Sample records for discharge includes charges

  1. Residual dust charges in discharge afterglow

    SciTech Connect (OSTI)

    Coueedel, L.; Mikikian, M.; Boufendi, L.; Samarian, A. A. [GREMI - Groupe de Recherches sur l'Energetique des Milieux Ionises, CNRS/Universite d'Orleans, 14 rue d'Issoudun, 45067 Orleans Cedex 2 (France); School of Physics A28, University of Sydney, NSW 2006 (Australia)

    2006-08-15T23:59:59.000Z

    An on-ground measurement of dust-particle residual charges in the afterglow of a dusty plasma was performed in a rf discharge. An upward thermophoretic force was used to balance the gravitational force. It was found that positively charged, negatively charged, and neutral dust particles coexisted for more than 1 min after the discharge was switched off. The mean residual charge for 200-nm-radius particles was measured. The dust particle mean charge is about -5e at a pressure of 1.2 mbar and about -3e at a pressure of 0.4 mbar.

  2. Method and apparatus for smart battery charging including a plurality...

    Office of Scientific and Technical Information (OSTI)

    Re-direct Destination: A method for managing the charging and discharging of batteries wherein at least one battery is connected to a battery charger, the battery charger...

  3. Physical limits for high ion charge states in pulsed discharges in vacuum

    E-Print Network [OSTI]

    Yushkov, Georgy

    2009-01-01T23:59:59.000Z

    to change if ultrahigh vacuum was available. In conclusion,charge state in a short pulse discharge in vacuum. Fig. 2.power for gold discharges in vacuum for the three circuit

  4. Determining Spatial and Temporal Inputs of Freshwater, Including Submarine Groundwater Discharge,

    E-Print Network [OSTI]

    Miami, University of

    of freshwater into the bay. A second model using Sr2+ /Ca2+ ratios was developed to discern fresh groundwater. Florida . Submarine groundwater discharge Introduction The timing and sources of freshwater deliveryDetermining Spatial and Temporal Inputs of Freshwater, Including Submarine Groundwater Discharge

  5. Residual dust charges in discharge afterglow L. Couedel,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    was performed in a rf discharge. An upward thermophoretic force was used to balance the gravitational force

  6. Dual Feedback Controlled High Performance Ar Seeded ELMy H-mode Discharges in JET including Trace Tritium Experiments

    E-Print Network [OSTI]

    Dual Feedback Controlled High Performance Ar Seeded ELMy H-mode Discharges in JET including Trace Tritium Experiments

  7. A generalized multi-dimensional mathematical model for charging and discharging processes in a supercapacitor

    SciTech Connect (OSTI)

    Allu, Srikanth [ORNL] [ORNL; Velamur Asokan, Badri [Exxon Mobil Research and Engineering] [Exxon Mobil Research and Engineering; Shelton, William A [Louisiana State University] [Louisiana State University; Philip, Bobby [ORNL] [ORNL; Pannala, Sreekanth [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    A generalized three dimensional computational model based on unied formulation of electrode- electrolyte-electrode system of a electric double layer supercapacitor has been developed. The model accounts for charge transport across the solid-liquid system. This formulation based on volume averaging process is a widely used concept for the multiphase ow equations ([28] [36]) and is analogous to porous media theory typically employed for electrochemical systems [22] [39] [12]. This formulation is extended to the electrochemical equations for a supercapacitor in a consistent fashion, which allows for a single-domain approach with no need for explicit interfacial boundary conditions as previously employed ([38]). In this model it is easy to introduce the spatio-temporal variations, anisotropies of physical properties and it is also conducive for introducing any upscaled parameters from lower length{scale simulations and experiments. Due to the irregular geometric congurations including porous electrode, the charge transport and subsequent performance characteristics of the super-capacitor can be easily captured in higher dimensions. A generalized model of this nature also provides insight into the applicability of 1D models ([38]) and where multidimensional eects need to be considered. In addition, simple sensitivity analysis on key input parameters is performed in order to ascertain the dependence of the charge and discharge processes on these parameters. Finally, we demonstarted how this new formulation can be applied to non-planar supercapacitors

  8. Effect of energetic electrons on dust charging in hot cathode filament discharge

    SciTech Connect (OSTI)

    Kakati, B.; Kausik, S. S.; Saikia, B. K. [Centre of Plasma Physics, Institute for Plasma Research, Nazirakhat, Sonapur 782 402, Kamrup, Assam (India); Bandyopadhyay, M. [ITER-India, Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India)

    2011-03-15T23:59:59.000Z

    The effect of energetic electrons on dust charging for different types of dust is studied in hydrogen plasma. The hydrogen plasma is produced by hot cathode filament discharge method in a dusty plasma device. A full line cusped magnetic field cage is used to confine the plasma elements. To study the plasma parameters for various discharge conditions, a cylindrical Langmuir probe having 0.15 mm diameter and 10.0 mm length is used. An electronically controlled dust dropper is used to drop the dust particles into the plasma. For different discharge conditions, the dust current is measured using a Faraday cup connected to an electrometer. The effect of secondary emission as well as discharge voltage on charging of dust grains in hydrogen plasma is studied with different dust.

  9. Method and apparatus for smart battery charging including a plurality of controllers each monitoring input variables

    DOE Patents [OSTI]

    Hammerstrom, Donald J.

    2013-10-15T23:59:59.000Z

    A method for managing the charging and discharging of batteries wherein at least one battery is connected to a battery charger, the battery charger is connected to a power supply. A plurality of controllers in communication with one and another are provided, each of the controllers monitoring a subset of input variables. A set of charging constraints may then generated for each controller as a function of the subset of input variables. A set of objectives for each controller may also be generated. A preferred charge rate for each controller is generated as a function of either the set of objectives, the charging constraints, or both, using an algorithm that accounts for each of the preferred charge rates for each of the controllers and/or that does not violate any of the charging constraints. A current flow between the battery and the battery charger is then provided at the actual charge rate.

  10. Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge

    E-Print Network [OSTI]

    Suo, Zhigang

    Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge, Massachusetts 02138 Evidence has accumulated recently that a high-capacity elec- trode of a lithium-ion battery in the particle is high, possibly leading to fracture and cavitation. I. Introduction LITHIUM-ION batteries

  11. Charging and discharging in ion implanted dielectric films used for capacitive radio frequency microelectromechanical systems switch

    SciTech Connect (OSTI)

    Li Gang; Chen Xuyuan [Pen-Tung Sah Micro-Electro-Mechanical Systems Research Center, Xiamen University, Xiamen, Fujian 361005 (China); Faculty of Science and Engineering, Vestfold University College, P.O. Box 2243, N-3103 Toensberg (Norway); San Haisheng [Pen-Tung Sah Micro-Electro-Mechanical Systems Research Center, Xiamen University, Xiamen, Fujian 361005 (China)

    2009-06-15T23:59:59.000Z

    In this work, metal-insulator-semiconductor (MIS) capacitor structure was used to investigate the dielectric charging and discharging in the capacitive radio frequency microelectromechanical switches. The insulator in MIS structure is silicon nitride films (SiN), which were deposited by either low pressure chemical vapor deposition (LPCVD) or plasma enhanced chemical vapor deposition (PECVD) processes. Phosphorus or boron ions were implanted into dielectric layer in order to introduce impurity energy levels into the band gap of SiN. The relaxation processes of the injected charges in SiN were changed due to the ion implantation, which led to the change in relaxation time of the trapped charges. In our experiments, the space charges were introduced by stressing the sample electrically with dc biasing. The effects of implantation process on charge accumulation and dissipation in the dielectric are studied by capacitance-voltage (C-V) measurement qualitatively and quantitatively. The experimental results show that the charging and discharging behavior of the ion implanted silicon nitride films deposited by LPCVD is quite different from the one deposited by PECVD. The charge accumulation in the dielectric film can be reduced by ion implantation with proper dielectric deposition method.

  12. Charging and de-charging of dust particles in bulk region of a radio frequency discharge plasma

    SciTech Connect (OSTI)

    Mishra, S. K. [Institute for Plasma Research, Gandhinagar 382428 (India); Misra, Shikha; Sodha, M. S. [Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016 (India)

    2013-03-15T23:59:59.000Z

    An analysis to investigate the effect of the dust particle size and density on the floating potential of the dust particles of uniform radius and other plasma parameters in the bulk region plasma of a RF-discharge in collisionless/collisional regime has been presented herein. For this purpose, the average charge theory based on charge balance on dust and number balance of plasma constituents has been utilized; a derivation for the accretion rate of electrons corresponding to a drifting Maxwellian energy distribution in the presence of an oscillatory RF field has been given and the resulting expression has been used to determine the floating potential of the dust grains. Further, the de-charging of the dust grains after switching off the RF field has also been discussed.

  13. A stepped leader model for lightning including charge distribution in branched channels

    SciTech Connect (OSTI)

    Shi, Wei; Zhang, Li [School of Electrical Engineering, Shandong University, Jinan 250061 (China); Li, Qingmin, E-mail: lqmeee@ncepu.edu.cn [Beijing Key Lab of HV and EMC, North China Electric Power University, Beijing 102206 (China); State Key Lab of Alternate Electrical Power System with Renewable Energy Sources, Beijing 102206 (China)

    2014-09-14T23:59:59.000Z

    The stepped leader process in negative cloud-to-ground lightning plays a vital role in lightning protection analysis. As lightning discharge usually presents significant branched or tortuous channels, the charge distribution along the branched channels and the stochastic feature of stepped leader propagation were investigated in this paper. The charge density along the leader channel and the charge in the leader tip for each lightning branch were approximated by introducing branch correlation coefficients. In combination with geometric characteristics of natural lightning discharge, a stochastic stepped leader propagation model was presented based on the fractal theory. By comparing simulation results with the statistics of natural lightning discharges, it was found that the fractal dimension of lightning trajectory in simulation was in the range of that observed in nature and the calculation results of electric field at ground level were in good agreement with the measurements of a negative flash, which shows the validity of this proposed model. Furthermore, a new equation to estimate the lightning striking distance to flat ground was suggested based on the present model. The striking distance obtained by this new equation is smaller than the value estimated by previous equations, which indicates that the traditional equations may somewhat overestimate the attractive effect of the ground.

  14. High-k shallow traps observed by charge pumping with varying discharging times

    SciTech Connect (OSTI)

    Ho, Szu-Han; Chen, Ching-En; Tseng, Tseung-Yuen [Department of Electronics Engineering, National Chiao Tung University, Hsinchu 300, Taiwan (China); Chang, Ting-Chang, E-mail: tcchang@mail.phys.nsysu.edu.tw [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Advanced Optoelectronics Technology Center, National Cheng Kung University, Tainan, Taiwan (China); Lu, Ying-Hsin; Lo, Wen-Hung; Tsai, Jyun-Yu; Liu, Kuan-Ju [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Wang, Bin-Wei; Cao, Xi-Xin [Department of Embedded System Engineering, Peking University, Beijing, P.R.China (China); Chen, Hua-Mao [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu, Taiwan (China); Cheng, Osbert; Huang, Cheng-Tung; Chen, Tsai-Fu [Device Department, United Microelectronics Corporation, Tainan Science Park, Taiwan (China)

    2013-11-07T23:59:59.000Z

    In this paper, we investigate the influence of falling time and base level time on high-k bulk shallow traps measured by charge pumping technique in n-channel metal-oxide-semiconductor field-effect transistors with HfO{sub 2}/metal gate stacks. N{sub T}-V{sub high} {sub level} characteristic curves with different duty ratios indicate that the electron detrapping time dominates the value of N{sub T} for extra contribution of I{sub cp} traps. N{sub T} is the number of traps, and I{sub cp} is charge pumping current. By fitting discharge formula at different temperatures, the results show that extra contribution of I{sub cp} traps at high voltage are in fact high-k bulk shallow traps. This is also verified through a comparison of different interlayer thicknesses and different Ti{sub x}N{sub 1?x} metal gate concentrations. Next, N{sub T}-V{sub high} {sub level} characteristic curves with different falling times (t{sub falling} {sub time}) and base level times (t{sub base} {sub level}) show that extra contribution of I{sub cp} traps decrease with an increase in t{sub falling} {sub time}. By fitting discharge formula for different t{sub falling} {sub time}, the results show that electrons trapped in high-k bulk shallow traps first discharge to the channel and then to source and drain during t{sub falling} {sub time}. This current cannot be measured by the charge pumping technique. Subsequent measurements of N{sub T} by charge pumping technique at t{sub base} {sub level} reveal a remainder of electrons trapped in high-k bulk shallow traps.

  15. Gutzwiller charge phase diagram of cuprates, including electron–phonon coupling effects

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Markiewicz, R. S.; Seibold, G.; Lorenzana, J.; Bansil, A.

    2015-02-01T23:59:59.000Z

    Besides significant electronic correlations, high-temperature superconductors also show a strong coupling of electrons to a number of lattice modes. Combined with the experimental detection of electronic inhomogeneities and ordering phenomena in many high-Tc compounds, these features raise the question as to what extent phonons are involved in the associated instabilities. Here we address this problem based on the Hubbard model including a coupling to phonons in order to capture several salient features of the phase diagram of hole-doped cuprates. Charge degrees of freedom, which are suppressed by the large Hubbard U near half-filling, are found to become active at amore »fairly low doping level. We find that possible charge order is mainly driven by Fermi surface nesting, with competition between a near-(?, ?) order at low doping and antinodal nesting at higher doping, very similar to the momentum structure of magnetic fluctuations. The resulting nesting vectors are generally consistent with photoemission and tunneling observations, evidence for charge density wave order in YBa?Cu?O7-? including Kohn anomalies, and suggestions of competition between one- and two-q-vector nesting.« less

  16. Polarization of metallic carbon nanotubes from a model that includes both net charges and dipoles

    E-Print Network [OSTI]

    Mayer, Alexandre

    computational resources. This time issue is especially important in molecular dynamic simulations, in which both a net electric charge and a dipole. Considering net charges in addition to the dipoles enables one by associating with each atom both a net electric charge and a dipole. From a physical point of view, consid

  17. Tuning charge–discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries

    SciTech Connect (OSTI)

    Zhou, Yong-Ning [Brookhaven National Lab. (BNL), Upton, NY (United States). Dept. of Chemistry; Ma, Jun [Chinese Academy of Sciences (CAS), Beijing (China). Beijing National Lab. for Condensed Matter Physics (BNLCP-CAS); Hu, Enyuan [Brookhaven National Lab. (BNL), Upton, NY (United States). Dept. of Chemistry; Yu, Xiqian [Brookhaven National Lab. (BNL), Upton, NY (United States). Dept. of Chemistry; Gu, Lin [Chinese Academy of Sciences (CAS), Beijing (China). Beijing National Lab. for Condensed Matter Physics (BNLCP-CAS); Nam, Kyung -Wan [Dongguk Univ., Seoul (Korea, Republic of); Chen, Liquan [Chinese Academy of Sciences (CAS), Beijing (China). Beijing National Lab. for Condensed Matter Physics (BNLCP-CAS); Wang, Zhaoxiang [Chinese Academy of Sciences (CAS), Beijing (China). Beijing National Lab. for Condensed Matter Physics (BNLCP-CAS); Yang, Xiao -Qing [Brookhaven National Lab. (BNL), Upton, NY (United States). Dept. of Chemistry

    2014-11-18T23:59:59.000Z

    Through a systematic study of lithium molybdenum trioxide (Li2MoO3), a new ‘unit cell breathing’ mechanism is introduced based on both crystal and electronic structural changes of transition metal oxide cathode materials during charge–discharge: For widely used LiMO2 (M = Co, Ni, Mn), lattice parameters, a and b, contracts during charge. However, for Li2MoO3, such changes are in opposite directions. Metal–metal bonding is used to explain such ‘abnormal’ behaviour and a generalized hypothesis is developed. The expansion of M–M bond becomes the controlling factor for a(b) evolution during charge, in contrast to the shrinking M–O as controlling factor in ‘normal’ materials. The cation mixing caused by migration of Mo ions at higher oxidation state provides the benefits of reducing the c expansion range in early stage of charging and suppressing the structure collapse at high voltage charge. These results open a new strategy for designing and engineering layered cathode materials for high energy density lithium-ion batteries.

  18. Tuning charge–discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Yong-Ning [Brookhaven National Lab. (BNL), Upton, NY (United States). Dept. of Chemistry; Ma, Jun [Chinese Academy of Sciences (CAS), Beijing (China). Beijing National Lab. for Condensed Matter Physics (BNLCP-CAS); Hu, Enyuan [Brookhaven National Lab. (BNL), Upton, NY (United States). Dept. of Chemistry; Yu, Xiqian [Brookhaven National Lab. (BNL), Upton, NY (United States). Dept. of Chemistry; Gu, Lin [Chinese Academy of Sciences (CAS), Beijing (China). Beijing National Lab. for Condensed Matter Physics (BNLCP-CAS); Nam, Kyung -Wan [Dongguk Univ., Seoul (Korea, Republic of); Chen, Liquan [Chinese Academy of Sciences (CAS), Beijing (China). Beijing National Lab. for Condensed Matter Physics (BNLCP-CAS); Wang, Zhaoxiang [Chinese Academy of Sciences (CAS), Beijing (China). Beijing National Lab. for Condensed Matter Physics (BNLCP-CAS); Yang, Xiao -Qing [Brookhaven National Lab. (BNL), Upton, NY (United States). Dept. of Chemistry

    2014-11-18T23:59:59.000Z

    Through a systematic study of lithium molybdenum trioxide (Li2MoO3), a new ‘unit cell breathing’ mechanism is introduced based on both crystal and electronic structural changes of transition metal oxide cathode materials during charge–discharge: For widely used LiMO2 (M = Co, Ni, Mn), lattice parameters, a and b, contracts during charge. However, for Li2MoO3, such changes are in opposite directions. Metal–metal bonding is used to explain such ‘abnormal’ behaviour and a generalized hypothesis is developed. The expansion of M–M bond becomes the controlling factor for a(b) evolution during charge, in contrast to the shrinking M–O as controlling factor in ‘normal’ materials. The cation mixing caused by migration of Mo ions at higher oxidation state provides the benefits of reducing the c expansion range in early stage of charging and suppressing the structure collapse at high voltage charge. These results open a new strategy for designing and engineering layered cathode materials for high energy density lithium-ion batteries.

  19. Tuning charge–discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Yong-Ning; Ma, Jun; Hu, Enyuan; Yu, Xiqian; Gu, Lin; Nam, Kyung -Wan; Chen, Liquan; Wang, Zhaoxiang; Yang, Xiao -Qing

    2014-11-18T23:59:59.000Z

    Through a systematic study of lithium molybdenum trioxide (Li2MoO3), a new ‘unit cell breathing’ mechanism is introduced based on both crystal and electronic structural changes of transition metal oxide cathode materials during charge–discharge: For widely used LiMO2 (M = Co, Ni, Mn), lattice parameters, a and b, contracts during charge. However, for Li2MoO3, such changes are in opposite directions. Metal–metal bonding is used to explain such ‘abnormal’ behaviour and a generalized hypothesis is developed. The expansion of M–M bond becomes the controlling factor for a(b) evolution during charge, in contrast to the shrinking M–O as controlling factor in ‘normal’ materials.more »The cation mixing caused by migration of Mo ions at higher oxidation state provides the benefits of reducing the c expansion range in early stage of charging and suppressing the structure collapse at high voltage charge. These results open a new strategy for designing and engineering layered cathode materials for high energy density lithium-ion batteries.« less

  20. Compact monolithic capacitive discharge unit

    DOE Patents [OSTI]

    Roesler, Alexander W. (Tijeras, NM); Vernon, George E. (Rio Rancho, NM); Hoke, Darren A. (Albuquerque, NM); De Marquis, Virginia K. (Tijeras, NM); Harris, Steven M. (Albuquerque, NM)

    2007-06-26T23:59:59.000Z

    A compact monolithic capacitive discharge unit (CDU) is disclosed in which a thyristor switch and a flyback charging circuit are both sandwiched about a ceramic energy storage capacitor. The result is a compact rugged assembly which provides a low-inductance current discharge path. The flyback charging circuit preferably includes a low-temperature co-fired ceramic transformer. The CDU can further include one or more ceramic substrates for enclosing the thyristor switch and for holding various passive components used in the flyback charging circuit. A load such as a detonator can also be attached directly to the CDU.

  1. Real-Time PEV Charging/Discharging Coordination in Smart Distribution Systems

    E-Print Network [OSTI]

    Zhuang, Weihua

    , if not managed effectively, can entail potential risk to the electric power system, even with low PEV penetration to the power system infrastructure or through the deployment of distributed generation (DG) units to meet for the charging of plug-in electric vehicles (PEVs) in smart distribution networks. The goal of the proposed

  2. Studies on hydrogen plasma and dust charging in low-pressure filament discharge

    SciTech Connect (OSTI)

    Kakati, B., E-mail: bharatkakati15@gmail.com; Kalita, D.; Kausik, S. S.; Saikia, B. K. [Centre of Plasma Physics, Institute for Plasma Research, Nazirakhat, Sonapur 782 402, Kamrup, Assam (India); Bandyopadhyay, M. [ITER-India, Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India)

    2014-08-15T23:59:59.000Z

    The effect of working gas pressure and dust charging on electron energy probability function has been studied for hydrogen plasma in a multi-dipole dusty plasma device. A cylindrical Langmuir probe is used to evaluate the plasma parameters and electron energy probability function (EEPF) for different working pressures. For lower energy range (below 10?eV), the EEPF follows a bi-Maxwellian shape at very low pressure (6 × 10{sup ?5}?mbar), while elevating the working pressure up to ?2 × 10{sup ?3} mbar, the shape of the EEPF transforms into a single Maxwellian. Some dip structures are observed at high energy range (??>?10?eV) in the EEPF of hydrogen plasma at all the working conditions. In presence of dust particles, it is observed that the shape of the EEPF changes due to the redistribution of the high and low-energy electron populations. Finally, the effect of working pressure on charge accumulation on dust particles is studied with the help of a Faraday cup and electrometer. From the observations, a strong influence of working pressure on plasma parameters, EEPF and dust charging is observed.

  3. Homogenous charge compression ignition engine having a cylinder including a high compression space

    DOE Patents [OSTI]

    Agama, Jorge R.; Fiveland, Scott B.; Maloney, Ronald P.; Faletti, James J.; Clarke, John M.

    2003-12-30T23:59:59.000Z

    The present invention relates generally to the field of homogeneous charge compression engines. In these engines, fuel is injected upstream or directly into the cylinder when the power piston is relatively close to its bottom dead center position. The fuel mixes with air in the cylinder as the power piston advances to create a relatively lean homogeneous mixture that preferably ignites when the power piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. Thus, the present invention divides the homogeneous charge between a controlled volume higher compression space and a lower compression space to better control the start of ignition.

  4. #include #include

    E-Print Network [OSTI]

    Campbell, Andrew T.

    process #12;#include #include pid_t pid = fork(); if (pid () failed */ } else if (pid == 0) { /* parent process */ } else { /* child process */ } #12;thread #12

  5. #include #include

    E-Print Network [OSTI]

    Poinsot, Laurent

    #include #include //Rappels : "getpid()" permet d'obtenir son propre pid // "getppid()" renvoie le pid du père d'un processus int main (void) { pid_t pid_fils; pid_fils = fork(); if(pid_fils==-1) { printf("Erreur de création du processus fils\

  6. * corresponding Auithor. Email: cxw31@psu.edu Modeling Discharge and Charge Characteristics

    E-Print Network [OSTI]

    Wang, Chao-Yang

    of Mechanical Engineering & Pennsylvania Transportation Institute The Pennsylvania State University University Park, PA 16802, USA S.M. Li Department of Mechanical Engineering University of Hawaii at Manoa Honolulu model which includes both the proton diffusion in the nickel active material and the hydrogen diffusion

  7. An experimental and modeling study of isothermal charge/discharge behavior of commercial NiMH cells

    E-Print Network [OSTI]

    ­MH) battery model is applied in conjunction with experimental characterization. Important geometric parameters and incorporated in the model. The kinetic parameters of the oxygen evolution reaction are also characterized using and discharge. The Ni electrode kinetic parameters are re-calibrated for the battery studied. The Ni­MH cell

  8. Corrective Action Investigation Plan for Corrective Action Unit 516: Septic Systems and Discharge Points, Nevada Test Site, Nevada, Rev. 0, Including Record of Technical Change No. 1

    SciTech Connect (OSTI)

    U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Sites Office

    2003-04-28T23:59:59.000Z

    This Corrective Action Investigation Plan (CAIP) contains the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Sites Office's (NNSA/NSO's) approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 516, Septic Systems and Discharge Points, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. CAU 516 consists of six Corrective Action Sites: 03-59-01, Building 3C-36 Septic System; 03-59-02, Building 3C-45 Septic System; 06-51-01, Sump Piping, 06-51-02, Clay Pipe and Debris; 06-51-03, Clean Out Box and Piping; and 22-19-04, Vehicle Decontamination Area. Located in Areas 3, 6, and 22 of the NTS, CAU 516 is being investigated because disposed waste may be present without appropriate controls, and hazardous and/or radioactive constituents may be present or migrating at concentrations and locations that could potentially pose a threat to human health and the environment. Existing information and process knowledge on the expected nature and extent of contamination of CAU 516 are insufficient to select preferred corrective action alternatives; therefore, additional information will be obtained by conducting a corrective action investigation. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document. Record of Technical Change No. 1 is dated 3/2004.

  9. Longitudinal discharge laser electrodes

    DOE Patents [OSTI]

    Warner, B.E.; Miller, J.L.; Ault, E.R.

    1994-08-23T23:59:59.000Z

    The improved longitudinal discharge laser electrode with IR baffle includes an electrode made up of washers spaced along the laser axis in order to form inter-washer spaces for hollow cathode discharge to take place and for IR radiation to be trapped. Additional IR baffles can be placed between the electrode ann the window. 2 figs.

  10. Why not only electric discharge but even a minimum charge on the surface of highly sensitive explosives can catalyze their gradual exothermic decomposition and how a cloud of unipolar charged explosive particles turns into ball lightning

    E-Print Network [OSTI]

    Meshcheryakov, Oleg

    2014-01-01T23:59:59.000Z

    Even a single excess electron or ion migrating on the surface of sensitive explosives can catalyze their gradual exothermic decomposition. Mechanisms underlying such a charge-induced gradual thermal decomposition of highly sensitive explosives can be different. If sensitive explosive is a polar liquid, intense charge-dipole attraction between excess surface charges and surrounding explosive molecules can result in repetitive attempts of solvation of these charges by polar explosive molecules. Every attempt of such uncompleted nonequilibrium solvation causes local exothermic decomposition of thermolabile polar molecules accompanied by further thermal jumping unsolvated excess charges to new surface sites. Thus, ionized mobile hot spots emerge on charged explosive surface. Stochastic migration of ionized hot spots on explosive surface causes gradual exothermic decomposition of the whole mass of the polar explosive. The similar gradual charge-catalyzed exothermic decomposition of both polar and nonpolar highly s...

  11. Diffuse-charge effects on the transient response of electrochemical cells M. van Soestbergen,1,2

    E-Print Network [OSTI]

    Bazant, Martin Z.

    of an electrochemical cell in response to a current step, including effects of diffuse charge or "space charge" nearDiffuse-charge effects on the transient response of electrochemical cells M. van Soestbergen,1,2 P/discharge cycle of batteries 1­5 and the startup behavior of fuel cells 6 are important topics. Time- dependent

  12. System and method for cooling a combustion gas charge

    DOE Patents [OSTI]

    Massey, Mary Cecelia; Boberg, Thomas Earl

    2010-05-25T23:59:59.000Z

    The present invention relates to a system and method for cooling a combustion gas charge prior. The combustion gas charge may include compressed intake air, exhaust gas, or a mixture thereof. An evaporator is provided that may then receive a relatively high temperature combustion gas charge and discharge at a relatively lower temperature. The evaporator may be configured to operate with refrigeration cycle components and/or to receive a fluid below atmospheric pressure as the phase-change cooling medium.

  13. Why not only electric discharge but even a minimum charge on the surface of highly sensitive explosives can catalyze their gradual exothermic decomposition and how a cloud of unipolar charged explosive particles turns into ball lightning

    E-Print Network [OSTI]

    Oleg Meshcheryakov

    2013-07-17T23:59:59.000Z

    Even a single excess electron or ion migrating on the surface of sensitive explosives can catalyze their gradual exothermic decomposition. Mechanisms underlying such a charge-induced gradual thermal decomposition of highly sensitive explosives can be different. If sensitive explosive is a polar liquid, intense charge-dipole attraction between excess surface charges and surrounding explosive molecules can result in repetitive attempts of solvation of these charges by polar explosive molecules. Every attempt of such uncompleted nonequilibrium solvation causes local exothermic decomposition of thermolabile polar molecules accompanied by further thermal jumping unsolvated excess charges to new surface sites. Thus, ionized mobile hot spots emerge on charged explosive surface. Stochastic migration of ionized hot spots on explosive surface causes gradual exothermic decomposition of the whole mass of the polar explosive. The similar gradual charge-catalyzed exothermic decomposition of both polar and nonpolar highly sensitive explosives can be also caused by intense charge-dipole attacks of surrounding water vapor molecules electrostatically attracted from ambient humid air and strongly accelerated towards charged sites on explosive surfaces. Emission of electrons, photons and heat from ionized hot spots randomly migrating on charged surface of highly sensitive explosive aerosol nanoparticles converts such particles into the form of short-circuited thermionic nanobatteries.

  14. Method and apparatus for charged particle propagation

    DOE Patents [OSTI]

    Hershcovitch, A.

    1996-11-26T23:59:59.000Z

    A method and apparatus are provided for propagating charged particles from a vacuum to a higher pressure region. A generator includes an evacuated chamber having a gun for discharging a beam of charged particles such as an electron beam or ion beam. The beam is discharged through a beam exit in the chamber into a higher pressure region. A plasma interface is disposed at the beam exit and includes a plasma channel for bounding a plasma maintainable between a cathode and an anode disposed at opposite ends thereof. The plasma channel is coaxially aligned with the beam exit for propagating the beam from the chamber, through the plasma, and into the higher pressure region. The plasma is effective for pumping down the beam exit for preventing pressure increase in the chamber and provides magnetic focusing of the beam discharged into the higher pressure region 24. 7 figs.

  15. Self-pulsing of hollow cathode discharge in various gases

    SciTech Connect (OSTI)

    Qin, Y.; He, F., E-mail: hefeng@bit.edu.cn; Jiang, X. X.; Ouyang, J. T., E-mail: jtouyang@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Xie, K. [School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2014-07-15T23:59:59.000Z

    In this paper, we investigate the self-pulsing phenomenon of cavity discharge in a cylindrical hollow cathode in various gases including argon, helium, nitrogen, oxygen, and air. The current-voltage characteristics of the cavity discharge, the waveforms of the self-pulsing current and voltage as well as the repetition frequency were measured. The results show that the pulsing frequency ranges from a few to tens kilohertz and depends on the averaged current and the pressure in all gases. The pulsing frequency will increase with the averaged current and decrease with the pressure. The rising time of the current pulse is nearly constant in a given gas or mixture. The self-pulsing does not depend on the external ballast but is affected significantly by the external capacitor in parallel with the discharge cell. The low-current self-pulsing in hollow cathode discharge is the mode transition between Townsend and glow discharges. It can be described by the charging-discharging process of an equivalent circuit consisting of capacitors and resistors.

  16. Mode transition of a Hall thruster discharge plasma

    SciTech Connect (OSTI)

    Hara, Kentaro, E-mail: kenhara@umich.edu; Sekerak, Michael J., E-mail: msekerak@umich.edu; Boyd, Iain D.; Gallimore, Alec D. [University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2014-05-28T23:59:59.000Z

    A Hall thruster is a cross-field plasma device used for spacecraft propulsion. An important unresolved issue in the development of Hall thrusters concerns the effect of discharge oscillations in the range of 10–30?kHz on their performance. The use of a high speed Langmuir probe system and ultra-fast imaging of the discharge plasma of a Hall thruster suggests that the discharge oscillation mode, often called the breathing mode, is strongly correlated to an axial global ionization mode. Stabilization of the global oscillation mode is achieved as the magnetic field is increased and azimuthally rotating spokes are observed. A hybrid-direct kinetic simulation that takes into account the transport of electronically excited atoms is used to model the discharge plasma of a Hall thruster. The predicted mode transition agrees with experiments in terms of the mean discharge current, the amplitude of discharge current oscillation, and the breathing mode frequency. It is observed that the stabilization of the global oscillation mode is associated with reduced electron transport that suppresses the ionization process inside the channel. As the Joule heating balances the other loss terms including the effects of wall loss and inelastic collisions, the ionization oscillation is damped, and the discharge oscillation stabilizes. A wide range of the stable operation is supported by the formation of a space charge saturated sheath that stabilizes the electron axial drift and balances the Joule heating as the magnetic field increases. Finally, it is indicated from the numerical results that there is a strong correlation between the emitted light intensity and the discharge current.

  17. GUIDANCE ON ADMINISTRATIVE COSTS FOR FEDERAL AWARDS This document includes definitions and examples of expenditure types that would typically be considered unallowable direct charges

    E-Print Network [OSTI]

    Shamos, Michael I.

    GUIDANCE ON ADMINISTRATIVE COSTS FOR FEDERAL AWARDS This document includes definitions and examples Circular A-21 and the Cost Accounting Standards (CAS). This document is meant to be a reference tool to as needed. This document is general in nature and is NOT an exhaustive list of unallowable costs for all

  18. Charging Graphene for Energy Storage

    SciTech Connect (OSTI)

    Liu, Jun

    2014-10-06T23:59:59.000Z

    Since 2004, graphene, including single atomic layer graphite sheet, and chemically derived graphene sheets, has captured the imagination of researchers for energy storage because of the extremely high surface area (2630 m2/g) compared to traditional activated carbon (typically below 1500 m2/g), excellent electrical conductivity, high mechanical strength, and potential for low cost manufacturing. These properties are very desirable for achieving high activity, high capacity and energy density, and fast charge and discharge. Chemically derived graphene sheets are prepared by oxidation and reduction of graphite1 and are more suitable for energy storage because they can be made in large quantities. They still contain multiply stacked graphene sheets, structural defects such as vacancies, and oxygen containing functional groups. In the literature they are also called reduced graphene oxide, or functionalized graphene sheets, but in this article they are all referred to as graphene for easy of discussion. Two important applications, batteries and electrochemical capacitors, have been widely investigated. In a battery material, the redox reaction occurs at a constant potential (voltage) and the energy is stored in the bulk. Therefore, the energy density is high (more than 100 Wh/kg), but it is difficult to rapidly charge or discharge (low power, less than 1 kW/kg)2. In an electrochemical capacitor (also called supercapacitors or ultracapacitor in the literature), the energy is stored as absorbed ionic species at the interface between the high surface area carbon and the electrolyte, and the potential is a continuous function of the state-of-charge. The charge and discharge can happen rapidly (high power, up to 10 kW/kg) but the energy density is low, less than 10 Wh/kg2. A device that can have both high energy and high power would be ideal.

  19. Wastewater Discharge Program (Maine)

    Broader source: Energy.gov [DOE]

    The wastewater discharge regulations require that a license be obtained for the discharge of wastewater to a stream, river, wetland, or lake of the state, or to the ocean. Typical discharges...

  20. Battery materials for ultrafast charging and discharging

    E-Print Network [OSTI]

    Ceder, Gerbrand

    be achieved with super- capacitors, which trade high power for low energy density as they only store energy

  1. Magnetic dipole discharges. II. Cathode and anode spot discharges and probe diagnostics

    SciTech Connect (OSTI)

    Stenzel, R. L.; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)] [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States); Ionita, C.; Schrittwieser, R. [Institute for Ion Physics and Applied Physics, University of Innsbruck, A-6020 Innsbruck (Austria)] [Institute for Ion Physics and Applied Physics, University of Innsbruck, A-6020 Innsbruck (Austria)

    2013-08-15T23:59:59.000Z

    The high current regime of a magnetron-type discharge has been investigated. The discharge uses a permanent magnet as a cold cathode which emits secondary electrons while the chamber wall or a grounded electrode serves as the anode. As the discharge voltage is increased, the magnet develops cathode spots, which are short duration arcs that provide copious electrons to increase the discharge current dramatically. Short (1 ?s), high current (200 A) and high voltage (750 V) discharge pulses are produced in a relaxation instability between the plasma and a charging capacitor. Spots are also observed on a negatively biased plane Langmuir probe. The probe current pulses are as large as those on the magnet, implying that the high discharge current does not depend on the cathode surface area but on the properties of the spots. The fast current pulses produce large inductive voltages, which can reverse the electrical polarity of the magnet and temporarily operate it as an anode. The discharge current may also oscillate at the frequency determined by the charging capacitor and the discharge circuit inductance. Each half cycle of high-current current pulses exhibits a fast (?10 ns) current rise when a spot is formed. It induces high frequency (10–100 MHz) transients and ringing oscillations in probes and current circuits. Most probes behave like unmatched antennas for the electromagnetic pulses of spot discharges. Examples are shown to distinguish the source of oscillations and some rf characteristics of Langmuir probes.

  2. These charges include students that have

    E-Print Network [OSTI]

    Behmer, Spencer T.

    Fee $16.33 $32.66 $48.99 $65.32 $81.65 $97.98 $114.31 $130.64 $146.97 Computer Access/EIS Fee $4.00 $8.00 $25.00 $25.00 Library Access Fee $158.00 $173.80 $237.00 $237.00 $237.00 $237.00 $237.00 $237.00 $237.95 $244.95 $244.95 $244.95 $244.95 Computer Access/EIS Fee $40.00 $44.00 $60.00 $60.00 $60.00 $60.00 $60

  3. These charges include students that have

    E-Print Network [OSTI]

    Behmer, Spencer T.

    Access/EIS Fee $4.00 $8.00 $12.00 $16.00 $20.00 $24.00 $28.00 $32.00 $36.00 Computer Access/Inst Tech $4.25 $71.25 $71.25 $71.25 $71.25 $71.25 $71.25 Library Access Fee $158.00 $173.80 $237.00 $237.00 $237.00 Computer Access Fee $163.30 $179.63 $244.95 $244.95 $244.95 $244.95 $244.95 $244.95 $244.95 Computer Access/EIS

  4. Discharge cell for ozone generator

    DOE Patents [OSTI]

    Nakatsuka, Suguru (Amagasaki, JP)

    2000-01-01T23:59:59.000Z

    A discharge cell for use in an ozone generator is provided which can suppress a time-related reduction in ozone concentration without adding a catalytic gas such as nitrogen gas to oxygen gas as a raw material gas. The discharge cell includes a pair of electrodes disposed in an opposed spaced relation with a discharge space therebetween, and a dielectric layer of a three-layer structure consisting of three ceramic dielectric layers successively stacked on at least one of the electrodes, wherein a first dielectric layer of the dielectric layer contacting the one electrode contains no titanium dioxide, wherein a second dielectric layer of the dielectric layer exposed to the discharge space contains titanium dioxide in a metal element ratio of not lower than 10 wt %.

  5. Method and apparatus for charged particle propagation

    DOE Patents [OSTI]

    Hershcovitch, Ady (Mount Sinai, NY)

    1996-11-26T23:59:59.000Z

    A method and apparatus are provided for propagating charged particles from a vacuum to a higher pressure region. A generator 14,14b includes an evacuated chamber 16a,b having a gun 18,18b for discharging a beam of charged particles such as an electron beam 12 or ion beam 12b. The beam 12,12b is discharged through a beam exit 22 in the chamber 16a,b into a higher pressure region 24. A plasma interface 34 is disposed at the beam exit 22 and includes a plasma channel 38 for bounding a plasma 40 maintainable between a cathode 42 and an anode 44 disposed at opposite ends thereof. The plasma channel 38 is coaxially aligned with the beam exit 22 for propagating the beam 12,12b from the chamber 16a,b, through the plasma 40, and into the higher pressure region 24. The plasma 40 is effective for pumping down the beam exit 22 for preventing pressure increase in the chamber 16a,b, and provides magnetic focusing of the beam 12,12b discharged into the higher pressure region 24.

  6. Direct Discharge Permit (Vermont)

    Broader source: Energy.gov [DOE]

    A direct discharge permit is required if a project involves the discharge of pollutants to state waters. For generation purposes, this involves the withdrawal of surface water for cooling purposes...

  7. Electric characteristics of a surface barrier discharge with a plasma induction electrode

    SciTech Connect (OSTI)

    Alemskii, I. N.; Lelevkin, V. M.; Tokarev, A. V.; Yudanov, V. A. [Kyrgyz-Russian Slavic University (Kyrgyzstan)

    2006-07-15T23:59:59.000Z

    Static and dynamic current-voltage and charge-voltage characteristics of a surface barrier discharge with a plasma induction electrode have been investigated experimentally. The dependences of the discharge current on both the gas pressure in the induction electrode tube and the winding pitch of the corona electrode, as well as of the discharge power efficiency on the applied voltage, have been measured.

  8. Oscillations in glow discharges

    E-Print Network [OSTI]

    Prickett, Tom

    1950-01-01T23:59:59.000Z

    1950 CONTENTS Introduction ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 I. Review of Plasma Oscillations in Gas Discharges ? . . 2 II. Review of Relaxation Processes in Gas Discharges ? . 13 III. Report of Laboratory Investigation... 179540 LIST OF FIGURES Figure Page 1. Sketch of Plasma Space in which Electrons are given Displacements in the X-direction ? ? ? ? ? ? 5 2* Early Circuit Arrangement of Discharge Study ? ? ? ? ? 19 3, Flow Diagram of the Experimental System...

  9. Atmospheric sampling glow discharge ionization source

    DOE Patents [OSTI]

    McLuckey, S.A.; Glish, G.L.

    1989-07-18T23:59:59.000Z

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above. 3 figs.

  10. Helium corona-assisted air discharge

    SciTech Connect (OSTI)

    Jiang Nan; Gao Lei; Ji Ailing; Cao Zexian [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2011-10-15T23:59:59.000Z

    Operation of atmospheric discharge of electronegative gases including air at low voltages yet without consuming any inert gas will enormously promote the application of non-thermal plasmas. By taking advantage of the low onset voltage for helium corona, air discharge was successfully launched at much reduced voltages with a needle-plate system partly contained in a helium-filled glass bulb--for a needle-plate distance of 12 mm, 1.0 kV suffices. Ultraviolet emission from helium corona facilitates the discharging of air, and the discharge current manifests distinct features such as relatively broad Trichel pulses in both half periods. This design allows safe and economic implementation of atmospheric discharge of electronegative gases, which will find a broad palette of applications in surface modification, plasma medicine and gas treatment, etc.

  11. Sensitive glow discharge ion source for aerosol and gas analysis

    DOE Patents [OSTI]

    Reilly, Peter T. A. (Knoxville, TN)

    2007-08-14T23:59:59.000Z

    A high sensitivity glow discharge ion source system for analyzing particles includes an aerodynamic lens having a plurality of constrictions for receiving an aerosol including at least one analyte particle in a carrier gas and focusing the analyte particles into a collimated particle beam. A separator separates the carrier gas from the analyte particle beam, wherein the analyte particle beam or vapors derived from the analyte particle beam are selectively transmitted out of from the separator. A glow discharge ionization source includes a discharge chamber having an entrance orifice for receiving the analyte particle beam or analyte vapors, and a target electrode and discharge electrode therein. An electric field applied between the target electrode and discharge electrode generates an analyte ion stream from the analyte vapors, which is directed out of the discharge chamber through an exit orifice, such as to a mass spectrometer. High analyte sensitivity is obtained by pumping the discharge chamber exclusively through the exit orifice and the entrance orifice.

  12. Columnar discharge mode between parallel dielectric barrier electrodes in atmospheric pressure helium

    SciTech Connect (OSTI)

    Hao, Yanpeng; Zheng, Bin; Liu, Yaoge [School of Electric Power, South China University of Technology, Guangzhou 510640 (China)] [School of Electric Power, South China University of Technology, Guangzhou 510640 (China)

    2014-01-15T23:59:59.000Z

    Using a fast-gated intensified charge-coupled device, end- and side-view photographs were taken of columnar discharge between parallel dielectric barrier electrodes in atmospheric pressure helium. Based on three-dimensional images generated from end-view photographs, the number of discharge columns increased, whereas the diameter of each column decreased as the applied voltage was increased. Side-view photographs indicate that columnar discharges exhibited a mode transition ranging from Townsend to glow discharges generated by the same discharge physics as atmospheric pressure glow discharge.

  13. Capillary discharge source

    DOE Patents [OSTI]

    Bender, III, Howard Albert

    2003-11-25T23:59:59.000Z

    Debris generation from an EUV electric discharge plasma source device can be significantly reduced or essentially eliminated by encasing the electrodes with dielectric or electrically insulating material so that the electrodes are shielded from the plasma, and additionally by providing a path for the radiation to exit wherein the electrodes are not exposed to the area where the radiation is collected. The device includes: (a) a body, which is made of an electrically insulating material, that defines a capillary bore that has a proximal end and a distal end and that defines at least one radiation exit; (b) a first electrode that defines a first channel that has a first inlet end that is connected to a source of gas and a first outlet end that is in communication with the capillary bore, wherein the first electrode is positioned at the distal end of the capillary bore; (c) a second electrode that defines a second channel that has a second inlet end that is in communication with the capillary bore and an outlet end, wherein the second electrode is positioned at the proximal end of the capillary bore; and (d) a source of electric potential that is connected across the first and second electrodes, wherein radiation generated within the capillary bore is emitted through the at least one radiation exit and wherein the first electrode and second electrode are shielded from the emitted radiation.

  14. Capacitor discharge pulse analysis.

    SciTech Connect (OSTI)

    Baker, Michael Sean; Griffiths, Stewart K.; Tanner, Danelle Mary

    2013-08-01T23:59:59.000Z

    Capacitors used in firing sets and other high discharge current applications are discharge tested to verify performance of the capacitor against the application requirements. Parameters such as capacitance, inductance, rise time, pulse width, peak current and current reversal must be verified to ensure that the capacitor will meet the application needs. This report summarizes an analysis performed on the discharge current data to extract these parameters by fitting a second-order system model to the discharge data and using this fit to determine the resulting performance metrics. Details of the theory and implementation are presented. Using the best-fit second-order system model to extract these metrics results in less sensitivity to noise in the measured data and allows for direct extraction of the total series resistance, inductance, and capacitance.

  15. Charge transfer and reactivity of n[pi]* and [pi][pi]* organic triplets, including anthraquinonesulfonates, in interactions with inorganic anions. A comparative study based on classical Marcus theory

    SciTech Connect (OSTI)

    Loeff, I.; Rabani, J.; Treinin, A. (Hebrew Univ., Jerusalem (Israel)); Linschitz, H. (Brandeis Univ., Waltham, MA (United States))

    1993-10-06T23:59:59.000Z

    The study of rates and radical yields in charge-transfer (CT) interactions between organic triplets and simple anions has been extended to triplets of 1-sulfonate, 1,5-disulfonate, and 2,6-disulfonate derivatives of 9,10-anthraquinone and of fluorescein dianion. New information is also presented on 1,4-naphthoquinone. For comparison, H-atom-transfer reactions of the anthraquinone triplets with 2-propanol were also studied. The new triplet-anion results, together with many previously reported data, are analyzed in the framework of a simplified Marcus theory by which the activation energy of formation of the pure charge-transfer exciplex, [Delta]G[sup [double dagger

  16. Longitudinal discharge laser baffles

    DOE Patents [OSTI]

    Warner, B.E.; Ault, E.R.

    1994-06-07T23:59:59.000Z

    The IR baffles placed between the window and the electrode of a longitudinal discharge laser improve laser performance by intercepting off-axis IR radiation from the laser and in doing so reduce window heating and subsequent optical distortion of the laser beam. 1 fig.

  17. A Guide to Discharging, with Applications to List Coloring

    E-Print Network [OSTI]

    West, Douglas B.

    on DBW preprint page Based on a survey written with Daniel W. Cranston #12;The Discharging Method #12;The of reducible configurations" #12;Proof Template Let S be a set of "desired" configurations. #12;Proof Template Template Let S be a set of "desired" configurations. (1) Give initial "charge"

  18. ICE SHEET SOURCES OF SEA LEVEL RISE AND FRESHWATER DISCHARGE

    E-Print Network [OSTI]

    Carlson, Anders

    ICE SHEET SOURCES OF SEA LEVEL RISE AND FRESHWATER DISCHARGE DURING THE LAST DEGLACIATION Anders E the sources of sea level rise and freshwater dis- charge to the global oceans associated with retreat of ice­10 m sea level rise at 19.0­19.5 ka, sourced largely from Northern Hemisphere ice sheet retreat

  19. Water Pollutant Discharge Act (Illinois)

    Broader source: Energy.gov [DOE]

    The discharge of oil in quantities which exceed the standards adopted by the Pollution Control Board, or the discharge of other pollutants directly or indirectly into the waters is prohibited....

  20. * see Appendix 1 for list of federally funded grant awards and projects ** all clinical research/trials budgets that include John Dempsey Hospital, University Physicians and or Dental charges

    E-Print Network [OSTI]

    Oliver, Douglas L.

    and behavioral studies C. Outcomes research and health services research.1 Clinical Trial: A clinical trial ** all clinical research/trials budgets that include John Dempsey Hospital, University Physicians OF CLINICAL RESEARCH AND/OR CLINICAL TRIALS NEGOTIATED BY STAFF IN THE OFFICE OF CLINICAL & TRANSLATIONAL

  1. Powerful glow discharge excilamp

    DOE Patents [OSTI]

    Tarasenko, Victor F. (Tomsk, RU); Panchenko, Aleksey N. (Tomsk, RU); Skakun, Victor S. (Tomsk, RU); Sosnin, Edward A. (Tomsk, RU); Wang, Francis T. (Danville, CA); Myers, Booth R. (Livermore, CA); Adamson, Martyn G. (Danville, CA)

    2002-01-01T23:59:59.000Z

    A powerful glow discharge lamp comprising two coaxial tubes, the outer tube being optically transparent, with a cathode and anode placed at opposite ends of the tubes, the space between the tubes being filled with working gas. The electrodes are made as cylindrical tumblers placed in line to one other in such a way that one end of the cathode is inserted into the inner tube, one end of the anode coaxially covers the end of the outer tube, the inner tube penetrating and extending through the anode. The increased electrodes' surface area increases glow discharge electron current and, correspondingly, average radiation power of discharge plasma. The inner tube contains at least one cooling liquid tube placed along the axis of the inner tube along the entire lamp length to provide cathode cooling. The anode has a circumferential heat extracting radiator which removes heat from the anode. The invention is related to lighting engineering and can be applied for realization of photostimulated processes under the action of powerful radiation in required spectral range.

  2. Capacitor discharge process for welding braided cable

    DOE Patents [OSTI]

    Wilson, Rick D. (Corvallis, OR)

    1995-01-01T23:59:59.000Z

    A capacitor discharge process for welding a braided cable formed from a plurality of individual cable strands to a solid metallic electrically conductive member comprises the steps of: (a) preparing the electrically conductive member for welding by bevelling one of its end portions while leaving an ignition projection extending outwardly from the apex of the bevel; (b) clamping the electrically conductive member in a cathode fixture; (c) connecting the electrically conductive member clamped in the cathode fixture to a capacitor bank capable of being charged to a preselected voltage value; (d) preparing the braided cable for welding by wrapping one of its end portions with a metallic sheet to form a retaining ring operable to maintain the individual strands of the braided cable in fixed position within the retaining ring; (e) clamping the braided cable and the retaining ring as a unit in an anode fixture so that the wrapped end portion of the braided cable faces the ignition projection of the electrically conductive member; and (f) moving the cathode fixture towards the anode fixture until the ignition projection of the electrically conductive member contacts the end portion of the braided cable thereby allowing the capacitor bank to discharge through the electrically conductive member and through the braided cable and causing the electrically conductive member to be welded to the braided cable via capacitor discharge action.

  3. Residual dust charges in an afterglow plasma , M. Mikikian

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    plasma was performed in a rf discharge. An upward thermophoretic force was used to balance]. For the study concerning residual charges, the top electrode was cooled. An upward thermophoretic force

  4. Charging Black Saturn?

    E-Print Network [OSTI]

    Brenda Chng; Robert Mann; Eugen Radu; Cristian Stelea

    2008-10-28T23:59:59.000Z

    We construct new charged static solutions of the Einstein-Maxwell field equations in five dimensions via a solution generation technique utilizing the symmetries of the reduced Lagrangian. By applying our method on the multi-Reissner-Nordstrom solution in four dimensions, we generate the multi-Reissner-Nordstrom solution in five dimensions. We focus on the five-dimensional solution describing a pair of charged black objects with general masses and electric charges. This solution includes the double Reissner-Nordstrom solution as well as the charged version of the five-dimensional static black Saturn. However, all the black Saturn configurations that we could find present either a conical singularity or a naked singularity. We also obtain a non-extremal configuration of charged black strings that reduces in the extremal limit to a Majumdar-Papapetrou like solution in five dimensions.

  5. PERIODIC GLOW DISCHARGE REPORT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest andOptimize832 2.860SelectedGLOW DISCHARGE REPORT

  6. High intensity discharge device containing oxytrihalides

    DOE Patents [OSTI]

    Lapatovich, W.P.; Keeffe, W.M.; Liebermann, R.W.; Maya, J.

    1987-06-09T23:59:59.000Z

    A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO[sub 2], with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube. 7 figs.

  7. Temporal modulation of plasma species in atmospheric dielectric barrier discharges

    SciTech Connect (OSTI)

    Yang, Aijun; Wang, Xiaohua, E-mail: xhw@mail.xjtu.edu.cn, E-mail: mzrong@mail.xjtu.edu.cn; Liu, Dingxin; Rong, Mingzhe, E-mail: xhw@mail.xjtu.edu.cn, E-mail: mzrong@mail.xjtu.edu.cn [Centre for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049 (China); Kong, Michael G. [Centre for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049 (China); Frank Reidy Research Center for Bioelectrics, Department of Electrical and Computer Engineering, Old Dominion University, Virginia 23508 (United States); Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529 (United States)

    2014-07-15T23:59:59.000Z

    The atmospheric pressure dielectric barrier discharge in helium is a pulsed discharge in nature and the moment of maximum species densities is almost consistent with peak discharge current density. In this paper, a one-dimensional fluid model is used to investigate the temporal structure of plasma species in an atmospheric He-N{sub 2} dielectric barrier discharge (DBD). It is demonstrated that there exist microsecond delays of the moments of the maximum electron and ion densities from the peak of discharge current density. These time delays are caused by a competition between the electron impact and Penning ionizations, modulated by the N{sub 2} level in the plasma-forming gas. Besides, significant electron wall losses lead to the DBD being more positively charged and, with a distinct temporal separation in the peak electron and cation densities, the plasma is characterized with repetitive bursts of net positive charges. The temporal details of ionic and reactive plasma species may provide a new idea for some biological processes.

  8. Equilibrium theory of cylindrical discharges with special application to helicons

    E-Print Network [OSTI]

    Chen, Francis F.

    ) Radiofrequency discharges used in industry often have centrally peaked plasma density profiles n(r) although, and radiative transport. The book by Delcroix5 covers these local properties, including cross sections, and goes

  9. The electrostatic charge generation characteristics of transformer oil 

    E-Print Network [OSTI]

    Bowen, James Rensselaer

    1990-01-01T23:59:59.000Z

    electrostatic discharge can pose a life threatening ;hazard. According to Eichel (I), three conditions must be met in order for an electrostatic discharge to cause an explosion in gases: l. An explosive gas mixture must be present. 2. An electric field... will be ineffective. Electrostatic charges on ungrounded conductors will distribute evenly over the entire surface. Charges on nonconductors will remain at the point where they were initially formed, even if the material is connected to a ground (2) . Static...

  10. Discharge lamp with reflective jacket

    DOE Patents [OSTI]

    MacLennan, Donald A. (Gaithersburg, MD); Turner, Brian P. (Damascus, MD); Kipling, Kent (Gaithersburg, MD)

    2001-01-01T23:59:59.000Z

    A discharge lamp includes an envelope, a fill which emits light when excited disposed in the envelope, a source of excitation power coupled to the fill to excite the fill and cause the fill to emit light, and a reflector disposed around the envelope and defining an opening, the reflector being configured to reflect some of the light emitted by the fill back into the fill while allowing some light to exit through the opening. The reflector may be made from a material having a similar thermal index of expansion as compared to the envelope and which is closely spaced to the envelope. The envelope material may be quartz and the reflector material may be either silica or alumina. The reflector may be formed as a jacket having a rigid structure which does not adhere to the envelope. The lamp may further include an optical clement spaced from the envelope and configured to reflect an unwanted component of light which exited the envelope back into the envelope through the opening in the reflector. Light which can be beneficially recaptured includes selected wavelength regions, a selected polarization, and selected angular components.

  11. Low pressure arc discharge lamp apparatus with magnetic field generating means

    DOE Patents [OSTI]

    Grossman, M.W.; George, W.A.; Maya, J.

    1987-10-06T23:59:59.000Z

    A low-pressure arc discharge apparatus having a magnetic field generating means for increasing the output of a discharge lamp is disclosed. The magnetic field generating means, which in one embodiment includes a plurality of permanent magnets, is disposed along the lamp for applying a constant transverse magnetic field over at least a portion of the positive discharge column produced in the arc discharge lamp operating at an ambient temperature greater than about 25 C. 3 figs.

  12. Secondary Electron Emission from Dust and Its Effect on Charging

    SciTech Connect (OSTI)

    Saikia, B. K.; Kakati, B.; Kausik, S. S. [Centre of Plasma Physics, Institute for Plasma Research, Nazirakhat, Sonapur-782402, Assam (India); Bandyopadhyay, M. [ITER-India, Institute for Plasma Research, Bhat, Gandhinagar-382 428 (India)

    2011-11-29T23:59:59.000Z

    Hydrogen plasma is produced in a plasma chamber by striking discharge between incandescent tungsten filaments and the permanent magnetic cage [1], which is grounded. The magnetic cage has a full line cusped magnetic field geometry used to confine the plasma elements. A cylindrical Langmuir probe is used to study the plasma parameters in various discharge conditions. The charge accumulated on the dust particles is calculated using the capacitance model and the dust current is measured by the combination of a Faraday cup and an electrometer at different discharge conditions. It is found Secondary electron emission from dust having low emission yield effects the charging of dust particles in presence of high energetic electrons.

  13. Ionisation in atmospheres of brown dwarfs and extrasolar planets VI: Properties of large-scale discharge events

    E-Print Network [OSTI]

    Bailey, R L; Hodos, G; Bilger, C; Stark, C R

    2013-01-01T23:59:59.000Z

    Mineral clouds in substellar atmospheres play a special role as a catalyst for a variety of charge processes. If clouds are charged, the surrounding environment becomes electrically activated, and ensembles of charged grains are electrically discharging (e.g. by lightning), which significantly infuences the local chemistry creating conditions similar to those thought responsible for life in early planetary atmospheres. We note that such lightning discharges contribute also to the ionisation state of the atmosphere. We apply scaling laws for electrical discharge processes from laboratory measurements and numerical experiments to Drift-Phoenix model atmosphere results to model the discharge's propagation downwards (as lightning) and upwards (as sprites) through the atmospheric clouds. We evaluate the spatial extent and energetics of lightning discharges. The atmospheric volume affected (e.g. by increase of temperature or electron number) is larger in a brown dwarf atmosphere ($10^8 -~10^{10}$m$^3$) than in a gi...

  14. Krypton charge exchange cross sections for Hall effect thruster models

    SciTech Connect (OSTI)

    Hause, Michael L. [Institute for Scientific Research, Boston College, Chestnut Hill, Massachusetts 02159 (United States); Prince, Benjamin D.; Bemish, Raymond J. [Air Force Research Laboratory, Space Vehicles Directorate, Kirtland AFB, New Mexico 87117 (United States)

    2013-04-28T23:59:59.000Z

    Following discharge from a Hall effect thruster, charge exchange occurs between ions and un-ionized propellant atoms. The low-energy cations produced can disturb operation of onboard instrumentation or the thruster itself. Charge-exchange cross sections for both singly and doubly charged propellant atoms are required to model these interactions. While xenon is the most common propellant currently used in Hall effect thrusters, other propellants are being considered, in particular, krypton. We present here guided-ion beam measurements and comparisons to semiclassical calculations for Kr{sup +} + Kr and Kr{sup 2+} + Kr cross sections. The measurements of symmetric Kr{sup +} + Kr charge exchange are in good agreement with both the calculations including spin-orbit effects and previous measurements. For the symmetric Kr{sup 2+} + Kr reaction, we present cross section measurements for center-of-mass energies between 1 eV and 300 eV, which spans energies not previously examined experimentally. These cross section measurements compare well with a simple one-electron transfer model. Finally, cross sections for the asymmetric Kr{sup 2+} + Kr {yields} Kr{sup +} + Kr{sup +} reaction show an onset near 12 eV, reaching cross sections near constant value of 1.6 A{sup 2} with an exception near 70-80 eV.

  15. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    DOE Patents [OSTI]

    Tuffner, Francis K. (Richland, WA); Kintner-Meyer, Michael C. W. (Richland, WA); Hammerstrom, Donald J. (West Richland, WA); Pratt, Richard M. (Richland, WA)

    2012-05-22T23:59:59.000Z

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  16. Use of microalgae to remove pollutants from power plant discharges

    DOE Patents [OSTI]

    Wilde, Edward W. (1833 Pisgah Rd., North Augusta, SC 29841); Benemann, John R. (2741 O'Harte, San Pablo, CA 94806); Weissman, Joseph C. (2086 N. Porpoise Pt. La., Vero Beach, FL 32963); Tillett, David M. (911-3 Coquina La., Vero Beach, FL 32963)

    1991-01-01T23:59:59.000Z

    A method and system for removing pollutants dissolved in the aqueous discharge of a plant, such as a power plant, from a body of water having known hydraulogy and physicochemical characteristics, the method comprising (a) modifying the hydraulic system of the body of water including use of physical barriers to define a zone in a portion of the body of water which zone includes the discharge point and where the water has a range of physicochemical characteristics; (b) selecting a large and preferably filamentous, planktonically growing strain of algae adapted to absorb the particular pollutants and genetically dominating algae at the physicochemical characteristics of the zone; (c) establishing a colony of the selected algal strain in the zone; (d) harvesting a portion of the colony; and (e) reinnoculating the zone near the discharge point with a fraction of the harvested portion. The fraction used for reinnoculation can be adjusted to balance the rate of pollutant removal to the rate of pollutant discharge.

  17. Determination of Dusty Particle Charge Taking into Account Ion Drag

    SciTech Connect (OSTI)

    Ramazanov, T. S.; Dosbolayev, M. K.; Jumabekov, A. N.; Amangaliyeva, R. Zh.; Orazbayev, S. A. [al-Farabi Kazakh National University, IETP, 96a Tole Bi St., Almaty 050012 (Kazakhstan); Petrov, O. F.; Antipov, S. N. [Joint Institute for High Temperatures of RAS, 13/19 Izhorskaya, Moscow 125412 (Russian Federation)

    2008-09-07T23:59:59.000Z

    This work is devoted to the experimental estimation of charge of dust particle that levitates in the stratum of dc glow discharge. Particle charge is determined on the basis of the balance between ion drag force, gravitational and electric forces. Electric force is obtained from the axial distribution of the light intensity of strata.

  18. Improved current and charge amplifiers for driving piezoelectric loads

    E-Print Network [OSTI]

    Fleming, Andrew J.

    circuit. Low frequency bandwidths in the milli-Hertz range can be achieved. Keywords: Current, Charge acceptance14 ". Although the circuit topology of a charge or current amplifier is much the same as a simple short circuit the load every 400 ms or so, thus periodically discharging the load capacitance

  19. Spatial distribution of average charge state and deposition rate in high power impulse magnetron sputtering of copper

    SciTech Connect (OSTI)

    Anders, Andre; Horwat, David; Anders, Andre

    2008-05-10T23:59:59.000Z

    The spatial distribution of copper ions and atoms in high power impulse magnetron sputtering (HIPIMS) discharges was determined by (i) measuring the ion current to electrostatic probes and (ii) measuring the film thickness by profilometry. A set of electrostatic and collection probes were placed at different angular positions and distances from the target surface. The angular distribution of the deposition rate and the average charge state of the copper species (including ions and neutrals) were deduced.The discharge showed a distinct transition to a high current mode dominated by copper self-sputtering when the applied voltage exceeded the threshold of 535 V. For a lower voltage, the deposition rate was very low and the average charge state was found to be less than 0.4. For higher voltage (and average power), the absolute deposition rates were much higher, but they were smaller than the corresponding direct current (DC) rates if normalized to the same average power. At the high voltage level, the spatial distribution of the average charge state showed some similarities with the distribution of the magnetic field, suggesting that the generation and motion of copper ions is affected by magnetized electrons. At higher voltage, the average charge state increases with the distance from the target and locally may exceed unity, indicating the presence of significant amounts of doubly charged copper ions.

  20. Spent nuclear fuel discharges from U.S. reactors 1994

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    Spent Nuclear Fuel Discharges from US Reactors 1994 provides current statistical data on fuel assemblies irradiated at commercial nuclear reactors operating in the US. This year`s report provides data on the current inventories and storage capacities at these reactors. Detailed statistics on the data are presented in four chapters that highlight 1994 spent fuel discharges, storage capacities and inventories, canister and nonfuel component data, and assembly characteristics. Five appendices, a glossary, and bibliography are also included. 10 figs., 34 tabs.

  1. Groundwater Discharge Permit and Registration (New Hampshire)

    Broader source: Energy.gov [DOE]

    The Groundwater Discharge Permitting and Registration Program seeks to protect groundwater quality by establishing standards, criteria, and procedures for wastewater discharges. The program...

  2. Industrial Discharge Permits (District of Columbia)

    Broader source: Energy.gov [DOE]

    All businesses and government agencies discharging process wastewater to the public sewer system must report their activities to DC Water's Pretreatment Center. Wastewater discharge permits are...

  3. Non-intrusive measurement of particle charge: Electrostatic dry coal cleaning. Technical progress report No. 8, April 1, 1993--June 30, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    As we reported in the Technical Progress Report No. 7, there are surges of electric current in the charging loop during triboelectrification of all particles. A high speed data acquisition and analysis system was developed to monitor and record the current pattern. There is no known report on such charge-discharge surges in the literature. The mechanism for it is yet to be understood. The on-line computerized electric current measurement also leads to an observation of charging effects as a function of particle feeding rate. It is shown that feed rate greatly alters particle charge. Such an effect is mostly overlooked by researchers and it could have a important role in process design where the feed rate would be maximized. The initial results for coal and mineral particles demonstrated that the average charge was lower when the feed rate was increased. Further investigation is scheduled to identify potential controlling factors, eg, the solid volume fraction and particle number density could be important process factors. The study of charging velocity and particle size was continued. It was found that particle charge was linearly dependent on the charging velocity for all samples investigated. However, the slope of this linear dependence varied for particles having different diameters. In addition, the charge-velocity relationships were dependent on feeding rates. Hence, the data discussed below include these interrelationships.

  4. Void formation and dust cloud structure in (a)symmetric RF discharges

    SciTech Connect (OSTI)

    Goedheer, W.J.; Akdim, M.R.; Land, V. [FOM Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands)

    2005-10-31T23:59:59.000Z

    The behaviour of dust particles in a discharge is the result of the concerted action of the charging process and forces like gravity, the ion and neutral drag force, and the thermophoretic force. Since the ion drag force plays a major role, the reactor geometry and the ion density profile are important parameters. In this paper we study the influence of the geometrical features of a radio-frequency discharge, such as asymmetry, ring electrodes, and a depression in the electrodes.

  5. Internship Contract (Includes Practicum)

    E-Print Network [OSTI]

    Thaxton, Christopher S.

    Internship Contract (Includes Practicum) Student's name-mail: _________________________________________ Internship Agency Contact Agency Name: ____________________________________ Address-mail: __________________________________________ Location of Internship, if different from Agency: ________________________________________________ Copies

  6. Temporal phenomena in inductively coupled chlorine and argon-chlorine discharges

    SciTech Connect (OSTI)

    Corr, C.S.; Steen, P.G.; Graham, W.G. [School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland (United Kingdom)

    2005-04-04T23:59:59.000Z

    Reproducible modulations in low-pressure, inductively coupled discharges operating in chlorine and argon-chlorine mixtures have been observed and studied. Changes in the light output, floating potential, negative ion fraction, and charged particle densities were observed. Here we report two types of unstable operational modes in an inductively coupled discharge. On the one hand, when the discharge was matched, to minimize reflected power, instabilities were observed in argon-chlorine plasmas over limited operating conditions of input power and gas pressure. The instability window decreased with increasing chlorine content and was observed for chlorine concentrations between 30% and 60% only. However, when operating at pressures below 5 mTorr and the discharge circuit detuned to increase the reflected power, modulations were observed in a pure chlorine discharge. These modulations varied in nature from a series of sharp bursts to a very periodic behavior and can be controlled, by variation of the matching conditions, to produce an apparent pulsed plasma environment.

  7. Studies on discharges in Micro Pattern Gaseous Detectors, towards a spark resistant THGEM detector

    E-Print Network [OSTI]

    Cantini, Cosimo; De Oliveira, Rui

    The problem afflicting any of MPGDs is the phenomenon of discharging which might be destructive in some highly energetic cases, at least being responsible of a slow aging of the detector. So far one solution has been cascading several gain elements (GEM, THGEM detectors) reducing the gain of each one; this method, spreading the charges along their path, reduce effectively the likelihood of a discharge but introduce more material due to the multiple stages of amplification. Our goal is developing a single stage THGEM detector which could withstand discharges, not reducing the gain, hence being still able to amplify low level ionizing particles while implementing some methodologies to reduce the damages due to discharge induced by high rate of particles’ flux and/or highly ionizing particles. This report describes the test bench set up to study discharges between simple structures, which are actually models of the bigger detector. The idea behind this approach is to reduce the complexity of the whole phenomen...

  8. Implications of Rapid Charging and Chemo-Mechanical Degradation in Lithium-Ion Battery Electrodes

    E-Print Network [OSTI]

    Hasan, Mohammed Fouad

    2014-04-23T23:59:59.000Z

    ........................................... 18 Charging Protocols ................................................................................................... 30 Electrode Design Parameters .................................................................................... 44 Summary...) and the accompanied internal cell resistances in (b), during the charge/discharge pulse followed by CCCV ...... 44 Figure 20 The effect of electrode design parameters with (3 C-rate) CCCV charging starting at 25?C and using self-heating thermal condition (h = 28 W...

  9. The evidence of cathodic micro-discharges during plasma electrolytic oxidation process

    SciTech Connect (OSTI)

    Nominé, A., E-mail: alexandre.nomine@univ-lorraine.fr [Institut Jean Lamour, UMR 7198 CNRS, Université de Lorraine, Parc de Saurupt, 54011 Nancy (France); National Institute of Science and Technology “MISiS,” 4, Leninskij Prospekt, Moscow 119049 (Russian Federation); Martin, J.; Noël, C.; Henrion, G.; Belmonte, T. [Institut Jean Lamour, UMR 7198 CNRS, Université de Lorraine, Parc de Saurupt, 54011 Nancy (France); Bardin, I. V.; Kovalev, V. L.; Rakoch, A. G. [National Institute of Science and Technology “MISiS,” 4, Leninskij Prospekt, Moscow 119049 (Russian Federation)

    2014-02-24T23:59:59.000Z

    Plasma electrolytic oxidation (PEO) processing of EV31 magnesium alloy has been carried out in fluoride containing electrolyte under bipolar pulse current regime. Unusual PEO cathodic micro-discharges have been observed and investigated. It is shown that the cathodic micro-discharges exhibit a collective intermittent behavior, which is discussed in terms of charge accumulations at the layer/electrolyte and layer/metal interfaces. Optical emission spectroscopy is used to determine the electron density (typ. 10{sup 15}?cm{sup ?3}) and the electron temperature (typ. 7500?K) while the role of F{sup ?} anions on the appearance of cathodic micro-discharges is pointed out.

  10. Pump apparatus including deconsolidator

    DOE Patents [OSTI]

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07T23:59:59.000Z

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  11. State Waste Discharge Permit application for industrial discharge to land: 200 East Area W-252 streams

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    This document constitutes the WAC 173-216 State Waste Discharge Permit application for six W-252 liquid effluent streams at the Hanford Site. Appendices B through H correspond to Section B through H in the permit application form. Within each appendix, sections correspond directly to the respective questions on the application form. The appendices include: Product or service information; Plant operational characteristics; Water consumption and waterloss; Wastewater information; Stormwater; Other information; and Site assessment.

  12. Magnetic dipole discharges. III. Instabilities

    SciTech Connect (OSTI)

    Stenzel, R. L.; Urrutia, J. M. [Department of Physics and Astronomy, University of California Los Angeles, California 90095-1547 (United States)] [Department of Physics and Astronomy, University of California Los Angeles, California 90095-1547 (United States); Ionita, C.; Schrittwieser, R. [Institute for Ion Physics and Applied Physics, University of Innsbruck A-6020 Innsbruck (Austria)] [Institute for Ion Physics and Applied Physics, University of Innsbruck A-6020 Innsbruck (Austria)

    2013-08-15T23:59:59.000Z

    Instabilities in a cross-field discharge around a permanent magnet have been investigated. The permanent magnet serves as a cold cathode and the chamber wall as an anode. The magnet is biased strongly negative and emits secondary electrons due to impact of energetic ions. The electrons outside the sheath are confined by the strong dipolar magnetic field and by the ion-rich sheath surrounding the magnet. The electron energy peaks in the equatorial plane where most ionization occurs and the ions are trapped in a negative potential well. The discharge mechanism is the same as that of cylindrical and planar magnetrons, but here extended to a 3-D cathode geometry using a single dipole magnet. While the basic properties of the discharge are presented in a companion paper, the present focus is on various observed instabilities. The first is an ion sheath instability which oscillates the plasma potential outside the sheath below the ion plasma frequency. It arises in ion-rich sheaths with low electron supply, which is the case for low secondary emission yields. Sheath oscillations modulate the discharge current creating oscillating magnetic fields. The second instability is current-driven ion sound turbulence due to counter-streaming electrons and ions. The fluctuations have a broad spectrum and short correlation lengths in all directions. The third type of fluctuations is spiky potential and current oscillations in high density discharges. These appear to be due to unstable emission properties of the magnetron cathode.

  13. Living Expenses (includes approximately

    E-Print Network [OSTI]

    Maroncelli, Mark

    & engineering programs All other programs Graduate: MBA/INFSY at Erie & Harrisburg (12 credits) Business Guarantee 3 (Does not include Dependents Costs4 ) Altoona, Berks, Erie, and Harrisburg 12-Month Estimated

  14. Journal of Engineering Mathematics Optimal discharging in a branched estuary Optimal discharging in a branched estuary

    E-Print Network [OSTI]

    that returns to the discharge site is less polluted than would 1 #12;Journal of Engineering Mathematics OptimalJournal of Engineering Mathematics Optimal discharging in a branched estuary Optimal discharging the proximity of the discharge site to the branching and upon how the rate of discharge is adjusted. Explicit

  15. Constricted glow discharge plasma source

    DOE Patents [OSTI]

    Anders, Andre (Albany, CA); Anders, Simone (Albany, CA); Dickinson, Michael (San Leandro, CA); Rubin, Michael (Berkeley, CA); Newman, Nathan (Winnetka, IL)

    2000-01-01T23:59:59.000Z

    A constricted glow discharge chamber and method are disclosed. The polarity and geometry of the constricted glow discharge plasma source is set so that the contamination and energy of the ions discharged from the source are minimized. The several sources can be mounted in parallel and in series to provide a sustained ultra low source of ions in a plasma with contamination below practical detection limits. The source is suitable for applying films of nitrides such as gallium nitride and oxides such as tungsten oxide and for enriching other substances in material surfaces such as oxygen and water vapor, which are difficult process as plasma in any known devices and methods. The source can also be used to assist the deposition of films such as metal films by providing low-energy ions such as argon ions.

  16. Self-consistent electrodynamics of large-area high-frequency capacitive plasma discharge

    SciTech Connect (OSTI)

    Chen Zhigang; Rauf, Shahid; Collins, Ken [Applied Materials, Inc., 974 E. Arques Avenue, Sunnyvale, California 94085 (United States)

    2010-10-15T23:59:59.000Z

    Capacitively coupled plasmas (CCPs) generated using high frequency (3-30 MHz) and very high frequency (30-300 MHz) radio-frequency (rf) sources are used for many plasma processing applications including thin film etching and deposition. When chamber dimensions become commensurate with the effective rf wavelength in the plasma, electromagnetic wave effects impose a significant influence on plasma behavior. Because the effective rf wavelength in plasma depends upon both rf and plasma process conditions (e.g., rf power and gas pressure), a self-consistent model including both the rf power delivery system and the plasma discharge is highly desirable to capture a more complete physical picture of the plasma behavior. A three-dimensional model for self-consistently studying both electrodynamic and plasma dynamic behavior of large-area (Gen 10, >8 m{sup 2}) CCP is described in this paper. This model includes Maxwell's equations and transport equations for charged and neutral species, which are coupled and solved in the time domain. The complete rf plasma discharge chamber including the rf power delivery subsystem, rf feed, electrodes, and the plasma domain is modeled as an integrated system. Based on this full-wave solution model, important limitations for processing uniformity imposed by electromagnetic wave propagation effects in a large-area CCP (3.05x2.85 m{sup 2} electrode size) are studied. The behavior of H{sub 2} plasmas in such a reactor is examined from 13.56 to 200 MHz. It is shown that various rectangular harmonics of electromagnetic fields can be excited in a large-area rectangular reactor as the rf or power is increased. The rectangular harmonics can create not only center-high plasma distribution but also high plasma density at the corners and along the edges of the reactor.

  17. State Waste Discharge Permit application, 183-N Backwash Discharge Pond

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations (Ecology et al. 1994), the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173--216 (or 173--218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order No. DE91NM-177, (Ecology and DOE-RL 1991). The Consent Order No. DE91NM-177 requires a series of permitting activities for liquid effluent discharges. Liquid effluents on the Hanford Site have been classified as Phase I, Phase II, and Miscellaneous Streams. The Consent Order No. DE91NM-177 establishes milestones for State Waste Discharge Permit application submittals for all Phase I and Phase II streams, as well as the following 11 Miscellaneous Streams as identified in Table 4 of the Consent Order No. DE91NM-177.

  18. Workplace Charging Challenge: Sample Workplace Charging Policy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    guidelines used by one Workplace Charging Challenge partner to keep their program running safe and successfully. Sample Workplace Charging Policy More Documents & Publications...

  19. Quick charge battery

    SciTech Connect (OSTI)

    Parise, R.J.

    1998-07-01T23:59:59.000Z

    Electric and hybrid electric vehicles (EVs and HEVs) will become a significant reality in the near future of the automotive industry. Both types of vehicles will need a means to store energy on board. For the present, the method of choice would be lead-acid batteries, with the HEV having auxiliary power supplied by a small internal combustion engine. One of the main drawbacks to lead-acid batteries is internal heat generation as a natural consequence of the charging process as well as resistance losses. This limits the re-charging rate to the battery pack for an EV which has a range of about 80 miles. A quick turnaround on recharge is needed but not yet possible. One of the limiting factors is the heat buildup. For the HEV the auxiliary power unit provides a continuous charge to the battery pack. Therefore heat generation in the lead-acid battery is a constant problem that must be addressed. Presented here is a battery that is capable of quick charging, the Quick Charge Battery with Thermal Management. This is an electrochemical battery, typically a lead-acid battery, without the inherent thermal management problems that have been present in the past. The battery can be used in an all-electric vehicle, a hybrid-electric vehicle or an internal combustion engine vehicle, as well as in other applications that utilize secondary batteries. This is not restricted to only lead-acid batteries. The concept and technology are flexible enough to use in any secondary battery application where thermal management of the battery must be addressed, especially during charging. Any battery with temperature constraints can benefit from this advancement in the state of the art of battery manufacturing. This can also include nickel-cadmium, metal-air, nickel hydroxide, zinc-chloride or any other type of battery whose performance is affected by the temperature control of the interior as well as the exterior of the battery.

  20. Focused shock spark discharge drill using multiple electrodes

    DOE Patents [OSTI]

    Moeny, William M. (Albuquerque, NM); Small, James G. (Albuquerque, NM)

    1988-01-01T23:59:59.000Z

    A spark discharge focused drill provided with one pulse forming line or a number of pulse forming lines. The pulse forming line is connected to an array of electrodes which would form a spark array. One of the electrodes of each of the array is connected to the high voltage side of the pulse forming line and the other electrodes are at ground potential. When discharged in a liquid, these electrodes produce intense focused shock waves that can pulverize or fracture rock. By delaying the firing of each group of electrodes, the drill can be steered within the earth. Power can be fed to the pulse forming line either downhole or from the surface area. A high voltage source, such as a Marx generator, is suitable for pulse charging the lines.

  1. Capacitor charging FET switcher with controller to adjust pulse width

    DOE Patents [OSTI]

    Mihalka, Alex M. (Livermore, CA)

    1986-01-01T23:59:59.000Z

    A switching power supply includes an FET full bridge, a controller to drive the FETs, a programmable controller to dynamically control final output current by adjusting pulse width, and a variety of protective systems, including an overcurrent latch for current control. Power MOSFETS are switched at a variable frequency from 20-50 kHz to charge a capacitor load from 0 to 6 kV. A ferrite transformer steps up the DC input. The transformer primary is a full bridge configuration with the FET switches and the secondary is fed into a high voltage full wave rectifier whose output is connected directly to the energy storage capacitor. The peak current is held constant by varying the pulse width using predetermined timing resistors and counting pulses. The pulse width is increased as the capacitor charges to maintain peak current. A digital ripple counter counts pulses, and after the desired number is reached, an up-counter is clocked. The up-counter output is decoded to choose among different resistors used to discharge a timing capacitor, thereby determining the pulse width. A current latch shuts down the supply on overcurrent due to either excessive pulse width causing transformer saturation or a major bridge fault, i.e., FET or transformer failure, or failure of the drive circuitry.

  2. Heat capacities of freely evaporating charged water clusters A. E. K. Sundn,1

    E-Print Network [OSTI]

    Hansen, Klavs

    and negatively charged mixed clusters X- H2O N with a small core ion X X=O2, CO3, or NO3 , in the size range N=5­300. The clusters were produced by corona discharge in ambient air, accelerated to 50 keV and mass selected charge are produced in a corona discharge source7 at atmospheric pres- sure see Ref. 8 for details

  3. State Surface Water Discharge Permits (New Hampshire)

    Broader source: Energy.gov [DOE]

    Rules apply to the discharge of all pollutants from a point source to surface waters of the state. The rule does not apply to facilities that require both a state discharge permit and a federal...

  4. Oklahoma Pollutant Discharge Elimination System Act (Oklahoma)

    Broader source: Energy.gov [DOE]

    The Department of Environmental Quality regulates facilities that discharge any pollutant into waters of the state. Permits must be acquired before the discharge of any pollutants into state waters...

  5. Plasma Structure and Behavior of Miniature Ring-Cusp Discharges

    E-Print Network [OSTI]

    Mao, Hann-Shin

    2013-01-01T23:59:59.000Z

    Basic Ion Thruster Discharge ChamberSimulations for an Ion Engine Discharge Chamber,” J. Propul.Model of an Ion Thruster Discharge Chamber,” in 39th AIAA

  6. Ion Runaway in Lightning Discharges

    E-Print Network [OSTI]

    Landreman, Matt

    Runaway ions can be produced in plasmas with large electric fields, where the accelerating electric force is augmented by the low mean ionic charge due to the imbalance between the number of electrons and ions. Here we ...

  7. Cold cathode vacuum discharge tube

    DOE Patents [OSTI]

    Boettcher, Gordon E. (Albuquerque, NM)

    1998-01-01T23:59:59.000Z

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging.

  8. State waste discharge permit application for cooling water and condensate discharges

    SciTech Connect (OSTI)

    Haggard, R.D.

    1996-08-12T23:59:59.000Z

    The following presents the Categorical State Waste Discharge Permit (SWDP) Application for the Cooling Water and Condensate Discharges on the Hanford Site. This application is intended to cover existing cooling water and condensate discharges as well as similar future discharges meeting the criteria set forth in this document.

  9. Electron Charged Graphite-based Hydrogen Storage Material

    SciTech Connect (OSTI)

    Dr. Chinbay Q. Fan; D Manager

    2012-03-14T23:59:59.000Z

    The electron-charge effects have been demonstrated to enhance hydrogen storage capacity using materials which have inherent hydrogen storage capacities. A charge control agent (CCA) or a charge transfer agent (CTA) was applied to the hydrogen storage material to reduce internal discharge between particles in a Sievert volumetric test device. GTI has tested the device under (1) electrostatic charge mode; (2) ultra-capacitor mode; and (3) metal-hydride mode. GTI has also analyzed the charge distribution on storage materials. The charge control agent and charge transfer agent are needed to prevent internal charge leaks so that the hydrogen atoms can stay on the storage material. GTI has analyzed the hydrogen fueling tank structure, which contains an air or liquid heat exchange framework. The cooling structure is needed for hydrogen fueling/releasing. We found that the cooling structure could be used as electron-charged electrodes, which will exhibit a very uniform charge distribution (because the cooling system needs to remove heat uniformly). Therefore, the electron-charge concept does not have any burden of cost and weight for the hydrogen storage tank system. The energy consumption for the electron-charge enhancement method is quite low or omitted for electrostatic mode and ultra-capacitor mode in comparison of other hydrogen storage methods; however, it could be high for the battery mode.

  10. Low noise charge sensitive preamplifier DC stabilized without a physical resistor

    DOE Patents [OSTI]

    Bertuccio, Giuseppe (Brianza, IT); Rehak, Pavel (Patchogue, NY); Xi, Deming (Beijing, CN)

    1994-09-13T23:59:59.000Z

    The invention is a novel charge sensitive preamplifier (CSP) which has no resistor in parallel with the feedback capacitor. No resetting circuit is required to discharge the feedback capacitor. The DC stabilization of the preamplifier is obtained by means of a second feedback loop between the preamplifier output and the common base transistor of the input cascode. The input transistor of the preamplifier is a Junction Field Transistor (JFET) with the gate-source junction forward biased. The detector leakage current flows into this junction. This invention is concerned with a new circuit configuration for a charge sensitive preamplifier and a novel use of the input Field Effect Transistor of the CSP itself. In particular this invention, in addition to eliminating the feedback resistor, eliminates the need for external devices between the detector and the preamplifier, and it eliminates the need for external circuitry to sense the output voltage and reset the CSP. Furthermore, the noise level of the novel CSP is very low, comparable with the performance achieved with other solutions. Experimental tests prove that this configuration for the charge sensitive preamplifier permits an excellent noise performance at temperatures including room temperature. An equivalent noise charge of less than 20 electrons r.m.s. has been measured at room temperature by using a commercial JFET as input device of the preamplifier.

  11. Low noise charge sensitive preamplifier DC stabilized without a physical resistor

    DOE Patents [OSTI]

    Bertuccio, G.; Rehak, P.; Xi, D.

    1994-09-13T23:59:59.000Z

    The invention is a novel charge sensitive preamplifier (CSP) which has no resistor in parallel with the feedback capacitor. No resetting circuit is required to discharge the feedback capacitor. The DC stabilization of the preamplifier is obtained by means of a second feedback loop between the preamplifier output and the common base transistor of the input cascode. The input transistor of the preamplifier is a Junction Field Transistor (JFET) with the gate-source junction forward biased. The detector leakage current flows into this junction. This invention is concerned with a new circuit configuration for a charge sensitive preamplifier and a novel use of the input Field Effect Transistor of the CSP itself. In particular this invention, in addition to eliminating the feedback resistor, eliminates the need for external devices between the detector and the preamplifier, and it eliminates the need for external circuitry to sense the output voltage and reset the CSP. Furthermore, the noise level of the novel CSP is very low, comparable with the performance achieved with other solutions. Experimental tests prove that this configuration for the charge sensitive preamplifier permits an excellent noise performance at temperatures including room temperature. An equivalent noise charge of less than 20 electrons r.m.s. has been measured at room temperature by using a commercial JFET as input device of the preamplifier. 6 figs.

  12. Extreme-UV electrical discharge source

    DOE Patents [OSTI]

    Fornaciari, Neal R. (Tracey, CA); Nygren, Richard E. (Los Ranchos de Albuquerque, NM); Ulrickson, Michael A. (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    An extreme ultraviolet and soft x-ray radiation electric capillary discharge source that includes a boron nitride housing defining a capillary bore that is positioned between two electrodes one of which is connected to a source of electric potential can generate a high EUV and soft x-ray radiation flux from the capillary bore outlet with minimal debris. The electrode that is positioned adjacent the capillary bore outlet is typically grounded. Pyrolytic boron nitride, highly oriented pyrolytic boron nitride, and cubic boron nitride are particularly suited. The boron nitride capillary bore can be configured as an insert that is encased in an exterior housing that is constructed of a thermally conductive material. Positioning the ground electrode sufficiently close to the capillary bore outlet also reduces bore erosion.

  13. Narrow gap electronegative capacitive discharges

    SciTech Connect (OSTI)

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J. [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States)] [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States)

    2013-10-15T23:59:59.000Z

    Narrow gap electronegative (EN) capacitive discharges are widely used in industry and have unique features not found in conventional discharges. In this paper, plasma parameters are determined over a range of decreasing gap length L from values for which an electropositive (EP) edge exists (2-region case) to smaller L-values for which the EN region connects directly to the sheath (1-region case). Parametric studies are performed at applied voltage V{sub rf}=500 V for pressures of 10, 25, 50, and 100 mTorr, and additionally at 50 mTorr for 1000 and 2000 V. Numerical results are given for a parallel plate oxygen discharge using a planar 1D3v (1 spatial dimension, 3 velocity components) particle-in-cell (PIC) code. New interesting phenomena are found for the case in which an EP edge does not exist. This 1-region case has not previously been investigated in detail, either numerically or analytically. In particular, attachment in the sheaths is important, and the central electron density n{sub e0} is depressed below the density n{sub esh} at the sheath edge. The sheath oscillations also extend into the EN core, creating an edge region lying within the sheath and not characterized by the standard diffusion in an EN plasma. An analytical model is developed using minimal inputs from the PIC results, and compared to the PIC results for a base case at V{sub rf}=500 V and 50 mTorr, showing good agreement. Selected comparisons are made at the other voltages and pressures. A self-consistent model is also developed and compared to the PIC results, giving reasonable agreement.

  14. Calculation Method for the Projection of Future Spent Nuclear Fuel Discharges

    SciTech Connect (OSTI)

    B. McLeod

    2002-02-28T23:59:59.000Z

    This report describes the calculation method developed for the projection of future utility spent nuclear fuel (SNF) discharges in regard to their timing, quantity, burnup, and initial enrichment. This projection method complements the utility-supplied RW-859 data on historic discharges and short-term projections of SNF discharges by providing long-term projections that complete the total life cycle of discharges for each of the current U.S. nuclear power reactors. The method was initially developed in mid-1999 to update the SNF discharge projection associated with the 1995 RW-859 utility survey (CRWMS M&O 1996). and was further developed as described in Rev. 00 of this report (CRWMS M&O 2001a). Primary input to the projection of SNF discharges is the utility projection of the next five discharges from each nuclear unit, which is provided via the revised final version of the Energy Information Administration (EIA) 1998 RW-859 utility survey (EIA 2000a). The projection calculation method is implemented via a set of Excel 97 spreadsheets. These calculations provide the interface between receipt of the utility five-discharge projections that are provided in the RW-859 survey, and the delivery of projected life-cycle SNF discharge quantities and characteristics in the format requisite for performing logistics analysis to support design of the Civilian Radioactive Waste Management System (CRWMS). Calculation method improvements described in this report include the addition of a reactor-specific maximum enrichment-based discharge burnup limit. This limit is the consequence of the enrichment limit, currently 5 percent. which is imposed as a Nuclear Regulatory Commission (NRC) license condition on nuclear fuel fabrication plants. In addition, the calculation method now includes the capability for projecting future nuclear plant power upratings, consistent with many such recent plant uprates and the prospect of additional future uprates. Finally. this report summarizes the results of the 2002 Reference SNF Discharge Projection.

  15. Cold cathode vacuum discharge tube

    DOE Patents [OSTI]

    Boettcher, G.E.

    1998-04-14T23:59:59.000Z

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by chemical vapor deposition (CVD) or diamond-like carbon (DLC) deposition are disclosed. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 14 figs.

  16. Multiple discharge cylindrical pump collector

    DOE Patents [OSTI]

    Dunn, Charlton (Calabasas, CA); Bremner, Robert J. (Woodland Hills, CA); Meng, Sen Y. (Reseda, CA)

    1989-01-01T23:59:59.000Z

    A space-saving discharge collector 40 for the rotary pump 28 of a pool-type nuclear reactor 10. An annular collector 50 is located radially outboard for an impeller 44. The annular collector 50 as a closed outer periphery 52 for collecting the fluid from the impeller 44 and producing a uniform circumferential flow of the fluid. Turning means comprising a plurality of individual passageways 54 are located in an axial position relative to the annular collector 50 for receiving the fluid from the annular collector 50 and turning it into a substantially axial direction.

  17. Cold cathode vacuum discharge tube

    DOE Patents [OSTI]

    Boettcher, G.E.

    1998-03-10T23:59:59.000Z

    A cold cathode vacuum discharge tube, and method for making same, are disclosed with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 15 figs.

  18. Control of power characteristics of ion flow in plasma-etching reactor based on beam-plasma discharge

    SciTech Connect (OSTI)

    Isaev, N. V.; Klykov, I. L.; Shustin, E. G., E-mail: shustin@ms.ire.rssi.ru [Russian Academy of Sciences, Kotel'nikov Institute of Radio Engineering and Electronics (Fryazino Branch) (Russian Federation)

    2011-12-15T23:59:59.000Z

    It is shown that on the basis of the earlier revealed effect of generating the ion flow in the beam-plasma discharge from the discharge axis, a plasma processing reactor can be created for low-energy etching of semiconductor structures. The possibility of easily controlling the density and energy of ion flow by means of varying the potential of the discharge collector is demonstrated. The charge compensation of the ion flow incident on the nonconducting surface is implemented using the modulation of the potential of the substrate holder as well as the plasma-potential modulation.

  19. Use of microalgae to remove pollutants from power plant discharges

    DOE Patents [OSTI]

    Wilde, E.W.; Benemann, J.R.; Weissman, J.C.; Tillett, D.M.

    1991-04-30T23:59:59.000Z

    A method and system are described for removing pollutants dissolved in the aqueous discharge of a plant, such as a power plant, from a body of water having known hydraulic and physicochemical characteristics, the method comprising (a) modifying the hydraulic system of the body of water including use of physical barriers to define a zone in a portion of the body of water which zone includes the discharge point and where the water has a range of physicochemical characteristics; (b) selecting a large and preferably filamentous, planktonically growing strain of algae adapted to absorb the particular pollutants and genetically dominating algae at the physicochemical characteristics of the zone; (c) establishing a colony of the selected algal strain in the zone; (d) harvesting a portion of the colony; and (e) reinoculating the zone near the discharge point with a fraction of the harvested portion. The fraction used for reinoculation can be adjusted to balance the rate of pollutant removal to the rate of pollutant discharge. 4 figures.

  20. Non-storm water discharges technical report

    SciTech Connect (OSTI)

    Mathews, S.

    1994-07-01T23:59:59.000Z

    Lawrence Livermore National Laboratory (LLNL) submitted a Notice of Intent to the California State Water Resources Control Board (hereafter State Board) to discharge storm water associated with industrial activities under the California General Industrial Activity Storm Water National Pollutant Elimination System Discharge Permit (hereafter General Permit). As required by the General Permit, LLNL provided initial notification of non-storm water discharges to the Central Valley Regional Water Quality Control Board (hereafter Regional Board) on October 2, 1992. Additional findings and progress towards corrective actions were reported in subsequent annual monitoring reports. LLNL was granted until March 27, 1995, three years from the Notice of Intent submission date, to eliminate or permit the non-storm water discharges. On May 20, 1994, the Regional Board issued Waste Discharge Requirements (WDR Board Order No. 94-131, NPDES No. CA0081396) to LLNL for discharges of non-contact cooling tower wastewater and storm water related to industrial activities. As a result of the issuance of WDR 94-131, LLNL rescinded its coverage under the General Permit. WDR 94-131 allowed continued non-storm water discharges and requested a technical report describing the discharges LLNL seeks to permit. For the described discharges, LLNL anticipates the Regional Board will either waive Waste Discharge Requirements as allowed for in The Water Quality Control Plan for the California Regional Water Quality Control Board, Central Valley Region (hereafter Basin Plan) or amend Board Order 94-131 as appropriate.

  1. Generation of high-current electron beam in a wide-aperture open discharge

    SciTech Connect (OSTI)

    Bokhan, P. A.; Zakrevsky, Dm. E.; Gugin, P. P. [A. V. Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, prospekt Lavrent'eva 13, Novosibirsk 630090 (Russian Federation)

    2011-10-15T23:59:59.000Z

    In the present study, it was examined generation of nanosecond-duration electron-beam (EB) pulses by a wide-aperture open discharge burning in helium or in a mixture of helium with nitrogen and water vapor. In the experiments, a discharge cell with coaxial electrode geometry, permitting radial injection of the electron beam into operating lasing medium, was used, with the cathode having radius 2.5 cm and length 12 cm. It was shown possible to achieve an efficient generation of a high-intensity electron beam (EB pulse power {approx}250 MW and EB pulse energy up to 4 J) in the kiloampere range of discharge currents (up to 26 kA at {approx}12 kV discharge voltage). The current-voltage characteristics of the discharge proved to be independent of the working-gas pressure. The existence of an unstable dynamic state of EB, conditioned by the presence of an uncompensated space charge accumulated in the discharge cell due to the exponential growth of the current in time during discharge initiation and the hyperbolic growth of current density in the direction towards the tube axis, was revealed. The obtained pulsed electron beam was used to excite the self-terminated laser on He 2{sup 1}P{sub 1}{sup 0}-2{sup 1}S{sub 0} transition. The oscillations developing in the discharge cell at high discharge currents put limit to the pumping energy and emissive power of the laser excited with the radially converging electron beam.

  2. State Waste Discharge Permit application, 100-N Sewage Lagoon

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations (Ecology et al. 1994), the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173--216 (or 173--218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order No. DE 91NM-177, (Ecology and DOE-RL 1991). This document constitutes the State Waste Discharge Permit application for the 100-N Sewage Lagoon. Since the influent to the sewer lagoon is domestic waste water, the State Waste Discharge Permit application for Public Owned Treatment Works Discharges to Land was used. Although the 100-N Sewage Lagoon is not a Public Owned Treatment Works, the Public Owned Treatment Works application is more applicable than the application for industrial waste water. The 100-N Sewage Lagoon serves the 100-N Area and other Hanford Site areas by receiving domestic waste from two sources. A network of sanitary sewer piping and lift stations transfers domestic waste water from the 100-N Area buildings directly to the 100-N Sewage Lagoon. Waste is also received by trucks that transport domestic waste pumped from on site septic tanks and holding tanks. Three ponds comprise the 100-N Sewage Lagoon treatment system. These include a lined aeration pond and stabilization pond, as well as an unlined infiltration pond. Both piped-in and trucked-in domestic waste is discharged directly into the aeration pond.

  3. Battery charging in float vs. cycling environments

    SciTech Connect (OSTI)

    COREY,GARTH P.

    2000-04-20T23:59:59.000Z

    In lead-acid battery systems, cycling systems are often managed using float management strategies. There are many differences in battery management strategies for a float environment and battery management strategies for a cycling environment. To complicate matters further, in many cycling environments, such as off-grid domestic power systems, there is usually not an available charging source capable of efficiently equalizing a lead-acid battery let alone bring it to a full state of charge. Typically, rules for battery management which have worked quite well in a floating environment have been routinely applied to cycling batteries without full appreciation of what the cycling battery really needs to reach a full state of charge and to maintain a high state of health. For example, charge target voltages for batteries that are regularly deep cycled in off-grid power sources are the same as voltages applied to stand-by systems following a discharge event. In other charging operations equalization charge requirements are frequently ignored or incorrectly applied in cycled systems which frequently leads to premature capacity loss. The cause of this serious problem: the application of float battery management strategies to cycling battery systems. This paper describes the outcomes to be expected when managing cycling batteries with float strategies and discusses the techniques and benefits for the use of cycling battery management strategies.

  4. Non-intrusive refrigerant charge indicator

    DOE Patents [OSTI]

    Mei, Viung C.; Chen, Fang C.; Kweller, Esher

    2005-03-22T23:59:59.000Z

    A non-intrusive refrigerant charge level indicator includes a structure for measuring at least one temperature at an outside surface of a two-phase refrigerant line section. The measured temperature can be used to determine the refrigerant charge status of an HVAC system, and can be converted to a pressure of the refrigerant in the line section and compared to a recommended pressure range to determine whether the system is under-charged, properly charged or over-charged. A non-intrusive method for assessing the refrigerant charge level in a system containing a refrigerant fluid includes the step of measuring a temperature at least one outside surface of a two-phase region of a refrigerant containing refrigerant line, wherein the temperature measured can be converted to a refrigerant pressure within the line section.

  5. EPA - National Pollutant Discharge Elimination System General...

    Open Energy Info (EERE)

    General Permit for Discharges from Construction Activities Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: EPA -...

  6. Hawaii National Pollutant Discharge Elimination System (NPDES...

    Open Energy Info (EERE)

    LibraryAdd to library PermittingRegulatory Guidance - Supplemental Material: Hawaii National Pollutant Discharge Elimination System (NPDES) Permit PacketPermittingRegulatory...

  7. Site Discharge Pollution Prevention Plan (SDPPP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SDPPP Individual Permit: Site Discharge Pollution Prevention Plan (SDPPP) The 2012 SDPPP update fully incorporates all changes made during the year and reflects changes projected...

  8. Device for generation of pulsed corona discharge

    DOE Patents [OSTI]

    Gutsol, Alexander F. (San Ramon, CA); Fridman, Alexander (Marlton, NJ); Blank, Kenneth (Philadelphia, PA); Korobtsev, Sergey (Moscow, RU); Shiryaevsky, Valery (Moscow, RU); Medvedev, Dmitry (Moscow, RU)

    2012-05-08T23:59:59.000Z

    The invention is a method and system for the generation of high voltage, pulsed, periodic corona discharges capable of being used in the presence of conductive liquid droplets. The method and system can be used, for example, in different devices for cleaning of gaseous or liquid media using pulsed corona discharge. Specially designed electrodes and an inductor increase the efficiency of the system, permit the plasma chemical oxidation of detrimental impurities, and increase the range of stable discharge operations in the presence of droplets of water or other conductive liquids in the discharge chamber.

  9. Oil and Hazardous Substance Discharge Preparedness (Minnesota)

    Broader source: Energy.gov [DOE]

    Anyone who owns or operates a vessel or facility that transports, stores, or otherwise handles hazardous wastes must take reasonable steps to prevent the discharge of those materials.

  10. Jet Charge at the LHC

    E-Print Network [OSTI]

    David Krohn; Tongyan Lin; Matthew D. Schwartz; Wouter J. Waalewijn

    2013-06-14T23:59:59.000Z

    Knowing the charge of the parton initiating a light-quark jet could be extremely useful both for testing aspects of the Standard Model and for characterizing potential beyond-the-Standard-Model signals. We show that despite the complications of hadronization and out-of-jet radiation such as pile-up, a weighted sum of the charges of a jet's constituents can be used at the LHC to distinguish among jets with different charges. Potential applications include measuring electroweak quantum numbers of hadronically decaying resonances or supersymmetric particles, as well as Standard Model tests, such as jet charge in dijet events or in hadronically-decaying W bosons in t-tbar events. We develop a systematically improvable method to calculate moments of these charge distributions by combining multi-hadron fragmentation functions with perturbative jet functions and pertubative evolution equations. We show that the dependence on energy and jet size for the average and width of the jet charge can be calculated despite the large experimental uncertainty on fragmentation functions. These calculations can provide a validation tool for data independent of Monte-Carlo fragmentation models.

  11. Storm Water Discharge Permits (Wisconsin)

    Broader source: Energy.gov [DOE]

    Wisconsin's storm water runoff regulations include permitting requirements for construction sites and industrial facilities, including those processing or extracting coal or gas. The purpose of the...

  12. High-speed micro-electro-discharge machining.

    SciTech Connect (OSTI)

    Chandrasekar, Srinivasan Dr. (.School of Industrial Engineering, West Lafayette, IN); Moylan, Shawn P. (School of Industrial Engineering, West Lafayette, IN); Benavides, Gilbert Lawrence

    2005-09-01T23:59:59.000Z

    When two electrodes are in close proximity in a dielectric liquid, application of a voltage pulse can produce a spark discharge between them, resulting in a small amount of material removal from both electrodes. Pulsed application of the voltage at discharge energies in the range of micro-Joules results in the continuous material removal process known as micro-electro-discharge machining (micro-EDM). Spark erosion by micro-EDM provides significant opportunities for producing small features and micro-components such as nozzle holes, slots, shafts and gears in virtually any conductive material. If the speed and precision of micro-EDM processes can be significantly enhanced, then they have the potential to be used for a wide variety of micro-machining applications including fabrication of microelectromechanical system (MEMS) components. Toward this end, a better understanding of the impacts the various machining parameters have on material removal has been established through a single discharge study of micro-EDM and a parametric study of small hole making by micro-EDM. The main avenues for improving the speed and efficiency of the micro-EDM process are in the areas of more controlled pulse generation in the power supply and more controlled positioning of the tool electrode during the machining process. Further investigation of the micro-EDM process in three dimensions leads to important design rules, specifically the smallest feature size attainable by the process.

  13. Corrosion mitigation considerations in planning for zero liquid discharge

    SciTech Connect (OSTI)

    DeWitt-Dick, D.B. [Ashland Chemical Co., Portland, TX (United States). Drew Industrial Division; Lee, B. [Ashland Chemical Co., Boonton, NJ (United States). Drew Industrial Division

    1995-12-01T23:59:59.000Z

    A reduction in the availability and in the quality of water, coupled with more significantly more stringent water discharge restrictions, has resulted in increasing numbers of industrial complexes investigating water reuse and zero liquid discharge. Their investigation generally includes a survey of the potential impact of increased dissolved solids on the formation of mineral salt scales on heat transfer surfaces. These predictive tools are readily available and fairly accurate. The prediction of corrosion potential, however, is not as clearly defined, and as a consequence, little consideration is given to the effects of increased solids on corrosion. In addition to the potential for accelerated corrosion related to increased dissolved solids, many reuse waters contain elevated levels of biological activity and are rich in the nutrients that feed these micro organisms. This paper looks at the reasons for selecting zero liquid discharge as a means of water conservation and discharge reduction, the unit operations available to achieve these goals, and the corrosion mechanisms and mitigation associated with reuse water.

  14. Chaotic characteristics of corona discharges in atmospheric air

    SciTech Connect (OSTI)

    Tan Xiangyu; Zhang Qiaogen; Wang Xiuhuan; Sun Fu; Zha Wei; Jia Zhijie [State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an 710049 (China)

    2008-11-15T23:59:59.000Z

    A point-plane electrode system in atmospheric air is established to investigate the mechanism of the corona discharge. By using this system, the current pulses of the corona discharges under the 50 Hz ac voltage are measured using partial discharge (PD) measurement instrument and constitute the point-plane voltage-current (V-I) characteristic equation together with the voltage. Then, this paper constructs the nonlinear circuit model and differential equations of the system in an attempt to give the underlying dynamic mechanism based on the nonlinear V-I characteristics of the point-plane corona discharges. The results show that the chaotic phenomenon is found in the corona circuit by the experimental study and nonlinear dynamic analysis. The basic dynamic characteristics, including the Lyapunov exponent, the existence of the strange attractors, and the equilibrium points, are also found and analyzed in the development process of the corona circuit. Moreover, the time series of the corona current pulses obtained in the experiment is used to demonstrate the chaotic characteristics of the corona current based on the nonlinear dynamic circuit theory and the experimental basis. It is pointed out that the corona phenomenon is not a purely stochastic phenomenon but a short term deterministic chaotic activity.

  15. Three-electrode low pressure discharge apparatus and method for uniform ionization of gaseous media. [CO/sub 2/ laser oscillator and pulse smoother

    DOE Patents [OSTI]

    McLellan, E.J.

    1980-10-17T23:59:59.000Z

    Uniform, transverse electrical discharges are produced in gaseous media without the necessity of switching the main discharge voltage with an external device which carries the entire discharge current. A three-electrode low pressure discharge tube is charged across its anode and cathode to below breakdown voltage using a dc voltage source. An array of resistors or capacitors can be made to discharge to the wire screen anode by means of a low energy high voltage pulse circuit producing sufficient preionization in the region between the anode and cathode to initiate and control the main discharge. The invention has been demonstrated to be useful as a CO/sub 2/ laser oscillator and pulse-smoother. It can be reliably operated in the sealed-off mode.

  16. ElectricOIL discharge and post-discharge kinetics experiments and modeling

    E-Print Network [OSTI]

    Carroll, David L.

    oxygen, ozone, and other excited species adds levels of complexity to the singlet oxygen generator (SOG has been obtained by a near resonant energy transfer from O2(a1 ) produced using a low­pressure oxygen/helium/nitric-oxide discharge. In the electric discharge oxygen-iodine laser (ElectricOIL) the discharge production of atomic

  17. Plasma discharge self-cleaning filtration system

    DOE Patents [OSTI]

    Cho, Young I.; Fridman, Alexander; Gutsol, Alexander F.; Yang, Yong

    2014-07-22T23:59:59.000Z

    The present invention is directed to a novel method for cleaning a filter surface using a plasma discharge self-cleaning filtration system. The method involves utilizing plasma discharges to induce short electric pulses of nanoseconds duration at high voltages. These electrical pulses generate strong Shockwaves that disintegrate and dislodge particulate matter located on the surface of the filter.

  18. Mechanism behind self-sustained oscillations in direct current glow discharges and in dusty plasmas

    E-Print Network [OSTI]

    Cho, Sung Nae

    2013-01-01T23:59:59.000Z

    An alternative explanation to the mechanism behind self-sustained oscillations of ions in direct current (DC) glow discharges is provided. Such description is distinguished from the one provided by fluid models, where oscillations are attributed to positive feedback mechanism associated with photoionization of particles and photoemission of electrons from the cathode. Here, oscillations arise as consequence of interaction between an ion and surface charges induced by it at the bounding electrodes. Such mechanism provides an elegant explanation to why self-sustained oscillations occur only in the negative resistance region of the voltage-current characteristic curve in DC glow discharges. It is found that oscillation frequencies increase with ion's surface charge density, but at the rate which is significantly slower than it does with electric field. The presented mechanism also describes the self-sustained oscillations of ions in dusty plasmas, demonstrating that oscillations in dusty plasmas and DC glow disc...

  19. State waste discharge permit application: 200 Area Treated Effluent Disposal Facility (Project W-049H)

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    As part of the original Hanford Federal Facility Agreement and Concent Order negotiations, US DOE, US EPA and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground to the Hanford Site are subject to permitting in the State Waste Discharge Permit Program (SWDP). This document constitutes the SWDP Application for the 200 Area TEDF stream which includes the following streams discharged into the area: Plutonium Finishing Plant waste water; 222-S laboratory Complex waste water; T Plant waste water; 284-W Power Plant waste water; PUREX chemical Sewer; B Plant chemical sewer, process condensate, steam condensate; 242-A-81 Water Services waste water.

  20. Low frequency azimuthal stability of the ionization region of the Hall thruster discharge. I. Local analysis

    SciTech Connect (OSTI)

    Escobar, D. [Universidad Politécnica de Madrid, 28040 Madrid (Spain)] [Universidad Politécnica de Madrid, 28040 Madrid (Spain); Ahedo, E., E-mail: eduardo.ahedo@uc3m.es [Universidad Carlos III de Madrid, 28911 Leganés (Spain)

    2014-04-15T23:59:59.000Z

    Results based on a local linear stability analysis of the Hall thruster discharge are presented. A one-dimensional azimuthal framework is used including three species: neutrals, singly charged ions, and electrons. A simplified linear model is developed with the aim of deriving analytical expressions to characterize the stability of the ionization region. The results from the local analysis presented here indicate the existence of an instability that gives rise to an azimuthal oscillation in the +E?×?B direction with a long wavelength. According to the model, the instability seems to appear only in regions where the ionization and the electric field make it possible to have positive gradients of plasma density and ion velocity at the same time. A more complex model is also solved numerically to validate the analytical results. Additionally, parametric variations are carried out with respect to the main parameters of the model to identify the trends of the instability. As the temperature increases and the neutral-to-plasma density ratio decreases, the growth rate of the instability decreases down to a limit where azimuthal perturbations are no longer unstable.

  1. Oxygen Discharge and Post-Discharge Kinetics Experiments and Modeling for the Electric Oxygen-Iodine Laser System

    E-Print Network [OSTI]

    Carroll, David L.

    Oxygen Discharge and Post-Discharge Kinetics Experiments and Modeling for the Electric Oxygen a low-pressure oxygen/helium/nitric oxide discharge. In the electric discharge oxygen-iodine laser (ElectricOIL) the discharge production of atomic oxygen, ozone, and other excited species adds levels

  2. IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 34, NO. 3, JUNE 2006 755 Nonequilibrium EEDF in Gas Discharge Plasmas

    E-Print Network [OSTI]

    Kaganovich, Igor

    ­ion creation and gas excitation are due to the impact of fast elec- trons in the plasma volume, while electron discharges. This paper is organized as follows. Basic processes in gas dis- charge plasmas when EEDF and thusIEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 34, NO. 3, JUNE 2006 755 Nonequilibrium EEDF in Gas

  3. Pressure charged airlift pump

    DOE Patents [OSTI]

    Campbell, Gene K. (Las Vegas, NV)

    1983-01-01T23:59:59.000Z

    A pumping system is described for pumping fluids, such as water with entrained mud and small rocks, out of underground cavities such as drilled wells, which can effectively remove fluids down to a level very close to the bottom of the cavity and which can operate solely by compressed air pumped down through the cavity. The system utilizes a subassembly having a pair of parallel conduit sections (44, 46) adapted to be connected onto the bottom of a drill string utilized for drilling the cavity, the drill string also having a pair of coaxially extending conduits. The subassembly includes an upper portion which has means for connection onto the drill string and terminates the first conduit of the drill string in a plenum (55). A compressed air-driven pump (62) is suspended from the upper portion. The pump sucks fluids from the bottom of the cavity and discharges them into the second conduit. Compressed air pumped down through the first conduit (46) to the plenum powers the compressed air-driven pump and aerates the fluid in the second conduit to lift it to the earth's surface.

  4. Fluid jet electric discharge source

    DOE Patents [OSTI]

    Bender, Howard A. (Ripon, CA)

    2006-04-25T23:59:59.000Z

    A fluid jet or filament source and a pair of coaxial high voltage electrodes, in combination, comprise an electrical discharge system to produce radiation and, in particular, EUV radiation. The fluid jet source is composed of at least two serially connected reservoirs, a first reservoir into which a fluid, that can be either a liquid or a gas, can be fed at some pressure higher than atmospheric and a second reservoir maintained at a lower pressure than the first. The fluid is allowed to expand through an aperture into a high vacuum region between a pair of coaxial electrodes. This second expansion produces a narrow well-directed fluid jet whose size is dependent on the size and configuration of the apertures and the pressure used in the reservoir. At some time during the flow of the fluid filament, a high voltage pulse is applied to the electrodes to excite the fluid to form a plasma which provides the desired radiation; the wavelength of the radiation being determined by the composition of the fluid.

  5. Charged particle rapidity distributions at relativistic energies 

    E-Print Network [OSTI]

    Lin, ZW; Pal, S.; Ko, Che Ming; Li, Ba; Zhang, B.

    2001-01-01T23:59:59.000Z

    Using a multiphase transport model (AMPT), which includes both initial partonic and final hadronic interactions, we study the rapidity distributions of charged particles such as protons, antiprotons, pions, and kaons in heavy ion collisions at RHIC...

  6. Proximity charge sensing for semiconductor detectors

    DOE Patents [OSTI]

    Luke, Paul N; Tindall, Craig S; Amman, Mark

    2013-10-08T23:59:59.000Z

    A non-contact charge sensor includes a semiconductor detector having a first surface and an opposing second surface. The detector includes a high resistivity electrode layer on the first surface and a low resistivity electrode on the high resistivity electrode layer. A portion of the low resistivity first surface electrode is deleted to expose the high resistivity electrode layer in a portion of the area. A low resistivity electrode layer is disposed on the second surface of the semiconductor detector. A voltage applied between the first surface low resistivity electrode and the second surface low resistivity electrode causes a free charge to drift toward the first or second surface according to a polarity of the free charge and the voltage. A charge sensitive preamplifier coupled to a non-contact electrode disposed at a distance from the exposed high resistivity electrode layer outputs a signal in response to movement of free charge within the detector.

  7. Charge regulation circuit

    DOE Patents [OSTI]

    Ball, Don G. (Livermore, CA)

    1992-01-01T23:59:59.000Z

    A charge regulation circuit provides regulation of an unregulated voltage supply in the range of 0.01%. The charge regulation circuit is utilized in a preferred embodiment in providing regulated voltage for controlling the operation of a laser.

  8. Long-term multipactor discharge in multicarrier systems

    SciTech Connect (OSTI)

    Anza, S.; Vicente, C.; Gimeno, B.; Boria, V. E.; Armendariz, J. [Aurora Software and Testing S.L., Parque Cientifico Universitat de Valencia, Poligono 'La Coma' s/n, 46980 Paterna (Spain); Departamento de Comunicaciones, Universidad Politecnica de Valencia Camino de Vera s/n, 46022 Valencia (Spain); Departamento de Fisica Aplicada y Electromagnetismo - ICMUV, Universitat de Valencia c/ Dr. Moliner, 50, 46100 Valencia (Spain); Departamento de Comunicaciones, Universidad Politecnica de Valencia Camino de Vera s/n, 46022 Valencia (Spain); Aurora Software and Testing S.L., Parque Cientifico Universitat de Valencia, Poligono 'La Coma' s/n, 46980 Paterna (Spain)

    2007-08-15T23:59:59.000Z

    A new mechanism of long-term multipactor in multicarrier systems is studied employing both analytical and numerical methods. In particular, the investigation is focused on the impact that a realistic secondary emission yield at low energies produces on the development of long term multipactor. A novel analytical model for this interperiod charge accumulation is presented using the traditional multipactor theory for parallel plates, and approximating the multicarrier signal as a single-carrier signal modulated by a pulsed signal envelope. The analytical predictions are verified by numerical simulations for a typical rectangular waveguide. The analytical and numerical results demonstrate that the susceptibility of the system to develop a long-term multipactor discharge increases with higher values of low-energy secondary emission yield.

  9. Influence of the transverse dimension on the structure and properties of dc glow discharges

    SciTech Connect (OSTI)

    Bogdanov, E. A. [St. Petersburg State University, St. Petersburg 198904 (Russian Federation); Adams, S. F. [Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States); Demidov, V. I. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506 (United States); Kudryavtsev, A. A. [Department of Optics, St. Petersburg State University, St. Petersburg 198904 (Russian Federation); Williamson, J. M. [UES, Inc., 4401 Dayton-Xenia Rd., Beavercreek, Ohio 45432 (United States)

    2010-10-15T23:59:59.000Z

    Two-dimensional (2D) simulations of a dc glow discharge with a cold cathode in argon have been performed for various radii of the discharge tube. It is shown that the loss of the charged particles to the walls can significantly affect plasma parameters as well as properties of the cathode sheath. The longitude dimensions of the negative glow and Faraday dark space depend on the transverse loss of the charge particles and are not consistently predicted with a 1D model. The common assumption that the cathode sheath can be analyzed independently of the plasma also may not be valid. The transverse inhomogeneity of the plasma leads to a change in the current density distribution over the cathode surface. The thickness of the cathode sheath can vary with radial distance from the discharge axis, even for the case of negligible radial loss of the charge particles. The 2D model results provide an analysis of the conditions of applicability of the 1D model.

  10. Optogalvanic effect in a hollow cathode discharge with nonlaser sources

    SciTech Connect (OSTI)

    Apel, C.T.; Keller, R.A.; Zalewski, E.F.; Engleman, R. Jr.

    1982-04-15T23:59:59.000Z

    Several atomic emission sources were investigated for their potential to induce optogalvanic signals in hollow cathode lamps. The sources included an inductively coupled argon plasma, a H/sub 2/--O/sub 2/ flame, a high-temperature furnace, electrodeless microwave discharge lamps, and hollow cathode lamps. Successful results were obtained with argon emission from the inductively coupled plasma focused into an argon-filled hollow cathode tube and with atomic emission from one hollow cathode discharge focused into a hollow cathode tube containing the same element. Very low level optogalvanic signals were observed from the other sources but could not be unambiguously ascribed to emission from a specific element. A problem encountered was the presence of a background signal due to photoelectric emission and possibly radiative heating of the cathode.

  11. Light Emission of Argon Discharges: Importance of Heavy Particle Processes

    SciTech Connect (OSTI)

    Hartmann, Peter [Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, POB 49, H-1525 Budapest (Hungary)

    2004-12-01T23:59:59.000Z

    Simulation studies on argon glow discharges established between flat disc electrodes, at pressure x electrode separation (pd) of 45 Pa cm are reported, with special attention to heavy-particle processes including excitation-induced light emission. The discharges are investigated through self-consistent hybrid modelling, consisting of a fluid description for components near local hydrodynamic equilibrium (slow electrons and ions), and Monte Carlo treatment of energetic electrons and heavy particles (ions and neutral atoms). The light emission profiles are analyzed for a wide range of operating conditions. The numerical results for the relative intensities and the shapes of the negative glow (created by electron impact excitation) and the cathode glow (created by heavy particle impact excitation) are in good agreement with experimental data obtained by Maric et al.

  12. Machinability of a Stainless Steel by Electrochemical Discharge Microdrilling

    SciTech Connect (OSTI)

    Coteata, Margareta; Pop, Nicolae; Slatineanu, Laurentiu ['Gheorghe Asachi' Technical University of Iasi, Department of Machine Manufacturing Technology, Blvd. D Mangeron 59A, 700050 Iasi (Romania); Schulze, Hans-Peter [Otto-von-Guericke-University Magdeburg, Institute of Fundamental Electrical Engineering and EMC Universitaetsplatz 2, D-39106 Magdeburg (Germany); Besliu, Irina [University 'Stefan cel Mare' of Suceava, Department of Technologies and Management, Str. Universitatii, 13, 720 229 Suceava (Romania)

    2011-05-04T23:59:59.000Z

    Due to the chemical elements included in their structure for ensuring an increased resistance to the environment action, the stainless steels are characterized by a low machinability when classical machining methods are applied. For this reason, sometimes non-traditional machining methods are applied, one of these being the electrochemical discharge machining. To obtain microholes and to evaluate the machinability by electrochemical discharge microdrilling, test pieces of stainless steel were used for experimental research. The electrolyte was an aqueous solution of sodium silicate with different densities. A complete factorial plan was designed to highlight the influence of some input variables on the sizes of the considered machinability indexes (electrode tool wear, material removal rate, depth of the machined hole). By mathematically processing of experimental data, empirical functions were established both for stainless steel and carbon steel. Graphical representations were used to obtain more suggestive vision concerning the influence exerted by the considered input variables on the size of the machinability indexes.

  13. Electrically charged pulsars

    E-Print Network [OSTI]

    M. D. Alloy; D. P. Menezes

    2007-04-24T23:59:59.000Z

    n the present work we investigate one possible variation on the usual electrically neutral pulsars: the inclusion of electric charge. We study the effect of electric charge in pulsars assuming that the charge distribution is proportional to the energy density. All calculations were performed for zero temperature and fixed entropy equations of state.

  14. Electric Vehicle Smart Charging Infrastructure

    E-Print Network [OSTI]

    Chung, Ching-Yen

    2014-01-01T23:59:59.000Z

    for Multiplexed Electric Vehicle Charging”, US20130154561A1,Chynoweth, ”Intelligent Electric Vehicle Charging System”,of RFID Mesh Network for Electric Vehicle Smart Charging

  15. EPA - Ground Water Discharges (EPA's Underground Injection Control...

    Open Energy Info (EERE)

    Discharges (EPA's Underground Injection Control Program) webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - Ground Water Discharges (EPA's...

  16. q < 1 discharges in Tokapole II

    SciTech Connect (OSTI)

    Osborne, T. H.; Dexter, R. N.; Prager, S. C.

    1981-01-01T23:59:59.000Z

    Observations are reported of discharges in which safety factor q values are obtained as low as 0.4 in Tokapole II, a tokamak with a four-node poloidal divertor configuration.

  17. Glow discharge plasma deposition of thin films

    DOE Patents [OSTI]

    Weakliem, Herbert A. (Pennington, NJ); Vossen, Jr., John L. (Bridgewater, NJ)

    1984-05-29T23:59:59.000Z

    A glow discharge plasma reactor for deposition of thin films from a reactive RF glow discharge is provided with a screen positioned between the walls of the chamber and the cathode to confine the glow discharge region to within the region defined by the screen and the cathode. A substrate for receiving deposition material from a reactive gas is positioned outside the screened region. The screen is electrically connected to the system ground to thereby serve as the anode of the system. The energy of the reactive gas species is reduced as they diffuse through the screen to the substrate. Reactive gas is conducted directly into the glow discharge region through a centrally positioned distribution head to reduce contamination effects otherwise caused by secondary reaction products and impurities deposited on the reactor walls.

  18. Environmental constituents of Electrical Discharge Machining

    E-Print Network [OSTI]

    Cho, Margaret H. (Margaret Hyunjoo), 1982-

    2004-01-01T23:59:59.000Z

    Electrical Discharge Machining (EDM) is a non-traditional process that uses no mechanical forces to machine metals. It is extremely useful in machining hard materials. With the advantages EDM has to offer and its presence ...

  19. Metal vapor laser including hot electrodes and integral wick

    DOE Patents [OSTI]

    Ault, Earl R. (Livermore, CA); Alger, Terry W. (Tracy, CA)

    1995-01-01T23:59:59.000Z

    A metal vapor laser, specifically one utilizing copper vapor, is disclosed herein. This laser utilizes a plasma tube assembly including a thermally insulated plasma tube containing a specific metal, e.g., copper, and a buffer gas therein. The laser also utilizes means including hot electrodes located at opposite ends of the plasma tube for electrically exciting the metal vapor and heating its interior to a sufficiently high temperature to cause the metal contained therein to vaporize and for subjecting the vapor to an electrical discharge excitation in order to lase. The laser also utilizes external wicking arrangements, that is, wicking arrangements located outside the plasma tube.

  20. Metal vapor laser including hot electrodes and integral wick

    DOE Patents [OSTI]

    Ault, E.R.; Alger, T.W.

    1995-03-07T23:59:59.000Z

    A metal vapor laser, specifically one utilizing copper vapor, is disclosed herein. This laser utilizes a plasma tube assembly including a thermally insulated plasma tube containing a specific metal, e.g., copper, and a buffer gas therein. The laser also utilizes means including hot electrodes located at opposite ends of the plasma tube for electrically exciting the metal vapor and heating its interior to a sufficiently high temperature to cause the metal contained therein to vaporize and for subjecting the vapor to an electrical discharge excitation in order to lase. The laser also utilizes external wicking arrangements, that is, wicking arrangements located outside the plasma tube. 5 figs.

  1. Glow discharge based device for solving mazes

    SciTech Connect (OSTI)

    Dubinov, Alexander E., E-mail: dubinov-ae@yandex.ru; Mironenko, Maxim S.; Selemir, Victor D. [Russian Federal Nuclear Center ? All-Russian Scientific and Research Institute of Experimental Physics (RFNC-VNIIEF), Sarov, Nizhni Novgorod region 607188 (Russian Federation); Sarov Institute of Physics and Technology (SarFTI) of National Research Nuclear University “MEPhI,” Sarov, Nizhni Novgorod region 607188 (Russian Federation); Maksimov, Artem N.; Pylayev, Nikolay A. [Russian Federal Nuclear Center ? All-Russian Scientific and Research Institute of Experimental Physics (RFNC-VNIIEF), Sarov, Nizhni Novgorod region 607188 (Russian Federation)

    2014-09-15T23:59:59.000Z

    A glow discharge based device for solving mazes has been designed and tested. The device consists of a gas discharge chamber and maze-transformer of radial-azimuth type. It allows changing of the maze pattern in a short period of time (within several minutes). The device has been tested with low pressure air. Once switched on, a glow discharge has been shown to find the shortest way through the maze from the very first attempt, even if there is a section with potential barrier for electrons on the way. It has been found that ionization waves (striations) can be excited in the maze along the length of the plasma channel. The dependancy of discharge voltage on the length of the optimal path through the maze has been measured. A reduction in discharge voltage with one or two potential barriers present has been found and explained. The dependency of the magnitude of discharge ignition voltage on the length of the optimal path through the maze has been measured. The reduction of the ignition voltage with the presence of one or two potential barriers has been observed and explained.

  2. Stochastic Distributed Protocol for Electric Vehicle Charging with Discrete Charging Rate

    E-Print Network [OSTI]

    Winfree, Erik

    including those in the integration into the electric power grid. For example, EV charging potentially studies demonstrate that adopting "smart" charging strategies can mitigate some of the integration Gan, Ufuk Topcu, Member, IEEE, and Steven H. Low, Fellow, IEEE Abstract--To address the grid

  3. Charge Prediction of Lipid Fragments in Mass Spectrometry

    SciTech Connect (OSTI)

    Schrom, Brian T.; Kangas, Lars J.; Ginovska, Bojana; Metz, Thomas O.; Miller, John H.

    2011-12-18T23:59:59.000Z

    An artificial neural network is developed for predicting which fragment is charged and which fragment is neutral for lipid fragment pairs produced from a liquid chromatography tandem mass spectrometry simulation process. This charge predictor is integrated into software developed at PNNL for in silico spectra generation and identification of metabolites known as Met ISIS. To test the effect of including charge prediction in Met ISIS, 46 lipids are used which show a reduction in false positive identifications when the charge predictor is utilized.

  4. Effects of particle fueling and plasma wall interactions on DIII-D discharges

    SciTech Connect (OSTI)

    Jackson, G.L.; Baker, D.R.; Holtrop, K.L.; Staebler, G.M.; West, W.P. [General Atomics, San Diego, CA (United States); Maingi, R. [Oak Ridge National Lab., TN (United States); Konoshima, S.

    1994-11-01T23:59:59.000Z

    DIII-D has successfully operated with an all-graphite first wall, including the first observations of VH-mode without boronization. A major goal of this, and other recent upgrades, was to control impurity influxes and hydrogenic fueling. Graphite tiles were carefully pre-conditioned, first by ex situ preparation and then by baking and helium glow conditioning. No deuterium or hydrogen was used until tokamak operation commenced. With the all graphite wall, both impurity and deuterium influxes during tokamak discharges were lower than previous boronized discharges; central nickel impurity line radiation, NiXXV and NiXXVI, was an order of magnitude lower than previous discharges during the ELM free beam heated phase. The effect of reduced particle fueling on plasma performance, particularly H- and VH-mode discharges, will be presented.

  5. Transport of dust particles in inductively coupled discharges

    SciTech Connect (OSTI)

    Hwang, H.H.; Ventzek, P.L.G.; Hoekstra, R.; Kushner, M.J. [Univ. of Illinois, Urbana, IL (United States). Dept. of Electrical and Computer Engineering

    1994-12-31T23:59:59.000Z

    Contamination by particulates, or ``dust``, in plasma processing reactors decreases the yield of microelectronic components. In low temperature plasmas, such as those used in etching or deposition reactors to fabricate semiconductor devices, the particles can form to appreciable densities. These particles can be trapped or expelled from the reactor, depending on which forces dominate their transport. Quantities that affect dust motion in Inductively Coupled Plasma (ICP) discharges are the charge of the dust particles (electrostatic forces), momentum transfer with ions (viscous ion-drag forces), temperature gradients from heated electrodes (thermophoretic forces), and gas flow (fluid drag forces). The authors have developed a 2-D Monte Carlo simulation to investigate the trajectories of dust particles in ICP reactors. The model may have an arbitrary number and variety of dust species, and different gas mixtures may be used. The self-consistent electric fields, ion energy distributions, and species densities are imported from a companion Monte Carlo-fluid hybrid model. A semi-analytic model is used to determine the dust charge as well as the momentum transfer cross sections between dust and ions. The electrode topography can also affect the trapping locations of dust. Grooves on the electrodes perturb electrical forces and heated washers can change the thermophoretic forces; hence the spatial dust density varies from the case with a smooth, nonheated electrode. These effects on particle trapping will be presented. Other factors on trapping locations, such as dust particle size and varying power flow with time, will also be discussed.

  6. Electronically shielded solid state charged particle detector

    DOE Patents [OSTI]

    Balmer, D.K.; Haverty, T.W.; Nordin, C.W.; Tyree, W.H.

    1996-08-20T23:59:59.000Z

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite. 1 fig.

  7. Electronically shielded solid state charged particle detector

    DOE Patents [OSTI]

    Balmer, David K. (155 Coral Way, Broomfield, CO 80020); Haverty, Thomas W. (1173 Logan, Northglenn, CO 80233); Nordin, Carl W. (7203 W. 32nd Ave., Wheatridge, CO 80033); Tyree, William H. (1977 Senda Rocosa, Boulder, CO 80303)

    1996-08-20T23:59:59.000Z

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite.

  8. Transport mechanisms and experimental evidence of positively charged dust particles in an argon plasma

    SciTech Connect (OSTI)

    Brown, D.A.; Hareland, W.A. [Sandia National Labs., Albuquerque, NM (United States); Collins, S.M. [Univ. of Arizona, Tucson, AZ (United States)

    1995-12-31T23:59:59.000Z

    It is well known that dense particle clouds often reside within the steady-state plasma; however, particle transport in the critical post-plasma period has not yet been fully explored. To better understand and characterize particle behavior, charge and transport properties of dust particles in an argon plasma, contained within a Gaseous Electronics Conference (GEC) reference cell, were studied in the steady-state and post-plasma regimes of a 500 mTorr, 25 W argon discharge. Using separate water chillers to control independently the temperatures of the upper and lower electrodes, various temperature gradients were imposed on the plasma and thermophoretic transport of the particle clouds observed for both steady and decaying discharges. Next, using a pulsed rf power supply and a tuned Langmuir probe, the decay times of electrons and ions were measured in the afterglow. Finally, utilizing high-speed video in concert with 10 mW He-Ne laser light, post-plasma particle trajectories were observed for various electric fields and electrode temperatures. Results were then compared to calculations from a net force model that included gravity, the electric field, fluid flow, ion drag, and thermophoresis. It was found that temperature gradients greater than {approximately} 10 C/cm significantly altered particle cloud configurations in steady plasmas, and provided a strong transport mechanism in the afterglow. Electrically, the measured ion density decay time was approximately equal to that of the electrons, consistent with ambipolar diffusion.

  9. Electro-hydrodynamics and kinetic modelling of polluted air flow activated by multi-tip-to-plane corona discharge

    SciTech Connect (OSTI)

    Meziane, M.; Eichwald, O.; Ducasse, O.; Marchal, F. [Universite de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d'Energie), Toulouse Cedex 9 F-31062 (France); Sarrette, J. P.; Yousfi, M. [Universite de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d'Energie), Toulouse Cedex 9 F-31062 (France); CNRS, LAPLACE, Toulouse F-31062 (France)

    2013-04-21T23:59:59.000Z

    The present paper is devoted to the 2D simulation of an Atmospheric Corona Discharge Reactor (ACDR) involving 10 pins powered by a DC high voltage and positioned 7 mm above a grounded metallic plane. The corona reactor is periodically crossed by thin mono filamentary streamers with a natural repetition frequency of some tens of kHz. The simulation involves the electro-dynamic, chemical kinetic, and neutral gas hydrodynamic phenomena that influence the kinetics of the chemical species transformation. Each discharge stage (including the primary and the secondary streamers development and the resulting thermal shock) lasts about one hundred nanoseconds while the post-discharge stages occurring between two successive discharge phases last one hundred microseconds. The ACDR is crossed by a lateral air flow including 400 ppm of NO. During the considered time scale of 10 ms, one hundred discharge/post-discharge cycles are simulated. The simulation involves the radical formation and thermal exchange between the discharges and the background gas. The results show how the successive discharges activate the flow gas and how the induced turbulence phenomena affect the redistribution of the thermal energy and the chemical kinetics inside the ACDR.

  10. Measurements of the volt-ampere characteristics and the breakdown voltages of direct-current helium and hydrogen discharges in microgaps

    SciTech Connect (OSTI)

    Klas, M.; Matej?ik, Š. [Department of Experimental Physics, Comenius University, Mlynskadolina F2, 84248 Bratislava (Slovakia); Radjenovi?, B.; Radmilovi?-Radjenovi?, M. [Institute of Physics, University of Belgrade, P.O. Box 57, 11080 Belgrade (Serbia)

    2014-10-15T23:59:59.000Z

    The discharge phenomena for micro meter gap sizes include many interesting problems from engineering and physical perspectives. In this paper, the authors deal with the experimental and theoretical results of the breakdown voltage and current-voltage characteristics of the direct-current helium and hydrogen discharges. The measurements were performed at a constant pressure of around one atmosphere, while varying the gap size between two parallel plane tungsten electrodes between 1??m and 100??m. From the measured breakdown voltage curves, the effective yields and the ionization coefficients were derived for both gases. Present data for the ionization coefficients correlate with the data obtained for the breakdown voltage curves measured for fixed 100??m interelectrode separation. The current-voltage characteristics were plotted for the various gap sizes illustrating the role of the field emission effects in the microgaps. Based on the Fowler-Nordheim theory, the enhancement factors were determined. The gap spacing dependence of the field emission current can be explained by the introduction of two ideas, the first being a space charge effect by emitted electrons, and the second a change in the breakdown mechanism. Experimental results, presented here, demonstrate that Townsend phenomenology breaks down when field emission becomes the key mechanism affecting the breakdown and deforming the left hand side of the breakdown voltage curves.

  11. General Groves takes charge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    takes charge Colonel James C. Marshall, head of the DSM project (Development of Substitute Materials), did not make much headway, yet he did accomplish some things that lasted....

  12. Glow-discharge synthesis of silicon nitride precursor powders

    SciTech Connect (OSTI)

    Ho, P.; Buss, R.J.; Loehman, R.E. (Sandia National Laboratories, Albuquerque, New Mexico 87185-5800 (US))

    1989-07-01T23:59:59.000Z

    A radio-frequency glow discharge is used for the synthesis of submicron, amorphous, silicon nitride precursor powders from silane and ammonia. Powders are produced with a range of Si/N ratios, including stoichiometric, Si-rich, and N-rich, and contain substantial amounts of hydrogen. The powders appear to be similar to silicon diimide and are easily converted to oxide by water vapor. The powders lose weight and crystallize to a mixture of {alpha} and {beta}-Si{sub 3}N{sub 4} after prolonged heating at 1600{degree}C. Studies of spectrally and spatially resolved optical emission from the plasma are reported.

  13. Multiphysics simulation of corona discharge induced ionic wind

    SciTech Connect (OSTI)

    Cagnoni, Davide [ABB Switzerland Ltd., Corporate Research, CH-5405 Baden-Dättwil (Switzerland) [ABB Switzerland Ltd., Corporate Research, CH-5405 Baden-Dättwil (Switzerland); MOX - Dipartimento di Matematica “F. Brioschi,” Politecnico di Milano, 20133 Milano (Italy); Agostini, Francesco; Christen, Thomas [ABB Switzerland Ltd., Corporate Research, CH-5405 Baden-Dättwil (Switzerland)] [ABB Switzerland Ltd., Corporate Research, CH-5405 Baden-Dättwil (Switzerland); Parolini, Nicola [MOX - Dipartimento di Matematica “F. Brioschi,” Politecnico di Milano, 20133 Milano (Italy)] [MOX - Dipartimento di Matematica “F. Brioschi,” Politecnico di Milano, 20133 Milano (Italy); Stevanovi?, Ivica [ABB Switzerland Ltd., Corporate Research, CH-5405 Baden-Dättwil (Switzerland) [ABB Switzerland Ltd., Corporate Research, CH-5405 Baden-Dättwil (Switzerland); Laboratory of Electromagnetics and Acoustics, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Falco, Carlo de [MOX - Dipartimento di Matematica “F. Brioschi,” Politecnico di Milano, 20133 Milano (Italy) [MOX - Dipartimento di Matematica “F. Brioschi,” Politecnico di Milano, 20133 Milano (Italy); CEN - Centro Europeo di Nanomedicina, 20133 Milano (Italy)

    2013-12-21T23:59:59.000Z

    Ionic wind devices or electrostatic fluid accelerators are becoming of increasing interest as tools for thermal management, in particular for semiconductor devices. In this work, we present a numerical model for predicting the performance of such devices; its main benefit is the ability to accurately predict the amount of charge injected from the corona electrode. Our multiphysics numerical model consists of a highly nonlinear, strongly coupled set of partial differential equations including the Navier-Stokes equations for fluid flow, Poisson's equation for electrostatic potential, charge continuity, and heat transfer equations. To solve this system we employ a staggered solution algorithm that generalizes Gummel's algorithm for charge transport in semiconductors. Predictions of our simulations are verified and validated by comparison with experimental measurements of integral physical quantities, which are shown to closely match.

  14. Exposure and effects of oilfield brine discharges on western sandpipers (Calidris mauri) in Nueces Bay, Texas

    SciTech Connect (OSTI)

    Rattner, B.A.; Melancon, M.J. [National Biological Survey, Laurel, MD (United States); Capizzi, J.L. [Texas A& M Univ., College Station, TX (United States); King, K.A. [Fish and Wildlife Service, Phoenix, AZ (United States); LeCaptain, L.J. [Fish and Wildlife Service, Spokane, WA (United States)

    1995-05-01T23:59:59.000Z

    Discharge of oilfield brines into fresh and estuarine waters is a common disposal practice in Texas. Petroleum crude oil (PCO) extraction from underground stores includes the removal of a significant amount of water along with the oil. Several methods may be used to separate the oil and water fractions, including tank batteries, heat separation, and skimming ponds. Disposal of the resultant produced water (oilfield brine) may be accomplished by deep-well injection or discharge to surface waters. In Texas, an estimated 766,000 barrels of oilfield brine were discharged daily into tidal waters in 1979. The maximum concentration for oil and grease in these discharges permitted by the Texas Railroad Commission is 25 ppm. Several studies have shown that oilfield brines are toxic to a wide range of marine life, yet little is known about their effects on birds and mammals. Exposure to petroleum in oilfield wastes could evoke toxicological effects in some waterbird species. Avian responses to PCO exposure are highly variable, including cessation of growth, osmoregulatory impairment, endocrine dysfunction, hemolytic anemia, altered blood chemistry, cytochrome P450 induction, reduced reproductive success, and mortality. Oilfield brine discharges may soon be the largest and most pervasive source of contaminants entering Texas estuaries. Migratory and resident birds feeding in the vicinity of discharge sites may be ingesting food items contaminated with petroleum hydrocarbons, heavy metals and salts in sufficient quantities to evoke toxicity. The present study of wintering western sandpipers (Calidris mauri) that feed and roost near discharge sites sought to examine oilfield brine exposure and effects through quantification of contaminant burdens, morphological characteristics, and cytochrome P450-associated monooxygenase activities. 20 refs., 2 tabs.

  15. Charged Cylindrical Black Holes in Conformal Gravity

    E-Print Network [OSTI]

    Jackson Levi Said; Joseph Sultana; Kristian Zarb Adami

    2013-01-04T23:59:59.000Z

    Considering cylindrical topology we present the static solution for a charged black hole in conformal gravity. We show that unlike the general relativistic case there are two different solutions, both including a factor that when set to zero recovers the familiar static charged black string solution in Einstein's theory. This factor gives rise to a linear term in the potential that also features in the neutral case and may have significant ramifications for particle trajectories.

  16. Central peaking of magnetized gas discharges

    SciTech Connect (OSTI)

    Chen, Francis F. [Electrical Engineering Department, University of California, Los Angeles, California 90095 (United States)] [Electrical Engineering Department, University of California, Los Angeles, California 90095 (United States); Curreli, Davide [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana Champaign, Urbana, Illinois 61801 (United States)] [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana Champaign, Urbana, Illinois 61801 (United States)

    2013-05-15T23:59:59.000Z

    Partially ionized gas discharges used in industry are often driven by radiofrequency (rf) power applied at the periphery of a cylinder. It is found that the plasma density n is usually flat or peaked on axis even if the skin depth of the rf field is thin compared with the chamber radius a. Previous attempts at explaining this did not account for the finite length of the discharge and the boundary conditions at the endplates. A simple 1D model is used to focus on the basic mechanism: the short-circuit effect. It is found that a strong electric field (E-field) scaled to electron temperature T{sub e}, drives the ions inward. The resulting density profile is peaked on axis and has a shape independent of pressure or discharge radius. This “universal” profile is not affected by a dc magnetic field (B-field) as long as the ion Larmor radius is larger than a.

  17. Mechanism behind self-sustained oscillations in direct current glow discharges and dusty plasmas

    SciTech Connect (OSTI)

    Cho, Sung Nae [Devices R and D Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Mt. 14-1 Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-712 (Korea, Republic of)

    2013-04-15T23:59:59.000Z

    An alternative explanation to the mechanism behind self-sustained oscillations of ions in direct current (DC) glow discharges is provided. Such description is distinguished from the one provided by the fluid models, where oscillations are attributed to the positive feedback mechanism associated with photoionization of particles and photoemission of electrons from the cathode. Here, oscillations arise as consequence of interaction between an ion and the surface charges induced by it at the bounding electrodes. Such mechanism provides an elegant explanation to why self-sustained oscillations occur only in the negative resistance region of the voltage-current characteristic curve in the DC glow discharges. Furthermore, this alternative description provides an elegant explanation to the formation of plasma fireballs in the laboratory plasma. It has been found that oscillation frequencies increase with ion's surface charge density, but at the rate which is significantly slower than it does with the electric field. The presented mechanism also describes self-sustained oscillations of ions in dusty plasmas, which demonstrates that self-sustained oscillations in dusty plasmas and DC glow discharges involve common physical processes.

  18. Electrically charged compact stars

    E-Print Network [OSTI]

    Subharthi Ray; Manuel Malheiro; Jose' P. S. Lemos; Vilson T. Zanchin

    2006-04-17T23:59:59.000Z

    We review here the classical argument used to justify the electrical neutrality of stars and show that if the pressure and density of the matter and gravitational field inside the star are large, then a charge and a strong electric field can be present. For a neutron star with high pressure (~ 10^{33} to 10^{35} dynes /cm^2) and strong gravitational field (~ 10^{14} cm/s^2), these conditions are satisfied. The hydrostatic equation which arises from general relativity, is modified considerably to meet the requirements of the inclusion of the charge. In order to see any appreciable effect on the phenomenology of the neutron stars, the charge and the electrical fields have to be huge (~ 10^{21} Volts/cm). These stars are not however stable from the viewpoint that each charged particle is unbound to the uncharged particles, and thus the system collapses one step further to a charged black hole

  19. Countries Gasoline Prices Including Taxes

    Gasoline and Diesel Fuel Update (EIA)

    Selected Countries (U.S. dollars per gallon, including taxes) Date Belgium France Germany Italy Netherlands UK US 51115 6.15 6.08 6.28 6.83 6.96 6.75 3.06 5415 6.14 6.06...

  20. Sponsorship includes: Agriculture in the

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    Sponsorship includes: · Agriculture in the Classroom · Douglas County Farm Bureau · Gifford Farm · University of Nebraska Agricultural Research and Development Center · University of Nebraska- Lincoln Awareness Coalition is to help youth, primarily from urban communities, become aware of agriculture

  1. Self-consistent modeling of DC and microwave nitrogen discharges and their afterglows

    SciTech Connect (OSTI)

    Guerra, Vasco [Centro de Fisica dos Plasmas, Instituto Superior Tecnico, 1049-001 Lisbon (Portugal)

    2004-12-01T23:59:59.000Z

    This report presents an investigation on the modeling of stationary DC and microwave nitrogen discharges and their afterglows, operating at pressures around one Torr and ionization degrees between 10-7-10-4. The model is based on the self-consistent solutions to the electron Boltzmann equation coupled to the rate balance equations for the most important neutral and charged species, the wave electrodynamics characteristics and the gas thermal balance equation. The results are obtained as a function of the usual discharge operating parameters, namely gas pressure, discharge current or electron density, and tube radius. It is shown that the vibrationally excited molecules play a central role in the whole problem, ensuring a strong link between different kinetics and directly contributing to the mechanisms of dissociation and gas heating. Furthermore, vibrationally excited molecules in high vibration levels are in the origin of the peaks observed in the flowing afterglow for the concentrations of several species, such as N{sub 2}(A {sup 3}{sigma}{sub g}{sup +}), N2(B 3{pi}g), N{sub 2}{sup +}(B {sup 2}{sigma}{sub u}{sup +}) and electrons, which occur downstream from the discharge after a dark zone as a consequence of the V-V up-pumping mechanism.

  2. Direct charge radioisotope activation and power generation

    DOE Patents [OSTI]

    Lal, Amit (Madison, WI); Li, Hui (Madison, WI); Blanchard, James P. (Madison, WI); Henderson, Douglass L. (Madison, WI)

    2002-01-01T23:59:59.000Z

    An activator has a base on which is mounted an elastically deformable micromechanical element that has a section that is free to be displaced toward the base. An absorber of radioactively emitted particles is formed on the base or the displaceable section of the deformable element and a source is formed on the other of the displaceable section or the base facing the absorber across a small gap. The radioactive source emits charged particles such as electrons, resulting in a buildup of charge on the absorber, drawing the absorber and source together and storing mechanical energy as the deformable element is bent. When the force between the absorber and the source is sufficient to bring the absorber into effective electrical contact with the source, discharge of the charge between the source and absorber allows the deformable element to spring back, releasing the mechanical energy stored in the element. An electrical generator such as a piezoelectric transducer may be secured to the deformable element to convert the released mechanical energy to electrical energy that can be used to provide power to electronic circuits.

  3. Monte Carlo beam capture and charge breeding simulation

    SciTech Connect (OSTI)

    Kim, J.S.; Liu, C.; Edgell, D.H.; Pardo, R. [FAR-TECH, Inc., 10350 Science Center Drive, San Diego, California 92121 (United States); FAR-TECH, Inc., 10350 Science Center Drive, San Diego, California 92121 (United States) and University of Rochester, Rochester, New York (United States); Argonne National Laboratory, Argonne, Illinois (United States)

    2006-03-15T23:59:59.000Z

    A full six-dimensional (6D) phase space Monte Carlo beam capture charge-breeding simulation code examines the beam capture processes of singly charged ion beams injected to an electron cyclotron resonance (ECR) charge breeder from entry to exit. The code traces injected beam ions in an ECR ion source (ECRIS) plasma including Coulomb collisions, ionization, and charge exchange. The background ECRIS plasma is modeled within the current frame work of the generalized ECR ion source model. A simple sample case of an oxygen background plasma with an injected Ar +1 ion beam produces lower charge breeding efficiencies than experimentally obtained. Possible reasons for discrepancies are discussed.

  4. Emissions-critical charge cooling using an organic rankine cycle

    DOE Patents [OSTI]

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-07-15T23:59:59.000Z

    The disclosure provides a system including a Rankine power cycle cooling subsystem providing emissions-critical charge cooling of an input charge flow. The system includes a boiler fluidly coupled to the input charge flow, an energy conversion device fluidly coupled to the boiler, a condenser fluidly coupled to the energy conversion device, a pump fluidly coupled to the condenser and the boiler, an adjuster that adjusts at least one parameter of the Rankine power cycle subsystem to change a temperature of the input charge exiting the boiler, and a sensor adapted to sense a temperature characteristic of the vaporized input charge. The system includes a controller that can determine a target temperature of the input charge sufficient to meet or exceed predetermined target emissions and cause the adjuster to adjust at least one parameter of the Rankine power cycle to achieve the predetermined target emissions.

  5. The electrodeless discharge at atmospheric pressure

    SciTech Connect (OSTI)

    Laroussi, M.

    1999-07-01T23:59:59.000Z

    Recently the generation and applications of atmospheric pressure plasmas received increased interest in the plasma research community. Applications such as the surface modification of materials, and the decontamination of matter have been under investigation. In this context, the authors introduce a new means of generating an atmospheric pressure discharge, which is suitable for use in the above-mentioned applications, and in the treatment of undesirable or polluting gases, such as VOC's. This device is a capacitively coupled discharge. It is basically made of a non-conducting tube with two independent loops of wire wrapped around it, and separated by a distance d. A stable discharge is generated inside the tube when an AC voltage of few hundred volts to few kilovolts, at a frequency of few kilohertz, is applied between the loops. One end of the tube is completely open to the outside air, and a seed gas (generally a noble gas such as Helium) is introduced in the tube. The plasma generated with this method is weakly ionized, cold, and is maintained by a relatively low input power (few tens of watts, depending on the size of the tube). In this paper, the discharge electrical characteristics, its radiation emission characteristics, and the measurement of relevant plasma parameters will be presented.

  6. Ternary gas mixture for diffuse discharge switch

    DOE Patents [OSTI]

    Christophorou, Loucas G. (Oak Ridge, TN); Hunter, Scott R. (Oak Ridge, TN)

    1988-01-01T23:59:59.000Z

    A new diffuse discharge gas switch wherein a mixture of gases is used to take advantage of desirable properties of the respective gases. There is a conducting gas, an insulating gas, and a third gas that has low ionization energy resulting in a net increase in the number of electrons available to produce a current.

  7. Studies of space-charge physics in beams for advanced accelerator applications

    SciTech Connect (OSTI)

    Wang, J. G.; Bernal, S.; Chin, P.; Kishek, R. A.; Li, Y.; Reiser, M.; Venturini, M.; Zhang, W. W.; Zou, Y.; Godlove, T.; Kehne, D.; Haber, I.; York, R. C. [Institute for Plasma Research, University of Maryland, College Park, Maryland 20742 (United States); FM Technologies, Fairfax, Virginia 22032 (United States); Naval Research Laboratory, Washington, District of Columbia 20375 (United States); NSCL, Michigan State University, East Lansing, Michigan 48824 (United States)

    1998-11-05T23:59:59.000Z

    We review experimental observations of space-charge effects and collective phenomena in charged particle beams for accelerator applications. These include halo formation and emittance growth, bunch profile evolution, space-charge waves, and longitudinal instabilities. We also report on the development of the University of Maryland Electron Ring for the study of space-charge physics in a circular lattice.

  8. Observation of ? mode electron heating in dusty argon radio frequency discharges

    SciTech Connect (OSTI)

    Killer, Carsten; Bandelow, Gunnar; Schneider, Ralf; Melzer, André [Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald (Germany)] [Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald (Germany); Matyash, Konstantin [Universitätsrechenzentrum, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald (Germany)] [Universitätsrechenzentrum, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald (Germany)

    2013-08-15T23:59:59.000Z

    The time-resolved emission of argon atoms in a dusty plasma has been measured with phase-resolved optical emission spectroscopy using an intensified charge-coupled device camera. For that purpose, three-dimensional dust clouds have been confined in a capacitively coupled rf argon discharge with the help of thermophoretic levitation. While electrons are exclusively heated by the expanding sheath (? mode) in the dust-free case, electron heating takes place in the entire plasma bulk when the discharge volume is filled with dust particles. Such a behavior is known as ? mode, first observed in electronegative plasmas. Furthermore, particle-in-cell simulations have been carried out, which reproduce the trends of the experimental findings. These simulations support previous numerical models showing that the enhanced atomic emission in the plasma can be attributed to a bulk electric field, which is mainly caused by the reduced electrical conductivity due to electron depletion.

  9. taking charge : optimizing urban charging infrastructure for shared electric vehicles

    E-Print Network [OSTI]

    Subramani, Praveen

    2012-01-01T23:59:59.000Z

    This thesis analyses the opportunities and constraints of deploying charging infrastructure for shared electric vehicles in urban environments. Existing electric vehicle charging infrastructure for privately owned vehicles ...

  10. Investigation of ionized metal flux in enhanced high power impulse magnetron sputtering discharges

    SciTech Connect (OSTI)

    Stranak, Vitezslav, E-mail: stranak@prf.jcu.cz [Faculty of Science, University of South Bohemia, Branisovska 31, 37005 Ceske Budejovice (Czech Republic); Hubicka, Zdenek; Cada, Martin [Institute of Physics v. v. i., Academy of Science of the Czech Republic, Na Slovance 2, 182 21 Prague (Czech Republic); Drache, Steffen; Hippler, Rainer [Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, Felix-Hausdorff-Str. 6, 17489 Greifswald (Germany); Tichy, Milan [Faculty of Mathematics and Physics, Charles University in Prague, V Holesovickach 2, 180 00 Prague (Czech Republic)

    2014-04-21T23:59:59.000Z

    The metal ionized flux fraction and production of double charged metal ions Me{sup 2+} of different materials (Al, Cu, Fe, Ti) by High Power Impulse Magnetron Sputtering (HiPIMS) operated with and without a pre-ionization assistance is compared in the paper. The Electron Cyclotron Wave Resonance (ECWR) discharge was employed as the pre-ionization agent providing a seed of charge in the idle time of HiPIMS pulses. A modified grid-free biased quartz crystal microbalance was used to estimate the metal ionized flux fraction ?. The energy-resolved mass spectrometry served as a complementary method to distinguish particular ion contributions to the total ionized flux onto the substrate. The ratio between densities of doubly Me{sup 2+} and singly Me{sup +} charged metal ions was determined. It is shown that ECWR assistance enhances Me{sup 2+} production with respect of absorbed rf-power. The ECWR discharge also increases the metal ionized flux fraction of about 30% especially in the region of lower pressures. Further, the suppression of the gas rarefaction effect due to enhanced secondary electron emission of Me{sup 2+} was observed.

  11. Robust statistical reconstruction for charged particle tomography

    DOE Patents [OSTI]

    2013-10-08T23:59:59.000Z

    Systems and methods for charged particle detection including statistical reconstruction of object volume scattering density profiles from charged particle tomographic data to determine the probability distribution of charged particle scattering using a statistical multiple scattering model and determine a substantially maximum likelihood estimate of object volume scattering density using expectation maximization (ML/EM) algorithm to reconstruct the object volume scattering density. The presence of and/or type of object occupying the volume of interest can be identified from the reconstructed volume scattering density profile. The charged particle tomographic data can be cosmic ray muon tomographic data from a muon tracker for scanning packages, containers, vehicles or cargo. The method can be implemented using a computer program which is executable on a computer.

  12. Reconfiguration-Assisted Charging in Large-Scale Lithium-ion Battery Systems

    E-Print Network [OSTI]

    Reconfiguration-Assisted Charging in Large-Scale Lithium-ion Battery Systems Liang He1 , Linghe, TX, USA ABSTRACT Large-scale Lithium-ion batteries are widely adopted in many systems and heterogeneous discharging con- ditions, cells in the battery system may have differ- ent statuses

  13. Principles and Efficient Implementation of Charge Replacement in Hybrid Electrical Energy Storage

    E-Print Network [OSTI]

    Pedram, Massoud

    1 Principles and Efficient Implementation of Charge Replacement in Hybrid Electrical Energy Storage--Hybrid electrical energy storage systems (HEES) are comprised of multiple banks of inhomogeneous EES elements storage device, i.e., high energy capacity, high output power level, low self-discharge, low cost

  14. Mass and charge overlaps in beamline implantation into compound semiconductor materials

    SciTech Connect (OSTI)

    Current, M. I.; Eddy, R.; Hudak, C.; Serfass, J.; Mount, G. [Current Scientific, 1729 Comstock Way, San Jose, CA 95124 (United States); Core Systems, 1050 Kifer Rd., Sunnyvale, CA 94086 (United States); Evans Analytical Group, 810 Kifer Rd., Sunnyvale, CA 95051 (United States)

    2012-11-06T23:59:59.000Z

    Mass overlaps occurring as a result of extraction of ions from an arc discharge and gas collisions, producing molecular break up and charge exchange in the accelerator beamline, are examined for ion implantation into compound semiconductors. The effects of the choice of plasma gas elements for Be{sup +} implants are examined as an example.

  15. PROJECT REPORT Energy Management for EV Charge Station in Distributed Power System

    E-Print Network [OSTI]

    He, Lei

    of few batteries which connected to the DPS generator, super capacitors(or other energy storage device capacitors, we want to obtain an optimal battery and super capacitor discharging schedule from distributed. Then the second one is conventional power grid will only connected to super capacitors and charge them when needed

  16. Abstract adiabatic charge pumping

    E-Print Network [OSTI]

    A. Joye; V. Brosco; F. Hekking

    2010-02-05T23:59:59.000Z

    This paper is devoted to the analysis of an abstract formula describing quantum adiabatic charge pumping in a general context. We consider closed systems characterized by a slowly varying time-dependent Hamiltonian depending on an external parameter $\\alpha$. The current operator, defined as the derivative of the Hamiltonian with respect to $\\alpha$, once integrated over some time interval, gives rise to a charge pumped through the system over that time span. We determine the first two leading terms in the adiabatic parameter of this pumped charge under the usual gap hypothesis. In particular, in case the Hamiltonian is time periodic and has discrete non-degenerate spectrum, the charge pumped over a period is given to leading order by the derivative with respect to $\\alpha$ of the corresponding dynamical and geometric phases.

  17. International aeronautical user charges

    E-Print Network [OSTI]

    Odoni, Amedeo R.

    1985-01-01T23:59:59.000Z

    Introduction: 1.1 BACKGROUND AND MOTIVATION Very few issues relating to the international air transportation industry are today as divisive as those pertaining to user charges imposed at international airports and enroute ...

  18. Electrically charged targets

    DOE Patents [OSTI]

    Goodman, Ronald K. (Livermore, CA); Hunt, Angus L. (Alamo, CA)

    1984-01-01T23:59:59.000Z

    Electrically chargeable laser targets and method for forming such charged targets in order to improve their guidance along a predetermined desired trajectory. This is accomplished by the incorporation of a small amount of an additive to the target material which will increase the electrical conductivity thereof, and thereby enhance the charge placed upon the target material for guidance thereof by electrostatic or magnetic steering mechanisms, without adversely affecting the target when illuminated by laser energy.

  19. Montana Facilities Which Do Not Discharge Process Wastewater...

    Open Energy Info (EERE)

    Which Do Not Discharge Process Wastewater (MDEQ Form 2E) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Montana Facilities Which Do Not Discharge Process...

  20. Experimental investigation of electron multipactor discharges at very high frequency

    E-Print Network [OSTI]

    Graves, Timothy P. (Timothy Paul)

    2006-01-01T23:59:59.000Z

    Multipactor discharges are a resonant condition in which electrons impact a surface in phase with an alternating electric field. The discharge is sustained by electron multiplication from secondary emission. As motivation, ...

  1. Fracture of electrodes in lithium-ion batteries caused by fast charging Kejie Zhao, Matt Pharr, Joost J. Vlassak, and Zhigang Suoa

    E-Print Network [OSTI]

    Fracture of electrodes in lithium-ion batteries caused by fast charging Kejie Zhao, Matt Pharr; published online 8 October 2010 During charging or discharging of a lithium-ion battery, lithium batteries.3 A lithium-ion battery contains an electrolyte and two electrodes. Each electrode is an atomic

  2. 42nd Aerospace Sciences Meeting, 6th Weakly Ionized Gases Workshop, Reno, Nevada 5 -8 Jan 2004 EFFECT OF DISCHARGE ENERGY AND CAVITY GEOMETRY ON FLAME

    E-Print Network [OSTI]

    of internal combustion engines. Similar high-voltage nanosecond discharges 13-16 have been reported as a pote in a geometrically IC engine like combustion chamber at elevated pressure. Discharge efficiency of pulsed corona are also of interest for certain advanced combustion engines including pulse detonation 2-4 , high altitude

  3. Pin-to-Pin Electrostatic Discharge Protection for Semiconductor Bridges

    SciTech Connect (OSTI)

    KING, TONY L.; TARBELL, WILLIAM W.

    2002-07-01T23:59:59.000Z

    The lack of protection for semiconductor bridges (SCBs) against human electrostatic discharge (ESD) presents an obstacle to widespread use of this device. The goal of this research is to protect SCB initiators against pin-to-pin ESD without affecting their performance. Two techniques were investigated. In the first, a parallel capacitor is used to attenuate high frequencies. The second uses a parallel zener diode to limit the voltage amplitude. Both the 1 {micro}F capacitor and the 14 V zener diode protected the SCBs from ESD. The capacitor provided the best protection. The protection circuits had no effect on the SCB's threshold voltage. The function time for the CP-loaded SCBs with capacitors was about 11 {micro}s when fired by a firing set charged to 40 V. The SCBs failed to function when protected by the 6 V and 8 V zeners. The 51 V zener did not provide adequate protection against ESD. The parallel capacitor succeeded in protecting SCB initiators against pin-to-pin ESD without affecting their performance. Additional experiments should be done on SCBs and actual detonators to further quantify the effectiveness of this technique. Methods for retrofitting existing SCB initiators and integrating capacitors into future devices should also be explored.

  4. Spectra of Ions Produced by Corona Discharges

    SciTech Connect (OSTI)

    Skalny, J.; Hortvath, G. [Department of Experimental Physics, Comenius University, Mlynska dolina F-2, 84248 Bratislava (Slovakia); Mason, N. J. [Open University, Department of Physics and Astronomy, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2006-12-01T23:59:59.000Z

    A mass spectrometric study of ions extracted from both positive and negative DC corona discharges, initiated in point-to plane electrode system, has been carried out in ambient air at low air pressure (5 - 30) kPa. The average relative humidity of air was typically 40-50 %. Ions were extracted through a small orifice in the plane electrode into an intermediate gap where the low pressure prevented further ion-molecule reactions. Mass analysis of negative ions formed in the negative corona discharge using ambient air has shown that the yield of individual ions is strongly affected by trace concentrations of ozone, nitrogen oxides, carbon dioxide and water vapour. In dry air the CO{sub 3}{sup -} ion was found to be dominant. In presence of water this is converted very efficiently to cluster ions CO{sub 3}{sup -}{center_dot}(H{sub 2}O){sub n} containing one and more water molecules. The yield of O{sub 3}{sup -}{center_dot}(H{sub 2}O){sub n} clusters or core ions was found to be considerably lower than in some other studies at atmospheric pressure. The mass spectrum of ions extracted from drift region of a positive corona discharge was simpler being dominantly cluster ions H3O+{center_dot}(H2O)n most probably formed from O{sub 2}{sup +} ions, a two step process being active if water molecules are present in the discharge gap even at relatively low concentration.

  5. Gas mixture for diffuse-discharge switch

    DOE Patents [OSTI]

    Christophorou, L.G.; Carter, J.G.; Hunter, S.R.

    1982-08-31T23:59:59.000Z

    Gaseous medium in a diffuse-discharge switch of a high-energy pulse generator is formed of argon combined with a compound selected from the group consisting of CF/sub 4/, C/sub 2/F/sub 6/, C/sub 3/F/sub 8/, n-C/sub 4/F/sub 10/, WF/sub 6/, (CF/sub 3/)/sub 2/S and (CF/sub 3/)/sub 2/O.

  6. Magnetism in Lithium–Oxygen Discharge Product

    SciTech Connect (OSTI)

    Lu, Jun; Jung, Hun-Ji; Lau, Kah Chun; Zhang, Zhengcheng; Schlueter, John A.; Du, Peng; Assary, Rajeev S.; Greeley, Jeffrey P.; Ferguson, Glen A.; Wang, Hsien-Hau; Hassoun, Jusef; Iddir, Hakim; Zhou, Jigang; Zuin, Lucia; Hu, Yongfeng; Sun, Yang-Kook; Scrosati, Bruno; Curtiss, Larry A.; Amine, Khalil

    2013-05-13T23:59:59.000Z

    Nonaqueous lithium–oxygen batteries have a much superior theoretical gravimetric energy density compared to conventional lithium-ion batteries, and thus could render long-range electric vehicles a reality. A molecular-level understanding of the reversible formation of lithium peroxide in these batteries, the properties of major/minor discharge products, and the stability of the nonaqueous electrolytes is required to achieve successful lithium–oxygen batteries. We demonstrate that the major discharge product formed in the lithium–oxygen cell, lithium peroxide, exhibits a magnetic moment. These results are based on dc-magnetization measurements and a lithium– oxygen cell containing an ether-based electrolyte. The results are unexpected because bulk lithium peroxide has a significant band gap. Density functional calculations predict that superoxide- type surface oxygen groups with unpaired electrons exist on stoichiometric lithium peroxide crystalline surfaces and on nanoparticle surfaces; these computational results are consistent with the magnetic measurement of the discharged lithium peroxide product as well as EPR measurements on commercial lithium peroxide. The presence of superoxide-type surface oxygen groups with spin can play a role in the reversible formation and decomposition of lithium peroxide as well as the reversible formation and decomposition of electrolyte molecules.

  7. * corresponding Auithor. Email: cxw31@psu.edu Modeling Discharge and Charge Characteristics

    E-Print Network [OSTI]

    Wang, Chao-Yang

    of Mechanical Engineering & Pennsylvania Transportation Institute The Pennsylvania State University University Park, PA 16802, USA S.M. Li Department of Mechanical Engineering University of Hawaii at Manoa Honolulu both the proton diffusion in the nickel active material and the hydrogen diffusion in metal

  8. Method for charging and discharging a latent-heat storage medium and heat storage

    SciTech Connect (OSTI)

    Kreikenbohm, R.; Reusch, H.

    1982-12-28T23:59:59.000Z

    A heat storage unit is disclosed having a vertically cylindrical container accommodating a latent-heat storage medium and a conduit introducing a heat carrier liquid not miscible with the medium at the bottom of the container. The conduit has an exit nozzle which is located outside the axial center of the cylinder and nearly perpendicular to the radius of the cylinder so that the heat carrier liquid enters the cylinder at the bottom in a direction to cause the heat storage melt to be set into a rotary motion.

  9. Method for charging and discharging a latent-heat storage medium and heat storage

    SciTech Connect (OSTI)

    Kreikenbohm, R.; Reusch, H.

    1981-10-13T23:59:59.000Z

    A heat storage unit is disclosed having a vertically cylindrical container accommodating a latent-heat storage medium and a conduit introducing a heat carrier liquid not miscible with the medium at the bottom of the container. The conduit has an exit nozzle which is located outside the axial center of the cylinder and nearly perpendicular to the radius of the cylinder so that the heat carrier liquid enters the cylinder at the bottom in a direction to cause the heat storage melt to be set into a rotary motion.

  10. Process of discharging charge-build up in slag steelmaking processes

    SciTech Connect (OSTI)

    Pal, Uday B. (Malden, MA); Gazula, Gopala K. M. (Somerville, MA); Hasham, Ali (Karachi, PK)

    1994-01-01T23:59:59.000Z

    A process and apparatus for improving metal production in ironmaking and steelmaking processes is disclosed. The use of an inert metallic conductor in the slag-containing crucible and the addition of a transition metal oxide to the slag are the disclosed process improvements.

  11. Compressor discharge bleed air circuit in gas turbine plants and related method

    DOE Patents [OSTI]

    Anand, Ashok Kumar (Niskayuna, NY); Berrahou, Philip Fadhel (Latham, NY); Jandrisevits, Michael (Clifton Park, NY)

    2003-04-08T23:59:59.000Z

    A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

  12. Compressor discharge bleed air circuit in gas turbine plants and related method

    DOE Patents [OSTI]

    Anand, Ashok Kumar (Niskayuna, NY); Berrahou, Philip Fadhel (Latham, NY); Jandrisevits, Michael (Clifton Park, NY)

    2002-01-01T23:59:59.000Z

    A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

  13. Numerical study on microwave-sustained argon discharge under atmospheric pressure

    SciTech Connect (OSTI)

    Yang, Y.; Hua, W., E-mail: huaw@scu.edu.cn; Guo, S. Y. [School of Electronics and Information Engineering, Sichuan University, Chengdu 610065 (China)] [School of Electronics and Information Engineering, Sichuan University, Chengdu 610065 (China)

    2014-04-15T23:59:59.000Z

    A numerical study on microwave sustained argon discharge under atmospheric pressure is reported in this paper. The purpose of this study is to investigate both the process and effects of the conditions of microwave-excited gas discharge under atmospheric pressure, thereby aiding improvements in the design of the discharge system, setting the appropriate working time, and controlling the operating conditions. A 3D model is presented, which includes the physical processes of electromagnetic wave propagation, electron transport, heavy species transport, gas flow, and heat transfer. The results can be obtained by means of the fluid approximation. The maxima of the electron density and gas temperature are 4.96?×?10{sup 18} m{sup ?3} and 2514.8?K, respectively, and the gas pressure remains almost unchanged for typical operating conditions with a gas flow rate of 20 l/min, microwave power of 1000 W, and initial temperature of 473?K. In addition, the conditions (microwave power, gas flow rate, and initial temperature) of discharge are varied to obtain deeper information about the electron density and gas temperature. The results of our numerical study are valid and clearly describe both the physical process and effects of the conditions of microwave-excited argon discharge.

  14. Influence of Induced Charges in the Electric Aharonov-Bohm Effect

    E-Print Network [OSTI]

    Rui-Feng Wang

    2014-09-24T23:59:59.000Z

    This paper states that the induced charge should not be neglected in the electric Aharonov-Bohm effect. If the induced charge is taken into account, the interference pattern of the moving charge will not change with the potential difference between the two metal tubes. It means that the scale potential itself can not affect the phase of the moving charge, and the true factor affecting the phase of the moving charge is the energy of the system including the moving charge and the induced charge.

  15. New protection method for HVDC lines including cables

    SciTech Connect (OSTI)

    Takeda, H.; Ayakawa, H.; Tsumenaga, N.; Sanpei, M.

    1995-10-01T23:59:59.000Z

    For the third project of the Hokkaido-Honshu HVDC Link in Japan, called the HVDC Link III project (rated at 250 kVdc-1,200 A-300 MW), the authors developed an HVDC transmission line protection method based on a new working principle that allows high-speed and highly sensitive detection of faults, enhancing reliability in the supply of electric power. In general, increasing the sensitivity of relays will lead to an increased likelihood of undesired operation whereas lowering the sensitivity will impair the responsiveness of the relays. The proposed method meets these apparently incompatible requirements very well. Basically classified as a differential scheme, the HVDC transmission line protection method compensates for a charging and discharging current that flows through the line-to-ground capacitance at times of voltage variations caused by a line fault or by the operation of dc power systems. The developed protection method is also characterized in that it uses current changes induced by voltage variations to restrain the operation of a relay. This configuration has made the proposed method far superior in responsiveness and sensitivity to the conventional protection method. A simulation using an EMTP (Electro-Magnetic Transients Program) was conducted on this method. Developed relay equipment embodying the new protection method was subjected to various verification tests, where this equipment was connected to a power system simulator, before being delivered to the HVDC Link III facility.

  16. Phenomena of oscillations in atmospheric pressure direct current glow discharges

    SciTech Connect (OSTI)

    Liu, Fu-cheng [College of Physics Science and Technology, Hebei University, Baoding 071002 (China)] [College of Physics Science and Technology, Hebei University, Baoding 071002 (China); Yan, Wen; Wang, De-zhen [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2013-12-15T23:59:59.000Z

    Self-sustained oscillations in a dc glow discharge with a semiconductor layer at atmospheric pressure were investigated by means of a one-dimensional fluid model. It is found that the dc glow discharge initially becomes unstable in the subnormal glow region and gives rise to oscillations of plasma parameters. A variety of oscillations with one or more frequencies have been observed under different conditions. The discharge oscillates between the glow discharge mode and the Townsend discharge mode in the oscillations with large amplitude while operates in the subnormal glow discharge mode all the while in the oscillations with small amplitude. Fourier Transform spectra of oscillations reveal the transition mechanism between different oscillations. The effects of semiconductor conductivity on the oscillation frequency of the dominant mode, gas voltage, as well as the discharge current have also been analyzed.

  17. Holographic Charge Oscillations

    E-Print Network [OSTI]

    Mike Blake; Aristomenis Donos; David Tong

    2014-12-05T23:59:59.000Z

    The Reissner-Nordstrom black hole provides the prototypical description of a holographic system at finite density. We study the response of this system to the presence of a local, charged impurity. Below a critical temperature, the induced charge density, which screens the impurity, exhibits oscillations. These oscillations can be traced to the singularities in the density-density correlation function moving in the complex momentum plane. At finite temperature, the oscillations are very similar to the Friedel oscillations seen in Fermi liquids. However, at zero temperature the oscillations in the black hole background remain exponentially damped, while Friedel oscillations relax to a power-law

  18. Overview of charge symmetry

    SciTech Connect (OSTI)

    Miller, G.A. [Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (United States)

    1995-07-15T23:59:59.000Z

    Charge independence and symmetry are approximate symmetries of nature. The observations of the small charge symmetry breaking effects and the consequences of those effects are reviewed. The effects of the mass difference between up and down quarks and the off shell dependence {ital q}{sup 2} of {rho}{sup 0}-{omega} mixing are stressed. We find that models which predict a strong {ital q}{sup 2} dependence of {rho}{sup 0}-{omega} mixing seem also to predict a strong {ital q}{sup 2} variation for the {rho}{sup 0}-{gamma}* matrix element, in contradiction with experiment.

  19. State waste discharge permit application: Hydrotest, maintenance and construction discharges. Revision 0

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    On December 23, 1991, the US DOE< Richland Operation Office (RL) and the Washington State Department of Ecology (Ecology) agreed to adhere to the provisions of the Department of Ecology Consent Order No. DE91NM-177 (216 Consent Order) (Ecology and US DOE 1991). The 216 Consent Order list regulatory milestones for liquid effluent streams at the Hanford Site and requires compliance with the permitting requirements of Washington Administrative Code. Hanford Site liquid effluent streams discharging to the soil column have been categorized on the 216 Consent Order as follows: Phase I Streams; Phase II Streams; Miscellaneous Streams. Phase I and Phase II Streams were initially addressed in two report. Miscellaneous Streams are subject to the requirements of several milestones identified in the 216 Consent Order. This document constitutes the Categorical State Waste Discharge Permit application for hydrotest,maintenance and construction discharges throughout the Hanford Site. This categorical permit application form was prepared and approved by Ecology.

  20. One-dimensional simulations of reversed field pinch discharges

    SciTech Connect (OSTI)

    Martines, E.; Spagnolo, S. [Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova (Italy)

    2008-12-15T23:59:59.000Z

    A simple one-dimensional time-dependent model for simulating the magnetic field profiles in a reversed field pinch (RFP) plasma is presented. The model, which is derived from basic MHD equations with the addition of a phenomenological dynamo electric field, is able, through the tuning of a few free parameters, to simulate the time evolution of RFP discharges in a large range of operating conditions, successfully reproducing quantities such as the average toroidal field, the loop voltage and the on-axis safety factor. The application to several experimental conditions obtained on the RFX-mod machine [P. Sonato et al., Fusion Eng. Des. 66, 161 (2003)], including oscillating poloidal current drive (OPCD) is shown and the simulation outcome is discussed.

  1. Observations of a mode transition in a hydrogen hollow cathode discharge using phase resolved optical emission spectroscopy

    SciTech Connect (OSTI)

    Dixon, Sam, E-mail: sam.dixon@anu.edu.au; Charles, Christine; Dedrick, James; Boswell, Rod [Space Plasma, Power and Propulsion Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia); Gans, Timo; O'Connell, Deborah [Department of Physics, York Plasma Institute, University of York, Heslington, York YO10 5DD (United Kingdom)

    2014-07-07T23:59:59.000Z

    Two distinct operational modes are observed in a radio frequency (rf) low pressure hydrogen hollow cathode discharge. The mode transition is characterised by a change in total light emission and differing expansion structures. An intensified CCD camera is used to make phase resolved images of Balmer ? emission from the discharge. The low emission mode is consistent with a typical ? discharge, and appears to be driven by secondary electrons ejected from the cathode surface. The bright mode displays characteristics common to an inductive discharge, including increased optical emission, power factor, and temperature of the H{sub 2} gas. The bright mode precipitates the formation of a stationary shock in the expansion, observed as a dark region adjacent to the source-chamber interface.

  2. Computational Study of the Hydrodynamic Behavior during Air Discharge through a Sparger Submerged in the Condensation Pool

    SciTech Connect (OSTI)

    Ahn, Hyung-Joon; Bang, Young-Seok; Kim, In-Goo; Kim, Hho-Jung [Regulatory Research Div., Korea Institute of Nuclear Safety, 19 Kusongdong Yusongku Taejon (Korea, Republic of); Lee, Byeong-Eun; Kwon, Soon-Bum [School of Mech. Eng., Kyungpook National University, 1370, Sankyuk-dong, Puk-ku, Daegu 702-701 (Korea, Republic of)

    2002-07-01T23:59:59.000Z

    The In-containment Refueling Water Storage Tank (IRWST) has the function of heat sink when steam is released from the pressurizer. The hydrodynamic behaviors occurring at the sparger are very complex because of the wide variety of operating conditions and the complex geometry. Hydrodynamic behavior when air is discharged through a sparger in a condensation pool is investigated using CFD techniques in the present study. The effect of pressure acting on the sparger header during both water and air discharge through the sparger is studied. In addition, pressure oscillation occurring during air discharge through the sparger is studied for a better understanding of mechanisms of air discharge and a better design of the IRWST, including sparger. (authors)

  3. Beams of fast neutral atoms and molecules in low-pressure gas-discharge plasma

    SciTech Connect (OSTI)

    Metel, A. S., E-mail: ametel@stankin.ru [Moscow State University of Technology 'Stankin,' (Russian Federation)

    2012-03-15T23:59:59.000Z

    Fast neutral atom and molecule beams have been studied, the beams being produced in a vacuum chamber at nitrogen, argon, or helium pressure of 0.1-10 Pa due to charge-exchange collisions of ions accelerated in the sheath between the glow discharge plasma and a negative grid immersed therein. From a flat grid, two broad beams of molecules with continuous distribution of their energy from zero up to e(U + U{sub c}) (where U is voltage between the grid and the vacuum chamber and U{sub c} is cathode fall of the discharge) are propagating in opposite directions. The beam propagating from the concave surface of a 0.2-m-diameter grid is focused within a 10-mm-diameter spot on the target surface. When a 0.2-m-diameter 0.2-m-high cylindrical grid covered by end disks and composed of parallel 1.5-mm-diameter knitting needles spaced by 4.5 mm is immersed in the plasma, the accelerated ions pass through the gaps between the needles, turn inside the grid into fast atoms or molecules, and escape from the grid through the gaps on its opposite side. The Doppler shift of spectral lines allows for measuring the fast atom energy, which corresponds to the potential difference between the plasma inside the chamber and the plasma produced as a result of charge-exchange collisions inside the cylindrical grid.

  4. Static charged fluid spheres in general relativity

    E-Print Network [OSTI]

    B. V. Ivanov

    2001-09-04T23:59:59.000Z

    Interior perfect fluid solutions for the Reissner-Nordstrom metric are studied on the basis of a new classification scheme. It specifies which two of the fluid's characteristics are given functions and picks up accordingly one of the three main field equations, the other two being universal. General formulae are found for charged de Sitter solutions, the case of constant energy component of the energy-momentum tensor, the case of known pressure (including charged dust) and the case of linear equation of state. Explicit new global solutions, mainly in elementary functions, are given as illustrations. Known solutions are briefly reviewed and corrected.

  5. Gated charged-particle trap

    DOE Patents [OSTI]

    Benner, W. Henry (Danville, CA)

    1999-01-01T23:59:59.000Z

    The design and operation of a new type of charged-particle trap provides simultaneous measurements of mass, charge, and velocity of large electrospray ions. The trap consists of a detector tube mounted between two sets of center-bored trapping plates. Voltages applied to the trapping plates define symmetrically-opposing potential valleys which guide axially-injected ions to cycle back and forth through the charge-detection tube. A low noise charge-sensitive amplifier, connected to the tube, reproduces the image charge of individual ions as they pass through the detector tube. Ion mass is calculated from measurement of ion charge and velocity following each passage through the detector.

  6. AVTA: Siemens-VersiCharge AC Level 2 Charging System Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Siemens-VersiCharge AC Level 2 Charging System Testing Results AVTA: Siemens-VersiCharge AC Level 2 Charging System Testing Results The Vehicle Technologies Office's Advanced...

  7. Optical state-of-charge monitor for batteries

    DOE Patents [OSTI]

    Weiss, Jonathan D. (Albuquerque, NM)

    1999-01-01T23:59:59.000Z

    A method and apparatus for determining the instantaneous state-of-charge of a battery in which change in composition with discharge manifests itself as a change in optical absorption. In a lead-acid battery, the sensor comprises a fiber optic system with an absorption cell or, alternatively, an optical fiber woven into an absorbed-glass-mat battery. In a lithium-ion battery, the sensor comprises fiber optics for introducing light into the anode to monitor absorption when lithium ions are introduced.

  8. Charge-free method of forming nanostructures on a substrate

    DOE Patents [OSTI]

    Hoffbauer; Mark (Los Alamos, NM), Akhadov; Elshan (Los Alamos, NM)

    2010-07-20T23:59:59.000Z

    A charge-free method of forming a nanostructure at low temperatures on a substrate. A substrate that is reactive with one of atomic oxygen and nitrogen is provided. A flux of neutral atoms of least one of oxygen and nitrogen is generated within a laser-sustained-discharge plasma source and a collimated beam of energetic neutral atoms and molecules is directed from the plasma source onto a surface of the substrate to form the nanostructure. The energetic neutral atoms and molecules in the beam have an average kinetic energy in a range from about 1 eV to about 5 eV.

  9. Cyclic powder formation during pulsed injection of hexamethyldisiloxane in an axially asymmetric radiofrequency argon discharge

    SciTech Connect (OSTI)

    Despax, B.; Makasheva, K. [Universite de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d'Energie), 118 route de Narbonne, F-31062 Toulouse 09 (France); CNRS, LAPLACE, F-31062 Toulouse cedex 09 (France); Caquineau, H. [Universite de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d'Energie), 118 route de Narbonne, F-31062 Toulouse 09 (France)

    2012-11-01T23:59:59.000Z

    A new approach of periodic production of dusty plasma consisting of pulsed injection of hexamethyldisiloxane (HMDSO) in argon axially asymmetric radiofrequency (RF) discharge was investigated in this work. The range of plasma operating conditions in which this dusty plasma can exist was closely examined. The obtained results clearly show that a net periodicity in the formation/disappearance of dust particles in the plasma can be maintained on a very large scale of discharge duration. The significance of discharge axial asymmetry to the dust particles behaviour in the plasma is revealed by the development of an asymmetric in shape void shifted towards the powered RF electrode. The key role of the reactive gas and its pulsed injection on each stage of the oscillating process of formation/disappearance of dust particles is disclosed by optical and electrical measurements. It is shown that the period of dusty plasma formation/disappearance is inversely related to the HMDSO injection time. Moreover, the impact of time injection over short period (5 s) is examined. It indicates the conflicting role played by the HMDSO on the reduction of dusty plasma during the reactive gas injection and the reappearance of particles in the plasma during the time off. The electronegative behavior of the plasma in the presence of negatively charged particles seems to explain the energetic modifications in the discharge. A frequency analysis of the floating potential reveals all these cyclic processes. Particularly, in the 10-200 Hz frequency range, the presence and the evolution of dust particles in the plasma over one generation can be observed.

  10. Charge detection in semiconductor nanostructures

    E-Print Network [OSTI]

    MacLean, Kenneth (Kenneth MacLean, III)

    2010-01-01T23:59:59.000Z

    In this thesis nanometer scale charge sensors are used to study charge transport in two solid state systems: Lateral GaAs quantum dots and hydrogenated amorphous silicon (a-Si:H). In both of these experiments we use ...

  11. General 2 charge geometries

    E-Print Network [OSTI]

    Marika Taylor

    2005-07-22T23:59:59.000Z

    Two charge BPS horizon free supergravity geometries are important in proposals for understanding black hole microstates. In this paper we construct a new class of geometries in the NS1-P system, corresponding to solitonic strings carrying fermionic as well as bosonic condensates. Such geometries are required to account for the full microscopic entropy of the NS1-P system. We then briefly discuss the properties of the corresponding geometries in the dual D1-D5 system.

  12. The effect of a direct current field on the microparticle charge in the plasma afterglow

    SciTech Connect (OSTI)

    Wörner, L. [Max Planck Institute for extraterrestrial Physics, P.O. Box 1312, Giessenbachstr., 85741 Garching (Germany) [Max Planck Institute for extraterrestrial Physics, P.O. Box 1312, Giessenbachstr., 85741 Garching (Germany); Groupe de Recherches sur l'Energétique des Milieux Ionisés, UMR7344, CNRS, Univ. Orléans, F-45067 Orléans (France); Ivlev, A. V.; Huber, P.; Hagl, T.; Thomas, H. M.; Morfill, G. E. [Max Planck Institute for extraterrestrial Physics, P.O. Box 1312, Giessenbachstr., 85741 Garching (Germany)] [Max Planck Institute for extraterrestrial Physics, P.O. Box 1312, Giessenbachstr., 85741 Garching (Germany); Couëdel, L. [Centre National de la Recherche Scientifique, Aix-Marseille-Université, Laboiratoire de Physique des Intéractions Ioniques et Moléculaires, UMR 7345, 13397 Marseille cedex 20 (France)] [Centre National de la Recherche Scientifique, Aix-Marseille-Université, Laboiratoire de Physique des Intéractions Ioniques et Moléculaires, UMR 7345, 13397 Marseille cedex 20 (France); Schwabe, M. [Max Planck Institute for extraterrestrial Physics, P.O. Box 1312, Giessenbachstr., 85741 Garching (Germany) [Max Planck Institute for extraterrestrial Physics, P.O. Box 1312, Giessenbachstr., 85741 Garching (Germany); Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720 (United States); Mikikian, M.; Boufendi, L. [Groupe de Recherches sur l'Energétique des Milieux Ionisés, UMR7344, CNRS, Univ. Orléans, F-45067 Orléans (France)] [Groupe de Recherches sur l'Energétique des Milieux Ionisés, UMR7344, CNRS, Univ. Orléans, F-45067 Orléans (France); Skvortsov, A. [Yuri Gagarin Cosmonauts Training Center, RU-141160 Star City (Russian Federation)] [Yuri Gagarin Cosmonauts Training Center, RU-141160 Star City (Russian Federation); Lipaev, A. M.; Molotkov, V. I.; Petrov, O. F.; Fortov, V. E. [Joint Institute for High Temperatures, RU-125412 Moscow (Russian Federation)] [Joint Institute for High Temperatures, RU-125412 Moscow (Russian Federation)

    2013-12-15T23:59:59.000Z

    Residual charges of individual microparticles forming dense clouds were measured in a RF discharge afterglow. Experiments were performed under microgravity conditions on board the International Space Station, which ensured particle levitation inside the gas volume after the plasma switch-off. The distribution of residual charges as well as the spatial distribution of charged particles across the cloud were analyzed by applying a low-frequency voltage to the electrodes and measuring amplitudes of the resulting particle oscillations. Upon “free decharging” conditions, the charge distribution had a sharp peak at zero and was rather symmetric (with charges concentrated between ?10e and +10e), yet positively and negatively charged particles were homogeneously distributed over the cloud. However, when decharging evolved in the presence of an external DC field (applied shortly before the plasma switch-off) practically all residual charges were positive. In this case, the overall charge distribution had a sharp peak at about +15e and was highly asymmetric, while the spatial distribution exhibited a significant charge gradient along the direction of the applied DC field.

  13. On the Proton charge extensions

    E-Print Network [OSTI]

    M. Gluck

    2015-02-03T23:59:59.000Z

    It is shown that the recent determination of the various proton charge extensions is compatible with Standard Model expectations.

  14. Low current plasmatron fuel converter having enlarged volume discharges

    DOE Patents [OSTI]

    Rabinovich, Alexander (Swampscott, MA); Alexeev, Nikolai (Moscow, RU); Bromberg, Leslie (Sharon, MA); Cohn, Daniel R. (Chestnut Hill, MA); Samokhin, Andrei (Moscow, RU)

    2009-10-06T23:59:59.000Z

    A novel apparatus and method is disclosed for a plasmatron fuel converter ("plasmatron") that efficiently uses electrical energy to produce hydrogen rich gas. The volume and shape of the plasma discharge is controlled by a fluid flow established in a plasma discharge volume. A plasmatron according to this invention produces a substantially large effective plasma discharge volume allowing for substantially greater volumetric efficiency in the initiation of chemical reactions within a volume of bulk fluid reactant flowing through the plasmatron.

  15. Low current plasmatron fuel converter having enlarged volume discharges

    DOE Patents [OSTI]

    Rabinovich, Alexander; Alexeev, Nikolai; Bromberg, Leslie; Cohn, Daniel R.; Samokhin, Andrei

    2005-04-19T23:59:59.000Z

    A novel apparatus and method is disclosed for a plasmatron fuel converter (""plasmatron"") that efficiently uses electrical energy to produce hydrogen rich gas. The volume and shape of the plasma discharge is controlled by a fluid flow established in a plasma discharge volume. A plasmatron according to this invention produces a substantially large effective plasma discharge volume allowing for substantially greater volumetric efficiency in the initiation of chemical reactions within a volume of bulk fluid reactant flowing through the plasmatron.

  16. Towards a better understanding of dielectric barrier discharges in ferroelectrets: Paschen breakdown fields in micrometer sized voids

    SciTech Connect (OSTI)

    Harris, Scott, E-mail: harri4s@cmich.edu [Department of Physics and Science of Advanced Materials Program, Central Michigan University, Mount Pleasant, Michigan 48859 (United States); Applied Condensed-Matter Physics, Department of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm (Germany); Mellinger, Axel, E-mail: axel.mellinger@cmich.edu [Department of Physics and Science of Advanced Materials Program, Central Michigan University, Mount Pleasant, Michigan 48859 (United States)

    2014-04-28T23:59:59.000Z

    Charged cellular polypropylene foams (i.e., ferro- or piezoelectrets) demonstrate high piezoelectric activity upon being electrically charged. When an external electric field is applied, dielectric barrier discharges (DBDs) occur, resulting in a separation of charges which are subsequently deposited on dielectric surfaces of internal micrometer sized voids. This deposited space charge is responsible for the piezoelectric activity of the material. Previous studies have indicated charging fields larger than predicted by Townsend's model of Paschen breakdown applied to a multilayered electromechanical model; a discrepancy which prompted the present study. The actual breakdown fields for micrometer sized voids were determined by constructing single cell voids using polypropylene spacers with heights ranging from 8 to 75??m, “sandwiched” between two polypropylene dielectric barriers and glass slides with semi-transparent electrodes. Subsequently, a bipolar triangular charging waveform with a peak voltage of 6?kV was applied to the samples. The breakdown fields were determined by monitoring the emission of light due to the onset of DBDs using an electron multiplying CCD camera. The breakdown fields at absolute pressures from 101 to 251?kPa were found to be in good agreement with the standard Paschen curves. Additionally, the magnitude of the light emission was found to scale linearly with the amount of gas, i.e., the height of the voids. Emissions were homogeneous over the observed regions of the voids for voids with heights of 25??m or less and increasingly inhomogeneous for void heights greater than 40??m at high electric fields.

  17. Tools for charged Higgs bosons

    E-Print Network [OSTI]

    Oscar Stål

    2010-12-13T23:59:59.000Z

    We review the status of publicly available software tools applicable to charged Higgs physics. A selection of codes are highlighted in more detail, focusing on new developments that have taken place since the previous charged Higgs workshop in 2008. We conclude that phenomenologists now have the tools ready to face the LHC data. A new webpage collecting charged Higgs resources is presented.

  18. Notice of Intent (NOI) for Storm Water Discharges Associated...

    Open Energy Info (EERE)

    Intent (NOI) for Storm Water Discharges Associated with Construction Activities under TPDES General Permit (TXR150000) Jump to: navigation, search OpenEI Reference LibraryAdd to...

  19. abnormal glow discharge: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    29 Glow Discharge Enhanced Chemical Reaction: Application in Ammonia Synthesis and Hydrocarbon Gas Cleanup Texas A&M University - TxSpace Summary: ......

  20. atmospheric glow discharge: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    34 Glow Discharge Enhanced Chemical Reaction: Application in Ammonia Synthesis and Hydrocarbon Gas Cleanup Texas A&M University - TxSpace Summary: ......

  1. ablation glow discharge: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    29 Glow Discharge Enhanced Chemical Reaction: Application in Ammonia Synthesis and Hydrocarbon Gas Cleanup Texas A&M University - TxSpace Summary: ......

  2. analytical glow discharge: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    29 Glow Discharge Enhanced Chemical Reaction: Application in Ammonia Synthesis and Hydrocarbon Gas Cleanup Texas A&M University - TxSpace Summary: ......

  3. WAC - 173 - 221 - Discharge Standards and Effluent Limitations...

    Open Energy Info (EERE)

    WAC - 173 - 221 - Discharge Standards and Effluent Limitations for Domestic Wastewater Facilities Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  4. File:CDPHE Industrial Individual Wastewater Discharge Permit...

    Open Energy Info (EERE)

    Industrial Individual Wastewater Discharge Permit Application.pdf Jump to: navigation, search File File history File usage Metadata File:CDPHE Industrial Individual Wastewater...

  5. WAC - 173 - 220 - National Pollutant Discharge Elimination System...

    Open Energy Info (EERE)

    Reference LibraryAdd to library Legal Document- RegulationRegulation: WAC - 173 - 220 - National Pollutant Discharge Elimination System Permit ProgramLegal Published NA Year...

  6. Point Source Discharges to Surface Waters (North Carolina)

    Broader source: Energy.gov [DOE]

    This rule requires permits for control of sources of water pollution by providing the requirements and procedures for application and issuance of state National Pollutant Discharge Elimination...

  7. atmospheric pressure discharge: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    de 367 Journal of Photochemistry and Photobiology A: Chemistry 140 (2001) 185189 The electrodeless discharge lamp: a prospective tool for photochemistry Chemistry Websites...

  8. atmospheric pressure discharges: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    de 367 Journal of Photochemistry and Photobiology A: Chemistry 140 (2001) 185189 The electrodeless discharge lamp: a prospective tool for photochemistry Chemistry Websites...

  9. Oklahoma Pollutant Discharge Elimination System (OPDES) Standards (Oklahoma)

    Broader source: Energy.gov [DOE]

    This program of the Water Quality Division of the Department of Environmental Quality sets the point source, biosolids (sewage sludge), and stormwater permitting standards for discharges to the...

  10. Notice of Intent for Stormwater Discharges Associated with Constructio...

    Open Energy Info (EERE)

    of Intent for Stormwater Discharges Associated with Construction Activity on Moderate Risk Sites Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Notice...

  11. Notice of Intent for Stormwater Discharges Associated with Constructio...

    Open Energy Info (EERE)

    Notice of Intent for Stormwater Discharges Associated with Construction Activity on Low Risk Sites Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal...

  12. Cathode fall measurement in a dielectric barrier discharge in helium

    SciTech Connect (OSTI)

    Hao, Yanpeng; Zheng, Bin; Liu, Yaoge [School of Electric Power, South China University of Technology, Guangzhou 510640 (China)] [School of Electric Power, South China University of Technology, Guangzhou 510640 (China)

    2013-11-15T23:59:59.000Z

    A method based on the “zero-length voltage” extrapolation is proposed to measure cathode fall in a dielectric barrier discharge. Starting, stable, and discharge-maintaining voltages were measured to obtain the extrapolation zero-length voltage. Under our experimental conditions, the “zero-length voltage” gave a cathode fall of about 185 V. Based on the known thickness of the cathode fall region, the spatial distribution of the electric field strength in dielectric barrier discharge in atmospheric helium is determined. The strong cathode fall with a maximum field value of approximately 9.25 kV/cm was typical for the glow mode of the discharge.

  13. The Physiologic Effects of Multiple Simultaneous Electronic Control Device Discharges

    E-Print Network [OSTI]

    Dawes, Donald M.; Ho, Jeffrey D; Reardon, Robert F; Sweeney, James D; Miner, James R

    2010-01-01T23:59:59.000Z

    physiologic effects of conducted electrical weapon dischargePhysiological effects of a conducted electrical weapon onLL, et al. Respiratory effect of prolonged electrical weapon

  14. Treated wastewater discharged from municipal wastewater treatment plants (WWTPs) contains

    E-Print Network [OSTI]

    Fay, Noah

    Treated wastewater discharged from municipal wastewater treatment plants (WWTPs) contains plants radically improve the overall quality of the treated wastewa- ter compared to secondary plants

  15. Tracing And Quantifying Magmatic Carbon Discharge In Cold Groundwaters...

    Open Energy Info (EERE)

    Tracing And Quantifying Magmatic Carbon Discharge In Cold Groundwaters- Lessons Learned From Mammoth Mountain, USA Jump to: navigation, search OpenEI Reference LibraryAdd to...

  16. Groundwater Discharge of Mercury to California Coastal Waters

    E-Print Network [OSTI]

    Flegal, Russell; Paytan, Adina; Black, Frank

    2009-01-01T23:59:59.000Z

    R. 2009. Submarine groundwater discharge of total mercuryof nutrient-enriched fresh groundwater at Stinson Beach,Priya Ganguli collects groundwater at Elkhorn Slough. Coal-

  17. Hydrothermal Heat Discharge In The Cascade Range, Northwestern...

    Open Energy Info (EERE)

    United States Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Hydrothermal Heat Discharge In The Cascade Range, Northwestern United States...

  18. Ordered dust structures in a glow discharge

    SciTech Connect (OSTI)

    Karasev, V. Yu., E-mail: plasmadust@yandex.ru; Ivanov, A. Yu.; Dzlieva, E. S.; Eikhval'd, A. I. [St. Petersburg State University, Institute of Physics (Russian Federation)

    2008-02-15T23:59:59.000Z

    Highly ordered three-dimensional dust structures are created in a striated glow discharge, and their horizontal cross-sectional images are analyzed. Calculated correlation functions, local correlation parameters, and corresponding approximations are used to classify the state of a structure according to the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) two-dimensional melting theory and a phenomenological approach. An orientational map based on an orientational parameter is proposed to expose domains in a cross section of a structure. It is shown that a plasma crystal is a polycrystal consisting of hexagonal domains (crystallites). Thermophoretic forces are used to create corners of various angles in the perimeter of the structure. Transition between hexagonal and square cell shapes is observed.

  19. Electric field measurement in microwave discharge ion thruster with electro-optic probe

    SciTech Connect (OSTI)

    Ise, Toshiyuki; Tsukizaki, Ryudo; Koizumi, Hiroyuki [The University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan); Togo, Hiroyoshi [Microsystem Integration Laboratories, Nippon Telegraph and Telephone, Morinosato, Atsugi-shi, Kanagawa 243-0198 (Japan); Kuninaka, Hitoshi [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Chuo-ku, Sagamihara, Kanagawa 229-8510 (Japan)

    2012-12-15T23:59:59.000Z

    In order to understand the internal phenomena in a microwave discharge ion thruster, it is important to measure the distribution of the microwave electric field inside the discharge chamber, which is directly related to the plasma production. In this study, we proposed a novel method of measuring a microwave electric field with an electro-optic (EO) probe based on the Pockels effect. The probe, including a cooling system, contains no metal and can be accessed in the discharge chamber with less disruption to the microwave distribution. This method enables measurement of the electric field profile under ion beam acceleration. We first verified the measurement with the EO probe by a comparison with a finite-difference time domain numerical simulation of the microwave electric field in atmosphere. Second, we showed that the deviations of the reflected microwave power and the beam current were less than 8% due to inserting the EO probe into the ion thruster under ion beam acceleration. Finally, we successfully demonstrated the measurement of the electric-field profile in the ion thruster under ion beam acceleration. These measurements show that the electric field distribution in the thruster dramatically changes in the ion thruster under ion beam acceleration as the propellant mass flow rate increases. These results indicate that this new method using an EO probe can provide a useful guide for improving the propulsion of microwave discharge ion thrusters.

  20. Comparative analysis of discharges into Lake Michigan, Phase I - Southern Lake Michigan.

    SciTech Connect (OSTI)

    Veil, J. A.; Elcock, D.; Gasper, J. R.; Environmental Science Division

    2008-06-30T23:59:59.000Z

    BP Products North America Inc. (BP) owns and operates a petroleum refinery located on approximately 1,700 acres in Whiting, East Chicago, and Hammond, Indiana, near the southern tip of Lake Michigan. BP provided funding to Purdue University-Calumet Water Institute (Purdue) and Argonne National Laboratory (Argonne) to conduct studies related to wastewater treatment and discharges. Purdue and Argonne are working jointly to identify and characterize technologies that BP could use to meet the previous discharge permit limits for total suspended solids (TSS) and ammonia after refinery modernization. In addition to the technology characterization work, Argonne conducted a separate project task, which is the subject of this report. In Phase I of a two-part study, Argonne estimated the current levels of discharge to southern Lake Michigan from significant point and nonpoint sources in Illinois, Indiana, and portions of Michigan. The study does not consider all of the chemicals that are discharged. Rather, it is narrowly focused on a selected group of pollutants, referred to as the 'target pollutants'. These include: TSS, ammonia, total and hexavalent chromium, mercury, vanadium, and selenium. In Phase II of the study, Argonne will expand the analysis to cover the entire Lake Michigan drainage basin.

  1. State waste discharge permit application 400 Area secondary cooling water. Revision 2

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    This document constitutes the Washington Administrative Code 173-216 State Waste Discharge Permit Application that serves as interim compliance as required by Consent Order DE 91NM-177, for the 400 Area Secondary Cooling Water stream. As part of the Hanford Federal Facility Agreement and Consent Order negotiations, the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site that affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 of the Washington Administrative Code, the State Waste Discharge Permitting Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order DE 91NM-177. The Consent Order DE 91NM-177 requires a series of permitting activities for liquid effluent discharges. Based upon compositional and flow rate characteristics, liquid effluent streams on the Hanford Site have been categorized into Phase 1, Phase 2, and Miscellaneous streams. This document only addresses the 400 Area Secondary Cooling Water stream, which has been identified as a Phase 2 stream. The 400 Area Secondary Cooling Water stream includes contribution streams from the Fuels and Materials Examination Facility, the Maintenance and Storage Facility, the 481-A pump house, and the Fast Flux Test Facility.

  2. General Conditions Applicable to Water Discharge Permits and Procedures and Criteria for Issuing Water Discharge Permits (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations describe permit and facility requirements for facilities which discharge wastewater. Facility construction, expansion, alteration, production increases, or process modifications...

  3. Managing Increased Charging Demand

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomyDr.Energy University Managing Increased Charging

  4. Automakers and Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from TarasaName4ServicesTribalWorkplace Charging Summit

  5. NERSC HPSS Charging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVA Portal: Submit2014 2015Charging HPSS

  6. High gradient lens for charged particle beam

    DOE Patents [OSTI]

    Chen, Yu-Jiuan

    2014-04-29T23:59:59.000Z

    Methods and devices enable shaping of a charged particle beam. A dynamically adjustable electric lens includes a series of alternating a series of alternating layers of insulators and conductors with a hollow center. The series of alternating layers when stacked together form a high gradient insulator (HGI) tube to allow propagation of the charged particle beam through the hollow center of the HGI tube. A plurality of transmission lines are connected to a plurality of sections of the HGI tube, and one or more voltage sources are provided to supply an adjustable voltage value to each transmission line of the plurality of transmission lines. By changing the voltage values supplied to each section of the HGI tube, any desired electric field can be established across the HGI tube. This way various functionalities including focusing, defocusing, acceleration, deceleration, intensity modulation and others can be effectuated on a time varying basis.

  7. An ultra miniature pinch-focus discharge Leopoldo Soto1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Abstract As a way to investigate the minimum energy to produce a pinch plasma focus discharge, an ultra optimized plasma foci. It is interesting note that plasma parameters practically constant in plasma focusAn ultra miniature pinch-focus discharge Leopoldo Soto1 , Cristian Pavez1, 2 , Mario Barbaglia3

  8. Characteristics of a corona discharge with a hot corona electrode

    SciTech Connect (OSTI)

    Kulumbaev, E. B.; Lelevkin, V. M.; Niyazaliev, I. A.; Tokarev, A. V. [Kyrgyz-Russian Slavic University (Kyrgyzstan)

    2011-08-15T23:59:59.000Z

    The effect of the temperature of the corona electrode on the electrical characteristics of a corona discharge was studied experimentally. A modified Townsend formula for the current-voltage characteristic of a one-dimensional corona is proposed. Gasdynamic and thermal characteristics of a positive corona discharge in a coaxial electrode system are calculated. The calculated results are compared with the experimental data.

  9. Faraday Accelerator with Radio-frequency Assisted Discharge (FARAD)

    E-Print Network [OSTI]

    Choueiri, Edgar

    rights reserved. #12;Abstract A new electrodeless accelerator concept, called Faraday Accelerator with Radio-frequency Assisted Discharge (FARAD), that relies on an RF-assisted discharge to produce a plasma, an applied magnetic field to guide the plasma into the acceleration region, and an induced current sheet

  10. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOE Patents [OSTI]

    Rice, Gary (Gloucester, VA); D'Silva, Arthur P. (Ames, IA); Fassel, Velmer A. (Ames, IA)

    1986-05-06T23:59:59.000Z

    An apparatus for providing a simple, low-frequency electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  11. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOE Patents [OSTI]

    Rice, G.; D'Silva, A.P.; Fassel, V.A.

    1985-04-05T23:59:59.000Z

    An apparatus for providing a simple, low-frequency, electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  12. Discharge indices for water quality loads Richard M. Vogel

    E-Print Network [OSTI]

    Vogel, Richard M.

    : effective discharge, transport, sediment, constituents, rating curve, half-load Citation: Vogel, R. M., J. RDischarge indices for water quality loads Richard M. Vogel Department of Civil and Environmental load is ultimately the quantity of interest, we define a new index, the half-load discharge, which

  13. Control Strategies for Electric Vehicle (EV) Charging Using Renewables and Local Storage

    SciTech Connect (OSTI)

    Castello, Charles C [ORNL; LaClair, Tim J [ORNL; Maxey, L Curt [ORNL

    2014-01-01T23:59:59.000Z

    The increase of electric vehicle (EV) and plug-in hybrid-electric vehicle (PHEV) adoption creates a need for more EV supply equipment (EVSE) infrastructure (i.e., EV chargers). The impact of EVSE installations could be significant due to limitations in the electric grid and potential demand charges for residential and commercial customers. The use of renewables (e.g., solar) and local storage (e.g., battery bank) can mitigate loads caused by EVSE on the electric grid. This would eliminate costly upgrades needed by utilities and decrease demand charges for consumers. This paper aims to explore control systems that mitigate the impact of EVSE on the electric grid using solar energy and battery banks. Three control systems are investigated and compared in this study. The first control system discharges the battery bank at a constant rate during specific times of the day based on historical data. The second discharges the battery bank based on the number of EVs charging (linear) and the amount of solar energy being generated. The third discharges the battery bank based on a sigmoid function (non-linear) in response to the number of EVs charging, and also takes into consideration the amount of renewables being generated. The first and second control systems recharge the battery bank at night when demand charges are lowest. The third recharges the battery bank at night and during times of the day when there is an excess of solar. Experiments are conducted using data from a private site that has 25 solar-assisted charging stations at Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN and 4 at a public site in Nashville, TN. Results indicate the third control system having better performance, negating up to 71% of EVSE load, compared with the second control system (up to 61%) and the first control system (up to 58%).

  14. Efficiency Considerations of Diesel Premixed Charge Compression...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Considerations of Diesel Premixed Charge Compression Ignition Combustion Efficiency Considerations of Diesel Premixed Charge Compression Ignition Combustion Poster...

  15. Pipeline charging of coke ovens with a preheated charge

    SciTech Connect (OSTI)

    Karpov, A.V.; Khadzhioglo, A.V.; Kuznichenko, V.M.

    1983-01-01T23:59:59.000Z

    Work to test a pipeline charging method was conducted at the Konetsk Coke Works (a PK-2K coke oven system with a single gas main, oven width 407 mm, height 4300 mm, effective column 20.0 cm/sub 3/). This method consists of transporting the heated coal charge to the ovens through a pipe by means of steam. the charge is transported by high pressure chamber groups, and loaded by means of systems equipped with devices for separation, withdrawal and treatment of the spent steam. The principal goal of the present investigation was to test technical advances in the emission-free charging of preheated charges. The problem was, first, to create a reliable technology for separation of the steam from the charge immediately before loading it into the oven and, second, to provide a total elimination of emissions, thereby protecting the environment against toxic substances.

  16. Studies of space-charge physics in beams for advanced accelerator applications

    SciTech Connect (OSTI)

    Wang, J.G.; Bernal, S.; Chin, P.; Kishek, R.A.; Li, Y.; Reiser, M.; Venturini, M.; Zhang, W.W.; Zou, Y. [Institute for Plasma Research, University of Maryland, College Park, Maryland 20742 (United States); Godlove, T.; Kehne, D. [FM Technologies, Fairfax, Virginia 22032 (United States); Haber, I. [Naval Research Laboratory, Washington, District of Columbia 20375 (United States); York, R.C. [NSCL, Michigan State University, East Lansing, Michigan 48824 (United States)

    1998-11-01T23:59:59.000Z

    We review experimental observations of space-charge effects and collective phenomena in charged particle beams for accelerator applications. These include halo formation and emittance growth, bunch profile evolution, space-charge waves, and longitudinal instabilities. We also report on the development of the University of Maryland Electron Ring for the study of space-charge physics in a circular lattice. {copyright} {ital 1998 American Institute of Physics.}

  17. State Waste Discharge Permit application: 400 Area Septic System

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations, the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affects groundwater or has the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. This document constitutes the State Waste Discharge Permit application for the 400 Area Septic System. The influent to the system is domestic waste water. Although the 400 Area Septic System is not a Public Owned Treatment Works, the Public Owned Treatment Works application is more applicable than the application for industrial waste water. Therefore, the State Waste Discharge Permit application for Public Owned Treatment Works Discharges to Land was used.

  18. State Waste Discharge Permit application: 200-E Powerhouse Ash Pit

    SciTech Connect (OSTI)

    Atencio, B.P.

    1994-06-01T23:59:59.000Z

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations, the US Department and Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. This document constitutes the State Waste Discharge Permit application for the 200-E Powerhouse Ash Pit. The 200-E Powerhouse Ash Waste Water discharges to the 200-E Powerhouse Ash Pit via dedicated pipelines. The 200-E Ash Waste Water is the only discharge to the 200-E Powerhouse Ash Pit. The 200-E Powerhouse is a steam generation facility consisting of a coal-handling and preparation section and boilers.

  19. State Waste Discharge Permit application: 200-W Powerhouse Ash Pit

    SciTech Connect (OSTI)

    Atencio, B.P.

    1994-06-01T23:59:59.000Z

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations; the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. This document constitutes the State Waste Discharge Permit application for the 200-W Powerhouse Ash Pit. The 200-W Powerhouse Ash Waste Water discharges to the 200-W Powerhouse Ash Pit via dedicated pipelines. The 200-W Powerhouse Ash Waste Water is the only discharge to the 200-W Powerhouse Ash Pit. The 200-W Powerhouse is a steam generation facility consisting of a coal-handling and preparation section and boilers.

  20. Parallel vacuum arc discharge with microhollow array dielectric and anode

    SciTech Connect (OSTI)

    Feng, Jinghua; Zhou, Lin; Fu, Yuecheng; Zhang, Jianhua; Xu, Rongkun; Chen, Faxin; Li, Linbo; Meng, Shijian, E-mail: mengshijian04@126.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China)

    2014-07-15T23:59:59.000Z

    An electrode configuration with microhollow array dielectric and anode was developed to obtain parallel vacuum arc discharge. Compared with the conventional electrodes, more than 10 parallel microhollow discharges were ignited for the new configuration, which increased the discharge area significantly and made the cathode eroded more uniformly. The vacuum discharge channel number could be increased effectively by decreasing the distances between holes or increasing the arc current. Experimental results revealed that plasmas ejected from the adjacent hollow and the relatively high arc voltage were two key factors leading to the parallel discharge. The characteristics of plasmas in the microhollow were investigated as well. The spectral line intensity and electron density of plasmas in microhollow increased obviously with the decease of the microhollow diameter.

  1. Plasma mixing glow discharge device for analytical applications

    DOE Patents [OSTI]

    Pinnaduwage, L.A.

    1999-04-20T23:59:59.000Z

    An instrument for analyzing a sample has an enclosure that forms a chamber containing an anode which divides the chamber into a discharge region and an analysis region. A gas inlet and outlet are provided to introduce and exhaust a rare gas into the discharge region. A cathode within the discharge region has a plurality of pins projecting in a geometric pattern toward the anode for exciting the gas and producing a plasma discharge between the cathode and the anode. Low energy electrons (e.g. <0.5 eV) pass into the analysis region through an aperture. The sample to be analyzed is placed into the analysis region and bombarded by the metastable rare gas atoms and the low energy electrons extracted into from the discharge region. A mass or optical spectrometer can be coupled to a port of the analysis region to analyze the resulting ions and light emission. 3 figs.

  2. Plasma mixing glow discharge device for analytical applications

    DOE Patents [OSTI]

    Pinnaduwage, Lal A. (Knoxville, TN)

    1999-01-01T23:59:59.000Z

    An instrument for analyzing a sample has an enclosure that forms a chamber containing an anode which divides the chamber into a discharge region and an analysis region. A gas inlet and outlet are provided to introduce and exhaust a rare gas into the discharge region. A cathode within the discharge region has a plurality of pins projecting in a geometric pattern toward the anode for exciting the gas and producing a plasma discharge between the cathode and the anode. Low energy electrons (e.g. <0.5 eV) pass into the analysis region through an aperture. The sample to be analyzed is placed into the analysis region and bombarded by the metastable rare gas atoms and the low energy electrons extracted into from the discharge region. A mass or optical spectrometer can be coupled to a port of the analysis region to analyze the resulting ions and light emission.

  3. Evaluating Electric Vehicle Charging Impacts and Customer Charging...

    Energy Savers [EERE]

    The report also examines when consumers want to recharge vehicles, and to what extent pricing and incentives can encourage consumers to charge during off-peak periods. Evaluating...

  4. Influence of gap spacing on the characteristics of Trichel pulse generated in point-to-plane discharge gaps

    SciTech Connect (OSTI)

    Li, Zhen, E-mail: leezhen1988@gmail.com; Zhang, Bo, E-mail: shizbcn@mail.tsinghua.edu.cn; He, Jinliang, E-mail: hejl@tsinghua.edu.cn; Xu, Yongsheng, E-mail: evebus@163.com [State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China)] [State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China)

    2014-01-15T23:59:59.000Z

    In this paper, the specific characteristics of the Trichel pulse generated in wide point-to-plane discharge gaps are investigated and compared with those of the currents generated in narrow gaps. A set of empirical formulas are derived to describe the specific characteristics. The influence of the gap spacing both on the current characteristics and on the coefficients of the formulas is studied. Based on the experiment results, an improvement is made to the space charge calculation method proposed by Lama and Gallo [J. Appl. Phys. 45, 103–113 (1974)] and the calculation results are compared to the ones obtained with Lama and Gallo's original method. With the influence of the space charge considered, the modified method obtains more accurate results of the space charge accumulating in the gap and gives a more precise description of the motion of the space charge in the gap. Based on the calculation results, the influence of the space charge on the distribution of the electric field is examined and the influence of the gap spacing on the current characteristics is also studied.

  5. Charged anisotropic matter with linear or nonlinear equation of state

    SciTech Connect (OSTI)

    Varela, Victor; Rahaman, Farook; Ray, Saibal; Chakraborty, Koushik; Kalam, Mehedi [Institute of Mathematics, Kings College, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom); Department of Mathematics, Jadavpur University, Kolkata 700 032, West Bengal (India); Department of Physics, Government College of Engineering and Ceramic Technology, Kolkata 700 010, West Bengal (India); Department of Physics, Government Training College, Hooghly 712103 (India)

    2010-08-15T23:59:59.000Z

    Ivanov pointed out substantial analytical difficulties associated with self-gravitating, static, isotropic fluid spheres when pressure explicitly depends on matter density. Simplifications achieved with the introduction of electric charge were noticed as well. We deal with self-gravitating, charged, anisotropic fluids and get even more flexibility in solving the Einstein-Maxwell equations. In order to discuss analytical solutions we extend Krori and Barua's method to include pressure anisotropy and linear or nonlinear equations of state. The field equations are reduced to a system of three algebraic equations for the anisotropic pressures as well as matter and electrostatic energy densities. Attention is paid to compact sources characterized by positive matter density and positive radial pressure. Arising solutions satisfy the energy conditions of general relativity. Spheres with vanishing net charge contain fluid elements with unbounded proper charge density located at the fluid-vacuum interface. Notably the electric force acting on these fluid elements is finite, although the acting electric field is zero. Net charges can be huge (10{sup 19}C) and maximum electric field intensities are very large (10{sup 23}-10{sup 24} statvolt/cm) even in the case of zero net charge. Inward-directed fluid forces caused by pressure anisotropy may allow equilibrium configurations with larger net charges and electric field intensities than those found in studies of charged isotropic fluids. Links of these results with charged strange quark stars as well as models of dark matter including massive charged particles are highlighted. The van der Waals equation of state leading to matter densities constrained by cubic polynomial equations is briefly considered. The fundamental question of stability is left open.

  6. Low-voltage gas-discharge device

    DOE Patents [OSTI]

    Kovarik, V.J.; Hershcovitch, A.; Prelec, K.

    1982-06-08T23:59:59.000Z

    An electronic device of the type wherein current flow is conducted by an ionized gas comprising a cathode of the type heated by ionic bombardment, an anode, means for maintaining a predetermined pressure in the region between the anode and the cathode and means for maintaining a field in the region is described. The field, which is preferably a combined magnetic and electric field, is oriented so that the mean distance traveled by electrons before reaching the anode is increased. Because of this increased distance traveled electrons moving to the anode will ionize a large number of gas atoms, thus reducing the voltage necessary to initiate gas breakdown. In a preferred embodiment the anode is a main hollow cathode and the cathode is a smaller igniter hollow cathode located within and coaxial with the main hollow cathode. An axial magnetic field is provided in the region between the hollow cathodes in order to facilitate gas breakdown in that region and initiate plasma discharge from the main hollow cathode.

  7. Nanoparticle synthesis in pulsed low temperature discharges

    SciTech Connect (OSTI)

    Buss, R.J.

    1996-06-01T23:59:59.000Z

    Silicon nitride powders with an average size as low as 7 nm are synthesized in a pulsed radio frequency glow discharge. The as-synthesized silicon nitride powder from a silane/ammonia plasma has a high hydrogen content and is sensitive to oxidation in air. Post-plasma heating of the powder in a vacuum results in nitrogen loss, giving silicon-rich powder. In contrast, heat treatment at 800 C for 20 minutes in an ammonia atmosphere (200 Torr pressure) yields a hydrogen-free powder which is stable with respect to atmospheric oxidation. Several approaches to synthesizing silicon carbide nano-size powders are presented. Experiments using silane/hydrocarbon plasmas produce particles with a high hydrogen content as demonstrated by Fourier transform infrared analysis. The hydrogen is present as both CH and SiH functionality. These powders are extremely air-sensitive. A second approach uses a gas mixture of methyltrichlorosilane and hydrogen. The particles have a low hydrogen content and resist oxidation. Particle morphology of the silicon carbide is more spherical and there is less agglomeration than is observed in the silicon nitride powder.

  8. 510 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 24, NO. 2, FEBRUARY 2009 Self-Discharge Characterization and Modeling

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    have acquired many names coined by manufacturers including super- capacitors, ultracapacitors, double-Discharge Characterization and Modeling of Electrochemical Capacitor Used for Power Electronics Applications Yasser Diab capacitor, also referred to as a supercapacitor, is an important factor in de- termining the duration

  9. Charge exchange molecular ion source

    DOE Patents [OSTI]

    Vella, Michael C.

    2003-06-03T23:59:59.000Z

    Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.

  10. Seismic explosive charge loader and anchor

    SciTech Connect (OSTI)

    Mcreynolds, O.B.

    1981-07-14T23:59:59.000Z

    An improved seismic explosive charge loader and anchor for loading and anchoring explosives in cylindrical containers in bore holes is disclosed, which includes a snap in spring band shaped anchor which effectively anchors the loader in the well bore against upward movement, one aspect of the invention includes a snap lock threaded connection for securing an explosive container having interrupted threads to the loader and anchor, and the loader and anchor is constructed and arranged to maintain a detonator in place in the explosive container thereby assuring detonation of the explosive.

  11. Influence of the airflow speed along transmission lines on the DC corona discharge loss, using finite element approach

    SciTech Connect (OSTI)

    Shemshadi, A.; Akbari, A. [Electric Department, K. N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Niayesh, K. [Electric Engineering Department, Tehran University, Tehran (Iran, Islamic Republic of)

    2012-07-15T23:59:59.000Z

    Corona discharge is of great interest from the physical point of view and due to its numerous practical applications in industry and especially one of the most important sources of loss in the high voltage transmission lines. This paper provides guidelines for the amount of electric loss caused by corona phenomenon occurred around a DC high voltage wire placed between two flat plates and influence of wind speed rate on the amount of corona loss using COMSOL Multiphysics. So electric potential distribution patterns and charge density diffusion around the wire are studied in this article.

  12. Regulations for the Rhode Island Pollutant Discharge Elimination System (Rhode Island)

    Broader source: Energy.gov [DOE]

    These regulations aim to protect surface water from pollutant discharges. They describe allowable discharges in the state that are subject to permits, discharges which may be made without permits,...

  13. Properties of water surface discharge at different pulse repetition rates

    SciTech Connect (OSTI)

    Ruma,; Yoshihara, K. [Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan); Hosseini, S. H. R., E-mail: hosseini@kumamoto-u.ac.jp; Sakugawa, T.; Akiyama, H. [Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan); Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555 (Japan); Akiyama, M. [Department of Electrical and Electronic Engineering, Kagoshima University, Kagoshima 890-0065 (Japan); Lukeš, P. [Institute of Plasma Physics, AS CR, Prague, Prague 18200 (Czech Republic)

    2014-09-28T23:59:59.000Z

    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000?Hz, with 0.5?J per pulse energy output at 25?kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H{sub 2}O{sub 2}) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H{sub 2}O{sub 2} and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  14. Ab initio structure search and in situ 7Li NMR studies of discharge products in the Li-S battery system

    E-Print Network [OSTI]

    See, Kimberly A.; Leskes, Michal; Griffin, John M.; Britto, Sylvia; Matthews, Peter D.; Emly, Alexandra; Van der Ven, Anton; Wright, Dominic S.; Morris, Andrew J.; Grey, Clare P.; Seshadri, Ram

    2014-11-10T23:59:59.000Z

    of discharge and most of the intermediate polysulfides are retained inside the cathode matrix.8 Lowe et al. also used in situ XRD and coupled it with absorption spectroscopy to show that a limited number of polysulfide intermediates are involved... to correctly describe the system, which includes the activity of the solvent. However, the suggested discharge profile for a pure solid-state cathode (Figure 1c) could explain the mechanisms observed for Li?S batteries that utilize ceramic and even polymer...

  15. Sacrificial Charge and Charge Injection! Evolution of Line Width!

    E-Print Network [OSTI]

    Grant, Catherine E.

    . Similar structures are seen in the energy scale due to sacrificial charge. " Solar Min Solar Max increasing CTI, trailing charge and event/split thresholds Evolution of Energy Scale! · Radiation damage! Catherine Grant, Bev LaMarr, Eric Miller and Mark Bautz (MIT Kavli Institute)! Instruments and Data! · Front

  16. Generation of tunable plasma photonic crystals in meshed dielectric barrier discharge

    SciTech Connect (OSTI)

    Wang, Yongjie; Dong, Lifang, E-mail: donglfhbu@163.com; Liu, Weibo; He, Yafeng; Li, Yonghui [College of Physics Science and Technology, Hebei University, Baoding 071002, China and Hebei Key Laboratory of Optic-electronic Information Materials, Baoding 071002 (China)

    2014-07-15T23:59:59.000Z

    Tunable superlattice plasma photonic crystals are obtained in a meshed dielectric barrier discharge. These plasma photonic crystals are composed of thin artificial lattices and thick self-organized lattices, and can be tuned easily by adjusting the applied voltage. A plasma photonic crystal with self-organized hexagonal lattice coupled to artificial square lattice is first realized. The dispersion relations of the square sublattices with different radii, which are recorded by an intensified charge-coupled device camera, are calculated. The results show that the thick square sublattice has the higher band edge frequencies and wider band widths. Band gaps of superlattice plasma photonic crystals are actually temporal integrations of those of transient sublattices.

  17. Study on a negative hydrogen ion source with hot cathode arc discharge

    SciTech Connect (OSTI)

    Lin, S. H., E-mail: linshh@impcas.ac.cn; Fang, X. [Institute of Modern Physics (IMP), Chinese Academy of Sciences, Lanzhou 730000 (China) [Institute of Modern Physics (IMP), Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Zhang, H. J.; Qian, C.; Ma, B. H.; Wang, H.; Li, X. X.; Zhang, X. Z.; Sun, L. T.; Zhang, Z. M.; Yuan, P.; Zhao, H. W. [Institute of Modern Physics (IMP), Chinese Academy of Sciences, Lanzhou 730000 (China)] [Institute of Modern Physics (IMP), Chinese Academy of Sciences, Lanzhou 730000 (China)

    2014-02-15T23:59:59.000Z

    A negative hydrogen (H{sup ?}) ion source with hot cathode arc discharge was designed and fabricated as a primary injector for a 10 MeV PET cyclotron at IMP. 1 mA dc H{sup ?} beam with ? {sub N,} {sub RMS} = 0.08 ??mm?mrad was extracted at 25 kV. Halbach hexapole was adopted to confine the plasma. The state of arc discharge, the parameters including filament current, arc current, gas pressure, plasma electrode bias, and the ratio of I{sub e{sup ?}}/I{sub H{sup ?}} were experimentally studied. The discussion on the result, and opinions to improve the source were given.

  18. Entrainment by Spatiotemporal Chaos in Glow Discharge-Semiconductor Systems

    E-Print Network [OSTI]

    Marat Akhmet; Ismail Rafatov; Mehmet Onur Fen

    2014-06-15T23:59:59.000Z

    Entrainment of limit cycles by chaos [1] is discovered numerically through specially designed unidirectional coupling of two glow discharge-semiconductor systems. By utilizing the auxiliary system approach [2], it is verified that the phenomenon is not a chaos synchronization. Simulations demonstrate various aspects of the chaos appearance in both drive and response systems. Chaotic control is through the external circuit equation and governs the electrical potential on the boundary. The expandability of the theory to collectives of glow discharge systems is discussed, and this increases the potential of applications of the results. Moreover, the research completes the previous discussion of the chaos appearance in a glow discharge-semiconductor system [3].

  19. Permit Program Regulating Discharge of Nondomestic Wastewater into a POTW (Ohio)

    Broader source: Energy.gov [DOE]

    Any significant industrial user is required to apply for and obtain an individual indirect discharge permit if they discharge water or waste into a publicly owned treatment works.

  20. State of charge indicators for a battery

    DOE Patents [OSTI]

    Rouhani, S. Zia (Idaho Falls, ID)

    1999-01-01T23:59:59.000Z

    The present invention relates to state of charge indicators for a battery. One aspect of the present invention utilizes expansion and contraction displacements of an electrode plate of a battery to gauge the state of charge in the battery. One embodiment of a battery of the present invention includes an anodic plate; a cathodic plate; an electrolyte in contact with the anodic and cathodic plates; plural terminals individually coupled with one of the anodic and cathodic plates; a separator intermediate the anodic and cathodic plates; an indicator configured to indicate an energy level of the battery responsive to movement of the separator; and a casing configured to house the anodic and cathodic plates, electrolyte, and separator.

  1. Piston-assisted charge pumping

    E-Print Network [OSTI]

    Kaur, D; Mourokh, L

    2015-01-01T23:59:59.000Z

    We examine charge transport through a system of three sites connected in series in the situation when an oscillating charged piston modulates the energy of the middle site. We show that with an appropriate set of parameters, charge can be transferred against an applied voltage. In this scenario, when the oscillating piston shifts away from the middle site, the energy of the site decreases and it is populated by a charge transferred from the lower energy site. On the other hand, when the piston returns to close proximity, the energy of the middle site increases and it is depopulated by the higher energy site. Thus through this process, the charge is pumped against the potential gradient. Our results can explain the process of proton pumping in one of the mitochondrial enzymes, Complex I. Moreover, this mechanism can be used for electron pumping in semiconductor nanostructures.

  2. UPDES General Permit for Discharges from Construction Activities...

    Open Energy Info (EERE)

    Discharges from Construction Activities (Permit No. UTRC00000) Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: UPDES General Permit...

  3. AZPDES General Permit for Stormwater Discharges Associated with...

    Open Energy Info (EERE)

    Stormwater Discharges Associated with Construction Activity (Permit No. AZG2013-001) Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther:...

  4. Neutral Gas Expansion in a Cylindrical Helicon Discharge Chamber

    E-Print Network [OSTI]

    Walker, Mitchell

    ­1500 G) magnetic field parallel to the axis of the tube. In many helicon experiments for basic plasma research, the discharge chamber is composed of a small diameter (2­10 cm), relatively long (0.5­1.75 m

  5. arc discharge lamp: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TR, were determined. It was found that there is no local LTE in this arc discharge air plasma during its spacetime evolution, and effects of strong non-izothermality have a...

  6. Nitrogen Atmospheric Pressure Post Discharges for Surface Biological Decontamination inside

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nitrogen Atmospheric Pressure Post Discharges for Surface Biological Decontamination inside Small) (PET) capillary tubes of different shapes and lengths and decontamination of flow tubes, both for several years at the Orsay Plasma Lab. Its biological decontamination efficiency has been demonstrated

  7. Discharging a DC bus capacitor of an electrical converter system

    DOE Patents [OSTI]

    Kajouke, Lateef A; Perisic, Milun; Ransom, Ray M

    2014-10-14T23:59:59.000Z

    A system and method of discharging a bus capacitor of a bidirectional matrix converter of a vehicle are presented here. The method begins by electrically shorting the AC interface of the converter after an AC energy source is disconnected from the AC interface. The method continues by arranging a plurality of switching elements of a second energy conversion module into a discharge configuration to establish an electrical current path from a first terminal of an isolation module, through an inductive element, and to a second terminal of the isolation module. The method also modulates a plurality of switching elements of a first energy conversion module, while maintaining the discharge configuration of the second energy conversion module, to at least partially discharge a DC bus capacitor.

  8. Capacitive charging system for high power battery charging

    SciTech Connect (OSTI)

    NONE

    1998-12-31T23:59:59.000Z

    This document describes a project to design, build, demonstrate, and document a Level 3 capacitive charging system, and it will be based on the existing PEZIC prototype capacitive coupler. The capacitive coupler will be designed to transfer power at a maximum of 600 kW, and it will transfer power by electric fields. The power electronics will transfer power at 100 kW. The coupler will be designed to function with future increases in the power electronics output power and increases in the amp/hours capacity of sealed batteries. Battery charging algorithms will be programmed into the control electronics. The finished product will be a programmable battery charging system capable of transferring 100 kW via a capacitive coupler. The coupler will have a low power loss of less than 25 watts when transferring 240 kW (400 amps). This system will increase the energy efficiency of high power battery charging, and it will enhance mobility by reducing coupler failures. The system will be completely documented. An important deliverable of this project is information. The information will be distributed to the Army`s TACOM-TARDEC`s Advanced Concept Group, and it will be distributed to commercial organizations by the Society of Automotive Engineers. The information will be valuable for product research, development, and specification. The capacitive charging system produced in this project will be of commercial value for future electric vehicles. The coupler will be designed to rapid charge batteries that have a capacity of several thousand amp/hours at hundreds of volts. The charging system built here will rapid charge batteries with several hundred amp/hours capacity, depending on the charging voltage.

  9. Discharge source with gas curtain for protecting optics from particles

    DOE Patents [OSTI]

    Fornaciari, Neal R.; Kanouff, Michael P.

    2004-03-30T23:59:59.000Z

    A gas curtain device is employed to deflect debris that is generated by an extreme ultraviolet and soft x-ray radiation discharge source such as an electric discharge plasma source. The gas curtain device projects a stream of gas over the path of the radiation to deflect debris particles into a direction that is different from that of the path of the radiation. The gas curtain can be employed to prevent debris accumulation on the optics used in photolithography.

  10. High pressure discharges in cavities formed by microfabrication techniques

    SciTech Connect (OSTI)

    Khan, B.A.; Cammack, D.A.; Pinker, R.D.; Racz, J. [Philips Electronics North America Corporation, Philips Research, Briarcliff Manor, New York 10510 (United States)] [Philips Electronics North America Corporation, Philips Research, Briarcliff Manor, New York 10510 (United States)

    1997-07-01T23:59:59.000Z

    High pressure discharges are the basis of small high intensity light sources. In this work, we demonstrate the formation of high pressure discharges, in cavities formed by applying micromachining and integrated circuit techniques to quartz substrates. Cavities containing varying amounts of mercury and argon were fabricated to obtain high pressure discharges. A high pressure mercury discharge was formed in the electrodeless cavities by exciting them with a microwave source, operating at 2.45 GHz and in the electroded cavities by applying a dc voltage. The contraction of the discharge into a high pressure arc was observed. A broad emission spectrum due to self-absorption and collisions between excited atoms and normal atoms, typical of high pressure mercury discharges, was measured. The light output and efficacy increased with increasing pressure. The measured voltage was used to estimate the pressure within the electroded cavities, which is as high as 127 atm for one of the two cavities discussed in this work. Efficacies over 40 lumens per watt were obtained for the electrodeless cavities and over 50 scr(l)m/W for the electroded cavities. {copyright} {ital 1997 American Institute of Physics.}

  11. State waste discharge permit application, 200-E chemical drain field

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations (Ecology et al. 1994), the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect ground would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order No. DE 91NM-177, (Ecology and DOE-RL 1991). The Consent Order No. DE 91NM-177 requires a series of permitting activities for liquid effluent discharges. This document presents the State Waste Discharge Permit (SWDP) application for the 200-E Chemical Drain Field. Waste water from the 272-E Building enters the process sewer line directly through a floor drain, while waste water from the 2703-E Building is collected in two floor drains, (north and south) that act as sumps and are discharged periodically. The 272-E and 2703-E Buildings constitute the only discharges to the process sewer line and the 200-E Chemical Drain Field.

  12. Laser-driven deflection arrangements and methods involving charged particle beams

    DOE Patents [OSTI]

    Plettner, Tomas (San Ramon, CA); Byer, Robert L. (Stanford, CA)

    2011-08-09T23:59:59.000Z

    Systems, methods, devices and apparatus are implemented for producing controllable charged particle beams. In one implementation, an apparatus provides a deflection force to a charged particle beam. A source produces an electromagnetic wave. A structure, that is substantially transparent to the electromagnetic wave, includes a physical structure having a repeating pattern with a period L and a tilted angle .alpha., relative to a direction of travel of the charged particle beam, the pattern affects the force of the electromagnetic wave upon the charged particle beam. A direction device introduces the electromagnetic wave to the structure to provide a phase-synchronous deflection force to the charged particle beam.

  13. MHK technologies include current energy conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research leverages decades of experience in engineering and design and analysis (D&A) of wind power technologies, and its vast research complex, including high-performance...

  14. Method and apparatus for indicating electric charge remaining in batteries based on electrode weight and center of gravity

    DOE Patents [OSTI]

    Rouhani, S. Zia (Idaho Falls, ID)

    1996-01-01T23:59:59.000Z

    In most electrochemical batteries which generate electricity through the reaction of a battery electrode with an electrolyte solution, the chemical composition, and thus the weight and density, of the electrode changes as the battery discharges. The invention measures a parameter of the battery which changes as the weight of the electrode changes as the battery discharges and relates that parameter to the value of the parameter when the battery is fully charged and when the battery is functionally discharged to determine the state-of-charge of the battery at the time the parameter is measured. In one embodiment, the weight of a battery electrode or electrode unit is measured to determine the state-of-charge. In other embodiments, where a battery electrode is located away from the geometrical center of the battery, the position of the center of gravity of the battery or shift in the position of the center of gravity of the battery is measured (the position of the center of gravity changes with the change in weight of the electrode) and indicates the state-of-charge of the battery.

  15. Method and apparatus for indicating electric charge remaining in batteries based on electrode weight and center of gravity

    DOE Patents [OSTI]

    Rouhani, S.Z.

    1996-12-03T23:59:59.000Z

    In most electrochemical batteries which generate electricity through the reaction of a battery electrode with an electrolyte solution, the chemical composition, and thus the weight and density, of the electrode changes as the battery discharges. The invention measures a parameter of the battery which changes as the weight of the electrode changes as the battery discharges and relates that parameter to the value of the parameter when the battery is fully charged and when the battery is functionally discharged to determine the state-of-charge of the battery at the time the parameter is measured. In one embodiment, the weight of a battery electrode or electrode unit is measured to determine the state-of-charge. In other embodiments, where a battery electrode is located away from the geometrical center of the battery, the position of the center of gravity of the battery or shift in the position of the center of gravity of the battery is measured (the position of the center of gravity changes with the change in weight of the electrode) and indicates the state-of-charge of the battery. 35 figs.

  16. Charge-pump voltage converter

    DOE Patents [OSTI]

    Brainard, John P. (Albuquerque, NM); Christenson, Todd R. (Albuquerque, NM)

    2009-11-03T23:59:59.000Z

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  17. Plasmons in inhomogeneously doped neutral and charged graphene nanodisks

    SciTech Connect (OSTI)

    Silveiro, Iván [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); Javier García de Abajo, F., E-mail: javier.garciadeabajo@icfo.es [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys, 23, 08010 Barcelona (Spain)

    2014-03-31T23:59:59.000Z

    We study plasmons in graphene nanodisks including the effect of inhomogeneity in the distribution of the doping charge. Specifically, we discuss the following two configurations: charged disks containing a fixed amount of additional carriers, which are self-consistently distributed along the surface to produce a uniform DC potential; and neutral disks exposed to a neighboring external point charge. A suitable finite-element method is elaborated to compute the charge density associated with the plasmons in the electrostatic limit. For charged disks, we find dipolar plasmons similar to those of uniformly doped graphene structures, in which the plasmon induced charge piles up near the edges. In contrast, in neutral disks placed near an external point charge, plasmons are strongly localized away from the edges. Surprisingly, a single external electron is enough to trap plasmons. The disks also display axially symmetric dark-plasmons, which can be excited through external illumination by coupling them to a neighboring metallic element. Our results have practical relevance for graphene nanophotonics under inhomogeneous doping conditions.

  18. Charge-induced phase separation in lipid membranes

    E-Print Network [OSTI]

    Hiroki Himeno; Naofumi Shimokawa; Shigeyuki Komura; David Andelman; Tsutomu Hamada; Masahiro Takagi

    2014-08-19T23:59:59.000Z

    The phase separation in lipid bilayers that include negatively charged lipids is examined experimentally. We observed phase-separated structures and determined the membrane miscibility temperatures in several binary and ternary lipid mixtures of unsaturated neutral lipid, dioleoylphosphatidylcholine (DOPC), saturated neutral lipid, dipalmitoylphosphatidylcholine (DPPC), unsaturated charged lipid, dioleoylphosphatidylglycerol (DOPG$^{\\scriptsize{(-)}}$), saturated charged lipid, dipalmitoylphosphatidylglycerol (DPPG$^{\\scriptsize{(-)}}$), and cholesterol. In binary mixtures of saturated and unsaturated charged lipids, the combination of the charged head with the saturation of hydrocarbon tail is a dominant factor for the stability of membrane phase separation. DPPG$^{\\scriptsize{(-)}}$ enhances phase separation, while DOPG$^{\\scriptsize{(-)}}$ suppresses it. Furthermore, the addition of DPPG$^{\\scriptsize{(-)}}$ to a binary mixture of DPPC/cholesterol induces phase separation between DPPG$^{\\scriptsize{(-)}}$-rich and cholesterol-rich phases. This indicates that cholesterol localization depends strongly on the electric charge on the hydrophilic head group rather than on the ordering of the hydrocarbon tails. Finally, when DPPG$^{\\scriptsize{(-)}}$ was added to a neutral ternary system of DOPC/DPPC/Cholesterol (a conventional model of membrane rafts), a three-phase coexistence was produced. We conclude by discussing some qualitative features of the phase behaviour in charged membranes using a free energy approach.

  19. Large-Volume Resonant Microwave Discharge for Plasma Cleaning of a CEBAF 5-Cell SRF Cavity

    SciTech Connect (OSTI)

    J. Mammosser, S. Ahmed, K. Macha, J. Upadhyay, M. Nikoli, S. Popovi, L. Vuakovi

    2012-07-01T23:59:59.000Z

    We report the preliminary results on plasma generation in a 5-cell CEBAF superconducting radio-frequency (SRF) cavity for the application of cavity interior surface cleaning. CEBAF currently has {approx}300 of these five cell cavities installed in the Jefferson Lab accelerator which are mostly limited by cavity surface contamination. The development of an in-situ cavity surface cleaning method utilizing a resonant microwave discharge could lead to significant CEBAF accelerator performance improvement. This microwave discharge is currently being used for the development of a set of plasma cleaning procedures targeted to the removal of various organic, metal and metal oxide impurities. These contaminants are responsible for the increase of surface resistance and the reduction of RF performance in installed cavities. The CEBAF five cell cavity volume is {approx} 0.5 m2, which places the discharge in the category of large-volume plasmas. CEBAF cavity has a cylindrical symmetry, but its elliptical shape and transversal power coupling makes it an unusual plasma application, which requires special consideration of microwave breakdown. Our preliminary study includes microwave breakdown and optical spectroscopy, which was used to define the operating pressure range and the rate of removal of organic impurities.

  20. Atmospheric sampling glow discharge ionizataion and triple quadrupole tandem mass spectrometry for explosives vapor detection

    SciTech Connect (OSTI)

    McLuckey, S.A.; Goeringer, D.E.; Asano, K.G.; Hart, K.J.; Glish, G.L.; Grant, B.C.; Chambers, D.M.

    1993-08-01T23:59:59.000Z

    The detection and identification of trace vapors of hidden high explosives is an excellent example of a targeted analysis problem. It is desirable to push to ever lower levels the quantity or concentration of explosives material that provides an analytical signal, while at the same time discriminating against all other uninteresting material. The detection system must therefore combine high sensitivity with high specificity. This report describes the philosophy behind the use of atmospheric sampling glow discharge ionization, which is a sensitive, rugged, and convenient means for forming anions from explosives molecules, with tandem mass spectrometry, which provides unparalleled specificity in the identification of explosives-related ions. Forms of tandem mass spectrometry are compared and contrasted to provide a summary of the characteristics to be expected from an explosives detector employing mass spectrometry/mass spectrometry. The instrument developed for the FAA, an atmospheric sampling glow discharge/triple quadrupole mass spectrometer, is described in detail with particular emphasis on the ion source/spectrometer interface and on the capabilities of the spectrometer. Performance characteristics of the system are also described as they pertain to explosives of interest including a description of an automated procedure for the detection and identification of specific explosives. A comparison of various tandem mass spectrometers mated with atmospheric sampling glow discharge is then described and preliminary studies with a vapor preconcentration system provided by the FAA will be described.

  1. Collective thermoelectrophoresis of charged colloids

    E-Print Network [OSTI]

    Arghya Majee; Alois Würger

    2014-01-29T23:59:59.000Z

    Thermally driven colloidal transport is, to a large extent, due to the thermoelectric or Seebeck effect of the charged solution.We show that, contrary to the generally adopted single-particle picture, the transport coefficient depends on the colloidal concentration. For solutions that are dilute in the hydrodynamic sense, collective effects may significantly affect the thermophoretic mobility. Our results provide an explanation for recent experimental observations on polyelectrolytes and charged particles and suggest that for charged colloids collective behavior is the rule rather than the exception.

  2. The Energy of Charged Matter

    E-Print Network [OSTI]

    Jan Philip Solovej

    2004-06-07T23:59:59.000Z

    In this talk I will discuss some of the techniques that have been developed over the past 35 years to estimate the energy of charged matter. These techniques have been used to solve stability of (fermionic) matter in different contexts, and to control the instability of charged bosonic matter. The final goal will be to indicate how these techniques with certain improvements can be used to prove Dyson's 1967 conjecture for the energy of a charged Bose gas--the sharp $N^{7/5}$ law.

  3. CO and byproduct formation during CO? reduction in dielectric barrier discharges

    SciTech Connect (OSTI)

    Brehmer, F. [Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); AFS GmbH, Von-Holzapfel-Straße 10, 86497 Horgau (Germany); Welzel, S.; Sanden, M. C. M. van de [Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Dutch Institute for Fundamental Energy Research, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Engeln, R. [Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2014-09-28T23:59:59.000Z

    The dissociation of CO? and the formation of CO, O?, and O² were studied in a dielectric barrier discharge (DBD) at atmospheric pressure by means of ex-situ infrared absorption spectroscopy. CO mixing ratios of 0.1%–4.4% were determined for specific injected energies between 0.1 and 20 eV per molecule (0.3–70 kJ/l). A lower limit of the gas temperature of 320–480 K was estimated from the wall temperature of the quartz reactor as measured with an infrared camera. The formation of CO in the DBD could be described as function of the total number of transferred charges during the residence time of the gas in the active plasma zone. An almost stoichiometric CO:O? ratio of 2:1 was observed along with a strongly temperature dependent O? production up to 0.075%. Although the ideal range for an efficient CO? dissociation in plasmas of 1 eV per molecule for the specific injected energy was covered, the energy efficiency remained below 5% for all conditions. The present results indicate a reaction mechanism which is initiated by electron impact processes followed by charge transfer reactions and non-negligible surface enhanced O and CO recombination. While electron-driven CO? dissociation is relatively energy inefficient by itself, fast O recombination and the low gas temperatures inhibit the synergistic reuse of atomic oxygen in a secondary CO? + O dissociation step.

  4. Efficient wireless charging with gallium nitride FETs

    E-Print Network [OSTI]

    Yeh, Theresa (Theresa I.)

    2014-01-01T23:59:59.000Z

    Though wireless charging is more convenient than traditional wired charging methods, it is currently less efficient. This not only wastes power but can also result in a longer charging time. Improving the efficiency of ...

  5. Systems and methods for initializing a charging system

    DOE Patents [OSTI]

    Ransom, Ray M.; Perisic, Milun; Kajouke, Lateef A.

    2014-09-09T23:59:59.000Z

    Systems and methods are provided for initiating a charging system. The method, for example, may include, but is not limited to, providing, by the charging system, an incrementally increasing voltage to a battery up to a first predetermined threshold while the energy conversion module has a zero-percent duty cycle, providing, by the charging system, an incrementally increasing voltage to the battery from an initial voltage level of the battery up to a peak voltage of a voltage source while the energy conversion module has a zero-percent duty cycle, and providing, by the charging system, an incrementally increasing voltage to the battery by incrementally increasing the duty cycle of the energy conversion module.

  6. Systems and methods for initializing a charging system

    DOE Patents [OSTI]

    Ransom, Ray M; Perisic, Milun; Kajouke, Lateef A

    2014-06-24T23:59:59.000Z

    Systems and methods are provided for initiating a charging system. The method, for example, may include, but is not limited to, providing, by the charging system, an incrementally increasing voltage to a battery up to a first predetermined threshold while the energy conversion module has a zero-percent duty cycle, providing, by the charging system, an incrementally increasing voltage to the battery from an initial voltage level of the battery up to a peak voltage of a voltage source while the energy conversion module has a zero-percent duty cycle, and providing, by the charging system, an incrementally increasing voltage to the battery by incrementally increasing the duty cycle of the energy conversion module.

  7. Helium Ash Simulation Studies with Divertor Helium Pumping in JET Internal Transport Barrier Discharges

    E-Print Network [OSTI]

    Helium Ash Simulation Studies with Divertor Helium Pumping in JET Internal Transport Barrier Discharges

  8. A non-isothermal PEM fuel cell model including two water transport mechanisms in the

    E-Print Network [OSTI]

    Münster, Westfälische Wilhelms-Universität

    A non-isothermal PEM fuel cell model including two water transport mechanisms in the membrane K Freiburg Germany A dynamic two-phase flow model for proton exchange mem- brane (PEM) fuel cells and the species concentrations. In order to describe the charge transport in the fuel cell the Poisson equations

  9. Turbo-Charged Lighting Design

    E-Print Network [OSTI]

    Clark, W. H. II

    TURBO-CHARGED LIGHTING DESIGN William H. Clark II Design Engineer O'Connell Robertson & Assoc Austin/ Texas ABSTRACT The task of the lighting designer has become very complex, involving thousands of choices for fixture types and hundreds...

  10. Premix charge, compression ignition combustion system optimization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Premix charge, compression ignition combustion system optimization Premix charge, compression ignition combustion system optimization Presentation given at DEER 2006, August 20-24,...

  11. Structure, Charge Distribution, and Electron Hopping Dynamics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Charge Distribution, and Electron Hopping Dynamics in Magnetite (Fe3O4) (100) Surfaces from First Principles. Structure, Charge Distribution, and Electron Hopping Dynamics in...

  12. Vehicle Technologies Office: AVTA - Electric Vehicle Charging...

    Energy Savers [EERE]

    Charging Equipment (EVSE) Testing Data Vehicle Technologies Office: AVTA - Electric Vehicle Charging Equipment (EVSE) Testing Data Electric vehicle chargers (otherwise known as...

  13. EV Everywhere Grand Challenge - Charging Infrastructure Enabling...

    Office of Environmental Management (EM)

    Charging Infrastructure Enabling Flexible EV Design EV Everywhere Grand Challenge - Charging Infrastructure Enabling Flexible EV Design Presentation given at the EV Everywhere...

  14. Thermophoresis of charged colloidal particles

    E-Print Network [OSTI]

    S. Fayolle; T. Bickel; A. Würger

    2014-01-30T23:59:59.000Z

    Thermally induced particle flow in a charged colloidal suspension is studied in a fluid-mechanical approach. The force density acting on the charged boundary layer is derived in detail. From Stokes' equation with no-slip boundary conditions at the particle surface, we obtain the particle drift velocity and the thermophoretic transport coefficients. The results are discussed in view of previous work and available experimental data.

  15. EE Regional Technology Roadmap Includes comparison

    E-Print Network [OSTI]

    EE Regional Technology Roadmap Includes comparison against 6th Power Plan (Update cyclically Data Clearinghouse BPA/RTF NEEA/Regional Programs Group Update Regional EE Technology Roadmap Lighting

  16. DIDACTICAL HOLOGRAPHIC EXHIBIT INCLUDING (HOLOGRAPHIC TELEVISION)

    E-Print Network [OSTI]

    de Aguiar, Marcus A. M.

    DIDACTICAL HOLOGRAPHIC EXHIBIT INCLUDING HoloTV (HOLOGRAPHIC TELEVISION) José J. Lunazzi , DanielCampinasSPBrasil Abstract: Our Institute of Physics exposes since 1980 didactical exhibitions of holography in Brazil where

  17. Sessions include: Beginning Farmer and Rancher

    E-Print Network [OSTI]

    Watson, Craig A.

    Sessions include: ­ Beginning Farmer and Rancher ­ New Markets and Regulations ­ Food Safety ­ Good Bug, Bad Bug ID ­ Horticulture ­ Hydroponics ­ Livestock and Pastured Poultry ­ Mushrooms ­ Organic ­ Live animal exhibits ­ Saturday evening social, and ­ Local foods Florida Small Farms and Alternative

  18. Rules and Regulations Pertaining to a User Fee System for Point Source Dischargers that Discharge Pollutants into the Waters of the State (Rhode Island)

    Broader source: Energy.gov [DOE]

    These regulations establish a user fee system for point source dischargers that discharge pollutants into the surface waters of the State. The funds from such fees are used by the Department of...

  19. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  20. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  1. STUDIES OF X-RAY PRODUCTION FOLLOWING CHARGE EXCHANGE RECOMBINATION BETWEEN HIGHLY CHARGED IONS AND NEUTRAL ATOMS AND MOLECULES

    SciTech Connect (OSTI)

    Brown, G V; Beiersdorfer, P; Chen, H; Clementson, J; Frankel, M; Gu, M F; Kelley, R L; Kilbourne, C A; Porter, F S; Thorn, D B; Wargelin, B J

    2008-08-28T23:59:59.000Z

    We have used microcalorimeters built by the NASA/Goddard Space Flight Center and the Lawrence Livermore National Laboratory Electron Beam Ion Trap to measure X-ray emission produced by charge exchange reactions between highly charged ions colliding with neutral helium, hydrogen, and nitrogen gas. Our measurements show the spectral dependence on neutral species and also show the distinct differences between spectra produced by charge exchange reactions and those produced by direct impact excitation. These results are part of an ongoing experimental investigation at the LLNL EBIT facility of charge exchange spectral signatures and can be used to interpret X-ray spectra produced by a variety of laboratory and celestial sources including cometary and planetary atmospheres, the Earth's magnetosheath, the heliosphere, and tokamaks.

  2. Summary of ISO/TC 201 Standard: ISO 29081: 2010, Surface Chemical Analysis - Auger Electron Spectroscopy - Reporting of Methods Used for Charge Control and Charge Correction

    SciTech Connect (OSTI)

    Baer, Donald R.

    2011-11-01T23:59:59.000Z

    This international standard specifies the minimum amount of information required for describing the methods of charge control in measurements of Auger electron transitions from insulating specimens by electron-stimulated Auger electron spectroscopy to be reported with the analytical results. Information is provided in an Annex on methods that have been found useful for charge control prior to or during AES analysis. The Annex also includes a summary table of methods or approaches, ordered by simplicity of approach. A similar international standard has been published for x-ray photoelectron spectroscopy (ISO 19318: 2003(E), Surface chemical analysis - X-ray photoelectron spectroscopy - Reporting of methods used for charge control and charge correction).

  3. Mesoscale Phase-Field Modeling of Charge Transport in Nanocomposite Electrodes for Lithium-ion Batteries

    SciTech Connect (OSTI)

    Hu, Shenyang Y.; Li, Yulan; Rosso, Kevin M.; Sushko, Maria L.

    2013-01-10T23:59:59.000Z

    A phase-field model is developed to investigate the influence of microstructure, thermodynamic and kinetic properties, and charging conditions on charged particle transport in nanocomposite electrodes. Two sets of field variables are used to describe the microstructure. One is comprised of the order parameters describing size, orientation and spatial distributions of nanoparticles, and the other is comprised of the concentrations of mobile species. A porous nanoparticle microstructure filled with electrolyte is taken as a model system to test the phase-field model. Inhomogeneous and anisotropic dielectric constants and mobilities of charged particles, and stresses associated with lattice deformation due to Li-ion insertion/extraction are considered in the model. Iteration methods are used to find the elastic and electric fields in an elastically and electrically inhomogeneous medium. The results demonstrate that the model is capable of predicting charge separation associated with the formation of a double layer at the electrochemical interface between solid and electrolyte, and the effect of microstructure, inhomogeneous and anisotropic thermodynamic and kinetic properties, charge rates, and stresses on voltage versus current density and capacity during charging and discharging.

  4. Safety assessment of discharge chute isolation barrier preparation and installation activities. Revision 3

    SciTech Connect (OSTI)

    Meichle, R.H.

    1994-11-08T23:59:59.000Z

    This revision adds a section addressing impacts of dropping surfacing tool and rack cutter on the basin floor, and corrects typographical errors. The safety assessment is made for the activities for the preparation and installation of the discharge chute isolation barriers. The safety assessment includes a hazard assessment and comparisons of potential accidents/events to those addressed by the current safety basis documentation. No significant hazards were identified. An evaluation against the USQ evaluation questions was made and the determination made that the activities do not represent a USQ. Hazard categorization techniques were used to provide a basis for readiness review classifications.

  5. J. Phys. III IYance 7 (1997) 927-936 APRIL 1997, PAGE 927 A Stable Discharge Glow in Gas Discharge System with

    E-Print Network [OSTI]

    Boyer, Edmond

    1997-01-01T23:59:59.000Z

    have been stud- ied in a wide range of the gas pressure p (21.3-466.5 hPa) and of interJ. Phys. III IYance 7 (1997) 927-936 APRIL 1997, PAGE 927 A Stable Discharge Glow in Gas Discharge.40.Sx Metal-semiconductor-metal structures Abstract. A dc discharge generated between parallel plate

  6. Device to facilitate moving an electrical cable of an electric vehicle charging station and method of providing the same

    DOE Patents [OSTI]

    Karner, Donald B

    2014-04-29T23:59:59.000Z

    Some embodiments include a device to facilitate moving an electrical cable of an electric vehicle charging station. Other embodiments of related systems and methods are also disclosed.

  7. Statistical charge distribution over dust particles in a non-Maxwellian Lorentzian plasma

    SciTech Connect (OSTI)

    Mishra, S. K. [Institute for Plasma Research (IPR), Gandhinagar-382428 (India); Misra, Shikha, E-mail: shikhamish@gmail.com [Centre for Energy Studies (CES), Indian Institute of Technology Delhi (IITD), New Delhi-110016 (India)

    2014-07-15T23:59:59.000Z

    On the basis of statistical mechanics and charging kinetics, the charge distribution over uniform size spherical dust particles in a non-Maxwellian Lorentzian plasma is investigated. Two specific situations, viz., (i) the plasma in thermal equilibrium and (ii) non-equilibrium state where the plasma is dark (no emission) or irradiated by laser light (including photoemission) are taken into account. The formulation includes the population balance equation for the charged particles along with number and energy balance of the complex plasma constituents. The departure of the results for the Lorentzian plasma, from that in case of Maxwellian plasma, is graphically illustrated and discussed; it is shown that the charge distribution tends to results corresponding to Maxwellian plasma for large spectral index. The charge distribution predicts the opposite charging of the dust particles in certain cases.

  8. Pulsed discharge ionization source for miniature ion mobility spectrometers

    DOE Patents [OSTI]

    Xu, Jun; Ramsey, J. Michael; Whitten, William B.

    2004-11-23T23:59:59.000Z

    A method and apparatus is disclosed for flowing a sample gas and a reactant gas (38, 43) past a corona discharge electrode (26) situated at a first location in an ion drift chamber (24), applying a pulsed voltage waveform comprising a varying pulse component and a dc bias component to the corona discharge electrode (26) to cause a corona which in turn produces ions from the sample gas and the reactant gas, applying a dc bias to the ion drift chamber (24) to cause the ions to drift to a second location (25) in the ion drift chamber (24), detecting the ions at the second location (25) in the drift chamber (24), and timing the period for the ions to drift from the corona discharge electrode to the selected location in the drift chamber.

  9. Electric Power Monthly, August 1990. [Glossary included

    SciTech Connect (OSTI)

    Not Available

    1990-11-29T23:59:59.000Z

    The Electric Power Monthly (EPM) presents monthly summaries of electric utility statistics at the national, Census division, and State level. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data includes generation by energy source (coal, oil, gas, hydroelectric, and nuclear); generation by region; consumption of fossil fuels for power generation; sales of electric power, cost data; and unusual occurrences. A glossary is included.

  10. Environmental Compliance Guide. Guidance manual for Department of Energy compliance with the Clean Water Act: National Pollutant Discharge Elimination System (NPDES)

    SciTech Connect (OSTI)

    Not Available

    1982-07-01T23:59:59.000Z

    This manual provides general guidance for Department of Energy (DOE) officials for complying with Sect. 402 of the Clean Water Act (CWA) of 1977 and amendments. Section 402 authorizes the US Environmental Protection Agency (EPA) or states with EPA approved programs to issue National Pollutant Discharge Elimination System (NPDES) permits for the direct discharge of waste from a point source into waters of the United States. Although the nature of a project dictates the exact information requirements, every project has similar information requirements on the environmental setting, type of discharge(s), characterization of effluent, and description of operations and wastewater treatment. Additional information requirements for projects with ocean discharges, thermal discharges, and cooling water intakes are discussed. Guidance is provided in this manual on general methods for collecting, analyzing, and presenting information for an NPDES permit application. The NPDES program interacts with many sections of the CWA; therefore, background material on pertinent areas such as effluent limitations, water quality standards, toxic substances, and nonpoint source pollutants is included in this manual. Modifications, variances, and extensions applicable to NPDES permits are also discussed.

  11. Features of plasma glow in low pressure terahertz gas discharge

    SciTech Connect (OSTI)

    Bratman, V. L.; Golubev, S. V.; Izotov, I. V.; Kalynov, Yu. K.; Koldanov, V. A.; Razin, S. V. [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation)] [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Litvak, A. G.; Sidorov, A. V.; Skalyga, V. A.; Zorin, V. G. [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation) [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina st., 603950 Nizhny Novgorod (Russian Federation)

    2013-12-15T23:59:59.000Z

    Investigations of the low pressure (1–100 Torr) gas discharge in the powerful (1 kW) quasi-optical terahertz (0.55 THz) wave beams were made. An intense afterglow was observed after the end of gyrotron terahertz radiation pulse. Afterglow duration significantly exceeded radiation pulse length (8 ?s). This phenomenon could be explained by the strong dependence of the collisional-radiative recombination rate (that is supposed to be the most likely mechanism of electron losses from the low pressure terahertz gas discharge) on electron temperature.

  12. Large area, surface discharge pumped, vacuum ultraviolet light source

    DOE Patents [OSTI]

    Sze, Robert C. (Santa Fe, NM); Quigley, Gerard P. (Los Alamos, NM)

    1996-01-01T23:59:59.000Z

    Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source. A contamination-free VUV light source having a 225 cm.sup.2 emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm.sup.2 at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing.

  13. Large area, surface discharge pumped, vacuum ultraviolet light source

    DOE Patents [OSTI]

    Sze, R.C.; Quigley, G.P.

    1996-12-17T23:59:59.000Z

    Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source is disclosed. A contamination-free VUV light source having a 225 cm{sup 2} emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm{sup 2} at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing. 3 figs.

  14. High-order harmonic generation in a capillary discharge

    DOE Patents [OSTI]

    Rocca, Jorge J.; Kapteyn, Henry C.; Mumane, Margaret M.; Gaudiosi, David; Grisham, Michael E.; Popmintchev, Tenio V.; Reagan, Brendan A.

    2010-06-01T23:59:59.000Z

    A pre-ionized medium created by a capillary discharge results in more efficient use of laser energy in high-order harmonic generation (HHG) from ions. It extends the cutoff photon energy, and reduces the distortion of the laser pulse as it propagates down the waveguide. The observed enhancements result from a combination of reduced ionization energy loss and reduced ionization-induced defocusing of the driving laser as well as waveguiding of the driving laser pulse. The discharge plasma also provides a means to spectrally tune the harmonics by tailoring the initial level of ionization of the medium.

  15. Communication in automation, including networking and wireless

    E-Print Network [OSTI]

    Antsaklis, Panos

    Communication in automation, including networking and wireless Nicholas Kottenstette and Panos J and networking in automation is given. Digital communication fundamentals are reviewed and networked control are presented. 1 Introduction 1.1 Why communication is necessary in automated systems Automated systems use

  16. Electrochemical cell including ribbed electrode substrates

    SciTech Connect (OSTI)

    Breault, R.D.; Goller, G.J.; Roethlein, R.J.; Sprecher, G.C.

    1981-07-21T23:59:59.000Z

    An electrochemical cell including an electrolyte retaining matrix layer located between and in contact with cooperating anode and cathode electrodes is disclosed herein. Each of the electrodes is comprised of a ribbed (or grooved) substrate including a gas porous body as its main component and a catalyst layer located between the substrate and one side of the electrolyte retaining matrix layer. Each substrate body includes a ribbed section for receiving reactant gas and lengthwise side portions on opposite sides of the ribbed section. Each of the side portions includes a channel extending along its entire length from one surface thereof (e.g., its outer surface) to but stopping short of an opposite surface (e.g., its inner surface) so as to provide a web directly between the channel and the opposite surface. Each of the channels is filled with a gas impervious substance and each of the webs is impregnated with a gas impervious substance so as to provide a gas impervious seal along the entire length of each side portion of each substrate and between the opposite faces thereof (e.g., across the entire thickness thereof).

  17. Prices include compostable serviceware and linen tablecloths

    E-Print Network [OSTI]

    California at Davis, University of

    & BLACK BEAN ENCHILADAS Fresh corn tortillas stuffed with tender brown butter sautéed butternut squash, black beans and yellow on- ions, garnished with avocado and sour cream. $33 per person EDAMAME & CORN SQUASH & BLACK BEAN ENCHILADA FREE RANGE CHICK- EN SANDWICH PLATED ENTREES All plated entrees include

  18. Energy Consumption of Personal Computing Including Portable

    E-Print Network [OSTI]

    Namboodiri, Vinod

    Energy Consumption of Personal Computing Including Portable Communication Devices Pavel Somavat1 consumption, questions are being asked about the energy contribution of computing equipment. Al- though studies have documented the share of energy consumption by this type of equipment over the years, research

  19. Airflow influence on the discharge performance of dielectric barrier discharge plasma actuators

    SciTech Connect (OSTI)

    Kriegseis, J.; Tropea, C. [Institute of Fluid Mechanics and Aerodynamics, Technische Universitaet Darmstadt, Flughafenstr. 19, D-64347 Griesheim (Germany); Center of Smart Interfaces, Technische Universitaet Darmstadt, Flughafenstr. 19, D-64347 Griesheim (Germany); Grundmann, S. [Center of Smart Interfaces, Technische Universitaet Darmstadt, Flughafenstr. 19, D-64347 Griesheim (Germany)

    2012-07-15T23:59:59.000Z

    In the present work, the effect of the airflow on the performance of dielectric barrier discharge plasma-actuators is investigated experimentally. In order to analyze the actuator's performance, luminosity measurements have been carried out simultaneously with the recording of the relevant electrical parameters. A performance drop of about 10% is observed for the entire measured parameter range at a flow speed of M = 0.145 (U{sub {infinity}}=50 m/s). This insight is of particular importance, since the plasma-actuator control authority is already significantly reduced at this modest speed level. The results at higher Mach numbers (0.4

  20. Effect of charge distribution on RDX adsorption in IRMOF-10

    SciTech Connect (OSTI)

    Xiong, Ruichang [University of Tennessee, Knoxville (UTK); Keffer, David J. [University of Tennessee, Knoxville (UTK); Fuentes-Cabrera, Miguel A [ORNL; Nicholson, Don M [ORNL; Michalkova, Andrea [Jackson State University; Petrova, Tetyana [Jackson State University; Leszczynski, Jerzy [Computational Center for Molecular Structure and Interactions, Jackson, MS; Odbadrakh, Khorgolkhuu [ORNL; Doss, Bryant [West Virginia University; Lewis, James [West Virginia University

    2010-01-01T23:59:59.000Z

    Quantum mechanical (QM) calculations, classical grand canonical Monte Carlo (GCMC) simulations, and classical molecular dynamics (MD) simulations are performed to test the effect of charge distribution on hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) adsorption and diffusion in IRMOF-10. Several different methods for mapping QM electron distributions onto atomic point charges are explored, including the electrostatic potential (ESP) method, Mulliken population analysis, L{sub 0}wdin population analysis, and natural bond orbital analysis. Classical GCMC and MD simulations of RDX in IRMOF-10 are performed using 15 combinations of charge sources of RDX and IRMOF-10. As the charge distributions vary, interaction potential energies, the adsorption loading, and the self-diffusivities are significantly different. None of the 15 combinations are able to quantitatively capture the dependence of the energy of adsorption on local configuration of RDX as observed in the QM calculations. We observe changes in the charge distributions of RDX and IRMOF-10 with the introduction of an RDX molecule into the cage. We also observe a large dispersion contribution to the interaction energy from QM calculations that is not reproduced in the classical simulations, indicating that the source of discrepancy may not lie exclusively with the assignment of charges.

  1. Electrostatic wire stabilizing a charged particle beam

    DOE Patents [OSTI]

    Prono, D.S.; Caporaso, G.J.; Briggs, R.J.

    1983-03-21T23:59:59.000Z

    In combination with a charged particle beam generator and accelerator, apparatus and method are provided for stabilizing a beam of electrically charged particles. A guiding means, disposed within the particle beam, has an electric charge induced upon it by the charged particle beam. Because the sign of the electric charge on the guiding means and the sign of the particle beam are opposite, the particles are attracted toward and cluster around the guiding means to thereby stabilize the particle beam as it travels.

  2. Subterranean barriers including at least one weld

    DOE Patents [OSTI]

    Nickelson, Reva A.; Sloan, Paul A.; Richardson, John G.; Walsh, Stephanie; Kostelnik, Kevin M.

    2007-01-09T23:59:59.000Z

    A subterranean barrier and method for forming same are disclosed, the barrier including a plurality of casing strings wherein at least one casing string of the plurality of casing strings may be affixed to at least another adjacent casing string of the plurality of casing strings through at least one weld, at least one adhesive joint, or both. A method and system for nondestructively inspecting a subterranean barrier is disclosed. For instance, a radiographic signal may be emitted from within a casing string toward an adjacent casing string and the radiographic signal may be detected from within the adjacent casing string. A method of repairing a barrier including removing at least a portion of a casing string and welding a repair element within the casing string is disclosed. A method of selectively heating at least one casing string forming at least a portion of a subterranean barrier is disclosed.

  3. Power generation method including membrane separation

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A. (Union City, CA)

    2000-01-01T23:59:59.000Z

    A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

  4. Rotor assembly including superconducting magnetic coil

    DOE Patents [OSTI]

    Snitchler, Gregory L. (Shrewsbury, MA); Gamble, Bruce B. (Wellesley, MA); Voccio, John P. (Somerville, MA)

    2003-01-01T23:59:59.000Z

    Superconducting coils and methods of manufacture include a superconductor tape wound concentrically about and disposed along an axis of the coil to define an opening having a dimension which gradually decreases, in the direction along the axis, from a first end to a second end of the coil. Each turn of the superconductor tape has a broad surface maintained substantially parallel to the axis of the coil.

  5. Electric power monthly, September 1990. [Glossary included

    SciTech Connect (OSTI)

    Not Available

    1990-12-17T23:59:59.000Z

    The purpose of this report is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues. The power plants considered include coal, petroleum, natural gas, hydroelectric, and nuclear power plants. Data are presented for power generation, fuel consumption, fuel receipts and cost, sales of electricity, and unusual occurrences at power plants. Data are compared at the national, Census division, and state levels. 4 figs., 52 tabs. (CK)

  6. Sacrificial Charge and Charge Injection! Evolution of Line Width!

    E-Print Network [OSTI]

    Grant, Catherine E.

    MeV). Anti-correlated with the solar cycle. Similar structures are seen in the energy scale due background" which depends on solar cycle and activity." XIS energy scale and line width as a function of cut increasing CTI, trailing charge and event/split thresholds Evolution of Energy Scale! · Radiation damage

  7. Charged particle mobility refrigerant analyzer

    DOE Patents [OSTI]

    Allman, S.L.; Chunghsuan Chen; Chen, F.C.

    1993-02-02T23:59:59.000Z

    A method for analyzing a gaseous electronegative species comprises the steps of providing an analysis chamber; providing an electric field of known potential within the analysis chamber; admitting into the analysis chamber a gaseous sample containing the gaseous electronegative species; providing a pulse of free electrons within the electric field so that the pulse of free electrons interacts with the gaseous electronegative species so that a swarm of electrically charged particles is produced within the electric field; and, measuring the mobility of the electrically charged particles within the electric field.

  8. Magnetic moment versus tensor charge

    E-Print Network [OSTI]

    M. Mekhfi

    2005-05-10T23:59:59.000Z

    We express the baryon magnetic moments in terms of the baryon tensor charges, considering the quarks as relativistic interacting objects. Once tensor charges get measured accurately, the formula for the baryon magnetic moment will serve to extract precise information on the quark anomalous magnetic moment, the quark effective mass and the ratio of the quark constituent mass to the quark effective mass. The analogous formula for the baryon electric dipole moment is of no great use as it gets eventually sizable contributions from various CP- violating sources not necessary associated to the quark electric dipole moment.

  9. Condenser for extreme-UV lithography with discharge source

    DOE Patents [OSTI]

    Sweatt, William C. (Albuquerque, NM); Kubiak, Glenn D. (Livermore, CA)

    2001-01-01T23:59:59.000Z

    Condenser system, for use with a ringfield camera in projection lithography, employs quasi grazing-incidence collector mirrors that are coated with a suitable reflective metal such as ruthenium to collect radiation from a discharge source to minimize the effect of contaminant accumulation on the collecting mirrors.

  10. SYNAPTIC MECHANISMS Weber's law implies neural discharge more regular than

    E-Print Network [OSTI]

    Feng, Jianfeng

    SYNAPTIC MECHANISMS Weber's law implies neural discharge more regular than a Poisson process Jing, interspike interval, psychophysical law, spike rate Abstract Weber's law is one of the basic laws established. In this paper, we carried out an analysis on the spike train statistics when Weber's law holds

  11. COLLISIONLESS ELECTRON HEATING IN RF GAS DISCHARGES: I. QUASILINEAR THEORY

    E-Print Network [OSTI]

    Kaganovich, Igor

    COLLISIONLESS ELECTRON HEATING IN RF GAS DISCHARGES: I. QUASILINEAR THEORY Yu.M. Aliev1 , I an interest in mechanisms of electron heating and power deposition in the plasma main- tained by radio{frequency (rf) electric elds. A modern trend in plasma technology aims at decreasing the gas pressures down

  12. Estimating discharge in rivers using remotely sensed hydraulic information

    E-Print Network [OSTI]

    Smith, Laurence C.

    SAR images of three braided rivers were coupled with channel slope data obtained from topographic maps­100%) of the observed, with the mean estimate accuracy within 10%. This level of accuracy was achieved using calibration functions developed from observed discharge. The calibration functions use reach specific geomorphic

  13. THE POSSIBILITY OF PRODUCING THERMONUCLEAR REACTIONS IN A GASEOUS DISCHARGE*

    E-Print Network [OSTI]

    THE POSSIBILITY OF PRODUCING THERMONUCLEAR REACTIONS IN A GASEOUS DISCHARGE* I.V. Kurchatov of the energy of thermonuclear reactions. Physicists the world over are attracted by the extraordinarily interest- ing and very difficult task of controlling thermonuclear reactiom. Investigations in this field

  14. What kind of charging infrastructure do Chevrolet Volts Drivers in The EV Project use?

    SciTech Connect (OSTI)

    John Smart

    2013-09-01T23:59:59.000Z

    This report summarizes key conclusions from analysis of data collected from Chevrolet Volts participating in The EV Project. Topics include how much Volt drivers charge at level 1 vs. level 2 rates and how much they charge at home vs. away from home.

  15. What kind of charging infrastructure do Nissan Leaf drivers in The EV Project use?

    SciTech Connect (OSTI)

    Shawn Salisbury

    2014-09-01T23:59:59.000Z

    This document will describe the charging behavior of Nissan Leaf battery electric vehicles that were enrolled in the EV Project. It will include aggregated data from several thousand vehicles regarding time-of-day, power level, and location of charging and driving events. This document is a white paper that will be published on the INL AVTA website.

  16. Multiverse rate equation including bubble collisions

    E-Print Network [OSTI]

    Michael P. Salem

    2013-02-19T23:59:59.000Z

    The volume fractions of vacua in an eternally inflating multiverse are described by a coarse-grain rate equation, which accounts for volume expansion and vacuum transitions via bubble formation. We generalize the rate equation to account for bubble collisions, including the possibility of classical transitions. Classical transitions can modify the details of the hierarchical structure among the volume fractions, with potential implications for the staggering and Boltzmann-brain issues. Whether or not our vacuum is likely to have been established by a classical transition depends on the detailed relationships among transition rates in the landscape.

  17. Compensated gain control circuit for buck regulator command charge circuit

    DOE Patents [OSTI]

    Barrett, David M. (Albuquerque, NM)

    1996-01-01T23:59:59.000Z

    A buck regulator command charge circuit includes a compensated-gain control signal for compensating for changes in the component values in order to achieve optimal voltage regulation. The compensated-gain control circuit includes an automatic-gain control circuit for generating a variable-gain control signal. The automatic-gain control circuit is formed of a precision rectifier circuit, a filter network, an error amplifier, and an integrator circuit.

  18. Compensated gain control circuit for buck regulator command charge circuit

    DOE Patents [OSTI]

    Barrett, D.M.

    1996-11-05T23:59:59.000Z

    A buck regulator command charge circuit includes a compensated-gain control signal for compensating for changes in the component values in order to achieve optimal voltage regulation. The compensated-gain control circuit includes an automatic-gain control circuit for generating a variable-gain control signal. The automatic-gain control circuit is formed of a precision rectifier circuit, a filter network, an error amplifier, and an integrator circuit. 5 figs.

  19. RETHINKING STANDBY & FIXED COST CHARGES

    E-Print Network [OSTI]

    intended to recover a more significant share of fixed costs solely from solar PV customer- generators rooftop solar PV development at limited to no cost to taxpayers and non-solar utility customers. StandbyPage | i RETHINKING STANDBY & FIXED COST CHARGES: REGULATORY & RATE DESIGN PATHWAYS TO DEEPER SOLAR

  20. RELIABILITY OF CAPACITOR CHARGING UNITS

    E-Print Network [OSTI]

    Sprott, Julien Clinton

    experience little change while those using the electronic cutoff would drift due to ageing components and changing parameters. The first few shots using the electronic cutoff were less reliable than subsequentRELIABILITY OF CAPACITOR CHARGING UNITS Clint Sprott July 30, 1965 University of Wisconsin

  1. Charge Separation for Muon Collider Cooling

    SciTech Connect (OSTI)

    Palmer, R.B.; Fernow; R.C.

    2011-03-28T23:59:59.000Z

    Most schemes for six dimensional muon ionization cooling work for only one sign. It is then necessary to have charge separation prior to that cooling. Schemes of charge separation using bent solenoids are described, and their simulated performances reported. It is found that for efficient separation, it should take place at somewhat higher momenta than commonly used for the cooling. Charge separation using bent solenoids can be effective if carefully designed. Bent solenoids can generate dispersion from 'momentum drift', but can spoil emittance from 'amplitude drift'. Abrupt entry into a bent solenoid causes emittance growth, but matching using integral {lambda} lengths, or Norem's method, corrects this problem. Reverse bending removes the dispersion and reduces 'amplitude drift', but only if there is no rf until after all bending. The main problem is bunch lengthening and distortion from the long transports without rf. At 230 MeV/c, even with a higher field of 3 T, non-linearities increase the 6D emittance by 117% and give 13% loss, which is not acceptable. Raising the momentum from 230 to 300 MeV gives a 6D emittance growth of 38% and the loss 5%, which may be acceptable. Raising the momentum further to 400 MeV/c gives very good results: 6D growth of 24% and 2.5% loss. Further optimization should include the acceleration to the higher momenta prior to the separation, and the higher momentum cooling immediately after it. The longitudinal phase space prior to the separation should be rotated to minimize the total bunch lengthening.

  2. Analysis of Heat Charging and Discharging on the Phase Change Energy-Storage Composite Wallboard (PCECW) in Building

    E-Print Network [OSTI]

    Yue, H.; Chen, C.; Liu, Y.; Guo, H.

    2006-01-01T23:59:59.000Z

    This research paper combines the phase change material and the basal building material to constitute a kind of new phase change energy- storage composite wallboard (PCECW), applied in a residential building in Beijing. We analyzed the energy-storage...

  3. Optical panel system including stackable waveguides

    DOE Patents [OSTI]

    DeSanto, Leonard (Dunkirk, MD); Veligdan, James T. (Manorville, NY)

    2007-11-20T23:59:59.000Z

    An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.

  4. Optical panel system including stackable waveguides

    DOE Patents [OSTI]

    DeSanto, Leonard; Veligdan, James T.

    2007-03-06T23:59:59.000Z

    An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.

  5. Thermovoltaic semiconductor device including a plasma filter

    DOE Patents [OSTI]

    Baldasaro, Paul F. (Clifton Park, NY)

    1999-01-01T23:59:59.000Z

    A thermovoltaic energy conversion device and related method for converting thermal energy into an electrical potential. An interference filter is provided on a semiconductor thermovoltaic cell to pre-filter black body radiation. The semiconductor thermovoltaic cell includes a P/N junction supported on a substrate which converts incident thermal energy below the semiconductor junction band gap into electrical potential. The semiconductor substrate is doped to provide a plasma filter which reflects back energy having a wavelength which is above the band gap and which is ineffectively filtered by the interference filter, through the P/N junction to the source of radiation thereby avoiding parasitic absorption of the unusable portion of the thermal radiation energy.

  6. Nanoscale Charge Transport in Excitonic Solar Cells

    SciTech Connect (OSTI)

    Venkat Bommisetty, South Dakota State University

    2011-06-23T23:59:59.000Z

    Excitonic solar cells, including all-organic, hybrid organic-inorganic and dye-sensitized solar cells (DSSCs), offer strong potential for inexpensive and large-area solar energy conversion. Unlike traditional inorganic semiconductor solar cells, where all the charge generation and collection processes are well understood, these excitonic solar cells contain extremely disordered structures with complex interfaces which results in large variations in nanoscale electronic properties and has a strong influence on carrier generation, transport, dissociation and collection. Detailed understanding of these processes is important for fabrication of highly efficient solar cells. Efforts to improve efficiency are underway at a large number of research groups throughout the world focused on inorganic and organic semiconductors, photonics, photophysics, charge transport, nanoscience, ultrafast spectroscopy, photonics, semiconductor processing, device physics, device structures, interface structure etc. Rapid progress in this multidisciplinary area requires strong synergetic efforts among researchers from diverse backgrounds. Such effort can lead to novel methods for development of new materials with improved photon harvesting and interfacial treatments for improved carrier transport, process optimization to yield ordered nanoscale morphologies with well defined electronic structures.

  7. AVTA: ChargePoint America Recovery Act Charging Infrastructure Reports

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports describe results of data collected through the Chargepoint America project, which deployed 4,600 public and home charging stations throughout the U.S. This research was conducted by Idaho National Laboratory.

  8. Macroscopic behavior and discrete dynamo in high-[Theta] reversed-field pinch discharges

    SciTech Connect (OSTI)

    Arimoto, H.; Nakamura, A.; Sato, K.I.; Nagata, A.; Ando, T.; Kubota, S.; Masamune, S.; Nagatsu, M.; Tsukishima, T. (Plasma Science Center, Nagoya University, Chikusa-ku, Nagoya 464-01 (Japan))

    1993-06-01T23:59:59.000Z

    The magnetohydrodynamic (MHD) activity and the discrete dynamo in high-[Theta] reversed-field pinch (RFP) discharges are studied through comparisons with those in normal-[Theta] RFP discharges, where [Theta]=[ital B][sub [theta

  9. Utah Code Ann. § 19-5-107: Discharge of pollutants unlawful...

    Open Energy Info (EERE)

    Ann. 19-5-107: Discharge of pollutants unlawful -- Discharge permit required Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute:...

  10. Fast Charging Electric Vehicle Research & Development Project

    SciTech Connect (OSTI)

    Heny, Michael

    2014-03-31T23:59:59.000Z

    The research and development project supported the engineering, design and implementation of onroad Electric Vehicle (“EV”) charging technologies. It included development of potential solutions for DC fast chargers (“DCFC”) capable of converting high voltage AC power to the DC power required by EVs. Additional development evaluated solutions related to the packaging of power electronic components and enclosure design, as well as for the design and evaluation of EV charging stations. Research compared different charging technologies to identify optimum applications in a municipal fleet. This project collected EV usage data and generated a report demonstrating that EVs, when supported by adequate charging infrastructure, are capable of replacing traditional internal combustion vehicles in many municipal applications. The project’s period of performance has demonstrated various methods of incorporating EVs into a municipal environment, and has identified three general categories for EV applications: ? Short Commute: Defined as EVs performing in limited duration, routine commutes. ? Long Commute: Defined as tasks that require EVs to operate in longer daily mileage patterns. ? Critical Needs: Defined as the need for EVs to be ready at every moment for indefinite periods. Together, the City of Charlottesville, VA (the “City”) and Aker Wade Power Technologies, LLC (“Aker Wade”) concluded that the EV has a viable position in many municipal fleets but with limited recommendation for use in Critical Needs applications such as Police fleets. The report also documented that, compared to internal combustion vehicles, BEVs have lower vehiclerelated greenhouse gas (“GHG”) emissions and contribute to a reduction of air pollution in urban areas. The enhanced integration of EVs in a municipal fleet can result in reduced demand for imported oil and reduced municipal operating costs. The conclusions indicated in the project’s Engineering Report (see Attachment A) are intended to assist future implementation of electric vehicle technology. They are based on the cited research and on the empirical data collected and presented. The report is not expected to represent the entire operating conditions of any of the equipment under consideration within this project, and tested equipment may operate differently under other conditions.

  11. A Novel Charge Recycling Approach to Low-Power

    SciTech Connect (OSTI)

    Ulaganathan, Chandradevi [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Britton Jr, Charles L [ORNL] [ORNL; Holleman, Jeremy [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Blalock, Benjamin [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK)

    2012-01-01T23:59:59.000Z

    A novel charge-recycling scheme has been designed and implemented to demonstrate the feasibility of operating digital circuits using the charge scavenged from the leakage and dynamic load currents inherent to digital logic. The proposed scheme uses capacitors to efficiently recover the ground-bound charge and to subsequently boost the capacitor voltage to power up the source circuit. This recycling methodology has been implemented on a 12-bit Gray-code counter within a 12-bit multichannel Wilkinson ADC. The circuit has been designed in 0.5 m BiCMOS and in 90nm CMOS processes. SPICE simulation results reveal a 46 53% average reduction in the energy consumption of the counter. The total energy savings including the control generation aggregates to an average of 26 34%.

  12. Does the charge of a body reduce its gravitational field?

    E-Print Network [OSTI]

    V. Hushwater

    2010-06-02T23:59:59.000Z

    One can get the impression from the Reissner-Nordstrom solution of Einstein's equations that the charge of a body reduces its gravitational field. This looks surprising since the energy of the electrostatic field surrounding a charged body, must contribute positively, as an additional, "electromagnetic mass", to the gravitational field produced by the body. We resolve this puzzle by showing that the mass M in the Reissner-Nordstrom solution is not the "bare mass" of the body, but its "renormalized mass". I. e. M, in addition to the bare mass, includes the total electromagnetic mass of the body. But at finite distances from the body only a part of the electromagnetic mass contributes to the gravitational field. That is why the gravity of a charged body is determined by the quantity smaller than M.

  13. Public Input I would like to suggest that FESAC consider including in your response to the charge on

    E-Print Network [OSTI]

    pinch devices. One important aspect of such collaborations is the relevance to tokamaks and specifically experiment called KTX has been funded for construction at the University of Science and Technology of China

  14. Engine lubrication circuit including two pumps

    DOE Patents [OSTI]

    Lane, William H.

    2006-10-03T23:59:59.000Z

    A lubrication pump coupled to the engine is sized such that the it can supply the engine with a predetermined flow volume as soon as the engine reaches a peak torque engine speed. In engines that operate predominately at speeds above the peak torque engine speed, the lubrication pump is often producing lubrication fluid in excess of the predetermined flow volume that is bypassed back to a lubrication fluid source. This arguably results in wasted power. In order to more efficiently lubricate an engine, a lubrication circuit includes a lubrication pump and a variable delivery pump. The lubrication pump is operably coupled to the engine, and the variable delivery pump is in communication with a pump output controller that is operable to vary a lubrication fluid output from the variable delivery pump as a function of at least one of engine speed and lubrication flow volume or system pressure. Thus, the lubrication pump can be sized to produce the predetermined flow volume at a speed range at which the engine predominately operates while the variable delivery pump can supplement lubrication fluid delivery from the lubrication pump at engine speeds below the predominant engine speed range.

  15. Models of Procyon A including seismic constraints

    E-Print Network [OSTI]

    P. Eggenberger; F. Carrier; F. Bouchy

    2005-01-14T23:59:59.000Z

    Detailed models of Procyon A based on new asteroseismic measurements by Eggenberger et al (2004) have been computed using the Geneva evolution code including shellular rotation and atomic diffusion. By combining all non-asteroseismic observables now available for Procyon A with these seismological data, we find that the observed mean large spacing of 55.5 +- 0.5 uHz favours a mass of 1.497 M_sol for Procyon A. We also determine the following global parameters of Procyon A: an age of t=1.72 +- 0.30 Gyr, an initial helium mass fraction Y_i=0.290 +- 0.010, a nearly solar initial metallicity (Z/X)_i=0.0234 +- 0.0015 and a mixing-length parameter alpha=1.75 +- 0.40. Moreover, we show that the effects of rotation on the inner structure of the star may be revealed by asteroseismic observations if frequencies can be determined with a high precision. Existing seismological data of Procyon A are unfortunately not accurate enough to really test these differences in the input physics of our models.

  16. Method and apparatus for linear low-frequency feedback in monolithic low-noise charge amplifiers

    DOE Patents [OSTI]

    DeGeronimo, Gianluigi

    2006-02-14T23:59:59.000Z

    A charge amplifier includes an amplifier, feedback circuit, and cancellation circuit. The feedback circuit includes a capacitor, inverter, and current mirror. The capacitor is coupled across the signal amplifier, the inverter is coupled to the output of the signal amplifier, and the current mirror is coupled to the input of the signal amplifier. The cancellation circuit is coupled to the output of the signal amplifier. A method of charge amplification includes providing a signal amplifier; coupling a first capacitor across the signal amplifier; coupling an inverter to the output of the signal amplifier; coupling a current mirror to the input of the signal amplifier; and coupling a cancellation circuit to the output of the signal amplifier. A front-end system for use with radiation sensors includes a charge amplifier and a current amplifier, shaping amplifier, baseline stabilizer, discriminator, peak detector, timing detector, and logic circuit coupled to the charge amplifier.

  17. Top properties in $t\\bar{t}$ events at CMS (includes mass)

    E-Print Network [OSTI]

    V. Adler; on behalf of the CMS Collaboration

    2013-02-12T23:59:59.000Z

    Selected results from the following topics are presented: Measurements of several top quark properties are obtained from the CMS data collected in 2011 at a center-of-mass energy of 7 TeV. The results include measurements of the top quark mass, the W helicity in top decays, the top quark charge, and of the $t\\bar{t}$ spin correlation and the search for anomalous couplings.

  18. Mass spectrometer with electron source for reducing space charge effects in sample beam

    DOE Patents [OSTI]

    Houk, Robert S.; Praphairaksit, Narong

    2003-10-14T23:59:59.000Z

    A mass spectrometer includes an ion source which generates a beam including positive ions, a sampling interface which extracts a portion of the beam from the ion source to form a sample beam that travels along a path and has an excess of positive ions over at least part of the path, thereby causing space charge effects to occur in the sample beam due to the excess of positive ions in the sample beam, an electron source which adds electrons to the sample beam to reduce space charge repulsion between the positive ions in the sample beam, thereby reducing the space charge effects in the sample beam and producing a sample beam having reduced space charge effects, and a mass analyzer which analyzes the sample beam having reduced space charge effects.

  19. Transport of elliptic intense charged -particle beams

    E-Print Network [OSTI]

    Zhou, J. (Jing), 1978-

    2006-01-01T23:59:59.000Z

    The transport theory of high-intensity elliptic charged-particle beams is presented. In particular, the halo formation and beam loss problem associated with the high space charge and small-aperture structure is addressed, ...

  20. Workplace Charging Challenge Partner: University of Maryland...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to become a part of the Workplace Charging Challenge. "We are delighted to be the first health care institution in Maryland to provide charging stations for our employees, staff...

  1. Methods for reduction of charging emissions

    SciTech Connect (OSTI)

    Schuecker, F.J.; Schulte, H. [Krupp Uhde GmbH, Dortmund (Germany)

    1997-12-31T23:59:59.000Z

    One of the most critical subjects in coking plants are charging emissions. The paper reviews the systems that have been used over the years to reduce charging emissions. The advantages and disadvantages are summarized for the following systems: Double collecting main with aspiration on both oven sides; Single collecting main with/without aspiration via standpipe, and extraction and cleaning of charging gas on charging car; Single collecting main with aspiration via standpipe and pretreatment of charging gas on the charging car as well as additional stationary exhaust and cleaning of charging gas; Single collecting main with aspiration via single standpipe; and Single collecting main with simultaneous aspiration via two standpipes and a U-tube connecting the oven chamber with the neighboring oven. The paper then briefly discusses prerequisites for reduction of charging emissions.

  2. Fast Methods for Bimolecular Charge Optimization

    E-Print Network [OSTI]

    Bardhan, Jaydeep P.

    We report a Hessian-implicit optimization method to quickly solve the charge optimization problem over protein molecules: given a ligand and its complex with a receptor, determine the ligand charge distribution that minimizes ...

  3. Experimental Effects of Atomic Oxygen on the Development of an Electric Discharge Oxygen Iodine Laser

    E-Print Network [OSTI]

    Carroll, David L.

    state I. Conventionally, a two-phase (gas-liquid) chemistry singlet oxygen generator (SOG) producesExperimental Effects of Atomic Oxygen on the Development of an Electric Discharge Oxygen Iodine of the electric discharge iodine laser continues, the role of oxygen atoms downstream of the discharge region

  4. The Role of Lithium Conditioning in Achieving High Performance, Long Pulse H-mode Discharges in the NSTX and EAST Devices

    SciTech Connect (OSTI)

    Maingi, Rajesh [PPPL; Mansfield, D. K. [PPPL; Gong, X. Z. [IPPCAS; Sun, Z. [IPPCAS; Bell, M. G. [PPPL

    2014-10-01T23:59:59.000Z

    In this paper, the role of lithium wall conditioning on the achievement of high performance, long pulse discharges in the National Spherical Torus Experiment (NSTX) and the Experimental Advanced Superconducting Tokamak (EAST) is documented. Common observations include recycling reduction and elimination of ELMs. In NSTX, lithium conditioning typically resulted in ELM-free operation with impurity accumulation, which was ameliorated e.g. with pulsed 3D fields to trigger controlled ELMs. Active lithium conditioning in EAST discharges has overcome this problem, producing an ELM-free Hmode with controlled density and impurities.

  5. Free form hemispherical shaped charge

    DOE Patents [OSTI]

    Haselman, Jr., Leonard C. (Livermore, CA)

    1996-01-01T23:59:59.000Z

    A hemispherical shaped charge has been modified such that one side of the hemisphere is spherical and the other is aspherical allowing a wall thickness variation in the liner. A further modification is to use an elongated hemispherical shape. The liner has a thick wall at its pole and a thin wall at the equator with a continually decreasing wall thickness from the pole to the equator. The ratio of the wall thickness from the pole to the equator varies depending on liner material and HE shape. Hemispherical shaped charges have previously been limited to spherical shapes with no variations in wall thicknesses. By redesign of the basic liner thicknesses, the jet properties of coherence, stability, and mass distribution have been significantly improved.

  6. The effect of photoionization as an auxiliary discharge on characteristics of thermionic energy converter

    SciTech Connect (OSTI)

    Furukawa, H.; Kando, M. [Shizuoka Univ., Hamamatsu (Japan); Yamada, J. [Aich Institute of Technology, Toyota (Japan)

    1995-12-31T23:59:59.000Z

    The cesium filled thermionic energy converters (TEC) operated by the ignited mode have been expected as novel electric power generators, suitable for the space power systems and such terrestrial uses as cogeneration devices. They have the advantage free from the maintenance because of the device without any moving parts. However, the gaps of the electrodes are usually kept less than 1 mm to suppress the negative space potential in the space between the electrodes. Furthermore, for the ignited mode operation, the emitter should be heated up to the temperature higher than 1700 K. Such a restriction and the operating condition should be relaxed to make TEC spread by manufacturing at a moderate price. In the present work, the effect of an auxiliary discharge due to the photoionization has been examined by using TEC operated by the unignited mode with a longer electrode gap, compared with conventional one. It is clarified that the space charge neutrality in the space between both electrodes is drastically improved by the irradiation of Xenon lamp in the case of the emitter temperature lower than 1100 K and that the output current increases by a few times, compared with one without irradiation. This is caused by the photoionized plasma whose density is nearly 10{sup 9} cm{sup -3}.

  7. Edge Plasma Effects in DIII-D Impurity Seeded Discharges

    SciTech Connect (OSTI)

    Jackson, G.L.; Boedo, J.A.; Lasnier, C. J.; Leonard, A.W.; McKee, G. R.; Murakami, M; Wade, M.R.; Watkins, J.G.; West, W.P.; Whyte, D.G.

    2002-06-01T23:59:59.000Z

    DIII-D, ELMing H-mode radiating mantle discharges have been obtained with electron density near the Greenwald density limit and a large fraction of the input power radiated inside the last closed flux surface, significantly reducing peak divertor heat fluxes. In these ''puff and pump'' discharges, the introduction of argon reduces particle flux to divertor tiles by a factor of 4 while peak heat flux is half of the no impurity value, suggesting that impurity seeding may be a useful control tool to reduce wall heat and particle fluxes in fusion reactors. A robust H-mode transport barrier is maintained and there is little change in the ELM energy or in the ELM frequency.

  8. Temporal process of plasma discharge by an electron beam

    SciTech Connect (OSTI)

    Sugawa, M.; Sugaya, R.; Isobe, S.; Kumar, A. [Department of Physics, Faculty of Science, Ehime University, Matsuyama 790 (Japan); Honda, H. [Institute of Laser Engineering, Osaka University, Suita, Osaka 565 (Japan)

    1996-05-01T23:59:59.000Z

    The process of the plasma discharge due to an electron beam is experimentally investigated. A pulse ({approximately}540 {mu}s) of an electron beam (0.5{endash}1.5 keV, {le}20 mA) is injected into argon gas (5{times}10{sup {minus}5}{endash}5{times}10{sup {minus}4} Torr) in a magnetic field (50{endash}300 G). The discharge based on a gas break down occurs cascade-likely in time. The gas beak down with some steps is explained by the two stream instability of an electron beam-plasma system, from the observation of the temporal evolution of the frequency spectra (0{endash}3.0 GHz) of the instability and the measurement of the temporal plasma density and temperature. {copyright} {ital 1996 American Institute of Physics.}

  9. Spent nuclear fuel discharges from US reactors 1993

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    The Energy Information Administration (EIA) of the U.S. Department of Energy (DOE) administers the Nuclear Fuel Data Survey, Form RW-859. This form is used to collect data on fuel assemblies irradiated at commercial nuclear reactors operating in the United States, and the current inventories and storage capacities of those reactors. These data are important to the design and operation of the equipment and facilities that DOE will use for the future acceptance, transportation, and disposal of spent fuels. The data collected and presented identifies trends in burnup, enrichment, and spent nuclear fuel discharged form commercial light-water reactor as of December 31, 1993. The document covers not only spent nuclear fuel discharges; but also site capacities and inventories; canisters and nonfuel components; and assembly type characteristics.

  10. Z-Pinch Discharge in Laser Produced Plasma

    SciTech Connect (OSTI)

    Sterling, E.; Lunney, J. G. [School of Physics, Trinity College Dublin (Ireland)

    2010-10-08T23:59:59.000Z

    A fast coaxial electrical discharge, with relatively low current, was used to produce a Z-pinch effect in a laser produced aluminum plasma. The ion flux in the laser plasma was monitored with a Langmuir ion probe. The line density in the plasma column was controlled by using an aperture to select the portion of the laser plasma which enters the discharge cell. The Z-pinch dynamics were recorded using time-resolved imaging of the visible self-emission; the plasma was pinched to about one-third of the initial radius. Both the laser and Z-pinch plasmas were diagnosed using time-and space-resolved spectroscopy; substantial heating was observed. The measured behaviour of the pinch was compared with predictions of the slug model.

  11. Charge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization of Selective Binding of

  12. Charge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization of Selective Binding of2 DOE Review of

  13. Charge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization of Selective Binding of2 DOE Review

  14. Charge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma of the Rotating Wall Machine by David A.1

  15. Quarks with Integer Electric Charge

    E-Print Network [OSTI]

    J. LaChapelle

    2015-01-26T23:59:59.000Z

    Within the context of the Standard Model, quarks are placed in a $(\\mathbf{3},\\mathbf{2})\\oplus (\\mathbf{3},\\bar{\\mathbf{2}})$ matter field representation of $U_{EW}(2)$. Although the quarks carry unit intrinsic electric charge in this construction, anomaly cancellation constrains the Lagrangian in such a way that the quarks' associated currents couple to the photon with the usual 2/3 and 1/3 fractional electric charge associated with conventional quarks. The resulting model is identical to the Standard Model in the $SU_C(3)$ sector: However, in the $U_{EW}(2)$ sector it is similar but not necessarily equivalent. Off hand, the model appears to be phenomenologically equivalent to the conventional quark model in the electroweak sector for experimental conditions that preclude observation of individual constituent currents. On the other hand, it is conceivable that detailed analyses for electroweak reactions may reveal discrepancies with the Standard Model in high energy and/or large momentum transfer reactions. The possibility of quarks with integer electric charge strongly suggests the notion that leptons and quarks are merely different manifestations of the same underlying field. A speculative model is proposed in which a phase transition is assumed to occur between $SU_C(3)\\otimes U_{EM}(1)$ and $U_{EM}(1)$ regimes. This immediately; explains the equality of lepton/quark generations and lepton/hadron electric charge, relates neutrino oscillations to quark flavor mixing, reduces the free parameters of the Standard Model, and renders the issue of quark confinement moot.

  16. tt Charge asymmetry at hadron colliders

    E-Print Network [OSTI]

    Chapelain, Antoine

    2013-01-01T23:59:59.000Z

    We present the current status for the measurements of the ttbar charge asymmetry at the Tevatron and LHC colliders.

  17. Electrochemically controlled charging circuit for storage batteries

    DOE Patents [OSTI]

    Onstott, E.I.

    1980-06-24T23:59:59.000Z

    An electrochemically controlled charging circuit for charging storage batteries is disclosed. The embodiments disclosed utilize dc amplification of battery control current to minimize total energy expended for charging storage batteries to a preset voltage level. The circuits allow for selection of Zener diodes having a wide range of reference voltage levels. Also, the preset voltage level to which the storage batteries are charged can be varied over a wide range.

  18. INL Testing of Wireless Charging Systems

    Broader source: Energy.gov (indexed) [DOE]

    investments and FOAs (Funding Opportunity Announcements) * Provide the charging, automotive, and electric utility industries with independent testing assessments and...

  19. Synchrotron radiation from massless charge

    E-Print Network [OSTI]

    Gal'tsov, D V

    2015-01-01T23:59:59.000Z

    Classical radiation power from an accelerated massive charge diverges in the zero-mass limit, while some general arguments suggest that strictly massless charge does not not radiate at all. On the other hand, the regularized classical radiation reaction force, though looking odd, is non-zero and finite. To clarify this controversy, we consider radiation problem in massless scalar quantum electrodynamics in the external magnetic field. In this framework, synchrotron radiation is found to be non-zero, finite, and essentially quantum. Its spectral distribution is calculated using Schwinger's proper time technique for {\\em ab initio} massless particle of zero spin. Provided $E^2\\gg eH$, the maximum in the spectrum is shown to be at $\\hbar \\omega=E/3$, and the average photon energy is $4E/9$. The normalized spectrum is universal, depending neither on $E$ nor on $H$. Quantum nature of radiation makes classical radiation reaction equation meaningless for massless charge. Our results are consistent with the view (sup...

  20. Electrostatic charging of lunar dust

    SciTech Connect (OSTI)

    Walch, Bob [Department of Physics, University of Northern Colorado, Greeley, Colorado 80639 (United States); Horanyi, Mihaly [LASP, University of Colorado, Boulder, Colorado 80309-0392 (United States); Robertson, Scott [Department of Physics, University of Colorado, Boulder, Colorado 80309-0391 (United States)

    1998-10-21T23:59:59.000Z

    Transient dust clouds suspended above the lunar surface were indicated by the horizon glow observed by the Surveyor spacecrafts and the Lunar Ejecta and Meteorite Experiment (Apollo 17), for example. The theoretical models cannot fully explain these observations, but they all suggest that electrostatic charging of the lunar surface due to exposure to the solar wind plasma and UV radiation could result in levitation, transport and ejection of small grains. We report on our experimental studies of the electrostatic charging properties of an Apollo-17 soil sample and two lunar simulants MLS-1 and JSC-1. We have measured their charge after exposing individual grains to a beam of fast electrons with energies in the range of 20{<=}E{<=}90 eV. Our measurements indicate that the secondary electron emission yield of the Apollo-17 sample is intermediate between MLS-1 and JSC-1, closer to that of MLS-1. We will also discuss our plans to develop a laboratory lunar surface model, where time dependent illumination and plasma bombardment will closely emulate the conditions on the surface of the Moon.

  1. Negative ion source with hollow cathode discharge plasma

    DOE Patents [OSTI]

    Hershcovitch, A.; Prelec, K.

    1980-12-12T23:59:59.000Z

    A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface is described. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.

  2. Depth Profile Analysis of New Materials in Hollow Cathode Discharge

    SciTech Connect (OSTI)

    Djulgerova, R.; Mihailov, V.; Gencheva, V.; Popova, L.; Panchev, B. [Institute of Solid State Physics - Bulgarian Academy of Sciences, 1784 Sofia (Bulgaria); Michaylova, V. [Technical University of Sofia, 1797 Sofia (Bulgaria); Szytula, A.; Gondek, L.; Dohnalik, T.M. [Smoluchowski Institute of Physics - Jagellonian University, 30-059 Cracow (Poland); Petrovic, Z.Lj. [Institute of Physics, 11080 Zemun, Belgrade (Serbia and Montenegro)

    2004-12-01T23:59:59.000Z

    In this review the possibility of hollow cathode discharge for depth profile analysis is demonstrated for several new materials: planar optical waveguides fabricated by Ag+-Na+ ion exchange process in glasses, SnO2 thin films for gas sensors modified by hexamethildisilazane after rapid thermal annealing, W- and WC- CVD layers deposited on Co-metalloceramics and WO3- CVD thin films deposited on glass. The results are compared with different standard techniques.

  3. Method and apparatus for processing exhaust gas with corona discharge

    DOE Patents [OSTI]

    Barlow, S.E.; Orlando, T.M.; Tonkyn, R.G.

    1999-06-22T23:59:59.000Z

    The present invention is placing a catalyst coating upon surfaces surrounding a volume containing corona discharge. In addition, the electrodes are coated with a robust dielectric material. Further, the electrodes are arranged so that at least a surface portion of each electrode extends into a flow path of the exhaust gas to be treated and there is only exhaust gas in the volume between each pair of electrodes. 12 figs.

  4. The Use of DC Glow Discharges as Undergraduate Educational Tools

    SciTech Connect (OSTI)

    Stephanie A. Wissel and Andrew Zwicker, Jerry Ross, and Sophia Gershman

    2012-10-09T23:59:59.000Z

    Plasmas have a beguiling way of getting students excited and interested in physics. We argue that plasmas can and should be incorporated into the undergraduate curriculum as both demonstrations and advanced investigations of electromagnetism and quantum effects. Our device, based on a direct current (DC) glow discharge tube, allows for a number of experiments into topics such as electrical breakdown, spectroscopy, magnetism, and electron temperature.

  5. Role of substrate temperature at graphene synthesis in arc discharge

    E-Print Network [OSTI]

    Fang, Xiuqi; Keidar, Michael

    2015-01-01T23:59:59.000Z

    Substrate temperature required for synthesis of graphene in arc discharge plasma was studied. It was shown that increase of the copper substrate temperature up to melting point leads to increase in the amount of graphene production and quality of graphene sheets. Favorable range of substrate temperatures for arc-based graphene synthesis was determined in relatively narrow range of about 1340-1360K which is near the melting point of copper.

  6. Magnetic shielding of Hall thrusters at high discharge voltages

    SciTech Connect (OSTI)

    Mikellides, Ioannis G., E-mail: Ioannis.G.Mikellides@jpl.nasa.gov; Hofer, Richard R.; Katz, Ira; Goebel, Dan M. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States)

    2014-08-07T23:59:59.000Z

    A series of numerical simulations and experiments have been performed to assess the effectiveness of magnetic shielding in a Hall thruster operating in the discharge voltage range of 300–700?V (I{sub sp}???2000–2700?s) at 6?kW, and 800?V (I{sub sp} ? 3000) at 9?kW. At 6?kW, the magnetic field topology with which highly effective magnetic shielding was previously demonstrated at 300?V has been retained for all other discharge voltages; only the magnitude of the field has been changed to achieve optimum thruster performance. It is found that magnetic shielding remains highly effective for all discharge voltages studied. This is because the channel is long enough to allow hot electrons near the channel exit to cool significantly upon reaching the anode. Thus, despite the rise of the maximum electron temperature in the channel with discharge voltage, the electrons along the grazing lines of force remain cold enough to eliminate or reduce significantly parallel gradients of the plasma potential near the walls. Computed maximum erosion rates in the range of 300–700?V are found not to exceed 10{sup ?2}?mm/kh. Such rates are ?3 orders of magnitude less than those observed in the unshielded version of the same thruster at 300?V. At 9?kW and 800?V, saturation of the magnetic circuit did not allow for precisely the same magnetic shielding topology as that employed during the 6-kW operation since this thruster was not designed to operate at this condition. Consequently, the maximum erosion rate at the inner wall is found to be ?1 order of magnitude higher (?10{sup ?1}?mm/kh) than that at 6?kW. At the outer wall, the ion energy is found to be below the sputtering yield threshold so no measurable erosion is expected.

  7. High energy XeBr electric discharge laser

    DOE Patents [OSTI]

    Sze, Robert C. (Santa Fe, NM); Scott, Peter B. (Los Alamos, NM)

    1981-01-01T23:59:59.000Z

    A high energy XeBr laser for producing coherent radiation at 282 nm. The XeBr laser utilizes an electric discharge as the excitation source to minimize formation of molecular ions thereby minimizing absorption of laser radiation by the active medium. Additionally, HBr is used as the halogen donor which undergoes harpooning reactions with Xe.sub.M * to form XeBr*.

  8. High energy KrCl electric discharge laser

    DOE Patents [OSTI]

    Sze, Robert C. (Santa Fe, NM); Scott, Peter B. (Los Alamos, NM)

    1981-01-01T23:59:59.000Z

    A high energy KrCl laser for producing coherent radiation at 222 nm. Output energies on the order of 100 mJ per pulse are produced utilizing a discharge excitation source to minimize formation of molecular ions, thereby minimizing absorption of laser radiation by the active medium. Additionally, HCl is used as a halogen donor which undergoes a harpooning reaction with metastable Kr.sub.M * to form KrCl.

  9. Characteristics of discharge disruptions in the T-10 tokamak

    SciTech Connect (OSTI)

    Stefanovskii, A. M., E-mail: stefan@nfi.kiae.ru; Dremin, M. M.; Kakurin, A. M.; Kislov, A. Ya.; Mal'tsev, S. G.; Notkin, G. E.; Pavlov, Yu. D.; Poznyak, V. I.; Sushkov, A. V. [National Research Centre Kurchatov Institute (Russian Federation)

    2013-06-15T23:59:59.000Z

    The results of experimental studies of discharge disruptions in the T-10 tokamak at the limiting plasma density are presented. On the basis of measurements of the generated soft X-ray emission, for a group of 'slow' disruptions, the dynamics of the magnetic configuration of the central part of the plasma column is studied and the possible role of the m/n = 1/1 mode in the excitation of predisruptions or the final stage of disruption is analyzed. It is shown that the characteristics of plasma electron cooling in predisruptions correspond to those of electron cooling upon pellet injection into T-10 and in discharge predisruptions occurring in regimes with the 'quiet mode.' It is found that, in the latter case, the reason for predisruptions and fast electron cooling in the plasma core is the instability of the m/n = 2/1 mode, its spontaneous spatial reconstruction, and the generation of a 'cooling wave' during this process. Measurements of the electron temperature (determined from the plasma radiation intensity at the second electron cyclotron harmonic) in the zone of the m/n = 2/1 mode have shown that the transformation of the m/n = 2/1 mode leads to the excitation of predisruptions and the final phase of disruption not only in regimes with the 'quiet mode,' but also in disruptions of ordinary ohmic discharges. The experimental results obtained in this work make it possible to determine the scenario of the development of 'slow' discharge disruptions in the T-10 tokamak at the limiting plasma density.

  10. Method and apparatus for processing exhaust gas with corona discharge

    DOE Patents [OSTI]

    Barlow, Stephan E. (Richland, WA); Orlando, Thomas M. (Kennewick, WA); Tonkyn, Russell G. (Kennewick, WA)

    1999-01-01T23:59:59.000Z

    The present invention is placing a catalyst coating upon surfaces surrounding a volume containing corona discharge. In addition, the electrodes are coated with a robust dielectric material. Further, the electrodes are arranged so that at least a surface portion of each electrode extends into a flow path of the exhaust gas to be treated and there is only exhaust gas in the volume between each pair of electrodes.

  11. Nanoengineered field induced charge separation membranes and methods of manufacture thereof

    DOE Patents [OSTI]

    O'Brien, Kevin C; Haslam, Jeffery J; Bourcier, William L

    2014-04-15T23:59:59.000Z

    A device according to one embodiment includes a porous membrane having a surface charge and pore configuration characterized by a double layer overlap effect being present in pores of the membrane. A device according to another embodiment includes a porous membrane having a surface charge in pores thereof sufficient to impart anion or cation selectivity in the pores. Additional devices, systems and methods are also presented.

  12. Electric Vehicle Charging as an Enabling Technology

    E-Print Network [OSTI]

    Electric Vehicle Charging as an Enabling Technology Prepared for the U.S. Department of Energy technologies, electric vehicles and the appurtenant charging infrastructure, is explored in detail to determine regarding system load profiles, vehicle charging strategies, electric vehicle adoption rates, and storage

  13. Optimal Decentralized Protocols for Electric Vehicle Charging

    E-Print Network [OSTI]

    Low, Steven H.

    into the electric power grid. EV charging increases the electricity demand, and potentially amplifies the peak1 Optimal Decentralized Protocols for Electric Vehicle Charging Lingwen Gan Ufuk Topcu Steven Low Abstract--We propose decentralized algorithms for optimally scheduling electric vehicle (EV) charging

  14. A User Programmable Battery Charging System 

    E-Print Network [OSTI]

    Amanor-Boadu, Judy M

    2013-05-07T23:59:59.000Z

    to provide the convenience of rare battery replacement and extend the periods between charges. This thesis proposes a user programmable charging system that can charge a Lithium ion battery from three different input sources, i.e. a wall outlet, a universal...

  15. Reactor-specific spent fuel discharge projections, 1987-2020

    SciTech Connect (OSTI)

    Walling, R.C.; Heeb, C.M.; Purcell, W.L.

    1988-03-01T23:59:59.000Z

    The creation of five reactor-specific spent fuel data bases that contain information on the projected amounts of spent fuel to be discharged from U.S. commercial nuclear reactors through the year 2020 is described. The data bases contain detailed spent fuel information from existing, planned, and projected pressurized water reactors (PWR) and boiling water eactors (BWR), and one existing high temperature gas reactor (HTGR). The projections are based on individual reactor information supplied by the U.S. reactor owners. The basic information is adjusted to conform to Energy Information Administration (EIA) forecasts for nuclear installed capacity, generation, and spent fuel discharged. The EIA cases considered are: No New Orders (assumes increasing burnup), No New Orders with No Increased Burnup, Upper Reference (assumes increasing burnup), Upper Reference with No Increased Burnup, and Lower Reference (assumes increasing burnup). Detailed, by-reactor tables are provided for annual discharged amounts of spent fuel, for storage requirements assuming maximum at-reactor storage, and for storage requirements assuming maximum at-reactor storage plus intra-utility transshipment of spent fuel. 8 refs., 8 figs., 10 tabs.

  16. Equilibrium theory of cylindrical discharges with special application to helicons

    SciTech Connect (OSTI)

    Curreli, Davide; Chen, Francis F. [Electrical Engineering Department, University of California, Los Angeles, California 90095-1594 (United States)

    2011-11-15T23:59:59.000Z

    Radiofrequency discharges used in industry often have centrally peaked plasma density profiles n(r) although ionization is localized at the edge, even in the presence of a dc magnetic field. This can be explained with a simple cylindrical model in one dimension as long as the short-circuit effect at the endplates causes a Maxwellian electron distribution. Surprisingly, a universal profile can be obtained, which is self-similar for all discharges with uniform electron temperature T{sub e} and neutral density n{sub n}. When all collisions and ionizations are radially accounted for, the ion drift velocity toward the wall reaches the Bohm velocity at a radius which can be identified with the sheath edge, thus obviating a pre-sheath calculation. For non-uniform T{sub e} and n{sub n}, the profiles change slightly but are always peaked on axis. For helicon discharges, iteration with the HELIC code for antenna-wave coupling yields profiles consistent with both energy deposition and diffusion profiles. Calculated density is in absolute-value agreement with experiment.

  17. Ignition and extinction phenomena in helium micro hollow cathode discharges

    SciTech Connect (OSTI)

    Kulsreshath, M. K.; Schwaederle, L.; Dufour, T.; Lefaucheux, P.; Dussart, R. [GREMI, CNRS/Université d'Orléans (UMR7344), Orléans (France); Sadeghi, N. [LIPhy, CNRS and Universite Joseph Fourier (UMR5588), Grenoble (France); Overzet, L. J. [GREMI, CNRS/Université d'Orléans (UMR7344), Orléans (France); PSAL, UTDallas, Richardson, Texas 75080-3021 (United States)

    2013-12-28T23:59:59.000Z

    Micro hollow cathode discharges (MHCD) were produced using 250??m thick dielectric layer of alumina sandwiched between two nickel electrodes of 8??m thickness. A through cavity at the center of the chip was formed by laser drilling technique. MHCD with a diameter of few hundreds of micrometers allowed us to generate direct current discharges in helium at up to atmospheric pressure. A slowly varying ramped voltage generator was used to study the ignition and the extinction periods of the microdischarges. The analysis was performed by using electrical characterisation of the V-I behaviour and the measurement of He*({sup 3}S{sub 1}) metastable atoms density by tunable diode laser spectroscopy. At the ignition of the microdischarges, 2??s long current peak as high as 24?mA was observed, sometimes followed by low amplitude damped oscillations. At helium pressure above 400?Torr, an oscillatory behaviour of the discharge current was observed just before the extinction of the microdischarges. The same type of instability in the extinction period at high pressure also appeared on the density of He*({sup 3}S{sub 1}) metastable atoms, but delayed by a few ?s relative to the current oscillations. Metastable atoms thus cannot be at the origin of the generation of the observed instabilities.

  18. Reactor-specific spent fuel discharge projections: 1985 to 2020

    SciTech Connect (OSTI)

    Heeb, C.M.; Libby, R.A.; Walling, R.C.; Purcell, W.L.

    1986-09-01T23:59:59.000Z

    The creation of four spent-fuel data bases that contain information on the projected amounts of spent fuel to be discharged from US commercial nuclear reactors through the year 2020 is described. The data bases contain detailed spent-fuel information from existing, planned, and projected pressurized water reactors (PWR) and boiling water reactors (BWR). The projections are based on individual reactor information supplied by the US reactor owners. The basic information is adjusted to conform to Energy Information Agency (EIA) forecasts for nuclear installed capacity, generation, and spent fuel discharged. The EIA cases considered are: (1) No New Orders with Extended Burnup, (2) No New Orders with Constant Burnup, (3) Middle Case with Extended Burnup, and (4) Middle Case with Constant Burnup. Detailed, by-reactor tables are provided for annual discharged amounts of spent fuel, for storage requirements assuming maximum-at-reactor storage, and for storage requirements assuming maximum-at-reactor plus intra-utility transshipment of spent fuel.

  19. Space Charge and Equilibrium Emittances in Damping Rings

    E-Print Network [OSTI]

    Venturini, Marco; Oide, Katsunobu; Wolski, Andy

    2006-01-01T23:59:59.000Z

    SPACE CHARGE AND EQUILIBRIUM EMITTANCES IN DAMPING RINGS ?for the pos- sible impact of space charge on the equilibriumrings. INTRODUCTION Direct space charge effects have the

  20. Dynamical formation and evolution of (2+1)-dimensional charged black holes

    E-Print Network [OSTI]

    Dong-il Hwang; Hongbin Kim; Dong-han Yeom

    2012-02-13T23:59:59.000Z

    In this paper, we investigate the dynamical formation and evolution of 2 + 1-dimensional charged black holes. We numerically study dynamical collapses of charged matter fields in an anti de Sitter background and note the formation of black holes using the double-null formalism. Moreover, we include re-normalized energy-momentum tensors assuming the S-wave approximation to determine thermodynamical back-reactions to the internal structures. If there is no semi-classical effects, the amount of charge determines the causal structures. If the charge is sufficiently small, the causal structure has a space-like singularity. However, as the charge increases, an inner Cauchy horizon appears. If we have sufficient charge, we see a space-like outer horizon and a time-like inner horizon, and if we give excessive charge, black hole horizons disappear. We have some circumstantial evidences that weak cosmic censorship is still satisfied, even for such excessive charge cases. Also, we confirm that there is mass inflation along the inner horizon, although the properties are quite different from those of four-dimensional cases. Semi-classical back-reactions will not affect the outer horizon, but they will affect the inner horizon. Near the center, there is a place where negative energy is concentrated. Thus, charged black holes in three dimensions have two types of curvature singularities in general: via mass inflation and via a concentration of negative energy. Finally, we classify possible causal structures.

  1. Vacuum charge fractionlization re-examined

    E-Print Network [OSTI]

    Y. Nogami

    2008-08-01T23:59:59.000Z

    We consider a model of a quantized fermion field that is based on the Dirac equation in one dimensional space and re-examine how the fermion number of the vacuum, or the vacuum charge, varies when an external potential is switched on. With this model, fractionization of the vacuum charge has been illustrated in the literature by showing that the external potential can change the vacuum charge from zero to a fractional number. Charge conservation then appears violated in this process. This is because the charge that has been examined in this context is only a part of the total charge of the vacuum. The total charge is conserved. It is not fractionalized unless the Dirac equation has a zero mode. Two other confusing aspects are discussed. One is concerned with the usage of the continuum limit and the other with the regularization of the current operator. Implications of these aspects of the vacuum problem are explored.

  2. Non-intrusive measurement of particle charge: Electrostatic dry coal cleaning. Technical progress report No. 11, January 1, 1994--March 31, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    As has been previously reported, the charge measurement portion of this project has been broadened to include direct measurement techniques which yield an average particle charge per unit mass. These methods, which now include current measurements from the charging loop, an electrolytic collection solution and a Faraday cage have been employed to expand the charge measurement capabilities over those that were originally developed using the PDPA. The effects of gas velocity, humidity and temperature as well as particle size on charge was evaluated for different coals and silica. The charge accumulated on silica particles was linearly dependent on their velocity in the tribocharger for the velocities and mass loadings which were investigated. For coals, a linear increase in charge occurred over a more limited velocity range. Transport gas humidity had a much stronger effect on the charge established on silica particles than on coal particles.

  3. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    SciTech Connect (OSTI)

    Kausik, S. S.; Kakati, B.; Saikia, B. K. [Centre of Plasma Physics, Institute for Plasma Research, Sonapur 782 402 (India)] [Centre of Plasma Physics, Institute for Plasma Research, Sonapur 782 402 (India)

    2013-05-15T23:59:59.000Z

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10{sup ?4} millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (?pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.

  4. Demand Charges | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility DatabaseMichigan: Energy Resources Jump to:Delta, Ohio:Charges Jump

  5. Transverse Mode Coupling Instability with chromaticity and space charge

    SciTech Connect (OSTI)

    Balbekov, V. [Fermi National Accelerator Laboratory, Batavia, IL (United States)

    2014-10-29T23:59:59.000Z

    Transverse mode coupling instability is considered in the paper at different bunch and wake shapes. Exact solution for “hollow” bunch is arrived at and used to develop a proper technique for more realistic distributions. The three-modes approach is proposed for arbitrary bunch with chromaticity included. It is shown that the TMCI threshold and rate depend only slightly on the bunch model used being rather sensitive to the wake shape. Resistive wall wake is considered in detail, and a comparison of the TMCI and collective mode instability with this wake is performed. Space charge tune shift of arbitrary value is included in the consideration providing a firm bridge between the known cases of absent and dominating space charge

  6. Method and apparatus for electrical cable testing by pulse-arrested spark discharge

    DOE Patents [OSTI]

    Barnum, John R. (Albuquerque, NM); Warne, Larry K. (Albuquerque, NM); Jorgenson, Roy E. (Albuquerque, NM); Schneider, Larry X. (Albuquerque, NM)

    2005-02-08T23:59:59.000Z

    A method for electrical cable testing by Pulse-Arrested Spark Discharge (PASD) uses the cable response to a short-duration high-voltage incident pulse to determine the location of an electrical breakdown that occurs at a defect site in the cable. The apparatus for cable testing by PASD includes a pulser for generating the short-duration high-voltage incident pulse, at least one diagnostic sensor to detect the incident pulse and the breakdown-induced reflected and/or transmitted pulses propagating from the electrical breakdown at the defect site, and a transient recorder to record the cable response. The method and apparatus are particularly useful to determine the location of defect sites in critical but inaccessible electrical cabling systems in aging aircraft, ships, nuclear power plants, and industrial complexes.

  7. Experimental evidence of intermittent chaos in a glow discharge plasma without external forcing and its numerical modelling

    SciTech Connect (OSTI)

    Ghosh, S., E-mail: sabuj.ghosh@saha.ac.in; Kumar Shaw, Pankaj; Sekar Iyengar, A. N.; Janaki, M. S.; Saha, Debajyoti; Michael Wharton, Alpha [Plasma Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India)] [Plasma Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India); Mitra, Vramori [Purbasha Housing Estate, Kankurgachi, Kolkata 700054 (India)] [Purbasha Housing Estate, Kankurgachi, Kolkata 700054 (India)

    2014-03-15T23:59:59.000Z

    Intermittent chaos was observed in a glow discharge plasma as the system evolved from regular type of relaxation oscillations (of larger amplitude) to an irregular type of oscillations (of smaller amplitude) as the discharge voltage was increased. Floating potential fluctuations were analyzed by different statistical and spectral methods. Features like a gradual change in the normal variance of the interpeak time intervals, a dip in the skewness, and a hump in the kurtosis with variation in the control parameter have been seen, which are strongly indicative of intermittent behavior in the system. Detailed analysis also suggests that the intrinsic noise level in the experiment increases with the increasing discharge voltage. An attempt has been made to model the experimental observations by a second order nonlinear ordinary differential equation derived from the fluid equations for an unmagnetized plasma. Though the experiment had no external forcing, it was conjectured that the intrinsic noise in the experiment could be playing a vital role in the dynamics of the system. Hence, a constant bias and noise as forcing terms were included in the model. Results from the theoretical model are in close qualitative agreement with the experimental results.

  8. Experimental and numerical investigations of electron density in low-pressure dual-frequency capacitively coupled oxygen discharges

    SciTech Connect (OSTI)

    Liu, Jia; Wen, De-Qi; Liu, Yong-Xin; Gao, Fei; Lu, Wen-Qi; Wang, You-Nian [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2013-11-15T23:59:59.000Z

    The electron density is measured in low-pressure dual-frequency (2/60 MHz) capacitively coupled oxygen discharges by utilizing a floating hairpin probe. The dependence of electron density at the discharge center on the high frequency (HF) power, low frequency (LF) power, and gas pressure are investigated in detail. A (1D) particle-in-cell/Monte Carlo method is developed to calculate the time-averaged electron density at the discharge center and the simulation results are compared with the experimental ones, and general agreements are achieved. With increasing HF power, the electron density linearly increases. The electron density exhibits different changes with the LF power at different HF powers. At low HF powers (e.g., 30 W in our experiment), the electron density increases with increasing LF power while the electron density decreases with increasing LF power at relatively high HF powers (e.g., 120 W in our experiment). With increasing gas pressure the electron density first increases rapidly to reach a maximum value and then decreases slowly due to the combined effect of the production process by the ionization and the loss processes including the surface and volume losses.

  9. DECAY CONSTANTS OF CHARGED PSEUDO-SCALAR MESONS

    E-Print Network [OSTI]

    - and D+ s decays, the existence of a charged Higgs boson (or any other charged object beyond the Standard

  10. DECAY CONSTANTS OF CHARGED PSEUDO-SCALAR MESONS

    E-Print Network [OSTI]

    , the existence of a charged Higgs boson (or any other charged object beyond the Standard Model) would modify

  11. Enhanced surface flashover strength in vacuum of polymethylmethacrylate by surface modification using atmospheric-pressure dielectric barrier discharge

    SciTech Connect (OSTI)

    Shao, Tao, E-mail: st@mail.iee.ac.cn; Yang, Wenjin; Zhang, Cheng; Yan, Ping [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190 (China); Niu, Zheng [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Schamiloglu, Edl [Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2014-08-18T23:59:59.000Z

    Polymer materials, such as polymethylmethacrylate (PMMA), are widely used as insulators in vacuum. The insulating performance of a high-voltage vacuum system is mainly limited by surface flashover of the insulators rather than bulk breakdown. Non-thermal plasmas are an efficient method to modify the chemical and physical properties of polymer material surfaces, and enhance the surface insulating performance. In this letter, an atmospheric-pressure dielectric barrier discharge is used to treat the PMMA surface to improve the surface flashover strength in vacuum. Experimental results indicate that the plasma treatment method using Ar and CF{sub 4} (10:1) as the working gas can etch the PMMA surface, introduce fluoride groups to the surface, and then alter the surface characteristics of the PMMA. The increase in the surface roughness can introduce physical traps that can capture free electrons, and the fluorination can enhance the charge capturing ability. The increase in the surface roughness and the introduction of the fluoride groups can enhance the PMMA hydrophobic ability, improve the charge capturing ability, decrease the secondary electron emission yield, increase the surface resistance, and improve the surface flashover voltage in vacuum.

  12. Lawrence Livermore National Laboratory (LLNL) Experimental Test Site (Site 300) Salinity Evaluation and Minimization Plan for Cooling Towers and Mechanical Equipment Discharges

    SciTech Connect (OSTI)

    Daily III, W D

    2010-02-24T23:59:59.000Z

    This document was created to comply with the Central Valley Regional Water Quality Control Board (CVRWQCB) Waste Discharge Requirement (Order No. 98-148). This order established new requirements to assess the effect of and effort required to reduce salts in process water discharged to the subsurface. This includes the review of technical, operational, and management options available to reduce total dissolved solids (TDS) concentrations in cooling tower and mechanical equipment water discharges at Lawrence Livermore National Laboratory's (LLNL's) Experimental Test Site (Site 300) facility. It was observed that for the six cooling towers currently in operation, the total volume of groundwater used as make up water is about 27 gallons per minute and the discharge to the subsurface via percolation pits is 13 gallons per minute. The extracted groundwater has a TDS concentration of 700 mg/L. The cooling tower discharge concentrations range from 700 to 1,400 mg/L. There is also a small volume of mechanical equipment effluent being discharged to percolation pits, with a TDS range from 400 to 3,300 mg/L. The cooling towers and mechanical equipment are maintained and operated in a satisfactory manner. No major leaks were identified. Currently, there are no re-use options being employed. Several approaches known to reduce the blow down flow rate and/or TDS concentration being discharged to the percolation pits and septic systems were reviewed for technical feasibility and cost efficiency. These options range from efforts as simple as eliminating leaks to implementing advanced and innovative treatment methods. The various options considered, and their anticipated effect on water consumption, discharge volumes, and reduced concentrations are listed and compared in this report. Based on the assessment, it was recommended that there is enough variability in equipment usage, chemistry, flow rate, and discharge configurations that each discharge location at Site 300 should be considered separately when deciding on an approach for reducing the salt discharge to the subsurface. The smaller units may justify moderate changes to equipment, and may benefit from increased cleaning frequencies, more accurate and suitable chemical treatment, and sources of make up water and discharge re-use. The larger cooling towers would be more suitable for automated systems where they don't already exist, re-circulation and treatment of blow down water, and enhanced chemical dosing strategies. It may be more technically feasible and cost efficient for the smaller cooling towers to be replaced by closed loop dry coolers or hybrid towers. There are several potential steps that could be taken at each location to reduce the TDS concentration and/or water use. These include: sump water filtration, minimization of drift, accurate chemical dosing, and use of scale and corrosion coupons for chemical calibration. The implementation of some of these options could be achieved by a step-wise approach taken at two representative facilities. Once viable prototype systems have been proven in the field, systematic implementation should proceed for the remaining systems, with cost, desired reduction, and general feasibility taken into consideration for such systems.

  13. Dusty Plasma in He-Ar Glow Discharge

    SciTech Connect (OSTI)

    Maiorov, S. A. [A. M. Prokhorov Institute for General Physics under Russian Academy of Sciences, Moscow (Russian Federation); Ramazanov, T. S.; Dzhumagulova, K. N.; Dosbolayev, M. K.; Jumabekov, A. N. [IETP, al-Farabi Kazakh National University, 96a, Tole bi St., Almaty, 050012 (Kazakhstan)

    2008-09-07T23:59:59.000Z

    The paper reports on the first experiments with plasma-dust formations in dc gas discharge plasma for He-Ar mixture. It is shown that under the conventional conditions of the experiments with dusty structures in plasma, the choice of light and heavy gases for the mixture suppresses electron heating in electric field and results in a supersonic jet with high Mach numbers. Distribution functions for drifting ions in the gas mixture are calculated for various mixture concentrations, electric field strengths and gas pressures.

  14. North and northeast Greenland ice discharge from satellite radar interferometry

    SciTech Connect (OSTI)

    Rignot, E.J. [California Institute of Technology, Pasadena, CA (United States)] [California Institute of Technology, Pasadena, CA (United States); Gogineni, S.P. [Univ. of Kansas, Lawrence, KS (United States)] [Univ. of Kansas, Lawrence, KS (United States); Krabill, W.B. [NASA Goddard Space Flight Center, Wallops Island, VA (United States)] [and others] [NASA Goddard Space Flight Center, Wallops Island, VA (United States); and others

    1997-05-09T23:59:59.000Z

    Ice discharge from north and northeast Greenland calculated from satellite radar interferometry data of 14 outlet glaciers is 3.5 times that estimated from iceberg production. The satellite estimates, obtained at the grounding line of the outlet glaciers, differ from those obtained at the glacier front, because basal melting is extensive at the underside of the floating glacier sections. The results suggest that the north and northeast parts of the Greenland ice sheet may be thinning and contributing positively to sea-level rise. 24 refs., 3 figs., 1 tab.

  15. Ethanol reforming in non-equilibrium plasma of glow discharge

    E-Print Network [OSTI]

    Levko, D

    2012-01-01T23:59:59.000Z

    The results of a detailed kinetic study of the main plasma chemical processes in non-equilibrium ethanol/argon plasma are presented. It is shown that at the beginning of the discharge the molecular hydrogen is mainly generated in the reaction of ethanol H-abstraction. Later hydrogen is formed from active H, CH2OH and CH3CHOH and formaldehyde. Comparison with experimental data has shown that the used kinetic mechanism predicts well the concentrations of main species at the reactor outlet.

  16. Prospects for river discharge and depth estimation through assimilation of swath-altimetry into a raster-based hydrodynamics

    E-Print Network [OSTI]

    Howat, Ian M.

    Prospects for river discharge and depth estimation through assimilation of swath water depth and discharge, reducing the discharge RMSE from 23.2% to 10.0% over an 84-day simulation. Clark, D. P. Lettenmaier, and D. E. Alsdorf (2007), Prospects for river discharge and depth estimation

  17. Why do Particle Clouds Generate Electric Charges?

    E-Print Network [OSTI]

    T. Pähtz; H. J. Herrmann; T. Shinbrot

    2015-03-16T23:59:59.000Z

    Grains in desert sandstorms spontaneously generate strong electrical charges; likewise volcanic dust plumes produce spectacular lightning displays. Charged particle clouds also cause devastating explosions in food, drug and coal processing industries. Despite the wide-ranging importance of granular charging in both nature and industry, even the simplest aspects of its causes remain elusive, because it is difficult to understand how inert grains in contact with little more than other inert grains can generate the large charges observed. Here, we present a simple yet predictive explanation for the charging of granular materials in collisional flows. We argue from very basic considerations that charge transfer can be expected in collisions of identical dielectric grains in the presence of an electric field, and we confirm the model's predictions using discrete-element simulations and a tabletop granular experiment.

  18. Circular, confined distribution for charged particle beams

    DOE Patents [OSTI]

    Garnett, R.W.; Dobelbower, M.C.

    1995-11-21T23:59:59.000Z

    A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location. 26 figs.

  19. Circular, confined distribution for charged particle beams

    DOE Patents [OSTI]

    Garnett, Robert W. (Los Alamos, NM); Dobelbower, M. Christian (Toledo, OH)

    1995-01-01T23:59:59.000Z

    A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location.

  20. Review of Variable Generation Integration Charges

    SciTech Connect (OSTI)

    Porter, K.; Fink, S.; Buckley, M.; Rogers, J.; Hodge, B. M.

    2013-03-01T23:59:59.000Z

    The growth of wind and solar generation in the United States, and the expectation of continued growth of these technologies, dictates that the future power system will be operated in a somewhat different manner because of increased variability and uncertainty. A small number of balancing authorities have attempted to determine an 'integration cost' to account for these changes to their current operating practices. Some balancing authorities directly charge wind and solar generators for integration charges, whereas others add integration charges to projected costs of wind and solar in integrated resource plans or in competitive solicitations for generation. This report reviews the balancing authorities that have calculated variable generation integration charges and broadly compares and contrasts the methodologies they used to determine their specific integration charges. The report also profiles each balancing authority and how they derived wind and solar integration charges.

  1. Max Tech and Beyond: High-Intensity Discharge Lamps

    SciTech Connect (OSTI)

    Scholand, Michael

    2012-04-01T23:59:59.000Z

    High-intensity discharge (HID) lamps are most often found in industrial and commercial applications, and are the light source of choice in street and area lighting, and sports stadium illumination. HID lamps are produced in three types - mercury vapor (MV), high pressure sodium (HPS) and metal halide (MH). Of these, MV and MH are considered white-light sources (although the MV exhibits poor color rendering) and HPS produces a yellow-orange color light. A fourth lamp, low-pressure sodium (LPS), is not a HID lamp by definition, but it is used in similar applications and thus is often grouped with HID lamps. With the notable exception of MV which is comparatively inefficient and in decline in the US from both a sales and installed stock point of view; HPS, LPS and MH all have efficacies over 100 lumens per watt. The figure below presents the efficacy trends over time for commercially available HID lamps and LPS, starting with MV and LPS in 1930's followed by the development of HPS and MH in the 1960's. In HID lamps, light is generated by creating an electric arc between two electrodes in an arc tube. The particles in the arc are partially ionized, making them electrically conductive, and a light-emitting 'plasma' is created. This arc occurs within the arc tube, which for most HID lamps is enclosed within an evacuated outer bulb that thermally isolates and protects the hot arc tube from the surroundings. Unlike a fluorescent lamp that produces visible light through down-converting UV light with phosphors, the arc itself is the light source in an HID lamp, emitting visible radiation that is characteristic of the elements present in the plasma. Thus, the mixture of elements included in the arc tube is one critical factor determining the quality of the light emitted from the lamp, including its correlated color temperature (CCT) and color rendering index (CRI). Similar to fluorescent lamps, HID lamps require a ballast to start and maintain stable operating conditions, and this necessitates additional power beyond that used by the lamp itself. HID lamps offer important advantages compared to other lighting technologies, making them well suited for certain applications. HID lamps can be very efficient, have long operating lives, are relatively temperature-insensitive and produce a large quantity of light from a small package. For these reasons, HID lamps are often used when high levels of illumination are required over large areas and where operating and maintenance costs must be kept to a minimum. Furthermore, if the installation has a significant mounting height, high-power HID lamps can offer superior optical performance luminaires, reducing the number of lamps required to illuminate a given area. The indoor environments best suited to HID lamps are those with high ceilings, such as those commonly found in industrial spaces, warehouses, large retail spaces, sports halls and large public areas. Research into efficacy improvements for HID lighting technologies has generally followed market demand for these lamps, which is in decline for MV and LPS, has reached a plateau for HPS and is growing for MH. Several manufacturers interviewed for this study indicated that although solid-state lighting was now receiving the bulk of their company's R&D investment, there are still strong HID lamp research programs, which concentrate on MH technologies, with some limited amount of investment in HPS for specific niche applications (e.g., agricultural greenhouses). LPS and MV lamps are no longer being researched or improved in terms of efficacy or other performance attributes, although some consider MH HID lamps to be the next-generation MV lamp. Thus, the efficacy values of commercially available MV, LPS and HPS lamps are not expected to increase in the next 5 to 10 years. MH lamps, and more specifically, ceramic MH lamps are continuing to improve in efficacy as well as light quality, manufacturability and lamp life. Within an HID lamp, the light-producing plasma must be heated to sufficiently high temperatures to achieve high efficiencie

  2. Frictional cooling of positively charged particles

    E-Print Network [OSTI]

    Daniel Greenwald; Allen Caldwell

    2011-11-14T23:59:59.000Z

    One of the focuses of research and development towards the construction of a muon collider is muon beam preparation. Simulation of frictional cooling shows that it can achieve the desired emittance reduction to produce high-luminosity muon beams. We show that for positively charged particles, charge exchange interactions necessitate significant changes to schemes previously developed for negatively charged particles. We also demonstrate that foil-based schemes are not viable for positive particles.

  3. Particle accelerator employing transient space charge potentials

    DOE Patents [OSTI]

    Post, Richard F. (Walnut Creek, CA)

    1990-01-01T23:59:59.000Z

    The invention provides an accelerator for ions and charged particles. The plasma is generated and confined in a magnetic mirror field. The electrons of the plasma are heated to high temperatures. A series of local coils are placed along the axis of the magnetic mirror field. As an ion or particle beam is directed along the axis in sequence the coils are rapidly pulsed creating a space charge to accelerate and focus the beam of ions or charged particles.

  4. Minimization of effluent discharge to the Soil Column

    SciTech Connect (OSTI)

    Dronen, V.R.; Hydzik, K.M.

    1994-01-01T23:59:59.000Z

    In 1987, the US Congress mandated that the US Department of Energy (DOE), cease discharge of contaminated effluents to the soil column at the Hanford Site by calendar year 1995. The plan and schedule for this activity can be found in The Plan and Schedule to Discontinue Disposal of Contaminated Liquid into the Soil Column at the Hanford Site, (WHC 1987). Coupled with this mandate and DOE`s intent to cleanup Hanford (remediate and restore to the extent practicable), DOE entered into an agreement with the US Environmental Protection Agency (EPA) and the Washington State Department of Ecology (Ecology). The agreement is called the ``Hanford Federal Facility Agreement and Consent Order`` (Ecology et al. 1992) otherwise known as the Tri-Party Agreement. The Tri-Party Agreement established schedules and legally enforceable milestones for the Hanford cleanup mission. One such milestone was to cease discharge of effluent to Hanford`s 300 Area process trenches located approximately 100 m from the Columbia River, north of Richland, Washington.

  5. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone...

  6. Conductivity maximum in a charged colloidal suspension

    SciTech Connect (OSTI)

    Bastea, S

    2009-01-27T23:59:59.000Z

    Molecular dynamics simulations of a charged colloidal suspension in the salt-free regime show that the system exhibits an electrical conductivity maximum as a function of colloid charge. We attribute this behavior to two main competing effects: colloid effective charge saturation due to counterion 'condensation' and diffusion slowdown due to the relaxation effect. In agreement with previous observations, we also find that the effective transported charge is larger than the one determined by the Stern layer and suggest that it corresponds to the boundary fluid layer at the surface of the colloidal particles.

  7. Soret Motion of a Charged Spherical Colloid

    E-Print Network [OSTI]

    Seyyed Nader Rasuli; Ramin Golestanian

    2008-08-05T23:59:59.000Z

    The thermophoretic motion of a charged spherical colloidal particle and its accompanying cloud of counterions and co-ions in a temperature gradient is studied theoretically. Using the Debye-Huckel approximation, the Soret drift velocity of a weakly charged colloid is calculated analytically. For highly charged colloids, the nonlinear system of electrokinetic equations is solved numerically, and the effects of high surface potential, dielectrophoresis, and convection are examined. Our results are in good agreement with some of the recent experiments on highly charged colloids without using adjustable parameters.

  8. EV Project: Solar-Assisted Charging Demo

    Broader source: Energy.gov (indexed) [DOE]

    occurs at night and times during the day where PV generation is greater than EV charging load Technical Accomplishments and Progress - Peak Shaving Algorithms 17 * The most...

  9. Radiation from charges in the continuum limit

    SciTech Connect (OSTI)

    Ianconescu, Reuven [Shenkar College of Engineering and Design, Ramat Gan 52526 (Israel)

    2013-06-15T23:59:59.000Z

    It is known that an accelerating charge radiates according to Larmor formula. On the other hand, any DC current following a curvilinear path, consists of accelerating charges, but in such case the radiated power is 0. The scope of this paper is to analyze and quantify how a system of charges goes from a radiating state to a non radiating state when the charges distribution goes to the continuum limit. Understanding this is important from the theoretical point of view and the results of this work are applicable to particle accelerator, cyclotron and other high energy devices.

  10. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electron spin-in addition to charge-for the storage and processing of data. However, the manipulation of spin typically requires magnetic materials. While commonly found in...

  11. Workplace Charging Challenge Progress Update 2014: Employers...

    Energy Savers [EERE]

    the progress of the Challenge and its partners as determined through the annual partner survey. progressreportfinal.pdf More Documents & Publications Workplace Charging...

  12. Electric Vehicle Charging Infrastructure Deployment Guidelines...

    Open Energy Info (EERE)

    to: navigation, search Tool Summary LAUNCH TOOL Name: Electric Vehicle Charging Infrastructure Deployment Guidelines: British Columbia AgencyCompany Organization: Natural...

  13. Randomly charged polymers in porous environment

    E-Print Network [OSTI]

    V. Blavatska; C. von Ferber

    2013-11-22T23:59:59.000Z

    We study the conformational properties of charged polymers in a solvent in the presence of structural obstacles correlated according to a power law $\\sim x^{-a}$. We work within the continuous representation of a model of linear chain considered as a random sequence of charges $q_i=\\pm q_0$. Such a model captures the properties of polyampholytes -- heteropolymers comprising both positively and negatively charged monomers. We apply the direct polymer renormalization scheme and analyze the scaling behavior of charged polymers up to the first order of an $\\epsilon=6-d$, $\\delta=4-a$-expansion.

  14. Cost Recovery Charge (CRC) Calculation Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cost Recovery Charge (CRC) Calculation Table Updated: March 20, 2015 FY 2016 February 2015 CRC Calculation Table (pdf) Final FY 2015 CRC Letter & Table (pdf) Note: The Cost...

  15. Charge separation by photoexcitation in seimcrystalline polymeric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Charge separation by photoexcitation in seimcrystalline polymeric semiconductors: An intrinsic or extrinsic mechanism? April 5, 2011 at 3pm36-428 Carlos Silva University of...

  16. Modeling a short dc discharge with thermionic cathode and auxiliary anode

    SciTech Connect (OSTI)

    Bogdanov, E. [St. Petersburg State University, St. Petersburg 199034 (Russian Federation) [St. Petersburg State University, St. Petersburg 199034 (Russian Federation); University ITMO, Kronverkskiy pr. 49, St. Petersburg 197101 (Russian Federation); Demidov, V. I. [St. Petersburg State University, St. Petersburg 199034 (Russian Federation) [St. Petersburg State University, St. Petersburg 199034 (Russian Federation); West Virginia University, Morgantown, West Virginia 26506 (United States); Kaganovich, I. D. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)] [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Koepke, M. E. [West Virginia University, Morgantown, West Virginia 26506 (United States)] [West Virginia University, Morgantown, West Virginia 26506 (United States); Kudryavtsev, A. A. [St. Petersburg State University, St. Petersburg 199034 (Russian Federation)] [St. Petersburg State University, St. Petersburg 199034 (Russian Federation)

    2013-10-15T23:59:59.000Z

    A short dc discharge with a thermionic cathode can be used as a current and voltage stabilizer, but is subject to current oscillation. If instead of one anode two anodes are used, the current oscillations can be reduced. We have developed a kinetic model of such a discharge with two anodes, where the primary anode has a small opening for passing a fraction of the discharge current to an auxiliary anode. The model demonstrates that the current-voltage relationship of the discharge with two anodes is characterized everywhere by positive slope, i.e., positive differential resistance. Therefore, the discharge with two anodes is expected to be stable to the spontaneous oscillation in current that is induced by negative differential resistance. As a result, such a discharge can be used in an engineering application that requires stable plasma, such as a current and voltage stabilizer.

  17. A model for the self-pulsing regime of microhollow cathode discharges

    SciTech Connect (OSTI)

    Chabert, P.; Lazzaroni, C.; Rousseau, A. [LPP, Ecole Polytechnique, UPMC, CNRS, Paris XI, 91128 Palaiseau (France)

    2010-12-01T23:59:59.000Z

    Microhollow cathode discharges may operate in different regimes depending of the discharge current. They are subject to relaxation oscillations in the so-called self-pulsing regime in which the discharge oscillates between two quasiequilibria: at low current it remains confined in the microhole whereas it expands on the cathode backside during short high-current pulses. A model based on a nonlinear discharge resistance is proposed to describe the phenomenon. The analysis of the dynamics reveals that the current pulse rises in an extremely short time while the characteristic (longer) decay time is imposed by the resistance when the discharge is expanded outside the hole. It is shown how the nonlinear discharge resistance may be inferred from the experimental current-voltage signals.

  18. Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project

    SciTech Connect (OSTI)

    John Smart; Stephen Schey

    2012-04-01T23:59:59.000Z

    As concern about society's dependence on petroleum-based transportation fuels increases, many see plug-in electric vehicles (PEV) as enablers to diversifying transportation energy sources. These vehicles, which include plug-in hybrid electric vehicles (PHEV), range-extended electric vehicles (EREV), and battery electric vehicles (BEV), draw some or all of their power from electricity stored in batteries, which are charged by the electric grid. In order for PEVs to be accepted by the mass market, electric charging infrastructure must also be deployed. Charging infrastructure must be safe, convenient, and financially sustainable. Additionally, electric utilities must be able to manage PEV charging demand on the electric grid. In the Fall of 2009, a large scale PEV infrastructure demonstration was launched to deploy an unprecedented number of PEVs and charging infrastructure. This demonstration, called The EV Project, is led by Electric Transportation Engineering Corporation (eTec) and funded by the U.S. Department of Energy. eTec is partnering with Nissan North America to deploy up to 4,700 Nissan Leaf BEVs and 11,210 charging units in five market areas in Arizona, California, Oregon, Tennessee, and Washington. With the assistance of the Idaho National Laboratory, eTec will collect and analyze data to characterize vehicle consumer driving and charging behavior, evaluate the effectiveness of charging infrastructure, and understand the impact of PEV charging on the electric grid. Trials of various revenue systems for commercial and public charging infrastructure will also be conducted. The ultimate goal of The EV Project is to capture lessons learned to enable the mass deployment of PEVs. This paper is the first in a series of papers documenting the progress and findings of The EV Project. This paper describes key research objectives of The EV Project and establishes the project background, including lessons learned from previous infrastructure deployment and PEV demonstrations. One such previous study was a PHEV demonstration conducted by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA), led by the Idaho National Laboratory (INL). AVTA's PHEV demonstration involved over 250 vehicles in the United States, Canada, and Finland. This paper summarizes driving and charging behavior observed in that demonstration, including the distribution of distance driven between charging events, charging frequency, and resulting proportion of operation charge depleting mode. Charging demand relative to time of day and day of the week will also be shown. Conclusions from the PHEV demonstration will be given which highlight the need for expanded analysis in The EV Project. For example, the AVTA PHEV demonstration showed that in the absence of controlled charging by the vehicle owner or electric utility, the majority of vehicles were charged in the evening hours, coincident with typical utility peak demand. Given this baseline, The EV Project will demonstrate the effects of consumer charge control and grid-side charge management on electricity demand. This paper will outline further analyses which will be performed by eTec and INL to documenting driving and charging behavior of vehicles operated in a infrastructure-rich environment.

  19. Weak charge form factor and radius of 208Pb through parity violation in electron scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Horowitz, C J; Jen, C -M; Rakhman, A; Souder, P A; Dalton, M M; Liyanage, N; Paschke, K D; Saenboonruang, K; Silwal, R; Franklin, G B; Friend, M; Quinn, B; Kumar, K S; McNulty, D; Mercado, L; Riordan, S; Wexler, J

    2012-03-26T23:59:59.000Z

    We use distorted wave electron scattering calculations to extract the weak charge form factor FW(q?), the weak charge radius RW, and the point neutron radius Rn, of 208Pb from the PREX parity violating asymmetry measurement. The form factor is the Fourier transform of the weak charge density at the average momentum transfer q? = 0.475 fm-1. We find FW(q?) = 0.204 ± 0.028(exp) ± 0.001(model). We use the Helm model to infer the weak radius from FW(q?). We find RW = 5.826 ± 0.181(exp) ± 0.027(model) fm. Here the exp error includes PREX statistical and systematic errors, while the model error describes the uncertainty in RW from uncertainties in the surface thickness ? of the weak charge density. The weak radius is larger than the charge radius, implying a 'weak charge skin' where the surface region is relatively enriched in weak charges compared to (electromagnetic) charges. We extract the point neutron radius Rn = 5.751 ± 0.175 (exp) ± 0.026(model) ± 0.005(strange) fm, from RW. Here there is only a very small error (strange) from possible strange quark contributions. We find Rn to be slightly smaller than RW because of the nucleon's size. Finally, we find a neutron skin thickness of Rn-Rp = 0.302 ± 0.175 (exp) ± 0.026 (model) ± 0.005 (strange) fm, where Rp is the point proton radius.

  20. Weak charge form factor and radius of 208Pb through parity violation in electron scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Horowitz, C J; Jen, C -M; Rakhman, A; Souder, P A; Dalton, M M; Liyanage, N; Paschke, K D; Saenboonruang, K; Silwal, R; Franklin, G B; et al

    2012-03-01T23:59:59.000Z

    We use distorted wave electron scattering calculations to extract the weak charge form factor FW(q?), the weak charge radius RW, and the point neutron radius Rn, of 208Pb from the PREX parity violating asymmetry measurement. The form factor is the Fourier transform of the weak charge density at the average momentum transfer q? = 0.475 fm-1. We find FW(q?) = 0.204 ± 0.028(exp) ± 0.001(model). We use the Helm model to infer the weak radius from FW(q?). We find RW = 5.826 ± 0.181(exp) ± 0.027(model) fm. Here the exp error includes PREX statistical and systematic errors, while the modelmore »error describes the uncertainty in RW from uncertainties in the surface thickness ? of the weak charge density. The weak radius is larger than the charge radius, implying a 'weak charge skin' where the surface region is relatively enriched in weak charges compared to (electromagnetic) charges. We extract the point neutron radius Rn = 5.751 ± 0.175 (exp) ± 0.026(model) ± 0.005(strange) fm, from RW. Here there is only a very small error (strange) from possible strange quark contributions. We find Rn to be slightly smaller than RW because of the nucleon's size. Finally, we find a neutron skin thickness of Rn-Rp = 0.302 ± 0.175 (exp) ± 0.026 (model) ± 0.005 (strange) fm, where Rp is the point proton radius.« less

  1. Using “warm handoffs” to link hospitalized smokers with tobacco treatment after discharge: study protocol of a randomized controlled trial

    E-Print Network [OSTI]

    Faseru, Babalola; Mussulman, Laura M.; Ellerbeck, Edward F.; Shireman, Theresa I.; Hunt, Jamie J.; Carlini, Beatriz H.; Preacher, Kristopher J.; Ayars, Candace L.; Cook, David J.; Richter, Kimber P.

    2012-08-01T23:59:59.000Z

    post-randomization Handoff Figure 1 Overview and study design of EQUIP – a randomized controlled trial.will collect 1-, 6-, and 12-month follow-up data. Outcome measures and analyses include 30-day point prevalence abstinence at 6 months, biochemically...:10.1186/1745-6215-13-127 Cite this article as: Richter et al.: Using “warm handoffs” to link hospitalized smokers with tobacco treatment after discharge: study protocol of a randomized controlled trial. Trials 2012 13:127. Richter et al. Trials 2012...

  2. Westinghouse Hanford Company effluent discharges and solid waste management report for calendar year 1989: 200/600 Areas

    SciTech Connect (OSTI)

    Brown, M.J.; P'Pool, R.K.; Thomas, S.P.

    1990-05-01T23:59:59.000Z

    This report presents calendar year 1989 radiological and nonradiological effluent discharge data from facilities in the 200 Areas and the 600 Area of the Hanford Site. Both summary and detailed effluent data are presented. In addition, radioactive and nonradioactive solid waste storage and disposal data for calendar year 1989 are furnished. Where appropriate, comparisons to previous years are made. The intent of the report is to demonstrate compliance of Westinghouse Hanford Company-operated facilities with administrative control values for radioactive constituents and applicable guidelines and standards (including Federal permit limits) for nonradioactive constituents. 11 refs., 20 tabs.

  3. Squeezout phenomena and boundary layer formation of a model ionic liquid under confinement and charging

    E-Print Network [OSTI]

    R. Capozza; A. Vanossi; A. Benassi; E. Tosatti

    2014-12-22T23:59:59.000Z

    Electrical charging of parallel plates confining a model ionic liquid down to nanoscale distances yields a variety of charge-induced changes in the structural features of the confined film. That includes even-odd switching of the structural layering and charging-induced solidification and melting, with important changes of local ordering between and within layers, and of squeezout behavior. By means of molecular dynamics simulations, we explore this variety of phenomena in the simplest charged Lennard-Jones coarse-grained model including or excluding the effect a neutral tail giving an anisotropic shape to one of the model ions. Using these models and open conditions permitting the flow of ions in and out of the interplate gap, we simulate the liquid squeezout to obtain the distance dependent structure and forces between the plates during their adiabatic appraoch under load. Simulations at fixed applied force illustrate an effective electrical pumping of the ionic liquid, from a thick nearly solid film that withstands the interplate pressure for high plate charge to complete squeezout following melting near zero charge. Effective enthalpy curves obtained by integration of interplate forces versus distance show the local minima that correspond to layering, and predict the switching between one minimum and another under squeezing and charging.

  4. Characteristics of radio-frequency atmospheric pressure dielectric-barrier discharge with dielectric electrodes

    SciTech Connect (OSTI)

    Hussain, S., E-mail: shussain@uos.edu.pk, E-mail: shussainuos@yahoo.com; Qazi, H. I. A.; Badar, M. A. [Department of Physics, University of Sargodha, 40100 Sargodha (Pakistan)] [Department of Physics, University of Sargodha, 40100 Sargodha (Pakistan)

    2014-03-15T23:59:59.000Z

    An experimental investigation to characterize the properties and highlight the benefits of atmospheric pressure radio-frequency dielectric-barrier discharge (rf DBD) with dielectric electrodes fabricated by anodizing aluminium substrate is presented. The current-voltage characteristics and millisecond images are used to distinguish the ? and ? modes. This atmospheric rf DBD is observed to retain the discharge volume without constriction in ? mode. Optical emission spectroscopy demonstrates that the large discharge current leads to more abundant reactive species in this plasma source.

  5. Aspects of charge recombination and charge transport in organic solar cells and light-emitting devices

    E-Print Network [OSTI]

    Difley, Seth

    2010-01-01T23:59:59.000Z

    In this thesis, aspects of charge reconbination and charge transport in organic solar cells and light-emitting devices are presented. These devices show promise relative to traditional inorganic semiconductors. We show ...

  6. ACTIVE CATHODES FOR SUPER-HIGH POWER DENSITY SOLID OXIDE FUEL CELLS THROUGH SPACE CHARGE EFFECTS

    SciTech Connect (OSTI)

    Anil V. Virkar

    2004-05-17T23:59:59.000Z

    This report summarizes the work done during the sixth quarter of the project. Effort was directed in three areas: (1) Further development of the model on the role of connectivity on ionic conductivity of porous bodies, including the role of grain boundaries and space charge region. (2) Calculation of the effect of space charge and morphology of porous bodies on the effective charge transfer resistance of porous composite cathodes. (3) The investigation of the three electrode system for the measurement of cathodic polarization using amperometric sensors.

  7. General Rotating Charged Kaluza-Klein AdS Black Holes in Higher Dimensions

    E-Print Network [OSTI]

    Shuang-Qing Wu

    2011-08-21T23:59:59.000Z

    I construct exact solutions for general nonextremal rotating, charged Kaluza-Klein black holes with a cosmological constant and with arbitrary angular momenta in all higher dimensions. I then investigate their thermodynamics and find their generalizations with the NUT charges. The metrics are given in both Boyer-Lindquist coordinates and a form very similar to the famous Kerr-Schild ansatz, which highlights its potential application to include multiple electric charges into solutions yet to be found in gauged supergravity. It is also observed that the metric ansatz in $D = 4$ dimensions is similar to those previously suggested by Yilmaz and later by Bekenstein.

  8. Neoclassical Theory of Elementary Charges with Spin of 1/2

    E-Print Network [OSTI]

    Anatoli Babin; Alexander Figotin

    2014-08-02T23:59:59.000Z

    We advance here our neoclassical theory of elementary charges by integrating into it the concept of spin of 1/2. The developed spinorial version of our theory has many important features identical to those of the Dirac theory such as the gyromagnetic ratio, expressions for currents including the spin current, and antimatter states. In our theory the concepts of charge and anticharge relate naturally to their "spin" in its rest frame in two opposite directions. An important difference with the Dirac theory is that both the charge and anticharge energies are positive whereas their frequencies have opposite signs.

  9. What Kind of Charging Infrastructure Do Chevrolet Volt Drivers in The EV Project Use and When Do They Use It?

    SciTech Connect (OSTI)

    Shawn Salisbury

    2014-09-01T23:59:59.000Z

    This document will present information describing the charging behavior of Chevrolet Volts that were enrolled in the EV Project. It will included aggregated data from more than 1,800 vehicles regarding locations, power levels, and time-of-day of charging events performed by those vehicles. This document will be published to the INL AVTA website.

  10. Remediation of the Highland Drive South Ravine, Port Hope, Ontario: Contaminated Groundwater Discharge Management Using Permeable Reactive Barriers and Contaminated Sediment Removal - 13447

    SciTech Connect (OSTI)

    Smyth, David; Roos, Gillian [Golder Associates Ltd., 2390 Argentia Road, Mississauga, ON L5N 5Z7 (Canada)] [Golder Associates Ltd., 2390 Argentia Road, Mississauga, ON L5N 5Z7 (Canada); Ferguson Jones, Andrea [MMM Group Ltd., 100 Commerce Valley Drive West, Thornhill, ON L3T 0A1 (Canada)] [MMM Group Ltd., 100 Commerce Valley Drive West, Thornhill, ON L3T 0A1 (Canada); Case, Glenn [AECL Port Hope Area Initiative Management Office, 115 Toronto Road, Port Hope, ON L1A 3S4 (Canada)] [AECL Port Hope Area Initiative Management Office, 115 Toronto Road, Port Hope, ON L1A 3S4 (Canada); Yule, Adam [Public Works and Government Services Canada, 4900 Yonge Street, 11th Floor, Toronto, ON, M2N 6A6 (Canada)] [Public Works and Government Services Canada, 4900 Yonge Street, 11th Floor, Toronto, ON, M2N 6A6 (Canada)

    2013-07-01T23:59:59.000Z

    The Highland Drive South Ravine (HDSR) is the discharge area for groundwater originating from the Highland Drive Landfill, the Pine Street North Extension (PSNE) roadbed parts of the Highland Drive roadbed and the PSNE Consolidation Site that contain historical low-level radioactive waste (LLRW). The contaminant plume from these LLRW sites contains elevated concentrations of uranium and arsenic and discharges with groundwater to shallow soils in a wet discharge area within the ravine, and directly to Hunt's Pond and Highland Drive South Creek, which are immediately to the south of the wet discharge area. Remediation and environmental management plans for HDSR have been developed within the framework of the Port Hope Project and the Port Hope Area Initiative. The LLRW sites will be fully remediated by excavation and relocation to a new Long-Term Waste Management Facility (LTWMF) as part of the Port Hope Project. It is projected, however, that the groundwater contaminant plume between the remediated LLRW sites and HDSR will persist for several hundreds of years. At the HDSR, sediment remediation within Hunt's Ponds and Highland Drive South Creek, excavation of the existing and placement of clean fill will be undertaken to remove current accumulations of solid-phase uranium and arsenic associated with the upper 0.75 m of soil in the wet discharge area, and permeable reactive barriers (PRBs) will be used for in situ treatment of contaminated groundwater to prevent the ongoing discharge of uranium and arsenic to the area in HDSR where shallow soil excavation and replacement has been undertaken. Bench-scale testing using groundwater from HDSR has confirmed excellent treatment characteristics for both uranium and arsenic using permeable reactive mixtures containing granular zero-valent iron (ZVI). A sequence of three PRBs containing ZVI and sand in backfilled trenches has been designed to intercept the groundwater flow system prior to its discharge to the ground surface and the creek and ponds in the HDSR. The first of the PRBs will be installed immediately up-gradient of the wet discharge area approximately 50 m from the creek, the other two will be installed across the area of shallow soil replacement, and all will extend from ground surface to the base of the water table aquifer through which the impacted groundwater flows. The PRBs have been designed to provide the removal of uranium and arsenic for decades, although the capacity of the treatment mixture for contaminant removal suggests that a longer period of treatment may be feasible. The environmental management plan includes an allowance for on-going monitoring, and replacement of a PRB(s) as might be required. (authors)

  11. File:Texas NOI for Storm Water Discharges Associated with Construction...

    Open Energy Info (EERE)

    NOI for Storm Water Discharges Associated with Construction Activities (TXR150000).pdf Jump to: navigation, search File File history File usage Metadata File:Texas NOI for Storm...

  12. Regulations For State Administration Of The National Pollutant Discharge Elimination System (Arkansas)

    Broader source: Energy.gov [DOE]

    The Regulations For State Administration Of The National Pollutant Discharge Elimination System (NPDES) is created Pursuant to the provisions of the Arkansas Water and Air Pollution Control Act,...

  13. Active electron energy distribution function control in direct current discharge using an auxiliary electrode

    SciTech Connect (OSTI)

    Schweigert, I. V. [Institute of Theoretical and Applied Mechanics, Novosibirsk 630090 (Russian Federation) [Institute of Theoretical and Applied Mechanics, Novosibirsk 630090 (Russian Federation); George Washington University, Washington, DC 20052 (United States); Kaganovich, I. D. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)] [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Demidov, V. I. [West Virginia University, Morgantown, WV 26506 (United States) [West Virginia University, Morgantown, WV 26506 (United States); St. Petersburg State University, St. Petersburg (Russian Federation)

    2013-10-15T23:59:59.000Z

    The electron energy distribution functions are studied in the low voltage dc discharge with a constriction, which is a diaphragm with an opening. The dc discharge glows in helium and is sustained by the electron current emitted from a heated cathode. We performed kinetic simulations of dc discharge characteristics and electron energy distribution functions for different gas pressures (0.8 Torr-4 Torr) and discharge current of 0.1 A. The results of these simulations indicate the ability to control the shape of the electron energy distribution functions by variation of the diaphragm opening radius.

  14. Nonlocal control of electron temperature in short direct current glow discharge plasma

    SciTech Connect (OSTI)

    Demidov, V. I. [Department of Optics and Spectroscopy, St. Petersburg State University, St. Petersburg 199034 (Russian Federation); International Laboratory “Nonlocal Plasma in Nanotechnology and Medicine”, ITMO University, Kronverkskiy pr. 49, St. Petersburg 197101 (Russian Federation); Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506 (United States); Kudryavtsev, A. A.; Stepanova, O. M. [Department of Optics and Spectroscopy, St. Petersburg State University, St. Petersburg 199034 (Russian Federation); Kurlyandskaya, I. P. [International Laboratory “Nonlocal Plasma in Nanotechnology and Medicine”, ITMO University, Kronverkskiy pr. 49, St. Petersburg 197101 (Russian Federation); St. Petersburg University of State Fire Service of EMERCOM RF, Murmansk Branch, Murmansk 183040 (Russian Federation)

    2014-09-15T23:59:59.000Z

    To demonstrate controlling the electron temperature in nonlocal plasma, experiments have been performed on a short (without positive column) dc glow discharge with a cold cathode by applying different voltages to the conducting discharge wall. The experiments have been performed for low-pressure noble gas discharges. The applied voltage can modify trapping the energetic electrons emitted from the cathode sheath and arising from the atomic and molecular processes in the plasma within the device volume. This phenomenon results in the energetic electrons heating the slow plasma electrons, which consequently modifies the electron temperature. Furthermore, a numerical model of the discharge has demonstrated the electron temperature modification for the above case.

  15. Effect of nonlocal electron kinetics on the characteristics of a dielectric barrier discharge in xenon

    SciTech Connect (OSTI)

    Avtaeva, S. V.; Skornyakov, A. V. [Kyrgyz-Russian Slavic University (Kyrgyzstan)

    2009-07-15T23:59:59.000Z

    The established dynamics of a dielectric barrier discharge in xenon at a pressure of 400 Torr is simulated in the framework of a one-dimensional fluid model in the local and nonlocal field approximations. It is shown that taking into account the nonlocal character of the electric field does not qualitatively change physical processes in a dielectric barrier discharge, but significantly affects its quantitative characteristics. In particular, the sheath thickness decreases, plasma ionization intensifies, the spatiotemporal distribution of the mean electron energy changes, and the discharge radiation efficiency increases. Electron kinetics in a dielectric barrier discharge in xenon is analyzed using the nonlocal field approximation.

  16. Long range temporal correlation in the chaotic oscillations of a dc glow discharge plasma

    SciTech Connect (OSTI)

    Lahiri, S. [Dinabandhu Mahavidyalaya, Bongaon, North 24 Parganas, Kolkata 743235 (India); Roychowdhury, D. [Techno India, EM4/1 Sector V, Salt Lake, Kolkata 700091 (India); Sekar Iyengar, A. N. [Plasma Physics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India)

    2012-08-15T23:59:59.000Z

    Long range temporal correlations in the fluctuations of the plasma floating potentials (measured using a Langmuir probe) are investigated in a dc glow discharge plasma. Keeping the neutral pressure constant, the discharge voltage was varied and at the formation of the plasma, quasi periodic oscillations were excited and on further increase of the discharge voltage they became chaotic (irregular) beyond a threshold voltage. We compared the Lyapunov exponent with the Hurst exponent obtained from R/S statistics which showed an opposite behaviour at the transition point. These results are perhaps new since we have not come across such comparative analysis for chaotic oscillations in a glow discharge plasma before.

  17. Self-excited nonlinear plasma series resonance oscillations in geometrically symmetric capacitively coupled radio frequency discharges

    SciTech Connect (OSTI)

    Donko, Z. [Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Schulze, J.; Czarnetzki, U.; Luggenhoelscher, D. [Institute for Plasma and Atomic Physics, Ruhr-University Bochum, Bochum 44780 (Germany)

    2009-03-30T23:59:59.000Z

    At low pressures, nonlinear self-excited plasma series resonance (PSR) oscillations are known to drastically enhance electron heating in geometrically asymmetric capacitively coupled radio frequency discharges by nonlinear electron resonance heating (NERH). Here we demonstrate via particle-in-cell simulations that high-frequency PSR oscillations can also be excited in geometrically symmetric discharges if the driving voltage waveform makes the discharge electrically asymmetric. This can be achieved by a dual-frequency (f+2f) excitation, when PSR oscillations and NERH are turned on and off depending on the electrical discharge asymmetry, controlled by the phase difference of the driving frequencies.

  18. A plasma needle for generating homogeneous discharge in atmospheric pressure air

    SciTech Connect (OSTI)

    Li Xuechen; Yuan Ning; Jia Pengying; Chen Junying [College of Physics Science and Technology, Hebei University, Baoding 071002 (China)

    2010-09-15T23:59:59.000Z

    Homogeneous discharge in air is often considered to be the ultimate low-temperature atmospheric pressure plasmas for industrial applications. In this paper, we present a method whereby stable homogeneous discharge in open air can be generated by a simple plasma needle. The discharge mechanism is discussed based on the spatially resolved light emission waveforms from the plasma. Optical emission spectroscopy is used to determine electron energy and rotational temperature, and results indicate that both electron energy and rotational temperature increase with increasing the applied voltage. The results are analyzed qualitatively based on the discharge mechanism.

  19. E-Print Network 3.0 - arc discharge method Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at different points on the cable. The discharge contained short, bluish arcs. 12... Artificial Dry-band Arcing ... Source: Arizona State University, Power Systems Engineering...

  20. E-Print Network 3.0 - assisted discharge inductive Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    studies Summary: words: capacity fade, interfacial impedance, lithium ion batterysupercapacitor hybrid, pulse discharge... supercapacitor hybrid and a battery alone has been...