joseph D.

    2002-01-29

    A microwave-driven ultraviolet (UV) light source is provided. The light source comprises an over-moded microwave cavity having at least one discharge bulb disposed within the microwave cavity. At least one magnetron probe is coupled directly to the microwave cavity.

  2. Further reduction of efficiency droop effect by adding a lower-index dielectric interlayer in a surface plasmon coupled blue light-emitting diode with surface metal nanoparticles

    SciTech Connect (OSTI)

    Lin, Chun-Han; Su, Chia-Ying; Chen, Chung-Hui; Yao, Yu-Feng; Shih, Pei-Ying; Chen, Horng-Shyang; Hsieh, Chieh; Kiang, Yean-Woei Yang, C. C.; Kuo, Yang

    2014-09-08

    Further reduction of the efficiency droop effect and further enhancements of internal quantum efficiency (IQE) and output intensity of a surface plasmon coupled, blue-emitting light-emitting diode (LED) by inserting a dielectric interlayer (DI) of a lower refractive index between p-GaN and surface Ag nanoparticles are demonstrated. The insertion of a DI leads to a blue shift of the localized surface plasmon (LSP) resonance spectrum and increases the LSP coupling strength at the quantum well emitting wavelength in the blue range. With SiO{sub 2} as the DI, a thinner DI leads to a stronger LSP coupling effect, when compared with the case of a thicker DI. By using GaZnO, which is a dielectric in the optical range and a good conductor under direct-current operation, as the DI, the LSP coupling results in the highest IQE, highest LED output intensity, and weakest droop effect.

  3. Directed light fabrication

    SciTech Connect (OSTI)

    Lewis, G.K.; Nemec, R.; Milewski, J.; Thoma, D.J.; Cremers, D.; Barbe, M.

    1994-09-01

    Directed Light Fabrication (DLF) is a rapid prototyping process being developed at Los Alamos National Laboratory to fabricate metal components. This is done by fusing gas delivered metal powder particles in the focal zone of a laser beam that is, programmed to move along or across the part cross section. Fully dense metal is built up a layer at a time to form the desired part represented by a 3 dimensional solid model from CAD software. Machine ``tool paths`` are created from the solid model that command the movement and processing parameters specific to the DLF process so that the part can be built one layer at a time. The result is a fully dense, near net shape metal part that solidifies under rapid solidification conditions.

  4. Adsorption and Separation of Light Gases on an Amino-Functionalized MetalOrganic Framework: An Adsorption and In Situ XRD Study

    SciTech Connect (OSTI)

    Couck S.; Stavitski E.; Gobehiya, E.; Kirschhock, C.E.A.; Serra-Crespo, P.; Juan-Alcaniz, J.; Martinez Joaristi, A.; Gascon, J.; Kapteijn, F.; Baron, G. V.; Denayer J.F.M.

    2012-02-29

    The NH{sub 2}-MIL-53(Al) metal-organic framework was studied for its use in the separation of CO{sub 2} from CH{sub 4}, H{sub 2}, N{sub 2} C{sub 2}H{sub 6} and C{sub 3}H{sub 8} mixtures. Isotherms of methane, ethane, propane, hydrogen, nitrogen, and CO{sub 2} were measured. The atypical shape of these isotherms is attributed to the breathing properties of the material, in which a transition from a very narrow pore form to a narrow pore form and from a narrow pore form to a large pore form occurs, depending on the total pressure and the nature of the adsorbate, as demonstrated by in-situ XRD patterns measured during adsorption. Apart from CO{sub 2}, all tested gases interacted weakly with the adsorbent. As a result, they are excluded from adsorption in the narrow pore form of the material at low pressure. CO{sub 2} interacted much more strongly and was adsorbed in significant amounts at low pressure. This gives the material excellent properties to separate CO{sub 2} from other gases. The separation of CO{sub 2} from methane, nitrogen, hydrogen, or a combination of these gases has been demonstrated by breakthrough experiments using pellets of NH{sub 2}-MIL-53(Al). The effect of total pressure (1-30 bar), gas composition, temperature (303-403 K) and contact time has been examined. In all cases, CO{sub 2} was selectively adsorbed, whereas methane, nitrogen, and hydrogen nearly did not adsorb at all. Regeneration of the adsorbent by thermal treatment, inert purge gas stripping, and pressure swing has been demonstrated. The NH{sub 2}-MIL-53(Al) pellets retained their selectivity and capacity for more than two years.

  5. Flexible, liquid core light guide with focusing and light shaping attachments

    DOE Patents [OSTI]

    Wojcik, R.F.; Majewski, S.; Zorn, C.J.; Kross, B.

    1999-04-20

    A liquid light guide system for ultraviolet light is disclosed that has a light shaping arrangement for the emitted light, a stable liquid core and sheath and reliable and effective end closures. The end closures include a metal crimping arrangement that utilizes two layers of deformable materials to prevent cracking of endplugs. 19 figs.

  6. Flexible, liquid core light guide with focusing and light shaping attachments

    DOE Patents [OSTI]

    Wojcik, Randolph Frank; Majewski, Stanislaw; Zorn, Carl John; Kross, Brian

    1999-01-01

    A liquid light guide system for ultraviolet light is disclosed that has a light shaping arrangement for the emitted light, a stable liquid core and sheath and reliable and effective end closures. The end closures include a metal crimping arrangement that utilizes two layers of deformable materials to prevent cracking of endplugs.

  7. Tritium on Metal Surfaces | Department of Energy

    Office of Environmental Management (EM)

    on Metal Surfaces Tritium on Metal Surfaces Presentation from the 34th Tritium Focus Group Meeting held in Idaho Falls, Idaho on September 23-25, 2014. Tritium on Metal Surfaces (1.03 MB) More Documents & Publications Modeling Tritium on Metal Surfaces Tritium Plasma Experiment and Its Role in PHENIX Program Light Water Detritiation using the CECE Process

  8. Examination of interior surfaces using glow-discharge illumination

    DOE Patents [OSTI]

    Lord, David E.; Petrini, Richard R.; Carter, Gary W.

    1978-01-01

    Endoscopic examination of the interior of a hollow structure through a light pipe that is inserted into the structure, the interior being illuminated by means of a glow discharge that is established with a high voltage applied between the structure wall as one electrode and a second electrode that is inserted into the structure, or establishing the glow with two electrodes inserted into the structure.

  9. Nanocomposite of graphene and metal oxide materials

    DOE Patents [OSTI]

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2012-09-04

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10C.

  10. Nanocomposite of graphene and metal oxide materials

    DOE Patents [OSTI]

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2015-06-30

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  11. Nanocomposite of graphene and metal oxide materials

    DOE Patents [OSTI]

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2013-10-15

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  12. Compact monolithic capacitive discharge unit

    DOE Patents [OSTI]

    Roesler, Alexander W.; Vernon, George E.; Hoke, Darren A.; De Marquis, Virginia K.; Harris, Steven M.

    2007-06-26

    A compact monolithic capacitive discharge unit (CDU) is disclosed in which a thyristor switch and a flyback charging circuit are both sandwiched about a ceramic energy storage capacitor. The result is a compact rugged assembly which provides a low-inductance current discharge path. The flyback charging circuit preferably includes a low-temperature co-fired ceramic transformer. The CDU can further include one or more ceramic substrates for enclosing the thyristor switch and for holding various passive components used in the flyback charging circuit. A load such as a detonator can also be attached directly to the CDU.

  13. Environmental and Economic Assessment of Discharges from Gulf of Mexico Region Oil and Gas Operations

    SciTech Connect (OSTI)

    Gettleson, David A

    1999-10-28

    The primary objectives of the project are to increase the base of scientific knowledge concerning (1) the fate and environmental effects of organics, trace metals, and NORM in water, sediment, and biota near several offshore oil and gas facilities; (2) the characteristics of produced water and produced sand discharges as they pertain to organics, trace metals, and NORM variably found in association with the discharges; (3) the recovery of three terminated produced water discharge sites located in wetland and high-energy open bay sites of coastal Louisiana; (4) the economic and energy supply impacts of existing and anticipated federal and state offshore and coastal discharge regulations; and (5) the catch, consumption and human use patterns of seafood species collected from coastal and offshore waters. The products of the effort will be a series of technical reports detailing the study procedures, results, and conclusions which contribute to the transfer of technology to the scientific community, petroleum industry, and state and federal agencies.

  14. High-bay Lighting Energy Conservation Measures

    Energy Science and Technology Software Center (OSTI)

    2010-12-31

    This software requires inputs of simple high-bay lighting system inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: 1000 Watt to 750 Watt High-pressure Sodium lighting retrofit, 400 Watt to 360 Watt High Pressure Sodium lighting retrofit, High Intensity Discharge to T5 lighting retrofit, High Intensity Discharge to T8 lighting retrofit, and Daylighting. This tool calculates energy savings, demand reduction, cost savings, building lifemore » cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.« less

  15. Nuclear heated and powered metal excimer laser

    SciTech Connect (OSTI)

    Womack, D. R.

    1985-03-19

    A laser using heat and thermionic electrical output from a nuclear reactor in which heat generated by the reactor is utilized to vaporize metal lasants. Voltage output from a thermionic converter is used to create an electric discharge in the metal vapors. In one embodiment the laser vapors are excited by a discharge only. The second embodiment utilizes fission coatings on the inside of heat pipes, in which fission fragment excitation and ionization is employed in addition to a discharge. Both embodiments provide efficient laser systems that are capable of many years of operation without servicing. Metal excimers are the most efficient electronic transition lasers known with output in the visible wavelengths. Use of metal excimers, in addition to their efficiency and wavelengths, allows utilization of reactor waste heat which plagues many nuclear pumped laser concepts.

  16. Nuclear heated and powered metal excimer laser

    SciTech Connect (OSTI)

    Womack, D.R.

    1982-02-11

    A laser uses heat and thermionic electrical output from a nuclear reactor in which heat generated by the reactor is utilized to vaporize metal lasants. Voltage output from a thermionic converter is used to create an electric discharge in the metal vapors. In one embodiment the laser vapors are excited by a discharge only. The second embodiment utilizes fission coatings on the inside of heat pipes, in which fission fragment excitation and ionization is employed in addition to a discharge. Both embodiments provide efficient laser systems that are capable of many years of operation without servicing. Metal excimers are the most efficient electronic transition lasers known with output in the visible wavelengths. Use of metal excimers, in addition to their efficiency and wavelengths, allows utilization of reactor waste heat which plagues many nuclear pumped laser concepts.

  17. Energy Savings Forecast of Solid-State Lighting in General Illumination Applications

    Broader source: Energy.gov [DOE]

    Report forecasting the U.S. energy savings of LED white-light sources compared to conventional white-light sources (i.e., incandescent, halogen, fluorescent, and high-intensity discharge) over the...

  18. Transition Metal Switchable Mirror

    ScienceCinema (OSTI)

    None

    2013-05-29

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  19. Transition Metal Switchable Mirror

    ScienceCinema (OSTI)

    None

    2010-01-08

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  20. Process for treating waste water having low concentrations of metallic contaminants

    DOE Patents [OSTI]

    Looney, Brian B; Millings, Margaret R; Nichols, Ralph L; Payne, William L

    2014-12-16

    A process for treating waste water having a low level of metallic contaminants by reducing the toxicity level of metallic contaminants to an acceptable level and subsequently discharging the treated waste water into the environment without removing the treated contaminants.

  1. Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Light Source Data and Analysis Framework at NERSC Jack Deslippe, Shane Canon, Eli Dart, Abdelilah Essiari, Alexander Hexemer, Dula Parkinson, Simon Patton, Craig Tull + Many More The ALS Data Needs September 21, 2010 - NIST (MD) Light source data volumes are growing many times faster than Moore's law. ● Light source luminosity ● Detector resolution & rep-rates ● Sample automation BES user facilities serve 10,000 scientists and engineers every year. Mostly composed of many small

  2. Cerenkov Light

    ScienceCinema (OSTI)

    Slifer, Karl

    2014-05-22

    The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

  3. Lighting Renovations

    Broader source: Energy.gov [DOE]

    When undertaking a lighting renovation in a Federal building, daylighting is the primary renewable energy opportunity. Photovoltaics (PV) also present an excellent opportunity. While this guide...

  4. Cerenkov Light

    SciTech Connect (OSTI)

    Slifer, Karl

    2013-06-13

    The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

  5. Residential Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  6. Monitoring Environmental Recovery at Terminated Produced Water Discharge Sites in Coastal Louisiana Waters

    SciTech Connect (OSTI)

    Continental Shelf Associates, Inc.

    1999-08-16

    This report presents the results of a study of terminated produced water discharge sites in the coastal waters of Louisiana. Environmental recovery at the sites is documented by comparing pre-termination and post-termination (six months and one year) data. Produced water, sediments, and sediment interstitial water samples were analyzed for radionuclides, metals, and hydrocarbons. Benthic infauna were identified from samples collected in the vicinity of the discharge and reference sites. Radium isotope activities were determined in fish and crustacean samples. In addition, an environmental risk assessment is made on the basis of the concentrations of metals and hydrocarbons determined in the samples.

  7. Porous light-emitting compositions

    DOE Patents [OSTI]

    Burrell, Anthony K.; McCleskey, Thomas Mark; Jia, Quanxi; Bauer, Eve; Mueller, Alexander H.

    2012-04-17

    Light-emitting devices are prepared by coating a porous substrate using a polymer-assisted deposition process. Solutions of metal precursor and soluble polymers having binding properties for metal precursor were coated onto porous substrates. The coated substrates were heated at high temperatures under a suitable atmosphere. The result was a substrate with a conformal coating that did not substantially block the pores of the substrate.

  8. Interaction between pulsed discharge and radio frequency discharge burst at atmospheric pressure

    SciTech Connect (OSTI)

    Zhang, Jie; Guo, Ying; Shi, Yuncheng; Zhang, Jing; Shi, J. J.

    2015-08-15

    The atmospheric pressure glow discharges (APGD) with dual excitations in terms of pulsed voltage and pulse-modulation radio frequency (rf) power are studied experimentally between two parallel plates electrodes. Pulse-modulation applied in rf APGD temporally separates the discharge into repetitive discharge bursts, between which the high voltage pulses are introduced to ignite sub-microsecond pulsed discharge. The discharge characteristics and spatio-temporal evolution are investigated by means of current voltage characteristics and time resolved imaging, which suggests that the introduced pulsed discharge assists the ignition of rf discharge burst and reduces the maintain voltage of rf discharge burst. Furtherly, the time instant of pulsed discharge between rf discharge bursts is manipulated to study the ignition dynamics of rf discharge burst.

  9. Detrapping of tungsten nanoparticles in a direct-current argon glow discharge

    SciTech Connect (OSTI)

    Coudel, L. Kumar, K. Kishor; Arnas, C.

    2014-12-15

    Nanoparticles are grown from the sputtering of a tungsten cathode in a direct current argon glow discharge. Laser light scattering of a vertical laser sheet going through the plasma reveals that the dust particle cloud is compressed and pushed towards the anode during the discharge. Scanning electron microscopy images of substrates exposed to the plasma for given durations show that dust particles are continuously falling down on the anode during the discharge. These observations are explained by the fact that the electrostatic force at the negative glow-anode sheath boundary cannot balance the ion drag, gravity, and thermophoresis forces for particles of more than a few tens of nanometres in diameter.

  10. BERNAS ION SOURCE DISCHARGE SIMULATION

    SciTech Connect (OSTI)

    RUDSKOY,I.; KULEVOY, T.V.; PETRENKO, S.V.; KUIBEDA, R.P.; SELEZNEV, D.N.; PERSHIN, V.I.; HERSHCOVITCH, A.; JOHNSON, B.M.; GUSHENETS, V.I.; OKS, E.M.; POOLE, H.J.

    2007-08-26

    The joint research and development program is continued to develop steady-state ion source of decaborane beam for ion implantation industry. Bemas ion source is the wide used ion source for ion implantation industry. The new simulation code was developed for the Bemas ion source discharge simulation. We present first results of the simulation for several materials interested in semiconductors. As well the comparison of results obtained with experimental data obtained at the ITEP ion source test-bench is presented.

  11. Cold cathode vacuum discharge tube

    DOE Patents [OSTI]

    Boettcher, Gordon E.

    1998-01-01

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging.

  12. Enhanced Resonance Inspection for Light Metal Castings

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  13. Metal aminoboranes

    DOE Patents [OSTI]

    Burrell, Anthony K.; Davis, Benjamin J.; Thorn, David L.; Gordon, John C.; Baker, R. Thomas; Semelsberger, Troy Allen; Tumas, William; Diyabalanage, Himashinie Vichalya Kaviraj; Shrestha, Roshan P.

    2010-05-11

    Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be dehydrogenated to form hydrogen and a reaction product. The reaction product can react with hydrogen to form a hydrogen storage material. Metal aminoboranes can be included in a kit.

  14. Plasma torch with liquid metal electrodes

    SciTech Connect (OSTI)

    Predtechenskii, M.R.; Tukhto, O.M.

    2006-03-15

    In order to eliminate the negative effect of erosion processes on electrodes in arc plasma generators, a new scheme of arc discharge was proposed in which the surface of a molten metal acts as electrodes. A plasma reactor was designed on the basis of this concept. The electrophysical characteristics of such a discharge in steam and air as plasma gases were studied. Experiments on destruction of toxic polychlorinated biphenyls and steam coal gasification were performed.

  15. State waste discharge permit application for cooling water and condensate discharges

    SciTech Connect (OSTI)

    Haggard, R.D.

    1996-08-12

    The following presents the Categorical State Waste Discharge Permit (SWDP) Application for the Cooling Water and Condensate Discharges on the Hanford Site. This application is intended to cover existing cooling water and condensate discharges as well as similar future discharges meeting the criteria set forth in this document.

  16. Controlling the Polarization of Light with Bilayer Subwavelength...

    Office of Scientific and Technical Information (OSTI)

    Title: Controlling the Polarization of Light with Bilayer Subwavelength Metallic Apertures Authors: Chan, Ho Bun 1 ; Marset, zsolt 2 ; Carr, D. W. 3 ; Bower, J. E. 4 ; ...

  17. Spent nuclear fuel discharges from US reactors 1993

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    The Energy Information Administration (EIA) of the U.S. Department of Energy (DOE) administers the Nuclear Fuel Data Survey, Form RW-859. This form is used to collect data on fuel assemblies irradiated at commercial nuclear reactors operating in the United States, and the current inventories and storage capacities of those reactors. These data are important to the design and operation of the equipment and facilities that DOE will use for the future acceptance, transportation, and disposal of spent fuels. The data collected and presented identifies trends in burnup, enrichment, and spent nuclear fuel discharged form commercial light-water reactor as of December 31, 1993. The document covers not only spent nuclear fuel discharges; but also site capacities and inventories; canisters and nonfuel components; and assembly type characteristics.

  18. Sunshine Lighting: Noncompliance Determination (2014-SE-54008)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to Sunshine Lighting Company finding that Sunlite brand metal halide lamp fixture basic models 04937-SU, 04938-SU, 04952 SU, and 04956 SU do not comport with the energy conservation standards.

  19. Sunshine Lighting: Proposed Penalty (2014-SE-54008)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Sunshine Lighting manufactured and distributed noncompliant metal halide lamp fixtures, Sunshine brand basic models 04937-SU and 04952-SU in the U.S.

  20. Cold cathode vacuum discharge tube

    DOE Patents [OSTI]

    Boettcher, G.E.

    1998-04-14

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by chemical vapor deposition (CVD) or diamond-like carbon (DLC) deposition are disclosed. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 14 figs.

  1. Cold cathode vacuum discharge tube

    DOE Patents [OSTI]

    Boettcher, G.E.

    1998-03-10

    A cold cathode vacuum discharge tube, and method for making same, are disclosed with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 15 figs.

  2. Multiple discharge cylindrical pump collector

    DOE Patents [OSTI]

    Dunn, Charlton; Bremner, Robert J.; Meng, Sen Y.

    1989-01-01

    A space-saving discharge collector 40 for the rotary pump 28 of a pool-type nuclear reactor 10. An annular collector 50 is located radially outboard for an impeller 44. The annular collector 50 as a closed outer periphery 52 for collecting the fluid from the impeller 44 and producing a uniform circumferential flow of the fluid. Turning means comprising a plurality of individual passageways 54 are located in an axial position relative to the annular collector 50 for receiving the fluid from the annular collector 50 and turning it into a substantially axial direction.

  3. Photovoltaic device having light transmitting electrically conductive stacked films

    DOE Patents [OSTI]

    Weber, Michael F.; Tran, Nang T.; Jeffrey, Frank R.; Gilbert, James R.; Aspen, Frank E.

    1990-07-10

    A light transmitting electrically conductive stacked film, useful as a light transmitting electrode, including a first light transmitting electrically conductive layer, having a first optical thickness, a second light transmitting layer, having a second optical thickness different from the optical thickness of the first layer, and an electrically conductive metallic layer interposed between and in initimate contact with the first and second layers.

  4. Multiple discharge cylindrical pump collector

    SciTech Connect (OSTI)

    Dunn, C.; Bremmer, R.J.; Meng, S.Y.

    1989-10-17

    This patent describes an improvement in a method for circulating fluid coolant through a reactor core of a pool-type nuclear reactor having a sealed containment vessel containing a reactor core submersed in a body of liquid coolant. The method for circulating coolant including utilization of a rotary pump including an impeller for producing a highly circumferential flow of cooling fluid and a method for collecting and discharging coolant fluid, the improvement to the method of collecting and discharging coolant fluid including the steps of: producing a substantially uniform circumferential flow of the fluid by directing the flow through a plurality of diffuser vanes and into an annular collector located radially outboard from the impeller. The annular collector having an entirely closed outer periphery; and turning the flow of cooling fluid into a substantially axially direction while maintaining a substantially constant average flow velocity by directing the coolant flow from the annular collector into a plurality of individual passageways located in an axial position relative to the annular collector.

  5. Dusty Plasma in He-Ar Glow Discharge

    SciTech Connect (OSTI)

    Maiorov, S. A.; Ramazanov, T. S.; Dzhumagulova, K. N.; Dosbolayev, M. K.; Jumabekov, A. N.

    2008-09-07

    The paper reports on the first experiments with plasma-dust formations in dc gas discharge plasma for He-Ar mixture. It is shown that under the conventional conditions of the experiments with dusty structures in plasma, the choice of light and heavy gases for the mixture suppresses electron heating in electric field and results in a supersonic jet with high Mach numbers. Distribution functions for drifting ions in the gas mixture are calculated for various mixture concentrations, electric field strengths and gas pressures.

  6. Commercial Lighting and LED Lighting Incentives | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Schools Institutional Savings Category Lighting Lighting ControlsSensors Other EE LED Lighting Maximum Rebate Up to 100% of cost; incentives that exceed 5,000 should be...

  7. Light's Darkness

    ScienceCinema (OSTI)

    Padgett, Miles [University of Glasgow, Glasgow, Scotland

    2010-01-08

    Optical vortices and orbital angular momentum are currently topical subjects in the optics literature. Although seemingly esoteric, they are, in fact, the generic state of light and arise whenever three or more plane waves interfere. To be observed by eye the light must be monochromatic. Laser speckle is one such example, where the optical energy circulates around each black spot, giving a local orbital angular momentum. This talk with report three on-going studies. First, when considering a volume of interfering waves, the laser specs map out threads of complete darkness embedded in the light. Do these threads form loops? Links? Or even knots? Second, when looking through a rapidly spinning window, the image of the world on the other side is rotated: true or false? Finally, the entanglement of orbital angular momentum states means measuring how the angular position of one photons sets the angular momentum of another: is this an angular version of the EPR (Einstein, Podolsky, and Rosen) paradox?

  8. Role of secondary emission on discharge dynamics in an atmospheric pressure dielectric barrier discharge

    SciTech Connect (OSTI)

    Tay, W. H.; Kausik, S. S.; Yap, S. L.; Wong, C. S.

    2014-04-15

    The discharge dynamics in an atmospheric pressure dielectric barrier discharge (DBD) is studied in a DBD reactor consisting of a pair of stainless steel parallel plate electrodes. The DBD discharge has been generated by a 50?Hz ac high voltage power source. The high-speed intensified charge coupled device camera is used to capture the images of filaments occurring in the discharge gap. It is observed that frequent synchronous breakdown of micro discharges occurs across the discharge gap in the case of negative current pulse. The experimental results reveal that secondary emissions from the dielectric surface play a key role in the synchronous breakdown of plasma filaments.

  9. Risk assessment for produced water discharges to Louisiana Open Bays

    SciTech Connect (OSTI)

    Meinhold, A.F.; DePhillips, M.P.; Holtzman, S.

    1995-06-23

    Data were collected prior to termination of discharge at three sites (including two open bay sites at Delacroix Island and Bay De Chene) for the risk assessments. The Delacroix Island Oil and Gas Field has been in production since the first well drilling in 1940; the Bay De Chene Field, since 1942. Concentrations of 226Ra, 228Ra, 210Po, and 228Th were measured in discharges. Radium conc. were measured in fish and shellfish tissues. Sediment PAH and metal conc. were also available. Benthos sampling was conducted. A survey of fishermen was conducted. The tiered risk assessment showed that human health risks from radium in produced water appear to be small; ecological risk from radium and other radionuclides in produced water also appear small. Many of the chemical contaminants discharged to open Louisiana bays appear to present little human health or ecological risk. A conservative screening analysis suggested potential risks to human health from Hg and Pb and a potential risk to ecological receptors from total effluent, Sb, Cd, Cu, Pb, Ni, Ag, Zn, and phenol in the water column and PAHs in sediment; quantitiative risk assessments are being done for these contaminants.

  10. Metal inks

    DOE Patents [OSTI]

    Ginley, David S; Curtis, Calvin J; Miedaner, Alex; van Hest, Marinus Franciscus Antonius Maria; Kaydanova, Tatiana

    2014-02-04

    Self-reducing metal inks and systems and methods for producing and using the same are disclosed. In an exemplary embodiment, a method may comprise selecting metal-organic (MO) precursor, selecting a reducing agent, and dissolving the MO precursor and the reducing agent in an organic solvent to produce a metal ink that remains in a liquid phase at room temperature. Metal inks, including self-reducing and fire-through metal inks, are also disclosed, as are various applications of the metal inks.

  11. Testing and evaluation of light ablation decontamination

    SciTech Connect (OSTI)

    Demmer, R.L.; Ferguson, R.L.

    1994-10-01

    This report details the testing and evaluation of light ablation decontamination. It details WINCO contracted research and application of light ablation efforts by Ames Laboratory. Tests were conducted with SIMCON (simulated contamination) coupons and REALCON (actual radioactive metal coupons) under controlled conditions to compare cleaning effectiveness, speed and application to plant process type equipment.

  12. DISCHARGE VALVE FOR GRANULAR MATERIAL

    DOE Patents [OSTI]

    Stoughton, L.D.; Robinson, S.T.

    1962-05-15

    A gravity-red dispenser or valve is designed for discharging the fueled spherical elements used in a pebble bed reactor. The dispenser consists of an axially movable tube terminating under a hood having side walls with openings. When the tube is moved so that its top edge is above the tops of the side openings the elements will not flow. As the tube is moved downwardly, the elements flow into the hood through the side openings and over the top edge into the tube at an increasing rate as the tube is lowered further. The tube is spaced at all times from the hood and side walls a distance greater than the diameter of the largest element to prevent damaging of the elements when the dispenser is closed to flow. (AEC)

  13. CDPHE Industrial Individual Wastewater Discharge Permit Application...

    Open Energy Info (EERE)

    ApplicationLegal Abstract Application provided by the Colorado Department of Public Health and Environment (CDPHE) for use by all individual industrial process water dischargers...

  14. Device for generation of pulsed corona discharge

    DOE Patents [OSTI]

    Gutsol, Alexander F.; Fridman, Alexander; Blank, Kenneth; Korobtsev, Sergey; Shiryaevsky, Valery; Medvedev, Dmitry

    2012-05-08

    The invention is a method and system for the generation of high voltage, pulsed, periodic corona discharges capable of being used in the presence of conductive liquid droplets. The method and system can be used, for example, in different devices for cleaning of gaseous or liquid media using pulsed corona discharge. Specially designed electrodes and an inductor increase the efficiency of the system, permit the plasma chemical oxidation of detrimental impurities, and increase the range of stable discharge operations in the presence of droplets of water or other conductive liquids in the discharge chamber.

  15. California Waste Discharge Requirements Website | Open Energy...

    Open Energy Info (EERE)

    Requirements Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: California Waste Discharge Requirements Website Abstract This website contains...

  16. Montana Pollutant Discharge Elimination System (MPDES) Webpage...

    Open Energy Info (EERE)

    System (MPDES) Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Pollutant Discharge Elimination System (MPDES) Webpage Abstract Provides...

  17. Site Discharge Pollution Prevention Plan (SDPPP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SDPPP Individual Permit: Site Discharge Pollution Prevention Plan (SDPPP) The 2014 SDPPP update fully incorporates all changes made during the year and reflects changes projected...

  18. Texas Railroad Commission - Pollution Discharge Regulations ...

    Open Energy Info (EERE)

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Texas Railroad Commission - Pollution Discharge Regulations Citation...

  19. Energy-transformation properties and mechanisms in transverse-flow-discharged CO2 lasers

    SciTech Connect (OSTI)

    Zhongxiang, W.

    1991-12-10

    We simulated, calculated, and analyzed the effects on the various energy state transformation properties of dielectric media of such factors as dielectric media gas pressures, flow speeds, light cavity position, strength of radiation in the cavity, degree of output coupling, and other similar factors in transverse flow discharged CO2 laser devices. This article did concrete calculations of the corresponding energy transformation properties for the apparatus and the conditions in reference (transverse flow, discharge, CO2 laser device, dielectric medium constituent ratio of CO2:N2:H = 5:17:78, an initial temperature of 293K, a discharge current of 2A, E/N: 2.15X10-16 V/cm2, light cavity 160 cm2 long, height 1.8cm, as well as other parameters).

  20. Metal-ion recycle technology for metal electroplating waste waters

    SciTech Connect (OSTI)

    Sauer, N.N.; Smith, B.F.

    1993-06-01

    As a result of a collaboration with Boeing Aerospace, the authors have begun a program to identify suitable treatments or to develop new treatments for electroplating baths. The target baths are mixed-metal or alloy baths that are being integrated into the Boeing electroplating complex. These baths, which are designed to replace highly toxic chromium and cadmium baths, contain mixtures of two metals, either nickel-tungsten, nickel-zinc, or zinc-tin. This report reviews the literature and details currently available on emerging technologies that could affect recovery of metals from electroplating baths under development by Boeing Aerospace. This literature survey summarizes technologies relevant to the recovery of metals from electroplating processes. The authors expanded the scope to investigate single metal ion recovery technologies that could be applied to metal ion recovery from alloy baths. This review clearly showed that the electroplating industry has traditionally relied on precipitation and more recently on electrowinning as its waste treatment methods. Despite the almost ubiquitous use of precipitation to remove contaminant metal ions from waste electroplating baths and rinse waters, this technology is clearly no longer feasible for the electroplating industry for several reasons. First, disposal of unstabilized sludge is no longer allowed by law. Second, these methods are no longer adequate as metal-removal techniques because they cannot meet stringent new metal discharge limits. Third, precious resources are being wasted or discarded because these methods do not readily permit recovery of the target metal ions. As a result, emerging technologies for metal recovery are beginning to see application to electroplating waste recycle. This report summarizes current research in these areas. Included are descriptions of various membrane technologies, such as reverse osmosis and ultrafiltration, ion exchange and chelating polymer technology, and electrodialysis.

  1. METAL PHTHALOCYANINES

    DOE Patents [OSTI]

    Frigerio, N.A.

    1962-03-27

    A process is given for preparing heavy metal phthalocyanines, sulfonated or not. The process comprises mixing an inorganic metal salt with dimethyl formamide or methyl sulfoxide; separating the metal complex formed from the solution; mixing the complex with an equimolar amount of sodium, potassium, lithium, magnesium, or beryllium sulfonated or unsulfonated phthalocyanine whereby heavy-metal phthalocyanine crystals are formed; and separating the crystals from the solution. Uranyl, thorium, lead, hafnium, and lanthanide rare earth phthalocyanines can be produced by the process. (AEC)

  2. Silicone metalization

    DOE Patents [OSTI]

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2006-12-05

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  3. Silicone metalization

    DOE Patents [OSTI]

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  4. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Turning a material from an insulator to a metal, or vice versa, by light irradiation, exposure to electric or...

  5. National Lighting Energy Consumption

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting Energy National Lighting Energy Consumption Consumption 390 Billion kWh used for lighting in all 390 Billion kWh used for lighting in all commercial buildings in commercial buildings in 2001 2001 LED (<.1% ) Incandescent 40% HID 22% Fluorescent 38% Lighting Energy Consumption by Lighting Energy Consumption by Breakdown of Lighting Energy Breakdown of Lighting Energy Major Sector and Light Source Type Major Sector and Light Source Type Source: Navigant Consulting, Inc., U.S. Lighting

  6. Detrecting and Locating Partial Discharges in Transformers

    SciTech Connect (OSTI)

    Shourbaji, A.; Richards, R.; Kisner, R. A.; Hardy, J.

    2005-02-04

    A collaborative research between the Oak Ridge National Laboratory (ORNL), the American Electric Power (AEP), the Tennessee Valley Authority (TVA), and the State of Ohio Energy Office (OEO) has been formed to conduct a feasibility study to detect and locate partial discharges (PDs) inside large transformers. The success of early detection of the PDs is necessary to avoid costly catastrophic failures that can occur if the process of PD is ignored. The detection method under this research is based on an innovative technology developed by ORNL researchers using optical methods to sense the acoustical energy produced by the PDs. ORNL researchers conducted experimental studies to detect PD using an optical fiber as an acoustic sensor capable of detecting acoustical disturbances at any point along its length. This technical approach also has the potential to locate the point at which the PD was sensed within the transformer. Several optical approaches were experimentally investigated, including interferometric detection of acoustical disturbances along the sensing fiber, light detection and ranging (LIDAR) techniques using frequency modulation continuous wave (FMCW), frequency modulated (FM) laser with a multimode fiber, FM laser with a single mode fiber, and amplitude modulated (AM) laser with a multimode fiber. The implementation of the optical fiber-based acoustic measurement technique would include installing a fiber inside a transformer allowing real-time detection of PDs and determining their locations. The fibers are nonconductive and very small (core plus cladding are diameters of 125 μm for single-mode fibers and 230 μm for multimode fibers). The research identified the capabilities and limitations of using optical technology to detect and locate sources of acoustical disturbances such as in PDs in large transformers. Amplitude modulation techniques showed the most promising results and deserve further research to better quantify the technique’s sensitivity

  7. Plasma discharge self-cleaning filtration system

    DOE Patents [OSTI]

    Cho, Young I.; Fridman, Alexander; Gutsol, Alexander F.; Yang, Yong

    2014-07-22

    The present invention is directed to a novel method for cleaning a filter surface using a plasma discharge self-cleaning filtration system. The method involves utilizing plasma discharges to induce short electric pulses of nanoseconds duration at high voltages. These electrical pulses generate strong Shockwaves that disintegrate and dislodge particulate matter located on the surface of the filter.

  8. Light Show

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Lightning - Nature's Light Show Lightning provides one of nature's most spectacular displays of energy. Though fascinating to observe, lightning can be dangerous and deadly. Protecting ARM instruments from lightning damage is vital. Putting equipment worth millions of dollars into open fields (Photo: NOAA) ARM Facilities Newsletter is published by Argonne National Laboratory, a multiprogram laboratory operated by The University of Chicago under contract W-31-109-Eng-38 with the U.S. Department

  9. Atmospheric sampling glow discharge ionization source

    DOE Patents [OSTI]

    McLuckey, S.A.; Glish, G.L.

    1989-07-18

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above. 3 figs.

  10. Atmospheric sampling glow discharge ionization source

    DOE Patents [OSTI]

    McLuckey, Scott A. (Oak Ridge, TN); Glish, Gary L. (Oak Ridge, TN)

    1989-01-01

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above.

  11. Method for removing metals from a cleaning solution

    DOE Patents [OSTI]

    Deacon, Lewis E.

    2002-01-01

    A method for removing accumulated metals from a cleaning solution is provided. After removal of the metals, the cleaning solution can be discharged or recycled. The process manipulates the pH levels of the solution as a means of precipitating solids. Preferably a dual phase separation at two different pH levels is utilized.

  12. Plasma deposition of amorphous metal alloys

    DOE Patents [OSTI]

    Hays, Auda K. (Albuquerque, NM)

    1986-01-01

    Amorphous metal alloy coatings are plasma-deposited by dissociation of vapors of organometallic compounds and metalloid hydrides in the presence of a reducing gas, using a glow discharge. Tetracarbonylnickel, phosphine, and hydrogen constitute a typical reaction mixture of the invention, yielding a NiPC alloy.

  13. Plasma deposition of amorphous metal alloys

    DOE Patents [OSTI]

    Hays, A.K.

    1979-07-18

    Amorphous metal alloy coatings are plasma-deposited by dissociation of vapors of organometallic compounds and metalloid hydrides in the presence of a reducing gas, using a glow discharge. Tetracarbonylnickel, phosphine, and hydrogen constitute a typical reaction mixture of the invention, yielding a NiPC alloy.

  14. Comprehensive study of carbon dioxide adsorption in the metal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comprehensive study of carbon dioxide adsorption in the metal-organic frameworks M2(dobdc) (M ... physisorptive interaction with the framework surface and sheds more light on the ...

  15. Fluid jet electric discharge source

    DOE Patents [OSTI]

    Bender, Howard A.

    2006-04-25

    A fluid jet or filament source and a pair of coaxial high voltage electrodes, in combination, comprise an electrical discharge system to produce radiation and, in particular, EUV radiation. The fluid jet source is composed of at least two serially connected reservoirs, a first reservoir into which a fluid, that can be either a liquid or a gas, can be fed at some pressure higher than atmospheric and a second reservoir maintained at a lower pressure than the first. The fluid is allowed to expand through an aperture into a high vacuum region between a pair of coaxial electrodes. This second expansion produces a narrow well-directed fluid jet whose size is dependent on the size and configuration of the apertures and the pressure used in the reservoir. At some time during the flow of the fluid filament, a high voltage pulse is applied to the electrodes to excite the fluid to form a plasma which provides the desired radiation; the wavelength of the radiation being determined by the composition of the fluid.

  16. Demonstration Assessment of Light-Emitting Diode (LED) Post-Top Lighting at

    Office of Scientific and Technical Information (OSTI)

    Central Park in New York City (Technical Report) | SciTech Connect Demonstration Assessment of Light-Emitting Diode (LED) Post-Top Lighting at Central Park in New York City Citation Details In-Document Search Title: Demonstration Assessment of Light-Emitting Diode (LED) Post-Top Lighting at Central Park in New York City A review of five post-top light-emitting diode (LED) pedestrian luminaires installed in New York City's Central Park for possible replacement to the existing metal halide

  17. Apparatus for gas-metal arc deposition

    DOE Patents [OSTI]

    Buhrmaster, Carol L.; Clark, Denis E.; Smartt, Herschel B.

    1991-01-01

    Apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment with the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspenion of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite.

  18. Method for gas-metal arc deposition

    DOE Patents [OSTI]

    Buhrmaster, Carol L.; Clark, Denis E.; Smartt, Herschel B.

    1990-01-01

    Method and apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment wiht the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspension of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite.

  19. Method for gas-metal arc deposition

    DOE Patents [OSTI]

    Buhrmaster, C.L.; Clark, D.E.; Smartt, H.B.

    1990-11-13

    Method and apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites are disclosed. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment with the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspension of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite. 1 fig.

  20. Transverse-type laser assembly using induced electrical discharge excitation and method

    DOE Patents [OSTI]

    Ault, E.R.

    1994-04-19

    A transverse-type laser assembly is disclosed herein. This assembly defines a laser cavity containing a vapor or gaseous substance which lases when subjected to specific electrical discharge excitation between a pair of spaced-apart electrodes located within the cavity in order to produce a source of light. An arrangement located entirely outside the laser cavity is provided for inducing a voltage across the electrodes within the cavity sufficient to provide the necessary electrical discharge excitation to cause a vapor substance between the electrodes to lase. 3 figures.

  1. Ternary gas mixture for diffuse discharge switch (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Ternary gas mixture for diffuse discharge switch Title: Ternary gas mixture for diffuse discharge switch A new diffuse discharge gas switch wherein a mixture of gases is used to ...

  2. Glow discharge plasma deposition of thin films

    DOE Patents [OSTI]

    Weakliem, Herbert A. (Pennington, NJ); Vossen, Jr., John L. (Bridgewater, NJ)

    1984-05-29

    A glow discharge plasma reactor for deposition of thin films from a reactive RF glow discharge is provided with a screen positioned between the walls of the chamber and the cathode to confine the glow discharge region to within the region defined by the screen and the cathode. A substrate for receiving deposition material from a reactive gas is positioned outside the screened region. The screen is electrically connected to the system ground to thereby serve as the anode of the system. The energy of the reactive gas species is reduced as they diffuse through the screen to the substrate. Reactive gas is conducted directly into the glow discharge region through a centrally positioned distribution head to reduce contamination effects otherwise caused by secondary reaction products and impurities deposited on the reactor walls.

  3. NMED - Discharge Permit Application | Open Energy Information

    Open Energy Info (EERE)

    Discharge Permit ApplicationLegal Published NA Year Signed or Took Effect 2014 Legal Citation Not provided DOI Not Provided Check for DOI availability: http:crossref.org Online...

  4. Reading Municipal Light Department - Business Lighting Rebate...

    Broader source: Energy.gov (indexed) [DOE]

    with Electronic Ballasts: 100fixture De-lamping: 4 - 9lamp Lighting Sensors: 20sensor LED Exit Signs: 20fixture Summary Reading Municipal Light Department (RMLD) offers...

  5. White Light Creation Architectures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Frontier Research Centers: Solid-State Lighting Science Center for Frontiers of ... White Light Creation Architectures HomeEnergy ResearchEFRCsSolid-State Lighting Science ...

  6. Light Creation Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Frontier Research Centers: Solid-State Lighting Science Center for Frontiers of ... Light Creation Materials HomeEnergy ResearchEFRCsSolid-State Lighting Science EFRC...

  7. light-emitting diode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Cost The high-brightness, rapidly pulsed, multicolor light-emitting diode (LED) driver delivers lighting performance that exceeds that of conventional (laserarc-light) sources ...

  8. Compression and strong rarefaction in high power impulse magnetron sputtering discharges

    SciTech Connect (OSTI)

    Horwat, David; Anders, Andre

    2010-11-11

    Gas compression and strong rarefaction have been observed for high power impulse magnetron sputtering (HIPIMS) discharges using a copper target in argon. Time-resolved ion saturation currents of 35 probes were simultaneously recorded for HIPIMS discharges operating far above the self-sputtering runaway threshold. The argon background pressure was a parameter for the evaluation of the spatial and temporal development of the plasma density distribution. The data can be interpreted by a massive onset of the sputtering flux (sputter wind) that causes a transient densification of the gas, followed by rarefaction and the replacement of gas plasma by the metal plasma of sustained self-sputtering. The plasma density pulse follows closely the power pulse at low pressure. At high pressure, the relatively remote probes recorded a density peak only after the discharge pulse, indicative for slow, diffusive ion transport.

  9. Sandia National Laboratories: Electrostatic Discharge (ESD) Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrostatic Discharge (ESD) Laboratory We have field and laboratory capabilities to measure electrostatic environment generation, storage, and charge transfer effects. Non-contact electrostatic field surveillance techniques are available to monitor charge generation of conductors or dielectrics, and induction or physical contact charging of wiring or pin voltage for electrical system components. The Sandia severe personnel electrostatic discharge simulator, with a maximum charge voltage of 25

  10. Site Discharge Pollution Prevention Plan (SDPPP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SDPPP Individual Permit: Site Discharge Pollution Prevention Plan (SDPPP) The 2015 SDPPP Update fully incorporates all changes made during the year and reflects changes projected for 2016. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Site Discharge Pollution Prevention Plan (SDPPP) The 2015 Update to the SDPPP, Revision 1, fulfills the requirements of Part 1.F of the Individual Permit. The first six drop-down items

  11. Surface modified CFx cathode material for ultrafast discharge...

    Office of Scientific and Technical Information (OSTI)

    Surface modified CFx cathode material for ultrafast discharge and high energy density Prev Next Title: Surface modified CFx cathode material for ultrafast discharge and high...

  12. Report of Waste Discharge application (Form 200) | Open Energy...

    Open Energy Info (EERE)

    Waste Discharge application (Form 200) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Report of Waste Discharge application (Form 200) Abstract Persons...

  13. Oregon Air Contaminant Discharge Webpage | Open Energy Information

    Open Energy Info (EERE)

    library Web Site: Oregon Air Contaminant Discharge Webpage Abstract Provides overview of air quality discharge permit process. Author State of Oregon Published State of Oregon,...

  14. OAR 340-216 - Air Contaminant Discharge Permits | Open Energy...

    Open Energy Info (EERE)

    OAR 340-216 - Air Contaminant Discharge PermitsLegal Abstract Regulations for air contaminant discharge permits issued by the Department of Environmental Quality....

  15. Oregon Air Contaminant Discharge Permits Webpage | Open Energy...

    Open Energy Info (EERE)

    Air Contaminant Discharge Permits Webpage Citation Oregon Department of Environmental Quality. Oregon Air Contaminant Discharge Permits Webpage Internet. State of Oregon....

  16. Colorado Discharge Permit System General Permit | Open Energy...

    Open Energy Info (EERE)

    to discharge, as of this date, inaccordance with permit requirements and conditions set forth in Parts I and II hereof. All discharges authorized herein shall be consistent with...

  17. 5 CCR 1002-61 Colorado Discharge Permit System Regulations |...

    Open Energy Info (EERE)

    Discharge Permit System RegulationsLegal Abstract Regulations implementing the Colorado Water Quality Control Act applying to all operations discharging to waters of the state...

  18. Discharge Physics of High Power Impulse Magnetron Sputtering...

    Office of Scientific and Technical Information (OSTI)

    Discharge Physics of High Power Impulse Magnetron Sputtering Citation Details In-Document Search Title: Discharge Physics of High Power Impulse Magnetron Sputtering You are ...

  19. Discharge Physics of High Power Impulse Magnetron Sputtering...

    Office of Scientific and Technical Information (OSTI)

    Discharge Physics of High Power Impulse Magnetron Sputtering Citation Details In-Document Search Title: Discharge Physics of High Power Impulse Magnetron Sputtering High power ...

  20. Hydrothermal Heat Discharge In The Cascade Range, Northwestern...

    Open Energy Info (EERE)

    Heat Discharge In The Cascade Range, Northwestern United States Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Hydrothermal Heat Discharge In...

  1. Glow discharge based device for solving mazes

    SciTech Connect (OSTI)

    Dubinov, Alexander E. Mironenko, Maxim S.; Selemir, Victor D.; Maksimov, Artem N.; Pylayev, Nikolay A.

    2014-09-15

    A glow discharge based device for solving mazes has been designed and tested. The device consists of a gas discharge chamber and maze-transformer of radial-azimuth type. It allows changing of the maze pattern in a short period of time (within several minutes). The device has been tested with low pressure air. Once switched on, a glow discharge has been shown to find the shortest way through the maze from the very first attempt, even if there is a section with potential barrier for electrons on the way. It has been found that ionization waves (striations) can be excited in the maze along the length of the plasma channel. The dependancy of discharge voltage on the length of the optimal path through the maze has been measured. A reduction in discharge voltage with one or two potential barriers present has been found and explained. The dependency of the magnitude of discharge ignition voltage on the length of the optimal path through the maze has been measured. The reduction of the ignition voltage with the presence of one or two potential barriers has been observed and explained.

  2. Contour forming of metals by laser peening

    DOE Patents [OSTI]

    Hackel, Lloyd; Harris, Fritz

    2002-01-01

    A method and apparatus are provided for forming shapes and contours in metal sections by generating laser induced compressive stress on the surface of the metal workpiece. The laser process can generate deep compressive stresses to shape even thick components without inducing unwanted tensile stress at the metal surface. The precision of the laser-induced stress enables exact prediction and subsequent contouring of parts. A light beam of 10 to 100 J/pulse is imaged to create an energy fluence of 60 to 200 J/cm.sup.2 on an absorptive layer applied over a metal surface. A tamping layer of water is flowed over the absorptive layer. The absorption of laser light causes a plasma to form and consequently creates a shock wave that induces a deep residual compressive stress into the metal. The metal responds to this residual stress by bending.

  3. Metal oxide composite dosimeter method and material

    DOE Patents [OSTI]

    Miller, Steven D.

    1998-01-01

    The present invention is a method of measuring a radiation dose wherein a radiation responsive material consisting essentially of metal oxide is first exposed to ionizing radiation. The metal oxide is then stimulating with light thereby causing the radiation responsive material to photoluminesce. Photons emitted from the metal oxide as a result of photoluminescence may be counted to provide a measure of the ionizing radiation.

  4. Metal oxide films on metal

    DOE Patents [OSTI]

    Wu, Xin D. (Los Alamos, NM); Tiwari, Prabhat (Los Alamos, NM)

    1995-01-01

    A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

  5. The role of gas composition in plasma-dust structures in RF discharge

    SciTech Connect (OSTI)

    Maiorov, S. A.; Golyatina, R. I.

    2015-03-15

    The influence of a mixture of light and heavy gases, i.e., helium and argon, on plasma-dust structures in the radiofrequency discharge has been studied. The dust chains in the sheath of the radiofrequency discharge, the average distance between the dust particles and their chains, have been analyzed. A significant effect of small amounts of argon on the correlation characteristics of dust particles has been observed. The results of numerical simulation of ion and electron drift in the mixture of helium and argon are presented. It is shown that even 1% of argon admixture to helium produces such an effect that argon ions become the main components of the discharge, as they drift with lightweight helium forming a strongly anisotropic velocity distribution function.

  6. The application of electrorefining for recovery and purification of fuel discharged from the Integral Fast Reactor

    SciTech Connect (OSTI)

    Burris, L.; Steunenberg, R.K.; Miller, W.E.

    1986-01-01

    An electrorefining process employing a molten salt electrolyte and a molten cadmium anode is proposed for the separation of uranium and plutonium from fission products and cladding material in discharged IFR driver fuel. The use of a liquid cadmium anode, which is the unique feature of the process, permits selective dissolution of the fuel from the cladding and prevents electrolytic corrosion of the steel container and contamination of the product by noble metal fission products.

  7. Mass dependency of turbulent parameters in stationary glow discharge plasmas

    SciTech Connect (OSTI)

    Titus, J. B.; Alexander, A. B.; Wiggins, D. L.; Johnson, J. A. III

    2013-05-15

    A direct current glow discharge tube is used to determine how mass changes the effects of certain turbulence characteristics in a weakly ionized gas. Helium, neon, argon, and krypton plasmas were created, and an axial magnetic field, varied from 0.0 to 550.0 Gauss, was used to enhance mass dependent properties of turbulence. From the power spectra of light emission variations associated with velocity fluctuations, determination of mass dependency on turbulent characteristic unstable modes, energy associated with turbulence, and the rate at which energy is transferred from scale to scale are measured. The magnetic field strength is found to be too weak to overcome particle diffusion to the walls to affect the turbulence in all four types of plasmas, though mass dependency is still detected. Though the total energy and the rate at which the energy moves between scales are mass invariant, the amplitude of the instability modes that characterize each plasma are dependent on mass.

  8. Buildings Energy Data Book: 5.6 Lighting

    Buildings Energy Data Book [EERE]

    7 2003 Lighted Floorspace for the Stock of Commercial Buildings, by Type of Lamp (1) Type of Lamp (Billion SF) (2) Standard Fluorescent 59.7 96% Incandescent 38.5 62% Compact Fluorescent 27.6 44% High-Intensity Discharge 20.6 33% Halogen 17.7 29% Note(s): Source(s): EIA, 2003 Commercial Buildings Energy Consumption Survey: Building Characteristics Tables, June 2006, Table B44, p. 220. Lighted Floorspace Percent of Total Lighted Floorspace: 62.06 Billion SF Lighted Floorspace 1) Mall buildings

  9. HD/H{sub 2} AS A PROBE OF THE ROLES OF GAS, DUST, LIGHT, METALLICITY, AND COSMIC RAYS IN PROMOTING THE GROWTH OF MOLECULAR HYDROGEN IN THE DIFFUSE INTERSTELLAR MEDIUM

    SciTech Connect (OSTI)

    Liszt, H. S.

    2015-01-20

    We modeled recent observations of UV absorption of HD and H{sub 2} in the Milky Way and toward damped/subdamped Lyα systems at z = 0.18 and z >1.7. N(HD)/N(H{sub 2}) ratios reflect the separate self-shieldings of HD and H{sub 2} and the coupling introduced by deuteration chemistry. Locally, observations are explained by diffuse molecular gas with 16 cm{sup –3} ≲ n(H) ≲ 128 cm{sup –3} if the cosmic-ray ionization rate per H nucleus ζ {sub H} =2 × 10{sup –16} s{sup –1}, as inferred from H{sub 3} {sup +} and OH{sup +}. The dominant influence on N(HD)/N(H{sub 2}) is the cosmic-ray ionization rate with a much weaker downward dependence on n(H) at solar metallicity, but dust extinction can drive N(HD) higher as with N(H{sub 2}). At z > 1.7, N(HD) is comparable to the Galaxy but with 10 times smaller N(H{sub 2}) and somewhat smaller N(H{sub 2})/N(H I). Comparison of our Galaxy with the Magellanic Clouds shows that smaller H{sub 2}/H is expected at subsolar metallicity, and we show by modeling that HD/H{sub 2} increases with density at low metallicity, opposite to the Milky Way. Observations of HD would be explained with higher n(H) at low metallicity, but high-z systems have high HD/H{sub 2} at metallicity 0.04 ≲ Z ≲ 2 solar. In parallel, we trace dust extinction and self-shielding effects. The abrupt H{sub 2} transition to H{sub 2}/H ≈ 1%-10% occurs mostly from self-shielding, although it is assisted by extinction for n(H) ≲ 16 cm{sup –3}. Interior H{sub 2} fractions are substantially increased by dust extinction below ≲ 32 cm{sup –3}. At smaller n(H), ζ {sub H}, small increases in H{sub 2} triggered by dust extinction can trigger abrupt increases in N(HD)

  10. A-01 metals in stormwater runoff evaluation

    SciTech Connect (OSTI)

    Eldridge, L.L.

    1997-11-06

    As a part of the A-01 investigation required by the NPDES permit, an investigation was performed to ascertain the concentrations of metals specifically copper (Cu), lead (Pb), and zinc (Zn) in stormwater being discharged through the outfall. This information would indicate whether all water being discharged would have to be treated or if only a portion of the discharged stormwater would have to be treated. A study was designed to accomplish this. The first goal was to determine if the metal concentrations increased, decreased, or remained the same as flow increased during a rain event. The second goal was to determine if the concentrations in the storm water were due to dissolved. The third goal was to obtain background data to ascertain if effluent credits could be gained due to naturally occurring metals.Samples from this study were analyzed and indicate that the copper and lead values increase as the flow increases while the zinc values remain essentially the same regardless of the flow rate. Analyses of samples for total metals, dissolved metals, TSS, and metals in solids was complicated because in all cases metals contamination was found in the filters themselves. Some conclusions can be derived if this problem is taken into account when analyzing the data. Copper concentrations in the total and dissolved fractions as well as the TSS concentrations followed the hydrograph at this outfall but the copper in solids concentration appeared to peak in the first flush and decline to nondetectable rapidly over the course of the storm event. Lead was present in the total analysis but not present in the dissolved fraction or the solids fraction of the samples. The data for zinc was interesting in that the dissolved fractions were higher than the total fraction in three out of four samples. This is probably due to the high zinc concentrations on the filters being transferred to the dissolved faction of the sample. (Abstract Truncated)

  11. Metals 2000

    SciTech Connect (OSTI)

    Allison, S.W.; Rogers, L.C.; Slaughter, G.; Boensch, F.D.; Claus, R.O.; de Vries, M.

    1993-05-01

    This strategic planning exercise identified and characterized new and emerging advanced metallic technologies in the context of the drastic changes in global politics and decreasing fiscal resources. In consideration of a hierarchy of technology thrusts stated by various Department of Defense (DOD) spokesmen, and the need to find new and creative ways to acquire and organize programs within an evolving Wright Laboratory, five major candidate programs identified are: C-17 Flap, Transport Fuselage, Mach 5 Aircraft, 4.Fighter Structures, and 5. Missile Structures. These results were formed by extensive discussion with selected major contractors and other experts, and a survey of advanced metallic structure materials. Candidate structural applications with detailed metal structure descriptions bracket a wide variety of uses which warrant consideration for the suggested programs. An analysis on implementing smart skins and structures concepts is given from a metal structures perspective.

  12. Metal Hydrides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal Hydrides Theodore Motyka Savannah River National Laboratory Metal Hydride System Architect Jose-Miguel Pasini, & Bart van Hassel UTRC Claudio Corgnale & Bruce Hardy SRNL Kevin Simmons and Mark Weimar PNNL Darsh Kumar GM, Matthew Thornton NREL, Kevin Drost OSU DOE Materials-Based Hydrogen Storage Summit Defining Pathways for Onboard Automotive Applications 2 Outline * Background and MH History * MH HSECoE Results * Material Operating Requirements * Modeling and Analyses * BOP and

  13. Direct current dielectric barrier assistant discharge to get homogeneous plasma in capacitive coupled discharge

    SciTech Connect (OSTI)

    Du, Yinchang; Li, Yangfang; Cao, Jinxiang; Liu, Yu; Wang, Jian; Zheng, Zhe

    2014-06-15

    In this paper, we propose a method to get more homogeneous plasma in the geometrically asymmetric capacitive coupled plasma (CCP) discharge. The dielectric barrier discharge (DBD) is used for the auxiliary discharge system to improve the homogeneity of the geometrically asymmetric CCP discharge. The single Langmuir probe measurement shows that the DBD can increase the electron density in the low density volume, where the DBD electrodes are mounted, when the pressure is higher than 5?Pa. By this manner, we are able to improve the homogeneity of the plasma production and increase the overall density in the target volume. At last, the finite element simulation results show that the DC bias, applied to the DBD electrodes, can increase the homogeneity of the electron density in the CCP discharge. The simulation results show a good agreement with the experiment results.

  14. Electrodynamic force of dielectric barrier discharge

    SciTech Connect (OSTI)

    Shang, J. S.; Roveda, F.; Huang, P. G.

    2011-06-01

    The periodic electrostatic force of dielectric barrier discharge (DBD) in nitrogen for flow control is investigated by a system of physics-based, two-dimensional model equations. The plasma generation process of DBD is mainly the avalanche growth of electrons through the secondary emission from cathode. Therefore, the charged particle motion of a succession of random micro discharges can be approximated by the drift-diffusion model. The force of DBD generated by charge separation and accumulation over the dielectrics is obtained by solving the model equations with the rigorous media interface boundary condition of Maxwell equations in the time domain. The discharge structure and force components by different electrical permittivity and amplitudes of externally applied electrical potential are delineated and quantified.

  15. A method of measuring a molten metal liquid pool volume

    DOE Patents [OSTI]

    Garcia, G.V.; Carlson, N.M., Donaldson, A.D.

    1990-12-12

    A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid. 3 figs.

  16. Transmissive metallic contact for amorphous silicon solar cells

    DOE Patents [OSTI]

    Madan, A.

    1984-11-29

    A transmissive metallic contact for amorphous silicon semiconductors includes a thin layer of metal, such as aluminum or other low work function metal, coated on the amorphous silicon with an antireflective layer coated on the metal. A transparent substrate, such as glass, is positioned on the light reflective layer. The metallic layer is preferably thin enough to transmit at least 50% of light incident thereon, yet thick enough to conduct electricity. The antireflection layer is preferably a transparent material that has a refractive index in the range of 1.8 to 2.2 and is approximately 550A to 600A thick.

  17. Dendritic metal nanostructures

    DOE Patents [OSTI]

    Shelnutt, John A.; Song, Yujiang; Pereira, Eulalia F.; Medforth, Craig J.

    2010-08-31

    Dendritic metal nanostructures made using a surfactant structure template, a metal salt, and electron donor species.

  18. State Waste Discharge Permit Application: Electric resistance tomography testing

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    This permit application documentation is for a State Waste Discharge Permit issued in accordance with requirements of Washington Administrative Code 173-216. The activity being permitted is a technology test using electrical resistance tomography. The electrical resistance tomography technology was developed at Lawrence Livermore National Laboratory and has been used at other waste sites to track underground contamination plumes. The electrical resistance tomography technology measures soil electrical resistance between two electrodes. If a fluid contaminated with electrolytes is introduced into the soil, the soil resistance is expected to drop. By using an array of measurement electrodes in several boreholes, the areal extent of contamination can be estimated. At the Hanford Site, the purpose of the testing is to determine if the electrical resistance tomography technology can be used in the vicinity of large underground metal tanks without the metal tank interfering with the test. It is anticipated that the electrical resistance tomography technology will provide a method for accurately detecting leaks from the bottom of underground tanks, such as the Hanford Site single-shell tanks.

  19. Observations of a mode transition in a hydrogen hollow cathode discharge using phase resolved optical emission spectroscopy

    SciTech Connect (OSTI)

    Dixon, Sam Charles, Christine; Dedrick, James; Boswell, Rod; Gans, Timo; O'Connell, Deborah

    2014-07-07

    Two distinct operational modes are observed in a radio frequency (rf) low pressure hydrogen hollow cathode discharge. The mode transition is characterised by a change in total light emission and differing expansion structures. An intensified CCD camera is used to make phase resolved images of Balmer α emission from the discharge. The low emission mode is consistent with a typical γ discharge, and appears to be driven by secondary electrons ejected from the cathode surface. The bright mode displays characteristics common to an inductive discharge, including increased optical emission, power factor, and temperature of the H{sub 2} gas. The bright mode precipitates the formation of a stationary shock in the expansion, observed as a dark region adjacent to the source-chamber interface.

  20. Composite Metal-hydrogen Electrodes for Metal-Hydrogen Batteries

    SciTech Connect (OSTI)

    Ruckman, M W; Wiesmann, H; Strongin, M; Young, K; Fetcenko, M

    1997-04-01

    The purpose of this project is to develop and conduct a feasibility study of metallic thin films (multilayered and alloy composition) produced by advanced sputtering techniques for use as anodes in Ni-metal hydrogen batteries. The anodes could be incorporated in thin film solid state Ni-metal hydrogen batteries that would be deposited as distinct anode, electrolyte and cathode layers in thin film devices. The materials could also be incorporated in secondary consumer batteries (i.e. type AF(4/3 or 4/5)) which use electrodes in the form of tapes. The project was based on pioneering studies of hydrogen uptake by ultra-thin Pd-capped metal-hydrogen ratios exceeding and fast hydrogen charging and Nb films, these studies suggested that materials with those of commercially available metal hydride materials discharging kinetics could be produced. The project initially concentrated on gas phase and electrochemical studies of Pd-capped niobium films in laboratory-scale NiMH cells. This extended the pioneering work to the wet electrochemical environment of NiMH batteries and exploited advanced synchrotron radiation techniques not available during the earlier work to conduct in-situ studies of such materials during hydrogen charging and discharging. Although batteries with fast charging kinetics and hydrogen-metal ratios approaching unity could be fabricated, it was found that oxidation, cracking and corrosion in aqueous solutions made pure Nb films-and multiiayers poor candidates for battery application. The project emphasis shifted to alloy films based on known elemental materials used for NiMH batteries. Although commercial NiMH anode materials contain many metals, it was found that 0.24 µm thick sputtered Zr-Ni films cycled at least 50 times with charging efficiencies exceeding 95% and [H]/[M] ratios of 0.7-1.0. Multilayered or thicker Zr-Ni films could be candidates for a thin film NiMH battery that may have practical applications as an integrated power source for

  1. Studies on metal-dielectric plasmonic structures.

    SciTech Connect (OSTI)

    Chettiar, Uday K.; Liu, Zhengtong; Thoreson, Mark D.; Shalaev, Vladimir M.; Drachev, Vladimir P.; Pack, Michael Vern; Kildishev, Alexander V.; Nyga, Piotr

    2010-01-01

    The interaction of light with nanostructured metal leads to a number of fascinating phenomena, including plasmon oscillations that can be harnessed for a variety of cutting-edge applications. Plasmon oscillation modes are the collective oscillation of free electrons in metals under incident light. Previously, surface plasmon modes have been used for communication, sensing, nonlinear optics and novel physics studies. In this report, we describe the scientific research completed on metal-dielectric plasmonic films accomplished during a multi-year Purdue Excellence in Science and Engineering Graduate Fellowship sponsored by Sandia National Laboratories. A variety of plasmonic structures, from random 2D metal-dielectric films to 3D composite metal-dielectric films, have been studied in this research for applications such as surface-enhanced Raman sensing, tunable superlenses with resolutions beyond the diffraction limit, enhanced molecular absorption, infrared obscurants, and other real-world applications.

  2. Solid-State Lighting R&D Plan

    Broader source: Energy.gov (indexed) [DOE]

    ... a dramatic reduction of the use of rare-earth metals for lighting in line with the DOE ... system comprising these various elements is optimized for a particular application. ...

  3. Nanoengineering for solid-state lighting.

    SciTech Connect (OSTI)

    Schubert, E. Fred; Koleske, Daniel David; Wetzel, Christian; Lee, Stephen Roger; Missert, Nancy A.; Lin, Shawn-Yu; Crawford, Mary Hagerott; Fischer, Arthur Joseph

    2009-09-01

    This report summarizes results from a 3-year Laboratory Directed Research and Development project performed in collaboration with researchers at Rensselaer Polytechnic Institute. Our collaborative effort was supported by Sandia's National Institute for Nanoengineering and focused on the study and application of nanoscience and nanoengineering concepts to improve the efficiency of semiconductor light-emitting diodes for solid-state lighting applications. The project explored LED efficiency advances with two primary thrusts: (1) the study of nanoscale InGaN materials properties, particularly nanoscale crystalline defects, and their impact on internal quantum efficiency, and (2) nanoscale engineering of dielectric and metal materials and integration with LED heterostructures for enhanced light extraction efficiency.

  4. A Spectroscopic Study of Impurity Behavior in Neutral-beam and Ohmically Heated TFTR Discharges

    DOE R&D Accomplishments [OSTI]

    Stratton, B. C.; Ramsey, A. T.; Boody, F. P.; Bush, C. E.; Fonck, R. J.; Groenbner, R. J.; Hulse, R. A.; Richards, R. K.; Schivell, J.

    1987-02-01

    Quantitative spectroscopic measurements of Z{sub eff}, impurity densities, and radiated power losses have been made for ohmic- and neutral-beam-heated TFTR discharges at a plasma current of 2.2 MA and toroidal field of 4.7 T. Variations in these quantities with line-average plasma density (anti n{sub e}) and beam power up to 5.6 MW are presented for discharges on a graphite movable limiter. A detailed discussion of the use of an impurity transport model to infer absolute impurity densities and radiative losses from line intensity and visible continuum measurements is given. These discharges were dominated by low-Z impurities with carbon having a considerably higher density than oxygen, except in high-anti n{sub e} ohmic discharges, where the densities of carbon and oxygen were comparable. Metallic impurity concentrations and radiative losses were small, resulting in hollow radiated power profiles and fractions of the input power radiated being 30 to 50% for ohmic heating and 30% or less with beam heating. Spectroscopic estimates of the radiated power were in good agreement with bolometrically measured values. Due to an increase in the carbon density, Z{sub eff} rose from 2.0 to 2.8 as the beam power increased from 0 to 5.6 MW, pointing to a potentially serious dilution of the neutron-producing plasma ions as the beam power increased. Both the low-Z and metallic impurity concentrations were approximately constant with minor radius, indicating no central impurity accumulation in these discharges.

  5. Mobile lighting apparatus

    DOE Patents [OSTI]

    Roe, George Michael; Klebanoff, Leonard Elliott; Rea, Gerald W; Drake, Robert A; Johnson, Terry A; Wingert, Steven John; Damberger, Thomas A; Skradski, Thomas J; Radley, Christopher James; Oros, James M; Schuttinger, Paul G; Grupp, David J; Prey, Stephen Carl

    2013-05-14

    A mobile lighting apparatus includes a portable frame such as a moveable trailer or skid having a light tower thereon. The light tower is moveable from a stowed position to a deployed position. A hydrogen-powered fuel cell is located on the portable frame to provide electrical power to an array of the energy efficient lights located on the light tower.

  6. Accelerated decarburization of Fe-C metal alloys

    DOE Patents [OSTI]

    Pal, Uday B.; Sadoway, Donald R.

    1997-01-01

    A process for improving the rate of metal production and FeO utilization in a steelmaking process or a process combining iron-making and steelmaking in a single reactor that uses or generates Fe-C metal alloy droplets submerged in an FeO-containing slag. The process involves discharging a charge build-up (electron accumulation) in the slag at the slag-metal alloy interface by means of an electron conductor connected between the metal alloy droplets and a gas at a gas-slag interface, said gas having an oxygen partial pressure of at least about 0.01 atmosphere.

  7. Accelerated decarburization of Fe-C metal alloys

    DOE Patents [OSTI]

    Pal, U.B.; Sadoway, D.R.

    1997-05-27

    A process is described for improving the rate of metal production and FeO utilization in a steelmaking process or a process combining iron-making and steelmaking in a single reactor that uses or generates Fe-C metal alloy droplets submerged in an FeO-containing slag. The process involves discharging a charge build-up (electron accumulation) in the slag at the slag-metal alloy interface by means of an electron conductor connected between the metal alloy droplets and a gas at a gas-slag interface, said gas having an oxygen partial pressure of at least about 0.01 atmosphere. 2 figs.

  8. Metal vapor laser including hot electrodes and integral wick

    DOE Patents [OSTI]

    Ault, E.R.; Alger, T.W.

    1995-03-07

    A metal vapor laser, specifically one utilizing copper vapor, is disclosed herein. This laser utilizes a plasma tube assembly including a thermally insulated plasma tube containing a specific metal, e.g., copper, and a buffer gas therein. The laser also utilizes means including hot electrodes located at opposite ends of the plasma tube for electrically exciting the metal vapor and heating its interior to a sufficiently high temperature to cause the metal contained therein to vaporize and for subjecting the vapor to an electrical discharge excitation in order to lase. The laser also utilizes external wicking arrangements, that is, wicking arrangements located outside the plasma tube. 5 figs.

  9. Metal vapor laser including hot electrodes and integral wick

    DOE Patents [OSTI]

    Ault, Earl R.; Alger, Terry W.

    1995-01-01

    A metal vapor laser, specifically one utilizing copper vapor, is disclosed herein. This laser utilizes a plasma tube assembly including a thermally insulated plasma tube containing a specific metal, e.g., copper, and a buffer gas therein. The laser also utilizes means including hot electrodes located at opposite ends of the plasma tube for electrically exciting the metal vapor and heating its interior to a sufficiently high temperature to cause the metal contained therein to vaporize and for subjecting the vapor to an electrical discharge excitation in order to lase. The laser also utilizes external wicking arrangements, that is, wicking arrangements located outside the plasma tube.

  10. Metal hydrides

    SciTech Connect (OSTI)

    Carnes, J.R.; Kherani, N.P.

    1987-11-01

    Metal hydride information is not available for most hydrides in a consolidated quick-reference source. This report's objective is to fill the need for such a document providing basic thermodynamic data for as many metal hydrides as possible. We conduced a computerized library search to access as many sources as possible and screened each source for such thermodynamic data as pressure-temperature graphs, van't Hoff curves, and impurity effects. We included any other relevant information and commented on it. A primary concern to be investigated in the future is the behavior of metal tritides. This would be important in the area of emergency tritium cleanup systems. The hydride graphs are useful, however, as tritides may be expected in most cases to behave similarly and at least follow trends of their respective hydrides. 42 refs., 40 figs., 5 tabs.

  11. Pseudo ribbon metal ion beam source

    SciTech Connect (OSTI)

    Stepanov, Igor B. Ryabchikov, Alexander I.; Sivin, Denis O.; Verigin, Dan A.

    2014-02-15

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface.

  12. Amplitude scaling of solar array discharges

    SciTech Connect (OSTI)

    Bogorad, A.; Bowman, C.; Rayadurg, L. . Astro-Space Div.); Sterner, T.; Loman, J.; Armenti, J. . Astro Space Div.)

    1990-12-01

    Sections of solar panel of four different sizes were charged in a 20-keV monoenergetic electron beam. The measured amplitudes of discharge transients coupled into power lines scaled linearly with the length of the rows of parallel-connected solar cells in the solar cell circuits.

  13. Pulse circuit apparatus for gas discharge laser

    DOE Patents [OSTI]

    Bradley, Laird P.

    1980-01-01

    Apparatus and method using a unique pulse circuit for a known gas discharge laser apparatus to provide an electric field for preconditioning the gas below gas breakdown and thereafter to place a maximum voltage across the gas which maximum voltage is higher than that previously available before the breakdown voltage of that gas laser medium thereby providing greatly increased pumping of the laser.

  14. Discharge temperature higher than 30 deg C

    SciTech Connect (OSTI)

    Shari Kelley

    2015-06-16

    This submission includes three files from two sources. One file is derived from USGS data and includes a series of manipulations to evaluate only shallow wells with high estimated geothermal gradients. Two other files are springs and wells with discharge temperatures above 30°C from the NMBGMR Aquifer Mapping database

  15. Discharge temperature higher than 30 deg C

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shari Kelley

    2015-06-16

    This submission includes three files from two sources. One file is derived from USGS data and includes a series of manipulations to evaluate only shallow wells with high estimated geothermal gradients. Two other files are springs and wells with discharge temperatures above 30C from the NMBGMR Aquifer Mapping database

  16. Wire chamber radiation detector with discharge control

    DOE Patents [OSTI]

    Perez-Mendez, Victor; Mulera, Terrence A.

    1984-01-01

    A wire chamber radiation detector (11) has spaced apart parallel electrodes (16) and grids (17, 18, 19) defining an ignition region (21) in which charged particles (12) or other ionizing radiations initiate brief localized avalanche discharges (93) and defining an adjacent memory region (22) in which sustained glow discharges (94) are initiated by the primary discharges (93). Conductors (29, 32) of the grids (18, 19) at each side of the memory section (22) extend in orthogonal directions enabling readout of the X-Y coordinates of locations at which charged particles (12) were detected by sequentially transmitting pulses to the conductors (29) of one grid (18) while detecting transmissions of the pulses to the orthogonal conductors (36) of the other grid (19) through glow discharges (94). One of the grids (19) bounding the memory region (22) is defined by an array of conductive elements (32) each of which is connected to the associated readout conductor (36) through a separate resistance (37). The wire chamber (11) avoids ambiguities and imprecisions in the readout of coordinates when large numbers of simultaneous or near simultaneous charged particles (12) have been detected. Down time between detection periods and the generation of radio frequency noise are also reduced.

  17. Sunshine Lighting: Order (2014-SE-54008)

    Broader source: Energy.gov [DOE]

    DOE ordered Sunshine Lighting to pay a $150,000 civil penalty after finding Sunshine had manufactured and distributed in commerce in the U.S. 1780 units of Sunshine brand basic model 04937-SU and 1134 units of Sunshine brand basic model 04952-SU, noncompliant metal halide lamp fixtures.

  18. Influence of discharge gap on the discharge stability in a short vacuum arc ion source

    SciTech Connect (OSTI)

    Chen, L.; Zhang, G. L.; Jin, D. Z.; Dai, J. Y.; Yang, L.

    2012-02-15

    The influence of the discharge gap between cathode and anode on the discharge stability in a short vacuum arc (SVA) ion source is presented in this paper. Planar cathode and cylindrical hollow anode made of titanium are investigated. There is a great need in present accelerator injection research for SVA source to produce the small deviation of the ion current beam. Current research shows that increasing the short discharge gap can reduce the level of ion current deviation and ion charge deviation from 29% and 31% to 15% and 17%, respectively. A microplasma plume generation mechanism in SVA and scanning electron microscopic results can be used to explain this interesting phenomenon.

  19. Prospects for LED lighting.

    SciTech Connect (OSTI)

    Tsao, Jeffrey Yeenien; Gee, James Martin; Simmons, Jerry Alvon

    2003-08-01

    Solid-state lighting using light-emitting diodes (LEDs) has the potential to reduce energy consumption for lighting by 50% while revolutionizing the way we illuminate our homes, work places, and public spaces. Nevertheless, substantial technical challenges remain in order for solid-state lighting to significantly displace the well-developed conventional lighting technologies. We review the potential of LED solid-state lighting to meet the long-term cost goals.

  20. METAL COMPOSITIONS

    DOE Patents [OSTI]

    Seybolt, A.U.

    1959-02-01

    Alloys of uranium which are strong, hard, and machinable are presented, These alloys of uranium contain bctween 0.1 to 5.0% by weight of at least one noble metal such as rhodium, palladium, and gold. The alloys may be heat treated to obtain a product with iniproved tensile and compression strengths,

  1. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    are also under consideration. Outside the DOE, the Environmental Protection Agency's Green Lights program promotes energy-efficient lighting as a means to reducing...

  2. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Motivation and Computation of Lighting Measures Floorspace by Lighting Equipment Configuration As described in Appendix A, for each building b, the CBECS data set has the total...

  3. Leavenworth Tree Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Join HERO for our annual Leavenworth Tree Lighting Ceremony & Shopping SATURDAY DECEMBER 12, 2015 Leavenworth Christmas Lighting Festival Visitors return year after year for some...

  4. Tips: Shopping for Lighting

    Broader source: Energy.gov [DOE]

    When shopping for lighting, you can now use the Lighting Facts label and lumens to compare bulbs and purchase a bulb with the amount of brightness you want.

  5. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    light by passing electricity through mercury vapor, which causes the fluorescent coating to glow or fluoresce. High-Efficiency Ballast (HEB): A lighting conservation feature...

  6. LED Street Lighting

    Energy Savers [EERE]

    1, 2016 LED Street Lighting The American Medical Association's (AMA) recently adopted community guidance on street lighting adds another influential voice to issues that have been ...

  7. Lighting Developments to 2030

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Frontier Research Centers: Solid-State Lighting Science Center for Frontiers of ... Twitter Google + Vimeo Newsletter Signup SlideShare Lighting Developments to 2030 Home...

  8. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    more comprehensive understanding of commercial lighting and the potential for lighting energy savings. Steps to build on this analysis can be taken in many directions. One...

  9. Exciting White Lighting

    Broader source: Energy.gov [DOE]

    Windows that emit light and are more energy efficient? Universal Display’s PHOLED technology enables windows that have transparent light-emitting diodes in them.

  10. residential-lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency Progress Report Evaluation Utility Toolkit Residential Lighting Market Research The Residential Lighting Market Research Project will estimate market savings from...