Sample records for discharge lighting metal

  1. Large area, surface discharge pumped, vacuum ultraviolet light source

    DOE Patents [OSTI]

    Sze, Robert C. (Santa Fe, NM); Quigley, Gerard P. (Los Alamos, NM)

    1996-01-01T23:59:59.000Z

    Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source. A contamination-free VUV light source having a 225 cm.sup.2 emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm.sup.2 at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing.

  2. Large area, surface discharge pumped, vacuum ultraviolet light source

    DOE Patents [OSTI]

    Sze, R.C.; Quigley, G.P.

    1996-12-17T23:59:59.000Z

    Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source is disclosed. A contamination-free VUV light source having a 225 cm{sup 2} emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm{sup 2} at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing. 3 figs.

  3. Light Emission of Argon Discharges: Importance of Heavy Particle Processes

    SciTech Connect (OSTI)

    Hartmann, Peter [Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, POB 49, H-1525 Budapest (Hungary)

    2004-12-01T23:59:59.000Z

    Simulation studies on argon glow discharges established between flat disc electrodes, at pressure x electrode separation (pd) of 45 Pa cm are reported, with special attention to heavy-particle processes including excitation-induced light emission. The discharges are investigated through self-consistent hybrid modelling, consisting of a fluid description for components near local hydrodynamic equilibrium (slow electrons and ions), and Monte Carlo treatment of energetic electrons and heavy particles (ions and neutral atoms). The light emission profiles are analyzed for a wide range of operating conditions. The numerical results for the relative intensities and the shapes of the negative glow (created by electron impact excitation) and the cathode glow (created by heavy particle impact excitation) are in good agreement with experimental data obtained by Maric et al.

  4. Metallic halide lights and lighting systems. (Latest citations from the US Patent Bibliographic file with exemplary claims). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    The bibliography contains citations of selected patents concerning the design and operation of metallic halide lights and lighting systems. High pressure, high intensity, and low wattage discharge lamps are described. Citations discuss power sources, lamp life, lamp control circuits, thermal switches, and heat reflective coatings. Applications in sport stadium lighting, vehicle headlights, and crop-lighting are included. (Contains a minimum of 170 citations and includes a subject term index and title list.)

  5. High-Intensity Discharge Lighting Basics | Department of Energy

    Energy Savers [EERE]

    lighting. Mercury vapor lamps provide about 50 lumens per watt. They cast a very cool bluegreen white light. Most indoor mercury vapor lamps in arenas and gymnasiums have been...

  6. Emission of Visible Light by Hot Dense Metals

    E-Print Network [OSTI]

    More, R.M.

    2010-01-01T23:59:59.000Z

    HIFAN 1761 EMISSION OF VISIBLE LIGHT BY HOT DENSE METALS ByDE-AC52-07NA27344. HI FAN Emission of Visible Light by HotABSTRACT We consider the emission of visible light by hot

  7. ONDES DE SPIN MAGNETISM IN THE LIGHT RARE EARTH 'METALS

    E-Print Network [OSTI]

    Boyer, Edmond

    ONDES DE SPIN MAGNETISM IN THE LIGHT RARE EARTH 'METALS A. R. MACKINTOSH H. C. Mrsted Institute terres rares Ikgeres. Abstract. -The magnetic properties of the light rare earth metals are reviewed the last decade, the magnetism of the heavy rare earth metals is now rather well understood. The magnetic

  8. Optical pumping in a microfabricated Rb vapor cell using a microfabricated Rb discharge light source

    SciTech Connect (OSTI)

    Venkatraman, V.; Kang, S.; Affolderbach, C.; Mileti, G., E-mail: gaetano.mileti@unine.ch [Laboratoire Temps-Fréquence, University of Neuchâtel, Neuchâtel 2000 (Switzerland); Shea, H. [Microsystems for Space Technologies Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel 2002 (Switzerland)

    2014-02-03T23:59:59.000Z

    Miniature (light sources. Here, we report on the demonstration of optical pumping in a microfabricated alkali vapor resonance cell using (1) a microfabricated Rb discharge lamp light source, as well as (2) a conventional glass-blown Rb discharge lamp. The microfabricated Rb lamp cell is a dielectric barrier discharge (DBD) light source, having the same inner cell volume of around 40?mm{sup 3} as that of the resonance cell, both filled with suitable buffer gases. A miniature (?2?cm{sup 3} volume) test setup based on the M{sub z} magnetometer interrogation technique was used for observation of optical-radiofrequency double-resonance signals, proving the suitability of the microfabricated discharge lamp to introduce efficient optical pumping. The pumping ability of this light source was found to be comparable to or even better than that of a conventional glass-blown lamp. The reported results indicate that the micro-fabricated DBD discharge lamp has a high potential for the development of a new class of miniature atomic clocks, magnetometers, and quantum sensors.

  9. Reliability Tools for Resonance Inspection of Light Metal Castings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tools for Resonance Inspection of Light Metal Castings 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

  10. Manufacturing and performance of ceramic/metal matrix composite electrical discharge machining electrodes

    E-Print Network [OSTI]

    Kim, Eugene Ty

    1998-01-01T23:59:59.000Z

    The manufacturing and performance of ceramic/metal matrix composite (cermet) electrical discharge machining (EDM) electrodes have been investigated. The processing techniques necessary for creating TiB2/Cu, TaC/Cu, TaC/Cu(s), TaC/CuNi, TaC/Al, Nb...

  11. Manufacturing and performance of ceramic/metal matrix composite electrical discharge machining electrodes 

    E-Print Network [OSTI]

    Kim, Eugene Ty

    1998-01-01T23:59:59.000Z

    The manufacturing and performance of ceramic/metal matrix composite (cermet) electrical discharge machining (EDM) electrodes have been investigated. The processing techniques necessary for creating TiB2/Cu, TaC/Cu, TaC/Cu(s), TaC/CuNi, TaC/Al, Nb...

  12. Investigation of ionized metal flux in enhanced high power impulse magnetron sputtering discharges

    SciTech Connect (OSTI)

    Stranak, Vitezslav, E-mail: stranak@prf.jcu.cz [Faculty of Science, University of South Bohemia, Branisovska 31, 37005 Ceske Budejovice (Czech Republic); Hubicka, Zdenek; Cada, Martin [Institute of Physics v. v. i., Academy of Science of the Czech Republic, Na Slovance 2, 182 21 Prague (Czech Republic); Drache, Steffen; Hippler, Rainer [Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, Felix-Hausdorff-Str. 6, 17489 Greifswald (Germany); Tichy, Milan [Faculty of Mathematics and Physics, Charles University in Prague, V Holesovickach 2, 180 00 Prague (Czech Republic)

    2014-04-21T23:59:59.000Z

    The metal ionized flux fraction and production of double charged metal ions Me{sup 2+} of different materials (Al, Cu, Fe, Ti) by High Power Impulse Magnetron Sputtering (HiPIMS) operated with and without a pre-ionization assistance is compared in the paper. The Electron Cyclotron Wave Resonance (ECWR) discharge was employed as the pre-ionization agent providing a seed of charge in the idle time of HiPIMS pulses. A modified grid-free biased quartz crystal microbalance was used to estimate the metal ionized flux fraction ?. The energy-resolved mass spectrometry served as a complementary method to distinguish particular ion contributions to the total ionized flux onto the substrate. The ratio between densities of doubly Me{sup 2+} and singly Me{sup +} charged metal ions was determined. It is shown that ECWR assistance enhances Me{sup 2+} production with respect of absorbed rf-power. The ECWR discharge also increases the metal ionized flux fraction of about 30% especially in the region of lower pressures. Further, the suppression of the gas rarefaction effect due to enhanced secondary electron emission of Me{sup 2+} was observed.

  13. Metal-halide perovskites for photovoltaic and light-emitting...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal-halide perovskites for photovoltaic and light-emitting devices September 15, 2015 at 4:30 pm36-428 Sam Stranks Massachusetts Institute of Technology peopleStranks...

  14. A MODULAR STEADY STATE GLOW DISCHARGE QUADRUPOLE MASS SPECTROMETER SYSTEM FOR THE AT-LINE ANALYSIS OF PLUTONIUM METAL

    SciTech Connect (OSTI)

    R. STEINER; D. WAYNE

    1998-12-01T23:59:59.000Z

    Historically, glow discharge mass and optical spectrometric techniques have been used in industry for the characterization of processed metals, such as steels and other alloys. This technique is especially well suited for this type of product analysis because the glow discharge ionization source accommodates solid conducting samples with minimal or no sample preparation. This characteristic along with minimal matrix effect considerations makes the glow discharge source well suited for these types of applications.

  15. Power consumption, discharge capacitance and light emission as measures for thrust production of dielectric barrier discharge plasma actuators

    SciTech Connect (OSTI)

    Kriegseis, J. [Institute of Fluid Mechanics and Aerodynamics, Technische Universitaet Darmstadt, Flughafenstr. 19, D-64347 Greisheim (Germany); Grundmann, S. [Center of Smart Interfaces, Technische Universitaet Darmstadt, Flughafenstr. 19, D-64347 Greisheim (Germany); Tropea, C. [Institute of Fluid Mechanics and Aerodynamics, Technische Universitaet Darmstadt, Flughafenstr. 19, D-64347 Greisheim (Germany); Center of Smart Interfaces, Technische Universitaet Darmstadt, Flughafenstr. 19, D-64347 Greisheim (Germany)

    2011-07-01T23:59:59.000Z

    A new procedure of determining the time resolved capacitance of a plasma actuator during operation is introduced, representing a simple diagnostic tool that provides insight into the phenomenological behavior of plasma actuators. The procedure is demonstrated by presenting example correlations between consumed electrical energy, size of the plasma region, and the operating voltage. It is shown that the capacitance of a plasma actuator is considerably increased by the presence of the plasma; hence a system that has previously been impedance matched can be considerably de-tuned when varying the operating voltage of the actuator. Such information is fundamental for any attempts to increase the energy efficiency of plasma-actuator systems. A combined analysis of the capacitance, light emission, size of the plasma region, force production, and power consumption is presented.

  16. Water cooled metal optics for the Advanced Light Source

    SciTech Connect (OSTI)

    McKinney, W.R.; Irick, S.C. [Lawrence Berkeley Lab., CA (United States); Lunt, D.L.J. [Tucson Optical Research Corp., AZ (United States)

    1991-10-28T23:59:59.000Z

    The program for providing water cooled metal optics for the Advanced Light Source at Berkeley is reviewed with respect to fabrication and metrology of the surfaces. Materials choices, surface figure and smoothness specifications, and metrology systems for measuring the plated metal surfaces are discussed. Results from prototype mirrors and grating blanks will be presented, which show exceptionally low microroughness and mid-period error. We will briefly describe out improved version of the Long Trace Profiler, and its importance to out metrology program. We have completely redesigned the mechanical, optical and computational parts of the profiler system with the cooperation of Peter Takacs of Brookhaven, Continental Optical, and Baker Manufacturing. Most important is that one of our profilers is in use at the vendor to allow testing during fabrication. Metrology from the first water cooled mirror for an ALS beamline is presented as an example. The preplating processing and grinding and polishing were done by Tucson Optical. We will show significantly better surface microroughness on electroless nickel, over large areas, than has been reported previously.

  17. Dialing in color with rare earth metals: facile photoluminescent production of true white light

    E-Print Network [OSTI]

    Tew, Gregory N.

    Dialing in color with rare earth metals: facile photoluminescent production of true white light of lanthanide ions which is the focus of this report. Rare earth metal complexes have relatively good Combining polymeric architectures with metal ions produces hybrid materials with extremely rich properties

  18. Radionuclides, Metals, and Hydrocarbons in Oil and Gas Operational Discharges and Environmental Samples Associated with Offshore Production Facilities on the Texas/Louisiana Continental Shelf with an Environmental Assessment of Metals and Hydrocarbons

    SciTech Connect (OSTI)

    Continental Shelf Associates, Inc.

    1999-08-16T23:59:59.000Z

    This report presents concentrations of radionuclides, metals, and hydrocarbons in samples of produced water and produced sand from oil and gas production platforms located offshore Texas and Louisiana. Concentrations in produced water discharge plume/receiving water, ambient seawater, sediment, interstitial water, and marine animal tissue samples collected in the vicinity of discharging platforms and reference sites distant from discharges are also reported and discussed. An environmental risk assessment is made on the basis of the concentrations of metals and hydrocarbons determined in the samples.

  19. Radionuclides, Metals, and Hydrocarbons in Oil and Gas Operational Discharges and Environmental Samples Associated with Offshore Production Facilities on the Texas/Louisiana Continental Shelf with an Environmental Assessment of Metals and Hydrocarbons.

    SciTech Connect (OSTI)

    NONE

    1997-06-01T23:59:59.000Z

    This report presents concentrations of radionuclides, metals, and hydrocarbons in samples of produced water and produced sand from oil and gas production platforms located offshore Texas and Louisiana. concentrations in produced water discharge plume / receiving water, ambient seawater, sediment, interstitial water, and marine animal tissue samples collected in the vicinity of discharging platforms and reference sites distant from discharges are also reported and discussed. An environmental risk assessment is made on the basis of the concentration of metals and hydrocarbons determined in the samples.

  20. Investigation of a moly-oxide electrodeless discharge for lighting applications

    SciTech Connect (OSTI)

    Giuliani, J.L.; Meger, R.A.; Pechacek, R.E.; Hinshelwood, D.D.; Shamamian, V.; Butler, J.E.

    1999-07-01T23:59:59.000Z

    Due to the hazardous material designation of spent fluorescent bulbs on board naval vessels, the Naval Research Laboratory has been investigating alternative lighting concepts which are free of mercury. The ideal goal is an efficient, large volume source, which provides white light directly without the use of a phosphor coating. Experiments with a {mu}wave plasma reactor normally used to diamond growth at {approximately}40 Torr revealed that a combination of O{sub 2}, N{sub 2}, and a heated molybdenum puck led to intense plasma emission in the visible domain. As the reactor was not designed for lighting studies, the authors have been investigating the process in glass tubes with a re-entry geometry and RF driven coils. Results will be presented on the initial discovery, the role of moly-oxide in surface evaporation, and the favorable emission spectrum of atomic molybdenum for visible light. Initial studies of the RF system, including coil design, measured electron density, B-dot measurements, E-to-H transitions, and spectroscopic analysis of various compositions will also be discussed. Finally, the essential problem of a recycling process for the moly emitters from the glass walls back to the moderate pressure plasma using chlorine will be addressed.

  1. Light induced electron transfer reactions of metal complexes

    SciTech Connect (OSTI)

    Sutin, N.; Creutz, C.

    1980-01-01T23:59:59.000Z

    Properties of the excited states of tris(2,2'-bipyridine) and tris(1,10-phenanthroline) complexes of chromium(III), iron(II), ruthenium(II), osmium(II), rhodium(III), and iridium(III) are described. The electron transfer reactions of the ground and excited states are discussed and interpreted in terms of the driving force for the reaction and the distortions of the excited states relative to the corresponding ground states. General considerations relevant to the conversion of light into chemical energy are presented and progress in the use of polypyridine complexes to effect the light decomposition of water into hydrogen and oxygen is reviewed.

  2. Tritium production from a low voltage deuterium discharge on palladium and other metals

    SciTech Connect (OSTI)

    Claytor, T.N.; Jackson, D.D.; Tuggle, D.G.

    1995-09-01T23:59:59.000Z

    Over the past year the authors have been able to demonstrate that a plasma loading method produces an exciting and unexpected amount of tritium from small palladium wires. In contrast to electrochemical hydrogen or deuterium loading of palladium, this method yields a reproducible tritium generation rate when various electrical and physical conditions are met. Small diameter wires (100--250 microns) have been used with gas pressures above 200 torr at voltages and currents of about 2,000 V at 3--5 A. By carefully controlling the sputtering rate of the wire, runs have been extended to hundreds of hours allowing a significant amount (> 10`s nCi) of tritium to accumulate. they show tritium generation rates for deuterium-palladium foreground runs that are up to 25 times larger than hydrogen-palladium control experiments using materials from the same batch. They illustrate the difference between batches of annealed palladium and as received palladium from several batches as well as the effect of other metals (Pt, Ni, Nb, Zr, V, W, Hf) to demonstrate that the tritium generation rate can vary greatly from batch to batch.

  3. Effect of plasmonic losses on light emission enhancement in quantum-wells coupled to metallic gratings

    SciTech Connect (OSTI)

    Sadi, Toufik; Oksanen, Jani; Tulkki, Jukka [Department of Biomedical Engineering and Computational Sciences, Aalto University, P.O. Box 12200, FI-00076 Aalto (Finland)

    2013-12-14T23:59:59.000Z

    Recent experimental work has shown significant luminescence enhancement from near-surface quantum-well (QW) structures using metallic grating to convert surface plasmon (SP) modes into radiative modes. This work introduces a detailed theoretical study of plasmonic losses and the role of SPs in improving light extraction from grated light-emitting QW structures, using the fluctuational electrodynamics method. The method explains experimental results demonstrating emission enhancement, light scattering, and plasmonic coupling in the structures. We study these effects in angle-resolved reflectometry and luminescence setups in InGaN QW structures with silver grating. In contrast to experiments, our model allows direct calculation of the optical losses. The model predicts that the plasmonic coupling and scattering increases light emission by a factor of up to three compared to a flat semiconductor structure. This corresponds to reducing the absorption losses from approximately 93% in the ungrated metallic structure to 75% in the grated structure. Lower losses are associated with a significant emission enhancement enabled by the SPs of silver/GaN interfaces, which are present in the blue/green wavelength range, and can be optimized by carefully nanostructuring the metal layer and by the positioning of the QW. In general, the enhancement results from the interplay of mode scattering, conversion of SP energy directly into light, and losses in the metallic grating. The reported losses are very high when compared to the losses present in modern light-emitting diodes (LEDs). Albeit, our work provides tools needed for further optimization of plasmonic light extraction, eventually leading to highly efficient LEDs.

  4. Metal-black scattering centers to enhance light harvesting by thin-film solar cells

    E-Print Network [OSTI]

    Peale, Robert E.

    Metal-black scattering centers to enhance light harvesting by thin-film solar cells Deep Panjwania as scattering centers to increase the effective optical thickness of thin-film solar cells. The particular type. Gold-black was deposited on commercial thin-film solar cells using a thermal evaporator in nitrogen

  5. Photoelectron Emission from Metal Surfaces Induced by VUV-emission of Filament Driven Hydrogen Arc Discharge Plasma

    E-Print Network [OSTI]

    Laulainen, J; Koivisto, H; Komppula, J; Tarvainen, O

    2015-01-01T23:59:59.000Z

    Photoelectron emission measurements have been performed using a filament-driven multi-cusp arc discharge volume production H^- ion source (LIISA). It has been found that photoelectron currents obtained with Al, Cu, Mo, Ta and stainless steel (SAE 304) are on the same order of magnitude. The photoelectron currents depend linearly on the discharge power. It is shown experimentally that photoelectron emission is significant only in the short wavelength range of hydrogen spectrum due to the energy dependence of the quantum efficiency. It is estimated from the measured data that the maximum photoelectron flux from plasma chamber walls is on the order of 1 A per kW of discharge power.

  6. Design of Optical Metamaterial Mirror with Metallic Nanoparticles for Broadband Light Absorption in Graphene Optoelectronic Devices

    E-Print Network [OSTI]

    Lee, Seungwoo

    2015-01-01T23:59:59.000Z

    A general metallic mirror (i.e., a flat metallic surface) has been a popular optical component that can contribute broadband light absorption to thin-film optoelectronic devices; nonetheless, such electric mirror with a reversal of reflection phase inevitably causes the problem of minimized electric field near at the mirror surface (maximized electric field at one quarter of wavelength from mirror). This problem becomes more elucidated, when the deep-subwavelength-scaled two-dimensional (2D) material (e.g., graphene and molybdenum disulfide) is implemented into optoelectronic device as an active channel layer. The purpose of this work was to conceive the idea for using a charge storage layer (spherical Au nanoparticles (AuNPs), embedded into dielectric matrix) of the floating-gate graphene photodetector as a magnetic mirror, which allows the device to harness the increase in broadband light absorption. In particular, we systematically examined whether the versatile assembly of spherical AuNP monolayer within ...

  7. A MEMS-enabled 3D zincair microbattery with improved discharge characteristics based on a multilayer metallic substructure

    E-Print Network [OSTI]

    , zinc­air batteries are good candidates for the previously mentioned miniaturized applications. Commercially available zinc­air batteries utilize Zn powder for the anode electrode, achieving high surfaceA MEMS-enabled 3D zinc­air microbattery with improved discharge characteristics based

  8. METALLICITY AS A SOURCE OF DISPERSION IN THE SNIa BOLOMETRIC LIGHT CURVE LUMINOSITY-WIDTH RELATIONSHIP

    SciTech Connect (OSTI)

    Bravo, E. [Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Carrer Comte d'Urgell 187, 08036 Barcelona (Spain); DomInguez, I. [Departamento de Fisica Teorica y del Cosmos, Universidad de Granada, 18071 Granada (Spain); Badenes, C. [Benoziyo Center for Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Piersanti, L.; Straniero, O. [INAF-Osservatorio Astronomico di Teramo, via mentore Maggini snc, 64100 Teramo (Italy)], E-mail: eduardo.bravo@upc.edu, E-mail: inma@ugr.es, E-mail: carles@wise.tau.ac.il

    2010-03-10T23:59:59.000Z

    The recognition that the metallicity of Type Ia supernova (SNIa) progenitors might bias their use for cosmological applications has led to an increasing interest in its role in shaping SNIa light curves. We explore the sensitivity of the synthesized mass of {sup 56}Ni, M({sup 56}Ni), to the progenitor metallicity starting from pre-main-sequence models with masses M {sub 0} = 2-7 M {sub sun} and metallicities Z = 10{sup -5}-0.10. The interplay between convective mixing and carbon burning during the simmering phase eventually raises the neutron excess, {eta}, and leads to a smaller {sup 56}Ni yield, but does not change substantially the dependence of M({sup 56}Ni) on Z. Uncertain attributes of the progenitor white dwarf, like the central density, have a minor effect on M({sup 56}Ni). Our main results are: (1) a sizeable amount of {sup 56}Ni is synthesized during incomplete Si-burning, which leads to a stronger dependence of M({sup 56}Ni) on Z than obtained by assuming that {sup 56}Ni is produced in material that burns fully to nuclear statistical equilibrium; (2) in one-dimensional delayed detonation simulations a composition dependence of the deflagration-to-detonation transition (DDT) density gives a nonlinear relationship between M({sup 56}Ni) and Z and predicts a luminosity larger than previously thought at low metallicities (however, the progenitor metallicity alone cannot explain the whole observational scatter of SNIa luminosities); and (3) an accurate measurement of the slope of the Hubble residuals versus metallicity for a large enough data set of SNIa might give clues to the physics of DDT in thermonuclear explosions.

  9. Insights for aging management of light water reactor components: Metal containments. Volume 5

    SciTech Connect (OSTI)

    Shah, V.N.; Sinha, U.P. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Smith, S.K. [Ogden Environmental and Energy Services, Southfield, MI (United States)

    1994-03-01T23:59:59.000Z

    This report evaluates the available technical information and field experience related to management of aging damage to light water reactor metal containments. A generic aging management approach is suggested for the effective and comprehensive aging management of metal containments to ensure their safe operation. The major concern is corrosion of the embedded portion of the containment vessel and detection of this damage. The electromagnetic acoustic transducer and half-cell potential measurement are potential techniques to detect corrosion damage in the embedded portion of the containment vessel. Other corrosion-related concerns include inspection of corrosion damage on the inaccessible side of BWR Mark I and Mark II containment vessels and corrosion of the BWR Mark I torus and emergency core cooling system piping that penetrates the torus, and transgranular stress corrosion cracking of the penetration bellows. Fatigue-related concerns include reduction in the fatigue life (a) of a vessel caused by roughness of the corroded vessel surface and (b) of bellows because of any physical damage. Maintenance of surface coatings and sealant at the metal-concrete interface is the best protection against corrosion of the vessel.

  10. Coupling mid-infrared light from a photonic crystal waveguide to metallic transmission lines

    SciTech Connect (OSTI)

    Blanco-Redondo, Andrea, E-mail: andrea.blanco@tecnalia.com, E-mail: r.hillenbrand@nanogune.eu [ICT-European Software Institute Division, Tecnalia, Ibaizabal Bidea, Ed. 202, 48170 Zamudio, Bizkaia (Spain) [ICT-European Software Institute Division, Tecnalia, Ibaizabal Bidea, Ed. 202, 48170 Zamudio, Bizkaia (Spain); Dpto. Electronica y Telecom., E.T.S. Ingeniería Bilbao, UPV/EHU, Alda. Urquijo, 48103 Bilbao, Bizkaia (Spain); Sarriugarte, Paulo [Nanooptics Group, CIC nanoGUNE Consolider, 20018 Donostia–San Sebastian, Gipuzkoa (Spain)] [Nanooptics Group, CIC nanoGUNE Consolider, 20018 Donostia–San Sebastian, Gipuzkoa (Spain); Garcia-Adeva, Angel [Dpto. Fisica Aplicada I, E.T.S. Ingeniería de Bilbao, UPV-EHU, Alda. Urquijo, 48103 Bilbao, Bizkaia (Spain)] [Dpto. Fisica Aplicada I, E.T.S. Ingeniería de Bilbao, UPV-EHU, Alda. Urquijo, 48103 Bilbao, Bizkaia (Spain); Zubia, Joseba [Dpto. Electronica y Telecom., E.T.S. Ingeniería Bilbao, UPV/EHU, Alda. Urquijo, 48103 Bilbao, Bizkaia (Spain)] [Dpto. Electronica y Telecom., E.T.S. Ingeniería Bilbao, UPV/EHU, Alda. Urquijo, 48103 Bilbao, Bizkaia (Spain); Hillenbrand, Rainer, E-mail: andrea.blanco@tecnalia.com, E-mail: r.hillenbrand@nanogune.eu [Nanooptics Group, CIC nanoGUNE Consolider, 20018 Donostia–San Sebastian, Gipuzkoa (Spain) [Nanooptics Group, CIC nanoGUNE Consolider, 20018 Donostia–San Sebastian, Gipuzkoa (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Bizkaia (Spain)

    2014-01-06T23:59:59.000Z

    We propose and theoretically study a hybrid structure consisting of a photonic crystal waveguide (PhC-wg) and a two-wire metallic transmission line (TL), engineered for efficient transfer of mid-infrared (mid-IR) light between them. An efficiency of 32% is obtained for the coupling from the transverse magnetic (TM) photonic mode to the symmetric mode of the TL, with a predicted intensity enhancement factor of 53 at the transmission line surface. The strong coupling is explained by the small phase velocity mismatch and sufficient spatial overlapping between the modes. This hybrid structure could find applications in highly integrated mid-IR photonic-plasmonic devices for biological and gas sensing, among others.

  11. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Light Metals Permanent Mold Casting

    SciTech Connect (OSTI)

    Fasoyinu, Yemi [CanmetMATERIALS] [CanmetMATERIALS

    2014-03-31T23:59:59.000Z

    Current vehicles use mostly ferrous components for structural applications. It is possible to reduce the weight of the vehicle by substituting these parts with those made from light metals such as aluminum and magnesium. Many alloys and manufacturing processes can be used to produce these light metal components and casting is known to be most economical. One of the high integrity casting processes is permanent mold casting which is the focus of this research report. Many aluminum alloy castings used in automotive applications are produced by the sand casting process. Also, aluminum-silicon (Al-Si) alloys are the most widely used alloy systems for automotive applications. It is possible that by using high strength aluminum alloys based on an aluminum-copper (Al-Cu) system and permanent mold casting, the performance of these components can be enhanced significantly. This will also help to further reduce the weight. However, many technological obstacles need to be overcome before using these alloys in automotive applications in an economical way. There is very limited information in the open literature on gravity and low-pressure permanent mold casting of high strength aluminum alloys. This report summarizes the results and issues encountered during the casting trials of high strength aluminum alloy 206.0 (Al-Cu alloy) and moderate strength alloy 535.0 (Al-Mg alloy). Five engineering components were cast by gravity tilt-pour or low pressure permanent mold casting processes at CanmetMATERIALS (CMAT) and two production foundries. The results of the casting trials show that high integrity engineering components can be produced successfully from both alloys if specific processing parameters are used. It was shown that a combination of melt processing and mold temperature is necessary for the elimination of hot tears in both alloys.

  12. Effects of metallic absorption and the corrugated layer on the optical extraction efficiency of organic light-emitting diodes

    E-Print Network [OSTI]

    Lee, Baek-Woon

    2011-01-01T23:59:59.000Z

    The absorption of a metallic cathode in OLEDs is analyzed by using FDTD calculation. As the light propagates parallel to the layer, the intensity of Ez polarization decreases rapidly. The intensity at 2.0 um from the dipole is less than a quarter of that at 0.5 um. The strong absorption by a cathode can be a critical factor when considering the increase of optical extraction by means of bending the optical layers. The calculation indicates that the corrugation of layers helps the guided light escape the guiding layer, but also increases the absorption into a metallic cathode. The final optical output power of the corrugated OLED can be smaller than that of the flat OLED. On the contrary, the corrugated structure with a non-absorptive cathode increases the optical extraction by nearly two times.

  13. Environmental and health aspects of lighting: Mercury

    SciTech Connect (OSTI)

    Clear, R.; Berman, S.

    1993-07-01T23:59:59.000Z

    Most discharge lamps, including fluorescent lamps, metal halide lamps, and high pressure sodium lamps, contain Mercury, a toxic chemical. Lighting professionals need to be able to respond to questions about the direct hazards of Mercury from accidentally breaking lamps, and the potential environmental hazards of lamp operation and disposal. We calculated the exposures that could occur from an accidental breakage of lamps. Acute poisoning appears almost impossible. Under some circumstances a sealed environment, such as a space station, could be contaminated enough to make it unhealthy for long-term occupation. Mercury becomes a potential environmental hazard after it becomes methylated. Mercury is methylated in aquatic environments, where it may accumulate in fish, eventually rendering them toxic to people and other animals. Lighting causes Mercury to enter the environment directly from lamp disposal, and indirectly from power plant emissions. The environmental tradeoffs between incandescent and discharge lamps depend upon the amounts released by these two sources, their local concentrations, and their probabilities of being methylated. Indirect environmental effects of lighting also include the release of other heavy metals (Cadmium, Lead and Arsenic), and other air pollutants and carbon dioxide that are emitted by fossil fuel power plants. For a given light output, the level of power plant emissions depends upon the efficacy of the light source, and is thus much larger for incandescent lamps than for fluorescent or discharge lamps. As disposal and control technologies change the relative direct and indirect emissions from discharge and incandescent lamps will change.

  14. Enhanced luminance of organic light-emitting diodes with metal nanoparticle electron injection layer

    E-Print Network [OSTI]

    Liu, Deang; Fina, Michael; Ren, Li; Mao, Samuel S.

    2009-01-01T23:59:59.000Z

    electron injection and luminance characteristics. The small009-5199-x Enhanced luminance of organic light-emittinglayer. Improved current and luminance characteristics were

  15. Computational screening of perovskite metal oxides for optimal solar light Ivano E. Castelli,a

    E-Print Network [OSTI]

    Thygesen, Kristian

    of solar light to electrical energy in photovoltaic (PV) cells or to chemical energy using first principles quantum mechanical calcu- lations. Examples include the development of battery

  16. Metal-fueled HWR (heavy water reactors) severe accident issues: Differences and similarities to commercial LWRs (light water reactors)

    SciTech Connect (OSTI)

    Ellison, P.G.; Hyder, M.L.; Monson, P.R. (Westinghouse Savannah River Co., Aiken, SC (USA)); Coryell, E.W. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1990-01-01T23:59:59.000Z

    Differences and similarities in severe accident progression and phenomena between commercial Light Water Reactors (LWR) and metal-fueled isotopic production Heavy Water Reactors (HWR) are described. It is very important to distinguish between accident progression in the two systems because each reactor type behaves in a unique manner to a fuel melting accident. Some of the lessons learned as a result of the extensive commercial severe accident research are not applicable to metal-fueled heavy water reactors. A direct application of severe accident phenomena developed from oxide-fueled LWRs to metal-fueled HWRs may lead to large errors or substantial uncertainties. In general, the application of severe accident LWR concepts to HWRs should be done with the intent to define the relevant issues, define differences, and determine areas of overlap. This paper describes the relevant differences between LWR and metal-fueled HWR severe accident phenomena. Also included in the paper is a description of the phenomena that govern the source term in HWRs, the areas where research is needed to resolve major uncertainties, and areas in which LWR technology can be directly applied with few modifications.

  17. Journal of Light Emitting Diodes Vol 2 N0 1, April 2010 1 Abstract--In metal organic vapor phase epitaxy we developed

    E-Print Network [OSTI]

    Wetzel, Christian M.

    Journal of Light Emitting Diodes Vol 2 N0 1, April 2010 1 Abstract-- In metal organic vapor phase epitaxy we developed GaInN/GaN quantum well material suitable for 500 ­ 580 nm light emitting diodes at longer wavelengths. Index Terms-- a-plane GaN, GaInN, Green light emitting diode, m-plane GaN I

  18. Discharge cell for ozone generator

    DOE Patents [OSTI]

    Nakatsuka, Suguru (Amagasaki, JP)

    2000-01-01T23:59:59.000Z

    A discharge cell for use in an ozone generator is provided which can suppress a time-related reduction in ozone concentration without adding a catalytic gas such as nitrogen gas to oxygen gas as a raw material gas. The discharge cell includes a pair of electrodes disposed in an opposed spaced relation with a discharge space therebetween, and a dielectric layer of a three-layer structure consisting of three ceramic dielectric layers successively stacked on at least one of the electrodes, wherein a first dielectric layer of the dielectric layer contacting the one electrode contains no titanium dioxide, wherein a second dielectric layer of the dielectric layer exposed to the discharge space contains titanium dioxide in a metal element ratio of not lower than 10 wt %.

  19. Light-Induced Metal-Insulator Transition in a Switchable Mirror

    SciTech Connect (OSTI)

    Hoekstra, A. F. Th.; Roy, A. S.; Rosenbaum, T. F.; Griessen, R.; Wijngaarden, R. J.; Koeman, N. J.

    2001-06-04T23:59:59.000Z

    Rare earth hydride films can be converted reversibly from metallic mirrors to insulating windows simply by changing the surrounding hydrogen gas pressure at room temperature. At low temperatures, in situ doping is not possible in this way as hydrogen cannot diffuse. However, our finding of persistent photoconductivity under ultraviolet illumination offers an attractive possibility to tune yttrium hydride through the T=0 metal-insulator transition. Conductivity and Hall measurements are used to determine critical exponents. The unusually large value for the product of the static and dynamical critical exponents appears to signify the important role played by electron-electron interactions.

  20. Environmental constituents of Electrical Discharge Machining

    E-Print Network [OSTI]

    Cho, Margaret H. (Margaret Hyunjoo), 1982-

    2004-01-01T23:59:59.000Z

    Electrical Discharge Machining (EDM) is a non-traditional process that uses no mechanical forces to machine metals. It is extremely useful in machining hard materials. With the advantages EDM has to offer and its presence ...

  1. Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us countLighting Sign In About | Careers |

  2. Two dimensional metallic photonic crystals for light trapping and anti-reflective coatings in thermophotovoltaic applications

    SciTech Connect (OSTI)

    Shemelya, Corey; DeMeo, Dante F.; Vandervelde, Thomas E. [The Renewable Energy and Applied Photonics Laboratories, Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155 (United States)

    2014-01-13T23:59:59.000Z

    We report the development of a front-side contact design for thermophotovoltaics that utilizes metallic photonic crystals (PhCs). While this front-side grid replacement covers more surface area of the semiconductor, a higher percentage of photons is shown to be converted to usable power in the photodiode. This leads to a 30% increase in the short-circuit current of the gallium antimonide thermophotovoltaic cell.

  3. Powerful glow discharge excilamp

    DOE Patents [OSTI]

    Tarasenko, Victor F. (Tomsk, RU); Panchenko, Aleksey N. (Tomsk, RU); Skakun, Victor S. (Tomsk, RU); Sosnin, Edward A. (Tomsk, RU); Wang, Francis T. (Danville, CA); Myers, Booth R. (Livermore, CA); Adamson, Martyn G. (Danville, CA)

    2002-01-01T23:59:59.000Z

    A powerful glow discharge lamp comprising two coaxial tubes, the outer tube being optically transparent, with a cathode and anode placed at opposite ends of the tubes, the space between the tubes being filled with working gas. The electrodes are made as cylindrical tumblers placed in line to one other in such a way that one end of the cathode is inserted into the inner tube, one end of the anode coaxially covers the end of the outer tube, the inner tube penetrating and extending through the anode. The increased electrodes' surface area increases glow discharge electron current and, correspondingly, average radiation power of discharge plasma. The inner tube contains at least one cooling liquid tube placed along the axis of the inner tube along the entire lamp length to provide cathode cooling. The anode has a circumferential heat extracting radiator which removes heat from the anode. The invention is related to lighting engineering and can be applied for realization of photostimulated processes under the action of powerful radiation in required spectral range.

  4. The dynamic behavior of thin-film ionic transition metal complex-based light-emitting electrochemical cells

    SciTech Connect (OSTI)

    Meier, Sebastian B., E-mail: sebastian.meier@belectric.com, E-mail: wiebke.sarfert@siemens.com [Department of Materials Science VI: Materials for Electronics and Energy Technology, Friedrich-Alexander-University of Erlangen-Nuremberg, 91058 Erlangen (Germany); Siemens AG, Corporate Technology, CT RTC MAT IEC-DE, 91058 Erlangen (Germany); Hartmann, David; Sarfert, Wiebke, E-mail: sebastian.meier@belectric.com, E-mail: wiebke.sarfert@siemens.com [Siemens AG, Corporate Technology, CT RTC MAT IEC-DE, 91058 Erlangen (Germany); Winnacker, Albrecht [Department of Materials Science VI: Materials for Electronics and Energy Technology, Friedrich-Alexander-University of Erlangen-Nuremberg, 91058 Erlangen (Germany)

    2014-09-14T23:59:59.000Z

    Light-emitting electrochemical cells (LECs) have received increasing attention during recent years due to their simple architecture, based on solely air-stabile materials, and ease of manufacture in ambient atmosphere, using solution-based technologies. The LEC's active layer offers semiconducting, luminescent as well as ionic functionality resulting in device physical processes fundamentally different as compared with organic light-emitting diodes. During operation, electrical double layers (EDLs) form at the electrode interfaces as a consequence of ion accumulation and electrochemical doping sets in leading to the in situ development of a light-emitting p-i-n junction. In this paper, we comment on the use of impedance spectroscopy in combination with complex nonlinear squares fitting to derive key information about the latter events in thin-film ionic transition metal complex-based light-emitting electrochemical cells based on the model compound bis-2-phenylpyridine 6-phenyl-2,2?-bipyridine iridium(III) hexafluoridophosphate ([Ir(ppy){sub 2}(pbpy)][PF{sub 6}]). At operating voltages below the bandgap potential of the ionic complex used, we obtain the dielectric constant of the active layer, the conductivity of mobile ions, the transference numbers of electrons and ions, and the thickness of the EDLs, whereas the transient thickness of the p-i-n junction is determined at voltages above the bandgap potential. Most importantly, we find that charge transport is dominated by the ions when carrier injection from the electrodes is prohibited, that ion movement is limited by the presence of transverse internal interfaces and that the width of the intrinsic region constitutes almost 60% of the total active layer thickness in steady state at a low operating voltage.

  5. ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition

    SciTech Connect (OSTI)

    Xu, W.Z.; Ye, Z.Z.; Zeng, Y.J.; Zhu, L.P.; Zhao, B.H.; Jiang, L.; Lu, J.G.; He, H.P.; Zhang, S.B. [State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)

    2006-04-24T23:59:59.000Z

    We report a breakthrough in fabricating ZnO homojunction light-emitting diode by metal organic chemical vapor deposition. Using NO plasma, we are able to grow p-type ZnO thin films on n-type bulk ZnO substrates. The as-grown films on glass substrates show hole concentration of 10{sup 16}-10{sup 17} cm{sup -3} and mobility of 1-10 cm{sup 2} V{sup -1} s{sup -1}. Room-temperature photoluminescence spectra reveal nitrogen-related emissions. A typical ZnO homojunction shows rectifying behavior with a turn-on voltage of about 2.3 V. Electroluminescence at room temperature has been demonstrated with band-to-band emission at I=40 mA and defect-related emissions in the blue-yellow spectrum range.

  6. Impact of Fuel Metal Impurities on the Durability of a Light-Duty Diesel Aftertreatment System

    SciTech Connect (OSTI)

    Williams, A.; Burton, J.; McCormick, R. L.; Toops, T.; Wereszczak, A. A.; Fox, E. E.; Lance, M. J.; Cavataio, G.; Dobson, D.; Warner, J.; Brezny, R.; Nguyen, K.; Brookshear, D. W.

    2013-04-01T23:59:59.000Z

    Alkali and alkaline earth metal impurities found in diesel fuels are potential poisons for diesel exhaust catalysts. A set of diesel engine production exhaust systems was aged to 150,000 miles. These exhaust systems included a diesel oxidation catalyst, selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF). Four separate exhaust systems were aged, each with a different fuel: ultralow sulfur diesel containing no measureable metals, B20 (a common biodiesel blend) containing sodium, B20 containing potassium, and B20 containing calcium, which were selected to simulate the maximum allowable levels in B100 according to ASTM D6751. Analysis included Federal Test Procedure emissions testing, bench-flow reactor testing of catalyst cores, electron probe microanalysis (EPMA), and measurement of thermo-mechanical properties of the DPFs. EPMA imaging found that the sodium and potassium penetrated into the washcoat, while calcium remained on the surface. Bench-flow reactor experiments were used to measure the standard nitrogen oxide (NOx) conversion, ammonia storage, and ammonia oxidation for each of the aged SCR catalysts. Vehicle emissions tests were conducted with each of the aged catalyst systems using a chassis dynamometer. The vehicle successfully passed the 0.2 gram/mile NOx emission standard with each of the four aged exhaust systems.

  7. J. Phys. III IYance 7 (1997) 927-936 APRIL 1997, PAGE 927 A Stable Discharge Glow in Gas Discharge System with

    E-Print Network [OSTI]

    Boyer, Edmond

    1997-01-01T23:59:59.000Z

    have been stud- ied in a wide range of the gas pressure p (21.3-466.5 hPa) and of interJ. Phys. III IYance 7 (1997) 927-936 APRIL 1997, PAGE 927 A Stable Discharge Glow in Gas Discharge.40.Sx Metal-semiconductor-metal structures Abstract. A dc discharge generated between parallel plate

  8. Wastewater Discharge Program (Maine)

    Broader source: Energy.gov [DOE]

    The wastewater discharge regulations require that a license be obtained for the discharge of wastewater to a stream, river, wetland, or lake of the state, or to the ocean. Typical discharges...

  9. Constricted glow discharge plasma source

    DOE Patents [OSTI]

    Anders, Andre (Albany, CA); Anders, Simone (Albany, CA); Dickinson, Michael (San Leandro, CA); Rubin, Michael (Berkeley, CA); Newman, Nathan (Winnetka, IL)

    2000-01-01T23:59:59.000Z

    A constricted glow discharge chamber and method are disclosed. The polarity and geometry of the constricted glow discharge plasma source is set so that the contamination and energy of the ions discharged from the source are minimized. The several sources can be mounted in parallel and in series to provide a sustained ultra low source of ions in a plasma with contamination below practical detection limits. The source is suitable for applying films of nitrides such as gallium nitride and oxides such as tungsten oxide and for enriching other substances in material surfaces such as oxygen and water vapor, which are difficult process as plasma in any known devices and methods. The source can also be used to assist the deposition of films such as metal films by providing low-energy ions such as argon ions.

  10. Low-Pressure Sodium Lighting Basics

    Broader source: Energy.gov [DOE]

    Low-pressure sodium lighting provides more energy-efficient outdoor lighting than high-intensity discharge lighting, but it has very poor color rendition. Typical applications include highway and security lighting, where color is not important.

  11. Potential Environmental Impacts from the Metals in Incandescent, Compact Fluorescent Lamp (CFL), and Light-Emitting Diode (LED)

    E-Print Network [OSTI]

    Short, Daniel

    the lighting products are to be categorized as hazardous waste under existing U.S. federal and California state in lighting products without compromising their performance and useful lifespan. INTRODUCTION The U.S. Energy to increase energy efficiency for general lighting. Therefore, consumers are replacing incandescent light

  12. Surface plasmon dispersion engineering via double-metallic AU/AG layers for nitride light-emitting diodes

    DOE Patents [OSTI]

    Tansu, Nelson; Zhao, Hongping; Zhang, Jing; Liu, Guangyu

    2014-04-01T23:59:59.000Z

    A double-metallic deposition process is used whereby adjacent layers of different metals are deposited on a substrate. The surface plasmon frequency of a base layer of a first metal is tuned by the surface plasmon frequency of a second layer of a second metal formed thereon. The amount of tuning is dependent upon the thickness of the metallic layers, and thus tuning can be achieved by varying the thicknesses of one or both of the metallic layers. In a preferred embodiment directed to enhanced LED technology in the green spectrum regime, a double-metallic Au/Ag layer comprising a base layer of gold (Au) followed by a second layer of silver (Ag) formed thereon is deposited on top of InGaN/GaN quantum wells (QWs) on a sapphire/GaN substrate.

  13. Lighting Options for Homes.

    SciTech Connect (OSTI)

    Baker, W.S.

    1991-04-01T23:59:59.000Z

    This report covers many aspects of various lighting options for homes. Types of light sources described include natural light, artificial light, incandescent lamps, fluorescent lamps, and high intensity discharge lamps. A light source selection guide gives the physical characteristics of these, design considerations, and common applications. Color, strategies for efficient lighting, and types of lighting are discussed. There is one section giving tips for various situations in specific rooms. Rooms and types of fixtures are shown on a matrix with watts saved by using the recommended type lighting for that room and room location. A major emphasis of this report is saving energy by utilizing the most suitable, recommended lighting option. (BN)

  14. Direct Discharge Permit (Vermont)

    Broader source: Energy.gov [DOE]

    A direct discharge permit is required if a project involves the discharge of pollutants to state waters. For generation purposes, this involves the withdrawal of surface water for cooling purposes...

  15. Enhanced visible-light absorption of mesoporous TiO2 by co-doping with transition-metal/nitrogen ions

    SciTech Connect (OSTI)

    Mathis, John [Embry-Riddle Aeronautical University; Bi, Zhonghe [ORNL; Bridges, Craig A [ORNL; Kidder, Michelle [ORNL; Paranthaman, Mariappan Parans [ORNL

    2013-01-01T23:59:59.000Z

    Titanium (IV) oxide, TiO2, has been the object of intense scrutiny for energy applications. TiO2 is inexpensive, non-toxic, and has excellent corrosion resistance when exposed to electrolytes. A major drawback preventing the widespread use TiO2 for photolysis is its relatively large band gap of ~3eV. Only light with wavelengths shorter than 400 nm, which is in the ultraviolet portion of the spectrum, has sufficient energy to be absorbed. Less than 14 percent of the solar irradiation reaching the earth s surface has energy exceeding this band gap. Adding dopants such as transition metals has long been used to reduce the gap and increase photocatalytic activity by accessing the visible part of the solar spectrum. The degree to which the band gap is reduced using transition metals depends in part on the overlap of the d-orbitals of the transition metals with the oxygen p-orbitals. Therefore, doping with anions such as nitrogen to modify the cation-anion orbital overlap is another approach to reduce the gap. Recent studies suggest that using a combination of transition metals and nitrogen as dopants is more effective at introducing intermediate states within the band gap, effectively narrowing it. Here we report the synthesis of mesoporous TiO2 spheres, co-doped with transition metals and nitrogen that exhibit a nearly flat absorbance response across the visible spectrum extending into the near infrared.

  16. New Light Sources for Tomorrow's Lighting Designs

    E-Print Network [OSTI]

    Krailo, D. A.

    can ever be saved on that monthly energy bill. During the past several years, many new light sources have been developed and introduced. These product introductions have not been limited to anyone lamp type, but instead may be found in fila ment..., fluorescent and high intensity discharge lamp families. Man , ufacturers of light sources have two basic goals for new product development. These goals are high efficiency lighting and improved colo'r rendering properties. High efficiency lighting may take...

  17. Discharge lamp with reflective jacket

    DOE Patents [OSTI]

    MacLennan, Donald A. (Gaithersburg, MD); Turner, Brian P. (Damascus, MD); Kipling, Kent (Gaithersburg, MD)

    2001-01-01T23:59:59.000Z

    A discharge lamp includes an envelope, a fill which emits light when excited disposed in the envelope, a source of excitation power coupled to the fill to excite the fill and cause the fill to emit light, and a reflector disposed around the envelope and defining an opening, the reflector being configured to reflect some of the light emitted by the fill back into the fill while allowing some light to exit through the opening. The reflector may be made from a material having a similar thermal index of expansion as compared to the envelope and which is closely spaced to the envelope. The envelope material may be quartz and the reflector material may be either silica or alumina. The reflector may be formed as a jacket having a rigid structure which does not adhere to the envelope. The lamp may further include an optical clement spaced from the envelope and configured to reflect an unwanted component of light which exited the envelope back into the envelope through the opening in the reflector. Light which can be beneficially recaptured includes selected wavelength regions, a selected polarization, and selected angular components.

  18. Efficient Light Sources Today

    E-Print Network [OSTI]

    Hart, A. L.

    1982-01-01T23:59:59.000Z

    This paper reviews new lamp and lighting technology in terms of application and economic impact. Included are the latest advances in High Intensity Discharge systems, energy saving fluorescent lamps and ballasts, and the new state of the art high...

  19. Oscillations in glow discharges

    E-Print Network [OSTI]

    Prickett, Tom

    1950-01-01T23:59:59.000Z

    1950 CONTENTS Introduction ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 I. Review of Plasma Oscillations in Gas Discharges ? . . 2 II. Review of Relaxation Processes in Gas Discharges ? . 13 III. Report of Laboratory Investigation... 179540 LIST OF FIGURES Figure Page 1. Sketch of Plasma Space in which Electrons are given Displacements in the X-direction ? ? ? ? ? ? 5 2* Early Circuit Arrangement of Discharge Study ? ? ? ? ? 19 3, Flow Diagram of the Experimental System...

  20. Longitudinal discharge laser electrodes

    DOE Patents [OSTI]

    Warner, B.E.; Miller, J.L.; Ault, E.R.

    1994-08-23T23:59:59.000Z

    The improved longitudinal discharge laser electrode with IR baffle includes an electrode made up of washers spaced along the laser axis in order to form inter-washer spaces for hollow cathode discharge to take place and for IR radiation to be trapped. Additional IR baffles can be placed between the electrode ann the window. 2 figs.

  1. Capacitor discharge pulse analysis.

    SciTech Connect (OSTI)

    Baker, Michael Sean; Griffiths, Stewart K.; Tanner, Danelle Mary

    2013-08-01T23:59:59.000Z

    Capacitors used in firing sets and other high discharge current applications are discharge tested to verify performance of the capacitor against the application requirements. Parameters such as capacitance, inductance, rise time, pulse width, peak current and current reversal must be verified to ensure that the capacitor will meet the application needs. This report summarizes an analysis performed on the discharge current data to extract these parameters by fitting a second-order system model to the discharge data and using this fit to determine the resulting performance metrics. Details of the theory and implementation are presented. Using the best-fit second-order system model to extract these metrics results in less sensitivity to noise in the measured data and allows for direct extraction of the total series resistance, inductance, and capacitance.

  2. Enhancement of Raman Light Scattering in Dye-Labeled Rat Glioma Cells by Langmuir-Blodgett CNT-Bundles Arranged on Metal-Containing Conducting Polymer Film

    E-Print Network [OSTI]

    Egorov, A S; Grushevskaya, H V; Krot, V I; Krylova, N G; Lipnevich, I V; Orekhovskaya, T I; Shulitsky, B G

    2015-01-01T23:59:59.000Z

    We have fabricated layered nanocomposite consisting of a nanoporous anodic alumina sublayer (AOA), an ultrathin metal-containing polymer Langmuir-Blodgett (LB) film coating AOA, and multi-walled carbon nanotube (MCNT) - bundles which are arranged on the LB-film. MCNTs were preliminarily chemically modified by carboxyl groups and functionalized by stearic acid. We have experimentally observed an enhancement of Raman light scattering on surface plasmons in the LB-monolayers. This enhancement is due to charge and energy transfer. We demonstrate that propidium iodide (PI) fluorescence is quenched by the MCNT-bundles. A method of two-dimensional system imaging based on the MCNT-enhanced Raman spectroscopy has been proposed. This method has been applied to visualize focal adhesion sites on membranes of living PI-labeled rat glioma cells.

  3. The origins of light and heavy r-process elements identified by chemical tagging of metal-poor stars

    E-Print Network [OSTI]

    Tsujimoto, Takuji

    2014-01-01T23:59:59.000Z

    Growing interests in neutron star (NS) mergers as the origin of r-process elements have sprouted since the discovery of evidence for the ejection of these elements from a short-duration gamma-ray burst. The hypothesis of a NS merger origin is reinforced by a theoretical update of nucleosynthesis in NS mergers successful in yielding r-process nuclides with A>130. On the other hand, whether the origin of light r-process elements are associated with nucleosynthesis in NS merger events remains unclear. We find a signature of nucleosynthesis in NS mergers from peculiar chemical abundances of stars belonging to the Galactic globular cluster M15. This finding combined with the recent nucleosynthesis results implies a potential diversity of nucleosynthesis in NS mergers. Based on these considerations, we are successful in the interpretation of an observed correlation between [light r-process/Eu] and [Eu/Fe] among Galactic halo stars and accordingly narrow down the role of supernova nucleosynthesis in the r-process pr...

  4. Plasma mixing glow discharge device for analytical applications

    DOE Patents [OSTI]

    Pinnaduwage, L.A.

    1999-04-20T23:59:59.000Z

    An instrument for analyzing a sample has an enclosure that forms a chamber containing an anode which divides the chamber into a discharge region and an analysis region. A gas inlet and outlet are provided to introduce and exhaust a rare gas into the discharge region. A cathode within the discharge region has a plurality of pins projecting in a geometric pattern toward the anode for exciting the gas and producing a plasma discharge between the cathode and the anode. Low energy electrons (e.g. <0.5 eV) pass into the analysis region through an aperture. The sample to be analyzed is placed into the analysis region and bombarded by the metastable rare gas atoms and the low energy electrons extracted into from the discharge region. A mass or optical spectrometer can be coupled to a port of the analysis region to analyze the resulting ions and light emission. 3 figs.

  5. Plasma mixing glow discharge device for analytical applications

    DOE Patents [OSTI]

    Pinnaduwage, Lal A. (Knoxville, TN)

    1999-01-01T23:59:59.000Z

    An instrument for analyzing a sample has an enclosure that forms a chamber containing an anode which divides the chamber into a discharge region and an analysis region. A gas inlet and outlet are provided to introduce and exhaust a rare gas into the discharge region. A cathode within the discharge region has a plurality of pins projecting in a geometric pattern toward the anode for exciting the gas and producing a plasma discharge between the cathode and the anode. Low energy electrons (e.g. <0.5 eV) pass into the analysis region through an aperture. The sample to be analyzed is placed into the analysis region and bombarded by the metastable rare gas atoms and the low energy electrons extracted into from the discharge region. A mass or optical spectrometer can be coupled to a port of the analysis region to analyze the resulting ions and light emission.

  6. Longitudinal discharge laser baffles

    DOE Patents [OSTI]

    Warner, B.E.; Ault, E.R.

    1994-06-07T23:59:59.000Z

    The IR baffles placed between the window and the electrode of a longitudinal discharge laser improve laser performance by intercepting off-axis IR radiation from the laser and in doing so reduce window heating and subsequent optical distortion of the laser beam. 1 fig.

  7. Capacitor discharge process for welding braided cable

    DOE Patents [OSTI]

    Wilson, Rick D. (Corvallis, OR)

    1995-01-01T23:59:59.000Z

    A capacitor discharge process for welding a braided cable formed from a plurality of individual cable strands to a solid metallic electrically conductive member comprises the steps of: (a) preparing the electrically conductive member for welding by bevelling one of its end portions while leaving an ignition projection extending outwardly from the apex of the bevel; (b) clamping the electrically conductive member in a cathode fixture; (c) connecting the electrically conductive member clamped in the cathode fixture to a capacitor bank capable of being charged to a preselected voltage value; (d) preparing the braided cable for welding by wrapping one of its end portions with a metallic sheet to form a retaining ring operable to maintain the individual strands of the braided cable in fixed position within the retaining ring; (e) clamping the braided cable and the retaining ring as a unit in an anode fixture so that the wrapped end portion of the braided cable faces the ignition projection of the electrically conductive member; and (f) moving the cathode fixture towards the anode fixture until the ignition projection of the electrically conductive member contacts the end portion of the braided cable thereby allowing the capacitor bank to discharge through the electrically conductive member and through the braided cable and causing the electrically conductive member to be welded to the braided cable via capacitor discharge action.

  8. Method for forming metal contacts

    DOE Patents [OSTI]

    Reddington, Erik; Sutter, Thomas C; Bu, Lujia; Cannon, Alexandra; Habas, Susan E; Curtis, Calvin J; Miedaner, Alexander; Ginley, David S; Van Hest, Marinus Franciscus Antonius Maria

    2013-09-17T23:59:59.000Z

    Methods of forming metal contacts with metal inks in the manufacture of photovoltaic devices are disclosed. The metal inks are selectively deposited on semiconductor coatings by inkjet and aerosol apparatus. The composite is heated to selective temperatures where the metal inks burn through the coating to form an electrical contact with the semiconductor. Metal layers are then deposited on the electrical contacts by light induced or light assisted plating.

  9. Water Pollutant Discharge Act (Illinois)

    Broader source: Energy.gov [DOE]

    The discharge of oil in quantities which exceed the standards adopted by the Pollution Control Board, or the discharge of other pollutants directly or indirectly into the waters is prohibited....

  10. High intensity discharge device containing oxytrihalides

    DOE Patents [OSTI]

    Lapatovich, W.P.; Keeffe, W.M.; Liebermann, R.W.; Maya, J.

    1987-06-09T23:59:59.000Z

    A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO[sub 2], with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube. 7 figs.

  11. Condenser for extreme-UV lithography with discharge source

    DOE Patents [OSTI]

    Sweatt, William C. (Albuquerque, NM); Kubiak, Glenn D. (Livermore, CA)

    2001-01-01T23:59:59.000Z

    Condenser system, for use with a ringfield camera in projection lithography, employs quasi grazing-incidence collector mirrors that are coated with a suitable reflective metal such as ruthenium to collect radiation from a discharge source to minimize the effect of contaminant accumulation on the collecting mirrors.

  12. High pressure discharges in cavities formed by microfabrication techniques

    SciTech Connect (OSTI)

    Khan, B.A.; Cammack, D.A.; Pinker, R.D.; Racz, J. [Philips Electronics North America Corporation, Philips Research, Briarcliff Manor, New York 10510 (United States)] [Philips Electronics North America Corporation, Philips Research, Briarcliff Manor, New York 10510 (United States)

    1997-07-01T23:59:59.000Z

    High pressure discharges are the basis of small high intensity light sources. In this work, we demonstrate the formation of high pressure discharges, in cavities formed by applying micromachining and integrated circuit techniques to quartz substrates. Cavities containing varying amounts of mercury and argon were fabricated to obtain high pressure discharges. A high pressure mercury discharge was formed in the electrodeless cavities by exciting them with a microwave source, operating at 2.45 GHz and in the electroded cavities by applying a dc voltage. The contraction of the discharge into a high pressure arc was observed. A broad emission spectrum due to self-absorption and collisions between excited atoms and normal atoms, typical of high pressure mercury discharges, was measured. The light output and efficacy increased with increasing pressure. The measured voltage was used to estimate the pressure within the electroded cavities, which is as high as 127 atm for one of the two cavities discussed in this work. Efficacies over 40 lumens per watt were obtained for the electrodeless cavities and over 50 scr(l)m/W for the electroded cavities. {copyright} {ital 1997 American Institute of Physics.}

  13. PERIODIC GLOW DISCHARGE REPORT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest andOptimize832 2.860SelectedGLOW DISCHARGE REPORT

  14. Figure 5.19. Light micrographs showing the microstructure of duplex rolled metal IC381 solution treated at 1300 C for 26 hours and then quenched into

    E-Print Network [OSTI]

    Cambridge, University of

    of duplex rolled metal IC381 solution treated at 1300 °C for 26 hours and then quenched into water the microstructure of duplex rolled metal IC373 solution treated at 1300 QC for 26 hours amI then quenched into water solution treated at 1300 QC for 26 hours and then quenched into water. The llleasured volullle fraction

  15. A plasma needle for generating homogeneous discharge in atmospheric pressure air

    SciTech Connect (OSTI)

    Li Xuechen; Yuan Ning; Jia Pengying; Chen Junying [College of Physics Science and Technology, Hebei University, Baoding 071002 (China)

    2010-09-15T23:59:59.000Z

    Homogeneous discharge in air is often considered to be the ultimate low-temperature atmospheric pressure plasmas for industrial applications. In this paper, we present a method whereby stable homogeneous discharge in open air can be generated by a simple plasma needle. The discharge mechanism is discussed based on the spatially resolved light emission waveforms from the plasma. Optical emission spectroscopy is used to determine electron energy and rotational temperature, and results indicate that both electron energy and rotational temperature increase with increasing the applied voltage. The results are analyzed qualitatively based on the discharge mechanism.

  16. Capillary discharge source

    DOE Patents [OSTI]

    Bender, III, Howard Albert

    2003-11-25T23:59:59.000Z

    Debris generation from an EUV electric discharge plasma source device can be significantly reduced or essentially eliminated by encasing the electrodes with dielectric or electrically insulating material so that the electrodes are shielded from the plasma, and additionally by providing a path for the radiation to exit wherein the electrodes are not exposed to the area where the radiation is collected. The device includes: (a) a body, which is made of an electrically insulating material, that defines a capillary bore that has a proximal end and a distal end and that defines at least one radiation exit; (b) a first electrode that defines a first channel that has a first inlet end that is connected to a source of gas and a first outlet end that is in communication with the capillary bore, wherein the first electrode is positioned at the distal end of the capillary bore; (c) a second electrode that defines a second channel that has a second inlet end that is in communication with the capillary bore and an outlet end, wherein the second electrode is positioned at the proximal end of the capillary bore; and (d) a source of electric potential that is connected across the first and second electrodes, wherein radiation generated within the capillary bore is emitted through the at least one radiation exit and wherein the first electrode and second electrode are shielded from the emitted radiation.

  17. Plasma nonuniformities induced by dissimilar electrode metals

    SciTech Connect (OSTI)

    Barnat, E.V.; Hebner, G.A. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1423 (United States)

    2005-07-01T23:59:59.000Z

    Nonuniformities in both sheath electric field and plasma excitation were observed around dissimilar metals placed on a rf electrode. Spatial maps of the rf sheath electric field obtained by laser-induced fluorescence-dip (LIF-dip) spectroscopy show that the sheath structure was a function of the electrode metal. In addition to the electric-field measurements, LIF, optical emission, and Langmuir probe measurements show nonuniform excitation around the dissimilar metals. The degree and spatial extent of the discharge nonuniformities were dependent on discharge conditions and the history of the metal surfaces.

  18. Max Tech and Beyond: High-Intensity Discharge Lamps

    SciTech Connect (OSTI)

    Scholand, Michael

    2012-04-01T23:59:59.000Z

    High-intensity discharge (HID) lamps are most often found in industrial and commercial applications, and are the light source of choice in street and area lighting, and sports stadium illumination. HID lamps are produced in three types - mercury vapor (MV), high pressure sodium (HPS) and metal halide (MH). Of these, MV and MH are considered white-light sources (although the MV exhibits poor color rendering) and HPS produces a yellow-orange color light. A fourth lamp, low-pressure sodium (LPS), is not a HID lamp by definition, but it is used in similar applications and thus is often grouped with HID lamps. With the notable exception of MV which is comparatively inefficient and in decline in the US from both a sales and installed stock point of view; HPS, LPS and MH all have efficacies over 100 lumens per watt. The figure below presents the efficacy trends over time for commercially available HID lamps and LPS, starting with MV and LPS in 1930's followed by the development of HPS and MH in the 1960's. In HID lamps, light is generated by creating an electric arc between two electrodes in an arc tube. The particles in the arc are partially ionized, making them electrically conductive, and a light-emitting 'plasma' is created. This arc occurs within the arc tube, which for most HID lamps is enclosed within an evacuated outer bulb that thermally isolates and protects the hot arc tube from the surroundings. Unlike a fluorescent lamp that produces visible light through down-converting UV light with phosphors, the arc itself is the light source in an HID lamp, emitting visible radiation that is characteristic of the elements present in the plasma. Thus, the mixture of elements included in the arc tube is one critical factor determining the quality of the light emitted from the lamp, including its correlated color temperature (CCT) and color rendering index (CRI). Similar to fluorescent lamps, HID lamps require a ballast to start and maintain stable operating conditions, and this necessitates additional power beyond that used by the lamp itself. HID lamps offer important advantages compared to other lighting technologies, making them well suited for certain applications. HID lamps can be very efficient, have long operating lives, are relatively temperature-insensitive and produce a large quantity of light from a small package. For these reasons, HID lamps are often used when high levels of illumination are required over large areas and where operating and maintenance costs must be kept to a minimum. Furthermore, if the installation has a significant mounting height, high-power HID lamps can offer superior optical performance luminaires, reducing the number of lamps required to illuminate a given area. The indoor environments best suited to HID lamps are those with high ceilings, such as those commonly found in industrial spaces, warehouses, large retail spaces, sports halls and large public areas. Research into efficacy improvements for HID lighting technologies has generally followed market demand for these lamps, which is in decline for MV and LPS, has reached a plateau for HPS and is growing for MH. Several manufacturers interviewed for this study indicated that although solid-state lighting was now receiving the bulk of their company's R&D investment, there are still strong HID lamp research programs, which concentrate on MH technologies, with some limited amount of investment in HPS for specific niche applications (e.g., agricultural greenhouses). LPS and MV lamps are no longer being researched or improved in terms of efficacy or other performance attributes, although some consider MH HID lamps to be the next-generation MV lamp. Thus, the efficacy values of commercially available MV, LPS and HPS lamps are not expected to increase in the next 5 to 10 years. MH lamps, and more specifically, ceramic MH lamps are continuing to improve in efficacy as well as light quality, manufacturability and lamp life. Within an HID lamp, the light-producing plasma must be heated to sufficiently high temperatures to achieve high efficiencie

  19. Mode transition of a Hall thruster discharge plasma

    SciTech Connect (OSTI)

    Hara, Kentaro, E-mail: kenhara@umich.edu; Sekerak, Michael J., E-mail: msekerak@umich.edu; Boyd, Iain D.; Gallimore, Alec D. [University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2014-05-28T23:59:59.000Z

    A Hall thruster is a cross-field plasma device used for spacecraft propulsion. An important unresolved issue in the development of Hall thrusters concerns the effect of discharge oscillations in the range of 10–30?kHz on their performance. The use of a high speed Langmuir probe system and ultra-fast imaging of the discharge plasma of a Hall thruster suggests that the discharge oscillation mode, often called the breathing mode, is strongly correlated to an axial global ionization mode. Stabilization of the global oscillation mode is achieved as the magnetic field is increased and azimuthally rotating spokes are observed. A hybrid-direct kinetic simulation that takes into account the transport of electronically excited atoms is used to model the discharge plasma of a Hall thruster. The predicted mode transition agrees with experiments in terms of the mean discharge current, the amplitude of discharge current oscillation, and the breathing mode frequency. It is observed that the stabilization of the global oscillation mode is associated with reduced electron transport that suppresses the ionization process inside the channel. As the Joule heating balances the other loss terms including the effects of wall loss and inelastic collisions, the ionization oscillation is damped, and the discharge oscillation stabilizes. A wide range of the stable operation is supported by the formation of a space charge saturated sheath that stabilizes the electron axial drift and balances the Joule heating as the magnetic field increases. Finally, it is indicated from the numerical results that there is a strong correlation between the emitted light intensity and the discharge current.

  20. Groundwater Discharge Permit and Registration (New Hampshire)

    Broader source: Energy.gov [DOE]

    The Groundwater Discharge Permitting and Registration Program seeks to protect groundwater quality by establishing standards, criteria, and procedures for wastewater discharges. The program...

  1. Industrial Discharge Permits (District of Columbia)

    Broader source: Energy.gov [DOE]

    All businesses and government agencies discharging process wastewater to the public sewer system must report their activities to DC Water's Pretreatment Center. Wastewater discharge permits are...

  2. Photonic crystal light source

    DOE Patents [OSTI]

    Fleming, James G. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM); Bur, James A. (Corrales, NM)

    2004-07-27T23:59:59.000Z

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  3. An oscillator circuit to produce a radio-frequency discharge and application to metastable helium saturated absorption spectroscopy

    SciTech Connect (OSTI)

    Moron, F.; Hoendervanger, A. L.; Bonneau, M.; Bouton, Q.; Aspect, A.; Boiron, D.; Clement, D.; Westbrook, C. I. [Laboratoire Charles Fabry, Institut d'Optique, CNRS, Univ Paris Sud, 2 Avenue Augustin Fresnel, 91127 Palaiseau Cedex (France)

    2012-04-15T23:59:59.000Z

    We present a rf gas discharge apparatus which provides an atomic frequency reference for laser manipulation of metastable helium. We discuss the biasing and operation of a Colpitts oscillator in which the discharge coil is part of the oscillator circuit. Radiofrequency radiation is reduced by placing the entire oscillator in a metal enclosure.

  4. An oscillator circuit to produce a radio-frequency discharge and application to metastable helium saturated absorption spectroscopy

    E-Print Network [OSTI]

    Moron, F; Bonneau, M; Bouton, Q; Aspect, A; Boiron, D; Clément, D; Westbrook, C I

    2012-01-01T23:59:59.000Z

    We present an rf gas discharge apparatus which provides an atomic frequency reference for laser manipulation of metastable helium. We discuss the biasing and operation of a Colpitts oscillator in which the discharge coil is part of the oscillator circuit. Radiofrequency radiation is reduced by placing the entire oscillator in a metal enclosure.

  5. Magnetic dipole discharges. III. Instabilities

    SciTech Connect (OSTI)

    Stenzel, R. L.; Urrutia, J. M. [Department of Physics and Astronomy, University of California Los Angeles, California 90095-1547 (United States)] [Department of Physics and Astronomy, University of California Los Angeles, California 90095-1547 (United States); Ionita, C.; Schrittwieser, R. [Institute for Ion Physics and Applied Physics, University of Innsbruck A-6020 Innsbruck (Austria)] [Institute for Ion Physics and Applied Physics, University of Innsbruck A-6020 Innsbruck (Austria)

    2013-08-15T23:59:59.000Z

    Instabilities in a cross-field discharge around a permanent magnet have been investigated. The permanent magnet serves as a cold cathode and the chamber wall as an anode. The magnet is biased strongly negative and emits secondary electrons due to impact of energetic ions. The electrons outside the sheath are confined by the strong dipolar magnetic field and by the ion-rich sheath surrounding the magnet. The electron energy peaks in the equatorial plane where most ionization occurs and the ions are trapped in a negative potential well. The discharge mechanism is the same as that of cylindrical and planar magnetrons, but here extended to a 3-D cathode geometry using a single dipole magnet. While the basic properties of the discharge are presented in a companion paper, the present focus is on various observed instabilities. The first is an ion sheath instability which oscillates the plasma potential outside the sheath below the ion plasma frequency. It arises in ion-rich sheaths with low electron supply, which is the case for low secondary emission yields. Sheath oscillations modulate the discharge current creating oscillating magnetic fields. The second instability is current-driven ion sound turbulence due to counter-streaming electrons and ions. The fluctuations have a broad spectrum and short correlation lengths in all directions. The third type of fluctuations is spiky potential and current oscillations in high density discharges. These appear to be due to unstable emission properties of the magnetron cathode.

  6. Journal of Engineering Mathematics Optimal discharging in a branched estuary Optimal discharging in a branched estuary

    E-Print Network [OSTI]

    that returns to the discharge site is less polluted than would 1 #12;Journal of Engineering Mathematics OptimalJournal of Engineering Mathematics Optimal discharging in a branched estuary Optimal discharging the proximity of the discharge site to the branching and upon how the rate of discharge is adjusted. Explicit

  7. Nanocomposite of graphene and metal oxide materials

    DOE Patents [OSTI]

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2013-10-15T23:59:59.000Z

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  8. Nanocomposite of graphene and metal oxide materials

    DOE Patents [OSTI]

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2012-09-04T23:59:59.000Z

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10C.

  9. The evidence of cathodic micro-discharges during plasma electrolytic oxidation process

    SciTech Connect (OSTI)

    Nominé, A., E-mail: alexandre.nomine@univ-lorraine.fr [Institut Jean Lamour, UMR 7198 CNRS, Université de Lorraine, Parc de Saurupt, 54011 Nancy (France); National Institute of Science and Technology “MISiS,” 4, Leninskij Prospekt, Moscow 119049 (Russian Federation); Martin, J.; Noël, C.; Henrion, G.; Belmonte, T. [Institut Jean Lamour, UMR 7198 CNRS, Université de Lorraine, Parc de Saurupt, 54011 Nancy (France); Bardin, I. V.; Kovalev, V. L.; Rakoch, A. G. [National Institute of Science and Technology “MISiS,” 4, Leninskij Prospekt, Moscow 119049 (Russian Federation)

    2014-02-24T23:59:59.000Z

    Plasma electrolytic oxidation (PEO) processing of EV31 magnesium alloy has been carried out in fluoride containing electrolyte under bipolar pulse current regime. Unusual PEO cathodic micro-discharges have been observed and investigated. It is shown that the cathodic micro-discharges exhibit a collective intermittent behavior, which is discussed in terms of charge accumulations at the layer/electrolyte and layer/metal interfaces. Optical emission spectroscopy is used to determine the electron density (typ. 10{sup 15}?cm{sup ?3}) and the electron temperature (typ. 7500?K) while the role of F{sup ?} anions on the appearance of cathodic micro-discharges is pointed out.

  10. Compact monolithic capacitive discharge unit

    DOE Patents [OSTI]

    Roesler, Alexander W. (Tijeras, NM); Vernon, George E. (Rio Rancho, NM); Hoke, Darren A. (Albuquerque, NM); De Marquis, Virginia K. (Tijeras, NM); Harris, Steven M. (Albuquerque, NM)

    2007-06-26T23:59:59.000Z

    A compact monolithic capacitive discharge unit (CDU) is disclosed in which a thyristor switch and a flyback charging circuit are both sandwiched about a ceramic energy storage capacitor. The result is a compact rugged assembly which provides a low-inductance current discharge path. The flyback charging circuit preferably includes a low-temperature co-fired ceramic transformer. The CDU can further include one or more ceramic substrates for enclosing the thyristor switch and for holding various passive components used in the flyback charging circuit. A load such as a detonator can also be attached directly to the CDU.

  11. State Waste Discharge Permit application, 183-N Backwash Discharge Pond

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations (Ecology et al. 1994), the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173--216 (or 173--218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order No. DE91NM-177, (Ecology and DOE-RL 1991). The Consent Order No. DE91NM-177 requires a series of permitting activities for liquid effluent discharges. Liquid effluents on the Hanford Site have been classified as Phase I, Phase II, and Miscellaneous Streams. The Consent Order No. DE91NM-177 establishes milestones for State Waste Discharge Permit application submittals for all Phase I and Phase II streams, as well as the following 11 Miscellaneous Streams as identified in Table 4 of the Consent Order No. DE91NM-177.

  12. Nuclear heated and powered metal excimer laser

    SciTech Connect (OSTI)

    Womack, D.R.

    1982-02-11T23:59:59.000Z

    A laser uses heat and thermionic electrical output from a nuclear reactor in which heat generated by the reactor is utilized to vaporize metal lasants. Voltage output from a thermionic converter is used to create an electric discharge in the metal vapors. In one embodiment the laser vapors are excited by a discharge only. The second embodiment utilizes fission coatings on the inside of heat pipes, in which fission fragment excitation and ionization is employed in addition to a discharge. Both embodiments provide efficient laser systems that are capable of many years of operation without servicing. Metal excimers are the most efficient electronic transition lasers known with output in the visible wavelengths. Use of metal excimers, in addition to their efficiency and wavelengths, allows utilization of reactor waste heat which plagues many nuclear pumped laser concepts.

  13. Microwave-driven ultraviolet light sources

    SciTech Connect (OSTI)

    Manos, Dennis M. (Williamsburg, VA); Diggs, Jessie (Norfolk, VA); Ametepe, Joseph D. (Roanoke, VA)

    2002-01-29T23:59:59.000Z

    A microwave-driven ultraviolet (UV) light source is provided. The light source comprises an over-moded microwave cavity having at least one discharge bulb disposed within the microwave cavity. At least one magnetron probe is coupled directly to the microwave cavity.

  14. Cost-effectiveness analysis of effluent standards and limitations for the metal finishing industry. Final report

    SciTech Connect (OSTI)

    Not Available

    1983-06-01T23:59:59.000Z

    The report summarizes the results of a cost-effectiveness analysis of the metal finishing industry. The analysis considers the cost-effectiveness of the final metal finishing regulations for direct and indirect dischargers.

  15. Process for treating waste water having low concentrations of metallic contaminants

    DOE Patents [OSTI]

    Looney, Brian B; Millings, Margaret R; Nichols, Ralph L; Payne, William L

    2014-12-16T23:59:59.000Z

    A process for treating waste water having a low level of metallic contaminants by reducing the toxicity level of metallic contaminants to an acceptable level and subsequently discharging the treated waste water into the environment without removing the treated contaminants.

  16. Temporal phenomena in inductively coupled chlorine and argon-chlorine discharges

    SciTech Connect (OSTI)

    Corr, C.S.; Steen, P.G.; Graham, W.G. [School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland (United Kingdom)

    2005-04-04T23:59:59.000Z

    Reproducible modulations in low-pressure, inductively coupled discharges operating in chlorine and argon-chlorine mixtures have been observed and studied. Changes in the light output, floating potential, negative ion fraction, and charged particle densities were observed. Here we report two types of unstable operational modes in an inductively coupled discharge. On the one hand, when the discharge was matched, to minimize reflected power, instabilities were observed in argon-chlorine plasmas over limited operating conditions of input power and gas pressure. The instability window decreased with increasing chlorine content and was observed for chlorine concentrations between 30% and 60% only. However, when operating at pressures below 5 mTorr and the discharge circuit detuned to increase the reflected power, modulations were observed in a pure chlorine discharge. These modulations varied in nature from a series of sharp bursts to a very periodic behavior and can be controlled, by variation of the matching conditions, to produce an apparent pulsed plasma environment.

  17. Tokyo Street Lights

    E-Print Network [OSTI]

    Hacker, Randi; Tsutsui, William

    2008-03-12T23:59:59.000Z

    that you have only 17, no 16, no 15 seconds left to get to the other side before the light changes and the impatient American drivers put the pedal to the metal and it's road kill time. Talk about stress! In Tokyo, crossing the street is a leisurely...

  18. Microwave generated plasma light source apparatus

    SciTech Connect (OSTI)

    Yoshizawa, K.; Ito, H.; Kodama, H.; Komura, H.; Minowa, Y.

    1985-02-05T23:59:59.000Z

    A microwave generated plasma light source including a microwave generator, a microwave cavity having a light reflecting member forming at least a portion of the cavity, and a member transparent to light and opaque to microwaves disposed across an opening of the cavity opposite the feeding opening through which the microwave generator is coupled. An electrodeless discharge bulb is disposed at a position in the cavity such that the cavity operates as a resonant cavity at least when the bulb is emitting light. In the bulb is encapsulated at least one discharge light emissive substance. The bulb has a shape and is sufficiently small that the bulb acts substantially as a point light source.

  19. Stabilization of Electrocatalytic Metal Nanoparticles at Metal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene Triple Junction Points. Stabilization of Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene...

  20. State Surface Water Discharge Permits (New Hampshire)

    Broader source: Energy.gov [DOE]

    Rules apply to the discharge of all pollutants from a point source to surface waters of the state. The rule does not apply to facilities that require both a state discharge permit and a federal...

  1. Oklahoma Pollutant Discharge Elimination System Act (Oklahoma)

    Broader source: Energy.gov [DOE]

    The Department of Environmental Quality regulates facilities that discharge any pollutant into waters of the state. Permits must be acquired before the discharge of any pollutants into state waters...

  2. Plasma Structure and Behavior of Miniature Ring-Cusp Discharges

    E-Print Network [OSTI]

    Mao, Hann-Shin

    2013-01-01T23:59:59.000Z

    Basic Ion Thruster Discharge ChamberSimulations for an Ion Engine Discharge Chamber,” J. Propul.Model of an Ion Thruster Discharge Chamber,” in 39th AIAA

  3. Cold cathode vacuum discharge tube

    DOE Patents [OSTI]

    Boettcher, Gordon E. (Albuquerque, NM)

    1998-01-01T23:59:59.000Z

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging.

  4. State waste discharge permit application for cooling water and condensate discharges

    SciTech Connect (OSTI)

    Haggard, R.D.

    1996-08-12T23:59:59.000Z

    The following presents the Categorical State Waste Discharge Permit (SWDP) Application for the Cooling Water and Condensate Discharges on the Hanford Site. This application is intended to cover existing cooling water and condensate discharges as well as similar future discharges meeting the criteria set forth in this document.

  5. Transition Metal Switchable Mirror

    ScienceCinema (OSTI)

    None

    2010-01-08T23:59:59.000Z

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  6. Transition Metal Switchable Mirror

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  7. Transition Metal Switchable Mirror

    SciTech Connect (OSTI)

    None

    2009-01-01T23:59:59.000Z

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  8. Transition Metal Switchable Mirror

    SciTech Connect (OSTI)

    2009-08-21T23:59:59.000Z

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  9. Further reduction of efficiency droop effect by adding a lower-index dielectric interlayer in a surface plasmon coupled blue light-emitting diode with surface metal nanoparticles

    SciTech Connect (OSTI)

    Lin, Chun-Han; Su, Chia-Ying; Chen, Chung-Hui; Yao, Yu-Feng; Shih, Pei-Ying; Chen, Horng-Shyang; Hsieh, Chieh; Kiang, Yean-Woei, E-mail: ywkiang@ntu.edu.tw; Yang, C. C., E-mail: ccycc@ntu.edu.tw [Institute of Photonics and Optoelectronics, and Department of Electrical Engineering, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan (China); Kuo, Yang [Department of Energy and Refrigerating Air-Conditioning Engineering, Tung Nan University, 152 Beishen Road, Section 3, New Taipei City, 22202 Taiwan (China)

    2014-09-08T23:59:59.000Z

    Further reduction of the efficiency droop effect and further enhancements of internal quantum efficiency (IQE) and output intensity of a surface plasmon coupled, blue-emitting light-emitting diode (LED) by inserting a dielectric interlayer (DI) of a lower refractive index between p-GaN and surface Ag nanoparticles are demonstrated. The insertion of a DI leads to a blue shift of the localized surface plasmon (LSP) resonance spectrum and increases the LSP coupling strength at the quantum well emitting wavelength in the blue range. With SiO{sub 2} as the DI, a thinner DI leads to a stronger LSP coupling effect, when compared with the case of a thicker DI. By using GaZnO, which is a dielectric in the optical range and a good conductor under direct-current operation, as the DI, the LSP coupling results in the highest IQE, highest LED output intensity, and weakest droop effect.

  10. Advances in Lighting

    E-Print Network [OSTI]

    Tumber, A. J.

    1981-01-01T23:59:59.000Z

    colour rendition. The quartz-halogen incandescent lam s operate at higher temperatures, and have a somewhat higher efficacy, but they are rarely used except for special applicati ns. 3-2 High Intensity Discharge Lamps. Mercury is the grandfather... of the H.I.D. lamps. Its blue-green light, has been used almost exclusively for streetlighti and, often with colour-improving phospho it is still being used in industrial and commercial applications. Reactor-type ballasted mercury lamps can now...

  11. Spent nuclear fuel discharges from US reactors 1993

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    The Energy Information Administration (EIA) of the U.S. Department of Energy (DOE) administers the Nuclear Fuel Data Survey, Form RW-859. This form is used to collect data on fuel assemblies irradiated at commercial nuclear reactors operating in the United States, and the current inventories and storage capacities of those reactors. These data are important to the design and operation of the equipment and facilities that DOE will use for the future acceptance, transportation, and disposal of spent fuels. The data collected and presented identifies trends in burnup, enrichment, and spent nuclear fuel discharged form commercial light-water reactor as of December 31, 1993. The document covers not only spent nuclear fuel discharges; but also site capacities and inventories; canisters and nonfuel components; and assembly type characteristics.

  12. Theories of phosphorescence in organo-transition metal complexes - from relativistic effects to simple models and design principles for organic light-emitting diodes

    E-Print Network [OSTI]

    Powell, B J

    2015-01-01T23:59:59.000Z

    We review theories of phosphorescence in cyclometalated complexes. We focus primarily on pseudooctahedrally coordinated $t_{2g}^6$ metals (e.g., [Os(II)(bpy)$_3$]$^{2+}$, Ir(III)(ppy)$_3$ and Ir(III)(ptz)$_3$) as, for reasons that are explored in detail, these show particularly strong phosphorescence. We discuss both first principles approaches and semi-empirical models, e.g., ligand field theory. We show that together these provide a clear understanding of the photophysics and in particular the lowest energy triplet excitation, T$_1$. In order to build a good model relativistic effects need to be included. The role of spin-orbit coupling is well-known, but scalar relativistic effects are also large - and are therefore also introduced and discussed. No expertise in special relativity or relativistic quantum mechanics is assumed and a pedagogical introduction to these subjects is given. It is shown that, once both scalar relativistic effects and spin-orbit coupling are included, time dependent density function...

  13. Smart lighting: New Roles for Light

    E-Print Network [OSTI]

    Salama, Khaled

    Smart lighting: New Roles for Light in the Solid State Lighting World Robert F. Karlicek, Jr. Director, Smart Lighting Engineering Research Center Professor, Electrical, Systems and Computer Lighting · What is Smart Lighting · Technology Barriers to Smart Lighting · Visible Light Communications

  14. Commercial Lighting

    Broader source: Energy.gov [DOE]

    Commercial lighting accounts for more than 20 percent of total commercial building energy use. The Energy Department works to reduce lighting energy use through research and deployment.

  15. Adsorption and Separation of Light Gases on an Amino-Functionalized Metal–Organic Framework: An Adsorption and In Situ XRD Study

    SciTech Connect (OSTI)

    Couck S.; Stavitski E.; Gobehiya, E.; Kirschhock, C.E.A.; Serra-Crespo, P.; Juan-Alcaniz, J.; Martinez Joaristi, A.; Gascon, J.; Kapteijn, F.; Baron, G. V.; Denayer J.F.M.

    2012-02-29T23:59:59.000Z

    The NH{sub 2}-MIL-53(Al) metal-organic framework was studied for its use in the separation of CO{sub 2} from CH{sub 4}, H{sub 2}, N{sub 2} C{sub 2}H{sub 6} and C{sub 3}H{sub 8} mixtures. Isotherms of methane, ethane, propane, hydrogen, nitrogen, and CO{sub 2} were measured. The atypical shape of these isotherms is attributed to the breathing properties of the material, in which a transition from a very narrow pore form to a narrow pore form and from a narrow pore form to a large pore form occurs, depending on the total pressure and the nature of the adsorbate, as demonstrated by in-situ XRD patterns measured during adsorption. Apart from CO{sub 2}, all tested gases interacted weakly with the adsorbent. As a result, they are excluded from adsorption in the narrow pore form of the material at low pressure. CO{sub 2} interacted much more strongly and was adsorbed in significant amounts at low pressure. This gives the material excellent properties to separate CO{sub 2} from other gases. The separation of CO{sub 2} from methane, nitrogen, hydrogen, or a combination of these gases has been demonstrated by breakthrough experiments using pellets of NH{sub 2}-MIL-53(Al). The effect of total pressure (1-30 bar), gas composition, temperature (303-403 K) and contact time has been examined. In all cases, CO{sub 2} was selectively adsorbed, whereas methane, nitrogen, and hydrogen nearly did not adsorb at all. Regeneration of the adsorbent by thermal treatment, inert purge gas stripping, and pressure swing has been demonstrated. The NH{sub 2}-MIL-53(Al) pellets retained their selectivity and capacity for more than two years.

  16. Narrow gap electronegative capacitive discharges

    SciTech Connect (OSTI)

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J. [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States)] [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States)

    2013-10-15T23:59:59.000Z

    Narrow gap electronegative (EN) capacitive discharges are widely used in industry and have unique features not found in conventional discharges. In this paper, plasma parameters are determined over a range of decreasing gap length L from values for which an electropositive (EP) edge exists (2-region case) to smaller L-values for which the EN region connects directly to the sheath (1-region case). Parametric studies are performed at applied voltage V{sub rf}=500 V for pressures of 10, 25, 50, and 100 mTorr, and additionally at 50 mTorr for 1000 and 2000 V. Numerical results are given for a parallel plate oxygen discharge using a planar 1D3v (1 spatial dimension, 3 velocity components) particle-in-cell (PIC) code. New interesting phenomena are found for the case in which an EP edge does not exist. This 1-region case has not previously been investigated in detail, either numerically or analytically. In particular, attachment in the sheaths is important, and the central electron density n{sub e0} is depressed below the density n{sub esh} at the sheath edge. The sheath oscillations also extend into the EN core, creating an edge region lying within the sheath and not characterized by the standard diffusion in an EN plasma. An analytical model is developed using minimal inputs from the PIC results, and compared to the PIC results for a base case at V{sub rf}=500 V and 50 mTorr, showing good agreement. Selected comparisons are made at the other voltages and pressures. A self-consistent model is also developed and compared to the PIC results, giving reasonable agreement.

  17. Cold cathode vacuum discharge tube

    DOE Patents [OSTI]

    Boettcher, G.E.

    1998-04-14T23:59:59.000Z

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by chemical vapor deposition (CVD) or diamond-like carbon (DLC) deposition are disclosed. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 14 figs.

  18. Multiple discharge cylindrical pump collector

    DOE Patents [OSTI]

    Dunn, Charlton (Calabasas, CA); Bremner, Robert J. (Woodland Hills, CA); Meng, Sen Y. (Reseda, CA)

    1989-01-01T23:59:59.000Z

    A space-saving discharge collector 40 for the rotary pump 28 of a pool-type nuclear reactor 10. An annular collector 50 is located radially outboard for an impeller 44. The annular collector 50 as a closed outer periphery 52 for collecting the fluid from the impeller 44 and producing a uniform circumferential flow of the fluid. Turning means comprising a plurality of individual passageways 54 are located in an axial position relative to the annular collector 50 for receiving the fluid from the annular collector 50 and turning it into a substantially axial direction.

  19. Cold cathode vacuum discharge tube

    DOE Patents [OSTI]

    Boettcher, G.E.

    1998-03-10T23:59:59.000Z

    A cold cathode vacuum discharge tube, and method for making same, are disclosed with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 15 figs.

  20. VOLUME 86, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 4 JUNE 2001 Light-Induced Metal-Insulator Transition in a Switchable Mirror

    E-Print Network [OSTI]

    Wijngaarden, Rinke J.

    possibility to tune yttrium hydride through the T 0 metal-insulator transition. Conductivity and Hall

  1. Non-storm water discharges technical report

    SciTech Connect (OSTI)

    Mathews, S.

    1994-07-01T23:59:59.000Z

    Lawrence Livermore National Laboratory (LLNL) submitted a Notice of Intent to the California State Water Resources Control Board (hereafter State Board) to discharge storm water associated with industrial activities under the California General Industrial Activity Storm Water National Pollutant Elimination System Discharge Permit (hereafter General Permit). As required by the General Permit, LLNL provided initial notification of non-storm water discharges to the Central Valley Regional Water Quality Control Board (hereafter Regional Board) on October 2, 1992. Additional findings and progress towards corrective actions were reported in subsequent annual monitoring reports. LLNL was granted until March 27, 1995, three years from the Notice of Intent submission date, to eliminate or permit the non-storm water discharges. On May 20, 1994, the Regional Board issued Waste Discharge Requirements (WDR Board Order No. 94-131, NPDES No. CA0081396) to LLNL for discharges of non-contact cooling tower wastewater and storm water related to industrial activities. As a result of the issuance of WDR 94-131, LLNL rescinded its coverage under the General Permit. WDR 94-131 allowed continued non-storm water discharges and requested a technical report describing the discharges LLNL seeks to permit. For the described discharges, LLNL anticipates the Regional Board will either waive Waste Discharge Requirements as allowed for in The Water Quality Control Plan for the California Regional Water Quality Control Board, Central Valley Region (hereafter Basin Plan) or amend Board Order 94-131 as appropriate.

  2. Metal aminoboranes

    DOE Patents [OSTI]

    Burrell, Anthony K.; Davis, Benjamin J.; Thorn, David L.; Gordon, John C.; Baker, R. Thomas; Semelsberger, Troy Allen; Tumas, William; Diyabalanage, Himashinie Vichalya; Shrestha, Roshan P.

    2010-05-11T23:59:59.000Z

    Metal aminoboranes of the formula M(NH2BH3)n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be dehydrogenated to form hydrogen and a reaction product. The reaction product can react with hydrogen to form a hydrogen storage material. Metal aminoboranes can be included in a kit.

  3. Dusty Plasma in He-Ar Glow Discharge

    SciTech Connect (OSTI)

    Maiorov, S. A. [A. M. Prokhorov Institute for General Physics under Russian Academy of Sciences, Moscow (Russian Federation); Ramazanov, T. S.; Dzhumagulova, K. N.; Dosbolayev, M. K.; Jumabekov, A. N. [IETP, al-Farabi Kazakh National University, 96a, Tole bi St., Almaty, 050012 (Kazakhstan)

    2008-09-07T23:59:59.000Z

    The paper reports on the first experiments with plasma-dust formations in dc gas discharge plasma for He-Ar mixture. It is shown that under the conventional conditions of the experiments with dusty structures in plasma, the choice of light and heavy gases for the mixture suppresses electron heating in electric field and results in a supersonic jet with high Mach numbers. Distribution functions for drifting ions in the gas mixture are calculated for various mixture concentrations, electric field strengths and gas pressures.

  4. EPA - National Pollutant Discharge Elimination System General...

    Open Energy Info (EERE)

    General Permit for Discharges from Construction Activities Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: EPA -...

  5. Hawaii National Pollutant Discharge Elimination System (NPDES...

    Open Energy Info (EERE)

    LibraryAdd to library PermittingRegulatory Guidance - Supplemental Material: Hawaii National Pollutant Discharge Elimination System (NPDES) Permit PacketPermittingRegulatory...

  6. Site Discharge Pollution Prevention Plan (SDPPP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SDPPP Individual Permit: Site Discharge Pollution Prevention Plan (SDPPP) The 2012 SDPPP update fully incorporates all changes made during the year and reflects changes projected...

  7. Device for generation of pulsed corona discharge

    DOE Patents [OSTI]

    Gutsol, Alexander F. (San Ramon, CA); Fridman, Alexander (Marlton, NJ); Blank, Kenneth (Philadelphia, PA); Korobtsev, Sergey (Moscow, RU); Shiryaevsky, Valery (Moscow, RU); Medvedev, Dmitry (Moscow, RU)

    2012-05-08T23:59:59.000Z

    The invention is a method and system for the generation of high voltage, pulsed, periodic corona discharges capable of being used in the presence of conductive liquid droplets. The method and system can be used, for example, in different devices for cleaning of gaseous or liquid media using pulsed corona discharge. Specially designed electrodes and an inductor increase the efficiency of the system, permit the plasma chemical oxidation of detrimental impurities, and increase the range of stable discharge operations in the presence of droplets of water or other conductive liquids in the discharge chamber.

  8. Oil and Hazardous Substance Discharge Preparedness (Minnesota)

    Broader source: Energy.gov [DOE]

    Anyone who owns or operates a vessel or facility that transports, stores, or otherwise handles hazardous wastes must take reasonable steps to prevent the discharge of those materials.

  9. A New Pulsed Glow Discharge Source With Enhanced Ion Extraction for Small Non-Conductive Samples or Atmospheric Sampling

    SciTech Connect (OSTI)

    Jackson, Glen P. [Ohio University, Athens; Haire, Richard {Dick} G [ORNL; Duckworth, Douglas {Doug} C [ORNL

    2003-04-01T23:59:59.000Z

    An ionization source designed to efficiently utilize sub-milligram quantities of electrically non-conducting compounds (i.e. oxides) for prolonged periods of mass spectrometric analysis is described. The source is coupled to a quadrupole ion trap mass spectrometer in this report, but could readily be modified for alternative types of mass spectrometers. The coaxial-design glow discharge ion source is unique in that it incorporates a focusing lens behind the discharge surface to steer ions towards the ion sampling plate and thereby improve sensitivity. Non-conducting oxide samples are infused in indium and set in one end of an electrically conductive rod, to which the voltage is applied. Transmission efficiency is sufficient to allow the measurement of isotopes of tungsten from a tungsten rod using glow discharge pulse widths as narrow as 2 {micro}s, which is on the order of single-atom layer sputtering. The sputtering and ionization processes occurring in the discharge produces mainly atomic metal ions, regardless of the chemical form of the metals in the samples. This latter aspect is particularly useful for intended applications involving actinide samples, and allows a minimal amount of sample handling. In a second application, a metal capillary is used in place of the rod to create an atmospheric sampling glow discharge. In this mode, the ion-focusing lens was also found to enhance ion signals arising from volatile vapors entering the discharge from the capillary.

  10. Cold Light from Hot Atoms and Molecules

    SciTech Connect (OSTI)

    Lister, Graeme [OSRAM SYLVANIA, CRSL, 71 Cherry Hill Drive, Beverly, MA (United States); Curry, John J. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    2011-05-11T23:59:59.000Z

    The introduction of rare earth atoms and molecules into lighting discharges led to great advances in efficacy of these lamps. Atoms such as Dy, Ho and Ce provide excellent radiation sources for lighting applications, with rich visible spectra, such that a suitable combination of these elements can provide high quality white light. Rare earth molecules have also proved important in enhancing the radiation spectrum from phosphors in fluorescent lamps. This paper reviews some of the current aspects of lighting research, particularly rare earth chemistry and radiation, and the associated fundamental atomic and molecular data.

  11. Development of a Web-based Emissions Reduction Calculator for Street Light and Traffic Light Retrofits

    E-Print Network [OSTI]

    Liu, Z.; Gilman, D.; Haberl, J. S.; Culp, C.

    2005-01-01T23:59:59.000Z

    , street lights and traffic lights represent one of the largest categories of electricity used by a city. By retrofitting the street lights with energy efficient lamps such as high pressure sodium and metal halide and traffic lights with light-emitting... diode (LED) traffic signals, a city 1 In the 2003 and 2005 Texas State legislative sessions, the emissions reductions legislation in Senate Bill 5 was modified by House bill 3235, and House bill 1365...

  12. Light trapping limits in plasmonic solar cells: an analytical investigation

    E-Print Network [OSTI]

    Sheng, Xing

    We analytically investigate the light trapping performance in plasmonic solar cells with Si/metallic structures. We consider absorption enhancements for surface plasmon polaritons (SPPs) at planar Si/metal interfaces and ...

  13. ElectricOIL discharge and post-discharge kinetics experiments and modeling

    E-Print Network [OSTI]

    Carroll, David L.

    oxygen, ozone, and other excited species adds levels of complexity to the singlet oxygen generator (SOG has been obtained by a near resonant energy transfer from O2(a1 ) produced using a low­pressure oxygen/helium/nitric-oxide discharge. In the electric discharge oxygen-iodine laser (ElectricOIL) the discharge production of atomic

  14. Light Properties Light travels at the speed of light `c'

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    LIGHT!! #12;Light Properties Light travels at the speed of light `c' C = 3 x 108 m/s Or 190,000 miles/second!! Light could travel around the world about 8 times in one second #12;What is light?? Light is a "wave packet" A photon is a "light particle" #12;Electromagnetic Radiation and You Light is sometimes

  15. Method for removing metals from a cleaning solution

    DOE Patents [OSTI]

    Deacon, Lewis E. (Waverly, OH)

    2002-01-01T23:59:59.000Z

    A method for removing accumulated metals from a cleaning solution is provided. After removal of the metals, the cleaning solution can be discharged or recycled. The process manipulates the pH levels of the solution as a means of precipitating solids. Preferably a dual phase separation at two different pH levels is utilized.

  16. Porous light-emitting compositions

    DOE Patents [OSTI]

    Burrell, Anthony K. (Los Alamos, NM); McCleskey, Thomas Mark (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Bauer, Eve (Los Alamos, NM); Mueller, Alexander H. (Los Alamos, NM)

    2012-04-17T23:59:59.000Z

    Light-emitting devices are prepared by coating a porous substrate using a polymer-assisted deposition process. Solutions of metal precursor and soluble polymers having binding properties for metal precursor were coated onto porous substrates. The coated substrates were heated at high temperatures under a suitable atmosphere. The result was a substrate with a conformal coating that did not substantially block the pores of the substrate.

  17. Plasma discharge self-cleaning filtration system

    DOE Patents [OSTI]

    Cho, Young I.; Fridman, Alexander; Gutsol, Alexander F.; Yang, Yong

    2014-07-22T23:59:59.000Z

    The present invention is directed to a novel method for cleaning a filter surface using a plasma discharge self-cleaning filtration system. The method involves utilizing plasma discharges to induce short electric pulses of nanoseconds duration at high voltages. These electrical pulses generate strong Shockwaves that disintegrate and dislodge particulate matter located on the surface of the filter.

  18. Atmospheric sampling glow discharge ionization source

    DOE Patents [OSTI]

    McLuckey, S.A.; Glish, G.L.

    1989-07-18T23:59:59.000Z

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above. 3 figs.

  19. Helium corona-assisted air discharge

    SciTech Connect (OSTI)

    Jiang Nan; Gao Lei; Ji Ailing; Cao Zexian [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2011-10-15T23:59:59.000Z

    Operation of atmospheric discharge of electronegative gases including air at low voltages yet without consuming any inert gas will enormously promote the application of non-thermal plasmas. By taking advantage of the low onset voltage for helium corona, air discharge was successfully launched at much reduced voltages with a needle-plate system partly contained in a helium-filled glass bulb--for a needle-plate distance of 12 mm, 1.0 kV suffices. Ultraviolet emission from helium corona facilitates the discharging of air, and the discharge current manifests distinct features such as relatively broad Trichel pulses in both half periods. This design allows safe and economic implementation of atmospheric discharge of electronegative gases, which will find a broad palette of applications in surface modification, plasma medicine and gas treatment, etc.

  20. Electro-hydrodynamics and kinetic modelling of polluted air flow activated by multi-tip-to-plane corona discharge

    SciTech Connect (OSTI)

    Meziane, M.; Eichwald, O.; Ducasse, O.; Marchal, F. [Universite de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d'Energie), Toulouse Cedex 9 F-31062 (France); Sarrette, J. P.; Yousfi, M. [Universite de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d'Energie), Toulouse Cedex 9 F-31062 (France); CNRS, LAPLACE, Toulouse F-31062 (France)

    2013-04-21T23:59:59.000Z

    The present paper is devoted to the 2D simulation of an Atmospheric Corona Discharge Reactor (ACDR) involving 10 pins powered by a DC high voltage and positioned 7 mm above a grounded metallic plane. The corona reactor is periodically crossed by thin mono filamentary streamers with a natural repetition frequency of some tens of kHz. The simulation involves the electro-dynamic, chemical kinetic, and neutral gas hydrodynamic phenomena that influence the kinetics of the chemical species transformation. Each discharge stage (including the primary and the secondary streamers development and the resulting thermal shock) lasts about one hundred nanoseconds while the post-discharge stages occurring between two successive discharge phases last one hundred microseconds. The ACDR is crossed by a lateral air flow including 400 ppm of NO. During the considered time scale of 10 ms, one hundred discharge/post-discharge cycles are simulated. The simulation involves the radical formation and thermal exchange between the discharges and the background gas. The results show how the successive discharges activate the flow gas and how the induced turbulence phenomena affect the redistribution of the thermal energy and the chemical kinetics inside the ACDR.

  1. Metal inks

    DOE Patents [OSTI]

    Ginley, David S; Curtis, Calvin J; Miedaner, Alex; van Hest, Marinus Franciscus Antonius Maria; Kaydanova, Tatiana

    2014-02-04T23:59:59.000Z

    Self-reducing metal inks and systems and methods for producing and using the same are disclosed. In an exemplary embodiment, a method may comprise selecting metal-organic (MO) precursor, selecting a reducing agent, and dissolving the MO precursor and the reducing agent in an organic solvent to produce a metal ink that remains in a liquid phase at room temperature. Metal inks, including self-reducing and fire-through metal inks, are also disclosed, as are various applications of the metal inks.

  2. Oxygen Discharge and Post-Discharge Kinetics Experiments and Modeling for the Electric Oxygen-Iodine Laser System

    E-Print Network [OSTI]

    Carroll, David L.

    Oxygen Discharge and Post-Discharge Kinetics Experiments and Modeling for the Electric Oxygen a low-pressure oxygen/helium/nitric oxide discharge. In the electric discharge oxygen-iodine laser (ElectricOIL) the discharge production of atomic oxygen, ozone, and other excited species adds levels

  3. Smart Lighting Controller!! Smart lighting!

    E-Print Network [OSTI]

    Anderson, Betty Lise

    1! Smart Lighting Controller!! #12;2! Smart lighting! No need to spend energy lighting the room if://blogs.stthomas.edu/realestate/2011/01/24/residential-real-estate-professionals-how-do-you- develop feedback! There is a connection between the output and the input! Therefore forces inputs to same voltage

  4. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Turning a material from an insulator to a metal, or vice versa, by light irradiation, exposure to electric or...

  5. Photovoltaic device having light transmitting electrically conductive stacked films

    DOE Patents [OSTI]

    Weber, Michael F. (St. Paul, MN); Tran, Nang T. (St. Paul, MN); Jeffrey, Frank R. (St. Paul, MN); Gilbert, James R. (St. Paul, MN); Aspen, Frank E. (St. Paul, MN)

    1990-07-10T23:59:59.000Z

    A light transmitting electrically conductive stacked film, useful as a light transmitting electrode, including a first light transmitting electrically conductive layer, having a first optical thickness, a second light transmitting layer, having a second optical thickness different from the optical thickness of the first layer, and an electrically conductive metallic layer interposed between and in initimate contact with the first and second layers.

  6. Fluid jet electric discharge source

    DOE Patents [OSTI]

    Bender, Howard A. (Ripon, CA)

    2006-04-25T23:59:59.000Z

    A fluid jet or filament source and a pair of coaxial high voltage electrodes, in combination, comprise an electrical discharge system to produce radiation and, in particular, EUV radiation. The fluid jet source is composed of at least two serially connected reservoirs, a first reservoir into which a fluid, that can be either a liquid or a gas, can be fed at some pressure higher than atmospheric and a second reservoir maintained at a lower pressure than the first. The fluid is allowed to expand through an aperture into a high vacuum region between a pair of coaxial electrodes. This second expansion produces a narrow well-directed fluid jet whose size is dependent on the size and configuration of the apertures and the pressure used in the reservoir. At some time during the flow of the fluid filament, a high voltage pulse is applied to the electrodes to excite the fluid to form a plasma which provides the desired radiation; the wavelength of the radiation being determined by the composition of the fluid.

  7. Microwave power spectral density and its effects on exciting electrodeless high intensity discharge lamps

    SciTech Connect (OSTI)

    Butler, S.J.; Goss, H.H.; Lapatovich, W.P. [Osram Sylvania Inc., Salem, MA (United States)

    1995-12-31T23:59:59.000Z

    The effects of a microwave source generating a spectrally dense power spectrum on the operation of an electrodeless high intensity discharge lamp were measured. Spectrally pure sources operating within ISM bands at 915 MHz and 2.45 GHz produce stable capacitively coupled discharges useful for producing flicker-free light for numerous applications. The internal plasma temperature distribution and lamp geometry define acoustic resonance modes within the lamp which can be excited with power sidebands. The operation of lamps with commercially available power sources and custom built generators are discussed. Estimates of the spectral purity required for stable operation are provided.

  8. Transverse-type laser assembly using induced electrical discharge excitation and method

    DOE Patents [OSTI]

    Ault, E.R.

    1994-04-19T23:59:59.000Z

    A transverse-type laser assembly is disclosed herein. This assembly defines a laser cavity containing a vapor or gaseous substance which lases when subjected to specific electrical discharge excitation between a pair of spaced-apart electrodes located within the cavity in order to produce a source of light. An arrangement located entirely outside the laser cavity is provided for inducing a voltage across the electrodes within the cavity sufficient to provide the necessary electrical discharge excitation to cause a vapor substance between the electrodes to lase. 3 figures.

  9. Powder Metal Performance Modeling of Automotive Components ?AMD...

    Broader source: Energy.gov (indexed) [DOE]

    parts before extending to light metal systems Optimization of the component geometry Tooling cost and parts making issues not yet discussed MSU has not considered impact of...

  10. Silicone metalization

    DOE Patents [OSTI]

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09T23:59:59.000Z

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  11. EPA - Ground Water Discharges (EPA's Underground Injection Control...

    Open Energy Info (EERE)

    Discharges (EPA's Underground Injection Control Program) webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - Ground Water Discharges (EPA's...

  12. Cerenkov Light

    ScienceCinema (OSTI)

    Slifer, Karl

    2014-05-22T23:59:59.000Z

    The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

  13. Cerenkov Light

    SciTech Connect (OSTI)

    Slifer, Karl

    2013-06-13T23:59:59.000Z

    The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

  14. Lighting Renovations

    Broader source: Energy.gov [DOE]

    When undertaking a lighting renovation in a Federal building, daylighting is the primary renewable energy opportunity. Photovoltaics (PV) also present an excellent opportunity. While this guide...

  15. Solid-state lighting technology perspective.

    SciTech Connect (OSTI)

    Tsao, Jeffrey Yeenien; Coltrin, Michael Elliott

    2006-08-01T23:59:59.000Z

    Solid-State Lighting (SSL) uses inorganic light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) to convert electricity into light for illumination. SSL has the potential for enormous energy savings and accompanying environmental benefits if its promise of 50% (or greater) energy efficiencies can be achieved. This report provides a broad summary of the technologies that underlie SSL. The applications for SSL and potential impact on U.S. and world-wide energy consumption, and impact on the human visual experience are discussed. The properties of visible light and different technical metrics to characterize its properties are summarized. The many factors contributing to the capital and operating costs for SSL and traditional lighting sources (incandescent, fluorescent, and high-intensity discharge lamps) are discussed, with extrapolations for future SSL goals. The technologies underlying LEDs and OLEDs are also described, including current and possible alternative future technologies and some of the present limitations.

  16. q < 1 discharges in Tokapole II

    SciTech Connect (OSTI)

    Osborne, T. H.; Dexter, R. N.; Prager, S. C.

    1981-01-01T23:59:59.000Z

    Observations are reported of discharges in which safety factor q values are obtained as low as 0.4 in Tokapole II, a tokamak with a four-node poloidal divertor configuration.

  17. Glow discharge plasma deposition of thin films

    DOE Patents [OSTI]

    Weakliem, Herbert A. (Pennington, NJ); Vossen, Jr., John L. (Bridgewater, NJ)

    1984-05-29T23:59:59.000Z

    A glow discharge plasma reactor for deposition of thin films from a reactive RF glow discharge is provided with a screen positioned between the walls of the chamber and the cathode to confine the glow discharge region to within the region defined by the screen and the cathode. A substrate for receiving deposition material from a reactive gas is positioned outside the screened region. The screen is electrically connected to the system ground to thereby serve as the anode of the system. The energy of the reactive gas species is reduced as they diffuse through the screen to the substrate. Reactive gas is conducted directly into the glow discharge region through a centrally positioned distribution head to reduce contamination effects otherwise caused by secondary reaction products and impurities deposited on the reactor walls.

  18. Glow discharge based device for solving mazes

    SciTech Connect (OSTI)

    Dubinov, Alexander E., E-mail: dubinov-ae@yandex.ru; Mironenko, Maxim S.; Selemir, Victor D. [Russian Federal Nuclear Center ? All-Russian Scientific and Research Institute of Experimental Physics (RFNC-VNIIEF), Sarov, Nizhni Novgorod region 607188 (Russian Federation); Sarov Institute of Physics and Technology (SarFTI) of National Research Nuclear University “MEPhI,” Sarov, Nizhni Novgorod region 607188 (Russian Federation); Maksimov, Artem N.; Pylayev, Nikolay A. [Russian Federal Nuclear Center ? All-Russian Scientific and Research Institute of Experimental Physics (RFNC-VNIIEF), Sarov, Nizhni Novgorod region 607188 (Russian Federation)

    2014-09-15T23:59:59.000Z

    A glow discharge based device for solving mazes has been designed and tested. The device consists of a gas discharge chamber and maze-transformer of radial-azimuth type. It allows changing of the maze pattern in a short period of time (within several minutes). The device has been tested with low pressure air. Once switched on, a glow discharge has been shown to find the shortest way through the maze from the very first attempt, even if there is a section with potential barrier for electrons on the way. It has been found that ionization waves (striations) can be excited in the maze along the length of the plasma channel. The dependancy of discharge voltage on the length of the optimal path through the maze has been measured. A reduction in discharge voltage with one or two potential barriers present has been found and explained. The dependency of the magnitude of discharge ignition voltage on the length of the optimal path through the maze has been measured. The reduction of the ignition voltage with the presence of one or two potential barriers has been observed and explained.

  19. Magnetic dipole discharges. II. Cathode and anode spot discharges and probe diagnostics

    SciTech Connect (OSTI)

    Stenzel, R. L.; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)] [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States); Ionita, C.; Schrittwieser, R. [Institute for Ion Physics and Applied Physics, University of Innsbruck, A-6020 Innsbruck (Austria)] [Institute for Ion Physics and Applied Physics, University of Innsbruck, A-6020 Innsbruck (Austria)

    2013-08-15T23:59:59.000Z

    The high current regime of a magnetron-type discharge has been investigated. The discharge uses a permanent magnet as a cold cathode which emits secondary electrons while the chamber wall or a grounded electrode serves as the anode. As the discharge voltage is increased, the magnet develops cathode spots, which are short duration arcs that provide copious electrons to increase the discharge current dramatically. Short (1 ?s), high current (200 A) and high voltage (750 V) discharge pulses are produced in a relaxation instability between the plasma and a charging capacitor. Spots are also observed on a negatively biased plane Langmuir probe. The probe current pulses are as large as those on the magnet, implying that the high discharge current does not depend on the cathode surface area but on the properties of the spots. The fast current pulses produce large inductive voltages, which can reverse the electrical polarity of the magnet and temporarily operate it as an anode. The discharge current may also oscillate at the frequency determined by the charging capacitor and the discharge circuit inductance. Each half cycle of high-current current pulses exhibits a fast (?10 ns) current rise when a spot is formed. It induces high frequency (10–100 MHz) transients and ringing oscillations in probes and current circuits. Most probes behave like unmatched antennas for the electromagnetic pulses of spot discharges. Examples are shown to distinguish the source of oscillations and some rf characteristics of Langmuir probes.

  20. Exposure and effects of oilfield brine discharges on western sandpipers (Calidris mauri) in Nueces Bay, Texas

    SciTech Connect (OSTI)

    Rattner, B.A.; Melancon, M.J. [National Biological Survey, Laurel, MD (United States); Capizzi, J.L. [Texas A& M Univ., College Station, TX (United States); King, K.A. [Fish and Wildlife Service, Phoenix, AZ (United States); LeCaptain, L.J. [Fish and Wildlife Service, Spokane, WA (United States)

    1995-05-01T23:59:59.000Z

    Discharge of oilfield brines into fresh and estuarine waters is a common disposal practice in Texas. Petroleum crude oil (PCO) extraction from underground stores includes the removal of a significant amount of water along with the oil. Several methods may be used to separate the oil and water fractions, including tank batteries, heat separation, and skimming ponds. Disposal of the resultant produced water (oilfield brine) may be accomplished by deep-well injection or discharge to surface waters. In Texas, an estimated 766,000 barrels of oilfield brine were discharged daily into tidal waters in 1979. The maximum concentration for oil and grease in these discharges permitted by the Texas Railroad Commission is 25 ppm. Several studies have shown that oilfield brines are toxic to a wide range of marine life, yet little is known about their effects on birds and mammals. Exposure to petroleum in oilfield wastes could evoke toxicological effects in some waterbird species. Avian responses to PCO exposure are highly variable, including cessation of growth, osmoregulatory impairment, endocrine dysfunction, hemolytic anemia, altered blood chemistry, cytochrome P450 induction, reduced reproductive success, and mortality. Oilfield brine discharges may soon be the largest and most pervasive source of contaminants entering Texas estuaries. Migratory and resident birds feeding in the vicinity of discharge sites may be ingesting food items contaminated with petroleum hydrocarbons, heavy metals and salts in sufficient quantities to evoke toxicity. The present study of wintering western sandpipers (Calidris mauri) that feed and roost near discharge sites sought to examine oilfield brine exposure and effects through quantification of contaminant burdens, morphological characteristics, and cytochrome P450-associated monooxygenase activities. 20 refs., 2 tabs.

  1. Advanced lighting guidelines: 1993. Final report

    SciTech Connect (OSTI)

    Eley, C.; Tolen, T.M. [Eley Associates, San Francisco, CA (United States); Benya, J.R. [Luminae Souter Lighting Design, San Francisco, CA (United States); Rubinstein, F.; Verderber, R. [Lawrence Berkeley Lab., CA (United States)

    1993-12-31T23:59:59.000Z

    The 1993 Advanced Lighting Guidelines document consists of twelve guidelines that provide an overview of specific lighting technologies and design application techniques utilizing energy-efficient lighting practice. Lighting Design Practice assesses energy-efficient lighting strategies, discusses lighting issues, and explains how to obtain quality lighting design and consulting services. Luminaires and Lighting Systems surveys luminaire equipment designed to take advantage of advanced technology lamp products and includes performance tables that allow for accurate estimation of luminaire light output and power input. The additional ten guidelines -- Computer-Aided Lighting Design, Energy-Efficient Fluorescent Ballasts, Full-Size Fluorescent Lamps, Compact Fluorescent Lamps, Tungsten-Halogen Lamps, Metal Halide and HPS Lamps, Daylighting and Lumen Maintenance, Occupant Sensors, Time Scheduling Systems, and Retrofit Control Technologies -- each provide a product technology overview, discuss current products on the lighting equipment market, and provide application techniques. This document is intended for use by electric utility personnel involved in lighting programs, lighting designers, electrical engineers, architects, lighting manufacturers` representatives, and other lighting professionals.

  2. Pollution prevention and water conservation in metals finishing operations

    SciTech Connect (OSTI)

    O`Shaughnessy, J.; Clark, W. [Worcester Polytechnic Inst., MA (United States); Lizotte, R.P. Jr.; Mikutel, D. [Texas Instruments Inc., Attleboro, MA (United States)

    1996-11-01T23:59:59.000Z

    Attleboro, Massachusetts is the headquarters of the Materials and Controls Group of Texas Instruments Incorporated (Texas Instruments). In support of their activities, Texas Instruments operates a number of metal finishing and electroplating processes. The water supply and the wastewater treatment requirements are supplied throughout the facility from a central location. Water supply quality requirements varies with each manufacturing operation. As a result, manufacturing operations are classified as either high level or a lower water quality. The facility has two methods of wastewater treatment and disposal. The first method involves hydroxide and sulfide metals precipitation prior to discharge to a surface water. The second method involves metals precipitation, filtration, and discharge via sewer to the Attleboro WTF. The facility is limited to a maximum wastewater discharge of 460,000 gallons per day to surface water under the existing National Pollution Discharge Elimination System (NPDES) permit. There is also a hydraulic flow restriction on pretreated wastewater that is discharged to the Attleboro WTF. Both of these restrictions combined with increased production could cause the facility to reach the treatment capacity. The net effect is that wastewater discharge problems are becoming restrictive to the company`s growth. This paper reviews Texas Instruments efforts to overcome these restrictions through pollution prevention and reuse practices rather than expansion of end of pipe treatment methods.

  3. Life cycle assessment of buildings technologies: High-efficiency commercial lighting and residential water heaters

    SciTech Connect (OSTI)

    Freeman, S.L.

    1997-01-01T23:59:59.000Z

    In this study the life cycle emissions and energy use are estimated for two types of energy technologies. The first technology evaluated is the sulfur lamp, a high-efficiency lighting system under development by the US Department of Energy (DOE) and Fusion Lighting, the inventor of the technology. The sulfur lamp is compared with conventional metal halide high-intensity discharge lighting systems. The second technology comparison is between standard-efficiency and high-efficiency gas and electric water heaters. In both cases the life cycle energy use and emissions are presented for the production of an equivalent level of service by each of the technologies. For both analyses, the energy use and emissions from the operation of the equipment are found to dominate the life cycle profile. The life cycle emissions for the water heating systems are much more complicated. The four systems compared include standard- and high-efficiency gas water heaters, standard electric resistance water heaters, and heat pump water heaters.

  4. Electrodeless HID lamp study. Final report. [High intensity discharge

    SciTech Connect (OSTI)

    Anderson, J.M.; Johnson, P.D.; Jones, C.E.; Rautenberg, T.H.

    1985-01-01T23:59:59.000Z

    High intensity discharge lamps excited by solenoidal electric fields (SEF/HID) were examined for their ability to give high brightness, high efficacy and good color. Frequency of operation was 13.56 MHz (ISM Band) and power to the lamp plasma ranged from about 400 to 1000 W. Radio frequency transformers with air cores and with air core complemented by ferrite material in the magnetic path were used to provide the voltage for excitation. Electrical properties of the matching network and the lamp plasma were measured or calculated and total light from the lamp was measured by an integrating sphere. Efficacies calculated from measurement were found to agree well with the positive column efficacies of conventional HID lamps containing only mercury, and with additives of sodium, thallium, and scandium iodide. Recommendations for future work are given.

  5. Observations of a mode transition in a hydrogen hollow cathode discharge using phase resolved optical emission spectroscopy

    SciTech Connect (OSTI)

    Dixon, Sam, E-mail: sam.dixon@anu.edu.au; Charles, Christine; Dedrick, James; Boswell, Rod [Space Plasma, Power and Propulsion Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia); Gans, Timo; O'Connell, Deborah [Department of Physics, York Plasma Institute, University of York, Heslington, York YO10 5DD (United Kingdom)

    2014-07-07T23:59:59.000Z

    Two distinct operational modes are observed in a radio frequency (rf) low pressure hydrogen hollow cathode discharge. The mode transition is characterised by a change in total light emission and differing expansion structures. An intensified CCD camera is used to make phase resolved images of Balmer ? emission from the discharge. The low emission mode is consistent with a typical ? discharge, and appears to be driven by secondary electrons ejected from the cathode surface. The bright mode displays characteristics common to an inductive discharge, including increased optical emission, power factor, and temperature of the H{sub 2} gas. The bright mode precipitates the formation of a stationary shock in the expansion, observed as a dark region adjacent to the source-chamber interface.

  6. Backcoupling of acoustic streaming on the temperature field inside high-intensity discharge lamps

    E-Print Network [OSTI]

    Schwieger, Joerg; Wolff, Marcus; Manders, Freddy; Suijker, Jos

    2015-01-01T23:59:59.000Z

    Operating high-intensity discharge lamps in the high frequency range (20-300 kHz) provides energy-saving and cost reduction potentials. However, commercially available lamp drivers do not make use of this operating strategy because light intensity fluctuations and even lamp destruction are possible. The reason for the fluctuating discharge arc are acoustic resonances in this frequency range that are excited in the arc tube. The acoustic resonances in turn generate a fluid flow that is caused by the acoustic streaming effect. Here, we present a 3D multiphysics model to determine the influence of acoustic streaming on the temperature field in the vicinity of an acoustic eigenfrequency. In that case a transition from stable to instable behavior occurs. The model is able to predict when light flicker can be expected. The results are in very good accordance with accompanying experiments.

  7. Contour forming of metals by laser peening

    DOE Patents [OSTI]

    Hackel, Lloyd (Livermore, CA); Harris, Fritz (Rocklin, CA)

    2002-01-01T23:59:59.000Z

    A method and apparatus are provided for forming shapes and contours in metal sections by generating laser induced compressive stress on the surface of the metal workpiece. The laser process can generate deep compressive stresses to shape even thick components without inducing unwanted tensile stress at the metal surface. The precision of the laser-induced stress enables exact prediction and subsequent contouring of parts. A light beam of 10 to 100 J/pulse is imaged to create an energy fluence of 60 to 200 J/cm.sup.2 on an absorptive layer applied over a metal surface. A tamping layer of water is flowed over the absorptive layer. The absorption of laser light causes a plasma to form and consequently creates a shock wave that induces a deep residual compressive stress into the metal. The metal responds to this residual stress by bending.

  8. State Waste Discharge Permit Application: Electric resistance tomography testing

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    This permit application documentation is for a State Waste Discharge Permit issued in accordance with requirements of Washington Administrative Code 173-216. The activity being permitted is a technology test using electrical resistance tomography. The electrical resistance tomography technology was developed at Lawrence Livermore National Laboratory and has been used at other waste sites to track underground contamination plumes. The electrical resistance tomography technology measures soil electrical resistance between two electrodes. If a fluid contaminated with electrolytes is introduced into the soil, the soil resistance is expected to drop. By using an array of measurement electrodes in several boreholes, the areal extent of contamination can be estimated. At the Hanford Site, the purpose of the testing is to determine if the electrical resistance tomography technology can be used in the vicinity of large underground metal tanks without the metal tank interfering with the test. It is anticipated that the electrical resistance tomography technology will provide a method for accurately detecting leaks from the bottom of underground tanks, such as the Hanford Site single-shell tanks.

  9. Central peaking of magnetized gas discharges

    SciTech Connect (OSTI)

    Chen, Francis F. [Electrical Engineering Department, University of California, Los Angeles, California 90095 (United States)] [Electrical Engineering Department, University of California, Los Angeles, California 90095 (United States); Curreli, Davide [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana Champaign, Urbana, Illinois 61801 (United States)] [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana Champaign, Urbana, Illinois 61801 (United States)

    2013-05-15T23:59:59.000Z

    Partially ionized gas discharges used in industry are often driven by radiofrequency (rf) power applied at the periphery of a cylinder. It is found that the plasma density n is usually flat or peaked on axis even if the skin depth of the rf field is thin compared with the chamber radius a. Previous attempts at explaining this did not account for the finite length of the discharge and the boundary conditions at the endplates. A simple 1D model is used to focus on the basic mechanism: the short-circuit effect. It is found that a strong electric field (E-field) scaled to electron temperature T{sub e}, drives the ions inward. The resulting density profile is peaked on axis and has a shape independent of pressure or discharge radius. This “universal” profile is not affected by a dc magnetic field (B-field) as long as the ion Larmor radius is larger than a.

  10. CONCENTRATED SOLID SOLUTIONS OF NORMAL METALS By H. JONES,

    E-Print Network [OSTI]

    Boyer, Edmond

    637. CONCENTRATED SOLID SOLUTIONS OF NORMAL METALS By H. JONES, Imperial College. Department and Heine [1] in the light of the new knowledge of the Fermi surface revealed by experi- ments alloys is reviewed in the light of modern work on the nature of the Fermi surfaces in the noble metals

  11. Dependence of recycling and edge profiles on lithium evaporation in high triangularity, high performance NSTX H-mode discharges

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    1 Dependence of recycling and edge profiles on lithium evaporation in high triangularity, high between discharges in NSTX, partly to reduce recycling. Reduced D emissions from the lower and upper of the recycling light, improvements in global confinement16-19 , along with the appearance of ELM-free regimes20

  12. Residual dust charges in discharge afterglow

    SciTech Connect (OSTI)

    Coueedel, L.; Mikikian, M.; Boufendi, L.; Samarian, A. A. [GREMI - Groupe de Recherches sur l'Energetique des Milieux Ionises, CNRS/Universite d'Orleans, 14 rue d'Issoudun, 45067 Orleans Cedex 2 (France); School of Physics A28, University of Sydney, NSW 2006 (Australia)

    2006-08-15T23:59:59.000Z

    An on-ground measurement of dust-particle residual charges in the afterglow of a dusty plasma was performed in a rf discharge. An upward thermophoretic force was used to balance the gravitational force. It was found that positively charged, negatively charged, and neutral dust particles coexisted for more than 1 min after the discharge was switched off. The mean residual charge for 200-nm-radius particles was measured. The dust particle mean charge is about -5e at a pressure of 1.2 mbar and about -3e at a pressure of 0.4 mbar.

  13. Metal oxide films on metal

    DOE Patents [OSTI]

    Wu, Xin D. (Los Alamos, NM); Tiwari, Prabhat (Los Alamos, NM)

    1995-01-01T23:59:59.000Z

    A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

  14. Metal vapor laser including hot electrodes and integral wick

    DOE Patents [OSTI]

    Ault, Earl R. (Livermore, CA); Alger, Terry W. (Tracy, CA)

    1995-01-01T23:59:59.000Z

    A metal vapor laser, specifically one utilizing copper vapor, is disclosed herein. This laser utilizes a plasma tube assembly including a thermally insulated plasma tube containing a specific metal, e.g., copper, and a buffer gas therein. The laser also utilizes means including hot electrodes located at opposite ends of the plasma tube for electrically exciting the metal vapor and heating its interior to a sufficiently high temperature to cause the metal contained therein to vaporize and for subjecting the vapor to an electrical discharge excitation in order to lase. The laser also utilizes external wicking arrangements, that is, wicking arrangements located outside the plasma tube.

  15. Metal vapor laser including hot electrodes and integral wick

    DOE Patents [OSTI]

    Ault, E.R.; Alger, T.W.

    1995-03-07T23:59:59.000Z

    A metal vapor laser, specifically one utilizing copper vapor, is disclosed herein. This laser utilizes a plasma tube assembly including a thermally insulated plasma tube containing a specific metal, e.g., copper, and a buffer gas therein. The laser also utilizes means including hot electrodes located at opposite ends of the plasma tube for electrically exciting the metal vapor and heating its interior to a sufficiently high temperature to cause the metal contained therein to vaporize and for subjecting the vapor to an electrical discharge excitation in order to lase. The laser also utilizes external wicking arrangements, that is, wicking arrangements located outside the plasma tube. 5 figs.

  16. TOLERANCE OF HEAVY METALS IN VASCULAR PLANTS: ARSENIC HYPERACCUMULATIONBY

    E-Print Network [OSTI]

    Ma, Lena

    CHAPTER 28 b TOLERANCE OF HEAVY METALS IN VASCULAR PLANTS: ARSENIC HYPERACCUMULATIONBY CHINESE the roots take up colossal amounts of a toxic metal from soils and rapidly sequester into their above-ground hyperaccumulation in the light of accumulated knowledge on heavy metal tolerance in higher plants. 1.INTRODUCTION

  17. A method of measuring a molten metal liquid pool volume

    DOE Patents [OSTI]

    Garcia, G.V.; Carlson, N.M., Donaldson, A.D.

    1990-12-12T23:59:59.000Z

    A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid. 3 figs.

  18. Transmissive metallic contact for amorphous silicon solar cells

    DOE Patents [OSTI]

    Madan, A.

    1984-11-29T23:59:59.000Z

    A transmissive metallic contact for amorphous silicon semiconductors includes a thin layer of metal, such as aluminum or other low work function metal, coated on the amorphous silicon with an antireflective layer coated on the metal. A transparent substrate, such as glass, is positioned on the light reflective layer. The metallic layer is preferably thin enough to transmit at least 50% of light incident thereon, yet thick enough to conduct electricity. The antireflection layer is preferably a transparent material that has a refractive index in the range of 1.8 to 2.2 and is approximately 550A to 600A thick.

  19. Pseudo ribbon metal ion beam source

    SciTech Connect (OSTI)

    Stepanov, Igor B., E-mail: stepanovib@tpu.ru; Ryabchikov, Alexander I.; Sivin, Denis O.; Verigin, Dan A. [Tomsk Polytechnic University, 30 Lenina Avenue, Tomsk 634050 (Russian Federation)] [Tomsk Polytechnic University, 30 Lenina Avenue, Tomsk 634050 (Russian Federation)

    2014-02-15T23:59:59.000Z

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface.

  20. The electrodeless discharge at atmospheric pressure

    SciTech Connect (OSTI)

    Laroussi, M.

    1999-07-01T23:59:59.000Z

    Recently the generation and applications of atmospheric pressure plasmas received increased interest in the plasma research community. Applications such as the surface modification of materials, and the decontamination of matter have been under investigation. In this context, the authors introduce a new means of generating an atmospheric pressure discharge, which is suitable for use in the above-mentioned applications, and in the treatment of undesirable or polluting gases, such as VOC's. This device is a capacitively coupled discharge. It is basically made of a non-conducting tube with two independent loops of wire wrapped around it, and separated by a distance d. A stable discharge is generated inside the tube when an AC voltage of few hundred volts to few kilovolts, at a frequency of few kilohertz, is applied between the loops. One end of the tube is completely open to the outside air, and a seed gas (generally a noble gas such as Helium) is introduced in the tube. The plasma generated with this method is weakly ionized, cold, and is maintained by a relatively low input power (few tens of watts, depending on the size of the tube). In this paper, the discharge electrical characteristics, its radiation emission characteristics, and the measurement of relevant plasma parameters will be presented.

  1. Ternary gas mixture for diffuse discharge switch

    DOE Patents [OSTI]

    Christophorou, Loucas G. (Oak Ridge, TN); Hunter, Scott R. (Oak Ridge, TN)

    1988-01-01T23:59:59.000Z

    A new diffuse discharge gas switch wherein a mixture of gases is used to take advantage of desirable properties of the respective gases. There is a conducting gas, an insulating gas, and a third gas that has low ionization energy resulting in a net increase in the number of electrons available to produce a current.

  2. Composite Metal-hydrogen Electrodes for Metal-Hydrogen Batteries

    SciTech Connect (OSTI)

    Ruckman, M W; Wiesmann, H; Strongin, M; Young, K; Fetcenko, M

    1997-04-01T23:59:59.000Z

    The purpose of this project is to develop and conduct a feasibility study of metallic thin films (multilayered and alloy composition) produced by advanced sputtering techniques for use as anodes in Ni-metal hydrogen batteries. The anodes could be incorporated in thin film solid state Ni-metal hydrogen batteries that would be deposited as distinct anode, electrolyte and cathode layers in thin film devices. The materials could also be incorporated in secondary consumer batteries (i.e. type AF(4/3 or 4/5)) which use electrodes in the form of tapes. The project was based on pioneering studies of hydrogen uptake by ultra-thin Pd-capped metal-hydrogen ratios exceeding and fast hydrogen charging and Nb films, these studies suggested that materials with those of commercially available metal hydride materials discharging kinetics could be produced. The project initially concentrated on gas phase and electrochemical studies of Pd-capped niobium films in laboratory-scale NiMH cells. This extended the pioneering work to the wet electrochemical environment of NiMH batteries and exploited advanced synchrotron radiation techniques not available during the earlier work to conduct in-situ studies of such materials during hydrogen charging and discharging. Although batteries with fast charging kinetics and hydrogen-metal ratios approaching unity could be fabricated, it was found that oxidation, cracking and corrosion in aqueous solutions made pure Nb films-and multiiayers poor candidates for battery application. The project emphasis shifted to alloy films based on known elemental materials used for NiMH batteries. Although commercial NiMH anode materials contain many metals, it was found that 0.24 µm thick sputtered Zr-Ni films cycled at least 50 times with charging efficiencies exceeding 95% and [H]/[M] ratios of 0.7-1.0. Multilayered or thicker Zr-Ni films could be candidates for a thin film NiMH battery that may have practical applications as an integrated power source for modern electronic devices.

  3. Effects of ductile phase volume fraction on the mechanical properties of Ti-Al?Ti metal-intermetallic laminate (MIL) composites

    E-Print Network [OSTI]

    Price, Richard David

    2010-01-01T23:59:59.000Z

    I. J. Light Alloys - Metallurgy of the Light Metals, 3rdformed by reactive foil metallurgy. ? Materials Science andformed by reactive foil metallurgy. HIP reaction at (a) 1300

  4. Large-Volume Resonant Microwave Discharge for Plasma Cleaning of a CEBAF 5-Cell SRF Cavity

    SciTech Connect (OSTI)

    J. Mammosser, S. Ahmed, K. Macha, J. Upadhyay, M. Nikoli, S. Popovi, L. Vuakovi

    2012-07-01T23:59:59.000Z

    We report the preliminary results on plasma generation in a 5-cell CEBAF superconducting radio-frequency (SRF) cavity for the application of cavity interior surface cleaning. CEBAF currently has {approx}300 of these five cell cavities installed in the Jefferson Lab accelerator which are mostly limited by cavity surface contamination. The development of an in-situ cavity surface cleaning method utilizing a resonant microwave discharge could lead to significant CEBAF accelerator performance improvement. This microwave discharge is currently being used for the development of a set of plasma cleaning procedures targeted to the removal of various organic, metal and metal oxide impurities. These contaminants are responsible for the increase of surface resistance and the reduction of RF performance in installed cavities. The CEBAF five cell cavity volume is {approx} 0.5 m2, which places the discharge in the category of large-volume plasmas. CEBAF cavity has a cylindrical symmetry, but its elliptical shape and transversal power coupling makes it an unusual plasma application, which requires special consideration of microwave breakdown. Our preliminary study includes microwave breakdown and optical spectroscopy, which was used to define the operating pressure range and the rate of removal of organic impurities.

  5. Electric field measurement in microwave discharge ion thruster with electro-optic probe

    SciTech Connect (OSTI)

    Ise, Toshiyuki; Tsukizaki, Ryudo; Koizumi, Hiroyuki [The University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan); Togo, Hiroyoshi [Microsystem Integration Laboratories, Nippon Telegraph and Telephone, Morinosato, Atsugi-shi, Kanagawa 243-0198 (Japan); Kuninaka, Hitoshi [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Chuo-ku, Sagamihara, Kanagawa 229-8510 (Japan)

    2012-12-15T23:59:59.000Z

    In order to understand the internal phenomena in a microwave discharge ion thruster, it is important to measure the distribution of the microwave electric field inside the discharge chamber, which is directly related to the plasma production. In this study, we proposed a novel method of measuring a microwave electric field with an electro-optic (EO) probe based on the Pockels effect. The probe, including a cooling system, contains no metal and can be accessed in the discharge chamber with less disruption to the microwave distribution. This method enables measurement of the electric field profile under ion beam acceleration. We first verified the measurement with the EO probe by a comparison with a finite-difference time domain numerical simulation of the microwave electric field in atmosphere. Second, we showed that the deviations of the reflected microwave power and the beam current were less than 8% due to inserting the EO probe into the ion thruster under ion beam acceleration. Finally, we successfully demonstrated the measurement of the electric-field profile in the ion thruster under ion beam acceleration. These measurements show that the electric field distribution in the thruster dramatically changes in the ion thruster under ion beam acceleration as the propellant mass flow rate increases. These results indicate that this new method using an EO probe can provide a useful guide for improving the propulsion of microwave discharge ion thrusters.

  6. Preliminary investigation Area 12 fleet operations steam cleaning discharge area Nevada Test Site

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    This report documents the characterization activities and findings of a former steam cleaning discharge area at the Nevada Test Site. The former steam cleaning site is located in Area 12 east of Fleet Operations Building 12-16. The characterization project was completed as a required condition of the ``Temporary Water Pollution Control Permit for the Discharge From Fleet Operations Steam Cleaning Facility`` issued by the Nevada Division of Environmental Protection. The project objective was to collect shallow soil samples in eight locations in the former surface discharge area. Based upon field observations, twelve locations were sampled on September 6, 1995 to better define the area of potential impact. Samples were collected from the surface to a depth of approximately 0.3 meters (one foot) below land surface. Discoloration of the surface soil was observed in the area of the discharge pipe and in localized areas in the natural drainage channel. The discoloration appeared to be consistent with the topographically low areas of the site. Hydrocarbon odors were noted in the areas of discoloration only. Samples collected were analyzed for bulk asbestos, Toxicity Characteristic Leaching Procedure (TCLP) metals, total petroleum hydrocarbons (TPHs), volatile organic compounds (VOCs), semi-volatile organic compounds (Semi-VOCs), and gamma scan.

  7. Light Computing

    E-Print Network [OSTI]

    Gordon Chalmers

    2006-10-13T23:59:59.000Z

    A configuration of light pulses is generated, together with emitters and receptors, that allows computing. The computing is extraordinarily high in number of flops per second, exceeding the capability of a quantum computer for a given size and coherence region. The emitters and receptors are based on the quantum diode, which can emit and detect individual photons with high accuracy.

  8. Metals 2000

    SciTech Connect (OSTI)

    Allison, S.W.; Rogers, L.C.; Slaughter, G. [Oak Ridge National Lab., TN (United States); Boensch, F.D. [6025 Oak Hill Lane, Centerville, OH (United States); Claus, R.O.; de Vries, M. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States)

    1993-05-01T23:59:59.000Z

    This strategic planning exercise identified and characterized new and emerging advanced metallic technologies in the context of the drastic changes in global politics and decreasing fiscal resources. In consideration of a hierarchy of technology thrusts stated by various Department of Defense (DOD) spokesmen, and the need to find new and creative ways to acquire and organize programs within an evolving Wright Laboratory, five major candidate programs identified are: C-17 Flap, Transport Fuselage, Mach 5 Aircraft, 4.Fighter Structures, and 5. Missile Structures. These results were formed by extensive discussion with selected major contractors and other experts, and a survey of advanced metallic structure materials. Candidate structural applications with detailed metal structure descriptions bracket a wide variety of uses which warrant consideration for the suggested programs. An analysis on implementing smart skins and structures concepts is given from a metal structures perspective.

  9. Dendritic metal nanostructures

    DOE Patents [OSTI]

    Shelnutt, John A. (Tijeras, NM); Song, Yujiang (Albuquerque, NM); Pereira, Eulalia F. (Vila Nova de Gaia, PT); Medforth, Craig J. (Winters, CA)

    2010-08-31T23:59:59.000Z

    Dendritic metal nanostructures made using a surfactant structure template, a metal salt, and electron donor species.

  10. Light Well: ATunable Free-Electron Light Source on a Chip K. F. MacDonald,1,* Y. H. Fu,2

    E-Print Network [OSTI]

    Zheludev, Nikolay

    Light Well: ATunable Free-Electron Light Source on a Chip G. Adamo,1 K. F. MacDonald,1,* Y. H. Fu,2 metal-dielectric structure creates a new type of tunable, nanoscale radiation source--a ``light well''. In the reported demonstration, tunable light is generated at an intensity of $200 W=cm2 as electrons with energies

  11. Montana Facilities Which Do Not Discharge Process Wastewater...

    Open Energy Info (EERE)

    Which Do Not Discharge Process Wastewater (MDEQ Form 2E) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Montana Facilities Which Do Not Discharge Process...

  12. Experimental investigation of electron multipactor discharges at very high frequency

    E-Print Network [OSTI]

    Graves, Timothy P. (Timothy Paul)

    2006-01-01T23:59:59.000Z

    Multipactor discharges are a resonant condition in which electrons impact a surface in phase with an alternating electric field. The discharge is sustained by electron multiplication from secondary emission. As motivation, ...

  13. Residual dust charges in discharge afterglow L. Couedel,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    was performed in a rf discharge. An upward thermophoretic force was used to balance the gravitational force

  14. Residential Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical squestionnairesquestionnaires AgreementLighting

  15. Lighting Inventory Lighting Theatre and Drama

    E-Print Network [OSTI]

    Indiana University

    Lighting Inventory Lighting Theatre and Drama Description Totals R.Halls Wells- Metz Light ERS ETC SourceFour 25 25 50 degree ERS Strand Lighting 64 14 24 12 14 36 degree ERS ETC Source Four 15 15 36 degree ERS Strand Lighting 124 60 58 2 4 26 degree ERS ETC SourceFour 2 2 26 degree ERS Strand

  16. Spectra of Ions Produced by Corona Discharges

    SciTech Connect (OSTI)

    Skalny, J.; Hortvath, G. [Department of Experimental Physics, Comenius University, Mlynska dolina F-2, 84248 Bratislava (Slovakia); Mason, N. J. [Open University, Department of Physics and Astronomy, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2006-12-01T23:59:59.000Z

    A mass spectrometric study of ions extracted from both positive and negative DC corona discharges, initiated in point-to plane electrode system, has been carried out in ambient air at low air pressure (5 - 30) kPa. The average relative humidity of air was typically 40-50 %. Ions were extracted through a small orifice in the plane electrode into an intermediate gap where the low pressure prevented further ion-molecule reactions. Mass analysis of negative ions formed in the negative corona discharge using ambient air has shown that the yield of individual ions is strongly affected by trace concentrations of ozone, nitrogen oxides, carbon dioxide and water vapour. In dry air the CO{sub 3}{sup -} ion was found to be dominant. In presence of water this is converted very efficiently to cluster ions CO{sub 3}{sup -}{center_dot}(H{sub 2}O){sub n} containing one and more water molecules. The yield of O{sub 3}{sup -}{center_dot}(H{sub 2}O){sub n} clusters or core ions was found to be considerably lower than in some other studies at atmospheric pressure. The mass spectrum of ions extracted from drift region of a positive corona discharge was simpler being dominantly cluster ions H3O+{center_dot}(H2O)n most probably formed from O{sub 2}{sup +} ions, a two step process being active if water molecules are present in the discharge gap even at relatively low concentration.

  17. Gas mixture for diffuse-discharge switch

    DOE Patents [OSTI]

    Christophorou, L.G.; Carter, J.G.; Hunter, S.R.

    1982-08-31T23:59:59.000Z

    Gaseous medium in a diffuse-discharge switch of a high-energy pulse generator is formed of argon combined with a compound selected from the group consisting of CF/sub 4/, C/sub 2/F/sub 6/, C/sub 3/F/sub 8/, n-C/sub 4/F/sub 10/, WF/sub 6/, (CF/sub 3/)/sub 2/S and (CF/sub 3/)/sub 2/O.

  18. Magnetism in Lithium–Oxygen Discharge Product

    SciTech Connect (OSTI)

    Lu, Jun; Jung, Hun-Ji; Lau, Kah Chun; Zhang, Zhengcheng; Schlueter, John A.; Du, Peng; Assary, Rajeev S.; Greeley, Jeffrey P.; Ferguson, Glen A.; Wang, Hsien-Hau; Hassoun, Jusef; Iddir, Hakim; Zhou, Jigang; Zuin, Lucia; Hu, Yongfeng; Sun, Yang-Kook; Scrosati, Bruno; Curtiss, Larry A.; Amine, Khalil

    2013-05-13T23:59:59.000Z

    Nonaqueous lithium–oxygen batteries have a much superior theoretical gravimetric energy density compared to conventional lithium-ion batteries, and thus could render long-range electric vehicles a reality. A molecular-level understanding of the reversible formation of lithium peroxide in these batteries, the properties of major/minor discharge products, and the stability of the nonaqueous electrolytes is required to achieve successful lithium–oxygen batteries. We demonstrate that the major discharge product formed in the lithium–oxygen cell, lithium peroxide, exhibits a magnetic moment. These results are based on dc-magnetization measurements and a lithium– oxygen cell containing an ether-based electrolyte. The results are unexpected because bulk lithium peroxide has a significant band gap. Density functional calculations predict that superoxide- type surface oxygen groups with unpaired electrons exist on stoichiometric lithium peroxide crystalline surfaces and on nanoparticle surfaces; these computational results are consistent with the magnetic measurement of the discharged lithium peroxide product as well as EPR measurements on commercial lithium peroxide. The presence of superoxide-type surface oxygen groups with spin can play a role in the reversible formation and decomposition of lithium peroxide as well as the reversible formation and decomposition of electrolyte molecules.

  19. Metal Hydrides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMay 18-19,DepartmentEnergyMetalMetal

  20. High-k shallow traps observed by charge pumping with varying discharging times

    SciTech Connect (OSTI)

    Ho, Szu-Han; Chen, Ching-En; Tseng, Tseung-Yuen [Department of Electronics Engineering, National Chiao Tung University, Hsinchu 300, Taiwan (China); Chang, Ting-Chang, E-mail: tcchang@mail.phys.nsysu.edu.tw [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Advanced Optoelectronics Technology Center, National Cheng Kung University, Tainan, Taiwan (China); Lu, Ying-Hsin; Lo, Wen-Hung; Tsai, Jyun-Yu; Liu, Kuan-Ju [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Wang, Bin-Wei; Cao, Xi-Xin [Department of Embedded System Engineering, Peking University, Beijing, P.R.China (China); Chen, Hua-Mao [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu, Taiwan (China); Cheng, Osbert; Huang, Cheng-Tung; Chen, Tsai-Fu [Device Department, United Microelectronics Corporation, Tainan Science Park, Taiwan (China)

    2013-11-07T23:59:59.000Z

    In this paper, we investigate the influence of falling time and base level time on high-k bulk shallow traps measured by charge pumping technique in n-channel metal-oxide-semiconductor field-effect transistors with HfO{sub 2}/metal gate stacks. N{sub T}-V{sub high} {sub level} characteristic curves with different duty ratios indicate that the electron detrapping time dominates the value of N{sub T} for extra contribution of I{sub cp} traps. N{sub T} is the number of traps, and I{sub cp} is charge pumping current. By fitting discharge formula at different temperatures, the results show that extra contribution of I{sub cp} traps at high voltage are in fact high-k bulk shallow traps. This is also verified through a comparison of different interlayer thicknesses and different Ti{sub x}N{sub 1?x} metal gate concentrations. Next, N{sub T}-V{sub high} {sub level} characteristic curves with different falling times (t{sub falling} {sub time}) and base level times (t{sub base} {sub level}) show that extra contribution of I{sub cp} traps decrease with an increase in t{sub falling} {sub time}. By fitting discharge formula for different t{sub falling} {sub time}, the results show that electrons trapped in high-k bulk shallow traps first discharge to the channel and then to source and drain during t{sub falling} {sub time}. This current cannot be measured by the charge pumping technique. Subsequent measurements of N{sub T} by charge pumping technique at t{sub base} {sub level} reveal a remainder of electrons trapped in high-k bulk shallow traps.

  1. Electrical excitation of colloidally synthesized quantum dots in metal oxide structures

    E-Print Network [OSTI]

    Wood, Vanessa Claire

    2010-01-01T23:59:59.000Z

    This thesis develops methods for integrating colloidally synthesized quantum dots (QDs) and metal oxides in optoelectronic devices, presents three distinct light emitting devices (LEDs) with metal oxides surrounding a QD ...

  2. LED Lighting Basics

    Broader source: Energy.gov [DOE]

    Light-Emitting diodes (LEDs) efficiently produce light in a fundamentally different way than any legacy or traditional source of light.

  3. Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us count theLienertLift Forces in a Light

  4. LEDs for Energy Efficient Greenhouse Lighting

    E-Print Network [OSTI]

    Singh, Devesh; Meinhardt-Wollweber, Merve; Roth, Bernhard

    2014-01-01T23:59:59.000Z

    Light energy is an important factor for plant growth. In regions where the natural light source, i.e. solar radiation, is not sufficient for growth optimization, additional light sources are being used. Traditional light sources such as high pressure sodium lamps and other metal halide lamps are not very efficient and generate high radiant heat. Therefore, new sustainable solutions should be developed for energy efficient greenhouse lighting. Recent developments in the field of light source technologies have opened up new perspectives for sustainable and highly efficient light sources in the form of light-emitting diodes, i.e. LEDs, for greenhouse lighting. This review focuses on the potential of LEDs to replace traditional light sources in the greenhouse. In a comparative economic analysis of traditional vs. LED lighting, we show that the introduction of LEDs allows reduction of the production cost of vegetables in the long-run of several years, due to the high energy efficiency, low maintenance cost and lon...

  5. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing...

  6. Sensitive glow discharge ion source for aerosol and gas analysis

    DOE Patents [OSTI]

    Reilly, Peter T. A. (Knoxville, TN)

    2007-08-14T23:59:59.000Z

    A high sensitivity glow discharge ion source system for analyzing particles includes an aerodynamic lens having a plurality of constrictions for receiving an aerosol including at least one analyte particle in a carrier gas and focusing the analyte particles into a collimated particle beam. A separator separates the carrier gas from the analyte particle beam, wherein the analyte particle beam or vapors derived from the analyte particle beam are selectively transmitted out of from the separator. A glow discharge ionization source includes a discharge chamber having an entrance orifice for receiving the analyte particle beam or analyte vapors, and a target electrode and discharge electrode therein. An electric field applied between the target electrode and discharge electrode generates an analyte ion stream from the analyte vapors, which is directed out of the discharge chamber through an exit orifice, such as to a mass spectrometer. High analyte sensitivity is obtained by pumping the discharge chamber exclusively through the exit orifice and the entrance orifice.

  7. Phenomena of oscillations in atmospheric pressure direct current glow discharges

    SciTech Connect (OSTI)

    Liu, Fu-cheng [College of Physics Science and Technology, Hebei University, Baoding 071002 (China)] [College of Physics Science and Technology, Hebei University, Baoding 071002 (China); Yan, Wen; Wang, De-zhen [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2013-12-15T23:59:59.000Z

    Self-sustained oscillations in a dc glow discharge with a semiconductor layer at atmospheric pressure were investigated by means of a one-dimensional fluid model. It is found that the dc glow discharge initially becomes unstable in the subnormal glow region and gives rise to oscillations of plasma parameters. A variety of oscillations with one or more frequencies have been observed under different conditions. The discharge oscillates between the glow discharge mode and the Townsend discharge mode in the oscillations with large amplitude while operates in the subnormal glow discharge mode all the while in the oscillations with small amplitude. Fourier Transform spectra of oscillations reveal the transition mechanism between different oscillations. The effects of semiconductor conductivity on the oscillation frequency of the dominant mode, gas voltage, as well as the discharge current have also been analyzed.

  8. Artificial fireball generation via an erosive discharge with tin alloy electrodes

    E-Print Network [OSTI]

    Pirozerski, A L; Lebedeva, E L; Borisov, B F; Khomutova, A S; Mavlonazarov, I O

    2015-01-01T23:59:59.000Z

    We propose a method for generation of long-living autonomous fireball-like objects via a pulse erosive discharge between tin alloy electrodes. The objects are similar to the natural ball lightning in some properties, in particular, they have high energy density and are capable to burn through thin metal foils. The dynamics of the objects are studied using high speed videorecording. During their lifetime the fireballs generate aerogel threads. The studies of their structure by scanning electron microscopy reveal the presence of tin oxide nanoparticles and nanowhiskers.

  9. The effect of the operation modes of a gas discharge low-pressure amalgam lamp on the intensity of generation of 185 nm UV vacuum radiation

    SciTech Connect (OSTI)

    Vasilyak, L. M., E-mail: vasilyak@ihed.ras.ru [Russian Academy of Sciences, Joint Institute of High Temperatures (Russian Federation); Drozdov, L. A., E-mail: lit@npo.lit.ru; Kostyuchenko, S. V.; Sokolov, D. V. [ZAO LIT (Russian Federation); Kudryavtsev, N. N.; Sobur, D. A., E-mail: soburda@gmail.com [Moscow Institute for Physics and Technology (Russian Federation)

    2011-12-15T23:59:59.000Z

    The effect of the discharge current, mercury vapor pressure, and the inert gas pressure on the intensity and efficiency of the 185 nm line generation are considered. The spectra of the UV radiation (vacuum ultraviolet) transmission by protective coatings from the oxides of rare earth metals and aluminum are investigated.

  10. State waste discharge permit application: Hydrotest, maintenance and construction discharges. Revision 0

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    On December 23, 1991, the US DOE< Richland Operation Office (RL) and the Washington State Department of Ecology (Ecology) agreed to adhere to the provisions of the Department of Ecology Consent Order No. DE91NM-177 (216 Consent Order) (Ecology and US DOE 1991). The 216 Consent Order list regulatory milestones for liquid effluent streams at the Hanford Site and requires compliance with the permitting requirements of Washington Administrative Code. Hanford Site liquid effluent streams discharging to the soil column have been categorized on the 216 Consent Order as follows: Phase I Streams; Phase II Streams; Miscellaneous Streams. Phase I and Phase II Streams were initially addressed in two report. Miscellaneous Streams are subject to the requirements of several milestones identified in the 216 Consent Order. This document constitutes the Categorical State Waste Discharge Permit application for hydrotest,maintenance and construction discharges throughout the Hanford Site. This categorical permit application form was prepared and approved by Ecology.

  11. Nanodisperse transition metal electrodes (NTME) for electrochemical cells

    DOE Patents [OSTI]

    Striebel, Kathryn A. (Oakland, CA); Wen, Shi-Jie (Sunnyvale, CA)

    2000-01-01T23:59:59.000Z

    Disclosed are transition metal electrodes for electrochemical cells using gel-state and solid-state polymers. The electrodes are suitable for use in primary and secondary cells. The electrodes (either negative electrode or positive electrode) are characterized by uniform dispersion of the transition metal at the nanoscale in the polymer. The transition metal moiety is structurally amorphous, so no capacity fade should occur due to lattice expansion/contraction mechanisms. The small grain size, amorphous structure and homogeneous distribution provide improved charge/discharge cycling performance, and a higher initial discharge rate capability. The cells can be cycled at high current densities, limited only by the electrolyte conductivity. A method of making the electrodes (positive and negative), and their usage in electrochemical cells are disclosed.

  12. Sustainable Office Lighting Options

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Sustainable Office Lighting Options Task Lighting: Task lighting is a localized method of lighting a workspace so that additional, unnecessary lighting is eliminated, decreasing energy usage and costs. Illumination levels in the targeted work areas are higher with task lighting than with the ambient levels

  13. Nanoengineering for solid-state lighting.

    SciTech Connect (OSTI)

    Schubert, E. Fred (Rensselaer Polytechnic Institute,Troy, NY); Koleske, Daniel David; Wetzel, Christian (Rensselaer Polytechnic Institute,Troy, NY); Lee, Stephen Roger; Missert, Nancy A.; Lin, Shawn-Yu (Rensselaer Polytechnic Institute,Troy, NY); Crawford, Mary Hagerott; Fischer, Arthur Joseph

    2009-09-01T23:59:59.000Z

    This report summarizes results from a 3-year Laboratory Directed Research and Development project performed in collaboration with researchers at Rensselaer Polytechnic Institute. Our collaborative effort was supported by Sandia's National Institute for Nanoengineering and focused on the study and application of nanoscience and nanoengineering concepts to improve the efficiency of semiconductor light-emitting diodes for solid-state lighting applications. The project explored LED efficiency advances with two primary thrusts: (1) the study of nanoscale InGaN materials properties, particularly nanoscale crystalline defects, and their impact on internal quantum efficiency, and (2) nanoscale engineering of dielectric and metal materials and integration with LED heterostructures for enhanced light extraction efficiency.

  14. Numerical Investigation of Symmetry Breaking and Critical Behavior of the Acoustic Streaming Field in High-Intensity Discharge Lamps

    E-Print Network [OSTI]

    Baumann, Bernd; Wolff, Marcus; Manders, Freddy; Suijker, Jos

    2014-01-01T23:59:59.000Z

    For energy efficiency and material cost reduction it is preferred to drive high-intensity discharge lamps at frequencies of approximately 300 kHz. However, operating lamps at these high frequencies bears the risk of stimulating acoustic resonances inside the arc tube, which can result in low frequency light flicker and even lamp destruction. The acoustic streaming effect has been identified as the link between high frequency resonances and low frequency flicker. A highly coupled 3D multiphysics model has been set up to calculate the acoustic streaming velocity field inside the arc tube of high-intensity discharge lamps. It has been found that the velocity field suffers a phase transition to an asymmetrical state at a critical acoustic streaming force. The system behaves similar to a ferromagnet near the Curie point. Furthermore, it is discussed how the model allows to investigate the light flicker phenomenon. Concerning computer resources the procedure is considerably less demanding than a direct approach wit...

  15. Max Tech and Beyond: High-Intensity Discharge Lamps

    E-Print Network [OSTI]

    Scholand, Michael

    2012-01-01T23:59:59.000Z

    Pressure Sodium Light Emitting Diode Lamp Lumen Depreciationit is expected that light emitting diode (LED) lamps willLED Technology Light emitting diodes (LEDs) are an emerging

  16. Low current plasmatron fuel converter having enlarged volume discharges

    DOE Patents [OSTI]

    Rabinovich, Alexander (Swampscott, MA); Alexeev, Nikolai (Moscow, RU); Bromberg, Leslie (Sharon, MA); Cohn, Daniel R. (Chestnut Hill, MA); Samokhin, Andrei (Moscow, RU)

    2009-10-06T23:59:59.000Z

    A novel apparatus and method is disclosed for a plasmatron fuel converter ("plasmatron") that efficiently uses electrical energy to produce hydrogen rich gas. The volume and shape of the plasma discharge is controlled by a fluid flow established in a plasma discharge volume. A plasmatron according to this invention produces a substantially large effective plasma discharge volume allowing for substantially greater volumetric efficiency in the initiation of chemical reactions within a volume of bulk fluid reactant flowing through the plasmatron.

  17. Low current plasmatron fuel converter having enlarged volume discharges

    DOE Patents [OSTI]

    Rabinovich, Alexander; Alexeev, Nikolai; Bromberg, Leslie; Cohn, Daniel R.; Samokhin, Andrei

    2005-04-19T23:59:59.000Z

    A novel apparatus and method is disclosed for a plasmatron fuel converter (""plasmatron"") that efficiently uses electrical energy to produce hydrogen rich gas. The volume and shape of the plasma discharge is controlled by a fluid flow established in a plasma discharge volume. A plasmatron according to this invention produces a substantially large effective plasma discharge volume allowing for substantially greater volumetric efficiency in the initiation of chemical reactions within a volume of bulk fluid reactant flowing through the plasmatron.

  18. Metal-carbon nanostructures

    SciTech Connect (OSTI)

    Puretzky, A.A.; Hettich, R.L.; Jin, Changming; Haufler, R.E.; Compton, R.N. [Oak Ridge National Lab., TN (United States); Tuinman, A.A. [Tennessee Univ., Knoxville, TN (United States). Dept. of Chemistry

    1993-12-31T23:59:59.000Z

    Ultrafine particles formed by XeCl laser photolysis of M(CO){sub 6}, M = V, Cr, Mo, and W, have been analyzed by Fourier transform mass spectrometry and other techniques. Novel metal carbide clusters, (MoC{sub 4}){sub n}, n = 1 {minus} 4 and (WC{sub 4}){sub m}, m = 1 {minus} 8, were detected and studied. The material produced by photolysis of V(CO){sub 6} shows a series of vanadium-oxygen clusters, V{sub x}O{sub 2x+2}, x = 2 {minus} 10. No clusters of any type were detected in the photolysis product of Cr(CO){sub 6}. Structures based on the experimental evidence are proposed and discussed in light of their chemical reactivity.

  19. Photochemical reductive elimination of halogen from transition metal complexes

    E-Print Network [OSTI]

    Cook, Timothy R. (Timothy Raymond), 1982-

    2010-01-01T23:59:59.000Z

    This thesis is focused on the synthesis and study of transition metal complexes that undergo halogen elimination when irradiated with UV and visible light. This chemistry is relevant for solar energy storage schemes in ...

  20. Notice of Intent (NOI) for Storm Water Discharges Associated...

    Open Energy Info (EERE)

    Intent (NOI) for Storm Water Discharges Associated with Construction Activities under TPDES General Permit (TXR150000) Jump to: navigation, search OpenEI Reference LibraryAdd to...

  1. abnormal glow discharge: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    29 Glow Discharge Enhanced Chemical Reaction: Application in Ammonia Synthesis and Hydrocarbon Gas Cleanup Texas A&M University - TxSpace Summary: ......

  2. atmospheric glow discharge: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    34 Glow Discharge Enhanced Chemical Reaction: Application in Ammonia Synthesis and Hydrocarbon Gas Cleanup Texas A&M University - TxSpace Summary: ......

  3. ablation glow discharge: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    29 Glow Discharge Enhanced Chemical Reaction: Application in Ammonia Synthesis and Hydrocarbon Gas Cleanup Texas A&M University - TxSpace Summary: ......

  4. analytical glow discharge: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    29 Glow Discharge Enhanced Chemical Reaction: Application in Ammonia Synthesis and Hydrocarbon Gas Cleanup Texas A&M University - TxSpace Summary: ......

  5. WAC - 173 - 221 - Discharge Standards and Effluent Limitations...

    Open Energy Info (EERE)

    WAC - 173 - 221 - Discharge Standards and Effluent Limitations for Domestic Wastewater Facilities Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  6. File:CDPHE Industrial Individual Wastewater Discharge Permit...

    Open Energy Info (EERE)

    Industrial Individual Wastewater Discharge Permit Application.pdf Jump to: navigation, search File File history File usage Metadata File:CDPHE Industrial Individual Wastewater...

  7. WAC - 173 - 220 - National Pollutant Discharge Elimination System...

    Open Energy Info (EERE)

    Reference LibraryAdd to library Legal Document- RegulationRegulation: WAC - 173 - 220 - National Pollutant Discharge Elimination System Permit ProgramLegal Published NA Year...

  8. Point Source Discharges to Surface Waters (North Carolina)

    Broader source: Energy.gov [DOE]

    This rule requires permits for control of sources of water pollution by providing the requirements and procedures for application and issuance of state National Pollutant Discharge Elimination...

  9. atmospheric pressure discharge: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    de 367 Journal of Photochemistry and Photobiology A: Chemistry 140 (2001) 185189 The electrodeless discharge lamp: a prospective tool for photochemistry Chemistry Websites...

  10. atmospheric pressure discharges: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    de 367 Journal of Photochemistry and Photobiology A: Chemistry 140 (2001) 185189 The electrodeless discharge lamp: a prospective tool for photochemistry Chemistry Websites...

  11. Oklahoma Pollutant Discharge Elimination System (OPDES) Standards (Oklahoma)

    Broader source: Energy.gov [DOE]

    This program of the Water Quality Division of the Department of Environmental Quality sets the point source, biosolids (sewage sludge), and stormwater permitting standards for discharges to the...

  12. Notice of Intent for Stormwater Discharges Associated with Constructio...

    Open Energy Info (EERE)

    of Intent for Stormwater Discharges Associated with Construction Activity on Moderate Risk Sites Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Notice...

  13. Notice of Intent for Stormwater Discharges Associated with Constructio...

    Open Energy Info (EERE)

    Notice of Intent for Stormwater Discharges Associated with Construction Activity on Low Risk Sites Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal...

  14. Cathode fall measurement in a dielectric barrier discharge in helium

    SciTech Connect (OSTI)

    Hao, Yanpeng; Zheng, Bin; Liu, Yaoge [School of Electric Power, South China University of Technology, Guangzhou 510640 (China)] [School of Electric Power, South China University of Technology, Guangzhou 510640 (China)

    2013-11-15T23:59:59.000Z

    A method based on the “zero-length voltage” extrapolation is proposed to measure cathode fall in a dielectric barrier discharge. Starting, stable, and discharge-maintaining voltages were measured to obtain the extrapolation zero-length voltage. Under our experimental conditions, the “zero-length voltage” gave a cathode fall of about 185 V. Based on the known thickness of the cathode fall region, the spatial distribution of the electric field strength in dielectric barrier discharge in atmospheric helium is determined. The strong cathode fall with a maximum field value of approximately 9.25 kV/cm was typical for the glow mode of the discharge.

  15. The Physiologic Effects of Multiple Simultaneous Electronic Control Device Discharges

    E-Print Network [OSTI]

    Dawes, Donald M.; Ho, Jeffrey D; Reardon, Robert F; Sweeney, James D; Miner, James R

    2010-01-01T23:59:59.000Z

    physiologic effects of conducted electrical weapon dischargePhysiological effects of a conducted electrical weapon onLL, et al. Respiratory effect of prolonged electrical weapon

  16. Treated wastewater discharged from municipal wastewater treatment plants (WWTPs) contains

    E-Print Network [OSTI]

    Fay, Noah

    Treated wastewater discharged from municipal wastewater treatment plants (WWTPs) contains plants radically improve the overall quality of the treated wastewa- ter compared to secondary plants

  17. Tracing And Quantifying Magmatic Carbon Discharge In Cold Groundwaters...

    Open Energy Info (EERE)

    Tracing And Quantifying Magmatic Carbon Discharge In Cold Groundwaters- Lessons Learned From Mammoth Mountain, USA Jump to: navigation, search OpenEI Reference LibraryAdd to...

  18. Groundwater Discharge of Mercury to California Coastal Waters

    E-Print Network [OSTI]

    Flegal, Russell; Paytan, Adina; Black, Frank

    2009-01-01T23:59:59.000Z

    R. 2009. Submarine groundwater discharge of total mercuryof nutrient-enriched fresh groundwater at Stinson Beach,Priya Ganguli collects groundwater at Elkhorn Slough. Coal-

  19. Hydrothermal Heat Discharge In The Cascade Range, Northwestern...

    Open Energy Info (EERE)

    United States Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Hydrothermal Heat Discharge In The Cascade Range, Northwestern United States...

  20. Light scattering by an array of electric and magnetic nanoparticles

    E-Print Network [OSTI]

    Floreano, Dario

    Light scattering by an array of electric and magnetic nanoparticles Braulio García-Cámara1, 2@unican.es Abstract: Light scattering by an array of alternating electric and magnetic nanoparticles is analyzed, "Polarization sensitive silicon photodiodes using nanostructured metallic grids," Appl. Phys. Lett. 94

  1. Stripe Turing structures in a two-dimensional gas discharge system

    SciTech Connect (OSTI)

    Ammelt, E.; Astrov, Y.A.; Purwins, H.G., [Institute of Applied Physics, University of Muenster, Corrensstrasse 2/4, D-48149 Muenster (Germany); Astrov, Y.A., [Joffe Physical-Technical Institute of the Russian Academy of Sciences, 194021 St. Petersburg (Russia)

    1997-06-01T23:59:59.000Z

    Pattern formation phenomena in current density distributions have been investigated experimentally in a dc-driven planar gas discharge semiconductor system. Patterns are observed and recorded via a light density distribution in the discharge gap, which can be seen through one of the electrodes. Under appropriate conditions the spatially homogeneous discharge glow undertakes a transition into hexagonal or striped patterns as the global current is increased. The observed phenomena are interpreted as a Turing bifurcation into a patterned state. The transition into a striped pattern is studied in detail. Transitions both to stationary and to slowly moving stripe patterns have been observed. It has been ascertained that the typical velocity of stripes, which is of the order of mm/s, is independent of the distance from the bifurcation point in a rather broad range of variation of the bifurcation parameter. The underlying mechanism of pattern formation, as well as the movement of the patterns, is discussed. {copyright} {ital 1997} {ital The American Physical Society}

  2. The response of a capacitively coupled discharge to the formation of dust particles: Experiments and modeling

    SciTech Connect (OSTI)

    Denysenko, I.; Berndt, J.; Kovacevic, E.; Stefanovic, I.; Selenin, V.; Winter, J. [School of Physics and Technology, V. N. Karazin Kharkiv National University, Svobody sq. 4, 61077 Kharkiv (Ukraine); Institute of Experimental Physics II, Ruhr-University Bochum, D-44780 Bochum (Germany); Institute of Experimental Physics II, Ruhr-University Bochum, D-44780 Bochum, Germany and Institute of Physics, POB 57, 11001 Belgrade (Serbia and Montenegro); Institute of Experimental Physics II, Ruhr-University Bochum, D-44780 Bochum (Germany)

    2006-07-15T23:59:59.000Z

    The influence of dust particles on the properties of a capacitively coupled Ar-C{sub 2}H{sub 2} discharge is studied both experimentally and theoretically. The results of measurements of the intensity and spatial distribution of the emitted light, the line width of the fast component of H{sub {alpha}} line and of the electron density during the particle growth are presented. To analyze the experimental results a one-dimensional discharge model is developed. Using the model the effects of dust grains on the power absorption (taking into account stochastic and Ohmic heating in the plasma sheaths), the optical emission intensity profile, the sheath size, the rf electric field and on the energy of positive ions bombarding the electrodes are investigated. In particular, it is shown that the decrease of the power absorption in the sheaths of complex plasmas is due to the dependence of the stochastic and Ohmic heating in the plasma sheaths on the electron temperature and the current flowing across the discharge plates. The results of the calculations are compared with the available experimental data and found to be in good agreement.

  3. Phosphors containing boron and metals of Group IIIA and IIIB

    DOE Patents [OSTI]

    Setlur, Anant Achyut; Srivastava, Alok Mani; Comanzo, Holly Ann; Manivannan, Venkatesan

    2006-10-31T23:59:59.000Z

    A phosphor comprises: (a) at least a first metal selected from the group consisting of yttrium and elements of lanthanide series other than europium; (b) at least a second metal selected from the group consisting of aluminum, gallium, indium, and scandium; (c) boron; and (d) europium. The phosphor is used in light source that comprises a UV radiation source to convert UV radiation to visible light.

  4. Ordered dust structures in a glow discharge

    SciTech Connect (OSTI)

    Karasev, V. Yu., E-mail: plasmadust@yandex.ru; Ivanov, A. Yu.; Dzlieva, E. S.; Eikhval'd, A. I. [St. Petersburg State University, Institute of Physics (Russian Federation)

    2008-02-15T23:59:59.000Z

    Highly ordered three-dimensional dust structures are created in a striated glow discharge, and their horizontal cross-sectional images are analyzed. Calculated correlation functions, local correlation parameters, and corresponding approximations are used to classify the state of a structure according to the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) two-dimensional melting theory and a phenomenological approach. An orientational map based on an orientational parameter is proposed to expose domains in a cross section of a structure. It is shown that a plasma crystal is a polycrystal consisting of hexagonal domains (crystallites). Thermophoretic forces are used to create corners of various angles in the perimeter of the structure. Transition between hexagonal and square cell shapes is observed.

  5. Extreme-UV electrical discharge source

    DOE Patents [OSTI]

    Fornaciari, Neal R. (Tracey, CA); Nygren, Richard E. (Los Ranchos de Albuquerque, NM); Ulrickson, Michael A. (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    An extreme ultraviolet and soft x-ray radiation electric capillary discharge source that includes a boron nitride housing defining a capillary bore that is positioned between two electrodes one of which is connected to a source of electric potential can generate a high EUV and soft x-ray radiation flux from the capillary bore outlet with minimal debris. The electrode that is positioned adjacent the capillary bore outlet is typically grounded. Pyrolytic boron nitride, highly oriented pyrolytic boron nitride, and cubic boron nitride are particularly suited. The boron nitride capillary bore can be configured as an insert that is encased in an exterior housing that is constructed of a thermally conductive material. Positioning the ground electrode sufficiently close to the capillary bore outlet also reduces bore erosion.

  6. General Conditions Applicable to Water Discharge Permits and Procedures and Criteria for Issuing Water Discharge Permits (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations describe permit and facility requirements for facilities which discharge wastewater. Facility construction, expansion, alteration, production increases, or process modifications...

  7. Mobile lighting apparatus

    DOE Patents [OSTI]

    Roe, George Michael; Klebanoff, Leonard Elliott; Rea, Gerald W; Drake, Robert A; Johnson, Terry A; Wingert, Steven John; Damberger, Thomas A; Skradski, Thomas J; Radley, Christopher James; Oros, James M; Schuttinger, Paul G; Grupp, David J; Prey, Stephen Carl

    2013-05-14T23:59:59.000Z

    A mobile lighting apparatus includes a portable frame such as a moveable trailer or skid having a light tower thereon. The light tower is moveable from a stowed position to a deployed position. A hydrogen-powered fuel cell is located on the portable frame to provide electrical power to an array of the energy efficient lights located on the light tower.

  8. Light disappears rapidly (exponentially)

    E-Print Network [OSTI]

    Kudela, Raphael M.

    #12;#12;#12;#12;Light disappears rapidly (exponentially) with depth At the same time, the color of the light shifts #12;#12;#12;#12;· Euphotic zone ­ plentiful light ­ 0-100 m (about) · Dysphotic zone ­ very, very little light ­ 100-1000 m (about) · Aphotic zone ­ no light ­ below 1000 m #12;Sunlight in Water

  9. Nanoantennas for enhanced light trapping in transparent organic solar cells

    E-Print Network [OSTI]

    Voroshilov, Pavel M; Belov, Pavel A

    2014-01-01T23:59:59.000Z

    We propose a light-trapping structure offering a significant enhancement of photovoltaic absorption in transparent organic solar cells operating at infrared while the visible light transmission keeps sufficiently high. The main mechanism of light trapping is related with the excitation of collective oscillations of the metal nanoantenna arrays, characterized by advantageous field distribution in the volume of the solar cell. It allows more than triple increase of infrared photovoltaic absorption.

  10. Extracting metals directly from metal oxides

    DOE Patents [OSTI]

    Wai, C.M.; Smart, N.G.; Phelps, C.

    1997-02-25T23:59:59.000Z

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of {beta}-diketones, halogenated {beta}-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs.

  11. Extracting metals directly from metal oxides

    DOE Patents [OSTI]

    Wai, Chien M. (Moscow, ID); Smart, Neil G. (Moscow, ID); Phelps, Cindy (Moscow, ID)

    1997-01-01T23:59:59.000Z

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones, halogenated .beta.-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process.

  12. State Waste Discharge Permit application for industrial discharge to land: 200 East Area W-252 streams

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    This document constitutes the WAC 173-216 State Waste Discharge Permit application for six W-252 liquid effluent streams at the Hanford Site. Appendices B through H correspond to Section B through H in the permit application form. Within each appendix, sections correspond directly to the respective questions on the application form. The appendices include: Product or service information; Plant operational characteristics; Water consumption and waterloss; Wastewater information; Stormwater; Other information; and Site assessment.

  13. EK101 Engineering Light Smart Lighting

    E-Print Network [OSTI]

    Bifano, Thomas

    EK101 Engineering Light Smart Lighting Homework for 9/10 1. Make an estimate (using if the patent is granted.) 3. What is a lumen? A lux? How are the two related? How would you use a lux meter, (Lux, Lumens/m2) Luminous Flux: Perceivable light power from a source, (Lumens) Use the lux meter

  14. Compact light source performance in recessed type luminaires

    SciTech Connect (OSTI)

    Hammer, E.E.

    1998-11-01T23:59:59.000Z

    Photometric comparisons were made with an indoor, recessed, type luminaire using incandescent, high intensity discharge and compact fluorescent lamps. The test results show substantial performance advantages, as expected, for the discharge light sources where the efficacy gains can be in the order for 400% even when including the ballast losses associated with the discharge lamps. The candlepower distribution patterns emerging from these luminaries are also different from those associated with the baseline incandescent lamps, and which are in some ways, even more desirable from a uniformity of illuminance perspective. A section on fluorescent lamp starting is also included which describes a system having excellent starting characteristics in terms of electrode starting temperature (RH/RC technique), proper operating frequency to minimize unwanted IR interactions, and satisfactory current crest factor values to help insure life performance.

  15. Specific light in sculpture

    E-Print Network [OSTI]

    Powell, John William

    1989-01-01T23:59:59.000Z

    Specific light is defined as light from artificial or altered natural sources. The use and manipulation of light in three dimensional sculptural work is discussed in an historic and contemporary context. The author's work ...

  16. An ultra miniature pinch-focus discharge Leopoldo Soto1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Abstract As a way to investigate the minimum energy to produce a pinch plasma focus discharge, an ultra optimized plasma foci. It is interesting note that plasma parameters practically constant in plasma focusAn ultra miniature pinch-focus discharge Leopoldo Soto1 , Cristian Pavez1, 2 , Mario Barbaglia3

  17. Characteristics of a corona discharge with a hot corona electrode

    SciTech Connect (OSTI)

    Kulumbaev, E. B.; Lelevkin, V. M.; Niyazaliev, I. A.; Tokarev, A. V. [Kyrgyz-Russian Slavic University (Kyrgyzstan)

    2011-08-15T23:59:59.000Z

    The effect of the temperature of the corona electrode on the electrical characteristics of a corona discharge was studied experimentally. A modified Townsend formula for the current-voltage characteristic of a one-dimensional corona is proposed. Gasdynamic and thermal characteristics of a positive corona discharge in a coaxial electrode system are calculated. The calculated results are compared with the experimental data.

  18. Faraday Accelerator with Radio-frequency Assisted Discharge (FARAD)

    E-Print Network [OSTI]

    Choueiri, Edgar

    rights reserved. #12;Abstract A new electrodeless accelerator concept, called Faraday Accelerator with Radio-frequency Assisted Discharge (FARAD), that relies on an RF-assisted discharge to produce a plasma, an applied magnetic field to guide the plasma into the acceleration region, and an induced current sheet

  19. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOE Patents [OSTI]

    Rice, Gary (Gloucester, VA); D'Silva, Arthur P. (Ames, IA); Fassel, Velmer A. (Ames, IA)

    1986-05-06T23:59:59.000Z

    An apparatus for providing a simple, low-frequency electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  20. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOE Patents [OSTI]

    Rice, G.; D'Silva, A.P.; Fassel, V.A.

    1985-04-05T23:59:59.000Z

    An apparatus for providing a simple, low-frequency, electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  1. Discharge indices for water quality loads Richard M. Vogel

    E-Print Network [OSTI]

    Vogel, Richard M.

    : effective discharge, transport, sediment, constituents, rating curve, half-load Citation: Vogel, R. M., J. RDischarge indices for water quality loads Richard M. Vogel Department of Civil and Environmental load is ultimately the quantity of interest, we define a new index, the half-load discharge, which

  2. Improvement of extraction system geometry with suppression of possible Penning discharge ignition

    SciTech Connect (OSTI)

    Delferrière, O., E-mail: olivier.delferriere@cea.fr; Gobin, R.; Harrault, F.; Nyckees, S.; Tuske, O. [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/Saclay, DSM/IRFU, 91191-Gif/Yvette (France)] [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/Saclay, DSM/IRFU, 91191-Gif/Yvette (France)

    2014-02-15T23:59:59.000Z

    During the past two years, a new ECR 2.45 GHz type ion source has been developed especially dedicated to intense light ion injector project like IPHI (Injecteur Proton Haute Intensité), IFMIF (International Fusion Materials Irradiation Facility), to reduce beam emittance at RFQ entrance by shortening the length of the LEBT. This new ALISES concept (Advanced Light Ion Source Extraction System) is based on the use of an additional LEBT short length solenoid very close to the extraction aperture. The fringe field of this new solenoid produces the needed magnetic field to create the ECR resonance in the plasma chamber. Such geometry allows first putting the solenoid at ground potential, while saving space in front of the extraction to move the first LEBT solenoid closer and focus earlier the intense extracted beam. During the commissioning of the source in 2011–2012, ALISES has produced about 20 mA extracted from a 6 mm diameter plasma extraction hole at 23 kV. But the magnetic configuration combined to the new extraction system geometry led to important Penning discharge conditions in the accelerator column. Lots of them have been eliminated by inserting glass pieces between electrodes to modify equipotential lines with unfavorable ExB vacuum zones where particles were produced and trapped. To study Penning discharge location, several 3D calculations have been performed with OPERA-3D/TOSCA code to simulate the possible production and trapping of electrons in the extraction system. The results obtained on different sources already built have shown very good agreement with sparks location observed experimentally on electrodes. The simulations results as well as experimental measurements are presented and solutions to prevent possible Penning discharge in future source geometries are established.

  3. Light Duty Combustion Research: Advanced Light-Duty Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments 2009 DOE Hydrogen Program and...

  4. State Waste Discharge Permit application: 400 Area Septic System

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations, the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affects groundwater or has the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. This document constitutes the State Waste Discharge Permit application for the 400 Area Septic System. The influent to the system is domestic waste water. Although the 400 Area Septic System is not a Public Owned Treatment Works, the Public Owned Treatment Works application is more applicable than the application for industrial waste water. Therefore, the State Waste Discharge Permit application for Public Owned Treatment Works Discharges to Land was used.

  5. State Waste Discharge Permit application: 200-E Powerhouse Ash Pit

    SciTech Connect (OSTI)

    Atencio, B.P.

    1994-06-01T23:59:59.000Z

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations, the US Department and Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. This document constitutes the State Waste Discharge Permit application for the 200-E Powerhouse Ash Pit. The 200-E Powerhouse Ash Waste Water discharges to the 200-E Powerhouse Ash Pit via dedicated pipelines. The 200-E Ash Waste Water is the only discharge to the 200-E Powerhouse Ash Pit. The 200-E Powerhouse is a steam generation facility consisting of a coal-handling and preparation section and boilers.

  6. State Waste Discharge Permit application: 200-W Powerhouse Ash Pit

    SciTech Connect (OSTI)

    Atencio, B.P.

    1994-06-01T23:59:59.000Z

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations; the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. This document constitutes the State Waste Discharge Permit application for the 200-W Powerhouse Ash Pit. The 200-W Powerhouse Ash Waste Water discharges to the 200-W Powerhouse Ash Pit via dedicated pipelines. The 200-W Powerhouse Ash Waste Water is the only discharge to the 200-W Powerhouse Ash Pit. The 200-W Powerhouse is a steam generation facility consisting of a coal-handling and preparation section and boilers.

  7. Parallel vacuum arc discharge with microhollow array dielectric and anode

    SciTech Connect (OSTI)

    Feng, Jinghua; Zhou, Lin; Fu, Yuecheng; Zhang, Jianhua; Xu, Rongkun; Chen, Faxin; Li, Linbo; Meng, Shijian, E-mail: mengshijian04@126.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China)

    2014-07-15T23:59:59.000Z

    An electrode configuration with microhollow array dielectric and anode was developed to obtain parallel vacuum arc discharge. Compared with the conventional electrodes, more than 10 parallel microhollow discharges were ignited for the new configuration, which increased the discharge area significantly and made the cathode eroded more uniformly. The vacuum discharge channel number could be increased effectively by decreasing the distances between holes or increasing the arc current. Experimental results revealed that plasmas ejected from the adjacent hollow and the relatively high arc voltage were two key factors leading to the parallel discharge. The characteristics of plasmas in the microhollow were investigated as well. The spectral line intensity and electron density of plasmas in microhollow increased obviously with the decease of the microhollow diameter.

  8. Exciting White Lighting

    Broader source: Energy.gov [DOE]

    Windows that emit light and are more energy efficient? Universal Display’s PHOLED technology enables windows that have transparent light-emitting diodes in them.

  9. Metal-phosphate binders

    DOE Patents [OSTI]

    Howe, Beth Ann [Lewistown, IL; Chaps-Cabrera, Jesus Guadalupe [Coahuila, MX

    2009-05-12T23:59:59.000Z

    A metal-phosphate binder is provided. The binder may include an aqueous phosphoric acid solution, a metal-cation donor including a metal other than aluminum, an aluminum-cation donor, and a non-carbohydrate electron donor.

  10. PFP Emergency Lighting Study

    SciTech Connect (OSTI)

    BUSCH, M.S.

    2000-02-02T23:59:59.000Z

    NFPA 101, section 5-9 mandates that, where required by building classification, all designated emergency egress routes be provided with adequate emergency lighting in the event of a normal lighting outage. Emergency lighting is to be arranged so that egress routes are illuminated to an average of 1.0 footcandle with a minimum at any point of 0.1 footcandle, as measured at floor level. These levels are permitted to drop to 60% of their original value over the required 90 minute emergency lighting duration after a power outage. The Plutonium Finishing Plant (PFP) has two designations for battery powered egress lights ''Emergency Lights'' are those battery powered lights required by NFPA 101 to provide lighting along officially designated egress routes in those buildings meeting the correct occupancy requirements. Emergency Lights are maintained on a monthly basis by procedure ZSR-12N-001. ''Backup Lights'' are battery powered lights not required by NFPA, but installed in areas where additional light may be needed. The Backup Light locations were identified by PFP Safety and Engineering based on several factors. (1) General occupancy and type of work in the area. Areas occupied briefly during a shiftly surveillance do not require backup lighting while a room occupied fairly frequently or for significant lengths of time will need one or two Backup lights to provide general illumination of the egress points. (2) Complexity of the egress routes. Office spaces with a standard hallway/room configuration will not require Backup Lights while a large room with several subdivisions or irregularly placed rooms, doors, and equipment will require Backup Lights to make egress safer. (3) Reasonable balance between the safety benefits of additional lighting and the man-hours/exposure required for periodic light maintenance. In some plant areas such as building 236-Z, the additional maintenance time and risk of contamination do not warrant having Backup Lights installed in all rooms. Sufficient light for egress is provided by existing lights located in the hallways.

  11. Metal Hydrides - Science Needs

    Broader source: Energy.gov (indexed) [DOE]

    with traditions in metal hydride research Metal and Ceramic Sciences Condensed Matter Physics Materials Chemistry Chemical and Biological Sciences Located on campus of Tier...

  12. Low-voltage gas-discharge device

    DOE Patents [OSTI]

    Kovarik, V.J.; Hershcovitch, A.; Prelec, K.

    1982-06-08T23:59:59.000Z

    An electronic device of the type wherein current flow is conducted by an ionized gas comprising a cathode of the type heated by ionic bombardment, an anode, means for maintaining a predetermined pressure in the region between the anode and the cathode and means for maintaining a field in the region is described. The field, which is preferably a combined magnetic and electric field, is oriented so that the mean distance traveled by electrons before reaching the anode is increased. Because of this increased distance traveled electrons moving to the anode will ionize a large number of gas atoms, thus reducing the voltage necessary to initiate gas breakdown. In a preferred embodiment the anode is a main hollow cathode and the cathode is a smaller igniter hollow cathode located within and coaxial with the main hollow cathode. An axial magnetic field is provided in the region between the hollow cathodes in order to facilitate gas breakdown in that region and initiate plasma discharge from the main hollow cathode.

  13. Nanoparticle synthesis in pulsed low temperature discharges

    SciTech Connect (OSTI)

    Buss, R.J.

    1996-06-01T23:59:59.000Z

    Silicon nitride powders with an average size as low as 7 nm are synthesized in a pulsed radio frequency glow discharge. The as-synthesized silicon nitride powder from a silane/ammonia plasma has a high hydrogen content and is sensitive to oxidation in air. Post-plasma heating of the powder in a vacuum results in nitrogen loss, giving silicon-rich powder. In contrast, heat treatment at 800 C for 20 minutes in an ammonia atmosphere (200 Torr pressure) yields a hydrogen-free powder which is stable with respect to atmospheric oxidation. Several approaches to synthesizing silicon carbide nano-size powders are presented. Experiments using silane/hydrocarbon plasmas produce particles with a high hydrogen content as demonstrated by Fourier transform infrared analysis. The hydrogen is present as both CH and SiH functionality. These powders are extremely air-sensitive. A second approach uses a gas mixture of methyltrichlorosilane and hydrogen. The particles have a low hydrogen content and resist oxidation. Particle morphology of the silicon carbide is more spherical and there is less agglomeration than is observed in the silicon nitride powder.

  14. Regulations for the Rhode Island Pollutant Discharge Elimination System (Rhode Island)

    Broader source: Energy.gov [DOE]

    These regulations aim to protect surface water from pollutant discharges. They describe allowable discharges in the state that are subject to permits, discharges which may be made without permits,...

  15. Abundance and distribution of macro-crustaceans in the intake and discharge areas before and during early operation of the Cedar Bayou Generating Station

    E-Print Network [OSTI]

    Schmidt, Monroe

    1972-01-01T23:59:59.000Z

    and Discharge Areas Before and During Early Operation of the Cedar Bayou Generating Station. (May 1972) Monroe Schmidt, A. A. , Blinn College; B. S. , Texas A&M University Directed by: Dr. Kirk Strawn Two trawl and 1 seine station in Tabbs Bay, 2 trawl... were collected twice monthly from May through October 1970. Genera- tion of electric power (and discharge of heated water) by Unit 1, a 750 MW steam-electric unit of the Houston Lighting and Power Company's Cedar Bayou Generating Station, began...

  16. Properties of water surface discharge at different pulse repetition rates

    SciTech Connect (OSTI)

    Ruma,; Yoshihara, K. [Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan); Hosseini, S. H. R., E-mail: hosseini@kumamoto-u.ac.jp; Sakugawa, T.; Akiyama, H. [Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan); Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555 (Japan); Akiyama, M. [Department of Electrical and Electronic Engineering, Kagoshima University, Kagoshima 890-0065 (Japan); Lukeš, P. [Institute of Plasma Physics, AS CR, Prague, Prague 18200 (Czech Republic)

    2014-09-28T23:59:59.000Z

    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000?Hz, with 0.5?J per pulse energy output at 25?kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H{sub 2}O{sub 2}) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H{sub 2}O{sub 2} and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  17. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    DOE Patents [OSTI]

    Li, Ting (Ventura, CA)

    2011-04-26T23:59:59.000Z

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.

  18. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    DOE Patents [OSTI]

    Li, Ting

    2013-08-13T23:59:59.000Z

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.

  19. Entrainment by Spatiotemporal Chaos in Glow Discharge-Semiconductor Systems

    E-Print Network [OSTI]

    Marat Akhmet; Ismail Rafatov; Mehmet Onur Fen

    2014-06-15T23:59:59.000Z

    Entrainment of limit cycles by chaos [1] is discovered numerically through specially designed unidirectional coupling of two glow discharge-semiconductor systems. By utilizing the auxiliary system approach [2], it is verified that the phenomenon is not a chaos synchronization. Simulations demonstrate various aspects of the chaos appearance in both drive and response systems. Chaotic control is through the external circuit equation and governs the electrical potential on the boundary. The expandability of the theory to collectives of glow discharge systems is discussed, and this increases the potential of applications of the results. Moreover, the research completes the previous discussion of the chaos appearance in a glow discharge-semiconductor system [3].

  20. Lighting and Daylight Harvesting

    E-Print Network [OSTI]

    Bos, J.

    2011-01-01T23:59:59.000Z

    exposing us to the latest products and technologies. Daylight Harvesting A system of controlling the direction and the quantity of light both natural and artificial within a given space. This implies: Control of fenestration in terms of size..., transmission and direction. Control of reflected light within a space. Control of electric light in terms of delivery and amount Daylight harvesting systems are typically designed to maintain a minimum recommended light level. This light level...

  1. Heavy metal concentration in bay sediments of Japan

    SciTech Connect (OSTI)

    Fukue, Masaharu; Kato, Yoshihisa; Nakamura, Takaaki [Tokai Univ., Shimizu (Japan); Yamasaki, Shoichi [Aoki Marine Ltd., Fukushima, Osaka (Japan)

    1995-12-31T23:59:59.000Z

    Because industry discharge wastes into the sea, marine sediments can be contaminated with various kinds of hazardous and toxic substances. This study discusses how the degree of pollution of heavy metals affects the marine sediments from Osaka Bay and Tokyo Bay. In this study, the concentrations of various metals, such as manganese, iron, aluminum, titanium, vanadium, copper, phosphorus, etc., were measured from sediment samples obtained from different sites in the bays. However, the results had to be corrected because background concentrations for each metal differ with site location and grain size characteristics. The large difference between background and individual concentrations at various soil depths indicates that the surface layers of the seabed are significantly polluted with some species of heavy metal and other elements.

  2. Permit Program Regulating Discharge of Nondomestic Wastewater into a POTW (Ohio)

    Broader source: Energy.gov [DOE]

    Any significant industrial user is required to apply for and obtain an individual indirect discharge permit if they discharge water or waste into a publicly owned treatment works.

  3. EK101 Engineering Light Project: Evaluate Residential Lighting

    E-Print Network [OSTI]

    Bifano, Thomas

    EK101 Engineering Light Project: Evaluate Residential Lighting Compare technical and economic characteristics of three sources of residential light. Two teams of four complete the same project Engineering Light Project: Evaluate Residential Lighting Project Assignment: Evaluate current options

  4. Environmental and economic assessment of discharges from Gulf of Mexico region oil and gas operations. Quarterly technical progress report, April--June 1993

    SciTech Connect (OSTI)

    Gettleson, D.A.

    1993-07-26T23:59:59.000Z

    Continental Shelf Associates, Inc. (CSA) was contracted to conduct a three-year study of the environmental and health related impacts of produced water and sand discharges from oil and gas operations. Data on naturally occurring radioactive materials (NORM), heavy metals, and hydrocarbons in water, sediment, and biota will be collected and evaluated. Health related impacts will be studied through field collections and analyses of commercially- and recreationally-important fish and shellfish tissues. Additionally, information on seafood catch, consumption, and use patterns for the Gulf of Mexico will be gathered and analyzed. The facilities to be studied will include both offshore and coastal facilities in the Gulf of Mexico. Coastal sites will be additionally studied to determine ecological recovery of impacted wetland and open bay areas. The economic impact of existing and proposed effluent federal and state regulations will also be evaluated. The primary objectives of the project are to increase the base of scientific knowledge concerning (1) the fate and environmental effects of organics, trace metals, and NORM in water, sediment, and biota near several offshore oil and gas facilities; (2) the characteristics of produced water and produced sand discharges as they pertain to organics, trace metals, and NORM variably found in association with the discharges; (3) the recovery of four terminated produced water discharge sites located in wetland and high-energy open bay sites of coastal Louisiana and Texas; (4) the economic and energy supply impacts of existing and anticipated federal and state offshore and coastal discharge regulations; and (5) the catch, consumption and human use patterns of seafood species collected from coastal and offshore waters. Accomplishments for this period are described.

  5. Heavy metal biosensor

    SciTech Connect (OSTI)

    Hillson, Nathan J; Shapiro, Lucille; Hu, Ping; Andersen, Gary L

    2014-04-15T23:59:59.000Z

    Compositions and methods are provided for detection of certain heavy metals using bacterial whole cell biosensors.

  6. UPDES General Permit for Discharges from Construction Activities...

    Open Energy Info (EERE)

    Discharges from Construction Activities (Permit No. UTRC00000) Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: UPDES General Permit...

  7. AZPDES General Permit for Stormwater Discharges Associated with...

    Open Energy Info (EERE)

    Stormwater Discharges Associated with Construction Activity (Permit No. AZG2013-001) Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther:...

  8. Neutral Gas Expansion in a Cylindrical Helicon Discharge Chamber

    E-Print Network [OSTI]

    Walker, Mitchell

    ­1500 G) magnetic field parallel to the axis of the tube. In many helicon experiments for basic plasma research, the discharge chamber is composed of a small diameter (2­10 cm), relatively long (0.5­1.75 m

  9. arc discharge lamp: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TR, were determined. It was found that there is no local LTE in this arc discharge air plasma during its spacetime evolution, and effects of strong non-izothermality have a...

  10. Equilibrium theory of cylindrical discharges with special application to helicons

    E-Print Network [OSTI]

    Chen, Francis F.

    ) Radiofrequency discharges used in industry often have centrally peaked plasma density profiles n(r) although, and radiative transport. The book by Delcroix5 covers these local properties, including cross sections, and goes

  11. Use of microalgae to remove pollutants from power plant discharges

    DOE Patents [OSTI]

    Wilde, Edward W. (1833 Pisgah Rd., North Augusta, SC 29841); Benemann, John R. (2741 O'Harte, San Pablo, CA 94806); Weissman, Joseph C. (2086 N. Porpoise Pt. La., Vero Beach, FL 32963); Tillett, David M. (911-3 Coquina La., Vero Beach, FL 32963)

    1991-01-01T23:59:59.000Z

    A method and system for removing pollutants dissolved in the aqueous discharge of a plant, such as a power plant, from a body of water having known hydraulogy and physicochemical characteristics, the method comprising (a) modifying the hydraulic system of the body of water including use of physical barriers to define a zone in a portion of the body of water which zone includes the discharge point and where the water has a range of physicochemical characteristics; (b) selecting a large and preferably filamentous, planktonically growing strain of algae adapted to absorb the particular pollutants and genetically dominating algae at the physicochemical characteristics of the zone; (c) establishing a colony of the selected algal strain in the zone; (d) harvesting a portion of the colony; and (e) reinnoculating the zone near the discharge point with a fraction of the harvested portion. The fraction used for reinnoculation can be adjusted to balance the rate of pollutant removal to the rate of pollutant discharge.

  12. Nitrogen Atmospheric Pressure Post Discharges for Surface Biological Decontamination inside

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nitrogen Atmospheric Pressure Post Discharges for Surface Biological Decontamination inside Small) (PET) capillary tubes of different shapes and lengths and decontamination of flow tubes, both for several years at the Orsay Plasma Lab. Its biological decontamination efficiency has been demonstrated

  13. Discharging a DC bus capacitor of an electrical converter system

    DOE Patents [OSTI]

    Kajouke, Lateef A; Perisic, Milun; Ransom, Ray M

    2014-10-14T23:59:59.000Z

    A system and method of discharging a bus capacitor of a bidirectional matrix converter of a vehicle are presented here. The method begins by electrically shorting the AC interface of the converter after an AC energy source is disconnected from the AC interface. The method continues by arranging a plurality of switching elements of a second energy conversion module into a discharge configuration to establish an electrical current path from a first terminal of an isolation module, through an inductive element, and to a second terminal of the isolation module. The method also modulates a plurality of switching elements of a first energy conversion module, while maintaining the discharge configuration of the second energy conversion module, to at least partially discharge a DC bus capacitor.

  14. Discharge source with gas curtain for protecting optics from particles

    DOE Patents [OSTI]

    Fornaciari, Neal R.; Kanouff, Michael P.

    2004-03-30T23:59:59.000Z

    A gas curtain device is employed to deflect debris that is generated by an extreme ultraviolet and soft x-ray radiation discharge source such as an electric discharge plasma source. The gas curtain device projects a stream of gas over the path of the radiation to deflect debris particles into a direction that is different from that of the path of the radiation. The gas curtain can be employed to prevent debris accumulation on the optics used in photolithography.

  15. Spent nuclear fuel discharges from U.S. reactors 1994

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    Spent Nuclear Fuel Discharges from US Reactors 1994 provides current statistical data on fuel assemblies irradiated at commercial nuclear reactors operating in the US. This year`s report provides data on the current inventories and storage capacities at these reactors. Detailed statistics on the data are presented in four chapters that highlight 1994 spent fuel discharges, storage capacities and inventories, canister and nonfuel component data, and assembly characteristics. Five appendices, a glossary, and bibliography are also included. 10 figs., 34 tabs.

  16. Multipactor discharge on metals and dielectrics: Historical review and recent theories*

    E-Print Network [OSTI]

    Valfells, Ágúst

    . Kishek,a) Institute for Plasma Research, ERB#223, University of Maryland, College Park, Maryland 20742 Y

  17. Production of amorphous metallic surfaces by means of a pulsed glow discharge electron beam

    E-Print Network [OSTI]

    Rocca, Jorge J.

    ; that due to the rapid cooling to the substrate yielded amorphous phases. The system allows control, and N.S.F. Optoelectronic Computing System Center, Fort Collins, Colorado 80523 (Received 23 September Research Society HelpCommentsWelcome Journal of MATERIALS RESEARCH #12;

  18. Electrodeless lighting RF power source development. Final report

    SciTech Connect (OSTI)

    NONE

    1996-08-30T23:59:59.000Z

    An efficient, solid state RF power source has been developed on this NICE project for exciting low power electrodeless lamp bulbs. This project takes full advantage of concurrent advances in electrodeless lamp technology. Electrodeless lamp lighting systems utilizing the sulfur based bulb type developed by Fusion Lighting, Inc., is an emerging technology which is based on generating light in a confined plasma created and sustained by RF excitation. The bulb for such a lamp is filled with a particular element and inert gas at low pressure when cold. RF power from the RF source creates a plasma within the bulb which reaches temperatures approaching those of high pressure discharge lamp plasmas. At these temperatures the plasma radiates substantial visible light with a spectrum similar to sunlight.

  19. Lighting plasmas, energy and the environment

    SciTech Connect (OSTI)

    Rogoff, G.L. [Osram Sylvania Inc., Salem, MA (United States)

    1994-12-31T23:59:59.000Z

    Light production accounts for a significant fraction of the electrical energy used, and plasma-based light sources presently account for a significant fraction of existing lamps. In fact, the plasma-lamp portion is increasing, primarily due to the efficiency and economic benefits offered. Although relatively complex systems, the plasmas contained in those lamps are highly efficient electrical-to-radiative energy converters. Lighting can affect the environment indirectly through the power generation technologies as well as through waste disposal. However, while the relevance of energy efficiency and material disposal to environmental issues is clear, less apparent, but also important, are the environmental effects of the light itself. The latter play a significant role in determining whether lamp improvements are accepted and used. This talk describes some aspects of the physics of plasma lamps that are particularly important in establishing their widespread use. Topics include: key discharge processes, the significance of mercury in plasma-based lamps, and the disposal issue, particularly for mercury.

  20. Charging and discharging in ion implanted dielectric films used for capacitive radio frequency microelectromechanical systems switch

    SciTech Connect (OSTI)

    Li Gang; Chen Xuyuan [Pen-Tung Sah Micro-Electro-Mechanical Systems Research Center, Xiamen University, Xiamen, Fujian 361005 (China); Faculty of Science and Engineering, Vestfold University College, P.O. Box 2243, N-3103 Toensberg (Norway); San Haisheng [Pen-Tung Sah Micro-Electro-Mechanical Systems Research Center, Xiamen University, Xiamen, Fujian 361005 (China)

    2009-06-15T23:59:59.000Z

    In this work, metal-insulator-semiconductor (MIS) capacitor structure was used to investigate the dielectric charging and discharging in the capacitive radio frequency microelectromechanical switches. The insulator in MIS structure is silicon nitride films (SiN), which were deposited by either low pressure chemical vapor deposition (LPCVD) or plasma enhanced chemical vapor deposition (PECVD) processes. Phosphorus or boron ions were implanted into dielectric layer in order to introduce impurity energy levels into the band gap of SiN. The relaxation processes of the injected charges in SiN were changed due to the ion implantation, which led to the change in relaxation time of the trapped charges. In our experiments, the space charges were introduced by stressing the sample electrically with dc biasing. The effects of implantation process on charge accumulation and dissipation in the dielectric are studied by capacitance-voltage (C-V) measurement qualitatively and quantitatively. The experimental results show that the charging and discharging behavior of the ion implanted silicon nitride films deposited by LPCVD is quite different from the one deposited by PECVD. The charge accumulation in the dielectric film can be reduced by ion implantation with proper dielectric deposition method.

  1. Formation of Large Polysulfide Complexes during the Lithium-Sulfur Battery Discharge

    SciTech Connect (OSTI)

    Wang, Bin [Vanderbilt University, Nashville; Alhassan, Saeed M. [The Petroleum Institute; Pantelides, Sokrates T [ORNL

    2014-01-01T23:59:59.000Z

    Sulfur cathodes have much larger capacities than transition-metal-oxide cathodes used in commercial lithium-ion batteries but suffer from unsatisfactory capacity retention and long-term cyclability. Capacity degradation originates from soluble lithium polysulfides gradually diffusing into the electrolyte. Understanding of the formation and dynamics of soluble polysulfides during the discharging process at the atomic level remains elusive, which limits further development of lithium-sulfur (Li-S) batteries. Here we report first-principles molecular dynamics simulations and density functional calculations, through which the discharging products of Li-S batteries are studied. We find that, in addition to simple Li2Sn (1 n 8) clusters generated from single cyclooctasulfur (S8) rings, large Li-S clusters form by collectively coupling several different rings to minimize the total energy. At high lithium concentration, a Li-S network forms at the sulfur surfaces. The results can explain the formation of the soluble Li-S complex, such as Li2S8, Li2S6, and Li2S4, and the insoluble Li2S2 and Li2S structures. In addition, we show that the presence of oxygen impurities in graphene, particularly oxygen atoms bonded to vacancies and edges, may stabilize the lithium polysulfides that may otherwise diffuse into the electrolyte.

  2. Improved ion implant fluence uniformity in hydrogen enhanced glow discharge plasma immersion ion implantation into silicon

    SciTech Connect (OSTI)

    Luo, J. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Department of 702, Beihang University, Beijing 100191 (China); Li, L. H., E-mail: liliuhe@buaa.edu.cn, E-mail: paul.chu@cityu.edu.hk; Liu, H. T.; Xu, Y.; Zuo, X. J.; Zhu, P. Z.; Ma, Y. F. [Department of 702, Beihang University, Beijing 100191 (China); Yu, K. M. [Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States); Fu, Ricky K. Y.; Chu, Paul K., E-mail: liliuhe@buaa.edu.cn, E-mail: paul.chu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2014-06-15T23:59:59.000Z

    Enhanced glow discharge plasma immersion ion implantation does not require an external plasma source but ion focusing affects the lateral ion fluence uniformity, thereby hampering its use in high-fluence hydrogen ion implantation for thin film transfer and fabrication of silicon-on-insulator. Insertion of a metal ring between the sample stage and glass chamber improves the ion uniformity and reduces the ion fluence non-uniformity as the cathode voltage is raised. Two-dimensional multiple-grid particle-in-cell simulation confirms that the variation of electric field inside the chamber leads to mitigation of the ion focusing phenomenon and the results are corroborated experimentally by hydrogen forward scattering.

  3. Reactions of tungsten-titanium alloys with decomposition products from a glow UHF discharge in a tetrafluoromethane-oxygen mixture

    SciTech Connect (OSTI)

    Amirov, I.I.; Vinogradov, G.K.; Slovetskii, D.I.

    1988-07-01T23:59:59.000Z

    Decomposition products from tetrafluoromethane mixed with oxygen react with WTi alloy in an HF glow discharge, the extent of reaction being dependent on the atomic fluorine concentration, temperature, and surface potential. The rates of reaction with the CF/sub 4/ products are proportional to the atomic fluorine concentrations. The effective activation energies have been determined for the atomic fluorine reacting with the alloy components in various gases. The metal removal rate increases when the specimen is negative with respect to the plasma potential, which is ascribed to the surface being bombarded by positive ions or to the electric field affecting the surface reaction rates.

  4. Self-pulsing of hollow cathode discharge in various gases

    SciTech Connect (OSTI)

    Qin, Y.; He, F., E-mail: hefeng@bit.edu.cn; Jiang, X. X.; Ouyang, J. T., E-mail: jtouyang@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Xie, K. [School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2014-07-15T23:59:59.000Z

    In this paper, we investigate the self-pulsing phenomenon of cavity discharge in a cylindrical hollow cathode in various gases including argon, helium, nitrogen, oxygen, and air. The current-voltage characteristics of the cavity discharge, the waveforms of the self-pulsing current and voltage as well as the repetition frequency were measured. The results show that the pulsing frequency ranges from a few to tens kilohertz and depends on the averaged current and the pressure in all gases. The pulsing frequency will increase with the averaged current and decrease with the pressure. The rising time of the current pulse is nearly constant in a given gas or mixture. The self-pulsing does not depend on the external ballast but is affected significantly by the external capacitor in parallel with the discharge cell. The low-current self-pulsing in hollow cathode discharge is the mode transition between Townsend and glow discharges. It can be described by the charging-discharging process of an equivalent circuit consisting of capacitors and resistors.

  5. State waste discharge permit application, 200-E chemical drain field

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations (Ecology et al. 1994), the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect ground would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order No. DE 91NM-177, (Ecology and DOE-RL 1991). The Consent Order No. DE 91NM-177 requires a series of permitting activities for liquid effluent discharges. This document presents the State Waste Discharge Permit (SWDP) application for the 200-E Chemical Drain Field. Waste water from the 272-E Building enters the process sewer line directly through a floor drain, while waste water from the 2703-E Building is collected in two floor drains, (north and south) that act as sumps and are discharged periodically. The 272-E and 2703-E Buildings constitute the only discharges to the process sewer line and the 200-E Chemical Drain Field.

  6. Evaluation of Methods to Increase Light Under Ferry Terminals

    SciTech Connect (OSTI)

    Blanton, Susan L.; Thom, Ronald M.; Borde, Amy B.; Diefenderfer, Heida L.; Southard, John A.

    2002-01-02T23:59:59.000Z

    To address concerns of resource agencies about the potential impacts of ferry terminal expansion on valuable habitat functions and resource use of nearshore areas, the Pacific Northwest National Laboratory (PNNL), in partnership with the Washington State Department of Transportation (WSDOT), conducted field trials with off-the-shelf products that promote light passage through dock structures. These products included a SunTunnel, deck prisms, and a metal halide greenhouse light. Light measurements (photosynthetically active radiation, PAR) were also recorded beneath glass blocks and a metal grating installed at Clinton Ferry Terminal on Whidbey Island, WA. A review of other studies measuring the effects of dock shading and alternate dock materials was conducted. PAR measurements from this study were related to minimum requirements for eelgrass Zostera marina photosynthesis and to the known maximum photosynthetic ?saturation? rate for Z. marina. We also related PAR measurements to what we know about light effects on juvenile salmonid feeding and passage under overwater structures. Of the light technologies tested, the metal halide light, SunTunnel, glass blocks, and grating potentially provide enough light for eelgrass growth underneath a ferry terminal with similar construction to the Clinton Ferry Terminal. All of these technologies would potentially provide adequate light under conditions where eelgrass is located at its upper depth limit and a dock is close to the water surface. Light levels needed to allow fish to feed and to form schools are low (~ 1-2 mmol/m2/s), and much less than those required for photosynthesis. Our research indicates that installing any of the tested light products would likely maintain light levels under the dock above those required for active feeding by juvenile salmonids.

  7. Deficiencies of Lighting Codes and Ordinances in Controlling Light Pollution from Parking Lot Lighting Installations

    E-Print Network [OSTI]

    Royal, Emily

    2012-05-31T23:59:59.000Z

    The purpose of this research was to identify the main causes of light pollution from parking lot electric lighting installations and highlight the deficiencies of lighting ordinances in preventing light pollution. Using an industry-accepted lighting...

  8. OpenGL Lighting 13. OpenGL Lighting

    E-Print Network [OSTI]

    McDowell, Perry

    OpenGL Lighting 13. OpenGL Lighting · Overview of Lighting in OpenGL In order for lighting to have an effect in OpenGL, two things are required: A light An object to be lit Lights can be set to any color determine how they reflect the light which hits them. The color(s) of an object is determined

  9. Anthraquinone with Tailored Structure for Nonaqueous Metal-Organic Redox Flow Battery

    SciTech Connect (OSTI)

    Wang, Wei; Xu, Wu; Cosimbescu, Lelia; Choi, Daiwon; Li, Liyu; Yang, Zhenguo

    2012-06-08T23:59:59.000Z

    A nonaqueous, hybrid metal-organic redox flow battery based on tailored anthraquinone structure is demonstrated to have an energy efficiency of {approx}82% and a specific discharge energy density similar to aqueous redox flow batteries, which is due to the significantly improved solubility of anthraquinone in supporting electrolytes.

  10. Metallic Carbon Nanotubes and Ag Nanocrystals

    SciTech Connect (OSTI)

    Brus, Louis E

    2014-03-04T23:59:59.000Z

    The goal of this DOE solar energy research was to understand how visible light interacts with matter, and how to make electric excitations evolve into separated electrons and holes in photovoltaic cells, especially in nanoparticles and nanowires. Our specific experiments focused on A) understanding plasmon enhanced spectroscopy and charge-transfer (metal-to-molecule) photochemistry on the surface of metallic particles and B) the spectroscopy and photochemistry of carbon nanotubes and graphene. I also worked closely with R. Friesner on theoretical studies of photo-excited electrons near surfaces of titanium dioxide nanoparticles; this process is relevant to the Gratzel photovoltaic cell.

  11. Adaptive Street Lighting Controls

    Broader source: Energy.gov [DOE]

    This two-part DOE Municipal Solid-State Street Lighting Consortium webinar focused on LED street lighting equipped with adaptive control components. In Part I, presenters Amy Olay of the City of...

  12. Sandia National Laboratories: Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lighting Solid-State Lighting Science EFRC On November 11, 2010, in Welcome History of Incandescence History of LEDs Grand Challenges Our EFRC SSLS-EFRC Contacts News Publications...

  13. Light emitting device comprising phosphorescent materials for white light generation

    DOE Patents [OSTI]

    Thompson, Mark E.; Dapkus, P. Daniel

    2014-07-22T23:59:59.000Z

    The present invention relates to phosphors for energy downconversion of high energy light to generate a broadband light spectrum, which emit light of different emission wavelengths.

  14. Metal-Air Batteries

    SciTech Connect (OSTI)

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01T23:59:59.000Z

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  15. Helium Ash Simulation Studies with Divertor Helium Pumping in JET Internal Transport Barrier Discharges

    E-Print Network [OSTI]

    Helium Ash Simulation Studies with Divertor Helium Pumping in JET Internal Transport Barrier Discharges

  16. Advanced Demand Responsive Lighting

    E-Print Network [OSTI]

    Advanced Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center demand responsive lighting systems ­ Importance of dimming ­ New wireless controls technologies · Advanced Demand Responsive Lighting (commenced March 2007) #12;Objectives · Provide up-to-date information

  17. Light Rail Transit Strengthening

    E-Print Network [OSTI]

    Minnesota, University of

    Light Rail Transit Improving mobility Easing congestion Strengthening our communities Central Corridor Communicating to the Public During Major Construction May 25, 2011 #12;2 Light Rail Transit;Light Rail Transit Central Corridor Route and Stations 3 · 18 new stations · 9.8 miles of new double

  18. Ultraviolet-B radiation enhancement in dielectric barrier discharge based xenon chloride exciplex source by air

    SciTech Connect (OSTI)

    Gulati, P., E-mail: pgulati1512@gmail.com [CSIR-Central Electronics Engineering Research Institute (CSIR-CEERI), Pilani, Rajasthan-333031 (India); Department of Physics, Banasthali University, P.O. Banasthali Vidyapith, Rajasthan 304022 (India); Prakash, R.; Pal, U. N.; Kumar, M. [CSIR-Central Electronics Engineering Research Institute (CSIR-CEERI), Pilani, Rajasthan-333031 (India); Vyas, V. [Department of Physics, Banasthali University, P.O. Banasthali Vidyapith, Rajasthan 304022 (India)

    2014-07-07T23:59:59.000Z

    A single barrier dielectric barrier discharge tube of quartz with multi-strip Titanium-Gold (Ti-Au) coatings have been developed and utilized for ultraviolet-B (UV-B) radiation production peaking at wavelength 308?nm. The observed radiation at this wavelength has been examined for the mixtures of the Xenon together with chlorine and air admixtures. The gas mixture composition, chlorine gas content, total gas pressure, and air pressure dependency of the UV intensity, has been analyzed. It is found that the larger concentration of Cl{sub 2} deteriorates the performance of the developed source and around 2% Cl{sub 2} in this source produced optimum results. Furthermore, an addition of air in the xenon and chlorine working gas environment leads to achieve same intensity of UV-B light but at lower working gas pressure where significant amount of gas is air.

  19. Metal catalyst technique for texturing silicon solar cells

    DOE Patents [OSTI]

    Ruby, Douglas S. (Albuquerque, NM); Zaidi, Saleem H. (Albuquerque, NM)

    2001-01-01T23:59:59.000Z

    Textured silicon solar cells and techniques for their manufacture utilizing metal sources to catalyze formation of randomly distributed surface features such as nanoscale pyramidal and columnar structures. These structures include dimensions smaller than the wavelength of incident light, thereby resulting in a highly effective anti-reflective surface. According to the invention, metal sources present in a reactive ion etching chamber permit impurities (e.g. metal particles) to be introduced into a reactive ion etch plasma resulting in deposition of micro-masks on the surface of a substrate to be etched. Separate embodiments are disclosed including one in which the metal source includes one or more metal-coated substrates strategically positioned relative to the surface to be textured, and another in which the walls of the reaction chamber are pre-conditioned with a thin coating of metal catalyst material.

  20. Rules and Regulations Pertaining to a User Fee System for Point Source Dischargers that Discharge Pollutants into the Waters of the State (Rhode Island)

    Broader source: Energy.gov [DOE]

    These regulations establish a user fee system for point source dischargers that discharge pollutants into the surface waters of the State. The funds from such fees are used by the Department of...

  1. Temporal modulation of plasma species in atmospheric dielectric barrier discharges

    SciTech Connect (OSTI)

    Yang, Aijun; Wang, Xiaohua, E-mail: xhw@mail.xjtu.edu.cn, E-mail: mzrong@mail.xjtu.edu.cn; Liu, Dingxin; Rong, Mingzhe, E-mail: xhw@mail.xjtu.edu.cn, E-mail: mzrong@mail.xjtu.edu.cn [Centre for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049 (China); Kong, Michael G. [Centre for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049 (China); Frank Reidy Research Center for Bioelectrics, Department of Electrical and Computer Engineering, Old Dominion University, Virginia 23508 (United States); Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529 (United States)

    2014-07-15T23:59:59.000Z

    The atmospheric pressure dielectric barrier discharge in helium is a pulsed discharge in nature and the moment of maximum species densities is almost consistent with peak discharge current density. In this paper, a one-dimensional fluid model is used to investigate the temporal structure of plasma species in an atmospheric He-N{sub 2} dielectric barrier discharge (DBD). It is demonstrated that there exist microsecond delays of the moments of the maximum electron and ion densities from the peak of discharge current density. These time delays are caused by a competition between the electron impact and Penning ionizations, modulated by the N{sub 2} level in the plasma-forming gas. Besides, significant electron wall losses lead to the DBD being more positively charged and, with a distinct temporal separation in the peak electron and cation densities, the plasma is characterized with repetitive bursts of net positive charges. The temporal details of ionic and reactive plasma species may provide a new idea for some biological processes.

  2. Light extraction from organic light-emitting diodes for lighting applications by sand-blasting

    E-Print Network [OSTI]

    Light extraction from organic light-emitting diodes for lighting applications by sand@ust.hk Abstract: Light extraction from organic light-emitting diodes (OLEDs) by scattering the light is one of the effective methods for large-area lighting applications. In this paper, we present a very simple and cost

  3. Metal phthalocyanine catalysts

    DOE Patents [OSTI]

    Ellis, Jr., Paul E. (Downingtown, PA); Lyons, James E. (Wallingford, PA)

    1994-01-01T23:59:59.000Z

    As a new composition of matter, alkali metal or ammonium or tetraalkylammonium diazidoperfluorophthalocyanatoferrate. Other embodiments of the invention comprise compositions wherein the metal of the coordination complex is cobalt, manganese and chromium.

  4. Liquid Metal Transformers

    E-Print Network [OSTI]

    Sheng, Lei; Liu, Jing

    2014-01-01T23:59:59.000Z

    The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series of complex transformation behaviors such as self-assembling of a sheet of liquid metal film into a single sphere, quick mergences of separate metal droplets, controlled self-rotation and planar locomotion of liquid metal objects can be realized. Meanwhile, it was also found that two accompanying water vortexes were induced and reliably swirled near the rotating liquid metal sphere. Further, effects of the shape, size, voltage, orientation and geometries of the electrodes to control the liquid metal transformers were clar...

  5. Enhanced Resonance Inspection for Light Metal Castings | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |inHVACEnforcementEngagingVehicle TechnologiesEnergy

  6. NDE 701: Enhanced Resonance Inspection for Light Metal Castings |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many Devils Wash, Shiprock, NewThis paper hasNC-1-BNational

  7. Reliability Tools for Resonance Inspection of Light Metal Castings |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18,new2004_v1.3_5.0.zipFlorida4Visitors Chapter 5.1 (March

  8. Boron-Containing Red Light-Emitting Phosphors And Light Sources Incorporating The Same

    DOE Patents [OSTI]

    Srivastava, Alok Mani (Niskayuna, NY); Comanzo, Holly Ann (Niskayuna, NY); Manivannan, Venkatesan (Clifton Park, NY)

    2006-03-28T23:59:59.000Z

    A boron-containing phosphor comprises a material having a formula of AD1-xEuxB9O16, wherein A is an element selected from the group consisting of Ba, Sr, Ca, Mg, and combinations thereof; D is at least an element selected from the group consisting of rare-earth metals other than europium; and x is in the range from about 0.005 to about 0.5. The phosphor is used in a blend with other phosphors in a light source for generating visible light with a high color rendering index.

  9. Durable metallized polymer mirror

    DOE Patents [OSTI]

    Schissel, Paul O. (Golden, CO); Kennedy, Cheryl E. (Lafayette, CO); Jorgensen, Gary J. (Pine, CO); Shinton, Yvonne D. (Northglenn, CO); Goggin, Rita M. (Englewood, CO)

    1994-01-01T23:59:59.000Z

    A metallized polymer mirror construction having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate.

  10. PHYTOEXTRACTION OF HEAVY METALS

    E-Print Network [OSTI]

    Blouin-Demers, Gabriel

    Plants Chelating agents Pb hyperaccumulation Effects of pH on metal extraction Disposal options contaminants from soils Contaminants must be in harvestable portions of the plant (Wongkongkatep et al. 2003) Chelating Agents: desorb heavy metals from soil matrix and form water-soluble metal complexes (Shen et al

  11. Durable metallized polymer mirror

    DOE Patents [OSTI]

    Schissel, P.O.; Kennedy, C.E.; Jorgensen, G.J.; Shinton, Y.D.; Goggin, R.M.

    1994-11-01T23:59:59.000Z

    A metallized polymer mirror construction is disclosed having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate. 6 figs.

  12. Impact Of Particle Agglomeration On Accumulation Rates In The Glass Discharge Riser Of HLW Melter

    SciTech Connect (OSTI)

    Kruger, A. A. [Department of Energy, Office of River Protection, Richland, WA (United States); Rodriguez, C. A. [Pacific Northwest National Laboratory, Richland, WA (United States); Matyas, J. [Pacific Northwest National Laboratory, Richland, WA (United States); Owen, A. T. [Pacific Northwest National Laboratory, Richland, WA (United States); Jansik, D. P. [Pacific Northwest National Laboratory, Richland, WA (United States); Lang, J. B. [Pacific Northwest National Laboratory, Richland, WA (United States)

    2012-11-12T23:59:59.000Z

    The major factor limiting waste loading in continuous high-level radioactive waste (HLW) melters is an accumulation of particles in the glass discharge riser during a frequent and periodic idling of more than 20 days. An excessive accumulation can produce robust layers a few centimeters thick, which may clog the riser, preventing molten glass from being poured into canisters. Since the accumulation rate is driven by the size of particles we investigated with x-ray microtomography, scanning electron microscopy, and image analysis the impact of spinel forming components, noble metals, and alumina on the size, concentration, and spatial distribution of particles, and on the accumulation rate. Increased concentrations of Fe and Ni in the baseline glass resulted in the formation of large agglomerates that grew over the time to an average size of ~185+-155 {mu}m, and produced >3 mm thick layer after 120 h at 850 deg C. The noble metals decreased the particle size, and therefore significantly slowed down the accumulation rate. Addition of alumina resulted in the formation of a network of spinel dendrites which prevented accumulation of particles into compact layers.

  13. Pulsed discharge ionization source for miniature ion mobility spectrometers

    DOE Patents [OSTI]

    Xu, Jun; Ramsey, J. Michael; Whitten, William B.

    2004-11-23T23:59:59.000Z

    A method and apparatus is disclosed for flowing a sample gas and a reactant gas (38, 43) past a corona discharge electrode (26) situated at a first location in an ion drift chamber (24), applying a pulsed voltage waveform comprising a varying pulse component and a dc bias component to the corona discharge electrode (26) to cause a corona which in turn produces ions from the sample gas and the reactant gas, applying a dc bias to the ion drift chamber (24) to cause the ions to drift to a second location (25) in the ion drift chamber (24), detecting the ions at the second location (25) in the drift chamber (24), and timing the period for the ions to drift from the corona discharge electrode to the selected location in the drift chamber.

  14. Foundations and Light Compass Foundations and Light Compass

    E-Print Network [OSTI]

    Wong, Jennifer L.

    Foundations and Light Compass Case Study Foundations and Light Compass Case Study Jennifer L. WongQuantitative Sensor--centric Designcentric Design Light CompassLight Compass ­­ Models and Abstractions Contaminant Transport Marine Microorganisms Ecosystems, Biocomplexity What is a Light Compass?What is a Light

  15. Lighting and Surfaces 11.1 Introduction to Lighting

    E-Print Network [OSTI]

    Boyd, John P.

    Chapter 11 Lighting and Surfaces 11.1 Introduction to Lighting Three-dimensional surfaces can react to light, and how computer graphics simulates this. There are three species of light (or "illumination models"): 1. Intrinsic (self-emitting) 2. Ambient light (sometimes called "diffuse light") 3

  16. Reactor process using metal oxide ceramic membranes

    DOE Patents [OSTI]

    Anderson, M.A.

    1994-05-03T23:59:59.000Z

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane. Also disclosed is a method regenerating a porous metal oxide ceramic membrane used in a photoelectrochemical catalytic process by periodically removing the reactants and regenerating the membrane using a variety of chemical, thermal, and electrical techniques. 2 figures.

  17. State Waste Discharge Permit application, 100-N Sewage Lagoon

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations (Ecology et al. 1994), the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173--216 (or 173--218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order No. DE 91NM-177, (Ecology and DOE-RL 1991). This document constitutes the State Waste Discharge Permit application for the 100-N Sewage Lagoon. Since the influent to the sewer lagoon is domestic waste water, the State Waste Discharge Permit application for Public Owned Treatment Works Discharges to Land was used. Although the 100-N Sewage Lagoon is not a Public Owned Treatment Works, the Public Owned Treatment Works application is more applicable than the application for industrial waste water. The 100-N Sewage Lagoon serves the 100-N Area and other Hanford Site areas by receiving domestic waste from two sources. A network of sanitary sewer piping and lift stations transfers domestic waste water from the 100-N Area buildings directly to the 100-N Sewage Lagoon. Waste is also received by trucks that transport domestic waste pumped from on site septic tanks and holding tanks. Three ponds comprise the 100-N Sewage Lagoon treatment system. These include a lined aeration pond and stabilization pond, as well as an unlined infiltration pond. Both piped-in and trucked-in domestic waste is discharged directly into the aeration pond.

  18. Arnold Schwarzenegger LIGHTING RESEARCH PROGRAM

    E-Print Network [OSTI]

    Project Summaries ELEMENT 2: ADVANCE LIGHTING TECHNOLOGIES PROJECT 2.1 LIGHT EMITTING DIODE (LED light emitting diodes (LED) technology for general lighting applications by developing a task lamp

  19. Features of plasma glow in low pressure terahertz gas discharge

    SciTech Connect (OSTI)

    Bratman, V. L.; Golubev, S. V.; Izotov, I. V.; Kalynov, Yu. K.; Koldanov, V. A.; Razin, S. V. [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation)] [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Litvak, A. G.; Sidorov, A. V.; Skalyga, V. A.; Zorin, V. G. [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation) [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina st., 603950 Nizhny Novgorod (Russian Federation)

    2013-12-15T23:59:59.000Z

    Investigations of the low pressure (1–100 Torr) gas discharge in the powerful (1 kW) quasi-optical terahertz (0.55 THz) wave beams were made. An intense afterglow was observed after the end of gyrotron terahertz radiation pulse. Afterglow duration significantly exceeded radiation pulse length (8 ?s). This phenomenon could be explained by the strong dependence of the collisional-radiative recombination rate (that is supposed to be the most likely mechanism of electron losses from the low pressure terahertz gas discharge) on electron temperature.

  20. High-order harmonic generation in a capillary discharge

    DOE Patents [OSTI]

    Rocca, Jorge J.; Kapteyn, Henry C.; Mumane, Margaret M.; Gaudiosi, David; Grisham, Michael E.; Popmintchev, Tenio V.; Reagan, Brendan A.

    2010-06-01T23:59:59.000Z

    A pre-ionized medium created by a capillary discharge results in more efficient use of laser energy in high-order harmonic generation (HHG) from ions. It extends the cutoff photon energy, and reduces the distortion of the laser pulse as it propagates down the waveguide. The observed enhancements result from a combination of reduced ionization energy loss and reduced ionization-induced defocusing of the driving laser as well as waveguiding of the driving laser pulse. The discharge plasma also provides a means to spectrally tune the harmonics by tailoring the initial level of ionization of the medium.

  1. Lithium Metal Anodes for Rechargeable Batteries

    SciTech Connect (OSTI)

    Xu, Wu; Wang, Jiulin; Ding, Fei; Chen, Xilin; Nasybulin, Eduard N.; Zhang, Yaohui; Zhang, Jiguang

    2014-02-28T23:59:59.000Z

    Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using graphite anode. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) and limited Coulombic efficiency during lithium deposition/striping has prevented their practical application over the past 40 years. With the emerging of post Li-ion batteries, safe and efficient operation of lithium metal anode has become an enabling technology which may determine the fate of several promising candidates for the next generation of energy storage systems, including rechargeable Li-air battery, Li-S battery, and Li metal battery which utilize lithium intercalation compounds as cathode. In this work, various factors which affect the morphology and Coulombic efficiency of lithium anode will be analyzed. Technologies used to characterize the morphology of lithium deposition and the results obtained by modeling of lithium dendrite growth will also be reviewed. At last, recent development in this filed and urgent need in this field will also be discussed.

  2. Process for removing heavy metal compounds from heavy crude oil

    DOE Patents [OSTI]

    Cha, Chang Y. (Golden, CO); Boysen, John E. (Laramie, WY); Branthaver, Jan F. (Laramie, WY)

    1991-01-01T23:59:59.000Z

    A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

  3. Airflow influence on the discharge performance of dielectric barrier discharge plasma actuators

    SciTech Connect (OSTI)

    Kriegseis, J.; Tropea, C. [Institute of Fluid Mechanics and Aerodynamics, Technische Universitaet Darmstadt, Flughafenstr. 19, D-64347 Griesheim (Germany); Center of Smart Interfaces, Technische Universitaet Darmstadt, Flughafenstr. 19, D-64347 Griesheim (Germany); Grundmann, S. [Center of Smart Interfaces, Technische Universitaet Darmstadt, Flughafenstr. 19, D-64347 Griesheim (Germany)

    2012-07-15T23:59:59.000Z

    In the present work, the effect of the airflow on the performance of dielectric barrier discharge plasma-actuators is investigated experimentally. In order to analyze the actuator's performance, luminosity measurements have been carried out simultaneously with the recording of the relevant electrical parameters. A performance drop of about 10% is observed for the entire measured parameter range at a flow speed of M = 0.145 (U{sub {infinity}}=50 m/s). This insight is of particular importance, since the plasma-actuator control authority is already significantly reduced at this modest speed level. The results at higher Mach numbers (0.4

  4. Liquid Metal Transformers

    E-Print Network [OSTI]

    Lei Sheng; Jie Zhang; Jing Liu

    2014-01-30T23:59:59.000Z

    The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series of complex transformation behaviors such as self-assembling of a sheet of liquid metal film into a single sphere, quick mergences of separate metal droplets, controlled self-rotation and planar locomotion of liquid metal objects can be realized. Meanwhile, it was also found that two accompanying water vortexes were induced and reliably swirled near the rotating liquid metal sphere. Further, effects of the shape, size, voltage, orientation and geometries of the electrodes to control the liquid metal transformers were clarified. Such events are hard to achieve otherwise on rigid metal or conventional liquid spheres. This finding has both fundamental and practical significances which suggest a generalized way of making smart soft machine, collecting discrete metal fluids, as well as flexibly manipulating liquid metal objects including accompanying devices.

  5. High efficiency incandescent lighting

    DOE Patents [OSTI]

    Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin

    2014-09-02T23:59:59.000Z

    Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.

  6. National Synchrotron Light Source

    ScienceCinema (OSTI)

    BNL

    2009-09-01T23:59:59.000Z

    A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.

  7. LED Lighting Retrofit

    E-Print Network [OSTI]

    Shaw-Meadow, N.

    2011-01-01T23:59:59.000Z

    ? Municipal Street Lighting Consortium ? American Public Power Association (APPA) ? Demonstration in Energy Efficiency Development (DEED) ? Source of funding and database of completed LED roadway projects 6 Rules of the Road ESL-KT-11-11-57 CATEE 2011..., 2011 ? 9 Solar-Assisted LED Case Study LaQuinta Hotel, Cedar Park, Texas ? Utilizes 18 - ActiveLED Solar-Assisted Parking Lot Lights ? Utilizes ?power management? to extend battery life while handling light output ? Reduces load which reduces PV...

  8. Extraction process for removing metallic impurities from alkalide metals

    DOE Patents [OSTI]

    Royer, Lamar T. (Knoxville, TN)

    1988-01-01T23:59:59.000Z

    A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

  9. Edmund G. Brown Jr. LIGHTING CALIFORNIA'S FUTURE

    E-Print Network [OSTI]

    Edmund G. Brown Jr. Governor LIGHTING CALIFORNIA'S FUTURE: SMART LIGHT-EMITTING DIODE LIGHTING's Future: Smart LightEmitting Diode Lighting in Residential Fans. California Energy Commission, PIER

  10. Comparing Light Bulbs

    Broader source: Energy.gov [DOE]

    In this exercise, students will use a light to demonstrate the difference between being energy-efficient and energy-wasteful, and learn what energy efficiency means.

  11. Total Light Management

    Broader source: Energy.gov [DOE]

    Presentation covers total light management, and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  12. Lighting Technology Panel

    Broader source: Energy.gov [DOE]

    Presentation covers the Lighting Technology Panel for the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009. 

  13. Hybrid Solar Lighting

    SciTech Connect (OSTI)

    Maxey, L Curt [ORNL

    2008-01-01T23:59:59.000Z

    Hybrid solar lighting systems focus highly concentrated sunlight into a fiber optic bundle to provide sunlight in rooms without windows or conventional skylights.

  14. Solid-State Lighting

    Broader source: Energy.gov (indexed) [DOE]

    into the market. On the market side, DOE works closely with drivers, heat sinks, and optics. LEDs must be carefully energy efficiency program partners, lighting professionals,...

  15. Composite metal-hydrogen electrodes for metal-hydrogen batteries. Final report, October 1, 1993--April 15, 1997

    SciTech Connect (OSTI)

    Ruckman, M.W.; Strongin, M.; Weismann, H. [and others

    1997-04-01T23:59:59.000Z

    The purpose of this project is to develop and conduct a feasibility study of metallic thin films (multilayered and alloy composition) produced by advanced sputtering techniques for use as anodes in Ni-metal hydrogen batteries that would be deposited as distinct anode, electrolyte and cathode layers in thin film devices. The materials could also be incorporated in secondary consumer batteries (i.e. type AF(4/3 or 4/5)) which use electrodes in the form of tapes. The project was based on pioneering studies of hydrogen uptake by ultra-thin Pd-capped Nb films, these studies suggested that materials with metal-hydrogen ratios exceeding those of commercially available metal hydride materials and fast hydrogen charging and discharging kinetics could be produced. The project initially concentrated on gas phase and electrochemical studies of Pd-capped niobium films in laboratory-scale NiMH cells. This extended the pioneering work to the wet electrochemical environment of NiMH batteries and exploited advanced synchrotron radiation techniques not available during the earlier work to conduct in-situ studies of such materials during hydrogen charging and discharging. Although batteries with fast charging kinetics and hydrogen-metal ratios approaching unity could be fabricated, it was found that oxidation, cracking and corrosion in aqueous solutions made pure Nb films and multilayers poor candidates for battery application. The project emphasis shifted to alloy films based on known elemental materials used for NiMH batteries. Although commercial NiMH anode materials contain many metals, it was found that 0.24 {mu}m thick sputtered Zr-Ni films cycled at least 50 times with charging efficiencies exceeding 95% and [H]/[M] ratios of 0.7-1.0. Multilayered or thicker Zr-Ni films could be candidates for a thin film NiMH battery that may have practical applications as an integrated power source for modern electronic devices.

  16. Ultra-thin ohmic contacts for p-type nitride light emitting devices

    DOE Patents [OSTI]

    Raffetto, Mark (Raleigh, NC); Bharathan, Jayesh (Cary, NC); Haberern, Kevin (Cary, NC); Bergmann, Michael (Chapel Hill, NC); Emerson, David (Chapel Hill, NC); Ibbetson, James (Santa Barbara, CA); Li, Ting (Ventura, CA)

    2012-01-03T23:59:59.000Z

    A semiconductor based Light Emitting Device (LED) can include a p-type nitride layer and a metal ohmic contact, on the p-type nitride layer. The metal ohmic contact can have an average thickness of less than about 25 .ANG. and a specific contact resistivity less than about 10.sup.-3 ohm-cm.sup.2.

  17. High-speed micro-electro-discharge machining.

    SciTech Connect (OSTI)

    Chandrasekar, Srinivasan Dr. (.School of Industrial Engineering, West Lafayette, IN); Moylan, Shawn P. (School of Industrial Engineering, West Lafayette, IN); Benavides, Gilbert Lawrence

    2005-09-01T23:59:59.000Z

    When two electrodes are in close proximity in a dielectric liquid, application of a voltage pulse can produce a spark discharge between them, resulting in a small amount of material removal from both electrodes. Pulsed application of the voltage at discharge energies in the range of micro-Joules results in the continuous material removal process known as micro-electro-discharge machining (micro-EDM). Spark erosion by micro-EDM provides significant opportunities for producing small features and micro-components such as nozzle holes, slots, shafts and gears in virtually any conductive material. If the speed and precision of micro-EDM processes can be significantly enhanced, then they have the potential to be used for a wide variety of micro-machining applications including fabrication of microelectromechanical system (MEMS) components. Toward this end, a better understanding of the impacts the various machining parameters have on material removal has been established through a single discharge study of micro-EDM and a parametric study of small hole making by micro-EDM. The main avenues for improving the speed and efficiency of the micro-EDM process are in the areas of more controlled pulse generation in the power supply and more controlled positioning of the tool electrode during the machining process. Further investigation of the micro-EDM process in three dimensions leads to important design rules, specifically the smallest feature size attainable by the process.

  18. SYNAPTIC MECHANISMS Weber's law implies neural discharge more regular than

    E-Print Network [OSTI]

    Feng, Jianfeng

    SYNAPTIC MECHANISMS Weber's law implies neural discharge more regular than a Poisson process Jing, interspike interval, psychophysical law, spike rate Abstract Weber's law is one of the basic laws established. In this paper, we carried out an analysis on the spike train statistics when Weber's law holds

  19. COLLISIONLESS ELECTRON HEATING IN RF GAS DISCHARGES: I. QUASILINEAR THEORY

    E-Print Network [OSTI]

    Kaganovich, Igor

    COLLISIONLESS ELECTRON HEATING IN RF GAS DISCHARGES: I. QUASILINEAR THEORY Yu.M. Aliev1 , I an interest in mechanisms of electron heating and power deposition in the plasma main- tained by radio{frequency (rf) electric elds. A modern trend in plasma technology aims at decreasing the gas pressures down

  20. A Guide to Discharging, with Applications to List Coloring

    E-Print Network [OSTI]

    West, Douglas B.

    on DBW preprint page Based on a survey written with Daniel W. Cranston #12;The Discharging Method #12;The of reducible configurations" #12;Proof Template Let S be a set of "desired" configurations. #12;Proof Template Template Let S be a set of "desired" configurations. (1) Give initial "charge"

  1. Corrosion mitigation considerations in planning for zero liquid discharge

    SciTech Connect (OSTI)

    DeWitt-Dick, D.B. [Ashland Chemical Co., Portland, TX (United States). Drew Industrial Division; Lee, B. [Ashland Chemical Co., Boonton, NJ (United States). Drew Industrial Division

    1995-12-01T23:59:59.000Z

    A reduction in the availability and in the quality of water, coupled with more significantly more stringent water discharge restrictions, has resulted in increasing numbers of industrial complexes investigating water reuse and zero liquid discharge. Their investigation generally includes a survey of the potential impact of increased dissolved solids on the formation of mineral salt scales on heat transfer surfaces. These predictive tools are readily available and fairly accurate. The prediction of corrosion potential, however, is not as clearly defined, and as a consequence, little consideration is given to the effects of increased solids on corrosion. In addition to the potential for accelerated corrosion related to increased dissolved solids, many reuse waters contain elevated levels of biological activity and are rich in the nutrients that feed these micro organisms. This paper looks at the reasons for selecting zero liquid discharge as a means of water conservation and discharge reduction, the unit operations available to achieve these goals, and the corrosion mechanisms and mitigation associated with reuse water.

  2. Use of microalgae to remove pollutants from power plant discharges

    DOE Patents [OSTI]

    Wilde, E.W.; Benemann, J.R.; Weissman, J.C.; Tillett, D.M.

    1991-04-30T23:59:59.000Z

    A method and system are described for removing pollutants dissolved in the aqueous discharge of a plant, such as a power plant, from a body of water having known hydraulic and physicochemical characteristics, the method comprising (a) modifying the hydraulic system of the body of water including use of physical barriers to define a zone in a portion of the body of water which zone includes the discharge point and where the water has a range of physicochemical characteristics; (b) selecting a large and preferably filamentous, planktonically growing strain of algae adapted to absorb the particular pollutants and genetically dominating algae at the physicochemical characteristics of the zone; (c) establishing a colony of the selected algal strain in the zone; (d) harvesting a portion of the colony; and (e) reinoculating the zone near the discharge point with a fraction of the harvested portion. The fraction used for reinoculation can be adjusted to balance the rate of pollutant removal to the rate of pollutant discharge. 4 figures.

  3. Estimating discharge in rivers using remotely sensed hydraulic information

    E-Print Network [OSTI]

    Smith, Laurence C.

    SAR images of three braided rivers were coupled with channel slope data obtained from topographic maps­100%) of the observed, with the mean estimate accuracy within 10%. This level of accuracy was achieved using calibration functions developed from observed discharge. The calibration functions use reach specific geomorphic

  4. ICE SHEET SOURCES OF SEA LEVEL RISE AND FRESHWATER DISCHARGE

    E-Print Network [OSTI]

    Carlson, Anders

    ICE SHEET SOURCES OF SEA LEVEL RISE AND FRESHWATER DISCHARGE DURING THE LAST DEGLACIATION Anders E the sources of sea level rise and freshwater dis- charge to the global oceans associated with retreat of ice­10 m sea level rise at 19.0­19.5 ka, sourced largely from Northern Hemisphere ice sheet retreat

  5. THE POSSIBILITY OF PRODUCING THERMONUCLEAR REACTIONS IN A GASEOUS DISCHARGE*

    E-Print Network [OSTI]

    THE POSSIBILITY OF PRODUCING THERMONUCLEAR REACTIONS IN A GASEOUS DISCHARGE* I.V. Kurchatov of the energy of thermonuclear reactions. Physicists the world over are attracted by the extraordinarily interest- ing and very difficult task of controlling thermonuclear reactiom. Investigations in this field

  6. Chaotic characteristics of corona discharges in atmospheric air

    SciTech Connect (OSTI)

    Tan Xiangyu; Zhang Qiaogen; Wang Xiuhuan; Sun Fu; Zha Wei; Jia Zhijie [State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an 710049 (China)

    2008-11-15T23:59:59.000Z

    A point-plane electrode system in atmospheric air is established to investigate the mechanism of the corona discharge. By using this system, the current pulses of the corona discharges under the 50 Hz ac voltage are measured using partial discharge (PD) measurement instrument and constitute the point-plane voltage-current (V-I) characteristic equation together with the voltage. Then, this paper constructs the nonlinear circuit model and differential equations of the system in an attempt to give the underlying dynamic mechanism based on the nonlinear V-I characteristics of the point-plane corona discharges. The results show that the chaotic phenomenon is found in the corona circuit by the experimental study and nonlinear dynamic analysis. The basic dynamic characteristics, including the Lyapunov exponent, the existence of the strange attractors, and the equilibrium points, are also found and analyzed in the development process of the corona circuit. Moreover, the time series of the corona current pulses obtained in the experiment is used to demonstrate the chaotic characteristics of the corona current based on the nonlinear dynamic circuit theory and the experimental basis. It is pointed out that the corona phenomenon is not a purely stochastic phenomenon but a short term deterministic chaotic activity.

  7. Columnar discharge mode between parallel dielectric barrier electrodes in atmospheric pressure helium

    SciTech Connect (OSTI)

    Hao, Yanpeng; Zheng, Bin; Liu, Yaoge [School of Electric Power, South China University of Technology, Guangzhou 510640 (China)] [School of Electric Power, South China University of Technology, Guangzhou 510640 (China)

    2014-01-15T23:59:59.000Z

    Using a fast-gated intensified charge-coupled device, end- and side-view photographs were taken of columnar discharge between parallel dielectric barrier electrodes in atmospheric pressure helium. Based on three-dimensional images generated from end-view photographs, the number of discharge columns increased, whereas the diameter of each column decreased as the applied voltage was increased. Side-view photographs indicate that columnar discharges exhibited a mode transition ranging from Townsend to glow discharges generated by the same discharge physics as atmospheric pressure glow discharge.

  8. Single Particle Spectroscopy Study of Metal-Film-Induced Tuning of Silver Nanoparticle Plasmon Resonances

    E-Print Network [OSTI]

    Kik, Pieter

    coupling between the nanoparticle and the metal film. When the thickness of a thin silica spacer layer and can localize visible radiation to subwavelength dimensions and thus control light-matter interactions

  9. Radiofrequency sheath fields above a metal-dielectric interface

    SciTech Connect (OSTI)

    Barnat, E.V.; Hebner, G.A. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1423 (United States)

    2004-11-01T23:59:59.000Z

    Two-dimensional maps of the sheath electric fields formed around a metal-dielectric interface were measured in a radio frequency (rf) argon plasma using laser-induced fluorescence-dip spectroscopy. Experimentally determined Stark shifts of the argon Rydberg 13d[3/2]{sub 1} state were used to quantify the electric fields in the sheath as functions of the rf cycle, voltage, and pressure. Both the structure of the sheath fields and the discharge characteristics in the region above the electrode depend on the discharge conditions and the configuration of the surface. Dissimilar materials placed adjacent to each other result in electric fields with a component parallel to the electrode surface.

  10. Second-harmonic generation in transition-metal-organic compounds

    SciTech Connect (OSTI)

    Frazier, C.C.; Harvey, M.A.; Cockerham, M.P.; Hand, H.M.; Chauchard, E.A.; Lee, C.H.

    1986-10-23T23:59:59.000Z

    The second-harmonic generation efficiencies of over 60 transition-metal-organic compounds in powder form were measured, using 1.06 ..mu..m light from a Nd:YAG laser. Most of the studied compounds were either group VI metal carbonyl arene, pyridyl, or chiral phosphine complexes. Four the complexes doubled the laser fundamental as well as or better than ammonium dihydrogen phosphate (ADP). The study shows that the same molecular features (e.g., conjugation and low-lying spectroscopic charge transfer) that contribute to second-order optical nonlinearity in organic compounds also enhance second-order effects in transition-metal-organic compounds.

  11. Quantum spin Hall effect and topological insulators for light

    E-Print Network [OSTI]

    Bliokh, Konstantin Y

    2015-01-01T23:59:59.000Z

    We show that free-space light has intrinsic quantum spin-Hall effect (QSHE) properties. These are characterized by a non-zero topological spin Chern number, and manifest themselves as evanescent modes of Maxwell equations. The recently discovered transverse spin of evanescent modes demonstrates spin-momentum locking stemming from the intrinsic spin-orbit coupling in Maxwell equations. As a result, any interface between free space and a medium supporting surface modes exhibits QSHE of light with opposite transverse spins propagating in opposite directions. In particular, we find that usual isotropic metals with surface plasmon-polariton modes represent natural 3D topological insulators for light. Several recent experiments have demonstrated transverse spin-momentum locking and spin-controlled unidirectional propagation of light at various interfaces with evanescent waves. Our results show that all these experiments can be interpreted as observations of the QSHE of light.

  12. Reducing home lighting expenses

    SciTech Connect (OSTI)

    Aimone, M.A.

    1981-02-01T23:59:59.000Z

    Ways to reduce lighting expenses are summarized. These include: turning off lights when not in use; keeping fixtures and lamps clean; replacing lamps with more efficient types; using three-way bulbs; use of daylighting; buying fewer lamps and reducing lamp wattage; consider repainting rooms; replacing recessed fixtures with tracklighting; and using efficient lamps for outdoor use. (MCW)

  13. Explosively pumped laser light

    DOE Patents [OSTI]

    Piltch, Martin S. (Los Alamos, NM); Michelotti, Roy A. (Los Alamos, NM)

    1991-01-01T23:59:59.000Z

    A single shot laser pumped by detonation of an explosive in a shell casing. The shock wave from detonation of the explosive causes a rare gas to luminesce. The high intensity light from the gas enters a lasing medium, which thereafter outputs a pulse of laser light to disable optical sensors and personnel.

  14. Light intensity compressor

    DOE Patents [OSTI]

    Rushford, Michael C. (Livermore, CA)

    1990-01-01T23:59:59.000Z

    In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.

  15. PLUTONIUM METALLIC FUELS FOR FAST REACTORS

    SciTech Connect (OSTI)

    STAN, MARIUS [Los Alamos National Laboratory; HECKER, SIEGFRIED S. [Los Alamos National Laboratory

    2007-02-07T23:59:59.000Z

    Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low-melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuels suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher-melting U-PuZr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.

  16. Understanding the movements of metal whiskers

    E-Print Network [OSTI]

    Victor G. Karpov

    2015-05-24T23:59:59.000Z

    Metal whiskers often grow across leads of electric equipment and electronic package causing current leakage or short circuits and raising significant reliability issues. The nature of metal whiskers remains a mystery after several decades of research. In addition, metal whiskers exhibit a rather unusual dynamic property of relatively high amplitude movements under gentle air flow or, according to some testimonies, without obvious stimuli. Understanding the physics behind that motion would give additional insights into the nature of metal whiskers. Here, we quantitatively analyze several possible mechanisms potentially responsible for the observed movements: (1) minute air currents, (2) Brownian motion due to random bombardments with the air molecules, (3) mechanically caused movements, such as (a) externally transmitted vibrations of the sample, and (b) torque exerted due to material propagation along curved whiskers responsible for the whisker growth (similar to the known garden hose oscillations), (4) time dependent electric fields due to diffusion of ions across the metal surface, and (5) nonequilibrium electric field configurations making it possible for {\\it some} whiskers to move. For all these scenarios we provide numerical estimates. Our conclusion is that the observed movements are likely due to the minor air currents, intentional or ill-controlled, and that external mechanical vibrations could force such movements in a rather harsh environment or/and for whiskers with severe constrictions. We argue that under non-steady state conditions, such as caused by changes in the external light intensity, some whiskers can exercise spontaneous oscillations.

  17. Understanding the movements of metal whiskers

    E-Print Network [OSTI]

    Victor G. Karpov

    2015-04-03T23:59:59.000Z

    Metal whiskers often grow across leads of electric equipment and electronic package causing current leakage or short circuits and raising significant reliability issues. The nature of metal whiskers remains a mystery after several decades of research. In addition, metal whiskers exhibit a rather unusual dynamic property of relatively high amplitude movements under gentle air flow or, according to some testimonies, without obvious stimuli. Understanding the physics behind that motion would give additional insights into the nature of metal whiskers. Here, we quantitatively analyze several possible mechanisms potentially responsible for the observed movements: (1) minute air currents, (2) Brownian motion due to random bombardments with the air molecules, (3) mechanically caused movements, such as (a) externally transmitted vibrations of the sample, and (b) torque exerted due to material propagation along curved whiskers responsible for the whisker growth (similar to the known garden hose oscillations), (4) time dependent electric fields due to diffusion of ions across the metal surface, and (5) nonequilibrium electric field configurations making it possible for {\\it some} whiskers to move. For all these scenarios we provide numerical estimates. Our conclusion is that the observed movements are likely due to the minor air currents, intentional or ill-controlled, and that external mechanical vibrations could force such movements in a rather harsh environment or/and for whiskers with severe constrictions. We argue that under non-steady state conditions, such as caused by changes in the external light intensity, some whiskers can exercise spontaneous oscillations.

  18. Understanding the movements of metal whiskers

    E-Print Network [OSTI]

    Victor G. Karpov

    2015-04-15T23:59:59.000Z

    Metal whiskers often grow across leads of electric equipment and electronic package causing current leakage or short circuits and raising significant reliability issues. The nature of metal whiskers remains a mystery after several decades of research. In addition, metal whiskers exhibit a rather unusual dynamic property of relatively high amplitude movements under gentle air flow or, according to some testimonies, without obvious stimuli. Understanding the physics behind that motion would give additional insights into the nature of metal whiskers. Here, we quantitatively analyze several possible mechanisms potentially responsible for the observed movements: (1) minute air currents, (2) Brownian motion due to random bombardments with the air molecules, (3) mechanically caused movements, such as (a) externally transmitted vibrations of the sample, and (b) torque exerted due to material propagation along curved whiskers responsible for the whisker growth (similar to the known garden hose oscillations), (4) time dependent electric fields due to diffusion of ions across the metal surface, and (5) nonequilibrium electric field configurations making it possible for {\\it some} whiskers to move. For all these scenarios we provide numerical estimates. Our conclusion is that the observed movements are likely due to the minor air currents, intentional or ill-controlled, and that external mechanical vibrations could force such movements in a rather harsh environment or/and for whiskers with severe constrictions. We argue that under non-steady state conditions, such as caused by changes in the external light intensity, some whiskers can exercise spontaneous oscillations.

  19. Advanced Metal-Hydrides-Based Thermal Battery: A New Generation of High Density Thermal Battery Based on Advanced Metal Hydrides

    SciTech Connect (OSTI)

    None

    2011-12-01T23:59:59.000Z

    HEATS Project: The University of Utah is developing a compact hot-and-cold thermal battery using advanced metal hydrides that could offer efficient climate control system for EVs. The team’s innovative designs of heating and cooling systems for EVs with high energy density, low-cost thermal batteries could significantly reduce the weight and eliminate the space constraint in automobiles. The thermal battery can be charged by plugging it into an electrical outlet while charging the electric battery and it produces heat and cold through a heat exchanger when discharging. The ultimate goal of the project is a climate-controlling thermal battery that can last up to 5,000 charge and discharge cycles while substantially increasing the driving range of EVs, thus reducing the drain on electric batteries.

  20. Lighting affects appearance LightSource emits photons

    E-Print Network [OSTI]

    Jacobs, David

    1 Lighting affects appearance #12;2 LightSource emits photons Photons travel in a straight line). And then some reach the eye/camera. #12;3 Reflectance Model how objects reflect light. Model light sources Algorithms for computing Shading: computing intensities within polygons Determine what light strikes what

  1. VIRTUAL LIGHT: DIGITALLY-GENERATED LIGHTING FOR VIDEO CONFERENCING APPLICATIONS

    E-Print Network [OSTI]

    Fisher, Kathleen

    VIRTUAL LIGHT: DIGITALLY-GENERATED LIGHTING FOR VIDEO CONFERENCING APPLICATIONS Andrea Basso method to improve the lighting conditions of a real scene or video sequence. In particular we concentrate on modifying real light sources intensities and inserting virtual lights into a real scene viewed from a fixed

  2. Metal atomization spray nozzle

    DOE Patents [OSTI]

    Huxford, T.J.

    1993-11-16T23:59:59.000Z

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal. 6 figures.

  3. DOI: 10.1002/adfm.200700251 Control of Specular and Diffuse Reflection of Light Using Particle

    E-Print Network [OSTI]

    Lee, Ilsoon

    reflectors are widely used in the back-light units of liquid crystal display (LCD) panels,[1­4] light-emitting diodes (LED)[5,6] and solar cell devices.[7,8] A perfect diffuse reflector is matter that reflects and low solar absorption, metals easily satisfy the general requirements for diffuse reflectors

  4. A low-cost optical sensing device based on paired emitter-detector light emitting diodes. Analytica Chimica Acta 2006

    E-Print Network [OSTI]

    King-tong Lau; Susan Baldwin; Roderick Shepherd; William J. Yerazunis; Shinichi Izuo; Satoshi Ueyama; Dermont Diamond; Emitter-detector Leds; King-tong Lau; Susan Baldwin; Roderick Shepherd; William J; Shinichi Izuo; Satoshi Ueyama; Dermot Diamond

    A low power, high sensitivity, very low cost light emitting diode (LED) based device for intensity based light measurements is described. In this approach, a reverse-biased LED functioning as a photodiode, is coupled with a second LED configured in conventional emission mode. A simple timer circuit measures how long (in us) it takes for the photocurrent generated on the detector LED to discharge its capacitance from logic 1(+5 V) to logic 0 (+1.7 V). The entire instrument provides an inherently digital output of light intensity measurements for a few cents. this light intensity dependent discharge process has been applied to measuring concentrations of coloured solutions and a mathematical model developed based on the Beer-Lambert Law.

  5. Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters

    SciTech Connect (OSTI)

    Lee, Kyu-Tae; Seo, Sungyong; Yong Lee, Jae; Jay Guo, L., E-mail: guo@umich.edu [Department of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2014-06-09T23:59:59.000Z

    We present transmission visible wavelength filters based on strong interference behaviors in an ultrathin semiconductor material between two metal layers. The proposed devices were fabricated on 2?cm?×?2?cm glass substrate, and the transmission characteristics show good agreement with the design. Due to a significantly reduced light propagation phase change associated with the ultrathin semiconductor layer and the compensation in phase shift of light reflecting from the metal surface, the filters show an angle insensitive performance up to ±70°, thus, addressing one of the key challenges facing the previously reported photonic and plasmonic color filters. This principle, described in this paper, can have potential for diverse applications ranging from color display devices to the image sensors.

  6. Evaluation of Methods to Increase Light under Large Overwater Structures

    SciTech Connect (OSTI)

    Sargeant, Susan L.; Thom, Ronald M.; Diefenderfer, Heida L.; Borde, Amy B.; Southard, John A.

    2003-03-31T23:59:59.000Z

    To address resource agency concerns about potential impacts of ferry terminal expansion on habitat functions and resource use of nearshore areas, the Pacific Northwest National Laboratory, in partnership with the Washington State Department of Transportation, conducted field trials with several products that promote light passage through dock structures. Photosynthetically active radiation (PAR) measurements were compared with known minimum requirements for survival of eelgrass, Zostera marina, which provides critical habitat for the federally listed chinook salmon, Oncorhynchus tshawytscha. PAR measurements were also related to what is known about the effects of light on juvenile salmonid feeding and passage under overwater structures. In general, the products predicted to provide the most to the least light were the grating, SunTunnel, metal halide greenhouse light, and prisms. All the light technologies tested could provide enough light for eelgrass underneath a ferry terminal, though multiples of some devices would be required. Because less light is required for fish to feed than for photosynthesis, any of the products would provide enough light for juvenile salmon to feed under the structure. The number and placement of these devices could be arranged to maximize light penetration for particular purposes in different situations.

  7. Macroscopic behavior and discrete dynamo in high-[Theta] reversed-field pinch discharges

    SciTech Connect (OSTI)

    Arimoto, H.; Nakamura, A.; Sato, K.I.; Nagata, A.; Ando, T.; Kubota, S.; Masamune, S.; Nagatsu, M.; Tsukishima, T. (Plasma Science Center, Nagoya University, Chikusa-ku, Nagoya 464-01 (Japan))

    1993-06-01T23:59:59.000Z

    The magnetohydrodynamic (MHD) activity and the discrete dynamo in high-[Theta] reversed-field pinch (RFP) discharges are studied through comparisons with those in normal-[Theta] RFP discharges, where [Theta]=[ital B][sub [theta

  8. Utah Code Ann. § 19-5-107: Discharge of pollutants unlawful...

    Open Energy Info (EERE)

    Ann. 19-5-107: Discharge of pollutants unlawful -- Discharge permit required Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute:...

  9. Physical limits for high ion charge states in pulsed discharges in vacuum

    E-Print Network [OSTI]

    Yushkov, Georgy

    2009-01-01T23:59:59.000Z

    to change if ultrahigh vacuum was available. In conclusion,charge state in a short pulse discharge in vacuum. Fig. 2.power for gold discharges in vacuum for the three circuit

  10. Superconducting Detectors for Super Light Dark Matter

    E-Print Network [OSTI]

    Yonit Hochberg; Yue Zhao; Kathryn M. Zurek

    2015-04-27T23:59:59.000Z

    We propose and study a new class of of superconducting detectors which are sensitive to O(meV) electron recoils from dark matter-electron scattering. Such devices could detect dark matter as light as the warm dark matter limit, mX > keV. We compute the rate of dark matter scattering off free electrons in a (superconducting) metal, including the relevant Pauli blocking factors. We demonstrate that classes of dark matter consistent with all astrophysical and terrestrial constraints could be detected by such detectors with a moderate size exposure.

  11. Superconducting Detectors for Super Light Dark Matter

    E-Print Network [OSTI]

    Hochberg, Yonit; Zurek, Kathryn M

    2015-01-01T23:59:59.000Z

    We propose and study a new class of of superconducting detectors which are sensitive to O(meV) electron recoils from dark matter-electron scattering. Such devices could detect dark matter as light as the warm dark matter limit, mX > keV. We compute the rate of dark matter scattering off free electrons in a (superconducting) metal, including the relevant Pauli blocking factors. We demonstrate that classes of dark matter consistent with all astrophysical and terrestrial constraints could be detected by such detectors with a moderate size exposure.

  12. Surface plasmon polaritons locally excited on the ridges of metallic gratings

    E-Print Network [OSTI]

    Boyer, Edmond

    Surface plasmon polaritons locally excited on the ridges of metallic gratings B. Wang*, and P the surface plasmon polaritons that are locally excited on the ridges (between the indentations) of metallic by an intuitive microscopic model that shines new light on the role of surface plasmons in the transmission

  13. Science&TechnologyHighlights As the world's lightest metal, lithium is well positioned to meet

    E-Print Network [OSTI]

    Pennycook, Steve

    , strategic investments have been made in metal-air, aluminum-ion, and all solid-state batteries; safety1 Science&TechnologyHighlights As the world's lightest metal, lithium is well positioned to meet, light- weight, high-energy density, lithium ion batteries are attractive for plug-in hybrid and battery

  14. Lakeview Light and Power- Commercial Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    Lakeview Light and Power offers a commercial lighting rebate program. Rebates apply to the installation of energy efficient lighting retrofits in non-residential buildings. The rebate program is...

  15. Low pressure arc discharge lamp apparatus with magnetic field generating means

    DOE Patents [OSTI]

    Grossman, M.W.; George, W.A.; Maya, J.

    1987-10-06T23:59:59.000Z

    A low-pressure arc discharge apparatus having a magnetic field generating means for increasing the output of a discharge lamp is disclosed. The magnetic field generating means, which in one embodiment includes a plurality of permanent magnets, is disposed along the lamp for applying a constant transverse magnetic field over at least a portion of the positive discharge column produced in the arc discharge lamp operating at an ambient temperature greater than about 25 C. 3 figs.

  16. Green Light Pulse Oximeter

    DOE Patents [OSTI]

    Scharf, John Edward (Oldsmar, FL)

    1998-11-03T23:59:59.000Z

    A reflectance pulse oximeter that determines oxygen saturation of hemoglobin using two sources of electromagnetic radiation in the green optical region, which provides the maximum reflectance pulsation spectrum. The use of green light allows placement of an oximetry probe at central body sites (e.g., wrist, thigh, abdomen, forehead, scalp, and back). Preferably, the two green light sources alternately emit light at 560 nm and 577 nm, respectively, which gives the biggest difference in hemoglobin extinction coefficients between deoxyhemoglobin, RHb, and oxyhemoglobin, HbO.sub.2.

  17. White light velocity interferometer

    DOE Patents [OSTI]

    Erskine, D.J.

    1999-06-08T23:59:59.000Z

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.

  18. Heavy Metal Humor: Reconsidering Carnival in Heavy Metal Culture

    E-Print Network [OSTI]

    Powell, Gary Botts

    2013-06-05T23:59:59.000Z

    This thesis considers Bakhtin?s carnivalesque theory by analyzing comedic rhetoric performed by two comedic metal bands. Through the theories of Johan Huizinga and Mikhail Bakhtin, Chapter I: I Play Metal argues that heavy metal culture is a modern...

  19. Electric characteristics of a surface barrier discharge with a plasma induction electrode

    SciTech Connect (OSTI)

    Alemskii, I. N.; Lelevkin, V. M.; Tokarev, A. V.; Yudanov, V. A. [Kyrgyz-Russian Slavic University (Kyrgyzstan)

    2006-07-15T23:59:59.000Z

    Static and dynamic current-voltage and charge-voltage characteristics of a surface barrier discharge with a plasma induction electrode have been investigated experimentally. The dependences of the discharge current on both the gas pressure in the induction electrode tube and the winding pitch of the corona electrode, as well as of the discharge power efficiency on the applied voltage, have been measured.

  20. Experimental Effects of Atomic Oxygen on the Development of an Electric Discharge Oxygen Iodine Laser

    E-Print Network [OSTI]

    Carroll, David L.

    state I. Conventionally, a two-phase (gas-liquid) chemistry singlet oxygen generator (SOG) producesExperimental Effects of Atomic Oxygen on the Development of an Electric Discharge Oxygen Iodine of the electric discharge iodine laser continues, the role of oxygen atoms downstream of the discharge region

  1. Nanosecond dynamics of a gallium mirror's light-induced reflectivity change

    E-Print Network [OSTI]

    V. Albanis; S. Dhanjal; V. I. Emelyanov; V. A. Fedotov; K. F. MacDonald; P. Petropoulos; D. J. Richardson; N. I. Zheludev

    2000-10-05T23:59:59.000Z

    Transient pump-probe optical reflectivity measurements of the nano/microsecond dynamics of a fully reversible, light-induced, surface-assisted metallization of gallium interfaced with silica are reported. The metallization leads to a considerable increase in the interface's reflectivity when solid a-gallium is on the verge of melting. The reflectivity change was found to be a cumulative effect that grows with light intensity and pulse duration. The reflectivity relaxes back to that of alpha-gallium when the excitation is withdrawn in a time that increases critically at gallium's melting point. The effect is attributed to a non-thermal light-induced structural phase transition.

  2. Transition Metal Dopants Essential for Producing Ferromagnetism...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal Dopants Essential for Producing Ferromagnetism in Metal Oxide Nanoparticles. Transition Metal Dopants Essential for Producing Ferromagnetism in Metal Oxide Nanoparticles....

  3. Buffer Layer Assisted Laser Patterning of Metals on Surfaces

    E-Print Network [OSTI]

    Asscher, Micha

    power. In general, absorbed laser power density above 10 MW/cm2 should be avoided, to conserve* Department of Physical Chemistry, The Farkas Center for Light Induced Processes, The Hebrew Uni tool of metallic thin films on surfaces due to their strong binding and the extremely high laser power

  4. Sandia Energy - (Lighting and) Solid-State Lighting: Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on the third and upcoming revolution (illumination). Topics cover the basics of light-emitting diode (LED) operation; a 200-year history of lighting technology; the importance of...

  5. Sandia National Laboratories: (Lighting and) Solid-State Lighting...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on the third and upcoming revolution (illumination). Topics cover the basics of light-emitting diode (LED) operation; a 200-year history of lighting technology; the importance of...

  6. Columbia Water and Light- HVAC and Lighting Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Columbia Water and Light (CWL) offers rebates to its commercial and industrial customers for the purchase of high efficiency HVAC installations and efficient lighting. Incentives for certain...

  7. Reading Municipal Light Department- Business Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    Reading Municipal Light Department (RMLD) offers incentives for non-residential customers to install energy efficient lights and sensors in existing facilities. In addition to rebates for the...

  8. Peninsula Light Company- Commercial Efficient Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    Peninsula Light Company (PLC) offers a rebate program for commercial customers who wish to upgrade to energy efficient lighting. Participating customers must be served by PLC commercial service....

  9. Light Duty Combustion Research: Advanced Light-Duty Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    duty Diesel Combustion Research Advanced Light-Duty Combustion Experiments Paul Miles Sandia National Laboratories Light-Duty Combustion Modeling Rolf Reitz University of Wisconsin...

  10. Edge Plasma Effects in DIII-D Impurity Seeded Discharges

    SciTech Connect (OSTI)

    Jackson, G.L.; Boedo, J.A.; Lasnier, C. J.; Leonard, A.W.; McKee, G. R.; Murakami, M; Wade, M.R.; Watkins, J.G.; West, W.P.; Whyte, D.G.

    2002-06-01T23:59:59.000Z

    DIII-D, ELMing H-mode radiating mantle discharges have been obtained with electron density near the Greenwald density limit and a large fraction of the input power radiated inside the last closed flux surface, significantly reducing peak divertor heat fluxes. In these ''puff and pump'' discharges, the introduction of argon reduces particle flux to divertor tiles by a factor of 4 while peak heat flux is half of the no impurity value, suggesting that impurity seeding may be a useful control tool to reduce wall heat and particle fluxes in fusion reactors. A robust H-mode transport barrier is maintained and there is little change in the ELM energy or in the ELM frequency.

  11. Optogalvanic effect in a hollow cathode discharge with nonlaser sources

    SciTech Connect (OSTI)

    Apel, C.T.; Keller, R.A.; Zalewski, E.F.; Engleman, R. Jr.

    1982-04-15T23:59:59.000Z

    Several atomic emission sources were investigated for their potential to induce optogalvanic signals in hollow cathode lamps. The sources included an inductively coupled argon plasma, a H/sub 2/--O/sub 2/ flame, a high-temperature furnace, electrodeless microwave discharge lamps, and hollow cathode lamps. Successful results were obtained with argon emission from the inductively coupled plasma focused into an argon-filled hollow cathode tube and with atomic emission from one hollow cathode discharge focused into a hollow cathode tube containing the same element. Very low level optogalvanic signals were observed from the other sources but could not be unambiguously ascribed to emission from a specific element. A problem encountered was the presence of a background signal due to photoelectric emission and possibly radiative heating of the cathode.

  12. Temporal process of plasma discharge by an electron beam

    SciTech Connect (OSTI)

    Sugawa, M.; Sugaya, R.; Isobe, S.; Kumar, A. [Department of Physics, Faculty of Science, Ehime University, Matsuyama 790 (Japan); Honda, H. [Institute of Laser Engineering, Osaka University, Suita, Osaka 565 (Japan)

    1996-05-01T23:59:59.000Z

    The process of the plasma discharge due to an electron beam is experimentally investigated. A pulse ({approximately}540 {mu}s) of an electron beam (0.5{endash}1.5 keV, {le}20 mA) is injected into argon gas (5{times}10{sup {minus}5}{endash}5{times}10{sup {minus}4} Torr) in a magnetic field (50{endash}300 G). The discharge based on a gas break down occurs cascade-likely in time. The gas beak down with some steps is explained by the two stream instability of an electron beam-plasma system, from the observation of the temporal evolution of the frequency spectra (0{endash}3.0 GHz) of the instability and the measurement of the temporal plasma density and temperature. {copyright} {ital 1996 American Institute of Physics.}

  13. Focused shock spark discharge drill using multiple electrodes

    DOE Patents [OSTI]

    Moeny, William M. (Albuquerque, NM); Small, James G. (Albuquerque, NM)

    1988-01-01T23:59:59.000Z

    A spark discharge focused drill provided with one pulse forming line or a number of pulse forming lines. The pulse forming line is connected to an array of electrodes which would form a spark array. One of the electrodes of each of the array is connected to the high voltage side of the pulse forming line and the other electrodes are at ground potential. When discharged in a liquid, these electrodes produce intense focused shock waves that can pulverize or fracture rock. By delaying the firing of each group of electrodes, the drill can be steered within the earth. Power can be fed to the pulse forming line either downhole or from the surface area. A high voltage source, such as a Marx generator, is suitable for pulse charging the lines.

  14. Machinability of a Stainless Steel by Electrochemical Discharge Microdrilling

    SciTech Connect (OSTI)

    Coteata, Margareta; Pop, Nicolae; Slatineanu, Laurentiu ['Gheorghe Asachi' Technical University of Iasi, Department of Machine Manufacturing Technology, Blvd. D Mangeron 59A, 700050 Iasi (Romania); Schulze, Hans-Peter [Otto-von-Guericke-University Magdeburg, Institute of Fundamental Electrical Engineering and EMC Universitaetsplatz 2, D-39106 Magdeburg (Germany); Besliu, Irina [University 'Stefan cel Mare' of Suceava, Department of Technologies and Management, Str. Universitatii, 13, 720 229 Suceava (Romania)

    2011-05-04T23:59:59.000Z

    Due to the chemical elements included in their structure for ensuring an increased resistance to the environment action, the stainless steels are characterized by a low machinability when classical machining methods are applied. For this reason, sometimes non-traditional machining methods are applied, one of these being the electrochemical discharge machining. To obtain microholes and to evaluate the machinability by electrochemical discharge microdrilling, test pieces of stainless steel were used for experimental research. The electrolyte was an aqueous solution of sodium silicate with different densities. A complete factorial plan was designed to highlight the influence of some input variables on the sizes of the considered machinability indexes (electrode tool wear, material removal rate, depth of the machined hole). By mathematically processing of experimental data, empirical functions were established both for stainless steel and carbon steel. Graphical representations were used to obtain more suggestive vision concerning the influence exerted by the considered input variables on the size of the machinability indexes.

  15. Z-Pinch Discharge in Laser Produced Plasma

    SciTech Connect (OSTI)

    Sterling, E.; Lunney, J. G. [School of Physics, Trinity College Dublin (Ireland)

    2010-10-08T23:59:59.000Z

    A fast coaxial electrical discharge, with relatively low current, was used to produce a Z-pinch effect in a laser produced aluminum plasma. The ion flux in the laser plasma was monitored with a Langmuir ion probe. The line density in the plasma column was controlled by using an aperture to select the portion of the laser plasma which enters the discharge cell. The Z-pinch dynamics were recorded using time-resolved imaging of the visible self-emission; the plasma was pinched to about one-third of the initial radius. Both the laser and Z-pinch plasmas were diagnosed using time-and space-resolved spectroscopy; substantial heating was observed. The measured behaviour of the pinch was compared with predictions of the slug model.

  16. Metal roofing Shingle roofing

    E-Print Network [OSTI]

    Hutcheon, James M.

    Metal roofing panel Shingle roofing Water & ice barrier Thermal Barrier Plywood Student: Arpit between the roof and the attic. · Apply modifications to traditional roofing assembly and roofing roof with only a water barrier between the plywood and the roofing panels. Metal roofing panel Shingle

  17. Porous metallic bodies

    DOE Patents [OSTI]

    Landingham, R.L.

    1984-03-13T23:59:59.000Z

    Porous metallic bodies having a substantially uniform pore size of less than about 200 microns and a density of less than about 25 percent theoretical, as well as the method for making them, are disclosed. Group IIA, IIIB, IVB, VB, and rare earth metal hydrides a

  18. Lithium metal oxide electrodes for lithium cells and batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Downers Grove, IL); Kim, Jaekook (Naperville, IL)

    2004-01-13T23:59:59.000Z

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0

  19. Max Tech and Beyond: High-Intensity Discharge Lamps

    E-Print Network [OSTI]

    Scholand, Michael

    2012-01-01T23:59:59.000Z

    light emitting diode (LED) lamps will eventually come toare also looking to make LED lamps compatible with standardelectronics design, an LED lamp can be made dimmable over a

  20. Tuning charge–discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries

    SciTech Connect (OSTI)

    Zhou, Yong-Ning [Brookhaven National Lab. (BNL), Upton, NY (United States). Dept. of Chemistry; Ma, Jun [Chinese Academy of Sciences (CAS), Beijing (China). Beijing National Lab. for Condensed Matter Physics (BNLCP-CAS); Hu, Enyuan [Brookhaven National Lab. (BNL), Upton, NY (United States). Dept. of Chemistry; Yu, Xiqian [Brookhaven National Lab. (BNL), Upton, NY (United States). Dept. of Chemistry; Gu, Lin [Chinese Academy of Sciences (CAS), Beijing (China). Beijing National Lab. for Condensed Matter Physics (BNLCP-CAS); Nam, Kyung -Wan [Dongguk Univ., Seoul (Korea, Republic of); Chen, Liquan [Chinese Academy of Sciences (CAS), Beijing (China). Beijing National Lab. for Condensed Matter Physics (BNLCP-CAS); Wang, Zhaoxiang [Chinese Academy of Sciences (CAS), Beijing (China). Beijing National Lab. for Condensed Matter Physics (BNLCP-CAS); Yang, Xiao -Qing [Brookhaven National Lab. (BNL), Upton, NY (United States). Dept. of Chemistry

    2014-11-18T23:59:59.000Z

    Through a systematic study of lithium molybdenum trioxide (Li2MoO3), a new ‘unit cell breathing’ mechanism is introduced based on both crystal and electronic structural changes of transition metal oxide cathode materials during charge–discharge: For widely used LiMO2 (M = Co, Ni, Mn), lattice parameters, a and b, contracts during charge. However, for Li2MoO3, such changes are in opposite directions. Metal–metal bonding is used to explain such ‘abnormal’ behaviour and a generalized hypothesis is developed. The expansion of M–M bond becomes the controlling factor for a(b) evolution during charge, in contrast to the shrinking M–O as controlling factor in ‘normal’ materials. The cation mixing caused by migration of Mo ions at higher oxidation state provides the benefits of reducing the c expansion range in early stage of charging and suppressing the structure collapse at high voltage charge. These results open a new strategy for designing and engineering layered cathode materials for high energy density lithium-ion batteries.

  1. Tuning charge–discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Yong-Ning [Brookhaven National Lab. (BNL), Upton, NY (United States). Dept. of Chemistry; Ma, Jun [Chinese Academy of Sciences (CAS), Beijing (China). Beijing National Lab. for Condensed Matter Physics (BNLCP-CAS); Hu, Enyuan [Brookhaven National Lab. (BNL), Upton, NY (United States). Dept. of Chemistry; Yu, Xiqian [Brookhaven National Lab. (BNL), Upton, NY (United States). Dept. of Chemistry; Gu, Lin [Chinese Academy of Sciences (CAS), Beijing (China). Beijing National Lab. for Condensed Matter Physics (BNLCP-CAS); Nam, Kyung -Wan [Dongguk Univ., Seoul (Korea, Republic of); Chen, Liquan [Chinese Academy of Sciences (CAS), Beijing (China). Beijing National Lab. for Condensed Matter Physics (BNLCP-CAS); Wang, Zhaoxiang [Chinese Academy of Sciences (CAS), Beijing (China). Beijing National Lab. for Condensed Matter Physics (BNLCP-CAS); Yang, Xiao -Qing [Brookhaven National Lab. (BNL), Upton, NY (United States). Dept. of Chemistry

    2014-11-18T23:59:59.000Z

    Through a systematic study of lithium molybdenum trioxide (Li2MoO3), a new ‘unit cell breathing’ mechanism is introduced based on both crystal and electronic structural changes of transition metal oxide cathode materials during charge–discharge: For widely used LiMO2 (M = Co, Ni, Mn), lattice parameters, a and b, contracts during charge. However, for Li2MoO3, such changes are in opposite directions. Metal–metal bonding is used to explain such ‘abnormal’ behaviour and a generalized hypothesis is developed. The expansion of M–M bond becomes the controlling factor for a(b) evolution during charge, in contrast to the shrinking M–O as controlling factor in ‘normal’ materials. The cation mixing caused by migration of Mo ions at higher oxidation state provides the benefits of reducing the c expansion range in early stage of charging and suppressing the structure collapse at high voltage charge. These results open a new strategy for designing and engineering layered cathode materials for high energy density lithium-ion batteries.

  2. Tuning charge–discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Yong-Ning; Ma, Jun; Hu, Enyuan; Yu, Xiqian; Gu, Lin; Nam, Kyung -Wan; Chen, Liquan; Wang, Zhaoxiang; Yang, Xiao -Qing

    2014-11-18T23:59:59.000Z

    Through a systematic study of lithium molybdenum trioxide (Li2MoO3), a new ‘unit cell breathing’ mechanism is introduced based on both crystal and electronic structural changes of transition metal oxide cathode materials during charge–discharge: For widely used LiMO2 (M = Co, Ni, Mn), lattice parameters, a and b, contracts during charge. However, for Li2MoO3, such changes are in opposite directions. Metal–metal bonding is used to explain such ‘abnormal’ behaviour and a generalized hypothesis is developed. The expansion of M–M bond becomes the controlling factor for a(b) evolution during charge, in contrast to the shrinking M–O as controlling factor in ‘normal’ materials.more »The cation mixing caused by migration of Mo ions at higher oxidation state provides the benefits of reducing the c expansion range in early stage of charging and suppressing the structure collapse at high voltage charge. These results open a new strategy for designing and engineering layered cathode materials for high energy density lithium-ion batteries.« less

  3. Natural lighting and skylights

    E-Print Network [OSTI]

    Evans, Benjamin Hampton

    1961-01-01T23:59:59.000Z

    outlined herein, the feasibility of using scale models for studying skylights is also an established fact. The method of analysis by models can be a valuable tool to any designer who is concerned about day-lighting....

  4. National Synchrotron Light Source

    ScienceCinema (OSTI)

    None

    2010-01-08T23:59:59.000Z

    A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

  5. Light Vector Mesons

    E-Print Network [OSTI]

    Alexander Milov

    2008-12-21T23:59:59.000Z

    This article reviews the current status of experimental results obtained in the measurement of light vector mesons produced in proton-proton and heavy ion collisions at different energies. The review is focused on two phenomena related to the light vector mesons; the modification of the spectral shape in search of Chiral symmetry restoration and suppression of the meson production in heavy ion collisions. The experimental results show that the spectral shape of light vector mesons are modified compared to the parameters measured in vacuum. The nature and the magnitude of the modification depends on the energy density of the media in which they are produced. The suppression patterns of light vector mesons are different from the measurements of other mesons and baryons. The mechanisms responsible for the suppression of the mesons are not yet understood. Systematic comparison of existing experimental results points to the missing data which may help to resolve the problem.

  6. Light and Plants Plants use light to photosynthesize. Name two places that light can come from

    E-Print Network [OSTI]

    Koptur, Suzanne

    Light and Plants Plants use light to photosynthesize. Name two places that light can come from: 1 (CO2, a gas) from the air and turn it into SUGARS (food). This process is powered by energy from light plants) for energy. Photosynthetically Active Radiation (PAR) is a combination of red light and blue

  7. Negative ion source with hollow cathode discharge plasma

    DOE Patents [OSTI]

    Hershcovitch, A.; Prelec, K.

    1980-12-12T23:59:59.000Z

    A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface is described. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.

  8. Depth Profile Analysis of New Materials in Hollow Cathode Discharge

    SciTech Connect (OSTI)

    Djulgerova, R.; Mihailov, V.; Gencheva, V.; Popova, L.; Panchev, B. [Institute of Solid State Physics - Bulgarian Academy of Sciences, 1784 Sofia (Bulgaria); Michaylova, V. [Technical University of Sofia, 1797 Sofia (Bulgaria); Szytula, A.; Gondek, L.; Dohnalik, T.M. [Smoluchowski Institute of Physics - Jagellonian University, 30-059 Cracow (Poland); Petrovic, Z.Lj. [Institute of Physics, 11080 Zemun, Belgrade (Serbia and Montenegro)

    2004-12-01T23:59:59.000Z

    In this review the possibility of hollow cathode discharge for depth profile analysis is demonstrated for several new materials: planar optical waveguides fabricated by Ag+-Na+ ion exchange process in glasses, SnO2 thin films for gas sensors modified by hexamethildisilazane after rapid thermal annealing, W- and WC- CVD layers deposited on Co-metalloceramics and WO3- CVD thin films deposited on glass. The results are compared with different standard techniques.

  9. Method and apparatus for processing exhaust gas with corona discharge

    DOE Patents [OSTI]

    Barlow, S.E.; Orlando, T.M.; Tonkyn, R.G.

    1999-06-22T23:59:59.000Z

    The present invention is placing a catalyst coating upon surfaces surrounding a volume containing corona discharge. In addition, the electrodes are coated with a robust dielectric material. Further, the electrodes are arranged so that at least a surface portion of each electrode extends into a flow path of the exhaust gas to be treated and there is only exhaust gas in the volume between each pair of electrodes. 12 figs.

  10. The Use of DC Glow Discharges as Undergraduate Educational Tools

    SciTech Connect (OSTI)

    Stephanie A. Wissel and Andrew Zwicker, Jerry Ross, and Sophia Gershman

    2012-10-09T23:59:59.000Z

    Plasmas have a beguiling way of getting students excited and interested in physics. We argue that plasmas can and should be incorporated into the undergraduate curriculum as both demonstrations and advanced investigations of electromagnetism and quantum effects. Our device, based on a direct current (DC) glow discharge tube, allows for a number of experiments into topics such as electrical breakdown, spectroscopy, magnetism, and electron temperature.

  11. Role of substrate temperature at graphene synthesis in arc discharge

    E-Print Network [OSTI]

    Fang, Xiuqi; Keidar, Michael

    2015-01-01T23:59:59.000Z

    Substrate temperature required for synthesis of graphene in arc discharge plasma was studied. It was shown that increase of the copper substrate temperature up to melting point leads to increase in the amount of graphene production and quality of graphene sheets. Favorable range of substrate temperatures for arc-based graphene synthesis was determined in relatively narrow range of about 1340-1360K which is near the melting point of copper.

  12. Magnetic shielding of Hall thrusters at high discharge voltages

    SciTech Connect (OSTI)

    Mikellides, Ioannis G., E-mail: Ioannis.G.Mikellides@jpl.nasa.gov; Hofer, Richard R.; Katz, Ira; Goebel, Dan M. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States)

    2014-08-07T23:59:59.000Z

    A series of numerical simulations and experiments have been performed to assess the effectiveness of magnetic shielding in a Hall thruster operating in the discharge voltage range of 300–700?V (I{sub sp}???2000–2700?s) at 6?kW, and 800?V (I{sub sp} ? 3000) at 9?kW. At 6?kW, the magnetic field topology with which highly effective magnetic shielding was previously demonstrated at 300?V has been retained for all other discharge voltages; only the magnitude of the field has been changed to achieve optimum thruster performance. It is found that magnetic shielding remains highly effective for all discharge voltages studied. This is because the channel is long enough to allow hot electrons near the channel exit to cool significantly upon reaching the anode. Thus, despite the rise of the maximum electron temperature in the channel with discharge voltage, the electrons along the grazing lines of force remain cold enough to eliminate or reduce significantly parallel gradients of the plasma potential near the walls. Computed maximum erosion rates in the range of 300–700?V are found not to exceed 10{sup ?2}?mm/kh. Such rates are ?3 orders of magnitude less than those observed in the unshielded version of the same thruster at 300?V. At 9?kW and 800?V, saturation of the magnetic circuit did not allow for precisely the same magnetic shielding topology as that employed during the 6-kW operation since this thruster was not designed to operate at this condition. Consequently, the maximum erosion rate at the inner wall is found to be ?1 order of magnitude higher (?10{sup ?1}?mm/kh) than that at 6?kW. At the outer wall, the ion energy is found to be below the sputtering yield threshold so no measurable erosion is expected.

  13. High energy XeBr electric discharge laser

    DOE Patents [OSTI]

    Sze, Robert C. (Santa Fe, NM); Scott, Peter B. (Los Alamos, NM)

    1981-01-01T23:59:59.000Z

    A high energy XeBr laser for producing coherent radiation at 282 nm. The XeBr laser utilizes an electric discharge as the excitation source to minimize formation of molecular ions thereby minimizing absorption of laser radiation by the active medium. Additionally, HBr is used as the halogen donor which undergoes harpooning reactions with Xe.sub.M * to form XeBr*.

  14. High energy KrCl electric discharge laser

    DOE Patents [OSTI]

    Sze, Robert C. (Santa Fe, NM); Scott, Peter B. (Los Alamos, NM)

    1981-01-01T23:59:59.000Z

    A high energy KrCl laser for producing coherent radiation at 222 nm. Output energies on the order of 100 mJ per pulse are produced utilizing a discharge excitation source to minimize formation of molecular ions, thereby minimizing absorption of laser radiation by the active medium. Additionally, HCl is used as a halogen donor which undergoes a harpooning reaction with metastable Kr.sub.M * to form KrCl.

  15. Characteristics of discharge disruptions in the T-10 tokamak

    SciTech Connect (OSTI)

    Stefanovskii, A. M., E-mail: stefan@nfi.kiae.ru; Dremin, M. M.; Kakurin, A. M.; Kislov, A. Ya.; Mal'tsev, S. G.; Notkin, G. E.; Pavlov, Yu. D.; Poznyak, V. I.; Sushkov, A. V. [National Research Centre Kurchatov Institute (Russian Federation)

    2013-06-15T23:59:59.000Z

    The results of experimental studies of discharge disruptions in the T-10 tokamak at the limiting plasma density are presented. On the basis of measurements of the generated soft X-ray emission, for a group of 'slow' disruptions, the dynamics of the magnetic configuration of the central part of the plasma column is studied and the possible role of the m/n = 1/1 mode in the excitation of predisruptions or the final stage of disruption is analyzed. It is shown that the characteristics of plasma electron cooling in predisruptions correspond to those of electron cooling upon pellet injection into T-10 and in discharge predisruptions occurring in regimes with the 'quiet mode.' It is found that, in the latter case, the reason for predisruptions and fast electron cooling in the plasma core is the instability of the m/n = 2/1 mode, its spontaneous spatial reconstruction, and the generation of a 'cooling wave' during this process. Measurements of the electron temperature (determined from the plasma radiation intensity at the second electron cyclotron harmonic) in the zone of the m/n = 2/1 mode have shown that the transformation of the m/n = 2/1 mode leads to the excitation of predisruptions and the final phase of disruption not only in regimes with the 'quiet mode,' but also in disruptions of ordinary ohmic discharges. The experimental results obtained in this work make it possible to determine the scenario of the development of 'slow' discharge disruptions in the T-10 tokamak at the limiting plasma density.

  16. Method and apparatus for processing exhaust gas with corona discharge

    DOE Patents [OSTI]

    Barlow, Stephan E. (Richland, WA); Orlando, Thomas M. (Kennewick, WA); Tonkyn, Russell G. (Kennewick, WA)

    1999-01-01T23:59:59.000Z

    The present invention is placing a catalyst coating upon surfaces surrounding a volume containing corona discharge. In addition, the electrodes are coated with a robust dielectric material. Further, the electrodes are arranged so that at least a surface portion of each electrode extends into a flow path of the exhaust gas to be treated and there is only exhaust gas in the volume between each pair of electrodes.

  17. Production of magnesium metal

    DOE Patents [OSTI]

    Blencoe, James G. (Harriman, TN) [Harriman, TN; Anovitz, Lawrence M. (Knoxville, TN) [Knoxville, TN; Palmer, Donald A. (Oliver Springs, TN) [Oliver Springs, TN; Beard, James S. (Martinsville, VA) [Martinsville, VA

    2010-02-23T23:59:59.000Z

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.

  18. Light and Energy -Daylight measurements

    E-Print Network [OSTI]

    Light and Energy - Daylight measurements #12;Light and Energy - Daylight measurements Authors: Jens;3 Title Light and Energy Subtitle Daylight measurements Authors Jens Christoffersen, Ásta Logadóttir ........................................................................................................ 5 Daylight quantity

  19. Light as a Healing Mechanism

    E-Print Network [OSTI]

    Lingampalli, Nithya

    2013-01-01T23:59:59.000Z

    S. (1991). Meridians conduct light. Moskow: Raum and Zeit.the bod’ys absorption of light. Explore, 9(2), doi: https://01). The healing use of light and color. Health Care Design

  20. Solid state lighting component

    DOE Patents [OSTI]

    Yuan, Thomas; Keller, Bernd; Ibbetson, James; Tarsa, Eric; Negley, Gerald

    2010-10-26T23:59:59.000Z

    An LED component comprising an array of LED chips mounted on a planar surface of a submount with the LED chips capable of emitting light in response to an electrical signal. The LED chips comprise respective groups emitting at different colors of light, with each of the groups interconnected in a series circuit. A lens is included over the LED chips. Other embodiments can comprise thermal spreading structures included integral to the submount and arranged to dissipate heat from the LED chips.

  1. Solid state lighting component

    DOE Patents [OSTI]

    Keller, Bernd; Ibbetson, James; Tarsa, Eric; Negley, Gerald; Yuan, Thomas

    2012-07-10T23:59:59.000Z

    An LED component comprising an array of LED chips mounted on a planar surface of a submount with the LED chips capable of emitting light in response to an electrical signal. The LED chips comprise respective groups emitting at different colors of light, with each of the groups interconnected in a series circuit. A lens is included over the LED chips. Other embodiments can comprise thermal spreading structures included integral to the submount and arranged to dissipate heat from the LED chips.

  2. Reactor-specific spent fuel discharge projections, 1987-2020

    SciTech Connect (OSTI)

    Walling, R.C.; Heeb, C.M.; Purcell, W.L.

    1988-03-01T23:59:59.000Z

    The creation of five reactor-specific spent fuel data bases that contain information on the projected amounts of spent fuel to be discharged from U.S. commercial nuclear reactors through the year 2020 is described. The data bases contain detailed spent fuel information from existing, planned, and projected pressurized water reactors (PWR) and boiling water eactors (BWR), and one existing high temperature gas reactor (HTGR). The projections are based on individual reactor information supplied by the U.S. reactor owners. The basic information is adjusted to conform to Energy Information Administration (EIA) forecasts for nuclear installed capacity, generation, and spent fuel discharged. The EIA cases considered are: No New Orders (assumes increasing burnup), No New Orders with No Increased Burnup, Upper Reference (assumes increasing burnup), Upper Reference with No Increased Burnup, and Lower Reference (assumes increasing burnup). Detailed, by-reactor tables are provided for annual discharged amounts of spent fuel, for storage requirements assuming maximum at-reactor storage, and for storage requirements assuming maximum at-reactor storage plus intra-utility transshipment of spent fuel. 8 refs., 8 figs., 10 tabs.

  3. Equilibrium theory of cylindrical discharges with special application to helicons

    SciTech Connect (OSTI)

    Curreli, Davide; Chen, Francis F. [Electrical Engineering Department, University of California, Los Angeles, California 90095-1594 (United States)

    2011-11-15T23:59:59.000Z

    Radiofrequency discharges used in industry often have centrally peaked plasma density profiles n(r) although ionization is localized at the edge, even in the presence of a dc magnetic field. This can be explained with a simple cylindrical model in one dimension as long as the short-circuit effect at the endplates causes a Maxwellian electron distribution. Surprisingly, a universal profile can be obtained, which is self-similar for all discharges with uniform electron temperature T{sub e} and neutral density n{sub n}. When all collisions and ionizations are radially accounted for, the ion drift velocity toward the wall reaches the Bohm velocity at a radius which can be identified with the sheath edge, thus obviating a pre-sheath calculation. For non-uniform T{sub e} and n{sub n}, the profiles change slightly but are always peaked on axis. For helicon discharges, iteration with the HELIC code for antenna-wave coupling yields profiles consistent with both energy deposition and diffusion profiles. Calculated density is in absolute-value agreement with experiment.

  4. Ignition and extinction phenomena in helium micro hollow cathode discharges

    SciTech Connect (OSTI)

    Kulsreshath, M. K.; Schwaederle, L.; Dufour, T.; Lefaucheux, P.; Dussart, R. [GREMI, CNRS/Université d'Orléans (UMR7344), Orléans (France); Sadeghi, N. [LIPhy, CNRS and Universite Joseph Fourier (UMR5588), Grenoble (France); Overzet, L. J. [GREMI, CNRS/Université d'Orléans (UMR7344), Orléans (France); PSAL, UTDallas, Richardson, Texas 75080-3021 (United States)

    2013-12-28T23:59:59.000Z

    Micro hollow cathode discharges (MHCD) were produced using 250??m thick dielectric layer of alumina sandwiched between two nickel electrodes of 8??m thickness. A through cavity at the center of the chip was formed by laser drilling technique. MHCD with a diameter of few hundreds of micrometers allowed us to generate direct current discharges in helium at up to atmospheric pressure. A slowly varying ramped voltage generator was used to study the ignition and the extinction periods of the microdischarges. The analysis was performed by using electrical characterisation of the V-I behaviour and the measurement of He*({sup 3}S{sub 1}) metastable atoms density by tunable diode laser spectroscopy. At the ignition of the microdischarges, 2??s long current peak as high as 24?mA was observed, sometimes followed by low amplitude damped oscillations. At helium pressure above 400?Torr, an oscillatory behaviour of the discharge current was observed just before the extinction of the microdischarges. The same type of instability in the extinction period at high pressure also appeared on the density of He*({sup 3}S{sub 1}) metastable atoms, but delayed by a few ?s relative to the current oscillations. Metastable atoms thus cannot be at the origin of the generation of the observed instabilities.

  5. Reactor-specific spent fuel discharge projections: 1985 to 2020

    SciTech Connect (OSTI)

    Heeb, C.M.; Libby, R.A.; Walling, R.C.; Purcell, W.L.

    1986-09-01T23:59:59.000Z

    The creation of four spent-fuel data bases that contain information on the projected amounts of spent fuel to be discharged from US commercial nuclear reactors through the year 2020 is described. The data bases contain detailed spent-fuel information from existing, planned, and projected pressurized water reactors (PWR) and boiling water reactors (BWR). The projections are based on individual reactor information supplied by the US reactor owners. The basic information is adjusted to conform to Energy Information Agency (EIA) forecasts for nuclear installed capacity, generation, and spent fuel discharged. The EIA cases considered are: (1) No New Orders with Extended Burnup, (2) No New Orders with Constant Burnup, (3) Middle Case with Extended Burnup, and (4) Middle Case with Constant Burnup. Detailed, by-reactor tables are provided for annual discharged amounts of spent fuel, for storage requirements assuming maximum-at-reactor storage, and for storage requirements assuming maximum-at-reactor plus intra-utility transshipment of spent fuel.

  6. July 18, 2012 Using QECBs for Street Lighting Upgrades

    E-Print Network [OSTI]

    lighting technologies (e.g. light-emitting diodes, induction lighting) can reduce street light energy

  7. Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys

    DOE Patents [OSTI]

    Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel

    2012-07-03T23:59:59.000Z

    In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.

  8. arc discharge ion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    obtained for the injection of high-current beams of heavy-metal ions, in particular uranium, into particle accelerators. As the use of the source has grown, so also have the...

  9. Sandia National Laboratories: White Light Creation Architectures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Light Creation Architectures White Light Creation Architectures Overview of SSL White Light Creation Architectures The entire spectral range of visible light can be...

  10. Sandia National Laboratories: Lighting Developments to 2030

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ClimateLighting Developments to 2030 Lighting Developments to 2030 videobanner Lighting Technologies, Costs, and Energy Demand: Global Developments to 2030 V iew Slides: Lighting...

  11. Interior Light Level Measurements Appendix F -Interior Light Level Measurements

    E-Print Network [OSTI]

    Appendix F ­ Interior Light Level Measurements #12;F.1 Appendix F - Interior Light Level. A potential concern is that a lower VT glazing may increase electric lighting use to compensate for lost qualify and quantify a representative loss of daylighting, and therefore electric lighting use

  12. Quasi light fields: extending the light field to coherent radiation

    E-Print Network [OSTI]

    Wornell, Gregory W.

    Quasi light fields: extending the light field to coherent radiation Anthony Accardi1,2 and Gregory light field, and for coherent radiation using electromagnetic field theory. We present a model of coherent image formation that strikes a balance between the utility of the light field

  13. Lighting affects appearance LightSource emits photons

    E-Print Network [OSTI]

    Jacobs, David

    1 Lighting affects appearance #12;2 LightSource emits photons Photons travel in a straight line). And then some reach the eye/camera. #12;3 Basic fact: Light is linear Double intensity of sources, double photons reaching eye. Turn on two lights, and photons reaching eye are same as sum of number when each

  14. Smart Lighting: A Second Wave in Solid State Lighting?

    E-Print Network [OSTI]

    Salama, Khaled

    Smart Lighting: A Second Wave in Solid State Lighting? OIDA Conference on Green Photonics Bob Karlicek Director, Smart Lighting Engineering Research Center Rensselaer Polytechnic Institute June 2010 #12;2 Outline · The First Wave of Solid State Lighting · Complex Dynamics in the Supply Chain · What

  15. Strontium isotope quantification of siderite, brine and acid mine drainage contributions to abandoned gas well discharges in the Appalachian Plateau

    SciTech Connect (OSTI)

    Chapman, Elizabeth C.; Capo, Rosemary C.; Stewart, Brian W.; Hedin, Robert S.; Weaver, Theodore J.; Edenborn, Harry M.

    2013-04-01T23:59:59.000Z

    Unplugged abandoned oil and gas wells in the Appalachian region can serve as conduits for the movement of waters impacted by fossil fuel extraction. Strontium isotope and geochemical analysis indicate that artesian discharges of water with high total dissolved solids (TDS) from a series of gas wells in western Pennsylvania result from the infiltration of acidic, low Fe (Fe < 10 mg/L) coal mine drainage (AMD) into shallow, siderite (iron carbonate)-cemented sandstone aquifers. The acidity from the AMD promotes dissolution of the carbonate, and metal- and sulfate-contaminated waters rise to the surface through compromised abandoned gas well casings. Strontium isotope mixing models suggest that neither upward migration of oil and gas brines from Devonian reservoirs associated with the wells nor dissolution of abundant nodular siderite present in the mine spoil through which recharge water percolates contribute significantly to the artesian gas well discharges. Natural Sr isotope composition can be a sensitive tool in the characterization of complex groundwater interactions and can be used to distinguish between inputs from deep and shallow contamination sources, as well as between groundwater and mineralogically similar but stratigraphically distinct rock units. This is of particular relevance to regions such as the Appalachian Basin, where a legacy of coal, oil and gas exploration is coupled with ongoing and future natural gas drilling into deep reservoirs.

  16. Optical properties of inhomogeneous metallic hydrogen plasmas

    E-Print Network [OSTI]

    Broeck, N Van den; Tempere, J; Silvera, I F

    2015-01-01T23:59:59.000Z

    We investigate the optical properties of hydrogen as it undergoes a transition from the insulating molecular to the metallic atomic phase, when heated by a pulsed laser at megabar pressures in a diamond anvil cell. Most current experiments attempt to observe this transition by detecting a change in the optical reflectance and/or transmittance. Theoretical models for this change are based on the dielectric function calculated for bulk, homogeneous slabs of material. Experimentally, one expects a hydrogen plasma density that varies on a length scale not substantially smaller than the wave length of the probing light. We show that taking this inhomogeneity into account can lead to significant corrections in the reflectance and transmittance. We present a technique to calculate the optical properties of systems with a smoothly varying density of charge carriers, determine the optical response for metallic hydrogen in the diamond anvil cell experiment and contrast this with the standard results. Analyzing recent e...

  17. Method of producing thermally sprayed metallic coating

    DOE Patents [OSTI]

    Byrnes, Larry Edward (Rochester Hills, MI); Kramer, Martin Stephen (Clarkston, MI); Neiser, Richard A. (Albuquerque, NM)

    2003-08-26T23:59:59.000Z

    The cylinder walls of light metal engine blocks are thermally spray coated with a ferrous-based coating using an HVOF device. A ferrous-based wire is fed to the HVOF device to locate a tip end of the wire in a high temperature zone of the device. Jet flows of oxygen and gaseous fuel are fed to the high temperature zone and are combusted to generate heat to melt the tip end. The oxygen is oversupplied in relation to the gaseous fuel. The excess oxygen reacts with and burns a fraction of the ferrous-based feed wire in an exothermic reaction to generate substantial supplemental heat to the HVOF device. The molten/combusted metal is sprayed by the device onto the walls of the cylinder by the jet flow of gases.

  18. Vortex nozzle for segmenting and transporting metal chips from turning operations

    DOE Patents [OSTI]

    Bieg, L.F.

    1993-04-20T23:59:59.000Z

    Apparatus for collecting, segmenting and conveying metal chips from machining operations utilizes a compressed gas driven vortex nozzle for receiving the chip and twisting it to cause the chip to segment through the application of torsional forces to the chip. The vortex nozzle is open ended and generally tubular in shape with a converging inlet end, a constant diameter throat section and a diverging exhaust end. Compressed gas is discharged through angled vortex ports in the nozzle throat section to create vortex flow in the nozzle and through an annular inlet at the entrance to the converging inlet end to create suction at the nozzle inlet and cause ambient air to enter the nozzle. The vortex flow in the nozzle causes the metal chip to segment and the segments thus formed to pass out of the discharge end of the nozzle where they are collected, cleaned and compacted as needed.

  19. Liquid metal electric pump

    DOE Patents [OSTI]

    Abbin, J.P.; Andraka, C.E.; Lukens, L.L.; Moreno, J.B.

    1992-01-14T23:59:59.000Z

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other. 3 figs.

  20. Actinide metal processing

    DOE Patents [OSTI]

    Sauer, N.N.; Watkin, J.G.

    1992-03-24T23:59:59.000Z

    A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  1. Actinide metal processing

    DOE Patents [OSTI]

    Sauer, Nancy N. (Los Alamos, NM); Watkin, John G. (Los Alamos, NM)

    1992-01-01T23:59:59.000Z

    A process of converting an actinide metal such as thorium, uranium, or plnium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is provided together with a low temperature process of preparing an actinide oxide nitrate such as uranyl nitrte. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  2. Liquid metal electric pump

    DOE Patents [OSTI]

    Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

    1992-01-01T23:59:59.000Z

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other.

  3. Flip-chip light emitting diode with resonant optical microcavity

    SciTech Connect (OSTI)

    Gee, James M.; Bogart, Katherine H.A.; Fischer, Arthur J.

    2005-11-29T23:59:59.000Z

    A flip-chip light emitting diode with enhanced efficiency. The device structure employs a microcavity structure in a flip-chip configuration. The microcavity enhances the light emission in vertical modes, which are readily extracted from the device. Most of the rest of the light is emitted into waveguided lateral modes. Flip-chip configuration is advantageous for light emitting diodes (LEDs) grown on dielectric substrates (e.g., gallium nitride LEDs grown on sapphire substrates) in general due to better thermal dissipation and lower series resistance. Flip-chip configuration is advantageous for microcavity LEDs in particular because (a) one of the reflectors is a high-reflectivity metal ohmic contact that is already part of the flip-chip configuration, and (b) current conduction is only required through a single distributed Bragg reflector. Some of the waveguided lateral modes can also be extracted with angled sidewalls used for the interdigitated contacts in the flip-chip configuration.

  4. Sneaky light stop

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Eifert, Till; Nachman, Benjamin

    2015-04-01T23:59:59.000Z

    A light supersymmetric top quark partner (stop) with a mass nearly degenerate with that of the standard model (SM) top quark can evade direct searches. The precise measurement of SM top properties such as the cross-section has been suggested to give a handle for this ‘stealth stop’ scenario. We present an estimate of the potential impact a light stop may have on top quark mass measurements. The results indicate that certain light stop models may induce a bias of up to a few GeV, and that this effect can hide the shift in, and hence sensitivity from, cross-section measurements. Duemore »to the different initial states, the size of the bias is slightly different between the LHC and the Tevatron. The studies make some simplifying assumptions for the top quark measurement technique, and are based on truth-level samples.« less

  5. Pupillary efficient lighting system

    DOE Patents [OSTI]

    Berman, Samuel M. (San Francisco, CA); Jewett, Don L. (Mill Valley, CA)

    1991-01-01T23:59:59.000Z

    A lighting system having at least two independent lighting subsystems each with a different ratio of scotopic illumination to photopic illumination. The radiant energy in the visible region of the spectrum of the lighting subsystems can be adjusted relative to each other so that the total scotopic illumination of the combined system and the total photopic illumination of the combined system can be varied independently. The dilation or contraction of the pupil of an eye is controlled by the level of scotopic illumination and because the scotopic and photopic illumination can be separately controlled, the system allows the pupil size to be varied independently of the level of photopic illumination. Hence, the vision process can be improved for a given level of photopic illumination.

  6. Light emitting ceramic device

    DOE Patents [OSTI]

    Valentine, Paul; Edwards, Doreen D.; Walker, Jr., William John; Slack, Lyle H.; Brown, Wayne Douglas; Osborne, Cathy; Norton, Michael; Begley, Richard

    2010-05-18T23:59:59.000Z

    A light-emitting ceramic based panel, hereafter termed "electroceramescent" panel, is herein claimed. The electroceramescent panel is formed on a substrate providing mechanical support as well as serving as the base electrode for the device. One or more semiconductive ceramic layers directly overlay the substrate, and electrical conductivity and ionic diffusion are controlled. Light emitting regions overlay the semiconductive ceramic layers, and said regions consist sequentially of a layer of a ceramic insulation layer and an electroluminescent layer, comprised of doped phosphors or the equivalent. One or more conductive top electrode layers having optically transmissive areas overlay the light emitting regions, and a multi-layered top barrier cover comprising one or more optically transmissive non-combustible insulation layers overlay said top electrode regions.

  7. Light harvesting arrays

    DOE Patents [OSTI]

    Lindsey, Jonathan S. (Raleigh, NC)

    2002-01-01T23:59:59.000Z

    A light harvesting array useful for the manufacture of devices such as solar cells comprises: (a) a first substrate comprising a first electrode; and (b) a layer of light harvesting rods electrically coupled to the first electrode, each of the light harvesting rods comprising a polymer of Formula I: X.sup.1.paren open-st.X.sup.m+1).sub.m (I) wherein m is at least 1, and may be from two, three or four to 20 or more; X.sup.1 is a charge separation group (and preferably a porphyrinic macrocycle, which may be one ligand of a double-decker sandwich compound) having an excited-state of energy equal to or lower than that of X.sup.2, and X.sup.2 through X.sup.m+1 are chromophores (and again are preferably porphyrinic macrocycles).

  8. Lithium metal reduction of plutonium oxide to produce plutonium metal

    DOE Patents [OSTI]

    Coops, Melvin S. (Livermore, CA)

    1992-01-01T23:59:59.000Z

    A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

  9. Divalent metal nanoparticles

    E-Print Network [OSTI]

    DeVries, Gretchen Anne

    2008-01-01T23:59:59.000Z

    Metal nanoparticles hold promise for many scientific and technological applications, such as chemical and biological sensors, vehicles for drug delivery, and subdiffraction limit waveguides. To fabricate such devices, a ...

  10. Production of magnesium metal

    DOE Patents [OSTI]

    Blencoe, James G. (Harriman, TN); Anovitz, Lawrence M. (Knoxville, TN); Palmer, Donald A. (Oliver Springs, TN); Beard, James S. (Martinsville, VA)

    2012-04-10T23:59:59.000Z

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention also relates to the magnesium metal produced by the processes described herein.

  11. MANDATORY MEASURES INDOOR LIGHTING CONTROLS

    E-Print Network [OSTI]

    California at Davis, University of

    MANDATORY MEASURES INDOOR LIGHTING CONTROLS (Reference: Sub-Chapter 4, Section 130.1) #12;SECTION 4 MANDATORY LIGHTING CONTROLS 1. 130.1 (a) Area Controls: Manual controls that control lighting in each area separately 2. 130.1 (b) Multi-level Controls: Allow occupants to choose the appropriate light level for each

  12. MANDATORY MEASURES INDOOR LIGHTING CONTROLS

    E-Print Network [OSTI]

    California at Davis, University of

    MANDATORY MEASURES INDOOR LIGHTING CONTROLS (Reference: Sub-Chapter 4, Section 130.1) #12;SECTION 3 MANDATORY LIGHTING CONTROLS 1. 130.1 (a) Area Controls: Manual controls that control lighting in each area separately 2. 130.1 (b) Multi-level Controls: "Dimmability." Allow occupants to choose the appropriate light

  13. MANDATORY MEASURES INDOOR LIGHTING CONTROLS

    E-Print Network [OSTI]

    California at Davis, University of

    MANDATORY MEASURES INDOOR LIGHTING CONTROLS (Reference: Sub-Chapter 4, Section 130.1) #12;SECTION 5 MANDATORY LIGHTING CONTROLS 1. Area Controls: Manual controls that control lighting in each area separately 2. Multi-level Controls: Allow occupants to choose the appropriate light level for each area 3. Shut

  14. LIGHTING 101 1. Common terminology

    E-Print Network [OSTI]

    California at Davis, University of

    SECTION 3 LIGHTING 101 1. Common terminology 2. Sources & luminaires 3. Controls #12;SECTION 3SECTION 3 DISCUSSION: COMMON LIGHTING TERMINOLOGY 1. What are the definitions of the following lighting terms? 2. Do you use these terms in professional practice? 3. What other lighting terminology do you use

  15. LIGHTING 101 1. Common terminology

    E-Print Network [OSTI]

    California at Davis, University of

    LIGHTING 101 1. Common terminology 2. Sources and luminaires 3. Controls #12;SECTION 2 DISCUSSION: COMMON LIGHTING TERMINOLOGY 1. What are the definitions of the following lighting terms? 2. Do you use these terms in professional practice? 3. What other lighting terminology do you use on the job? SLIDE 14

  16. Functionalized Silicone Nanospheres: Synthesis, Transition Metal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Functionalized Silicone Nanospheres: Synthesis, Transition Metal Immobilization, and Catalytic Applications. Functionalized Silicone Nanospheres: Synthesis, Transition Metal...

  17. New binding materials for metal hydride electrodes which permit good recyclability

    SciTech Connect (OSTI)

    Hara, T.; Yasuda, N. (Japan Synthetic Rubber Co., Ltd., Yokkaichi (Japan). Development Center); Takeuchi, Y. (Japan Synthetic Rubber Co., Ltd., Tokyo (Japan). Electronics Project Dept.); Sakai, T.; Uchiyama, A.; Miyamura, H.; Kuriyama, N.; Ishikawa, H. (Government Industrial Research Inst., Osaka (Japan))

    1993-09-01T23:59:59.000Z

    Thermoplastic elastomers such as styrene-butadiene-styrene block copolymer (SBS) and styrene-ethylene/butylene-styrene block copolymer (SEBS) were used successfully as binding materials for metal hydride (MH) electrodes of a nickel-metal hydride battery. These binding materials have a rubber-like nature and are soluble in organic solvents. It was easy to remove the alloy powder from a used electrode for recycling. The battery performance depended on both the kind and amount of binding materials. The best discharge capacity and rate capability were obtained for MH electrodes containing 2--5 weight percent (w/o) SEBS. The particle size distributions for the alloy were examined successfully.

  18. Radioluminescent lighting technology

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    The glow-in-the-dark stereotype that characterizes the popular image of nuclear materials is not accidental. When the French scientist, Henri Becquerel, first discovered radioactivity in 1896, he was interested in luminescence. Radioluminescence, the production of light from a mixture of energetic and passive materials, is probably the oldest practical application of the unstable nucleus. Tritium-based radioluminescent lighting, in spite of the biologically favorable character of the gaseous tritium isotope, was included in the general tightening of environmental and safety regulations. Tritium light manufacturers would have to meet two fundamental conditions: (1) The benefit clearly outweighed the risk, to the extent that even the perceived risk of a skeptical public would be overcome. (2) The need was significant enough that the customer/user would be willing and able to afford the cost of regulation that was imposed both in the manufacture, use and eventual disposal of nuclear materials. In 1981, researchers at Oak Ridge National Laboratory were investigating larger radioluminescent applications using byproduct nuclear material such as krypton-85, as well as tritium. By 1982, it appeared that large source, (100 Curies or more) tritium gas tube, lights might be useful for marking runways and drop zones for military operations and perhaps even special civilian aviation applications. The successful development of this idea depended on making the light bright enough and demonstrating that large gas tube sources could be used and maintained safely in the environment. This successful DOE program is now in the process of being completed and closed-out. Working closely with the tritium light industry, State governments and other Federal agencies, the basic program goals have been achieved. This is a detailed report of what they have learned, proven, and discovered. 91 refs., 29 figs., 5 tabs. (JF)

  19. Plasma lighting, fiber optics, and daylight collectors: Toward the next revolution in high-efficiency illumination

    SciTech Connect (OSTI)

    Audin, L. [Columbia Univ., New York, NY (United States)

    1995-06-01T23:59:59.000Z

    Combining three recently marketed innovations may provide the next revolution in illumination, making many other recent advances eventually obsolete. The first is plasma lighting, pioneered by Fusion Lighting Inc. of Rockville, Maryland, and first commercially applied by Hutchins International Ltd. of Mississauga, Ontario. This microwave-generated light source yields very high-quality light with efficacies at or beyond high intensity discharge (HID) lamps. The source uses no mercury, thus eliminating lamp disposal problems, and has no cathode, thereby providing very long lamp life. Using no phosphors, it also has very short start and re-strike periods, and is dimmable. The second innovation is in the distribution of light. Commercial developments in fiber optics and light guides now provide products that transfer light from a remote point and distribute it like standard light fixtures. Advances in fiber optic communications and applications to decorative lighting have supplied relatively economical systems for mounting and directing light from both electric light sources and the sun. The third advance is a result of efforts to harness daylight. Unlike architectural daylighting that directs sunlight into perimeter areas through glazing, daylight collectors are roof-mounted devices that supply light to interior and underground spaces through hollow columns and open chases. Aided by improvements and cost reductions in sun-tracking (i.e., heliostatic) controls that capture and concentrate sunlight, such collectors offer a source of free light to locations that might otherwise never receive it. When combined together, these three options could offer a centralized building lighting system that pipes lumens to distribution devices replacing many existing lamps and fixtures.

  20. Molten metal reactors

    DOE Patents [OSTI]

    Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M

    2013-11-05T23:59:59.000Z

    A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

  1. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOE Patents [OSTI]

    Doeff, M.M.; Peng, M.Y.; Ma, Y.; Visco, S.J.; DeJonghe, L.C.

    1996-09-24T23:59:59.000Z

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M{sub x}Z{sub y}Mn{sub (1{minus}y)}O{sub 2}, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell. 11 figs.

  2. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOE Patents [OSTI]

    Doeff, Marca M. (Hayward, CA); Peng, Marcus Y. (Cupertino, CA); Ma, Yanping (Albany, CA); Visco, Steven J. (Berkeley, CA); DeJonghe, Lutgard C. (Lafayette, CA)

    1996-01-01T23:59:59.000Z

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M.sub.x Z.sub.y Mn.sub.(1-y) O.sub.2, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell.

  3. Methods for preparation of nanocrystalline rare earth phosphates for lighting applications

    DOE Patents [OSTI]

    Comanzo, Holly Ann; Manoharan, Mohan; Martins Loureiro, Sergio Paulo; Setlur, Anant Achyut; Srivastava, Alok Mani

    2013-04-16T23:59:59.000Z

    Disclosed here are methods for the preparation of optionally activated nanocrystalline rare earth phosphates. The optionally activated nanocrystalline rare earth phosphates may be used as one or more of quantum-splitting phosphor, visible-light emitting phosphor, vacuum-UV absorbing phosphor, and UV-emitting phosphor. Also disclosed herein are discharge lamps comprising the optionally activated nanocrystalline rare earth phosphates provided by these methods.

  4. North and northeast Greenland ice discharge from satellite radar interferometry

    SciTech Connect (OSTI)

    Rignot, E.J. [California Institute of Technology, Pasadena, CA (United States)] [California Institute of Technology, Pasadena, CA (United States); Gogineni, S.P. [Univ. of Kansas, Lawrence, KS (United States)] [Univ. of Kansas, Lawrence, KS (United States); Krabill, W.B. [NASA Goddard Space Flight Center, Wallops Island, VA (United States)] [and others] [NASA Goddard Space Flight Center, Wallops Island, VA (United States); and others

    1997-05-09T23:59:59.000Z

    Ice discharge from north and northeast Greenland calculated from satellite radar interferometry data of 14 outlet glaciers is 3.5 times that estimated from iceberg production. The satellite estimates, obtained at the grounding line of the outlet glaciers, differ from those obtained at the glacier front, because basal melting is extensive at the underside of the floating glacier sections. The results suggest that the north and northeast parts of the Greenland ice sheet may be thinning and contributing positively to sea-level rise. 24 refs., 3 figs., 1 tab.

  5. Glow-discharge synthesis of silicon nitride precursor powders

    SciTech Connect (OSTI)

    Ho, P.; Buss, R.J.; Loehman, R.E. (Sandia National Laboratories, Albuquerque, New Mexico 87185-5800 (US))

    1989-07-01T23:59:59.000Z

    A radio-frequency glow discharge is used for the synthesis of submicron, amorphous, silicon nitride precursor powders from silane and ammonia. Powders are produced with a range of Si/N ratios, including stoichiometric, Si-rich, and N-rich, and contain substantial amounts of hydrogen. The powders appear to be similar to silicon diimide and are easily converted to oxide by water vapor. The powders lose weight and crystallize to a mixture of {alpha} and {beta}-Si{sub 3}N{sub 4} after prolonged heating at 1600{degree}C. Studies of spectrally and spatially resolved optical emission from the plasma are reported.

  6. Ethanol reforming in non-equilibrium plasma of glow discharge

    E-Print Network [OSTI]

    Levko, D

    2012-01-01T23:59:59.000Z

    The results of a detailed kinetic study of the main plasma chemical processes in non-equilibrium ethanol/argon plasma are presented. It is shown that at the beginning of the discharge the molecular hydrogen is mainly generated in the reaction of ethanol H-abstraction. Later hydrogen is formed from active H, CH2OH and CH3CHOH and formaldehyde. Comparison with experimental data has shown that the used kinetic mechanism predicts well the concentrations of main species at the reactor outlet.

  7. Corrective Action Decision Document for Corrective Action Unit 423: Building 03-60 Underground Discharge Point, Tonopah Test Range, Nevada

    SciTech Connect (OSTI)

    DOE /NV

    1999-06-19T23:59:59.000Z

    This Corrective Action Decision Document (CADD) has been prepared for Corrective Action Unit (CAU) 423, Building 03-60 Underground Discharge Point (UDP) in accordance with the Federal Facility Agreement and Consent Order (FFACO) of 1996 that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the Nevada Division of Environmental Protection (NDEP); and the U.S Department of Defense (FFACO, 1996). The CADD provides or references the specific information necessary to recommend a preferred corrective action for the single Corrective Action Site (CAS), 03-02-002-0308, within CAU 423. Corrective Action Unit 423 is located at the Tonopah Test Range (TTR), Nevada. The TTR is approximately 255 kilometers (km) (140 miles[mi]) northwest of Las Vegas, Nevada. The UDP is approximately 73 meters (m) (240 feet [ft]) northwest of the northwest corner of Building 03-60, the Auto Maintenance Shop. Corrective Action Unit 423 is comprised of the UDP and an associated discharge line extending from Building 03-60. The UDP received waste oil products from the Auto Maintenance Shop, a light-duty fleet maintenance shop in the Area 3 compound, from 1965 to 1989 or 1990 (DOE/NV, 1997).

  8. Prospects for river discharge and depth estimation through assimilation of swath-altimetry into a raster-based hydrodynamics

    E-Print Network [OSTI]

    Howat, Ian M.

    Prospects for river discharge and depth estimation through assimilation of swath water depth and discharge, reducing the discharge RMSE from 23.2% to 10.0% over an 84-day simulation. Clark, D. P. Lettenmaier, and D. E. Alsdorf (2007), Prospects for river discharge and depth estimation

  9. Gallium nanoparticles grow where light is

    E-Print Network [OSTI]

    K. F. MacDonald; W. S. Brocklesby; V. I. Emelyanov; V. A. Fedotov; S. Pochon; K. J. Ross; G. Stevens; N. I. Zheludev

    2001-05-15T23:59:59.000Z

    The study of metallic nanoparticles has a long tradition in linear and nonlinear optics [1], with current emphasis on the ultrafast dynamics, size, shape and collective effects in their optical response [2-6]. Nanoparticles also represent the ultimate confined geometry:high surface-to-volume ratios lead to local field enhancements and a range of dramatic modifications of the material's properties and phase diagram [7-9]. Confined gallium has become a subject of special interest as the light-induced structural phase transition recently observed in gallium films [10, 11] has allowed for the demonstration of all-optical switching devices that operate at low laser power [12]. Spontaneous self-assembly has been the main approach to the preparation of nanoparticles (for a review see 13). Here we report that light can dramatically influence the nanoparticle self-assembly process: illumination of a substrate exposed to a beam of gallium atoms results in the formation of nanoparticles with a relatively narrow size distribution. Very low light intensities, below the threshold for thermally-induced evaporation, exert considerable control over nanoparticle formation through non-thermal atomic desorption induced by electronic excitation.

  10. Windows and lighting program

    SciTech Connect (OSTI)

    Not Available

    1990-06-01T23:59:59.000Z

    More than 30% of all energy use in buildings is attributable to two sources: windows and lighting. Together they account for annual consumer energy expenditures of more than $50 billion. Each affects not only energy use by other major building systems, but also comfort and productivity -- factors that influence building economics far more than does direct energy consumption alone. Windows play a unique role in the building envelope, physically separating the conditioned space from the world outside without sacrificing vital visual contact. Throughout the indoor environment, lighting systems facilitate a variety of tasks associated with a wide range of visual requirements while defining the luminous qualities of the indoor environment. Windows and lighting are thus essential components of any comprehensive building science program. Despite important achievements in reducing building energy consumption over the past decade, significant additional savings are still possible. These will come from two complementary strategies: (1) improve building designs so that they effectively apply existing technologies and extend the market penetration of these technologies; and (2) develop advanced technologies that increase the savings potential of each application. Both the Windows and Daylighting Group and the Lighting System Research Group have made substantial contributions in each of these areas, and continue to do so through the ongoing research summarized here. 23 refs., 16 figs.

  11. AIRPORT LIGHTING Session Highlights

    E-Print Network [OSTI]

    Minnesota, University of

    Administration advisory circulars, available online at www.faa.gov or by mail at the following address: Federal Aviation Administration, Airports 800 Independence Ave. S.W. Washington, D.C. 20591 To qualify for federal AND NAVIGATIONAL AIDS A complete list of federal regulations for airfield lighting is located in Federal Aviation

  12. Sweetness and light 

    E-Print Network [OSTI]

    Craig, Katie

    2014-07-03T23:59:59.000Z

    1. Sweetness and Light. A novel. Judi lives in a nice, clean house with her seventeen year old stepson, who won’t talk to her in anything but monosyllables. His father, Nelson, and she are struggling to relate to each ...

  13. Nanometer-scale ablation using focused, coherent extreme ultraviolet/soft x-ray light

    DOE Patents [OSTI]

    Menoni, Carmen S. (Fort Collins, CO); Rocca, Jorge J. (Fort Collins, CO); Vaschenko, Georgiy (San Diego, CA); Bloom, Scott (Encinitas, CA); Anderson, Erik H. (El Cerrito, CA); Chao, Weilun (El Cerrito, CA); Hemberg, Oscar (Stockholm, SE)

    2011-04-26T23:59:59.000Z

    Ablation of holes having diameters as small as 82 nm and having clean walls was obtained in a poly(methyl methacrylate) on a silicon substrate by focusing pulses from a Ne-like Ar, 46.9 nm wavelength, capillary-discharge laser using a freestanding Fresnel zone plate diffracting into third order is described. Spectroscopic analysis of light from the ablation has also been performed. These results demonstrate the use of focused coherent EUV/SXR light for the direct nanoscale patterning of materials.

  14. High-Temperature Zirconia Oxygen Sensor with Sealed Metal/Metal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Zirconia Oxygen Sensor with Sealed MetalMetal Oxide Internal Reference High-Temperature Zirconia Oxygen Sensor with Sealed MetalMetal Oxide Internal Reference...

  15. Minimization of effluent discharge to the Soil Column

    SciTech Connect (OSTI)

    Dronen, V.R.; Hydzik, K.M.

    1994-01-01T23:59:59.000Z

    In 1987, the US Congress mandated that the US Department of Energy (DOE), cease discharge of contaminated effluents to the soil column at the Hanford Site by calendar year 1995. The plan and schedule for this activity can be found in The Plan and Schedule to Discontinue Disposal of Contaminated Liquid into the Soil Column at the Hanford Site, (WHC 1987). Coupled with this mandate and DOE`s intent to cleanup Hanford (remediate and restore to the extent practicable), DOE entered into an agreement with the US Environmental Protection Agency (EPA) and the Washington State Department of Ecology (Ecology). The agreement is called the ``Hanford Federal Facility Agreement and Consent Order`` (Ecology et al. 1992) otherwise known as the Tri-Party Agreement. The Tri-Party Agreement established schedules and legally enforceable milestones for the Hanford cleanup mission. One such milestone was to cease discharge of effluent to Hanford`s 300 Area process trenches located approximately 100 m from the Columbia River, north of Richland, Washington.

  16. Superposed Coherent and Squeezed Light

    E-Print Network [OSTI]

    Fesseha Kassahun

    2012-01-18T23:59:59.000Z

    We first calculate the mean photon number and quadrature variance of superposed coherent and squeezed light, following a procedure of analysis based on combining the Hamiltonians and using the usual definition for the quadrature variance of superposed light beams. This procedure of analysis leads to physically unjustifiable mean photon number of the coherent light and quadrature variance of the superposed light. We then determine both of these properties employing a procedure of analysis based on superposing the Q functions and applying a slightly modified definition for the quadrature variance of a pair of superposed light beams. We find the expected mean photon number of the coherent light and the quadrature variance of the superposed light. Moreover, the quadrature squeezing of the superposed output light turns out to be equal to that of the superposed cavity light.

  17. Apparatus and method for electrical insulation in plasma discharge systems

    DOE Patents [OSTI]

    Rhodes, Mark A. (Redwood City, CA); Fochs, Scott N. (Livermore, CA)

    2003-08-12T23:59:59.000Z

    An apparatus and method to contain plasma at optimal fill capacity of a metallic container is disclosed. The invention includes the utilization of anodized layers forming the internal surfaces of the container volume. Bias resistors are calibrated to provide constant current at variable voltage conditions. By choosing the appropriate values of the bias resistors, the voltages of the metallic container relative to the voltage of an anode are adjusted to achieve optimal plasma fill while minimizing the chance of reaching the breakdown voltage of the anodized layer.

  18. Light-harvesting materials: Soft support for energy conversion

    SciTech Connect (OSTI)

    Stolley, Ryan M.; Helm, Monte L.

    2014-11-10T23:59:59.000Z

    To convert solar energy into viable fuel sources, coupling light-harvesting materials to catalysts is a critical challenge. Now, coupling between an organic supramolecular hydrogel and a non precious metal catalyst has been demonstrated to be effective for photocatalytic H2 production. Ryan M. Stolley and Monte L. Helm are at Pacific Northwest National Laboratory (PNNL), Richland, WA, USA 99352. PNNL is operated by Battelle for the US Department of Energy. e-mail: Monte.Helm@pnnl.gov

  19. Modeling a short dc discharge with thermionic cathode and auxiliary anode

    SciTech Connect (OSTI)

    Bogdanov, E. [St. Petersburg State University, St. Petersburg 199034 (Russian Federation) [St. Petersburg State University, St. Petersburg 199034 (Russian Federation); University ITMO, Kronverkskiy pr. 49, St. Petersburg 197101 (Russian Federation); Demidov, V. I. [St. Petersburg State University, St. Petersburg 199034 (Russian Federation) [St. Petersburg State University, St. Petersburg 199034 (Russian Federation); West Virginia University, Morgantown, West Virginia 26506 (United States); Kaganovich, I. D. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)] [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Koepke, M. E. [West Virginia University, Morgantown, West Virginia 26506 (United States)] [West Virginia University, Morgantown, West Virginia 26506 (United States); Kudryavtsev, A. A. [St. Petersburg State University, St. Petersburg 199034 (Russian Federation)] [St. Petersburg State University, St. Petersburg 199034 (Russian Federation)

    2013-10-15T23:59:59.000Z

    A short dc discharge with a thermionic cathode can be used as a current and voltage stabilizer, but is subject to current oscillation. If instead of one anode two anodes are used, the current oscillations can be reduced. We have developed a kinetic model of such a discharge with two anodes, where the primary anode has a small opening for passing a fraction of the discharge current to an auxiliary anode. The model demonstrates that the current-voltage relationship of the discharge with two anodes is characterized everywhere by positive slope, i.e., positive differential resistance. Therefore, the discharge with two anodes is expected to be stable to the spontaneous oscillation in current that is induced by negative differential resistance. As a result, such a discharge can be used in an engineering application that requires stable plasma, such as a current and voltage stabilizer.

  20. A model for the self-pulsing regime of microhollow cathode discharges

    SciTech Connect (OSTI)

    Chabert, P.; Lazzaroni, C.; Rousseau, A. [LPP, Ecole Polytechnique, UPMC, CNRS, Paris XI, 91128 Palaiseau (France)

    2010-12-01T23:59:59.000Z

    Microhollow cathode discharges may operate in different regimes depending of the discharge current. They are subject to relaxation oscillations in the so-called self-pulsing regime in which the discharge oscillates between two quasiequilibria: at low current it remains confined in the microhole whereas it expands on the cathode backside during short high-current pulses. A model based on a nonlinear discharge resistance is proposed to describe the phenomenon. The analysis of the dynamics reveals that the current pulse rises in an extremely short time while the characteristic (longer) decay time is imposed by the resistance when the discharge is expanded outside the hole. It is shown how the nonlinear discharge resistance may be inferred from the experimental current-voltage signals.