Powered by Deep Web Technologies
Note: This page contains sample records for the topic "discharge halogen table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

,,,"Incandescent","Standard Fluorescent","Compact Fluorescent","High-Intensity Discharge","Halogen"  

U.S. Energy Information Administration (EIA) Indexed Site

B39. Lighting Equipment, Floorspace, 1999" B39. Lighting Equipment, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Lit Buildings","Lighting Equipment (more than one may apply)" ,,,"Incandescent","Standard Fluorescent","Compact Fluorescent","High-Intensity Discharge","Halogen" "All Buildings ................",67338,64321,38156,60344,20666,19223,17926 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,5859,2946,5154,738,245,600 "5,001 to 10,000 ..............",8238,7464,4047,6722,1108,663,991 "10,001 to 25,000 .............",11153,10393,6055,9815,1759,1701,1996 "25,001 to 50,000 .............",9311,9053,5004,8344,2296,2224,1611

2

Type II halogen???halogen contacts are halogen bonds  

Science Journals Connector (OSTI)

Cl/Br/I alternative substitutions in a series of dihalophenols indicate that type I and type II halogen???halogen contacts have different chemical nature. Only the latter ones qualify as true halogen bonds, according to the recent IUPAC definition.

Metrangolo, P.

2013-12-31T23:59:59.000Z

3

FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS  

SciTech Connect

Western Research Institute (WRI) initiated exploratory work towards the development of new field screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of carbon-halogen bonds. Commercially available heated diode and corona discharge leak detectors were procured and evaluated for halogenated VOC response. The units were modified to provide a digital readout of signal related to VOC concentration. Sensor response was evaluated with carbon tetrachloride and tetrachloroethylene (perchloroethylene, PCE), which represent halogenated VOCs with and without double bonds. The response characteristics were determined for the VOCs directly in headspace in Tedlar bag containers. Quantitation limits in air were estimated. Potential interferences from volatile hydrocarbons, such as toluene and heptane, were evaluated. The effect of humidity was studied also. The performance of the new devices was evaluated in the laboratory by spiking soil samples and monitoring headspace for halogenated VOCs. A draft concept of the steps for a new analytical method was outlined. The results of the first year effort show that both devices show potential utility for future analytical method development work towards the goal of developing a portable test kit for screening halogenated VOCs in the field.

John F. Schabron; Joseph F. Rovani Jr.; Theresa M. Bomstad

2002-06-01T23:59:59.000Z

4

Method and apparatus for detecting halogenated hydrocarbons  

DOE Patents (OSTI)

A halogenated hydrocarbon (HHC) detector is formed from a silent discharge (also called a dielectric barrier discharge) plasma generator. A silent discharge plasma device receives a gas sample that may contain one or more HHCs and produces free radicals and excited electrons for oxidizing the HHCs in the gas sample to produce water, carbon dioxide, and an acid including halogens in the HHCs. A detector is used to sensitively detect the presence of the acid. A conductivity cell detector combines the oxidation products with a solvent where dissociation of the acid increases the conductivity of the solvent. The conductivity cell output signal is then functionally related to the presence of HHCs in the gas sample. Other detectors include electrochemical cells, infrared spectrometers, and negative ion mobility spectrometers.

Monagle, Matthew (Los Alamos, NM); Coogan, John J. (Los Alamos, NM)

1997-01-01T23:59:59.000Z

5

Halogenation of cobalt dicarbollide  

DOE Patents (OSTI)

A method for selectively adding chlorine, bromine, or iodine to cobalt dicarbollide anions by means of electrophilic substitution reactions. Halogens are added only to the B10 and B10{prime} positions of the anion. The process involves use of hypohalous acid or N-halosuccinimide or gaseous chlorine in the presence of iron. 1 fig.

Hurlburt, P.K.; Abney, K.D.; Kinkead, S.A.

1997-05-20T23:59:59.000Z

6

FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS  

SciTech Connect

Western Research Institute (WRI) is continuing work toward the development of new screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of halogens. In prior work, the devices were tested for response to carbon tetrachloride, heptane, toluene, and water vapors. In the current work, sensor response was evaluated with sixteen halogenated VOCs relative to carbon tetrachloride. The results show that the response of the various chlorinated VOCs is within an order of magnitude of the response to carbon tetrachloride for each of the sensors. Thus, for field screening a single response factor can be used. Both types of leak detectors are being further modified to provide an on-board LCD signal readout, which is related to VOC concentration. The units will be fully portable and will operate with 115-V line or battery power. Signal background, noise level, and response data on the Bacharach heated diode detector and the TIF corona discharge detector show that when the response curves are plotted against the log of concentration, the plot is linear to the upper limit for the particular unit, with some curvature at lower levels. When response is plotted directly against concentration, the response is linear at the low end and is curved at the high end. The dynamic ranges for carbon tetrachloride of the two devices from the lower detection limit (S/N=2) to signal saturation are 4-850 vapor parts per million (vppm) for the corona discharge unit and 0.01-70 vppm for the heated diode unit. Additional circuit modifications are being made to lower the detection limit and increase the dynamic response range of the corona discharge unit. The results indicate that both devices show potential utility for future analytical method development work toward the goal of developing a portable test kit for screening halogenated VOCs in the field.

John F. Schabron; Joseph F. Rovani, Jr.; Theresa M. Bomstad

2003-07-01T23:59:59.000Z

7

Table Search (or Ranking Tables)  

E-Print Network (OSTI)

;Table Search #3 #12;Outline · Goals of table search · Table search #1: Deep Web · Table search #3 search Table search #1: Deep Web · Table search #3: (setup): Fusion Tables · Table search #2: WebTables ­Version 1: modify document search ­Version 2: recover table semantics #12;Searching the Deep Web store

Halevy, Alon

8

E-Print Network 3.0 - active halogen species Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

organo-halogen gases or solvents. The most abundant... Zevenhoven & Kilpinen Halogens, dioxinsfurans 17.6.2001 7-1 Chapter 7 Halogens, dioxinsfurans 7... .1 Introduction The...

9

Crystallographic studies on enzymatic halogenation of natural products  

E-Print Network (OSTI)

Halogenated natural products are common and serve roles as hormones, pesticides, antibiotics, and anti-tumor agents. The incorporation of a halogen atom into an organic scaffold can tune the molecule's potency and selectivity, ...

Blasiak, Leah Cameron

2008-01-01T23:59:59.000Z

10

Discharge quencher for Geiger counters  

SciTech Connect

A discharge quencher for halogen Geiger counters with a total powercutoff time after the appearance of an input signal of -70 nsec and an input sensitivity of -50 mV is described. The circuit permits parallel control of five STS-5 counters for a quenching-pulse duration of 4.5 usec. Counting responses with slopes to 0.131%/V and a plateau width of 100 V at a load of 60,000 pulses/sec are obtained for two STS-5 counters. The maximum load is 120,000 pulses/sec.

Mushev, R.K.

1986-03-01T23:59:59.000Z

11

Process for removing halogenated aliphatic and aromatic compounds from petroleum products. [Polychlorinated biphenyls; methylene chloride; perchloroethylene; trichlorofluoroethane; trichloroethylene; chlorobenzene  

DOE Patents (OSTI)

A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contracting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible polyhydroxy compound, such as, water, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds in the low polar or nonpolar solvent by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered for recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 2 tables.

Googin, J.M.; Napier, J.M.; Travaglini, M.A.

1982-03-31T23:59:59.000Z

12

Zevenhoven & Kilpinen Halogens, dioxins/furans 17.6.2001 7-1 Chapter 7 Halogens,  

E-Print Network (OSTI)

Zevenhoven & Kilpinen Halogens, dioxins/furans 17.6.2001 7-1 Chapter 7 Halogens, dioxins/furans 7 in Figure 7.1. The polychlorinated dibenzo -(p) dioxins and -furans (PCDD/Fs) that are found in PCBs and may, dioxins/furans 17.6.2001 7-2 2,3,7,8 tetrachloro dibenzo - p- dioxin PCB furan 2,3,7,8 tetrachlorodibenzo

Zevenhoven, Ron

13

Organic halogens in unpolluted waters and large bodies of water receiving bleach plant effluents  

SciTech Connect

In this paper the authors review and update recently performed studies of organic halogens in unpolluted waters and two large bodies of water receiving bleach plant effluents---Lake Vattern in Sweden and the Baltic Sea. All water samples contained measurable amounts of adsorbable organic halogens (AOX); the highest concentrations (up to 200 {mu}g Cl/L) were observed in humic lakes not exposed to any industrial discharges. Analysis of chlorophenols revealed that there is a long-distance transport ({gt} 100 km) of chloroguaiacols from bleach plants to remote parts of receiving waters. However, there was no evidence of chlorinated organics from bleach plants accumulating over several years in the water phase. One chlorophenol, 2,4,6-trichlorophenol, and its methylated analogue, 2,4,6-trichloroanisole, were also detected in surface waters considered to be unpolluted. Mass balance calculations showed that different processes in terrestrial environments make large contributions of AOX; enzyme-mediated chlorination of humic substances is a plausible explanation to the widespread occurrence of organic halogens.

Grimvall, A.; Jonsson, S.; Karlsson, S.; Savenhed, R.; Boren, H. (Dept. of Water and Environmental Studies, Linkoping Univ., S-58183 Linkoping (SE))

1991-05-01T23:59:59.000Z

14

Computational investigation of the SN2 reactivity of halogenated pollutants.  

E-Print Network (OSTI)

??The SN2 displacement reaction, in which a halide is displaced from a molecule by a nucleophile represents an important mechanism by which halogenated pollutants can (more)

Stanford University, Dept. of Civil and Environmental; Engineering

2011-01-01T23:59:59.000Z

15

E-Print Network 3.0 - anesthesiques halogenes pendant Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Collection: Chemistry 38 HELSINKI UNIVERSITY OF TECHNOLOGY ENE-47.153 Halogens, dioxinsHalogens, dioxinsfuransfurans Summary: HELSINKI UNIVERSITY OF TECHNOLOGY ENE-47.153...

16

Halogenated naphthyl methoxy piperidines for mapping serotonin transporter sites  

DOE Patents (OSTI)

Halogenated naphthyl methoxy piperidines having a strong affinity for the serotonin transporter are disclosed. Those compounds can be labeled with positron-emitting and/or gamma emitting halogen isotopes by a late step synthesis that maximizes the useable lifeterm of the label. The labeled compounds are useful for localizing serotonin transporter sites by positron emission tomography and/or single photon emission computed tomography.

Goodman, Mark M. (Atlanta, GA); Faraj, Bahjat (Lithonia, GA)

1999-01-01T23:59:59.000Z

17

Halogenated naphthyl methoxy piperidines for mapping serotonin transporter sites  

DOE Patents (OSTI)

Halogenated naphthyl methoxy piperidines having a strong affinity for the serotonin transporter are disclosed. Those compounds can be labeled with positron-emitting and/or gamma emitting halogen isotopes by a late step synthesis that maximizes the useable lifeterm of the label. The labeled compounds are useful for localizing serotonin transporter sites by positron emission tomography and/or single photon emission computed tomography.

Goodman, M.M.; Faraj, B.

1999-07-06T23:59:59.000Z

18

Treatment of halogen-containing waste and other waste materials  

DOE Patents (OSTI)

A process is described for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes. 3 figs.

Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

1997-03-18T23:59:59.000Z

19

Treatment of halogen-containing waste and other waste materials  

DOE Patents (OSTI)

A process for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes.

Forsberg, Charles W. (Oak Ridge, TN); Beahm, Edward C. (Oak Ridge, TN); Parker, George W. (Concord, TN)

1997-01-01T23:59:59.000Z

20

Conversion Tables  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Information Analysis Center - Conversion Tables Carbon Dioxide Information Analysis Center - Conversion Tables Contents taken from Glossary: Carbon Dioxide and Climate, 1990. ORNL/CDIAC-39, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee. Third Edition. Edited by: Fred O'Hara Jr. 1 - International System of Units (SI) Prefixes 2 - Useful Quantities in CO2 3 - Common Conversion Factors 4 - Common Energy Unit Conversion Factors 5 - Geologic Time Scales 6 - Factors and Units for Calculating Annual CO2 Emissions Using Global Fuel Production Data Table 1. International System of Units (SI) Prefixes Prefix SI Symbol Multiplication Factor exa E 1018 peta P 1015 tera T 1012 giga G 109 mega M 106 kilo k 103 hecto h 102 deka da 10 deci d 10-1 centi c 10-2

Note: This page contains sample records for the topic "discharge halogen table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

5 5 Adobe Acrobat Reader Logo Adobe Acrobat Reader is required for PDF format Excel logo Spreadsheets are provided in excel 1 to117 - Complete set of Supplemental Tables PDF Energy Consumption by Sector (Census Division) Table 1. New England XLS PDF Table 2. Middle Atlantic XLS PDF Table 3. East North Central XLS PDF Table 4. West North Central XLS PDF Table 5. South Atlantic XLS PDF Table 6. East South Central XLS PDF Table 7. West South Central XLS PDF Table 8. Mountain XLS PDF Table 9. Pacific XLS PDF Table 10. Total United States XLS PDF Energy Prices by Sector (Census Division) Table 11. New England XLS PDF Table 12. Middle Atlantic XLS PDF Table 13. East North Central XLS PDF Table 14. West North Central XLS PDF Table 15. South Atlantic XLS PDF Table 16. East South Central

22

Halogenated 1'-methyl-1,2'-bipyrroles (MBPs) in the Norwestern Atlantic  

E-Print Network (OSTI)

Halogenated 1'-methyl-1,2'-bipyrroles (MBPs) are a distinctive class of marine organic compounds. They are naturally produced, they have a unique carbon structure, they are highly halogenated, and they bioaccumulate in ...

Pangallo, Kristin C

2009-01-01T23:59:59.000Z

23

TABLE OF CONTENTS TABLE OF CONTENTS ...........................................................................................................................................II  

NLE Websites -- All DOE Office Websites (Extended Search)

i i ii TABLE OF CONTENTS TABLE OF CONTENTS ...........................................................................................................................................II EXECUTIVE SUMMARY ........................................................................................................................................... 3 INTRODUCTION......................................................................................................................................................... 4 COMPLIANCE SUMMARY ....................................................................................................................................... 6 COMPREHENSIVE ENVIRONMENTAL RESPONSE, COMPENSATION, AND LIABILITY ACT (CERCLA) .................... 6

24

State Waste Discharge Permit application, 183-N Backwash Discharge Pond  

SciTech Connect

As part of the Hanford Federal Facility Agreement and Consent Order negotiations (Ecology et al. 1994), the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173--216 (or 173--218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order No. DE91NM-177, (Ecology and DOE-RL 1991). The Consent Order No. DE91NM-177 requires a series of permitting activities for liquid effluent discharges. Liquid effluents on the Hanford Site have been classified as Phase I, Phase II, and Miscellaneous Streams. The Consent Order No. DE91NM-177 establishes milestones for State Waste Discharge Permit application submittals for all Phase I and Phase II streams, as well as the following 11 Miscellaneous Streams as identified in Table 4 of the Consent Order No. DE91NM-177.

Not Available

1994-06-01T23:59:59.000Z

25

Method for selective dehalogenation of halogenated polyaromatic compounds  

DOE Patents (OSTI)

A method for dehalogenating halogenated polyaromatic compounds is provided wherein the polyaromatic compounds are mixed with a hydrogen donor solvent and a carbon catalyst in predetermined proportions, the mixture is maintained at a predetermined pressure, and the mixture is heated to a predetermined temperature and for a predetermined time.

Farcasiu, Malvina (Pittsburgh, PA); Petrosius, Steven C. (Library, PA)

1994-01-01T23:59:59.000Z

26

1992 CBECS Detailed Tables  

Gasoline and Diesel Fuel Update (EIA)

Detailed Tables Detailed Tables To download all 1992 detailed tables: Download Acrobat Reader for viewing PDF files. Yellow Arrow Buildings Characteristics Tables (PDF format) (70 tables, 230 pages, file size 1.39 MB) Yellow Arrow Energy Consumption and Expenditures Tables (PDF format) (47 tables, 208 pages, file size 1.28 MB) Yellow Arrow Energy End-Use Tables (PDF format) (6 tables, 6 pages, file size 31.7 KB) Detailed tables for other years: Yellow Arrow 1999 CBECS Yellow Arrow 1995 CBECS Background information on detailed tables: Yellow Arrow Description of Detailed Tables and Categories of Data Yellow Arrow Statistical Significance of Data 1992 Commercial Buildings Energy Consumption Survey (CBECS) Detailed Tables Data from the 1992 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables:

27

Table 25  

Gasoline and Diesel Fuel Update (EIA)

89 89 Table 25 Created on: 1/3/2014 3:10:33 PM Table 25. Natural gas home customer-weighted heating degree days, New England Middle Atlantic East North Central West North Central South Atlantic Month/Year/Type of data CT, ME, MA, NH, RI, VT NJ, NY, PA IL, IN, MI, OH, WI IA, KS, MN, MO, ND, NE, SD DE, FL, GA, MD, DC, NC, SC, VA, WV November Normal 702 665 758 841 442 2012 751 738 772 748 527 2013 756 730 823 868 511 % Diff (normal to 2013) 7.7 9.8 8.6 3.2 15.6 % Diff (2012 to 2013) 0.7 -1.1 6.6 16.0 -3.0 November to November Normal 702 665 758 841 442 2012 751 738 772 748 527 2013 756 730 823 868 511 % Diff (normal to 2013) 7.7 9.8 8.6 3.2 15.6 % Diff (2012 to 2013) 0.7 -1.1 6.6 16.0 -3.0

28

chapter 5. Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

5. Detailed Tables 5. Detailed Tables Chapter 5. Detailed Tables The following tables present detailed characteristics of vehicles in the residential sector. Data are from the 1994 Residential Transportation Energy Consumption Survey. Table Organization The "Detailed Tables" section consists of three types of tables: (1) Tables of totals such as number of vehicle-miles traveled (VMT) or gallons consumed; (2) tables of per household statistics such as VMT per household; and (3) tables of per-vehicle statistics, such as vehicle fuel consumption per vehicle. The tables have been grouped together by specific topics such as model-year data or family-income data to facilitate finding related information. The Quick-Reference Guide to the detailed tables indicates major topics of each table.

29

Notices TABLE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 Federal Register 7 Federal Register / Vol. 76, No. 160 / Thursday, August 18, 2011 / Notices TABLE 2-NET BURDEN CHANGE-Continued 2011-2012 2012-2013 Change % Change Burden disposition Total Applicants .................................... 23,611,500 24,705,864 +1,094,364 +4.63 Net decrease in burden. The increase in applicants is offset by the results of the Department's simplification changes. This has created an over- all decrease in burden of 8.94% or 2,881,475 hours. Total Applicant Burden ......................... 32,239,328 29,357,853 ¥2,881,475 ¥8.94 Total Annual Responses ....................... 32,239,328 46,447,024 +14,207,696 +44.07 Cost for All Applicants .......................... $159,370.20 $234,804.24 $75,434.04 +47.33 The Department is proud that efforts to simplify the FAFSA submission

30

Table 4  

U.S. Energy Information Administration (EIA) Indexed Site

4. Mean Annual Electricity Expenditures for Lighting, by Number of 4. Mean Annual Electricity Expenditures for Lighting, by Number of Household Members by Number of Rooms, 1993 (Dollars) Number of Rooms Number of Household Members All Households One to Three Four Five Six Seven Eight or More RSE Column Factors: 0.5 1.8 1.1 0.9 0.9 1.0 1.2 RSE Row Factors All Households................................... 83 49 63 76 87 104 124 2.34 One..................................................... 55 44 51 54 69 78 87 5.33 Two..................................................... 80 56 63 77 82 96 107 3.38 Three.................................................. 92 60 73 82 95 97 131 4.75 Four.................................................... 106 64 78 93 96 124 134 4.53 Five or More....................................... 112 70 83 98 99 117 150 5.89 Notes: -- To obtain the RSE percentage for any table cell, multiply the

31

Oscillations in glow discharges  

E-Print Network (OSTI)

OSCILLATIONS IN GLOW DISCHARGES A Dissertation By Tom Prickett, Jr. June 1950 Approved as to style and content by Chairman of Committee OSCILLATIONS IN GLOW DISCHARGES A Dissertation By Tom Prickett, Jr* June 1950 OSCILLATIONS IN GLOW... 1950 CONTENTS Introduction ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 I. Review of Plasma Oscillations in Gas Discharges ? . . 2 II. Review of Relaxation Processes in Gas Discharges ? . 13 III. Report of Laboratory Investigation...

Prickett, Tom

1950-01-01T23:59:59.000Z

32

Alkali-metal-halogen charge-exchange collisions  

Science Journals Connector (OSTI)

An approximate quasiclassical treatment is presented for calculating the cross sections for charge transfer from a neutral alkali-metal atom colliding with a halogen atom (chlorine or fluorine). The electron is treated by the time-dependent perturbation in the two-state approximation. The two states are the ground (or the first-excited) state of alkali-metal atom and the ground state of the halogen negative ion. Charge-transfer cross sections are calculated as a function of relative velocity (v) of collision between v=0.01and5 a.u. Qualitative features of these cross sections are compared with an earlier work on alkali-metal-oxygen collisions. An asymptotic formula at low velocities of collision v?0 is obtained, which compares with the earlier formula obtained by Bates. At higher velocities cross sections are found to vary as 1v2, as in the Born approximation.

D. Arora; J. E. Turner; P. G. Khubchandani

1976-12-01T23:59:59.000Z

33

1995 Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Households, Buildings & Industry > Commercial Buildings Energy Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey > Detailed Tables 1995 Detailed Tables Data from the 1995 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables: Buildings Characteristics Tables, number of buildings and amount of floorspace for major building characteristics. Energy Consumption and Expenditures Tables, energy consumption and expenditures for major energy sources. Energy End-Use Data, total, electricity and natural gas consumption and energy intensities for nine specific end-uses. Summary Table—All Principal Buildings Activities (HTML Format) Background information on detailed tables: Description of Detailed Tables and Categories of Data Statistical Significance of Data

34

Direct Discharge Permit (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

A direct discharge permit is required if a project involves the discharge of pollutants to state waters. For generation purposes, this involves the withdrawal of surface water for cooling purposes...

35

Preliminary assessment of halogenated alkanes as vapor-phase tracers  

SciTech Connect

New tracers are needed to evaluate the efficiency of injection strategies in vapor-dominated environments. One group of compounds that seems to meet the requirements for vapor-phase tracing are the halogenated alkanes (HCFCs). HCFCs are generally nontoxic, and extrapolation of tabulated thermodynamic data indicate that they will be thermally stable and nonreactive in a geothermal environment. The solubilities and stabilities of these compounds, which form several homologous series, vary according to the substituent ratios of fluorine, chlorine, and hydrogen. Laboratory and field tests that will further define the suitability of HCFCs as vapor-phase tracers are under way.

Adams, Michael C.; Moore, Joseph N.; Hirtz, Paul

1991-01-01T23:59:59.000Z

36

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

Adobe Acrobat Reader Logo Adobe Acrobat Reader is required for PDF format. Adobe Acrobat Reader Logo Adobe Acrobat Reader is required for PDF format. MS Excel Viewer Spreadsheets are provided in excel Errata - August 25, 2004 1 to117 - Complete set of of Supplemental Tables PDF Table 1. Energy Consumption by Source and Sector (New England) XLS PDF Table 2. Energy Consumption by Source and Sector (Middle Atlantic) XLS PDF Table 3. Energy Consumption by Source and Sector (East North Central) XLS PDF Table 4. Energy Consumption by Source and Sector (West North Central) XLS PDF Table 5. Energy Consumption by Source and Sector (South Atlantic) XLS PDF Table 6. Energy Consumption by Source and Sector (East South Central) XLS PDF Table 7. Energy Consumption by Source and Sector (West South Central) XLS PDF Table 8. Energy Consumption by Source and Sector (Mountain)

37

1999 CBECS Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Commercial Buildings Energy Consumption Survey (CBECS) > Detailed Tables Commercial Buildings Energy Consumption Survey (CBECS) > Detailed Tables 1999 CBECS Detailed Tables Building Characteristics | Consumption & Expenditures Data from the 1999 Commercial Buildings Energy Consumption Survey (CBECS) are presented in the Building Characteristics tables, which include number of buildings and total floorspace for various Building Characteristics, and Consumption and Expenditures tables, which include energy usage figures for major energy sources. A table of Relative Standard Errors (RSEs) is included as a worksheet tab in each Excel tables. Complete sets of RSE tables are also available in .pdf format. (What is an RSE?) Preliminary End-Use Consumption Estimates for 1999 | Description of 1999 Detailed Tables and Categories of Data

38

Efficient and Regioselective Halogenations of 2-Amino-1,3-thiazoles with Copper Salts  

E-Print Network (OSTI)

Efficient and Regioselective Halogenations of 2-Amino-1,3-thiazoles with Copper Salts Fabrice G. Halogenations proceed easily in the presence of copper(I) or copper(II) chlorides, bromides, or iodides directly in solution or with supported copper halides. 1,3-Thiazole rings appear in many compounds that exhibit

Shen, Jun

39

Nonsputtering impulse magnetron discharge  

SciTech Connect

Experiments with quasi-steady high-current discharges in crossed E Multiplication-Sign B fields in various gases (Ar, N{sub 2}, H{sub 2}, and SF{sub 6}) and gas mixtures (Ar/SF{sub 6} and Ar/O{sub 2}) at pressures from 10{sup -3} to 5 Torr in discharge systems with different configurations of electric and magnetic fields revealed a specific type of stable low-voltage discharge that does not transform into an arc. This type of discharge came to be known as a high-current diffuse discharge and, later, a nonsputtering impulse magnetron discharge. This paper presents results from experimental studies of the plasma parameters (the electron temperature, the plasma density, and the temperature of ions and atoms of the plasma-forming gas) of a high-current low-pressure diffuse discharge in crossed E Multiplication-Sign B fields.

Khodachenko, G. V.; Mozgrin, D. V.; Fetisov, I. K.; Stepanova, T. V. [National Research Nuclear University Moscow Engineering Physics Institute (Russian Federation)

2012-01-15T23:59:59.000Z

40

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

December 22, 2000 (Next Release: December, 2001) Related Links Annual Energy Outlook 2001 Assumptions to the AEO2001 NEMS Conference Contacts Forecast Homepage EIA Homepage AEO Supplement Reference Case Forecast (1999-2020) (HTML) Table 1. Energy Consumption by Source and Sector (New England) Table 2. Energy Consumption by Source and Sector (Middle Atlantic) Table 3. Energy Consumption by Source and Sector (East North Central) Table 4. Energy Consumption by Source and Sector (West North Central) Table 5. Energy Consumption by Source and Sector (South Atlantic) Table 6. Energy Consumption by Source and Sector (East South Central) Table 7. Energy Consumption by Source and Sector (West South Central) Table 8. Energy Consumption by Source and Sector (Mountain)

Note: This page contains sample records for the topic "discharge halogen table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

FY 2005 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) Table of Contents Summary...................................................................................................... 1 Mandatory Funding....................................................................................... 3 Energy Supply.............................................................................................. 4 Non-Defense site acceleration completion................................................... 6 Uranium enrichment D&D fund.................................................................... 6 Non-Defense environmental services.......................................................... 6 Science.........................................................................................................

42

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

The AEO Supplementary tables were generated for the reference case of the The AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 2002 (AEO2002) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 1999 to 2020. Most of the tables were not published in the AEO2002, but contain regional and other more detailed projections underlying the AEO2002 projections. The files containing these tables are in spreadsheet format. A total of one hundred and seven tables is presented. The data for tables 10 and 20 match those published in AEO2002 Appendix tables A2 and A3, respectively. Forecasts for 2000-2002 may differ slightly from values published in the Short Term Energy Outlook, which are the official EIA short-term forecasts and are based on more current

43

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

Homepage Homepage Supplement Tables to the AEO2001 The AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 2001 (AEO2001) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 1999 to 2020. Most of the tables were not published in the AEO2001, but contain regional and other more detailed projections underlying the AEO2001 projections. The files containing these tables are in spreadsheet format. A total of ninety-five tables is presented. The data for tables 10 and 20 match those published in AEO2001 Appendix tables A2 and A3, respectively. Forecasts for 1999 and 2000 may differ slightly from values published in the Short Term Energy Outlook, which are the official EIA short-term forecasts and are based on more current information than the AEO.

44

Chem 115Lithium-Halogen ExchangeMyers RLi + R'X RX + R'Li  

E-Print Network (OSTI)

Chem 115Lithium-Halogen ExchangeMyers RLi + R'X RX + R'Li Lithium-halogen exchange reactions are essentially inert. 2 t-BuLi t-BuI + RLi t-BuLi isobutene + isobutane + LiI Lithium-halogen exchange reactions, and lithium iodide. H OEtBr H H OEtLi H1.1 eq n-BuLi Et2O, !80 °C Lau, K. S.; Schlosser, M. J. Org. Chem. 1978

45

Silane discharge ion chemistry  

SciTech Connect

Silane dc, rf, and dc proximity discharges have been studied using mass spectroscopic measurements of the positive ions as a detailed diagnostic for the type of discharge used to produce hydrogenated amorphous silicon solar photovoltaic cells. The properties and quality of these films depends in a very complex way upon the interactions of the many reactive neutral and ion species in the discharge. Qualitative models of the ion chemical processes in these discharges have been developed from experimental measurements. Knowledge of the ion-molecule and electron-molecule collision cross sections is important to any attempt at understanding silane discharge chemistry. Consequently, the electron impact ionization cross sections for silane and disilane have been measured and for comparison purposes also for methane and ethane. In addition, the rate coefficients for charge exchange reactions of He , Ne , and Ar with silane, disilane, methane, and ethane have been measured as these are important to understanding discharges in inert gas-silane mixtures. A detailed quantitative model of the cathode sheath region of a silane dc discharge has been developed by extending the best recent calculation of the electron motion in the sheath to a self-consistent form which includes the ion motion. This model is used with comparison of silane dc discharge data to diagnose the ion chemistry occurring in the sheath region of silane dc discharge. The understanding of the discharge ion chemical processes that have been gained in this study represent an important step toward understanding the chemical and physical processes leading to film growth.

Chatham, R.H. III

1984-01-01T23:59:59.000Z

46

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 2000 (AEO2000) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 1998 to 2020. Most of the tables were not published in the AEO2000, but contain regional and other more detailed projections underlying the AEO2000 projections. The files containing these tables are in spreadsheet format. A total of ninety-six tables are presented. AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 2000 (AEO2000) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 1998 to 2020. Most of the tables were not published in the AEO2000, but contain regional and other more detailed projections underlying the AEO2000 projections. The files containing these tables are in spreadsheet format. A total of ninety-six tables are presented. The data for tables 10 and 20 match those published in AEO200 Appendix tables A2 and A3, respectively. Forecasts for 1998, and 2000 may differ slightly from values published in the Short Term Energy Outlook, Fourth Quarter 1999 or Short Term Energy Outlook, First Quarter 2000, which are the official EIA short-term forecasts and are based on more current information than the AEO.

47

Glow discharge detector  

DOE Patents (OSTI)

A highly sensitive electronic ion cell for the measurement of trace elements in He carrier gas which involves glow discharge. A constant wave (CW) glow discharge detector which is controlled through a biased resistor, can detect the change of electron density caused by impurities in the He carrier gas by many orders of magnitude larger than that caused by direct ionization or electron capture. The glow discharge detector utilizes a floating pseudo-electrode to form a probe in or near the plasma. By using this probe, the large variation of electron density due to trace amounts of impurities can be directly measured.

Koo, Jackson C. (San Ramon, CA); Yu, Conrad M. (Antioch, CA)

2002-01-01T23:59:59.000Z

48

FY 2005 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Congressional Budget Congressional Budget Request Laboratory Tables Preliminary Department of Energy FY 2005 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Preliminary Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Laboratory Tables Printed with soy ink on recycled paper Preliminary Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. include both the discretionary and mandatory funding in the budget. balances, deferrals, rescissions, or other adjustments appropria ted as offsets to the DOE appropriations by the Congress.

49

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

Supplemental Tables to the Annual Energy Outlook 2005 Supplemental Tables to the Annual Energy Outlook 2005 EIA Glossary Supplemental Tables to the Annual Energy Outlook 2005 Release date: February 2005 Next release date: February 2006 The AEO Supplemental tables were generated for the reference case of the Annual Energy Outlook 2005 (AEO2005) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 2003 to 2025. Most of the tables were not published in the AEO2005, but contain regional and other more detailed projections underlying the AEO2005 projections. The files containing these tables are in spreadsheet format. A total of one hundred and seventeen tables is presented. The data for tables 10 and 20 match those published in AEO2005 Appendix tables A2 and A3, respectively. Forecasts for 2003-2005 may differ slightly from values published in the Short Term Energy Outlook, which are the official EIA short-term forecasts and are based on more current information than the AEO.

50

Louisiana Block Grant Tables | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Louisiana Block Grant Tables Louisiana Block Grant Tables This table details funding for state, city, and county governments in the state of Louisiana. Louisiana Block Grant Tables...

51

Mississippi Block Grant Tables | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mississippi Block Grant Tables Mississippi Block Grant Tables A table describing where state funding is being distributed Mississippi Block Grant Tables More Documents &...

52

2003 CBECS RSE Tables  

Gasoline and Diesel Fuel Update (EIA)

cbecs/cbecs2003/detailed_tables_2003/2003rsetables_files/plainlink.css" cbecs/cbecs2003/detailed_tables_2003/2003rsetables_files/plainlink.css" type=text/css rel=stylesheet> Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > 2003 Detailed Tables > RSE Tables 2003 CBECS Relative Standard Error (RSE) Tables Released: Dec 2006 Next CBECS will be conducted in 2007 Standard error is a measure of the reliability or precision of the survey statistic. The value for the standard error can be used to construct confidence intervals and to perform hypothesis tests by standard statistical methods. Relative Standard Error (RSE) is defined as the standard error (square root of the variance) of a survey estimate, divided by the survey estimate and multiplied by 100. (More information on RSEs)

53

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings Use Tables Buildings Use Tables (24 pages, 129 kb) CONTENTS PAGES Table 12. Employment Size Category, Number of Buildings, 1995 Table 13. Employment Size Category, Floorspace, 1995 Table 14. Weekly Operating Hours, Number of Buildings, 1995 Table 15. Weekly Operating Hours, Floorspace, 1995 Table 16. Occupancy of Nongovernment-Owned and Government-Owned Buildings, Number of Buildings, 1995 Table 17. Occupancy of Nongovernment-Owned and Government-Owned Buildings, Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the

54

ARM - Instrument Location Table  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentsLocation Table govInstrumentsLocation Table Instruments Location Table Contacts Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument Locations Site abbreviations explained in the key. Instrument Name Abbreviation NSA SGP TWP AMF C1 C2 EF BF CF EF IF C1 C2 C3 EF IF Aerosol Chemical Speciation Monitor ACSM Atmospheric Emitted Radiance Interferometer AERI Aethalometer AETH Ameriflux Measurement Component AMC Aerosol Observing System AOS Meteorological Measurements associated with the Aerosol Observing System AOSMET Broadband Radiometer Station BRS

55

(Gas discharges and applications)  

SciTech Connect

The traveler attended the Ninth International Conference on Gas Discharges and Their Applications, which was held in Venice, Italy, on September 19--23, 1988; presented two papers, (1) Ion Chemistry in SF{sub 6} Corona'' and (2) Production of S{sub 2}F{sub 10} by SF{sub 6} Spark Discharge''; and participated in numerous discussions with conference participants on gas discharges related to his work on SF{sub 6}. The traveler visited the Centre de Physique Atomique at the University Paul Sabatier in Toulouse, France, to discuss with Dr. J. Casanovas his work on SF{sub 6} decomposition. Following that visit, the traveler visited the Laboratoire de Photoelectricite at the University of Dijon to discuss with Dr. J.-P. Goudonnet his work on surface studies and on the use of tunneling electron spectroscopy for the chemical analysis of surfaces.

Sauers, I.

1988-10-04T23:59:59.000Z

56

Analysis of Halogen-Mercury Reactions in Flue Gas  

SciTech Connect

Oxidized mercury species may be formed in combustion systems through gas-phase reactions between elemental mercury and halogens, such as chorine or bromine. This study examines how bromine species affect mercury oxidation in the gas phase and examines the effects of mixtures of bromine and chlorine on extents of oxidation. Experiments were conducted in a bench-scale, laminar flow, methane-fired (300 W), quartz-lined reactor in which gas composition (HCl, HBr, NO{sub x}, SO{sub 2}) and temperature profile were varied. In the experiments, the post-combustion gases were quenched from flame temperatures to about 350 C, and then speciated mercury was measured using a wet conditioning system and continuous emissions monitor (CEM). Supporting kinetic calculations were performed and compared with measured levels of oxidation. A significant portion of this report is devoted to sample conditioning as part of the mercury analysis system. In combustion systems with significant amounts of Br{sub 2} in the flue gas, the impinger solutions used to speciate mercury may be biased and care must be taken in interpreting mercury oxidation results. The stannous chloride solution used in the CEM conditioning system to convert all mercury to total mercury did not provide complete conversion of oxidized mercury to elemental, when bromine was added to the combustion system, resulting in a low bias for the total mercury measurement. The use of a hydroxylamine hydrochloride and sodium hydroxide solution instead of stannous chloride showed a significant improvement in the measurement of total mercury. Bromine was shown to be much more effective in the post-flame, homogeneous oxidation of mercury than chlorine, on an equivalent molar basis. Addition of NO to the flame (up to 400 ppmv) had no impact on mercury oxidation by chlorine or bromine. Addition of SO{sub 2} had no effect on mercury oxidation by chlorine at SO{sub 2} concentrations below about 400 ppmv; some increase in mercury oxidation was observed at SO{sub 2} concentrations of 400 ppmv and higher. In contrast, SO{sub 2} concentrations as low as 50 ppmv significantly reduced mercury oxidation by bromine, this reduction could be due to both gas and liquid phase interactions between SO{sub 2} and oxidized mercury species. The simultaneous presence of chlorine and bromine in the flue gas resulted in a slight increase in mercury oxidation above that obtained with bromine alone, the extent of the observed increase is proportional to the chlorine concentration. The results of this study can be used to understand the relative importance of gas-phase mercury oxidation by bromine and chlorine in combustion systems. Two temperature profiles were tested: a low quench (210 K/s) and a high quench (440 K/s). For chlorine the effects of quench rate were slight and hard to characterize with confidence. Oxidation with bromine proved sensitive to quench rate with significantly more oxidation at the lower rate. The data generated in this program are the first homogeneous laboratory-scale data on bromine-induced oxidation of mercury in a combustion system. Five Hg-Cl and three Hg-Br mechanisms, some published and others under development, were evaluated and compared to the new data. The Hg-halogen mechanisms were combined with submechanisms from Reaction Engineering International for NO{sub x}, SO{sub x}, and hydrocarbons. The homogeneous kinetics under-predicted the levels of mercury oxidation observed in full-scale systems. This shortcoming can be corrected by including heterogeneous kinetics in the model calculations.

Paula Buitrago; Geoffrey Silcox; Constance Senior; Brydger Van Otten

2010-01-01T23:59:59.000Z

57

Process for removing halogenated aliphatic and aromatic compounds from petroleum products  

DOE Patents (OSTI)

A process is described for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 1 fig.

Googin, J.M.; Napier, J.M.; Travaglini, M.A.

1983-09-20T23:59:59.000Z

58

PERIODIC GLOW DISCHARGE REPORT  

NLE Websites -- All DOE Office Websites (Extended Search)

GLOW DISCHARGE REPORT GLOW DISCHARGE REPORT TIME: Jan 11 2014 11:29:09:000PM Power Supply ON/OFF Status OFF Power Supply Fault Status FAULT Power Supply Standby Status ON Power Supply Interlock Status NOT OK HV Power Resistors Status NORMAL Power Supply Voltage 52.00 Power Supply Current -71.00 Electrode 1 Voltage -15.00 Electrode 1 Current -79.00 Electrode 2 Voltage -14.00 Electrode 2 Current -70.00 ROSS 1 Status OPEN ROSS 2 Status OPEN ROSS 1 Common Line OPEN ROSS 2 Common Line OPEN IGBT1 Enable DISABLE IGBT2 Enable DISABLE

59

FY 2009 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Tables State Tables Preliminary February 2008 Office of Chief Financial Officer Department of Energy FY 2009 Congressional Budget Request State Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper State Index Page Number FY 2009 Congressional Budget 1/30/2008 Department Of Energy (Dollars In Thousands) 9:01:45AM Page 1 of 2 FY 2007 Appropriation FY 2008 Appropriation FY 2009 Request State Table 1 1 $27,588

60

FY 2005 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Management, Budget Office of Management, Budget and Evaluation/CFO February 2004 State Tables State Tables Preliminary Preliminary Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request Office of Management, Budget and Evaluation/CFO February 2004 State Tables State Tables Printed with soy ink on recycled paper Preliminary Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. State Index Page Number

Note: This page contains sample records for the topic "discharge halogen table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

FY 2010 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Tables State Tables Preliminary May 2009 Office of Chief Financial Officer FY 2010 Congressional Budget Request State Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper State Index Page Number FY 2010 Congressional Budget 5/4/2009 Department Of Energy (Dollars In Thousands) 2:13:22PM Page 1 of 2 FY 2008 Appropriation FY 2009 Appropriation FY 2010 Request State Table 1 1 $46,946 $48,781 $38,844 Alabama 2 $6,569

62

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 1999 Annual Energy Outlook 1999 bullet1.gif (843 bytes) Assumptions to the AEO99 bullet1.gif (843 bytes) NEMS Conference bullet1.gif (843 bytes) Contacts bullet1.gif (843 bytes) To Forecasting Home Page bullet1.gif (843 bytes) EIA Homepage supplemental.gif (7420 bytes) (Errata as of 9/13/99) The AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 1999 (AEO99) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 1997 to 2020. Most of the tables were not published in the AEO99, but contain regional and other more detailed projections underlying the AEO99 projections. The files containing these tables are in spreadsheet format. A total of ninety-five tables are presented.

63

FY 2006 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Tables State Tables Preliminary Department of Energy FY 2006 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2005 State Tables Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. State Index Page Number FY 2006 Congressional Budget 1/27/2005 Department Of Energy (Dollars In Thousands) 3:32:58PM Page 1 of 2 FY 2004 Comp/Approp FY 2005 Comp/Approp FY 2006 Request State Table

64

FY 2010 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Preliminary May 2009 Office of Chief Financial Officer FY 2010 Congressional Budget Request Laboratory Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper Laboratory / Facility Index FY 2010 Congressional Budget Page 1 of 3 (Dollars In Thousands) 2:08:56PM Department Of Energy 5/4/2009 Page Number FY 2008 Appropriation FY 2009 Appropriation FY 2010 Request Laboratory Table 1 1 $1,200

65

Table of Contents  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

E N N E E R R A A L L Semiannual Report toCongress DOEIG-0065 April 1 - September 30, 2013 TABLE OF CONTENTS From the Desk of the Inspector General ......

66

FY 2008 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Table State Table Preliminary Department of Energy FY 2008 Congressional Budget Request February 2007 Office of Chief Financial Officer State Table Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. State Index Page Number FY 2008 Congressional Budget 2/1/2007 Department Of Energy (Dollars In Thousands) 6:53:08AM Page 1 of 2 FY 2006 Appropriation FY 2007 Request FY 2008 Request State Table 1 1 $28,332 $30,341

67

IUPAC-NIST Solubility Data Series 68. Halogenated Aliphatic Hydrocarbon Compounds C3C14 With Water  

E-Print Network (OSTI)

IUPAC-NIST Solubility Data Series 68. Halogenated Aliphatic Hydrocarbon Compounds C3­C14 With Water 16, 1999 This volume covers the solubilities of halogenated aliphatic C3­C14 compounds with water, heavy water, and electrolyte solutions. All data were critically examined for their reliability and best

Magee, Joseph W.

68

Water Pollutant Discharge Act (Illinois)  

Energy.gov (U.S. Department of Energy (DOE))

The discharge of oil in quantities which exceed the standards adopted by the Pollution Control Board, or the discharge of other pollutants directly or indirectly into the waters is prohibited....

69

Radioactive Liquid Waste Treatment Facility Discharges in 2011  

SciTech Connect

This report documents radioactive discharges from the TA50 Radioactive Liquid Waste Treatment Facilities (RLWTF) during calendar 2011. During 2011, three pathways were available for the discharge of treated water to the environment: discharge as water through NPDES Outfall 051 into Mortandad Canyon, evaporation via the TA50 cooling towers, and evaporation using the newly-installed natural-gas effluent evaporator at TA50. Only one of these pathways was used; all treated water (3,352,890 liters) was fed to the effluent evaporator. The quality of treated water was established by collecting a weekly grab sample of water being fed to the effluent evaporator. Forty weekly samples were collected; each was analyzed for gross alpha, gross beta, and tritium. Weekly samples were also composited at the end of each month. These flow-weighted composite samples were then analyzed for 37 radioisotopes: nine alpha-emitting isotopes, 27 beta emitters, and tritium. These monthly analyses were used to estimate the radioactive content of treated water fed to the effluent evaporator. Table 1 summarizes this information. The concentrations and quantities of radioactivity in Table 1 are for treated water fed to the evaporator. Amounts of radioactivity discharged to the environment through the evaporator stack were likely smaller since only entrained materials would exit via the evaporator stack.

Del Signore, John C. [Los Alamos National Laboratory

2012-05-16T23:59:59.000Z

70

FY 2011 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Tables State Tables Department of Energy FY 2011 Congressional Budget Request DOE/CF-0054 March 2010 Office of Chief Financial Officer State Tables Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Department of Energy FY 2011 Congressional Budget Request DOE/CF-0054 State Index Page Number FY 2011 Congressional Budget 1/29/2010 Department Of Energy (Dollars In Thousands) 6:34:40AM Page 1 of 2 FY 2009 Appropriation

71

FY 2007 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory tables Laboratory tables preliminary Department of Energy FY 2007 Congressional Budget Request February 2006 Printed with soy ink on recycled paper Office of Chief Financial Officer Laboratory tables preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Laboratory / Facility Index FY 2007 Congressional Budget Page 1 of 3 (Dollars In Thousands) 12:10:40PM Department Of Energy 1/31/2006 Page Number FY 2005 Appropriation FY 2006 Appropriation FY 2007

72

FY 2011 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Department of Energy FY 2011 Congressional Budget Request DOE/CF-0055 March 2010 Office of Chief Financial Officer Laboratory Tables Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Department of Energy FY 2011 Congressional Budget Request DOE/CF-0055 Laboratory / Facility Index FY 2011 Congressional Budget Page 1 of 3 (Dollars In Thousands) 6:24:57AM Department Of Energy 1/29/2010 Page

73

FY 2008 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Table Laboratory Table Preliminary Department of Energy FY 2008 Congressional Budget Request February 2007 Office of Chief Financial Officer Laboratory Table Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Laboratory / Facility Index FY 2008 Congressional Budget Page 1 of 3 (Dollars In Thousands) 6:51:02AM Department Of Energy 2/1/2007 Page Number FY 2006 Appropriation FY 2007 Request FY 2008 Request

74

FY 2006 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Preliminary Department of Energy FY 2006 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2005 Laboratory Tables Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Laboratory / Facility Index FY 2006 Congressional Budget Page 1 of 3 (Dollars In Thousands) 3:43:16PM Department Of Energy 1/27/2005 Page Number FY 2004 Comp/Approp FY 2005 Comp/Approp

75

Fy 2009 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Preliminary February 2008 Office of Chief Financial Officer Department of Energy FY 2009 Congressional Budget Request Laboratory Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper Laboratory / Facility Index FY 2009 Congressional Budget Page 1 of 3 (Dollars In Thousands) 8:59:25AM Department Of Energy 1/30/2008 Page Number FY 2007 Appropriation FY 2008 Appropriation FY 2009

76

Powerful glow discharge excilamp  

DOE Patents (OSTI)

A powerful glow discharge lamp comprising two coaxial tubes, the outer tube being optically transparent, with a cathode and anode placed at opposite ends of the tubes, the space between the tubes being filled with working gas. The electrodes are made as cylindrical tumblers placed in line to one other in such a way that one end of the cathode is inserted into the inner tube, one end of the anode coaxially covers the end of the outer tube, the inner tube penetrating and extending through the anode. The increased electrodes' surface area increases glow discharge electron current and, correspondingly, average radiation power of discharge plasma. The inner tube contains at least one cooling liquid tube placed along the axis of the inner tube along the entire lamp length to provide cathode cooling. The anode has a circumferential heat extracting radiator which removes heat from the anode. The invention is related to lighting engineering and can be applied for realization of photostimulated processes under the action of powerful radiation in required spectral range.

Tarasenko, Victor F. (Tomsk, RU); Panchenko, Aleksey N. (Tomsk, RU); Skakun, Victor S. (Tomsk, RU); Sosnin, Edward A. (Tomsk, RU); Wang, Francis T. (Danville, CA); Myers, Booth R. (Livermore, CA); Adamson, Martyn G. (Danville, CA)

2002-01-01T23:59:59.000Z

77

FY 2013 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2011 FY 2012 FY 2013 Current Enacted Congressional Approp. Approp. * Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy efficiency and renewable energy........................................ 1,771,721 1,809,638 2,337,000 +527,362 +29.1% Electricity delivery and energy reliability......................................... 138,170 139,103 143,015 +3,912 +2.8% Nuclear energy................................................................................ 717,817 765,391 770,445 +5,054 +0.7% Fossil energy programs Clean coal technology.................................................................. -16,500 -- --

78

FY 2009 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2007 FY 2008 FY 2009 Current Current Congressional Op. Plan Approp. Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy efficiency and renewable energy.......................... -- 1,722,407 1,255,393 -467,014 -27.1% Electricity delivery and energy reliability........................... -- 138,556 134,000 -4,556 -3.3% Nuclear energy................................................................. -- 961,665 853,644 -108,021 -11.2% Legacy management........................................................ -- 33,872 -- -33,872 -100.0% Energy supply and conservation Operation and maintenance..........................................

79

GREEN LIVING Replace incandencent and halogen light bulbs with LED and CLFs  

E-Print Network (OSTI)

GREEN LIVING GUIDE ENERGY TRAVEL FOOD sustain yosef WATER Replace incandencent and halogen light POWER STRIPS! for you electronics, and turn them off when not in use Adjust your thermostat UP IN SUMMER Bicycle Initiative http://boonebikeinitiative.org LEAVE YOUR CAR AT HOME - save $ on a parking pass

Thaxton, Christopher S.

80

Table of Contents Page i Table of Contents  

E-Print Network (OSTI)

Table of Contents Page i Table of Contents 4. Building HVAC Requirements ....................................................................................1 4.1.2 What's New for the 2013 Standards.............................................................................................3 4.1.4 California Appliance Standards and Equipment Certification

Note: This page contains sample records for the topic "discharge halogen table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Cost Recovery Charge (CRC) Calculation Tables  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost Recovery Charge (CRC) Calculation Table Updated: October 6, 2014 FY 2016 September 2014 CRC Calculation Table (pdf) Final FY 2015 CRC Letter & Table (pdf) Note: The Cost...

82

TABLE OF CONTENTS  

NLE Websites -- All DOE Office Websites (Extended Search)

/2011 /2011 Decades of Discovery Decades of Discovery Page 2 6/1/2011 TABLE OF CONTENTS 1 INTRODUCTION ...................................................................................................................... 6 2 BASIC ENERGY SCIENCES .................................................................................................. 7 2.1 Adenosine Triphosphate: The Energy Currency of Life .............................................. 7 2.2 Making Better Catalysts .............................................................................................. 8 2.3 Understanding Chemical Reactions............................................................................ 9 2.4 New Types of Superconductors ................................................................................ 10

83

Large discharge-volume, silent discharge spark plug  

DOE Patents (OSTI)

A large discharge-volume spark plug for providing self-limiting microdischarges. The apparatus includes a generally spark plug-shaped arrangement of a pair of electrodes, where either of the two coaxial electrodes is substantially shielded by a dielectric barrier from a direct discharge from the other electrode, the unshielded electrode and the dielectric barrier forming an annular volume in which self-terminating microdischarges occur when alternating high voltage is applied to the center electrode. The large area over which the discharges occur, and the large number of possible discharges within the period of an engine cycle, make the present silent discharge plasma spark plug suitable for use as an ignition source for engines. In the situation, where a single discharge is effective in causing ignition of the combustible gases, a conventional single-polarity, single-pulse, spark plug voltage supply may be used.

Kang, Michael (Los Alamos, NM)

1995-01-01T23:59:59.000Z

84

GRR/Section 15-OR-a - Air Contaminant Discharge Permit | Open Energy  

Open Energy Info (EERE)

5-OR-a - Air Contaminant Discharge Permit 5-OR-a - Air Contaminant Discharge Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 15-OR-a - Air Contaminant Discharge Permit 15ORAAirContaminantDischargePermit (1).pdf Click to View Fullscreen Contact Agencies Oregon Department of Environmental Quality Regulations & Policies ORS Chapter 468a OAR 340-209 OAR 340-216 340-216-0020 (Table 1) Triggers None specified Click "Edit With Form" above to add content 15ORAAirContaminantDischargePermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Oregon Department of Environmental Quality (DEQ) regulates air

85

FY 2006 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2004 FY 2005 FY 2006 Comparable Comparable Request to FY 2006 vs. FY 2005 Approp Approp Congress Discretionary Summary By Appropriation Energy And Water Development Appropriation Summary: Energy Programs Energy supply Operation and maintenance................................................. 787,941 909,903 862,499 -47,404 -5.2% Construction......................................................................... 6,956 22,416 40,175 17,759 +79.2% Total, Energy supply................................................................ 794,897 932,319 902,674 -29,645 -3.2% Non-Defense site acceleration completion............................. 167,272 157,316 172,400 15,084 +9.6%

86

FY 2013 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 Department of Energy FY 2013 Congressional Budget Request Laboratory Tables y Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0078 Department of Energy FY 2013 Congressional Budget Request Laboratory Tables P li i Preliminary h b d i d i hi d h l l f b d h i f h The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. February 2012 Office of Chief Financial Officer Printed with soy ink on recycled paper Laboratory / Facility Index FY 2013 Congressional Budget

87

FY 2010 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2008 FY 2009 FY 2009 FY 2010 Current Current Current Congressional Approp. Approp. Recovery Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy efficiency and renewable energy....................................... 1,704,112 2,178,540 16,800,000 2,318,602 +140,062 +6.4% Electricity delivery and energy reliability........................................ 136,170 137,000 4,500,000 208,008 +71,008 +51.8% Nuclear energy.............................................................................. 960,903 792,000 -- 761,274 -30,726 -3.9% Legacy management..................................................................... 33,872 -- -- --

88

FY 2012 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 Department of Energy FY 2012 Congressional Budget Request State Tables P li i Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0066 Department of Energy FY 2012 Congressional Budget Request State Tables P li i Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. February 2012 Office of Chief Financial Officer Printed with soy ink on recycled

89

FY 2012 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2Statistical Table by Appropriation 2Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2010 FY 2011 FY 2011 FY 2012 Current Congressional Annualized Congressional Approp. Request CR Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy efficiency and renewable energy....................................... 2,216,392 2,355,473 2,242,500 3,200,053 +983,661 +44.4% Electricity delivery and energy reliability........................................ 168,484 185,930 171,982 237,717 +69,233 +41.1% Nuclear energy............................................................................. 774,578 824,052 786,637 754,028 -20,550 -2.7% Fossil energy programs Fossil energy research and development................................... 659,770 586,583 672,383 452,975

90

FY 2007 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2005 FY 2006 FY 2007 Current Current Congressional Approp. Approp. Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy supply and conservation Operation and maintenance............................................ 1,779,399 1,791,372 1,917,331 +125,959 +7.0% Construction................................................................... 22,416 21,255 6,030 -15,225 -71.6% Total, Energy supply and conservation.............................. 1,801,815 1,812,627 1,923,361 +110,734 +6.1% Fossil energy programs Clean coal technology..................................................... -160,000 -20,000 -- +20,000 +100.0% Fossil energy research and development.......................

91

FY 2012 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 Department of Energy FY 2012 Congressional Budget Request Laboratory Tables y Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0065 Department of Energy FY 2012 Congressional Budget Request Laboratory Tables P li i Preliminary h b d i d i hi d h l l f b d h i f h The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. February 2012 Office of Chief Financial Officer Printed with soy ink on recycled paper Laboratory / Facility Index FY 2012 Congressional Budget

92

FY 2008 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2006 FY 2007 FY 2008 Current Congressional Congressional Approp. Request Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy supply and conservation Operation and maintenance........................................... 1,781,242 1,917,331 2,187,943 +270,612 +14.1% Construction.................................................................... 31,155 6,030 -- -6,030 -100.0% Total, Energy supply and conservation............................. 1,812,397 1,923,361 2,187,943 +264,582 +13.8% Fossil energy programs Clean coal technology.................................................... -20,000 -- -58,000 -58,000 N/A Fossil energy research and development......................

93

A Light Effect in Chlorine under Electric Discharge : Influence of the Intensity and Frequency  

Science Journals Connector (OSTI)

... as the various electrical quantities ; the electrode spacing, area and 'ageing' under the discharge ; the nature of the gas, its temperature and especially the pressure. The chief ... ; a deflexion of 54 served to indicate the current. On irradiation by the carbon arc, the current decreased by 20-21 or about 38 per cent (see table); ...

S. S. JOSHI; P. G. DEO

1943-05-15T23:59:59.000Z

94

HYDROTHERMAL ACTIVITY AND CARBON-DIOXIDE DISCHARGE AT SHRUB AND UPPER KLAWASI MUD VOLCANOES,  

E-Print Network (OSTI)

HYDROTHERMAL ACTIVITY AND CARBON-DIOXIDE DISCHARGE AT SHRUB AND UPPER KLAWASI MUD VOLCANOES and July 1973 at Shrub and Upper Klawasi mud volcanoes 8 ii #12;HYDROTHERMAL ACTIVITY AND CARBON. Map of diffuse carbon dioxide flow from soils near the summit of Shrub mud volcano 9 TABLES 1

95

Table of Contents  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COMMUNICATIONS REQUIREMENTS COMMUNICATIONS REQUIREMENTS OF SMART GRID TECHNOLOGIES October 5, 2010 i Table of Contents I. Introduction and Executive Summary.......................................................... 1 a. Overview of Smart Grid Benefits and Communications Needs................. 2 b. Summary of Recommendations .................................................................... 5 II. Federal Government Smart Grid Initiatives ................................................ 7 a. DOE Request for Information ....................................................................... 7 b. Other Federal Government Smart Grid Initiatives .................................... 9 III. Communications Requirements of Smart Grid Applications .................. 11 a. Advanced Metering Infrastructure ............................................................12

96

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Geographic Location Tables Geographic Location Tables (24 pages, 136kb) CONTENTS PAGES Table 3. Census Region, Number of Buildings and Floorspace, 1995 Table 4. Census Region and Division, Number of Buildings, 1995 Table 5. Census Region and Division, Floorspace, 1995 Table 6. Climate Zone, Number of Buildings and Floorspace, 1995 Table 7. Metropolitan Status, Number of Buildings and Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the United States. The 1995 CBECS was the sixth survey in a series begun in 1979. The data were collected from a sample of 6,639 buildings representing 4.6 million commercial buildings

97

2003 CBECS Detailed Tables: Summary  

U.S. Energy Information Administration (EIA) Indexed Site

2003 Detailed Tables 2003 Detailed Tables 2003 CBECS Detailed Tables most recent available Released: September 2008 Building Characteristics | Consumption & Expenditures | End-Use Consumption In the 2003 CBECS, the survey procedures for strip shopping centers and enclosed malls ("mall buildings") were changed from those used in previous surveys, and, as a result, mall buildings are now excluded from most of the 2003 CBECS tables. Therefore, some data in the majority of the tables are not directly comparable with previous CBECS tables, all of which included mall buildings. Some numbers in the 2003 tables will be slightly lower than earlier surveys since the 2003 figures do not include mall buildings. See "Change in Data Collection Procedures for Malls" for a more detailed explanation.

98

Impending U.S. lighting standards will boost market for halogen-infrared lamps: New product line expanding  

SciTech Connect

Many of the incandescent floodlights and spotlights manufactured today will not meet lighting efficiency standards taking effect in the US in 1995. As these models cease production, demand will grow for higher efficiency units to fill this huge market, which now totals about 100 million lamps per year. One prime contender is a new class of halogen lamps that use a spectrally selective coating to reflect heat back onto the filament, reducing the amount of electricity needed to generate light. GE Lighting`s Halogen-IR line is the only series of such lamps currently available to replace the conventional floodlights and spotlights that will be banned by the new standards. Other manufacturers may adopt the technology, however, and the Japanese producer Ushio already sells in the US a line of smaller halogen lamps with a similar heat-reflective coating. In terms of efficacy and lifetime, Halogen-IR lamps out perform standard incandescents and standard halogens, but fall far short of fluorescent, metal halide, and high-pressure sodium sources. These other lighting systems are more appropriate and cost-effective than incandescents for many ambient lighting applications. For accent lighting and other tasks that are best suited to incandescent lighting, however, the Halogen-IR lamp is often a superior choice.

Sardinsky, R.; Shepard, M.

1993-12-31T23:59:59.000Z

99

Halogen adsorption on transition-metal surfaces: A case study of Cl on Ta(110)  

Science Journals Connector (OSTI)

Through a series of ab initio calculations, we not only predict the atomic and electronic structure of Cl on Ta(110), but also provide a quantitative basis for understanding a number of controversial questions regarding halogen adsorption on transition-metal surfaces. We demonstrate that a simple dipole layer model accurately describes the unexpected decrease in the work function upon halogen absorption, and that our proposed overlayer structure explains the one-dimensional streaking in the low-energy electron-diffraction pattern of the adsorbate-covered surface. An analysis of the electronic structure suggests that transition metals such as Ta look like simple metals from the point of view of highly electronegative adsorbates such as Cl.

Christine J. Wu and John E. Klepeis

1997-04-15T23:59:59.000Z

100

The chemistry of halogens on diamond: effects on growth and electron emission  

SciTech Connect

Diamond growth using halogenated precursors was studied in several diamond growth reactors. In a conventionao plasma reactor, diamond growth using the following gas mixtures was studied: CF{sub 4}/H{sub 2}, CH{sub 4}/H{sub 2}, CH{sub 3}F/H{sub 2}, and CH{sub 3}CL/H{sub 2}. Both the diamond growth measurements demonstrated ineffective transport of halogen radicals to the diamond surface during the growth process. In order to transport radical halogen species to the diamond surface during growth, a flow-tube reactor was constructed which minimized gas phase reactions. Also, the flow-tube reactor enabled pulsed gs transport to the diamond surface by fast-acting valves. Molecular beam mass spectroscopy was used to find condition which resulted in atomic hydrogen and/or atomic fluorine transport to the growing diamond surface. Although such conditions were found, they required very low pressures (0.5 Torr and below); these low pressures produce radical fluxes which are too low to sustain a reasonable diamond growth rate. The sequential reactor at Stanford was modified to add a halogen-growth step to the conventinoal atomic hydrogen/atomic carbon diamond growth cycle. Since the atomic fluorine, hydrogen and carbon environments are independent in the sequential reactor, the effect of fluorine on diamond growth could be studied independently of gas phase reactions. Although the diamond growth rate was increased by the use of fluorine, the film quality was seen to deteriorate as well as the substrate surface. Moreover, materials incompatibilities with fluorine significantly limited the use of fluorine in this reactor. A diamond growth model incorporating both gas phase and surface reactions was developed for the halocarbon system concurrent with the film growth efforts. In this report, we review the results of the growth experiments, the modeling, and additional experiments done to understand fluorine with diamond surfaces.

Hsu, W.L.; Pan, L.S.; Brown, L.A. [Sandia National Labs., Livermore, CA (United States)] [and others

1997-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "discharge halogen table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Microsoft Word - Groundwater Discharge Permit  

NLE Websites -- All DOE Office Websites (Extended Search)

State Renews Groundwater Discharge Permit for WIPP CARLSBAD, N.M., September 11, 2008 - The New Mexico Environment Department (NMED) has renewed the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) groundwater discharge permit until 2013. The permit regulates the discharge of water from WIPP facilities and operations to lined ponds, which protect groundwater resources. The permit allows WIPP to discharge domestic wastewater, non-hazardous wastewater and storm water into 13 on-site, synthetically-lined ponds. The new permit also provides for increased daily discharge volumes to allow more flexibility in plant operations. "This permit is the result of a positive year-long effort with the New Mexico Groundwater Quality Bureau," said Jody Plum, DOE Carlsbad Field Office Permitting and

102

Differential pressure pin discharge apparatus  

DOE Patents (OSTI)

Disclosed is a discharge assembly for allowing elongate pins to be discharged from an area of relatively low pressure to an area of relatively greater pressure. The discharge assembly includes a duck valve having a lip piece made of flexible material. The flexible lip piece responds to a fluctuating pressure created downstream by an aspirator. The aspirator reduces the downstream pressure sensed by the duck valve when the discharge assembly is in the open position. This allows elongate pins to be moved through the duck valve with no backflow because the aspirator pressure is less than the pressure in the low pressure area from which the pins originate. Closure of the assembly causes the aspirator static pressure to force the flexible duck valve lip piece into a tightly sealed position also preventing backflow. The discharge assembly can be easily controlled using a single control valve which blocks the flow of aspirator gas and closes the pin passageway extending through the assembly.

Oakley, David J. (Richland, WA)

1987-01-01T23:59:59.000Z

103

Spectral irradiance model for tungsten halogen lamps in 340-850 nm wavelength range  

SciTech Connect

We have developed a physical model for the spectral irradiance of 1 kW tungsten halogen incandescent lamps for the wavelength range 340-850 nm. The model consists of the Planck's radiation law, published values for the emissivity of tungsten, and a residual spectral correction function taking into account unknown factors of the lamp. The correction function was determined by measuring the spectra of a 1000 W, quartz-halogen, tungsten coiled filament (FEL) lamp at different temperatures. The new model was tested with lamps of types FEL and 1000 W, 120 V quartz halogen (DXW). Comparisons with measurements of two national standards laboratories indicate that the model can account for the spectral irradiance values of lamps with an agreement better than 1% throughout the spectral region studied. We further demonstrate that the spectral irradiance of a lamp can be predicted with an expanded uncertainty of 2.6% if the color temperature and illuminance values for the lamp are known with expanded uncertainties of 20 K and 2%, respectively. In addition, it is suggested that the spectral irradiance may be derived from resistance measurements of the filament with lamp on and off.

Ojanen, Maija; Kaerhae, Petri; Ikonen, Erkki

2010-02-10T23:59:59.000Z

104

Table of Contents  

NLE Websites -- All DOE Office Websites (Extended Search)

NT0005638 NT0005638 Cruise Report 1-19 July 2009 HYFLUX Sea Truth Cruise Northern Gulf of Mexico Submitted by: Texas A&M University - Corpus Christi 6300 Ocean Dr. Corpus Christi, TX 78412 Principal Authors: Ian R. MacDonald and Thomas Naehr Prepared for: United States Department of Energy National Energy Technology Laboratory October 30, 2009 Office of Fossil Energy HYFLUX Seatruth Cruise Report -1- Texas A&M University - Corpus Christi Table of Contents Summary ............................................................................................................................. 2 Participating Organizations ................................................................................................. 3 Major Equipment ................................................................................................................ 4

105

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook Forecast Evaluation Table 2. Total Energy Consumption, Actual vs. Forecasts Table 3. Total Petroleum Consumption, Actual vs. Forecasts Table 4. Total Natural Gas Consumption, Actual vs. Forecasts Table 5. Total Coal Consumption, Actual vs. Forecasts Table 6. Total Electricity Sales, Actual vs. Forecasts Table 7. Crude Oil Production, Actual vs. Forecasts Table 8. Natural Gas Production, Actual vs. Forecasts Table 9. Coal Production, Actual vs. Forecasts Table 10. Net Petroleum Imports, Actual vs. Forecasts Table 11. Net Natural Gas Imports, Actual vs. Forecasts Table 12. Net Coal Exports, Actual vs. Forecasts Table 13. World Oil Prices, Actual vs. Forecasts Table 14. Natural Gas Wellhead Prices, Actual vs. Forecasts Table 15. Coal Prices to Electric Utilities, Actual vs. Forecasts

106

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Analysis Papers > Annual Energy Outlook Forecast Evaluation>Tables Analysis Papers > Annual Energy Outlook Forecast Evaluation>Tables Annual Energy Outlook Forecast Evaluation Download Adobe Acrobat Reader Printer friendly version on our site are provided in Adobe Acrobat Spreadsheets are provided in Excel Actual vs. Forecasts Formats Table 2. Total Energy Consumption Excel, PDF Table 3. Total Petroleum Consumption Excel, PDF Table 4. Total Natural Gas Consumption Excel, PDF Table 5. Total Coal Consumption Excel, PDF Table 6. Total Electricity Sales Excel, PDF Table 7. Crude Oil Production Excel, PDF Table 8. Natural Gas Production Excel, PDF Table 9. Coal Production Excel, PDF Table 10. Net Petroleum Imports Excel, PDF Table 11. Net Natural Gas Imports Excel, PDF Table 12. World Oil Prices Excel, PDF Table 13. Natural Gas Wellhead Prices

107

Help:Tables | Open Energy Information  

Open Energy Info (EERE)

Tables Tables Jump to: navigation, search Tables may be authored in wiki pages using either XHTML table elements directly, or using wikicode formatting to define the table. XHTML table elements and their use are well described on various web pages and will not be discussed here. The benefit of wikicode is that the table is constructed of character symbols which tend to make it easier to perceive the table structure in the article editing view compared to XHTML table elements. As a general rule, it is best to avoid using a table unless you need one. Table markup often complicates page editing. Contents 1 Wiki table markup summary 2 Basics 2.1 Table headers 2.2 Caption 3 XHTML attributes 3.1 Attributes on tables 3.2 Attributes on cells 3.3 Attributes on rows 3.4 HTML colspan and rowspan

108

Max Tech and Beyond: High-Intensity Discharge Lamps  

E-Print Network (OSTI)

of color compared with the incandescent reference source isin this report. Standard Incandescent Halogen Low-Pressure:value equivalent to an incandescent filament lamp. Taking

Scholand, Michael

2012-01-01T23:59:59.000Z

109

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Conservation Tables Conservation Tables (16 pages, 86 kb) CONTENTS PAGES Table 41. Energy Conservation Features, Number of Buildings and Floorspace, 1995 Table 42. Building Shell Conservation Features, Number of Buildings, 1995 Table 43. Building Shell Conservation Features, Floorspace, 1995 Table 44. Reduction in Equipment Use During Off Hours, Number of Buildings and Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the United States. The 1995 CBECS was the sixth survey in a series begun in 1979. The data were collected from a sample of 6,639 buildings representing 4.6 million commercial buildings

110

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Structure Tables Structure Tables (16 pages, 93 kb) CONTENTS PAGES Table 8. Building Size, Number of Buildings, 1995 Table 9. Building Size, Floorspace, 1995 Table 10. Year Constructed, Number of Buildings, 1995 Table 11. Year Constructed, Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the United States. The 1995 CBECS was the sixth survey in a series begun in 1979. The data were collected from a sample of 6,639 buildings representing 4.6 million commercial buildings and 58.8 billion square feet of commercial floorspace in the U.S. The 1995 data are available for the four Census

111

CARINA Data Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Cruise Summary Table and Data Cruise Summary Table and Data Users are requested to report any data or metadata errors in the CARINA cruise files to CDIAC. Parameter units in all CARINA data files are in CCHDO exchange format. No Cruise Namea (Alias) Areab Number of Stations Datec Ship Chief Scientist Carbon PI Oxygen Nutrients TCO2d TALK pCO2e pHf CFC Other Measurements Data Files 1 06AQ19920929g (06ANTX_6) (See map) 2 118 9/29-11/30/1992 Polarstern V. Smetacek M. Stoll, J. Rommets, H. De Baar, D. Bakker 62 114h 53 54i U C 0 Choloroa,b Fluorescence, NH4 Data Files (Metadata) 2 06AQ19930806 (06ARKIX_4) (See map) 4 64 8/6-10/5/1993 Polarstern D.K. Fütterer L. Anderson 64 63 63j, bb 0 0 0 59he 3H, 3He, 18O, 14C, 85Kr, Bak Data Files

112

Supplement Tables - Contact  

Gasoline and Diesel Fuel Update (EIA)

Supplement Tables to the AEO99 Supplement Tables to the AEO99 bullet1.gif (843 bytes) Annual Energy Outlook 1999 bullet1.gif (843 bytes) Assumptions to the AEO99 bullet1.gif (843 bytes) NEMS Conference bullet1.gif (843 bytes) To Forecasting Home Page bullet1.gif (843 bytes) EIA Homepage furtherinfo.gif (5474 bytes) The Annual Energy Outlook 1999 (AEO99) was prepared by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting, under the direction of Mary J. Hutzler (mhutzler@eia.doe.gov, 202/586-2222). General questions may be addressed to Arthur T. Andersen (aanderse@eia.doe.gov, 202/586-1441), Director of the International, Economic, and Greenhouse Gas Division; Susan H. Holte (sholte@eia.doe.gov, 202/586-4838), Director of the Demand and Integration Division; James M. Kendell (jkendell@eia.doe.gov, 202/586-9646), Director of the Oil and Gas Division; Scott Sitzer (ssitzer@eia.doe.gov, 202/586-2308), Director of the Coal and Electric Power Division; or Andy S. Kydes (akydes@eia.doe.gov, 202/586-2222), Senior Modeling Analyst. Detailed questions about the forecasts and related model components may be addressed to the following analysts:

113

Appendix B: Summary Tables  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration | Analysis of Impacts of a Clean Energy Standard as requested by Chairman Bingaman U.S. Energy Information Administration | Analysis of Impacts of a Clean Energy Standard as requested by Chairman Bingaman Appendix B: Summary Tables Table B1. The BCES and alternative cases compared to the Reference case, 2025 2009 2025 Ref Ref BCES All Clean Partial Credit Revised Baseline Small Utilities Credit Cap 2.1 Credit Cap 3.0 Stnds + Cds Generation (billion kilowatthours) Coal 1,772 2,049 1,431 1,305 1,387 1,180 1,767 1,714 1,571 1,358 Petroleum 41 45 43 44 44 44 45 45 45 43 Natural Gas 931 1,002 1,341 1,342 1,269 1,486 1,164 1,193 1,243 1,314 Nuclear 799 871 859 906 942 889 878 857 843 826 Conventional Hydropower 274 306 322 319 300 321 316 298 312 322 Geothermal 15 25 28 25 31 24 27 22 23 24 Municipal Waste 18 17 17 17 17 17 17 17 17 17 Wood and Other Biomass 38 162 303 289 295 301 241 266

114

EPA - National Pollutant Discharge Elimination System General...  

Open Energy Info (EERE)

search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: EPA - National Pollutant Discharge Elimination System General Permit for Discharges...

115

Industrial Discharge Permits (District of Columbia)  

Energy.gov (U.S. Department of Energy (DOE))

All businesses and government agencies discharging process wastewater to the public sewer system must report their activities to DC Water's Pretreatment Center. Wastewater discharge permits are...

116

Groundwater Discharge Permit and Registration (New Hampshire)  

Energy.gov (U.S. Department of Energy (DOE))

The Groundwater Discharge Permitting and Registration Program seeks to protect groundwater quality by establishing standards, criteria, and procedures for wastewater discharges. The program...

117

CBECS 1992 - Consumption & Expenditures, Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables Detailed Tables Detailed Tables Figure on Energy Consumption in Commercial Buildings by Energy Source, 1992 Divider Line The 49 tables present detailed energy consumption and expenditure data for buildings in the commercial sector. This section provides assistance in reading the tables by explaining some of the headings for the data categories. It will also explain the use of row and column factors to compute both the confidence levels of the estimates given in the tables and the statistical significance of differences between the data in two or more categories. The section concludes with a "Quick-Reference Guide" to the statistics in the different tables. Categories of Data in the Tables After Table 3.1, which is a summary table, the tables are grouped into the major fuel tables (Tables 3.2 through 3.13) and the specific fuel tables (Tables 3.14 through 3.29 for electricity, Tables 3.30 through 3.40 for natural gas, Tables 3.41 through 3.45 for fuel oil, and Tables 3.46 through 3.47 for district heat). Table 3.48 presents energy management and DSM data as reported by the building respondent. Table 3.49 presents data on participation in electric utility-sponsored DSM programs as reported by both the building respondent and the electricity supplier.

118

Steam in the Ring Discharge  

Science Journals Connector (OSTI)

The behaviour of steam and its decomposition products in the ring discharge has been examined. Dry hydrogen is not dissociated. The production of atomic hydrogen is dependent upon the presence of steam which dissociates into hydroxyl and atomic hydrogen. A secondary source of atomic hydrogen is then afforded by the interaction of hydroxyl with molecular hydrogen. The escape from the discharge of atomic hydrogen, a long-lived species, favours the dissociation of steam. Mercury vapour, on the other hand, inhibits the formation of atomic hydrogen and thus leads to a high equilibrium steam concentration. Unlike dry hydrogen, dry oxygen is dissociated into atoms, but these have a short life as such and recombine in the discharge to form molecular oxygen and ozone. The reaction mechanisms occurring in the discharge are discussed in the light of spectrographic results.

G I Finch

1949-01-01T23:59:59.000Z

119

High-frequency discharges III  

Science Journals Connector (OSTI)

We start with a comparison of advantages and disadvantages of capacitively coupled discharges, by which it becomes obvious why and how the semiconductor industry has triggered the demand for high-density plasm...

Prof.Dr. Gerhard Franz

2009-01-01T23:59:59.000Z

120

Discharge cell for ozone generator  

DOE Patents (OSTI)

A discharge cell for use in an ozone generator is provided which can suppress a time-related reduction in ozone concentration without adding a catalytic gas such as nitrogen gas to oxygen gas as a raw material gas. The discharge cell includes a pair of electrodes disposed in an opposed spaced relation with a discharge space therebetween, and a dielectric layer of a three-layer structure consisting of three ceramic dielectric layers successively stacked on at least one of the electrodes, wherein a first dielectric layer of the dielectric layer contacting the one electrode contains no titanium dioxide, wherein a second dielectric layer of the dielectric layer exposed to the discharge space contains titanium dioxide in a metal element ratio of not lower than 10 wt %.

Nakatsuka, Suguru (Amagasaki, JP)

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "discharge halogen table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Microsoft Word - table_87  

U.S. Energy Information Administration (EIA) Indexed Site

5 5 Table 6. Natural gas processed, liquids extracted, and natural gas plant liquids production, by state, 2012 Alabama 87,269 5,309 7,110 Alabama Onshore Alabama 33,921 2,614 3,132 Alabama Offshore Alabama 53,348 2,695 3,978 Alaska 2,788,997 18,339 21,470 Alaska 2,788,997 18,339 21,470 Arkansas 6,872 336 424 Arkansas 6,872 336 424 California 169,203 9,923 12,755 California Onshore California 169,203 9,923 12,755 California Offshore California NA NA NA Federal Offshore California NA NA NA

122

TABLE OF CONTENTS  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 TABLE OF CONTENTS Page A. Project Summary 1. Technical Progress 3 2. Cost Reporting 5 B. Detailed Reports 1.1 Magnets & Supports 8 1.2 Vacuum System 12 1.3 Power Supplies 14 1.4 RF System 16 1.5 Instrumentation & Controls 17 1.6 Cable Plant 18 1.7 Beam Line Front Ends 19 1.8 Facilities 19 1.9 Installation 20 2.1 Accelerator Physics 21 2 A. SPEAR 3 PROJECT SUMMARY 1. Technical Progress The progress and highlights of each major technical system are summarized below. Additional details are provided in Section B. Magnets - As of the end of this quarter (March 31, 2002), the status of magnet fabrication is as follows: Magnet Type Number Received % of Total Received Dipoles 40 100% Quadrupoles 102 100% Sextupoles 76 100%

123

Reviews, Tables, and Plots  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Review of Particle Physics 4 Review of Particle Physics Please use this CITATION: S. Eidelman et al. (Particle Data Group), Phys. Lett. B 592, 1 (2004) (bibtex) Standalone figures are now available for these reviews. Categories: * Constants, Units, Atomic and Nuclear Properties * Standard Model and Related Topics * Particle Properties * Hypothetical Particles * Astrophysics and Cosmology * Experimental Methods and Colliders * Mathematical Tools * Kinematics, Cross-Section Formulae, and Plots * Authors, Introductory Text, History plots PostScript help file PDF help file Constants, Units, Atomic and Nuclear Properties Physical constants (Rev.) PS PDF (1 page) Astrophysical constants (Rev.) PS PDF (2 pages) International System of units (SI) PS PDF (2 pages) Periodic table of the elements (Rev.) errata PS PDF (1 page)

124

Table G3  

U.S. Energy Information Administration (EIA) Indexed Site

1905-0194 1905-0194 Expiration Date: 07/31/2013 May 28, 2010 Voluntary Reporting of Greenhouse Gases 14 Table G3. Decision Chart for a Start Year Report for a Large Emitter Intending To Register Reductions Report Characteristics Reporting Requirements Schedule I Schedule II (For Each Subentity) Schedule III Schedule IV Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 1 Sec. 2 & Add. A Sec. 3 Sec. 1 Sec. 2 Sec. 1 Sec. 2 Part A Part B Part C Part D Part E Part A Part B Part C Independent Verification? All A- or B-Rated Methods? Foreign Emissions? Entity-Wide Reductions Only? Entity Statement Aggregated Emissions by Gas (Domestic and Foreign) † Emissions Inventory by Source

125

TABLE OF CONTENTS  

NLE Websites -- All DOE Office Websites (Extended Search)

through June 2001 2 TABLE OF CONTENTS Page A. Project Summary 1. Technical Progress 3 2. Cost Reporting 4 B. Detailed Reports 1.1 Magnets & Supports 9 1.2 Vacuum System 16 1.3 Power Supplies 21 1.4 RF System 25 1.5 Instrumentation & Controls 26 1.6 Cable Plant 28 1.8 Facilities 28 2.0 Accelerator Physics 29 2.1 ES&H 31 3 A. SPEAR 3 PROJECT SUMMARY 1. Technical Progress Magnet System - The project has received three shipments of magnets from IHEP. A total of 55 dipole, quadrupole and sextupole magnets out of 218 have arrived. All main magnets will arrive by December. The additional mechanical and electrical checks of the magnets at SSRL have been successful. Only minor mechanical problems were found and corrected. The prototype

126

TABLE OF CONTENTS  

National Nuclear Security Administration (NNSA)

AC05-00OR22800 AC05-00OR22800 TABLE OF CONTENTS Contents Page # TOC - i SECTION A - SOLICITATION/OFFER AND AWARD ......................................................................... A-i SECTION B - SUPPLIES OR SERVICES AND PRICES/COSTS ........................................................ B-i B.1 SERVICES BEING ACQUIRED ....................................................................................B-2 B.2 TRANSITION COST, ESTIMATED COST, MAXIMUM AVAILABLE FEE, AND AVAILABLE FEE (Modification 295, 290, 284, 280, 270, 257, 239, 238, 219, M201, M180, M162, M153, M150, M141, M132, M103, M092, M080, M055, M051, M049, M034, M022, M003, A002) ..........................................................B-2 SECTION C - DESCRIPTION/SPECIFICATION/WORK STATEMENT DESCRIPTION OF

127

Table of Contents  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U U U . . S S . . D D E E P P A A R R T T M M E E N N T T O O F F E E N N E E R R G G Y Y O O F F F F I I C C E E O O F F I I N N S S P P E E C C T T O O R R G G E E N N E E R R A A L L Semiannual Report toCongress DOE/IG-0065 April 1 - September 30, 2013 TABLE OF CONTENTS From the Desk of the Inspector General ..................................................... 2 Impacts Key Accomplishments ............................................................................................... 3 Positive Outcomes ...................................................................................................... 3 Reports Investigative Outcomes .............................................................................................. 6 Audits ......................................................................................................................... 8

128

TABLE OF CONTENTS  

NLE Websites -- All DOE Office Websites (Extended Search)

October October through December 2001 2 TABLE OF CONTENTS Page A. Project Summary 1. Technical Progress 3 2. Cost Reporting 4 B. Detailed Reports 1.1 Magnets & Supports 7 1.2 Vacuum System 9 1.3 Power Supplies 13 1.4 RF System 16 1.5 Instrumentation & Controls 17 1.6 Cable Plant 18 1.9 Installation 19 2.0 Accelerator Physics 20 3 A. SPEAR 3 PROJECT SUMMARY 1. Technical Progress In the magnet area, the production of all major components (dipoles, quadrupoles, and sextupoles) has been completed on schedule. This results from a highly successful collaboration with our colleagues at the Institute of High Energy Physics (IHEP) in Beijing. The production of corrector magnets is still in progress with completion scheduled for May 2002.

129

2003 CBECS Detailed Tables: Summary  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Expenditures by Major Fuel c2-pdf c2.xls c2.html Table C3. Consumption and Gross Energy Intensity for Sum of Major Fuels c3.pdf c3.xls c3.html Table C4. Expenditures for...

130

Discharge produces hydrocarbons from coal  

Science Journals Connector (OSTI)

Discharge produces hydrocarbons from coal ... Studies of the reactions of coal in electric discharges by two chemists at the U.S. Bureau of Mines' Pittsburgh Coal Research Center may lead to improved ways of producing acetylene and other useful chemicals from coal. ... Other workers have produced high yields of acetylene from coal by extremely rapid pyrolysis using energy sources such as plasma jets, laser beams, arc-image reactors, and flash heaters. ...

1968-01-22T23:59:59.000Z

131

2014 Headquarters Facilities Master Security Plan - Table of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Table of Contents 2014 Headquarters Facilities Master Security Plan - Table of Contents June 2014 2014 Headquarters Facilities Master Security Plan - Table of Contents The Table of...

132

FY 2014 Budget Request Summary Table | Department of Energy  

Office of Environmental Management (EM)

Summary Table FY 2014 Budget Request Summary Table Summary Table by Appropriations Summary Table by Organization More Documents & Publications FY 2014 Budget Request Statistical...

133

ARM - Instrument - s-table  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentss-table govInstrumentss-table Documentation S-TABLE : Instrument Mentor Monthly Summary (IMMS) reports S-TABLE : Data Quality Assessment (DQA) reports ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Stabilized Platform (S-TABLE) Instrument Categories Ocean Observations For ship-based deployments, some instruments require actively stabilized platforms to compensate for the ship's motion, especially rotations around the long axis of the ship (roll), short axis (pitch), and, for some instruments, vertical axis (yaw). ARM currently employs two types of stabilized platforms: one electrically controlled for lighter instruments that includes yaw control (dubbed RPY for Roll, Pitch, Yaw) and one

134

Types of Lighting in Commercial Buildings - Table L1  

U.S. Energy Information Administration (EIA) Indexed Site

L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995 L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995 Floorspace (million square feet) Total (Lit or Unlit) in All Buildings Total (Lit or Unlit) in Buildings With Any Lighting Lighted Area Only Area Lit by Each Type of Light Incan- descent Standard Fluor-escent Compact Fluor- escent High Intensity Discharge Halogen All Buildings*........................ 54,068 51,570 45,773 6,746 34,910 1,161 3,725 779 Building Floorspace (Square Feet) 1,001 to 5,000....................... 6,272 5,718 4,824 986 3,767 50 22 54 5,001 to 10,000.................... 7,299 6,667 5,728 1,240 4,341 61 169 45 10,001 to 25,000.................. 10,829 10,350 8,544 1,495 6,442 154 553 Q 25,001 to 50,000.................. 7,170 7,022 6,401 789 5,103 151 485 86

135

Types of Lighting in Commercial Buildings - Table L3  

U.S. Energy Information Administration (EIA) Indexed Site

L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003 L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003 Floorspace (million square feet) Total (Lit or Unlit) in All Buildings Total (Lit or Unlit) in Buildings With Any Lighting Lighted Area Only Area Lit by Each Type of Light Incan- descent Standard Fluor-escent Compact Fluor- escent High Intensity Discharge Halogen All Buildings*............................. 64,783 62,060 51,342 5,556 37,918 4,004 4,950 2,403 Building Floorspace (Square Feet) 1,001 to 5,000............................. 6,789 6,038 4,826 678 3,932 206 76 124 5,001 to 10,000........................... 6,585 6,090 4,974 739 3,829 192 238 248 10,001 to 25,000........................ 11,535 11,229 8,618 1,197 6,525 454 506 289 25,001 to 50,000........................ 8,668 8,297 6,544 763 4,971 527 454 240

136

Types of Lighting in Commercial Buildings - Table L2  

U.S. Energy Information Administration (EIA) Indexed Site

L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999 L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999 Floorspace (million square feet) Total (Lit or Unlit) in All Buildings Total (Lit or Unlit) in Buildings With Any Lighting Lighted Area Only Area Lit by Each Type of Light Incan- descent Standard Fluor-escent Compact Fluor- escent High Intensity Discharge Halogen All Buildings* ............................. 61,707 58,693 49,779 6,496 37,150 3,058 5,343 1,913 Building Floorspace (Square Feet) 1,001 to 5,000 ............................ 6,750 5,836 4,878 757 3,838 231 109 162 5,001 to 10,000 .......................... 7,940 7,166 5,369 1,044 4,073 288 160 109 10,001 to 25,000 ....................... 10,534 9,773 7,783 1,312 5,712 358 633 232 25,001 to 50,000 ....................... 8,709 8,452 6,978 953 5,090 380 771 281

137

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Modeling and Analysis Papers> Annual Energy Outlook Forecast Evaluation>Tables Modeling and Analysis Papers> Annual Energy Outlook Forecast Evaluation>Tables Annual Energy Outlook Forecast Evaluation Actual vs. Forecasts Available formats Excel (.xls) for printable spreadsheet data (Microsoft Excel required) MS Excel Viewer PDF (Acrobat Reader required Download Acrobat Reader ) Adobe Acrobat Reader Logo Table 2. Total Energy Consumption Excel, PDF Table 3. Total Petroleum Consumption Excel, PDF Table 4. Total Natural Gas Consumption Excel, PDF Table 5. Total Coal Consumption Excel, PDF Table 6. Total Electricity Sales Excel, PDF Table 7. Crude Oil Production Excel, PDF Table 8. Natural Gas Production Excel, PDF Table 9. Coal Production Excel, PDF Table 10. Net Petroleum Imports Excel, PDF Table 11. Net Natural Gas Imports Excel, PDF

138

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook Forecast Evaluation Annual Energy Outlook Forecast Evaluation Actual vs. Forecasts Available formats Excel (.xls) for printable spreadsheet data (Microsoft Excel required) PDF (Acrobat Reader required) Table 2. Total Energy Consumption HTML, Excel, PDF Table 3. Total Petroleum Consumption HTML, Excel, PDF Table 4. Total Natural Gas Consumption HTML, Excel, PDF Table 5. Total Coal Consumption HTML, Excel, PDF Table 6. Total Electricity Sales HTML, Excel, PDF Table 7. Crude Oil Production HTML, Excel, PDF Table 8. Natural Gas Production HTML, Excel, PDF Table 9. Coal Production HTML, Excel, PDF Table 10. Net Petroleum Imports HTML, Excel, PDF Table 11. Net Natural Gas Imports HTML, Excel, PDF Table 12. Net Coal Exports HTML, Excel, PDF Table 13. World Oil Prices HTML, Excel, PDF

139

Water purification by electrical discharges  

Science Journals Connector (OSTI)

There is a continuing need for the development of effective, cheap and environmentally friendly processes for the disinfection and degradation of organic pollutants from water. Ozonation processes are now replacing conventional chlorination processes because ozone is a stronger oxidizing agent and a more effective disinfectant without any side effects. However, the fact that the cost of ozonation processes is higher than chlorination processes is their main disadvantage. In this paper recent developments targeted to make ozonation processes cheaper by improving the efficiency of ozone generation, for example, by incorporation of catalytic packing in the ozone generator, better dispersion of ozone in water and faster conversion of dissolved ozone to free radicals are described. The synthesis of ozone in electrical discharges is discussed. Furthermore, the generation and plasma chemical reactions of several chemically active species, such as H2O2, O, OH, HO2, O3*, N2*, e-, O2-, O-, O2+, etc, which are produced in the electrical discharges are described. Most of these species are stronger oxidizers than ozone. Therefore, water treatment by direct electrical discharges may provide a means to utilize these species in addition to ozone. Much research and development activity has been devoted to achieve these targets in the recent past. An overview of these techniques and important developments that have taken place in this area are discussed. In particular, pulsed corona discharge, dielectric barrier discharge and contact glow discharge electrolysis techniques are being studied for the purpose of cleaning water. The units based on electrical discharges in water or close to the water level are being tested at industrial-scale water treatment plants.}

Muhammad Arif Malik; Abdul Ghaffar; Salman Akbar Malik

2001-01-01T23:59:59.000Z

140

table14.xls  

Gasoline and Diesel Fuel Update (EIA)

Table 14. Natural Gas Wellhead Prices, Actual vs. Reference Case Projections Table 14. Natural Gas Wellhead Prices, Actual vs. Reference Case Projections (current dollars per thousand cubic feet) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 AEO 1982 4.32 5.47 6.67 7.51 8.04 8.57 AEO 1983 2.93 3.11 3.46 3.93 4.56 5.26 12.74 AEO 1984 2.77 2.90 3.21 3.63 4.13 4.79 9.33 AEO 1985 2.60 2.61 2.66 2.71 2.94 3.35 3.85 4.46 5.10 5.83 6.67 AEO 1986 1.73 1.96 2.29 2.54 2.81 3.15 3.73 4.34 5.06 5.90 6.79 7.70 8.62 9.68 10.80 AEO 1987 1.83 1.95 2.11 2.28 2.49 2.72 3.08 3.51 4.07 7.54 AEO 1989* 1.62 1.70 1.91 2.13 2.58 3.04 3.48 3.93 4.76 5.23 5.80 6.43 6.98 AEO 1990 1.78 1.88 2.93 5.36 AEO 1991 1.77 1.90 2.11 2.30 2.42 2.51 2.60 2.74 2.91 3.29 3.75 4.31 5.07 5.77 6.45 AEO 1992 1.69 1.85 2.03 2.15 2.35 2.51 2.74 3.01 3.40 3.81 4.24 4.74 5.25 5.78 AEO 1993 1.85 1.94 2.09 2.30 2.44 2.60 2.85 3.12 3.47 3.84 4.31 4.81 5.28

Note: This page contains sample records for the topic "discharge halogen table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Code Tables | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

System NMMSS Information, Reports & Forms Code Tables Code Tables U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials Management & Safeguards...

142

Deoxybenzoin-Based Polyarylates as Halogen-Free Fire-Resistant Kenneth A. Ellzey, T. Ranganathan, Joseph Zilberman, E. Bryan Coughlin,*  

E-Print Network (OSTI)

, processing, and engineering of halogen-free, low heat release, fire-resistant materials present important with high carbon monoxide emis- sion.7,8 Ideal flame-retardant polymers would possess high thermal stabilityDeoxybenzoin-Based Polyarylates as Halogen-Free Fire-Resistant Polymers Kenneth A. Ellzey, T

143

MECS Fuel Oil Tables  

U.S. Energy Information Administration (EIA) Indexed Site

: Actual, Minimum and Maximum Use Values for Fuel Oils and Natural Gas : Actual, Minimum and Maximum Use Values for Fuel Oils and Natural Gas Year Distillate Fuel Oil (TBtu) Actual Minimum Maximum Discretionary Rate 1985 185 148 1224 3.4% 1994 152 125 1020 3.1% Residual Fuel Oil (TBtu) Actual Minimum Maximum Discretionary Rate 1985 505 290 1577 16.7% 1994 441 241 1249 19.8% Natural Gas (TBtu) Actual Minimum Maximum Discretionary Rate 1985 4656 2702 5233 77.2% 1994 6141 4435 6758 73.4% Source: Energy Information Administration, Office of Energy Markets and End Use, 1985 and 1994 Manufacturing Energy Consumption Surveys. Table 2: Establishments That Actually Switched Between Natural Gas and Residual Fuel Oil Type of Switch Number of Establishments in Population Number That Use Original Fuel Percentage That Use Original Fuel Number That Can Switch to Another Fuel Percentage That Can Switch to Another Fuel Number That Actually Made a Switch Percentage That Actually Made a Switch

144

TABLE OF CONTENTS  

NLE Websites -- All DOE Office Websites (Extended Search)

Turbines The Gas Turbine Handbook The Gas Turbine Handbook TABLE OF CONTENTS Acknowledgements Updated Author Contact Information Introduction - Rich Dennis, Turbines Technology Manager 1.1 Simple and Combined Cycles - Claire Soares 1.1-1 Introduction 1.1-2 Applications 1.1-3 Applications versatility 1.1-4 The History of the Gas Turbine 1.1-5 Gas Turbine, Major Components, Modules, and systems 1.1-6 Design development with Gas Turbines 1.1-7 Gas Turbine Performance 1.1-8 Combined Cycles 1.1-9 Notes 1.2 Integrated Coal Gasification Combined Cycle (IGCC) - Massod Ramezan and Gary Stiegel 1.2-1 Introduction 1.2-2 The Gasification Process 1.2-3 IGCC Systems 1.2-4 Gasifier Improvements 1.2-5 Gas Separation Improvements 1.2-6 Conclusions 1.2-7 Notes 1.2.1 Different Types of Gasifiers and Their Integration with Gas Turbines - Jeffrey Phillips

145

EIA - Annual Energy Outlook 2009 - chapter Tables  

Gasoline and Diesel Fuel Update (EIA)

Chapter Tables Chapter Tables Annual Energy Outlook 2009 with Projections to 2030 Chapter Tables Table 1. Estimated fuel economy for light-duty vehicles, based on proposed CAFE standards, 2010-2015 Table 2. State appliance efficiency standards and potential future actions Table 3. State renewable portfolio standards Table 4. Key analyses from "issues in Focus" in recent AEOs Table 5. Liquid fuels production in three cases, 2007 and 2030 Table 6. Assumptions used in comparing conventional and plug-in hybrid electric vehicles Table 7. Conventional vehicle and plug-in hybrid system component costs for mid-size vehicles at volume production Table 8. Technically recoverable resources of crude oil and natural gas in the Outer Continental Shelf, as of January 1, 2007

146

Process for the solvent extraction for the radiolysis and dehalogenation of halogenated organic compounds in soils, sludges, sediments and slurries  

DOE Patents (OSTI)

A process of extracting halogenated organic compounds, and particularly PCBs, from soil, sediment, slurry, sludge and dehalogenating the compounds contacting a contaminated soil sample with an extraction medium of a mixture of an alkane and a water miscible alcohol. The organic compounds dissolve in the extraction medium which is separated from the soil by passing water upwardly through the soil. The extraction medium floats to the surface of the water and is separated. Thereafter, the extraction medium containing the halogenated organic contaminants is subjected to ionizing radiation to radiolytically dehalogenate the compounds.

Mincher, Bruce J. (3705 Creekside Dr., Idaho Falls, ID 83404); Curry, Randy Dale (1104 Merrill Ct., Columbia, MO 65203); Clevenger, Thomas E. (2512 Bluff Blvd., Columbia, MO 65201); Golden, Jeffry (12612 Cedarbrook La., Laurel, MD 20708)

2000-01-01T23:59:59.000Z

147

MECS 1991 Publications and Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Publication and Tables Publication and Tables Publication and Tables Figure showing the Largest Energy Consumers in the Manufacturing Sector You have the option of downloading the entire report or selected sections of the report. Full Report - Manufacturing Consumption of Energy 1991 (file size 17.2 MB) pages:566 Selected Sections Main Text (file size 380,153 bytes) pages: 33, includes the following: Contacts Contents Executive Summary Introduction Energy Consumption in the Manufacturing Sector: An Overview Energy Consumption in the Manufacturing Sector, 1991 Manufacturing Capability To Switch Fuels Appendices Appendix A. Detailed Tables Appendix B. Survey Design, Implementation, and Estimates (file size 141,211 bytes) pages: 22. Appendix C. Quality of the Data (file size 135,511 bytes) pages: 8.

148

TABLE OF CONTENTS ABSTRACT . . .. . . .. . . . . . . . . . . . . . . . . . . . . . v  

E-Print Network (OSTI)

............................................... 12 Water-Source Heat Pump Performance ............................ 18 Air-Source Heat Pump OF PERFORMANCE OF WATER-SOURCE HEAT PUMP .............................. ................. 23 FIGURE 2. NODAL. MONTHLY HEAT GAIN/LOSS FACTORS ........................... 5 TABLE 2. BASE TEMPERATURES

Oak Ridge National Laboratory

149

Iodine monofluoride discharge laser investigation  

SciTech Connect

The results of an experimental investigation to improve the performance of a discharge-pumped iodine monofluoride laser are reported. Lasing was observed at 478.7, 484.7, 490.7, and 496.5 nm. Electrical measurements of the discharge characteristics permitted the energy flow in the circuit to be followed and laser efficiencies to be calculated. Parametric studies of gas mixtures were carried out. By optimizing several parameters, single-pulse lasing energies greater than 50 mJ were obtained.

Harris, D.G.; Blauer, J.A.; Hurlock, S.C. (Rockwell International, Rocketdyne Division, Canoga Park, CA (USA))

1990-10-15T23:59:59.000Z

150

Compact monolithic capacitive discharge unit  

DOE Patents (OSTI)

A compact monolithic capacitive discharge unit (CDU) is disclosed in which a thyristor switch and a flyback charging circuit are both sandwiched about a ceramic energy storage capacitor. The result is a compact rugged assembly which provides a low-inductance current discharge path. The flyback charging circuit preferably includes a low-temperature co-fired ceramic transformer. The CDU can further include one or more ceramic substrates for enclosing the thyristor switch and for holding various passive components used in the flyback charging circuit. A load such as a detonator can also be attached directly to the CDU.

Roesler, Alexander W. (Tijeras, NM); Vernon, George E. (Rio Rancho, NM); Hoke, Darren A. (Albuquerque, NM); De Marquis, Virginia K. (Tijeras, NM); Harris, Steven M. (Albuquerque, NM)

2007-06-26T23:59:59.000Z

151

EIA - Appendix A - Reference Case Projection Tables  

Gasoline and Diesel Fuel Update (EIA)

Tables (2005-2035) Tables (2005-2035) International Energy Outlook 2010 Reference Case Projections Tables (2005-2035) Formats Data Table Titles (1 to 14 complete) Reference Case Projections Tables (1990-2030). Need help, contact the National Energy Information Center at 202-586-8800. Appendix A. Reference Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table A1 World Total Primary Energy Consumption by Region Table A1. World Total Primary Energy Consumption by Region. Need help, contact the National Energy Information Center at 202-586-8800. Table A2 World Total Energy Consumption by Region and Fuel Table A2. World Total Energy Consumption by Region and Fuel. Need help, contact the National Energy Information Center at 202-586-8800.

152

Introduction The Fiber-Lite MI-150 is a 150 Watt quartz halogen fiber optic illuminator designed for general microscopy  

E-Print Network (OSTI)

Introduction ® The Fiber-Lite MI-150 is a 150 Watt quartz halogen fiber optic illuminator designed for general microscopy use. When used with specialty fiber optic cables the MI-150 illuminator can also Illuminator from the carton and retain the manual and any additional documents. ! Remove the fiber optic cable

Kleinfeld, David

153

EIA - Supplement Tables to the Annual Energy Outlook 2009  

Gasoline and Diesel Fuel Update (EIA)

10 10 Regional Energy Consumption and Prices by Sector Energy Consumption by Sector and Source Table 1. New England Excel Gif Table 2. Middle Atlantic Excel Gif Table 3. East North Central Excel Gif Table 4. West North Central Excel Gif Table 5. South Atlantic Excel Gif Table 6. East South Central Excel Gif Table 7. West South Central Excel Gif Table 8. Mountain Excel Gif Table 9. Pacific Excel Gif Table 10. Total United States Excel Gif Energy Prices by Sector and Source Table 11. New England Excel Gif Table 12. Middle Atlantic Excel Gif Table 13. East North Central Excel Gif Table 14. West North Central Excel Gif Table 15. South Atlantic Excel Gif Table 16. East South Central Excel Gif Table 17. West South Central Excel Gif Table 18. Mountain Excel Gif Table 19. Pacific

154

EIA - Supplement Tables to the Annual Energy Outlook 2009  

Gasoline and Diesel Fuel Update (EIA)

09 09 Regional Energy Consumption and Prices by Sector Energy Consumption by Sector and Source Table 1. New England Excel Gif Table 2. Middle Atlantic Excel Gif Table 3. East North Central Excel Gif Table 4. West North Central Excel Gif Table 5. South Atlantic Excel Gif Table 6. East South Central Excel Gif Table 7. West South Central Excel Gif Table 8. Mountain Excel Gif Table 9. Pacific Excel Gif Table 10. Total United States Excel Gif Energy Prices by Sector and Source Table 11. New England Excel Gif Table 12. Middle Atlantic Excel Gif Table 13. East North Central Excel Gif Table 14. West North Central Excel Gif Table 15. South Atlantic Excel Gif Table 16. East South Central Excel Gif Table 17. West South Central Excel Gif Table 18. Mountain Excel Gif Table 19. Pacific

155

State Surface Water Discharge Permits (New Hampshire)  

Energy.gov (U.S. Department of Energy (DOE))

Rules apply to the discharge of all pollutants from a point source to surface waters of the state. The rule does not apply to facilities that require both a state discharge permit and a federal...

156

Oklahoma Pollutant Discharge Elimination System Act (Oklahoma)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Environmental Quality regulates facilities that discharge any pollutant into waters of the state. Permits must be acquired before the discharge of any pollutants into state waters...

157

In situ thermally enhanced biodegradation of petroleum fuel hydrocarbons and halogenated organic solvents  

DOE Patents (OSTI)

An in situ thermally enhanced microbial remediation strategy and a method for the biodegradation of toxic petroleum fuel hydrocarbon and halogenated organic solvent contaminants are described. The method utilizes nonpathogenic, thermophilic bacteria for the thermal biodegradation of toxic and carcinogenic contaminants, such as benzene, toluene, ethylbenzene and xylenes, from fuel leaks and the chlorinated ethenes, such as trichloroethylene, chlorinated ethanes, such as 1,1,1-trichloroethane, and chlorinated methanes, such as chloroform, from past solvent cleaning practices. The method relies on and takes advantage of the pre-existing heated conditions and the array of delivery/recovery wells that are created and in place following primary subsurface contaminant volatilization efforts via thermal approaches, such as dynamic underground steam-electrical heating. 21 figs.

Taylor, R.T.; Jackson, K.J.; Duba, A.G.; Chen, C.I.

1998-05-19T23:59:59.000Z

158

In situ thermally enhanced biodegradation of petroleum fuel hydrocarbons and halogenated organic solvents  

DOE Patents (OSTI)

An in situ thermally enhanced microbial remediation strategy and a method for the biodegradation of toxic petroleum fuel hydrocarbon and halogenated organic solvent contaminants. The method utilizes nonpathogenic, thermophilic bacteria for the thermal biodegradation of toxic and carcinogenic contaminants, such as benzene, toluene, ethylbenzene and xylenes, from fuel leaks and the chlorinated ethenes, such as trichloroethylene, chlorinated ethanes, such as 1,1,1-trichloroethane, and chlorinated methanes, such as chloroform, from past solvent cleaning practices. The method relies on and takes advantage of the pre-existing heated conditions and the array of delivery/recovery wells that are created and in place following primary subsurface contaminant volatilization efforts via thermal approaches, such as dynamic underground steam-electrical heating.

Taylor, Robert T. (Livermore, CA); Jackson, Kenneth J. (San Leandro, CA); Duba, Alfred G. (Livermore, CA); Chen, Ching-I (Danville, CA)

1998-01-01T23:59:59.000Z

159

Nature Bulletin Table of Contents  

NLE Websites -- All DOE Office Websites (Extended Search)

Table of Contents: Table of Contents: Here is our table of contents for the Forset Preserve District of Cook Country Nature Bulletins. To search, go to the Natuere Bulletin's Search Engine and type in your topic. You can also use your browser's "FIND" command to search the 750+ article titles here for a specific subject! Fish Smother Under Ice Coyotes in Cook County Tough Times for the Muskrats Wild Geese and Ducks Fly North Squirrels Spring Frogs Snapping Turtles A Phenomenal Spring Good People Do Not Pick Wildflowers Fire is the Enemy of Field and Forest Crows Earthworms Bees Crayfish Floods Handaxes and Knives in the Forest Preserves Ant Sanctuary Conservation Mosquitoes More About Mosquitoes Fishing in the Forest Preserve Our River Grasshoppers Chiggers Ticks Poison Ivy Fireflies

160

COST AND QUALITY TABLES 95  

Gasoline and Diesel Fuel Update (EIA)

5 Tables 5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts The annual publication Cost and Quality of Fuels for Electric Utility Plants (C&Q) will no longer be pub- lished by the EIA. The tables presented in this docu- ment are intended to replace that annual publication. Questions regarding the availability of these data should be directed to: Coal and Electric Data and Renewables Division

Note: This page contains sample records for the topic "discharge halogen table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

MTS Table Top Load frame  

NLE Websites -- All DOE Office Websites (Extended Search)

MTS Table Top Load frame MTS Table Top Load frame The Non-destructive Evaluation group operates an MTS Table Top Load frame for ultimate strength and life cycle testing of various ceramic, ceramic-matrix (FGI), carbon, carbon fiber, cermet (CMC) and metal alloy engineering samples. The load frame is a servo-hydraulic type designed to function in a closed loop configuration under computer control. The system can perform non-cyclic, tension, compression and flexure testing and cyclic fatigue tests. The system is comprised of two parts: * The Load Frame and * The Control System. Load Frame The Load Frame (figure 1) is a cross-head assembly which includes a single moving grip, a stationary grip and LVDT position sensor. It can generate up to 25 kN (5.5 kip) of force in the sample under test and can

162

CBECS 1992 - Building Characteristics, Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables Detailed Tables Detailed Tables Percent of Buildings and Floorspace by Census Region, 1992 Percent of Buildings and Floorspace by Census Region, 1992 The following 70 tables present extensive cross-tabulations of commercial buildings characteristics. These data are from the Buildings Characteristics Survey portion of the 1992 CBECS. The "Quick-Reference Guide," indicates the major topics of each table. Directions for calculating an approximate relative standard error (RSE) for each estimate in the tables are presented in Figure A1, "Use of RSE Row and Column Factor." The Glossary contains the definitions of the terms used in the tables. See the preceding "At A Glance" section for highlights of the detailed tables. Table Organization

163

Energy Information Administration (EIA) - Supplement Tables  

Gasoline and Diesel Fuel Update (EIA)

6 6 1 to 116 Complete set of Supplemental Tables Complete set of Supplemental Tables. Need help, please contact the National Energy Information Center at 202-586-8800. Regional Energy Consumption and Prices by Sector Energy Consumption by Sector Table 1. New England Consumption & Prices by Sector & Census Division Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table 2. Middle Atlantic Consumption & Prices by Sector & Census Division Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table 3. East North Central Consumption & Prices by Sector & Census Division Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table 4. West North Central

164

FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS: THE NEW X-WAND HVOC SCREENING DEVICE  

SciTech Connect

Western Research Institute (WRI) has developed new methodology and a test kit to screen soil or water samples for halogenated volatile organic compounds (HVOCs) in the field. The technology has been designated the X-Wand{trademark} screening tool. The new device uses a heated diode sensor that is commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. This sensor is selective to halogens. It does not respond to volatile aromatic hydrocarbons, such as those in gasoline, and it is not affected by high humidity. In the current work, the heated diode leak detectors were modified further to provide units with rapid response and enhanced sensitivity. The limit of detection for trichloroethylene TCE in air is 0.1 mg/m{sup 3} (S/N = 2). The response to other HVOCS relative to TCE is similar. Variability between sensors and changes in a particular sensor over time can be compensated for by normalizing sensor readings to a maximum sensor reading at 1,000 mg/m{sup 3} TCE. The soil TCE screening method was expanded to include application to water samples. Assuming complete vaporization, the detection limit for TCE in soil is about 1 ug/kg (ppb) for a 25-g sample in an 8-oz jar. The detection limit for TCE in water is about 1 ug/L (ppb) for a 25-mL sample in an 8-oz jar. This is comparable to quantitation limits of EPA GC/MS laboratory methods. A draft ASTM method for screening TCE contaminated soils using a heated diode sensor was successfully submitted for concurrent main committee and subcommittee balloting in ASTM Committee D 34 on Waste Management. The method was approved as ASTM D 7203-05, Standard Test Method for Screening Trichloroethylene (TCE)-Contaminated Soil Using a Heated Diode Sensor.

John F. Schabron; Susan S. Sorini; Joseph F. Rovani Jr

2006-03-01T23:59:59.000Z

165

Generator of Rainfall And Discharge Extremes  

E-Print Network (OSTI)

Generator of Rainfall And Discharge Extremes (GRADE) for the Rhine and Meuse basins Report RWS RIZA 2007.027 KNMI-publication 218 #12;Generator of Rainfall And Discharge Extremes (GRADE) for the Rhine.027 KNMI-publication 218 ISBN 9789036914062 #12;2Generator of Rainfall And Discharge Extremes (GRADE

Stoffelen, Ad

166

2, 22872325, 2005 discharge+sediment  

E-Print Network (OSTI)

HESSD 2, 2287­2325, 2005 Water discharge+sediment flux changes in Lower Mekon River X. X. Lu and R Sciences Water discharge and sediment flux changes in the Lower Mekong River X. X. Lu and R. Y. Siew­2325, 2005 Water discharge+sediment flux changes in Lower Mekon River X. X. Lu and R. Y. Siew Title Page

Paris-Sud XI, Université de

167

Cold cathode vacuum discharge tube  

DOE Patents (OSTI)

A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging.

Boettcher, Gordon E. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

168

Wastewater Discharge Program (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wastewater Discharge Program (Maine) Wastewater Discharge Program (Maine) Wastewater Discharge Program (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Buying & Making Electricity Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection The wastewater discharge regulations require that a license be obtained for the discharge of wastewater to a stream, river, wetland, or lake of the

169

FRAUD POLICY Table of Contents  

E-Print Network (OSTI)

FRAUD POLICY Table of Contents Section 1 - General Statement Section 2 - Management's Responsibility for Preventing Fraud Section 3 - Consequences for Fraudulent Acts Section 4 - Procedures for Reporting Fraud Section 5 - Procedures for the Investigation of Alleged Fraud Section 6 - Protection Under

Shihadeh, Alan

170

CHP NOTEBOOK Table of Contents  

E-Print Network (OSTI)

-Specific Standard Operating Procedures (SOPs) Section 8 Employee Training Section 9 Inspections and Exposure1 CHP NOTEBOOK Table of Contents Section 1 Safety Program Key Personnel Section 2 Laboratory Protective Equipment (PPE) Assessment Section 18 Hazard Assessment Information and PPE Selection Information

Braun, Paul

171

Microsoft Word - table_04.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Table 4. Offshore gross withdrawals of natural gas by state and the Gulf of Mexico, 2009-2013 (million cubic feet) 2009 Total 259,848 327,105 586,953 1,878,928 606,403 2,485,331...

172

PARENT HANDBOOK TABLE OF CONTENTS  

E-Print Network (OSTI)

PARENT HANDBOOK 1 TABLE OF CONTENTS The Parent's Role 3 Academics 7 Academic Advising 7 Academic Services 26 Athletics, Physical Education and Recreation 28 Campus Resources and Student Services 30 to seeing you in person and connecting with you online! PARENT HANDBOOK THEPARENT'SROLE PARENT HANDBOOK 3

Adali, Tulay

173

Automatic Construction of Diagnostic Tables  

Science Journals Connector (OSTI)

......more usual, at least in microbiology.) Keys and diagnostic tables...Mechanization and Data Handling in Microbiology, Society for Applied Bacteriology...by A. Baillie and R. J. Gilbert, London: Academic Press...cultures, Canadian Journal of Microbiology, Vol. 14, pp. 271-279......

W. R. Willcox; S. P. Lapage

1972-08-01T23:59:59.000Z

174

Evaluation of instantaneous surface water discharge techniques  

SciTech Connect

To obtain accurate discharge data in any surface water monitoring program, the selection of an appropriate technique is essential. This paper examines five instantaneous discharge techniques most commonly used throughout the Appalachian coal fields. The techniques evaluated in this paper include: (1) dye-dilution; (2) cross-sectional area-velocity; (3) weir; (4) Manning's equation; and (5) direct discharge. Each of the instantaneous discharge techniques was evaluated in terms of: (1) initial equipment investment cost per discharge determination; (2) the advantages and disadvantages of each technique; and (3) the appropriate application of each technique. From this evaluation, it was apparent that a combination of several techniques are needed to determine a variety of discharges depending on the characteristics of the discharge point.

Buckles, J.D.

1984-12-01T23:59:59.000Z

175

An optimal filtering algorithm for table constraints  

Science Journals Connector (OSTI)

Filtering algorithms for table constraints are constraint-based, which means that the propagation queue only contains information on the constraints that must be reconsidered. This paper proposes four efficient value-based algorithms for table constraints, ...

Jean-Baptiste Mairy; Pascal Van Hentenryck; Yves Deville

2012-10-01T23:59:59.000Z

176

Table Name query? | OpenEI Community  

Open Energy Info (EERE)

Table Name query? Home > Groups > Databus Is there an API feature which returns the names of tables? Submitted by Hopcroft on 28 October, 2013 - 15:37 1 answer Points: 0 if you are...

177

Chemistry Department Assessment Table of Contents  

E-Print Network (OSTI)

0 Chemistry Department Assessment May, 2006 Table of Contents Page Executive Summary 1 Prelude 1 Mission Statement and Learning Goals 1 Facilities 2 Staffing 3 Students: Chemistry Majors and Student Taking Service Courses Table: 1997-2005 graduates profile Table: GRE Score for Chemistry Majors, 1993

Bogaerts, Steven

178

Confined plasma gliding arc discharges  

Science Journals Connector (OSTI)

A confined plasma gliding arc is produced in a reactor with two-electrodes contained within a very narrow channel and water spray injected into the discharge. The evolution of pH and conductivity and the formation of hydrogen peroxide in pure water with different carrier gases and the decolourisation and mineralisation of an organic dye were compared with results for a non-confined three-electrode gliding arc reactor. The energy efficiency for the decolourisation of an organic blue dye in the confined reactor is twice that of the non-confined reactor. Significant levels of total organic carbon are removed in the confined plasma reactor.

Radu Burlica; Bruce R. Locke

2008-01-01T23:59:59.000Z

179

Microsoft Word - table_11.doc  

U.S. Energy Information Administration (EIA) Indexed Site

25 25 Table 11 Created on: 12/12/2013 2:10:53 PM Table 11. Underground natural gas storage - storage fields other than salt caverns, 2008-2013 (volumes in billion cubic feet) Natural Gas in Underground Storage at End of Period Change in Working Gas from Same Period Previous Year Storage Activity Year and Month Base Gas Working Gas Total Volume Percent Injections Withdrawals Net Withdrawals a 2008 Total b -- -- -- -- -- 2,900 2,976 76 2009 Total b -- -- -- -- -- 2,856 2,563 -293 2010 Total b -- -- -- -- -- 2,781 2,822 41 2011 January 4,166 2,131 6,298 -63 -2.9 27 780 753 February 4,166 1,597 5,763 -10 -0.6 51 586 535 March 4,165 1,426 5,591 -114 -7.4 117 288 172

180

Microsoft Word - table_08.doc  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Table 8 Created on: 12/12/2013 2:07:39 PM Table 8. Underground natural gas storage - all operators, 2008-2013 (million cubic feet) Natural Gas in Underground Storage at End of Period Change in Working Gas from Same Period Previous Year Storage Activity Year and Month Base Gas Working Gas Total a Volume Percent Injections Withdrawals Net Withdrawals b 2008 Total c -- -- -- -- -- 3,340 3,374 34 2009 Total c -- -- -- -- -- 3,315 2,966 -349 2010 Total c -- -- -- -- -- 3,291 3,274 -17 2011 January 4,303 2,306 6,609 2 0.1 50 849 799 February 4,302 1,722 6,024 39 2.3 82 666 584 March 4,302 1,577 5,879 -75 -4.6 168 314 146 April 4,304 1,788 6,092 -223 -11.1 312 100

Note: This page contains sample records for the topic "discharge halogen table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Action Codes Table | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Action Codes Table | National Nuclear Security Administration Action Codes Table | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Action Codes Table Home > About Us > Our Programs > Nuclear Security > Nuclear Materials Management & Safeguards System > NMMSS Information, Reports & Forms > Code Tables > Action Codes Table

182

Description of Energy Intensity Tables (12)  

U.S. Energy Information Administration (EIA) Indexed Site

3. Description of Energy Intensity Data Tables 3. Description of Energy Intensity Data Tables There are 12 data tables used as references for this report. Specifically, these tables are categorized as tables 1 and 2 present unadjusted energy-intensity ratios for Offsite-Produced Energy and Total Inputs of Energy for 1985, 1988, 1991, and 1994; along with the percentage changes between 1985 and the three subsequent years (1988, 1991, and 1994) tables 3 and 4 present 1988, 1991, and 1994 energy-intensity ratios that have been adjusted to the mix of products shipped from manufacturing establishments in 1985 tables 5 and 6 present unadjusted energy-intensity ratios for Offsite-Produced Energy and Total Inputs of Energy for 1988, 1991, and 1994; along with the percentage changes between 1988 and the two subsequent

183

Sandia National Labs: PCNSC: IBA Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Home About Us Departments Radiation, Nano Materials, & Interface Sciences > Radiation & Solid Interactions > Nanomaterials Sciences > Surface & Interface Sciences Semiconductor & Optical Sciences Energy Sciences Small Science Cluster Business Office News Partnering Research Ion Beam Analysis (IBA) Periodic Table (HTML) IBA Table (HTML) | IBA Table (135KB GIF) | IBA Table (1.2MB PDF) | IBA Table (33MB TIF) | Heavy Ion Backscattering Spectrometry (HIBS) | Virtual Lab Tour (6MB) The purpose of this table is to quickly give the visitor to this site information on the sensitivity, depth of analysis and depth resolution of most of the modern ion beam analysis techniques in a single easy to use format: a periodic table. Note that you can click on each panel of this

184

Energy Information Administration (EIA) - Supplement Tables - Supplemental  

Gasoline and Diesel Fuel Update (EIA)

6 6 Supplemental Tables to the Annual Energy Outlook 2006 The AEO Supplemental tables were generated for the reference case of the Annual Energy Outlook 2006 (AEO2006) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 2003 to 2030. Most of the tables were not published in the AEO2006, but contain regional and other more detailed projections underlying the AEO2006 projections. The files containing these tables are in spreadsheet format. A total of one hundred and seventeen tables is presented. The data for tables 10 and 20 match those published in AEO2006 Appendix tables A2 and A3, respectively. Forecasts for 2004-2006 may differ slightly from values published in the Short Term Energy Outlook, which are the official EIA short-term forecasts and are based on more current information than the AEO.

185

Energy Information Administration (EIA) - Supplement Tables - Supplemental  

Gasoline and Diesel Fuel Update (EIA)

7 7 Supplemental Tables to the Annual Energy Outlook 2007 The AEO Supplemental tables were generated for the reference case of the Annual Energy Outlook 2007 (AEO2007) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 2005 to 2030. Most of the tables were not published in the AEO2007, but contain regional and other more detailed projections underlying the AEO2007 projections. The files containing these tables are in spreadsheet format. A total of one hundred and eighteen tables is presented. The data for tables 10 and 20 match those published in AEO2007 Appendix tables A2 and A3, respectively. Projections for 2006 and 2007 may differ slightly from values published in the Short Term Energy Outlook, which are the official EIA short-term projections and are based on more current information than the AEO.

186

Oklahoma Pollutant Discharge Elimination System (OPDES) Standards  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oklahoma Pollutant Discharge Elimination System (OPDES) Standards Oklahoma Pollutant Discharge Elimination System (OPDES) Standards (Oklahoma) Oklahoma Pollutant Discharge Elimination System (OPDES) Standards (Oklahoma) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Retail Supplier Rural Electric Cooperative State/Provincial Govt Systems Integrator Tribal Government Utility Program Info State Oklahoma Program Type Environmental Regulations Provider Oklahoma Department of Environmental Quality This program of the Water Quality Division of the Department of Environmental Quality sets the point source, biosolids (sewage sludge), and stormwater permitting standards for discharges to the waters of the State

187

Oil and Hazardous Substance Discharge Preparedness (Minnesota)  

Energy.gov (U.S. Department of Energy (DOE))

Anyone who owns or operates a vessel or facility that transports, stores, or otherwise handles hazardous wastes must take reasonable steps to prevent the discharge of those materials.

188

Characterization of electrical discharge machining plasmas.  

E-Print Network (OSTI)

??Electrical Discharge Machining (EDM) is a well-known machining technique since more than fifty years. Its principle is to use the eroding effect on the electrodes (more)

Descoeudres, Antoine

2006-01-01T23:59:59.000Z

189

Electro discharge machining for micro manufacturing.  

E-Print Network (OSTI)

??Due to the high precision and good surface quality that it can give, Electrical Discharge Machining (EDM) is potentially an important process for the fabrication (more)

Ivanov, Atanas

2008-01-01T23:59:59.000Z

190

Montana Pollutant Discharge Elimination System (MPDES) Webpage...  

Open Energy Info (EERE)

an overview of Montana's MPDES program for control point source discharges of wastewater. Author Montana Department of Environmental Quality Published State of Montana, Date...

191

CDPHE Industrial Individual Wastewater Discharge Permit Application...  

Open Energy Info (EERE)

Legal Document- Permit ApplicationPermit Application: CDPHE Industrial Individual Wastewater Discharge Permit ApplicationLegal Abstract Application provided by the Colorado...

192

California Waste Discharge Requirements Website | Open Energy...  

Open Energy Info (EERE)

Requirements Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: California Waste Discharge Requirements Website Abstract This website contains...

193

Biomarker sensitivity for polynuclear and halogenated aromatic hydrocarbon contamination in fish species from Galveston Bay  

SciTech Connect

The Galveston Bay estuary exhibits a contamination gradient for polynuclear aromatic hydrocarbons (PAHs) and halogenated aromatic hydrocarbons, which is useful for comparing biomarker response sensitivity in fish taken from different bay locations. Two fish species, hardhead catfish (Arius felis) and Atlantic croaker (Micropogon undulatus), were collected from four stations where sediment total PAHs ranged from 68 to > 1,000 ng/g. Hardhead catfish showed no consistent CYP1A mediated responses (hepatic ethoxyresorufin-O-deethylase activity (EROD), CYP1A mRNA levels, or CYP1A immunoreactive protein) in the field collected fish or in fish dosed with up to 15 mg/kg benzo(a)pyrene (BaP). Significant differences were seen in field collected hardhead catfish in biliary concentrations of naphthalene, phenanthrene, and BaP metabolites. Conversely, in croakers taken from the same four Galveston Bay locations, there were significant elevations IN EROD and glutathione-S-transferase activities, CYP1A immunoreactive protein, and biliary PAH metabolites at the contaminated stations. These studies suggest that croaker is a good monitoring species especially with respect to induction of CYP1A mediated responses by PAHs. Biliary PAH metabolites and PAH-DNA adducts were sensitive to PAH contamination in both species.

Willett, K.; McDonald, S.; Steinberg, M.; Beatty, K.; Safe, S. [Texas A and M Univ., College Station, TX (United States)

1995-12-31T23:59:59.000Z

194

Annual Energy Outlook 2007 - Low Price Case Tables  

Gasoline and Diesel Fuel Update (EIA)

4-2030) 4-2030) Annual Energy Outlook 2007 with Projections to 2030 MS Excel Viewer Spreadsheets are provided in Excel Low Price Case Tables (2004-2030) Table Title Formats Summary Low Price Case Tables Low Price Case Tables Table 1. Total Energy Supply and Disposition Summary Table 2. Energy Consumption by Sector and Source Table 3. Energy Prices by Sector and Source Table 4. Residential Sector Key Indicators and Consumption Table 5. Commercial Sector Indicators and Consumption Table 6. Industrial Sector Key Indicators and Consumption Table 7. Transportation Sector Key Indicators and Delivered Energy Consumption Table 8. Electricity Supply, Disposition, Prices, and Emissions Table 9. Electricity Generating Capacity Table 10. Electricity Trade Table 11. Petroleum Supply and Disposition Balance

195

Annual Energy Outlook 2007 - Low Economic Growth Case Tables  

Gasoline and Diesel Fuel Update (EIA)

Low Macroeconomic Growth Case Tables (2004-2030) Low Macroeconomic Growth Case Tables (2004-2030) Annual Energy Outlook 2007 with Projections to 2030 MS Excel Viewer Spreadsheets are provided in Excel Low Economic Growth Case Tables (2004-2030) Table Title Formats Summary Low Economic Growth Case Tables Low Economic Growth Case Tables Table 1. Total Energy Supply and Disposition Summary Table 2. Energy Consumption by Sector and Source Table 3. Energy Prices by Sector and Source Table 4. Residential Sector Key Indicators and Consumption Table 5. Commercial Sector Indicators and Consumption Table 6. Industrial Sector Key Indicators and Consumption Table 7. Transportation Sector Key Indicators and Delivered Energy Consumption Table 8. Electricity Supply, Disposition, Prices, and Emissions Table 9. Electricity Generating Capacity

196

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in B-100 Bone-equivalent plastic Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.52740 1.450 85.9 0.05268 3.7365 0.1252 3.0420 3.4528 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.435 7.435 7.443 × 10 -1 14.0 MeV 5.616 × 10 1 5.803 5.803 1.360 × 10 0 20.0 MeV 6.802 × 10 1 4.535 4.535 2.543 × 10 0 30.0 MeV 8.509 × 10 1 3.521 3.521 5.080 × 10 0 40.0 MeV 1.003 × 10 2 3.008 3.008 8.173 × 10 0 80.0 MeV 1.527 × 10 2 2.256 2.256 2.401 × 10 1 100. MeV 1.764 × 10 2 2.115 2.115 3.319 × 10 1 140. MeV 2.218 × 10 2 1.971 1.971 5.287 × 10 1 200. MeV 2.868 × 10 2 1.889 1.889 8.408 × 10 1 300. MeV 3.917 × 10 2 1.859 0.000 1.859 1.376 × 10 2 314. MeV 4.065 × 10 2 1.859 0.000 1.859 Minimum ionization 400. MeV 4.945 × 10 2 1.866 0.000 1.866 1.913 × 10 2 800. MeV 8.995 × 10 2 1.940 0.000 0.000 1.940 4.016 × 10 2 1.00 GeV 1.101 × 10 3 1.973 0.000 0.000 1.974 5.037 × 10 2 1.40

197

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Sodium monoxide Na 2 O Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.48404 2.270 148.8 0.07501 3.6943 0.1652 2.9793 4.1892 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 6.330 6.330 8.793 × 10 -1 14.0 MeV 5.616 × 10 1 4.955 4.956 1.601 × 10 0 20.0 MeV 6.802 × 10 1 3.883 3.884 2.984 × 10 0 30.0 MeV 8.509 × 10 1 3.024 3.024 5.943 × 10 0 40.0 MeV 1.003 × 10 2 2.588 2.588 9.541 × 10 0 80.0 MeV 1.527 × 10 2 1.954 1.954 2.789 × 10 1 100. MeV 1.764 × 10 2 1.840 1.840 3.846 × 10 1 140. MeV 2.218 × 10 2 1.725 1.725 6.102 × 10 1 200. MeV 2.868 × 10 2 1.663 1.664 9.656 × 10 1 283. MeV 3.738 × 10 2 1.646 0.000 1.647 Minimum ionization 300. MeV 3.917 × 10 2 1.647 0.000 1.647 1.571 × 10 2 400. MeV 4.945 × 10 2 1.659 0.000 1.660 2.177 × 10 2 800. MeV 8.995 × 10 2 1.738 0.000 0.000 1.738 4.531 × 10 2 1.00 GeV 1.101 × 10 3 1.771 0.000 0.000 1.772 5.670 × 10 2 1.40 GeV 1.502

198

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Tissue-equivalent gas (Propane based) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.55027 1.826 × 10 -3 59.5 0.09802 3.5159 1.5139 3.9916 9.3529 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 8.132 8.132 6.782 × 10 -1 14.0 MeV 5.616 × 10 1 6.337 6.337 1.241 × 10 0 20.0 MeV 6.802 × 10 1 4.943 4.944 2.326 × 10 0 30.0 MeV 8.509 × 10 1 3.831 3.831 4.656 × 10 0 40.0 MeV 1.003 × 10 2 3.269 3.269 7.500 × 10 0 80.0 MeV 1.527 × 10 2 2.450 2.450 2.209 × 10 1 100. MeV 1.764 × 10 2 2.303 2.303 3.053 × 10 1 140. MeV 2.218 × 10 2 2.158 2.158 4.855 × 10 1 200. MeV 2.868 × 10 2 2.084 2.084 7.695 × 10 1 263. MeV 3.527 × 10 2 2.068 0.000 2.069 Minimum ionization 300. MeV 3.917 × 10 2 2.071 0.000 2.072 1.252 × 10 2 400. MeV 4.945 × 10 2 2.097 0.000 2.097 1.732 × 10 2 800. MeV 8.995 × 10 2 2.232 0.000 0.000 2.232 3.580 × 10 2 1.00 GeV 1.101 × 10 3 2.289 0.000 0.000 2.290

199

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Lead oxide (PbO) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.40323 9.530 766.7 0.19645 2.7299 0.0356 3.5456 6.2162 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 4.046 4.046 1.411 × 10 0 14.0 MeV 5.616 × 10 1 3.207 3.207 2.532 × 10 0 20.0 MeV 6.802 × 10 1 2.542 2.542 4.656 × 10 0 30.0 MeV 8.509 × 10 1 2.003 2.003 9.146 × 10 0 40.0 MeV 1.003 × 10 2 1.727 1.727 1.455 × 10 1 80.0 MeV 1.527 × 10 2 1.327 1.327 4.176 × 10 1 100. MeV 1.764 × 10 2 1.256 1.256 5.729 × 10 1 140. MeV 2.218 × 10 2 1.188 1.189 9.017 × 10 1 200. MeV 2.868 × 10 2 1.158 1.158 1.415 × 10 2 236. MeV 3.250 × 10 2 1.155 0.000 1.155 Minimum ionization 300. MeV 3.917 × 10 2 1.161 0.000 0.000 1.161 2.279 × 10 2 400. MeV 4.945 × 10 2 1.181 0.000 0.000 1.181 3.133 × 10 2 800. MeV 8.995 × 10 2 1.266 0.001 0.000 1.267 6.398 × 10 2 1.00 GeV 1.101 × 10 3 1.299 0.001 0.000 1.301 7.955 × 10 2 1.40

200

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Liquid argon (Ar) Z A [g/mol] ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 18 (Ar) 39.948 (1) 1.396 188.0 0.19559 3.0000 0.2000 3.0000 5.2146 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 5.687 5.687 9.833 × 10 -1 14.0 MeV 5.616 × 10 1 4.461 4.461 1.786 × 10 0 20.0 MeV 6.802 × 10 1 3.502 3.502 3.321 × 10 0 30.0 MeV 8.509 × 10 1 2.731 2.731 6.598 × 10 0 40.0 MeV 1.003 × 10 2 2.340 2.340 1.058 × 10 1 80.0 MeV 1.527 × 10 2 1.771 1.771 3.084 × 10 1 100. MeV 1.764 × 10 2 1.669 1.670 4.250 × 10 1 140. MeV 2.218 × 10 2 1.570 1.570 6.732 × 10 1 200. MeV 2.868 × 10 2 1.518 1.519 1.063 × 10 2 266. MeV 3.567 × 10 2 1.508 0.000 1.508 Minimum ionization 300. MeV 3.917 × 10 2 1.509 0.000 1.510 1.725 × 10 2 400. MeV 4.945 × 10 2 1.526 0.000 0.000 1.526 2.385 × 10 2 800. MeV 8.995 × 10 2 1.610 0.000 0.000 1.610 4.934 × 10 2 1.00 GeV 1.101 × 10 3 1.644 0.000 0.000 1.645 6.163

Note: This page contains sample records for the topic "discharge halogen table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Freon-13 (CF 3 Cl) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.47966 0.950 126.6 0.07238 3.5551 0.3659 3.2337 4.7483 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 6.416 6.416 8.659 × 10 -1 14.0 MeV 5.616 × 10 1 5.019 5.019 1.578 × 10 0 20.0 MeV 6.802 × 10 1 3.930 3.930 2.945 × 10 0 30.0 MeV 8.509 × 10 1 3.057 3.057 5.870 × 10 0 40.0 MeV 1.003 × 10 2 2.615 2.615 9.430 × 10 0 80.0 MeV 1.527 × 10 2 1.971 1.971 2.760 × 10 1 100. MeV 1.764 × 10 2 1.857 1.857 3.809 × 10 1 140. MeV 2.218 × 10 2 1.745 1.745 6.041 × 10 1 200. MeV 2.868 × 10 2 1.685 1.685 9.551 × 10 1 283. MeV 3.738 × 10 2 1.668 0.000 1.668 Minimum ionization 300. MeV 3.917 × 10 2 1.668 0.000 1.668 1.553 × 10 2 400. MeV 4.945 × 10 2 1.681 0.000 1.681 2.151 × 10 2 800. MeV 8.995 × 10 2 1.762 0.000 0.000 1.763 4.473 × 10 2 1.00 GeV 1.101 × 10 3 1.796 0.000 0.000 1.797 5.596 × 10 2 1.40 GeV 1.502

202

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Lutetium silicon oxide [Lu 2 SiO 5 ] Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.42793 7.400 472.0 0.20623 3.0000 0.2732 3.0000 5.4394 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 4.679 4.679 1.209 × 10 0 14.0 MeV 5.616 × 10 1 3.692 3.693 2.181 × 10 0 20.0 MeV 6.802 × 10 1 2.916 2.916 4.029 × 10 0 30.0 MeV 8.509 × 10 1 2.287 2.287 7.953 × 10 0 40.0 MeV 1.003 × 10 2 1.968 1.968 1.270 × 10 1 80.0 MeV 1.527 × 10 2 1.503 1.503 3.666 × 10 1 100. MeV 1.764 × 10 2 1.421 1.422 5.038 × 10 1 140. MeV 2.218 × 10 2 1.344 1.344 7.944 × 10 1 200. MeV 2.868 × 10 2 1.308 1.308 1.248 × 10 2 242. MeV 3.316 × 10 2 1.304 1.304 Minimum ionization 300. MeV 3.917 × 10 2 1.309 0.000 0.000 1.309 2.014 × 10 2 400. MeV 4.945 × 10 2 1.329 0.000 0.000 1.329 2.773 × 10 2 800. MeV 8.995 × 10 2 1.415 0.001 0.000 1.416 5.684 × 10 2 1.00 GeV 1.101 × 10 3 1.449 0.001 0.000 1.450 7.080

203

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Boron oxide (B 2 O 3 ) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.49839 1.812 99.6 0.11548 3.3832 0.1843 2.7379 3.6027 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 6.889 6.889 8.045 × 10 -1 14.0 MeV 5.616 × 10 1 5.381 5.381 1.468 × 10 0 20.0 MeV 6.802 × 10 1 4.208 4.208 2.744 × 10 0 30.0 MeV 8.509 × 10 1 3.269 3.269 5.477 × 10 0 40.0 MeV 1.003 × 10 2 2.794 2.794 8.807 × 10 0 80.0 MeV 1.527 × 10 2 2.102 2.103 2.583 × 10 1 100. MeV 1.764 × 10 2 1.975 1.975 3.567 × 10 1 140. MeV 2.218 × 10 2 1.843 1.843 5.674 × 10 1 200. MeV 2.868 × 10 2 1.768 1.768 9.010 × 10 1 300. MeV 3.917 × 10 2 1.742 0.000 1.742 1.472 × 10 2 307. MeV 3.990 × 10 2 1.742 0.000 1.742 Minimum ionization 400. MeV 4.945 × 10 2 1.750 0.000 1.750 2.045 × 10 2 800. MeV 8.995 × 10 2 1.822 0.000 0.000 1.823 4.285 × 10 2 1.00 GeV 1.101 × 10 3 1.854 0.000 0.000 1.855 5.373 × 10 2 1.40 GeV 1.502

204

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Liquid H-note density shift (H 2 ) Z A [g/mol] ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 1 (H) 1.00794 (7) 7.080 × 10 -2 21.8 0.32969 3.0000 0.1641 1.9641 2.6783 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 16.508 16.508 3.316 × 10 -1 14.0 MeV 5.616 × 10 1 12.812 12.812 6.097 × 10 -1 20.0 MeV 6.802 × 10 1 9.956 9.956 1.147 × 10 0 30.0 MeV 8.509 × 10 1 7.684 7.684 2.307 × 10 0 40.0 MeV 1.003 × 10 2 6.539 6.539 3.727 × 10 0 80.0 MeV 1.527 × 10 2 4.870 4.870 1.105 × 10 1 100. MeV 1.764 × 10 2 4.550 4.550 1.531 × 10 1 140. MeV 2.218 × 10 2 4.217 4.217 2.448 × 10 1 200. MeV 2.868 × 10 2 4.018 0.000 4.018 3.912 × 10 1 300. MeV 3.917 × 10 2 3.926 0.000 3.926 6.438 × 10 1 356. MeV 4.497 × 10 2 3.919 0.000 3.919 Minimum ionization 400. MeV 4.945 × 10 2 3.922 0.000 3.922 8.988 × 10 1 800. MeV 8.995 × 10 2 4.029 0.000 4.030 1.906 × 10 2 1.00 GeV 1.101 × 10 3 4.084 0.001

205

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Cortical bone (ICRP) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.52130 1.850 106.4 0.06198 3.5919 0.1161 3.0919 3.6488 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.142 7.142 7.765 × 10 -1 14.0 MeV 5.616 × 10 1 5.581 5.581 1.417 × 10 0 20.0 MeV 6.802 × 10 1 4.366 4.366 2.646 × 10 0 30.0 MeV 8.509 × 10 1 3.393 3.393 5.281 × 10 0 40.0 MeV 1.003 × 10 2 2.900 2.901 8.489 × 10 0 80.0 MeV 1.527 × 10 2 2.179 2.179 2.489 × 10 1 100. MeV 1.764 × 10 2 2.044 2.044 3.440 × 10 1 140. MeV 2.218 × 10 2 1.907 1.907 5.475 × 10 1 200. MeV 2.868 × 10 2 1.830 1.830 8.700 × 10 1 300. MeV 3.917 × 10 2 1.803 0.000 1.803 1.422 × 10 2 303. MeV 3.950 × 10 2 1.803 0.000 1.803 Minimum ionization 400. MeV 4.945 × 10 2 1.812 0.000 1.812 1.976 × 10 2 800. MeV 8.995 × 10 2 1.888 0.000 0.000 1.889 4.138 × 10 2 1.00 GeV 1.101 × 10 3 1.922 0.000 0.000 1.923 5.187 × 10 2 1.40 GeV 1.502

206

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Freon-13B1 (CF 3 Br) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.45665 1.500 210.5 0.03925 3.7194 0.3522 3.7554 5.3555 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 5.678 5.678 9.844 × 10 -1 14.0 MeV 5.616 × 10 1 4.454 4.454 1.788 × 10 0 20.0 MeV 6.802 × 10 1 3.498 3.498 3.325 × 10 0 30.0 MeV 8.509 × 10 1 2.729 2.729 6.606 × 10 0 40.0 MeV 1.003 × 10 2 2.339 2.339 1.059 × 10 1 80.0 MeV 1.527 × 10 2 1.771 1.771 3.086 × 10 1 100. MeV 1.764 × 10 2 1.671 1.671 4.251 × 10 1 140. MeV 2.218 × 10 2 1.574 1.574 6.729 × 10 1 200. MeV 2.868 × 10 2 1.524 1.524 1.062 × 10 2 266. MeV 3.567 × 10 2 1.513 0.000 1.513 Minimum ionization 300. MeV 3.917 × 10 2 1.515 0.000 1.515 1.721 × 10 2 400. MeV 4.945 × 10 2 1.531 0.000 0.000 1.532 2.378 × 10 2 800. MeV 8.995 × 10 2 1.616 0.000 0.000 1.616 4.919 × 10 2 1.00 GeV 1.101 × 10 3 1.650 0.001 0.000 1.651 6.142 × 10 2 1.40 GeV

207

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Sodium carbonate (Na 2 CO 3 ) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.49062 2.532 125.0 0.08715 3.5638 0.1287 2.8591 3.7178 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 6.575 6.575 8.449 × 10 -1 14.0 MeV 5.616 × 10 1 5.142 5.142 1.540 × 10 0 20.0 MeV 6.802 × 10 1 4.026 4.026 2.874 × 10 0 30.0 MeV 8.509 × 10 1 3.131 3.131 5.729 × 10 0 40.0 MeV 1.003 × 10 2 2.679 2.679 9.204 × 10 0 80.0 MeV 1.527 × 10 2 2.017 2.017 2.695 × 10 1 100. MeV 1.764 × 10 2 1.895 1.895 3.721 × 10 1 140. MeV 2.218 × 10 2 1.771 1.772 5.914 × 10 1 200. MeV 2.868 × 10 2 1.703 1.703 9.381 × 10 1 298. MeV 3.894 × 10 2 1.681 0.000 1.681 Minimum ionization 300. MeV 3.917 × 10 2 1.681 0.000 1.681 1.531 × 10 2 400. MeV 4.945 × 10 2 1.690 0.000 1.691 2.125 × 10 2 800. MeV 8.995 × 10 2 1.764 0.000 0.000 1.764 4.440 × 10 2 1.00 GeV 1.101 × 10 3 1.796 0.000 0.000 1.797 5.563 × 10 2 1.40

208

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Tungsten hexafluoride (WF 6 ) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.42976 2.400 354.4 0.03658 3.5134 0.3020 4.2602 5.9881 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 4.928 4.928 1.143 × 10 0 14.0 MeV 5.616 × 10 1 3.880 3.880 2.067 × 10 0 20.0 MeV 6.802 × 10 1 3.057 3.057 3.828 × 10 0 30.0 MeV 8.509 × 10 1 2.393 2.393 7.574 × 10 0 40.0 MeV 1.003 × 10 2 2.056 2.056 1.211 × 10 1 80.0 MeV 1.527 × 10 2 1.565 1.565 3.509 × 10 1 100. MeV 1.764 × 10 2 1.479 1.479 4.827 × 10 1 140. MeV 2.218 × 10 2 1.396 1.396 7.623 × 10 1 200. MeV 2.868 × 10 2 1.353 1.353 1.200 × 10 2 253. MeV 3.431 × 10 2 1.346 0.000 1.346 Minimum ionization 300. MeV 3.917 × 10 2 1.349 0.000 0.000 1.349 1.942 × 10 2 400. MeV 4.945 × 10 2 1.367 0.000 0.000 1.367 2.679 × 10 2 800. MeV 8.995 × 10 2 1.451 0.001 0.000 1.452 5.516 × 10 2 1.00 GeV 1.101 × 10 3 1.485 0.001 0.000 1.486 6.877

209

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Standard rock Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.50000 2.650 136.4 0.08301 3.4120 0.0492 3.0549 3.7738 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 6.619 6.619 8.400 × 10 -1 14.0 MeV 5.616 × 10 1 5.180 5.180 1.530 × 10 0 20.0 MeV 6.802 × 10 1 4.057 4.057 2.854 × 10 0 30.0 MeV 8.509 × 10 1 3.157 3.157 5.687 × 10 0 40.0 MeV 1.003 × 10 2 2.701 2.702 9.133 × 10 0 80.0 MeV 1.527 × 10 2 2.028 2.029 2.675 × 10 1 100. MeV 1.764 × 10 2 1.904 1.904 3.695 × 10 1 140. MeV 2.218 × 10 2 1.779 1.779 5.878 × 10 1 200. MeV 2.868 × 10 2 1.710 1.710 9.331 × 10 1 297. MeV 3.884 × 10 2 1.688 0.000 1.688 Minimum ionization 300. MeV 3.917 × 10 2 1.688 0.000 1.688 1.523 × 10 2 400. MeV 4.945 × 10 2 1.698 0.000 1.698 2.114 × 10 2 800. MeV 8.995 × 10 2 1.774 0.000 0.000 1.775 4.418 × 10 2 1.00 GeV 1.101 × 10 3 1.808 0.000 0.000 1.808 5.534 × 10 2 1.40 GeV 1.502 × 10

210

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Ceric sulfate dosimeter solution Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.55279 1.030 76.7 0.07666 3.5607 0.2363 2.8769 3.5212 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.909 7.909 6.989 × 10 -1 14.0 MeV 5.616 × 10 1 6.170 6.170 1.278 × 10 0 20.0 MeV 6.802 × 10 1 4.819 4.819 2.391 × 10 0 30.0 MeV 8.509 × 10 1 3.739 3.739 4.779 × 10 0 40.0 MeV 1.003 × 10 2 3.193 3.193 7.693 × 10 0 80.0 MeV 1.527 × 10 2 2.398 2.398 2.261 × 10 1 100. MeV 1.764 × 10 2 2.255 2.255 3.123 × 10 1 140. MeV 2.218 × 10 2 2.102 2.102 4.968 × 10 1 200. MeV 2.868 × 10 2 2.013 2.014 7.896 × 10 1 300. MeV 3.917 × 10 2 1.980 0.000 1.980 1.292 × 10 2 317. MeV 4.096 × 10 2 1.979 0.000 1.979 Minimum ionization 400. MeV 4.945 × 10 2 1.986 0.000 1.986 1.797 × 10 2 800. MeV 8.995 × 10 2 2.062 0.000 0.000 2.062 3.774 × 10 2 1.00 GeV 1.101 × 10 3 2.096 0.000 0.000 2.097 4.735 × 10

211

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Silicon Z A [g/mol] ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 14 (Si) 28.0855 (3) 2.329 173.0 0.14921 3.2546 0.2015 2.8716 4.4355 0.14 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 6.363 6.363 8.779 × 10 -1 14.0 MeV 5.616 × 10 1 4.987 4.987 1.595 × 10 0 20.0 MeV 6.802 × 10 1 3.912 3.912 2.969 × 10 0 30.0 MeV 8.509 × 10 1 3.047 3.047 5.905 × 10 0 40.0 MeV 1.003 × 10 2 2.608 2.608 9.476 × 10 0 80.0 MeV 1.527 × 10 2 1.965 1.965 2.770 × 10 1 100. MeV 1.764 × 10 2 1.849 1.849 3.822 × 10 1 140. MeV 2.218 × 10 2 1.737 1.737 6.064 × 10 1 200. MeV 2.868 × 10 2 1.678 1.678 9.590 × 10 1 273. MeV 3.633 × 10 2 1.664 0.000 1.664 Minimum ionization 300. MeV 3.917 × 10 2 1.665 0.000 1.666 1.559 × 10 2 400. MeV 4.945 × 10 2 1.681 0.000 1.681 2.157 × 10 2 800. MeV 8.995 × 10 2 1.767 0.000 0.000 1.768 4.475 × 10 2 1.00 GeV 1.101 × 10 3 1.803 0.000 0.000 1.804 5.595 × 10 2 1.40 GeV

212

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Polyethylene terephthalate (Mylar) (C 10 H 8 O 4 ) n Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.52037 1.400 78.7 0.12679 3.3076 0.1562 2.6507 3.3262 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.420 7.420 7.451 × 10 -1 14.0 MeV 5.616 × 10 1 5.789 5.789 1.362 × 10 0 20.0 MeV 6.802 × 10 1 4.522 4.522 2.548 × 10 0 30.0 MeV 8.509 × 10 1 3.509 3.509 5.093 × 10 0 40.0 MeV 1.003 × 10 2 2.997 2.997 8.197 × 10 0 80.0 MeV 1.527 × 10 2 2.250 2.250 2.409 × 10 1 100. MeV 1.764 × 10 2 2.108 2.108 3.329 × 10 1 140. MeV 2.218 × 10 2 1.963 1.964 5.305 × 10 1 200. MeV 2.868 × 10 2 1.880 1.880 8.440 × 10 1 300. MeV 3.917 × 10 2 1.849 0.000 1.849 1.382 × 10 2 317. MeV 4.096 × 10 2 1.848 0.000 1.849 Minimum ionization 400. MeV 4.945 × 10 2 1.855 0.000 1.855 1.922 × 10 2 800. MeV 8.995 × 10 2 1.926 0.000 0.000 1.926 4.039 × 10 2 1.00 GeV 1.101 × 10 3 1.958 0.000 0.000 1.959

213

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Dichlorodiethyl ether C 4 Cl 2 H 8 O Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.51744 1.220 103.3 0.06799 3.5250 0.1773 3.1586 4.0135 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.117 7.117 7.789 × 10 -1 14.0 MeV 5.616 × 10 1 5.561 5.561 1.421 × 10 0 20.0 MeV 6.802 × 10 1 4.349 4.349 2.655 × 10 0 30.0 MeV 8.509 × 10 1 3.380 3.380 5.300 × 10 0 40.0 MeV 1.003 × 10 2 2.889 2.889 8.521 × 10 0 80.0 MeV 1.527 × 10 2 2.174 2.174 2.499 × 10 1 100. MeV 1.764 × 10 2 2.042 2.042 3.450 × 10 1 140. MeV 2.218 × 10 2 1.907 1.907 5.486 × 10 1 200. MeV 2.868 × 10 2 1.832 1.832 8.708 × 10 1 298. MeV 3.894 × 10 2 1.807 0.000 1.807 Minimum ionization 300. MeV 3.917 × 10 2 1.807 0.000 1.807 1.422 × 10 2 400. MeV 4.945 × 10 2 1.817 0.000 1.817 1.974 × 10 2 800. MeV 8.995 × 10 2 1.895 0.000 0.000 1.896 4.129 × 10 2 1.00 GeV 1.101 × 10 3 1.930 0.000 0.000 1.931 5.174 × 10

214

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Lead Z A [g/mol] ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 82 (Pb) 207.2 (1) 11.350 823.0 0.09359 3.1608 0.3776 3.8073 6.2018 0.14 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 3.823 3.823 1.524 × 10 0 14.0 MeV 5.616 × 10 1 3.054 3.054 2.705 × 10 0 20.0 MeV 6.802 × 10 1 2.436 2.436 4.927 × 10 0 30.0 MeV 8.509 × 10 1 1.928 1.928 9.600 × 10 0 40.0 MeV 1.003 × 10 2 1.666 1.666 1.521 × 10 1 80.0 MeV 1.527 × 10 2 1.283 1.283 4.338 × 10 1 100. MeV 1.764 × 10 2 1.215 1.215 5.943 × 10 1 140. MeV 2.218 × 10 2 1.151 1.152 9.339 × 10 1 200. MeV 2.868 × 10 2 1.124 1.124 1.463 × 10 2 226. MeV 3.145 × 10 2 1.122 0.000 1.123 Minimum ionization 300. MeV 3.917 × 10 2 1.130 0.000 0.000 1.131 2.352 × 10 2 400. MeV 4.945 × 10 2 1.151 0.000 0.000 1.152 3.228 × 10 2 800. MeV 8.995 × 10 2 1.237 0.001 0.000 1.238 6.572 × 10 2 1.00 GeV 1.101 × 10 3 1.270 0.001 0.000 1.272 8.165 × 10 2 1.40

215

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Sodium iodide (NaI) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.42697 3.667 452.0 0.12516 3.0398 0.1203 3.5920 6.0572 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 4.703 4.703 1.202 × 10 0 14.0 MeV 5.616 × 10 1 3.710 3.710 2.169 × 10 0 20.0 MeV 6.802 × 10 1 2.928 2.928 4.009 × 10 0 30.0 MeV 8.509 × 10 1 2.297 2.297 7.917 × 10 0 40.0 MeV 1.003 × 10 2 1.975 1.975 1.264 × 10 1 80.0 MeV 1.527 × 10 2 1.509 1.509 3.652 × 10 1 100. MeV 1.764 × 10 2 1.427 1.427 5.019 × 10 1 140. MeV 2.218 × 10 2 1.347 1.348 7.916 × 10 1 200. MeV 2.868 × 10 2 1.310 1.310 1.245 × 10 2 243. MeV 3.325 × 10 2 1.305 1.305 Minimum ionization 300. MeV 3.917 × 10 2 1.310 0.000 0.000 1.310 2.010 × 10 2 400. MeV 4.945 × 10 2 1.329 0.000 0.000 1.330 2.768 × 10 2 800. MeV 8.995 × 10 2 1.417 0.001 0.000 1.418 5.677 × 10 2 1.00 GeV 1.101 × 10 3 1.452 0.001 0.000 1.453 7.070 × 10 2 1.40 GeV

216

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Polyvinyl alcohol (C 2 H3-O-H) n Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.54480 1.300 69.7 0.11178 3.3893 0.1401 2.6315 3.1115 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.891 7.891 6.999 × 10 -1 14.0 MeV 5.616 × 10 1 6.153 6.153 1.280 × 10 0 20.0 MeV 6.802 × 10 1 4.804 4.804 2.396 × 10 0 30.0 MeV 8.509 × 10 1 3.726 3.726 4.793 × 10 0 40.0 MeV 1.003 × 10 2 3.181 3.181 7.717 × 10 0 80.0 MeV 1.527 × 10 2 2.383 2.384 2.270 × 10 1 100. MeV 1.764 × 10 2 2.231 2.232 3.140 × 10 1 140. MeV 2.218 × 10 2 2.076 2.076 5.007 × 10 1 200. MeV 2.868 × 10 2 1.986 1.986 7.974 × 10 1 300. MeV 3.917 × 10 2 1.950 0.000 1.950 1.307 × 10 2 324. MeV 4.161 × 10 2 1.949 0.000 1.949 Minimum ionization 400. MeV 4.945 × 10 2 1.955 0.000 1.955 1.820 × 10 2 800. MeV 8.995 × 10 2 2.026 0.000 0.000 2.026 3.830 × 10 2 1.00 GeV 1.101 × 10 3 2.059 0.000 0.000 2.059 4.809 × 10 2 1.40

217

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Cesium Z A [g/mol] ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 55 (Cs)132.9054519 (2) 1.873 488.0 0.18233 2.8866 0.5473 3.5914 6.9135 0.14 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 4.464 4.464 1.277 × 10 0 14.0 MeV 5.616 × 10 1 3.532 3.532 2.294 × 10 0 20.0 MeV 6.802 × 10 1 2.794 2.794 4.224 × 10 0 30.0 MeV 8.509 × 10 1 2.195 2.195 8.315 × 10 0 40.0 MeV 1.003 × 10 2 1.890 1.890 1.325 × 10 1 80.0 MeV 1.527 × 10 2 1.444 1.444 3.820 × 10 1 100. MeV 1.764 × 10 2 1.366 1.366 5.248 × 10 1 140. MeV 2.218 × 10 2 1.291 1.291 8.274 × 10 1 200. MeV 2.868 × 10 2 1.257 1.257 1.300 × 10 2 236. MeV 3.250 × 10 2 1.254 1.254 Minimum ionization 300. MeV 3.917 × 10 2 1.261 0.000 0.000 1.261 2.096 × 10 2 400. MeV 4.945 × 10 2 1.284 0.000 0.000 1.285 2.882 × 10 2 800. MeV 8.995 × 10 2 1.378 0.001 0.000 1.380 5.881 × 10 2 1.00 GeV 1.101 × 10 3 1.415 0.001 0.000 1.417 7.311 × 10 2

218

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Propane (C 3 H 8 ) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.58962 1.868 × 10 -3 47.1 0.09916 3.5920 1.4339 3.8011 8.7939 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 8.969 8.969 6.137 × 10 -1 14.0 MeV 5.616 × 10 1 6.982 6.982 1.125 × 10 0 20.0 MeV 6.802 × 10 1 5.441 5.441 2.109 × 10 0 30.0 MeV 8.509 × 10 1 4.212 4.213 4.228 × 10 0 40.0 MeV 1.003 × 10 2 3.592 3.592 6.815 × 10 0 80.0 MeV 1.527 × 10 2 2.688 2.688 2.010 × 10 1 100. MeV 1.764 × 10 2 2.525 2.526 2.780 × 10 1 140. MeV 2.218 × 10 2 2.365 2.365 4.424 × 10 1 200. MeV 2.868 × 10 2 2.281 2.281 7.018 × 10 1 267. MeV 3.577 × 10 2 2.262 0.000 2.263 Minimum ionization 300. MeV 3.917 × 10 2 2.265 0.000 2.265 1.143 × 10 2 400. MeV 4.945 × 10 2 2.291 0.000 2.291 1.582 × 10 2 800. MeV 8.995 × 10 2 2.434 0.000 0.000 2.435 3.275 × 10 2 1.00 GeV 1.101 × 10 3 2.495 0.000 0.000 2.496 4.086 × 10 2 1.40 GeV 1.502

219

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Polystyrene ([C 6 H 5 CHCH 2 ] n ) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.53768 1.060 68.7 0.16454 3.2224 0.1647 2.5031 3.2999 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.803 7.803 7.077 × 10 -1 14.0 MeV 5.616 × 10 1 6.084 6.084 1.294 × 10 0 20.0 MeV 6.802 × 10 1 4.749 4.749 2.424 × 10 0 30.0 MeV 8.509 × 10 1 3.683 3.683 4.848 × 10 0 40.0 MeV 1.003 × 10 2 3.144 3.144 7.806 × 10 0 80.0 MeV 1.527 × 10 2 2.359 2.359 2.296 × 10 1 100. MeV 1.764 × 10 2 2.210 2.211 3.174 × 10 1 140. MeV 2.218 × 10 2 2.058 2.058 5.059 × 10 1 200. MeV 2.868 × 10 2 1.970 1.971 8.049 × 10 1 300. MeV 3.917 × 10 2 1.937 0.000 1.937 1.318 × 10 2 318. MeV 4.105 × 10 2 1.936 0.000 1.936 Minimum ionization 400. MeV 4.945 × 10 2 1.942 0.000 1.943 1.834 × 10 2 800. MeV 8.995 × 10 2 2.015 0.000 0.000 2.015 3.856 × 10 2 1.00 GeV 1.101 × 10 3 2.048 0.000 0.000 2.049 4.841 × 10 2 1.40

220

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Air (dry, 1 atm) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.49919 1.205 × 10 -3 85.7 0.10914 3.3994 1.7418 4.2759 10.5961 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.039 7.039 7.862 × 10 -1 14.0 MeV 5.616 × 10 1 5.494 5.495 1.436 × 10 0 20.0 MeV 6.802 × 10 1 4.294 4.294 2.686 × 10 0 30.0 MeV 8.509 × 10 1 3.333 3.333 5.366 × 10 0 40.0 MeV 1.003 × 10 2 2.847 2.847 8.633 × 10 0 80.0 MeV 1.527 × 10 2 2.140 2.140 2.535 × 10 1 100. MeV 1.764 × 10 2 2.013 2.014 3.501 × 10 1 140. MeV 2.218 × 10 2 1.889 1.889 5.562 × 10 1 200. MeV 2.868 × 10 2 1.827 1.827 8.803 × 10 1 257. MeV 3.471 × 10 2 1.815 0.000 1.816 Minimum ionization 300. MeV 3.917 × 10 2 1.819 0.000 1.819 1.430 × 10 2 400. MeV 4.945 × 10 2 1.844 0.000 1.844 1.977 × 10 2 800. MeV 8.995 × 10 2 1.968 0.000 0.000 1.968 4.074 × 10 2 1.00 GeV 1.101 × 10 3 2.020 0.000 0.000 2.021 5.077 × 10 2 1.40 GeV 1.502

Note: This page contains sample records for the topic "discharge halogen table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Lead tungstate (PbWO 4 ) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.41315 8.300 600.7 0.22758 3.0000 0.4068 3.0023 5.8528 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 4.333 4.333 1.311 × 10 0 14.0 MeV 5.616 × 10 1 3.426 3.426 2.360 × 10 0 20.0 MeV 6.802 × 10 1 2.710 2.711 4.350 × 10 0 30.0 MeV 8.509 × 10 1 2.131 2.131 8.566 × 10 0 40.0 MeV 1.003 × 10 2 1.835 1.835 1.365 × 10 1 80.0 MeV 1.527 × 10 2 1.406 1.406 3.931 × 10 1 100. MeV 1.764 × 10 2 1.331 1.331 5.397 × 10 1 140. MeV 2.218 × 10 2 1.261 1.261 8.498 × 10 1 200. MeV 2.868 × 10 2 1.231 1.231 1.333 × 10 2 227. MeV 3.154 × 10 2 1.229 1.230 Minimum ionization 300. MeV 3.917 × 10 2 1.237 0.000 0.000 1.238 2.145 × 10 2 400. MeV 4.945 × 10 2 1.260 0.000 0.000 1.260 2.946 × 10 2 800. MeV 8.995 × 10 2 1.349 0.001 0.000 1.350 6.007 × 10 2 1.00 GeV 1.101 × 10 3 1.383 0.001 0.000 1.385 7.469 × 10 2 1.40

222

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Carbon (compact) Z A [g/mol] ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 6 (C) [12.0107 (8)] 2.265 78.0 0.26142 2.8697 -0.0178 2.3415 2.8680 0.12 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.116 7.116 7.772 × 10 -1 14.0 MeV 5.616 × 10 1 5.549 5.549 1.420 × 10 0 20.0 MeV 6.802 × 10 1 4.331 4.331 2.658 × 10 0 30.0 MeV 8.509 × 10 1 3.355 3.355 5.318 × 10 0 40.0 MeV 1.003 × 10 2 2.861 2.861 8.567 × 10 0 80.0 MeV 1.527 × 10 2 2.126 2.127 2.531 × 10 1 100. MeV 1.764 × 10 2 1.991 1.992 3.505 × 10 1 140. MeV 2.218 × 10 2 1.854 1.854 5.597 × 10 1 200. MeV 2.868 × 10 2 1.775 1.775 8.917 × 10 1 300. MeV 3.917 × 10 2 1.745 0.000 1.745 1.462 × 10 2 317. MeV 4.096 × 10 2 1.745 0.000 1.745 Minimum ionization 400. MeV 4.945 × 10 2 1.751 0.000 1.751 2.034 × 10 2 800. MeV 8.995 × 10 2 1.819 0.000 0.000 1.820 4.275 × 10 2 1.00 GeV 1.101 × 10 3 1.850 0.000 0.000 1.851 5.365 × 10

223

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Methanol (CH 3 OH) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.56176 0.791 67.6 0.08970 3.5477 0.2529 2.7639 3.5160 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 8.169 8.169 6.759 × 10 -1 14.0 MeV 5.616 × 10 1 6.369 6.369 1.236 × 10 0 20.0 MeV 6.802 × 10 1 4.972 4.972 2.315 × 10 0 30.0 MeV 8.509 × 10 1 3.855 3.855 4.631 × 10 0 40.0 MeV 1.003 × 10 2 3.291 3.291 7.457 × 10 0 80.0 MeV 1.527 × 10 2 2.469 2.469 2.194 × 10 1 100. MeV 1.764 × 10 2 2.321 2.322 3.032 × 10 1 140. MeV 2.218 × 10 2 2.166 2.166 4.823 × 10 1 200. MeV 2.868 × 10 2 2.074 2.074 7.664 × 10 1 300. MeV 3.917 × 10 2 2.039 0.000 2.039 1.254 × 10 2 318. MeV 4.105 × 10 2 2.038 0.000 2.039 Minimum ionization 400. MeV 4.945 × 10 2 2.045 0.000 2.045 1.744 × 10 2 800. MeV 8.995 × 10 2 2.121 0.000 0.000 2.122 3.665 × 10 2 1.00 GeV 1.101 × 10 3 2.156 0.000 0.000 2.157 4.600 × 10 2 1.40 GeV 1.502 ×

224

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Carbon (amorphous) Z A [g/mol] ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 6 (C) 12.0107 (8) 2.000 78.0 0.20240 3.0036 -0.0351 2.4860 2.9925 0.10 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.117 7.117 7.771 × 10 -1 14.0 MeV 5.616 × 10 1 5.550 5.551 1.420 × 10 0 20.0 MeV 6.802 × 10 1 4.332 4.332 2.658 × 10 0 30.0 MeV 8.509 × 10 1 3.357 3.357 5.317 × 10 0 40.0 MeV 1.003 × 10 2 2.862 2.862 8.564 × 10 0 80.0 MeV 1.527 × 10 2 2.129 2.129 2.529 × 10 1 100. MeV 1.764 × 10 2 1.994 1.994 3.502 × 10 1 140. MeV 2.218 × 10 2 1.857 1.857 5.591 × 10 1 200. MeV 2.868 × 10 2 1.778 1.779 8.905 × 10 1 300. MeV 3.917 × 10 2 1.749 0.000 1.749 1.459 × 10 2 313. MeV 4.055 × 10 2 1.749 0.000 1.749 Minimum ionization 400. MeV 4.945 × 10 2 1.755 0.000 1.756 2.030 × 10 2 800. MeV 8.995 × 10 2 1.824 0.000 0.000 1.825 4.266 × 10 2 1.00 GeV 1.101 × 10 3 1.855 0.000 0.000 1.856 5.353 × 10

225

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Mix D wax Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.56479 0.990 60.9 0.07490 3.6823 0.1371 2.7145 3.0780 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 8.322 8.322 6.628 × 10 -1 14.0 MeV 5.616 × 10 1 6.485 6.486 1.213 × 10 0 20.0 MeV 6.802 × 10 1 5.060 5.060 2.273 × 10 0 30.0 MeV 8.509 × 10 1 3.922 3.922 4.549 × 10 0 40.0 MeV 1.003 × 10 2 3.347 3.347 7.327 × 10 0 80.0 MeV 1.527 × 10 2 2.505 2.506 2.158 × 10 1 100. MeV 1.764 × 10 2 2.346 2.346 2.985 × 10 1 140. MeV 2.218 × 10 2 2.182 2.182 4.761 × 10 1 200. MeV 2.868 × 10 2 2.087 2.087 7.584 × 10 1 300. MeV 3.917 × 10 2 2.049 0.000 2.049 1.243 × 10 2 328. MeV 4.201 × 10 2 2.048 0.000 2.048 Minimum ionization 400. MeV 4.945 × 10 2 2.053 0.000 2.053 1.731 × 10 2 800. MeV 8.995 × 10 2 2.125 0.000 0.000 2.125 3.647 × 10 2 1.00 GeV 1.101 × 10 3 2.158 0.000 0.000 2.159 4.581 × 10 2 1.40 GeV 1.502 × 10 3 2.213

226

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Sodium nitrate NaNO 3 Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.49415 2.261 114.6 0.09391 3.5097 0.1534 2.8221 3.6502 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 6.702 6.702 8.281 × 10 -1 14.0 MeV 5.616 × 10 1 5.239 5.239 1.510 × 10 0 20.0 MeV 6.802 × 10 1 4.100 4.100 2.820 × 10 0 30.0 MeV 8.509 × 10 1 3.187 3.187 5.624 × 10 0 40.0 MeV 1.003 × 10 2 2.726 2.726 9.039 × 10 0 80.0 MeV 1.527 × 10 2 2.053 2.053 2.648 × 10 1 100. MeV 1.764 × 10 2 1.927 1.927 3.656 × 10 1 140. MeV 2.218 × 10 2 1.800 1.800 5.814 × 10 1 200. MeV 2.868 × 10 2 1.729 1.729 9.228 × 10 1 298. MeV 3.894 × 10 2 1.705 0.000 1.705 Minimum ionization 300. MeV 3.917 × 10 2 1.705 0.000 1.705 1.507 × 10 2 400. MeV 4.945 × 10 2 1.714 0.000 1.714 2.092 × 10 2 800. MeV 8.995 × 10 2 1.787 0.000 0.000 1.787 4.377 × 10 2 1.00 GeV 1.101 × 10 3 1.819 0.000 0.000 1.819 5.486 × 10 2 1.40 GeV 1.502

227

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Freon-12B2 (CF 2 Br 2 ) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.44901 1.800 284.9 0.05144 3.5565 0.3406 3.7956 5.7976 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 5.330 5.330 1.053 × 10 0 14.0 MeV 5.616 × 10 1 4.190 4.190 1.908 × 10 0 20.0 MeV 6.802 × 10 1 3.297 3.297 3.540 × 10 0 30.0 MeV 8.509 × 10 1 2.577 2.577 7.017 × 10 0 40.0 MeV 1.003 × 10 2 2.212 2.212 1.123 × 10 1 80.0 MeV 1.527 × 10 2 1.680 1.680 3.263 × 10 1 100. MeV 1.764 × 10 2 1.586 1.586 4.491 × 10 1 140. MeV 2.218 × 10 2 1.496 1.496 7.099 × 10 1 200. MeV 2.868 × 10 2 1.452 1.452 1.118 × 10 2 252. MeV 3.421 × 10 2 1.445 0.000 1.445 Minimum ionization 300. MeV 3.917 × 10 2 1.448 0.000 1.449 1.809 × 10 2 400. MeV 4.945 × 10 2 1.467 0.000 0.000 1.468 2.496 × 10 2 800. MeV 8.995 × 10 2 1.556 0.000 0.000 1.557 5.139 × 10 2 1.00 GeV 1.101 × 10 3 1.592 0.001 0.000 1.593 6.409 × 10 2 1.40 GeV

228

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Eye lens (ICRP) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.54977 1.100 73.3 0.09690 3.4550 0.2070 2.7446 3.3720 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.912 7.912 6.984 × 10 -1 14.0 MeV 5.616 × 10 1 6.171 6.171 1.277 × 10 0 20.0 MeV 6.802 × 10 1 4.819 4.819 2.390 × 10 0 30.0 MeV 8.509 × 10 1 3.738 3.738 4.779 × 10 0 40.0 MeV 1.003 × 10 2 3.192 3.192 7.693 × 10 0 80.0 MeV 1.527 × 10 2 2.396 2.396 2.262 × 10 1 100. MeV 1.764 × 10 2 2.251 2.251 3.125 × 10 1 140. MeV 2.218 × 10 2 2.095 2.096 4.976 × 10 1 200. MeV 2.868 × 10 2 2.006 2.006 7.914 × 10 1 300. MeV 3.917 × 10 2 1.971 0.000 1.971 1.296 × 10 2 318. MeV 4.105 × 10 2 1.971 0.000 1.971 Minimum ionization 400. MeV 4.945 × 10 2 1.977 0.000 1.977 1.803 × 10 2 800. MeV 8.995 × 10 2 2.051 0.000 0.000 2.051 3.790 × 10 2 1.00 GeV 1.101 × 10 3 2.085 0.000 0.000 2.085 4.756 × 10 2 1.40 GeV 1.502 × 10

229

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Compact bone (ICRU) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.53010 1.850 91.9 0.05822 3.6419 0.0944 3.0201 3.3390 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.406 7.406 7.477 × 10 -1 14.0 MeV 5.616 × 10 1 5.783 5.783 1.365 × 10 0 20.0 MeV 6.802 × 10 1 4.521 4.521 2.552 × 10 0 30.0 MeV 8.509 × 10 1 3.511 3.511 5.097 × 10 0 40.0 MeV 1.003 × 10 2 3.000 3.000 8.199 × 10 0 80.0 MeV 1.527 × 10 2 2.247 2.247 2.408 × 10 1 100. MeV 1.764 × 10 2 2.106 2.106 3.330 × 10 1 140. MeV 2.218 × 10 2 1.962 1.962 5.307 × 10 1 200. MeV 2.868 × 10 2 1.880 1.880 8.444 × 10 1 300. MeV 3.917 × 10 2 1.849 0.000 1.850 1.382 × 10 2 314. MeV 4.065 × 10 2 1.849 0.000 1.849 Minimum ionization 400. MeV 4.945 × 10 2 1.856 0.000 1.857 1.922 × 10 2 800. MeV 8.995 × 10 2 1.930 0.000 0.000 1.930 4.036 × 10 2 1.00 GeV 1.101 × 10 3 1.963 0.000 0.000 1.964 5.063 × 10 2 1.40 GeV 1.502

230

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Polyimide film (C 22 H 10 N 2 O 5 ) n Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.51264 1.420 79.6 0.15972 3.1921 0.1509 2.5631 3.3497 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.299 7.299 7.576 × 10 -1 14.0 MeV 5.616 × 10 1 5.695 5.695 1.385 × 10 0 20.0 MeV 6.802 × 10 1 4.449 4.449 2.590 × 10 0 30.0 MeV 8.509 × 10 1 3.453 3.453 5.177 × 10 0 40.0 MeV 1.003 × 10 2 2.949 2.949 8.332 × 10 0 80.0 MeV 1.527 × 10 2 2.214 2.214 2.448 × 10 1 100. MeV 1.764 × 10 2 2.074 2.074 3.384 × 10 1 140. MeV 2.218 × 10 2 1.932 1.932 5.392 × 10 1 200. MeV 2.868 × 10 2 1.851 1.851 8.577 × 10 1 300. MeV 3.917 × 10 2 1.820 0.000 1.820 1.404 × 10 2 314. MeV 4.065 × 10 2 1.820 0.000 1.820 Minimum ionization 400. MeV 4.945 × 10 2 1.826 0.000 1.827 1.953 × 10 2 800. MeV 8.995 × 10 2 1.897 0.000 0.000 1.898 4.102 × 10 2 1.00 GeV 1.101 × 10 3 1.929 0.000 0.000 1.930 5.147 × 10 2 1.40

231

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Silicon dioxide (fused quartz) (SiO 2 ) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.49930 2.200 139.2 0.08408 3.5064 0.1500 3.0140 4.0560 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 6.591 6.591 8.438 × 10 -1 14.0 MeV 5.616 × 10 1 5.158 5.158 1.537 × 10 0 20.0 MeV 6.802 × 10 1 4.041 4.041 2.866 × 10 0 30.0 MeV 8.509 × 10 1 3.145 3.145 5.710 × 10 0 40.0 MeV 1.003 × 10 2 2.691 2.691 9.170 × 10 0 80.0 MeV 1.527 × 10 2 2.030 2.030 2.682 × 10 1 100. MeV 1.764 × 10 2 1.908 1.908 3.701 × 10 1 140. MeV 2.218 × 10 2 1.786 1.786 5.878 × 10 1 200. MeV 2.868 × 10 2 1.719 1.719 9.315 × 10 1 288. MeV 3.788 × 10 2 1.699 0.000 1.699 Minimum ionization 300. MeV 3.917 × 10 2 1.699 0.000 1.699 1.518 × 10 2 400. MeV 4.945 × 10 2 1.711 0.000 1.711 2.105 × 10 2 800. MeV 8.995 × 10 2 1.789 0.000 0.000 1.790 4.391 × 10 2 1.00 GeV 1.101 × 10 3 1.823 0.000 0.000 1.824 5.497

232

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Radon Z A [g/mol] ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 86 (Rn) [222.01758 (2)]9.066 × 10 -3 794.0 0.20798 2.7409 1.5368 4.9889 13.2839 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 3.782 3.782 1.535 × 10 0 14.0 MeV 5.616 × 10 1 3.018 3.018 2.730 × 10 0 20.0 MeV 6.802 × 10 1 2.405 2.405 4.980 × 10 0 30.0 MeV 8.509 × 10 1 1.902 1.902 9.715 × 10 0 40.0 MeV 1.003 × 10 2 1.644 1.644 1.540 × 10 1 80.0 MeV 1.527 × 10 2 1.267 1.267 4.394 × 10 1 100. MeV 1.764 × 10 2 1.201 1.201 6.019 × 10 1 140. MeV 2.218 × 10 2 1.140 1.140 9.452 × 10 1 200. MeV 2.868 × 10 2 1.116 1.117 1.479 × 10 2 216. MeV 3.039 × 10 2 1.116 1.116 Minimum ionization 300. MeV 3.917 × 10 2 1.127 0.000 0.000 1.128 2.372 × 10 2 400. MeV 4.945 × 10 2 1.154 0.000 0.000 1.154 3.249 × 10 2 800. MeV 8.995 × 10 2 1.258 0.001 0.000 1.260 6.559 × 10 2 1.00 GeV 1.101 × 10 3 1.300 0.001 0.000 1.302 8.119

233

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Solid carbon dioxide (dry ice; CO 2 ) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.49989 1.563 85.0 0.43387 3.0000 0.2000 2.0000 3.4513 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.057 7.057 7.841 × 10 -1 14.0 MeV 5.616 × 10 1 5.508 5.508 1.432 × 10 0 20.0 MeV 6.802 × 10 1 4.304 4.304 2.679 × 10 0 30.0 MeV 8.509 × 10 1 3.341 3.341 5.353 × 10 0 40.0 MeV 1.003 × 10 2 2.854 2.854 8.612 × 10 0 80.0 MeV 1.527 × 10 2 2.145 2.145 2.529 × 10 1 100. MeV 1.764 × 10 2 2.017 2.017 3.493 × 10 1 140. MeV 2.218 × 10 2 1.886 1.886 5.554 × 10 1 200. MeV 2.868 × 10 2 1.812 1.812 8.811 × 10 1 300. MeV 3.917 × 10 2 1.787 0.000 1.787 1.438 × 10 2 303. MeV 3.950 × 10 2 1.787 0.000 1.787 Minimum ionization 400. MeV 4.945 × 10 2 1.795 0.000 1.795 1.997 × 10 2 800. MeV 8.995 × 10 2 1.866 0.000 0.000 1.866 4.182 × 10 2 1.00 GeV 1.101 × 10 3 1.896 0.000 0.000 1.897 5.245 × 10

234

The Spore Discharge Mechanism of Common Ferns  

Science Journals Connector (OSTI)

...subtended by the annular arc from pedicel to spore...unchanged during the discharge process. The decrease...modulus of the annular arc and the range of spores...by means of a piezo-electric device in a stream of...Ingold, C. T., Spore Discharge in Land Plants, Oxford...

Allen L. King

1944-01-01T23:59:59.000Z

235

Plasma discharge self-cleaning filtration system  

DOE Patents (OSTI)

The present invention is directed to a novel method for cleaning a filter surface using a plasma discharge self-cleaning filtration system. The method involves utilizing plasma discharges to induce short electric pulses of nanoseconds duration at high voltages. These electrical pulses generate strong Shockwaves that disintegrate and dislodge particulate matter located on the surface of the filter.

Cho, Young I.; Fridman, Alexander; Gutsol, Alexander F.; Yang, Yong

2014-07-22T23:59:59.000Z

236

Kinetic Effects In Hall Thruster Discharge  

E-Print Network (OSTI)

of a capacitive discharge. 4 capacitive discharge. For more info: V. Godyak, IEEE TPS 34, 755 (2006). #12 th twall interactions in Hall thrusters Large electron temperature andE JH~1cm secondary electron emission result in large particle and wall losses to the wall E , Jz z Br H~1cm 120 eV High SEE BN channel

Kaganovich, Igor

237

Variable White Dwarf Data Tables  

SciTech Connect

Below, I give a brief explanation of the information in these tables. In all cases, I list the WD {number_sign}, either from the catalog of McCook {ampersand} Sion (1987) or determined by me from the epoch 1950 coordinates. Next, I list the most commonly used name (or alias), then I list the variable star designation if it is available. If not, I list the constellation name and a V** or?? depending on what the last designated variable star for that constellation is. I present epoch 2000 coordinates for all of the stars, which I precessed from the 1950 ones in most cases. I do not include proper motion effects; this is negligible for all except the largest proper motion DAV stars, such as L 19-2, BPM 37093, B 808, and G 29-38. Even in these cases, the error is no more than 30` in declination and 2 s in right ascension. I culled effective temperatures from the latest work (listed under each table); they are now much more homogeneous than before. I pulled the magnitude estimates from the appropriate paper, and they are mean values integrated over several cycles. The amplitude given is for the height of a typical pulse in the light curve. The periods correspond the dominant ones found in the light curve. In some cases, there is a band of power in a given period range, or the light curve is very complex, and I indicate this in the table. In the references, I generally list the paper with the most comprehensive pulsation analysis for the star in question. In some cases, there is more than one good reference, and I list them as well.

Bradley, P. A.

1997-12-31T23:59:59.000Z

238

Microsoft Word - table_08.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 8. Supplemental Gas Supplies by State, 2008 (Million Cubic Feet) Colorado ......................... 0 2 0 6,256 6,258 Delaware ........................ 0 2 0 0 2 Georgia........................... 0 * 0 0 * Hawaii............................. 2,554 5 0 0 2,559 Illinois.............................. 0 15 0 0 15 Indiana............................ 0 30 0 0 30 Iowa ................................ 0 24 3 0 27 Kentucky......................... 0 15 0 0 15 Maryland ......................... 0 181 0 0 181 Massachusetts................ 0 13 0 0 13 Minnesota ....................... 0 46 0 0 46 Missouri .......................... * 6 0 0 6 Nebraska ........................ 0 28 0 0 28 New Hampshire .............. 0 44 0 0 44 New Jersey ..................... 0 0 0 489 489 New York ........................

239

Microsoft Word - table_08.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 8. Supplemental Gas Supplies by State, 2009 (Million Cubic Feet) Colorado ......................... 0 3 0 7,525 7,527 Connecticut..................... 0 * 0 0 * Delaware ........................ 0 2 0 0 2 Georgia........................... 0 0 52 * 52 Hawaii............................. 2,438 9 0 0 2,447 Illinois.............................. 0 20 0 0 20 Indiana............................ 0 * 0 0 * Iowa ................................ 0 3 0 0 3 Kentucky......................... 0 18 0 0 18 Maryland ......................... 0 170 0 0 170 Massachusetts................ 0 10 0 0 10 Minnesota ....................... 0 47 0 0 47 Missouri .......................... * 10 0 0 10 Nebraska ........................ 0 18 0 0 18 New Jersey ..................... 0 0 0 454 454 New York ........................

240

Microsoft Word - table_08.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 8. Supplemental Gas Supplies by State, 2010 (Million Cubic Feet) Colorado ......................... 0 4 0 5,144 5,148 Delaware ........................ 0 1 0 0 1 Georgia........................... 0 0 732 0 732 Hawaii............................. 2,465 6 0 0 2,472 Illinois.............................. 0 17 0 0 17 Indiana............................ 0 1 0 0 1 Iowa ................................ 0 2 0 0 2 Kentucky......................... 0 5 0 0 5 Louisiana ........................ 0 0 249 0 249 Maryland ......................... 0 115 0 0 115 Massachusetts................ 0 * 0 0 * Minnesota ....................... 0 12 0 0 12 Missouri .......................... * 18 0 0 18 Nebraska ........................ 0 12 0 0 12 New Jersey ..................... 0 0 0 457 457 New York ........................

Note: This page contains sample records for the topic "discharge halogen table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Microsoft Word - table_08.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 8. Supplemental Gas Supplies by State, 2007 (Million Cubic Feet) Colorado ......................... 0 3 0 6,866 6,869 Delaware ........................ 0 5 0 0 5 Georgia........................... 0 2 0 0 2 Hawaii............................. 2,679 4 0 0 2,683 Illinois.............................. 0 11 0 0 11 Indiana............................ 0 81 0 554 635 Iowa ................................ 0 2 38 0 40 Kentucky......................... 0 124 0 0 124 Maryland ......................... 0 245 0 0 245 Massachusetts................ 0 15 0 0 15 Minnesota ....................... 0 54 0 0 54 Missouri .......................... 7 60 0 0 66 Nebraska ........................ 0 33 0 0 33 New Hampshire .............. 0 9 0 0 9 New Jersey ..................... 0 0 0 379 379 New York ........................

242

Table-top job analysis  

SciTech Connect

The purpose of this Handbook is to establish general training program guidelines for training personnel in developing training for operation, maintenance, and technical support personnel at Department of Energy (DOE) nuclear facilities. TTJA is not the only method of job analysis; however, when conducted properly TTJA can be cost effective, efficient, and self-validating, and represents an effective method of defining job requirements. The table-top job analysis is suggested in the DOE Training Accreditation Program manuals as an acceptable alternative to traditional methods of analyzing job requirements. DOE 5480-20A strongly endorses and recommends it as the preferred method for analyzing jobs for positions addressed by the Order.

Not Available

1994-12-01T23:59:59.000Z

243

EIA-Annual Energy Outlook 2010 - Low Economic Growth Tables  

Gasoline and Diesel Fuel Update (EIA)

Economic Growth Tables (2007- 2035) Economic Growth Tables (2007- 2035) Annual Energy Outlook 2010 Main Low Economic Growth Tables (2007- 2035) Table Title Formats Summary Low Economic Growth Case Tables PDF Gif Year-by-Year Low Economic Growth Case Tables Excel Gif Table 1. Total Energy Supply, Disposition, and Price Summary Excel Gif Table 2. Energy Consumption by Sector and Source Excel Gif Table 3. Energy Prices by Sector and Source Excel Gif Table 4. Residential Sector Key Indicators and Consumption Excel Gif Table 5. Commercial Sector Indicators and Consumption Excel Gif Table 6. Industrial Sector Key Indicators and Consumption Excel Gif Table 7. Transportation Sector Key Indicators and Delivered Energy Consumption Excel Gif Table 8. Electricity Supply, Disposition, Prices, and Emissions

244

EIA-Annual Energy Outlook 2010 - High Economic Growth Tables  

Gasoline and Diesel Fuel Update (EIA)

Economic Growth Tables (2007-2035) Economic Growth Tables (2007-2035) Annual Energy Outlook 2010 Main High Economic Growth Tables (2007- 2035) Table Title Formats Summary High Economic Growth Case Tables PDF Gif Year-by-Year High Economic Growth Case Tables Excel Gif Table 1. Total Energy Supply and Disposition Summary Excel Gif Table 2. Energy Consumption by Sector and Source Excel Gif Table 3. Energy Prices by Sector and Source Excel Gif Table 4. Residential Sector Key Indicators and Consumption Excel Gif Table 5. Commercial Sector Indicators and Consumption Excel Gif Table 6. Industrial Sector Key Indicators and Consumption Excel Gif Table 7. Transportation Sector Key Indicators and Delivered Energy Consumption Excel Gif Table 8. Electricity Supply, Disposition, Prices, and Emissions Excel Gif

245

Helium corona-assisted air discharge  

SciTech Connect

Operation of atmospheric discharge of electronegative gases including air at low voltages yet without consuming any inert gas will enormously promote the application of non-thermal plasmas. By taking advantage of the low onset voltage for helium corona, air discharge was successfully launched at much reduced voltages with a needle-plate system partly contained in a helium-filled glass bulb--for a needle-plate distance of 12 mm, 1.0 kV suffices. Ultraviolet emission from helium corona facilitates the discharging of air, and the discharge current manifests distinct features such as relatively broad Trichel pulses in both half periods. This design allows safe and economic implementation of atmospheric discharge of electronegative gases, which will find a broad palette of applications in surface modification, plasma medicine and gas treatment, etc.

Jiang Nan; Gao Lei; Ji Ailing; Cao Zexian [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

2011-10-15T23:59:59.000Z

246

U.S. Spent Nuclear Fuel Data as of December 31,2002 Table 3  

Gasoline and Diesel Fuel Update (EIA)

7 7 Table 1 | Table 2 Table 3. Annual Spent Fuel Discharges and Burnup, 1968 - 2002 Year Number of Assemblies a Initial Uranium Content (Metric Tonnes of Uranium) Average Burnup (GWDt/ MTU) All Discharged Assemblies BWR PWR HTGR Total BWR PWR HTGR Total BWR PWR HTGR 1968 5 0 0 5 0.6 0.6 1.7 1969 97 0 0 97 9.9 9.9 16.6 1970 29 99 0 128 5.6 39.0 44.6 0.3 18.4 1971 413 113 0 526 64.7 44.5 109.2 8.3 23.8 1972 801 282 0 1,083 145.8 99.9 245.7 7.1 22.1 1973 564 165 0 729 93.5 67.1 160.6 13.2 24.2 1974 1,290 575 0 1,865 241.6 207.7 449.3 13.1 18.4 1975 1,223 797 0 2,020 225.9 321.7 547.6 17.1 18.2 1976 1,666 931 0 2,597 298.1 401.0 699.1 13.6 22.4

247

Environmental Regulatory Update Table, October 1991  

SciTech Connect

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

1991-11-01T23:59:59.000Z

248

Environmental Regulatory Update Table, August 1991  

SciTech Connect

This Environmental Regulatory Update Table (August 1991) provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M., Hawkins, G.T.; Salk, M.S.

1991-09-01T23:59:59.000Z

249

Environmental Regulatory Update Table, September 1991  

SciTech Connect

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

1991-10-01T23:59:59.000Z

250

Environmental Regulatory Update Table, November 1991  

SciTech Connect

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

1991-12-01T23:59:59.000Z

251

Environmental regulatory update table, July 1991  

SciTech Connect

This Environmental Regulatory Update Table (July 1991) provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

1991-08-01T23:59:59.000Z

252

Environmental Regulatory Update Table, November 1990  

SciTech Connect

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Hawkins, G.T.; Houlberg, L.M.; Noghrei-Nikbakht, P.A.; Salk, M.S.

1990-12-01T23:59:59.000Z

253

Microsoft Word - table_09.doc  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Table 9 Created on: 12/12/2013 2:08:24 PM Table 9. Underground natural gas storage - by season, 2011-2013 (volumes in billion cubic feet) Natural Gas in Underground Storage at End of Period Change in Working Gas from Same Period Previous Year Storage Activity Year, Season, and Month Base Gas Working Gas Total Volume Percent Injections Withdrawals Net Withdrawals a 2011 Refill Season April 4,304 1,788 6,092 -223 -11.1 312 100 -212 May 4,304 2,187 6,491 -233 -9.6 458 58 -399 June 4,302 2,530 6,831 -210 -7.7 421 80 -340 July 4,300 2,775 7,075 -190 -6.4 359 116 -244 August 4,300 3,019 7,319 -134 -4.2 370 126 -244 September 4,301 3,416 7,717 -92 -2.6 454 55

254

All Price Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

1) 1) June 2013 State Energy Price and Expenditure Estimates 1970 Through 2011 2011 Price and Expenditure Summary Tables Table E1. Primary Energy, Electricity, and Total Energy Price Estimates, 2011 (Dollars per Million Btu) State Primary Energy Electric Power Sector g,h Retail Electricity Total Energy g,i Coal Natural Gas a Petroleum Nuclear Fuel Biomass Total g,h,i Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Wood and Waste f Alabama 3.09 5.66 26.37 22.77 25.54 27.12 13.18 19.42 25.90 0.61 3.01 8.75 2.56 27.08 19.85 Alaska 3.64 6.70 29.33 23.12 29.76 31.60 20.07 34.62 26.61 - 14.42 20.85 6.36 47.13 25.17 Arizona 1.99 7.07 27.73 22.84 31.95 26.97 17.00 17.23 26.71 0.75 6.31 10.79 2.16 28.46 25.23 Arkansas 1.93 6.94 26.37 22.45 26.66 27.35 17.35 33.22

255

Microsoft Word - table_13.doc  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Energy Information Administration | Natural Gas Monthly 31 Table 13 Created on: 12/12/2013 2:28:44 PM Table 13. Activities of underground natural gas storage operators, by state, September 2013 (volumes in million cubic feet) State Field Count Total Storage Capacity Working Gas Storage Capacity Natural Gas in Underground Storage at End of Period Change in Working Gas from Same Period Previous Year Storage Activity Base Gas Working Gas Total Volume Percent Injections Withdrawals Alabama 2 35,400 27,350 8,050 21,262 29,312 2,852 15.5 1,743 450 Alaska a 5 83,592 67,915 14,197 20,455 34,652 NA NA 1,981 30 Arkansas 2 21,853 12,178 9,648 3,372 13,020 -1,050 -23.7 204 0 California 14 599,711 374,296

256

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

4) 4) June 2007 State Energy Consumption Estimates 1960 Through 2004 2004 Consumption Summary Tables Table S1. Energy Consumption Estimates by Source and End-Use Sector, 2004 (Trillion Btu) State Total Energy b Sources End-Use Sectors a Coal Natural Gas c Petroleum Nuclear Electric Power Hydro- electric Power d Biomass e Other f Net Interstate Flow of Electricity/Losses g Residential Commercial Industrial b Transportation Alabama 2,159.7 853.9 404.0 638.5 329.9 106.5 185.0 0.1 -358.2 393.7 270.2 1,001.1 494.7 Alaska 779.1 14.1 411.8 334.8 0.0 15.0 3.3 0.1 0.0 56.4 63.4 393.4 266.0 Arizona 1,436.6 425.4 354.9 562.8 293.1 69.9 8.7 3.6 -281.7 368.5 326.0 231.2 511.0 Arkansas 1,135.9 270.2 228.9 388.3 161.1 36.5 76.0 0.6 -25.7 218.3 154.7 473.9 288.9 California 8,364.6 68.9 2,474.2 3,787.8 315.6 342.2

257

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

9) 9) June 2011 State Energy Consumption Estimates 1960 Through 2009 2009 Consumption Summary Tables Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2009 (Trillion Btu) State Total Energy b Sources End-Use Sectors a Fossil Fuels Nuclear Electric Power Renewable Energy e Net Interstate Flow of Electricity/ Losses f Net Electricity Imports Residential Commercial Industrial b Transportation Coal Natural Gas c Petroleum d Total Alabama 1,906.8 631.0 473.9 583.9 1,688.8 415.4 272.9 -470.3 0.0 383.2 266.0 788.5 469.2 Alaska 630.4 14.5 344.0 255.7 614.1 0.0 16.3 0.0 (s) 53.4 61.0 325.4 190.6 Arizona 1,454.3 413.3 376.7 520.8 1,310.8 320.7 103.5 -279.9 -0.8 400.8 352.1 207.8 493.6 Arkansas 1,054.8 264.1 248.1 343.1 855.3 158.7 126.5 -85.7 0.0 226.3 167.0 372.5

258

Microsoft Word - table_01.doc  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Table 1 Table 1. Summary of natural gas supply and disposition in the United States, 2008-2013 (billion cubic feet) Year and Month Gross Withdrawals Marketed Production NGPL Production a Dry Gas Production b Supplemental Gaseous Fuels c Net Imports Net Storage Withdrawals d Balancing Item e Consumption f 2008 Total 25,636 21,112 953 20,159 61 3,021 34 2 23,277 2009 Total 26,057 21,648 1,024 20,624 65 2,679 -355 -103 22,910 2010 Total 26,816 22,382 1,066 21,316 65 2,604 -13 115 24,087 2011 January 2,299 1,953 92 1,861 5 236 811 R -24 R 2,889 February 2,104 1,729 82 1,647 4 186 594 R 20 R 2,452 March 2,411 2,002 95 1,908 5 171 151 R -4 R 2,230 April 2,350 1,961 93 1,868 5 R 152 -216 R 17 R 1,825 May 2,411 2,031

259

Microsoft Word - table_02.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 2. Natural gas production, transmission, and consumption, by state, 2012 (million cubic feet) U.S. Energy Information Administration | Natural Gas Annual 4 Table 2 Alabama 215,710 7,110 -162,223 617,883 0 -2,478 0 666,738 Alaska 351,259 21,470 22,663 0 -9,342 0 0 343,110 Arizona 117 0 -13,236 389,036 -43,838 0 0 332,079 Arkansas 1,146,168 424 -18,281 -831,755 0 -103 0 295,811 California 246,822 12,755 104,820 2,222,355 -109,787 48,071 0 2,403,385 Colorado 1,709,376 81,943 -107,940 -1,077,968 0 2,570 4,412 443,367 Connecticut 0 0 4,191 225,228 0 260 0 229,159 Delaware 0 0 21,035 80,692 0 51 * 101,676 District of Columbia 0 0 497 28,075 0 0 0 28,572 Florida 18,681 0 15,168 1,294,620 0 0 0 1,328,469

260

TableHC2.12.xls  

U.S. Energy Information Administration (EIA) Indexed Site

Detached Attached 2 to 4 Units Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

Note: This page contains sample records for the topic "discharge halogen table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

TableHC10.13.xls  

Gasoline and Diesel Fuel Update (EIA)

or More... 0.3 Q Q Q Q Lighting Usage Indicators U.S. Census Region Northeast Midwest Table HC10.13 Lighting Usage...

262

TABLE54.CHP:Corel VENTURA  

Annual Energy Outlook 2012 (EIA)

Administration (EIA) Forms EIA-812, "Monthly Product Pipeline Report," and EIA-813, Monthly Crude Oil Report." Table 54. Movements of Crude Oil and Petroleum Products by Pipeline...

263

TABLE19.CHP:Corel VENTURA  

Annual Energy Outlook 2012 (EIA)

Table 19. PAD District IV-Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum (Thousand Barrels) January-July 2004 Products, Crude Oil...

264

TABLE15.CHP:Corel VENTURA  

Annual Energy Outlook 2012 (EIA)

Table 15. PAD District III-Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum (Thousand Barrels) January-July 2004 Products, Crude Oil...

265

TABLE53.CHP:Corel VENTURA  

Annual Energy Outlook 2012 (EIA)

Table 53. Movements of Crude Oil and Petroleum Products by Pipeline, Tanker, and Barge Between July 2004 Crude Oil ... 0 383 0...

266

TABLE11.CHP:Corel VENTURA  

Annual Energy Outlook 2012 (EIA)

(Thousand Barrels) Table 11. PAD District II-Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum January-July 2004 Products, Crude Oil...

267

2011 Annual Report Table of Contents  

E-Print Network (OSTI)

) ...................12 Smart Grid Cyber Security.....................................................13 ICT Supply ChainComputer Security Division 2011 Annual Report #12;Table of Contents Welcome ................................................................. 1 Division Organization .................................................2 The Computer Security

268

Summary Statistics Table 1. Crude Oil Prices  

Annual Energy Outlook 2012 (EIA)

Cost Report." Figure Energy Information Administration Petroleum Marketing Annual 1996 3 Table 2. U.S. Refiner Prices of Petroleum Products to End Users (Cents per Gallon...

269

GIS DEVELOPMENT GUIDE Table of Contents  

E-Print Network (OSTI)

GIS DEVELOPMENT GUIDE Volume II Table of Contents SURVEY OF AVAILABLE DATA Introduction ...................................................................................13 EVALUATING GIS HARDWARE AND SOFTWARE Introduction ...................................................................................14 Sources of Information About GIS......................................................14 GIS

Ghelli, Giorgio

270

Max Tech and Beyond: High-Intensity Discharge Lamps  

E-Print Network (OSTI)

formation of the electric discharge arc and the metals emitdefined as electric discharge lamps in which the arc tubelamp - an electric discharge lamp in which the arc tube wall

Scholand, Michael

2012-01-01T23:59:59.000Z

271

Annual Energy Outlook 2009 - High Price Case Tables  

Gasoline and Diesel Fuel Update (EIA)

6-2030) 6-2030) Annual Energy Outlook 2009 with Projections to 2030 XLS GIF Spreadsheets are provided in Excel High Price Case Tables (2006-2030) Table Title Formats Summary High Price Case Tables PDF GIF High Price Case Tables XLS GIF Table 1. Total Energy Supply and Disposition Summary XLS GIF Table 2. Energy Consumption by Sector and Source XLS GIF Table 3. Energy Prices by Sector and Source XLS GIF Table 4. Residential Sector Key Indicators and Consumption XLS GIF Table 5. Commercial Sector Indicators and Consumption XLS GIF Table 6. Industrial Sector Key Indicators and Consumption XLS GIF Table 7. Transportation Sector Key Indicators and Delivered Energy Consumption XLS GIF Table 8. Electricity Supply, Disposition, Prices, and Emissions XLS GIF Table 9. Electricity Generating Capacity

272

Separation of toxic metal ions, hydrophilic hydrocarbons, hydrophobic fuel and halogenated hydrocarbons and recovery of ethanol from a process stream  

DOE Patents (OSTI)

This invention provides a process to tremendously reduce the bulk volume of contaminants obtained from an effluent stream produced subsurface remediation. The chemicals used for the subsurface remediation are reclaimed for recycling to the remediation process. Additional reductions in contaminant bulk volume are achieved by the ultra-violet light destruction of halogenated hydrocarbons, and the complete oxidation of hydrophobic fuel hydrocarbons and hydrophilic hydrocarbons. The contaminated bulk volume will arise primarily from the disposal of the toxic metal ions. The entire process is modular, so if there are any technological breakthroughs in one or more of the component process modules, such modules can be readily replaced.

Kansa, Edward J. (Livermore, CA); Anderson, Brian L. (Lodi, CA); Wijesinghe, Ananda M. (Tracy, CA); Viani, Brian E. (Oakland, CA)

1999-01-01T23:59:59.000Z

273

Contour dynamics model for electric discharges  

Science Journals Connector (OSTI)

We present an effective contour model for electrical discharges deduced as the asymptotic limit of the minimal streamer model for the propagation of electric discharges, in the limit of small electron diffusion. The incorporation of curvature effects to the velocity propagation and not to the boundary conditions is a feature and makes it different from the classical Laplacian growth models. The dispersion relation for a nonplanar two-dimensional discharge is calculated. The development and propagation of fingerlike patterns are studied and their main features quantified.

M. Arrays, M. A. Fontelos, and C. Jimnez

2010-03-18T23:59:59.000Z

274

Exhibit C Table of Contents  

NLE Websites -- All DOE Office Websites (Extended Search)

Exhibit C Schedules and Lists Exhibit C Schedules and Lists Dated 5-20-13 Subcontract No. 241314 Page 1 of 5 EXHIBIT "C" SCHEDULES AND LISTS TABLE OF CONTENTS Form Title A Schedule of Quantities and Prices B Milestone and Payment Schedule C Lower-Tier Subcontractor and Vendor List Exhibit C Schedules and Lists Dated 5-20-13 Subcontract No. 241314 Page 2 of 5 EXHIBIT "C" FORM A SCHEDULE OF QUANTITIES AND PRICES NOTE: This Exhibit "C" Form A is part of the model subcontract for Trinity and is provided to Offerors for informational purposes only. It is not intended that this form be returned with the Offeror's proposal. 1.0 WORK TO BE PERFORMED Work shall be performed strictly in accordance with requirements of the Subcontract

275

Microsoft Word - table_07.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 7. Natural Gas Processed, Liquids Extracted, and Estimated Extraction Loss by State, 2005 Alabama .................................. 255,157 9,748 13,759 37,048 Alaska...................................... 3,089,229 23,700 27,956 105,449 Arkansas.................................. 16,756 177 231 786 California ................................. 226,230 11,101 13,748 45,926 Colorado .................................. 730,948 25,603 34,782 95,881 Florida...................................... 3,584 359 495 1,400 Illinois....................................... 280 37 46 129 Kansas..................................... 476,656 22,165 31,521 85,737 Kentucky.................................. 38,792 1,411 1,716 5,725 Louisiana ................................. 2,527,636 73,035 103,381

276

Microsoft Word - table_05.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 5. Number of Producing Gas Wells by State and the Gulf of Mexico, December 31, 2006-2010 Alabama .......................................................... 6,227 6,591 6,860 6,913 7,026 Alaska.............................................................. 231 239 261 261 269 Arizona ............................................................ 7 7 6 6 5 Arkansas.......................................................... 3,814 4,773 5,592 6,314 7,397 California ......................................................... 1,451 1,540 1,645 1,643 1,580 Colorado .......................................................... 20,568 22,949 25,716 27,021 28,813 Gulf of Mexico.................................................. 2,419 2,552 1,527 1,984 1,852 Illinois...............................................................

277

Microsoft Word - table_06.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 6. Wellhead Value and Marketed Production of Natural Gas, 2004-2008, and by State, 2008 2004 Total ............................ 15,223,749 -- 5.46 19,517,491 106,521,974 2005 Total ............................ 15,425,867 -- 7.33 18,927,095 138,750,746 2006 Total ............................ 15,981,421 -- 6.39 19,409,674 124,074,399 2007 Total ............................ R 16,335,710 -- R 6.25 R 20,196,346 R 126,164,553 2008 Total ............................ 18,424,440 -- 7.96 21,239,516 169,038,089 Alabama ............................... 246,747 2,382,188 9.65 257,884 2,489,704 Alaska................................... 337,359 2,493,128 7.39 398,442 2,944,546 Arizona ................................. 503 3,568 7.09 523 3,710 Arkansas...............................

278

Microsoft Word - table_21.doc  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 21. Number of Natural Gas Industrial Consumers by Type of Service and State, 2008-2009 Alabama ...................... 2,476 281 2,757 2,789 271 3,060 Alaska.......................... 2 4 6 2 1 3 Arizona ........................ 285 98 383 274 116 390 Arkansas...................... 648 456 1,104 582 443 1,025 California ..................... 36,124 R 3,467 R 39,591 35,126 3,762 38,888 Colorado ...................... 341 4,475 4,816 297 4,787 5,084 Connecticut.................. 2,386 810 3,196 2,228 910 3,138 Delaware ..................... 96 69 165 39 73 112 Florida.......................... 161 288 449 123 484 607 Georgia........................ 1,003 1,887 2,890 956 1,298 2,254 Hawaii.......................... 27 0 27 25 0 25 Idaho............................ 108 91 199 109 78 187 Illinois...........................

279

Microsoft Word - table_21.doc  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 21. Number of Natural Gas Industrial Consumers by Type of Service and State, 2004-2005 Alabama ...................... 2,495 R 304 R 2,799 2,487 299 2,786 Alaska.......................... 6 4 10 7 5 12 Arizona ........................ 328 86 414 319 106 425 Arkansas...................... 782 R 441 R 1,223 671 449 1,120 California ..................... 39,426 2,061 41,487 38,150 2,076 40,226 Colorado ...................... 393 3,782 4,175 364 3,954 4,318 Connecticut.................. 2,625 845 3,470 2,618 819 3,437 Delaware ..................... 134 52 186 124 55 179 Florida.......................... R 174 224 R 398 159 273 432 Georgia........................ R 993 2,168 R 3,161 854 2,599 3,453 Hawaii.......................... 29 0 29 28 0 28 Idaho............................ 117 79 196 116 79 195

280

Microsoft Word - table_05.doc  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 5. Number of Wells Producing Gas and Gas Condensate by State and the Gulf of Mexico, December 31, 2001-2005 Alabama .......................................................... 4,597 4,803 5,157 5,526 5,523 Alaska.............................................................. 170 165 195 224 227 Arizona ............................................................ 8 7 9 6 6 Arkansas.......................................................... 4,825 6,755 7,606 3,460 2,878 California ......................................................... 1,244 1,232 1,249 1,272 1,356 Colorado .......................................................... 22,117 23,554 18,774 16,718 22,691 Gulf of Mexico.................................................. 3,271 3,245 3,039 2,781 2,123 Illinois...............................................................

Note: This page contains sample records for the topic "discharge halogen table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

EM International Program Action Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM INTERNATIONAL COOPERATIVE PROGRAM] October, 2012 EM INTERNATIONAL COOPERATIVE PROGRAM] October, 2012 E M I n t e r n a t i o n a l P r o g r a m s Page 1 ACTION TABLE Subject Lead Office Engaging Country Meeting Location Purpose Status Date of Event 3 rd US/German Workshop on Salt Repository Research, Design and Operations N. Buschman, EM-22 Germany Albuquerque & Carlsbad, NM Continue collaboration with Germans on salt repository research, design and operations. Draft agenda prepared. October 8-12, 2012 International Framework for Nuclear Energy Cooperation (IFNEC) Ministerial R. Elmetti, EM- 2.1 Multilateral Marrakech, Morocco To support the development of nuclear energy infrastructure globally through workforce training, information sharing, and approaches related to the safe, secure and responsible use of

282

Microsoft Word - table_07.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 7. Natural Gas Processed, Liquids Extracted, and Estimated Extraction Loss by State, 2009 Alabama .................................. 248,232 11,667 17,232 42,984 Alaska...................................... 2,830,034 19,542 22,925 86,767 Arkansas.................................. 2,352 125 168 541 California ................................. 198,213 11,042 13,722 45,669 Colorado .................................. 1,233,260 47,705 67,607 174,337 Illinois....................................... 164 24 31 84 Kansas..................................... 370,670 18,863 26,948 72,922 Kentucky.................................. 60,167 2,469 3,270 9,982 Louisiana ................................. 2,175,026 67,067 95,359 250,586 Michigan .................................. 23,819 2,409

283

Microsoft Word - table_08.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 8. Supplemental Gas Supplies by State, 2006 (Million Cubic Feet) Colorado ...................... 0 11 0 0 6,138 6,149 Connecticut.................. 0 91 0 0 0 91 Delaware ..................... 0 * 0 0 0 * Georgia........................ 0 3 0 0 0 3 Hawaii.......................... 2,610 3 0 0 0 2,613 Illinois........................... 0 13 0 0 0 13 Indiana......................... 0 2 0 0 1,640 1,642 Iowa ............................. 0 * 0 0 46 46 Kentucky...................... 0 3 0 0 0 3 Maryland ...................... 0 41 0 0 0 41 Massachusetts............. 0 51 0 0 0 51 Minnesota .................... 0 13 0 0 0 13 Missouri ....................... 0 78 0 0 0 78 Nebraska ..................... 0 19 0 0 0 19 New Hampshire ........... 0 92 0 0 0 92 New Jersey .................. 0 0 0 0 175 175 New York .....................

284

Microsoft Word - table_09.doc  

Gasoline and Diesel Fuel Update (EIA)

20 20 Table 9. Summary of U.S. Natural Gas Imports and Exports, 2004-2008 Imports Volume (million cubic feet) Pipeline Canada a .................................................... 3,606,543 3,700,454 3,589,995 3,782,708 3,589,221 Mexico ...................................................... 0 9,320 12,749 54,062 43,314 Total Pipeline Imports............................. 3,606,543 3,709,774 3,602,744 3,836,770 3,632,535 LNG Algeria....................................................... 120,343 97,157 17,449 77,299 0 Australia.................................................... 14,990 0 0 0 0 Egypt......................................................... 0 72,540 119,528 114,580 54,839 Equatorial Guinea .....................................

285

Microsoft Word - table_07.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 7. Natural Gas Processed, Liquids Extracted, and Estimated Extraction Loss by State, 2007 Alabama .................................. 257,443 13,381 19,831 48,922 Alaska...................................... 2,965,956 22,419 26,332 99,472 Arkansas.................................. 11,532 126 162 552 California ................................. 206,239 11,388 13,521 47,045 Colorado .................................. 888,705 27,447 38,180 102,563 Florida...................................... 2,422 103 132 423 Illinois....................................... 235 38 48 131 Kansas..................................... 391,022 19,600 28,063 74,941 Kentucky.................................. 38,158 1,455 1,957 5,917 Louisiana ................................. 2,857,443 77,905 110,745

286

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

6 6 State Energy Data 2011: Consumption Table C11. Energy Consumption by Source, Ranked by State, 2011 Rank Coal Natural Gas a Petroleum b Retail Electricity Sales State Trillion Btu State Trillion Btu State Trillion Btu State Trillion Btu 1 Texas 1,695.2 Texas 3,756.9 Texas 5,934.3 Texas 1,283.1 2 Indiana 1,333.4 California 2,196.6 California 3,511.4 California 893.7 3 Ohio 1,222.6 Louisiana 1,502.9 Louisiana 1,925.7 Florida 768.0 4 Pennsylvania 1,213.0 New York 1,246.9 Florida 1,680.3 Ohio 528.0 5 Illinois 1,052.2 Florida 1,236.6 New York 1,304.0 Pennsylvania 507.6 6 Kentucky 1,010.6 Pennsylvania 998.6 Pennsylvania 1,255.6 New York 491.5

287

Microsoft Word - table_07.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 7. Natural Gas Processed, Liquids Extracted, and Estimated Extraction Loss by State, 2008 Alabama .................................. 253,028 11,753 17,222 43,191 Alaska...................................... 2,901,760 20,779 24,337 92,305 Arkansas.................................. 6,531 103 139 446 California ................................. 195,272 11,179 13,972 46,176 Colorado .................................. 1,029,641 37,804 53,590 139,332 Florida...................................... 300 16 22 65 Illinois....................................... 233 33 42 115 Kansas..................................... 397,587 19,856 28,302 76,021 Kentucky.................................. 58,899 1,783 2,401 7,233 Louisiana ................................. 2,208,920 66,369 94,785 245,631

288

Microsoft Word - table_09.doc  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 9. Summary of U.S. Natural Gas Imports and Exports, 2002-2006 Imports Volume (million cubic feet) Pipeline Canada a .................................................... 3,784,978 3,437,230 3,606,543 3,700,454 3,589,995 Mexico ...................................................... 1,755 0 0 9,320 12,749 Total Pipeline Imports............................. 3,786,733 3,437,230 3,606,543 3,709,774 3,602,744 LNG Algeria....................................................... 26,584 53,423 120,343 97,157 17,449 Australia.................................................... 0 0 14,990 0 0 Brunei ....................................................... 2,401 0 0 0 0 Egypt.........................................................

289

Microsoft Word - table_09.doc  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 9. Summary of U.S. Natural Gas Imports and Exports, 2001-2005 Imports Volume (million cubic feet) Pipeline Canada a .................................................... 3,728,537 3,784,978 3,437,230 3,606,543 3,700,454 Mexico ...................................................... 10,276 1,755 0 0 9,320 Total Pipeline Imports............................. 3,738,814 3,786,733 3,437,230 3,606,543 3,709,774 LNG Algeria....................................................... 64,945 26,584 53,423 120,343 97,157 Australia.................................................... 2,394 0 0 14,990 0 Brunei ....................................................... 0 2,401 0 0 0 Egypt.........................................................

290

Microsoft Word - table_05.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 5. Number of Wells Producing Gas and Gas Condensate by State and the Gulf of Mexico, December 31, 2002-2006 Alabama .......................................................... 4,803 5,157 5,526 5,523 6,227 Alaska.............................................................. 165 195 224 227 231 Arizona ............................................................ 7 9 6 6 7 Arkansas.......................................................... 6,755 7,606 3,460 R 3,462 3,811 California ......................................................... 1,232 1,249 1,272 1,356 1,451 Colorado .......................................................... 23,554 18,774 16,718 22,691 20,568 Gulf of Mexico.................................................. 3,245 3,039 2,781 2,123 1,946 Illinois...............................................................

291

Microsoft Word - table_21.doc  

U.S. Energy Information Administration (EIA) Indexed Site

9 9 Table 21. Number of natural gas commercial consumers by type of service and state, 2011-2012 R Revised data. Note: Totals may not equal sum of components due to independent rounding. Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Please see the cautionary note regarding the number of residential and commercial customers located on the second page of Appendix A of this report. Alabama R 67,561 135 R 67,696 67,099 135 67,234 Alaska R 12,724 303 R 13,027 13,073 61 13,134 Arizona 56,349 198 56,547 56,252 280 56,532 Arkansas 67,454 361 67,815 68,151 614 68,765

292

Microsoft Word - table_05.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 5. Number of Wells Producing by State and the Gulf of Mexico, December 31, 2003-2007 Alabama .......................................................... 5,157 5,526 5,523 6,227 6,591 Alaska.............................................................. 195 224 227 231 239 Arizona ............................................................ 9 6 6 7 7 Arkansas.......................................................... 7,606 3,460 3,462 R 3,814 4,773 California ......................................................... 1,249 1,272 1,356 1,451 1,540 Colorado .......................................................... 18,774 16,718 22,691 20,568 22,949 Gulf of Mexico.................................................. 3,039 2,781 2,123 R 2,419 2,552 Illinois...............................................................

293

Microsoft Word - table_09.doc  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 9. Summary of U.S. Natural Gas Imports and Exports, 2003-2007 Imports Volume (million cubic feet) Pipeline Canada a .................................................... 3,437,230 3,606,543 3,700,454 3,589,995 3,782,708 Mexico ...................................................... 0 0 9,320 12,749 54,062 Total Pipeline Imports............................. 3,437,230 3,606,543 3,709,774 3,602,744 3,836,770 LNG Algeria....................................................... 53,423 120,343 97,157 17,449 77,299 Australia.................................................... 0 14,990 0 0 0 Egypt......................................................... 0 0 72,540 119,528 114,580 Equatorial Guinea .....................................

294

Microsoft Word - table_21.doc  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 21. Number of Natural Gas Industrial Consumers by Type of Service and State, 2007-2008 Alabama ...................... 2,409 295 2,704 2,476 281 2,757 Alaska.......................... 7 4 11 2 4 6 Arizona ........................ 296 99 395 285 98 383 Arkansas...................... 637 418 1,055 648 456 1,104 California ..................... 35,814 3,320 39,134 36,124 3,533 39,657 Colorado ...................... 298 4,294 4,592 341 4,475 4,816 Connecticut.................. 2,472 845 3,317 2,386 810 3,196 Delaware ..................... 125 60 185 96 69 165 Florida.......................... 156 311 467 161 288 449 Georgia........................ R 1,013 1,900 R 2,913 1,003 1,887 2,890 Hawaii.......................... 27 0 27 27 0 27 Idaho............................ 109 79 188 108 91 199 Illinois...........................

295

Microsoft Word - table_07.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 7. Natural Gas Processed, Liquids Extracted, and Estimated Extraction Loss by State, 2006 Alabama .................................. 287,278 14,736 21,065 54,529 Alaska...................................... 2,665,742 20,993 24,638 93,346 Arkansas.................................. 13,702 166 212 734 California ................................. 223,580 11,267 14,056 46,641 Colorado .................................. 751,036 26,111 36,317 97,697 Florida...................................... 3,972 357 485 1,416 Illinois....................................... 242 37 47 128 Kansas..................................... 453,111 21,509 30,726 83,137 Kentucky.................................. 39,559 1,666 2,252 6,763 Louisiana ................................. 2,511,802 73,551 105,236

296

Microsoft Word - table_06.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 6. Wellhead Value and Marketed Production of Natural Gas by State, 2005-2009 2005 Total ............................ 15,425,867 -- 7.33 18,927,095 138,750,746 2006 Total ............................ 15,981,421 -- 6.39 19,409,674 124,074,399 2007 Total ............................ 16,335,710 -- 6.25 20,196,346 126,164,553 2008 Total ............................ R 18,305,411 -- R 7.97 R 21,112,053 R 168,342,230 2009 Total ............................ 18,763,726 -- 3.67 21,604,158 79,188,096 Alabama ............................... 225,666 975,789 4.32 236,029 1,020,599 Alaska................................... 397,077 1,163,555 2.93 397,077 1,163,554 Arizona ................................. 695 2,214 3.19 712 2,269 Arkansas............................... 680,613 2,332,956 3.43

297

Microsoft Word - table_21.doc  

Gasoline and Diesel Fuel Update (EIA)

9 9 Table 21. Number of natural gas commercial consumers by type of service and state, 2010-2011 R Revised data. Note: Totals may not equal sum of components due to independent rounding. Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Please see the cautionary note regarding the number of residential and commercial customers located on the second page of Appendix A of this report. Alabama R 68,017 146 R 68,163 67,522 135 67,657 Alaska 12,673 325 12,998 12,721 303 13,024 Arizona 56,510 166 56,676 56,349 198 56,547 Arkansas 67,676 311 67,987 67,454 361 67,815 California 399,290 40,282

298

Microsoft Word - table_06.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 6. Wellhead Value and Marketed Production of Natural Gas by State, 2006-2010 2006 Total ............................ 15,981,421 -- 6.39 19,409,674 124,074,399 2007 Total ............................ 16,335,710 -- 6.25 20,196,346 126,164,553 2008 Total ............................ 18,305,411 -- 7.97 21,112,053 168,342,230 2009 Total ............................ 18,763,726 -- 3.67 R 21,647,936 R 79,348,561 2010 Total ............................ 19,262,198 -- 4.48 22,402,141 100,272,654 Alabama ............................... 212,769 949,340 4.46 222,932 994,688 Alaska................................... 316,546 1,002,566 3.17 374,226 1,185,249 Arizona ................................. 165 676 4.11 183 753 Arkansas............................... 936,600 3,594,843 3.84

299

Microsoft Word - table_10.doc  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Created on: 12/12/2013 2:09:15 PM Table 10. Underground natural gas storage - salt cavern storage fields, 2008-2013 (volumes in billion cubic feet) Natural Gas in Underground Storage at End of Period Change in Working Gas from Same Period Previous Year Storage Activity Year and Month Base Gas Working Gas Total Volume Percent Injections Withdrawals Net Withdrawals a 2008 Total b -- -- -- -- -- 440 398 -42 2009 Total b -- -- -- -- -- 459 403 -56 2010 Total b -- -- -- -- -- 511 452 -58 2011 January 137 174 311 65 59.3 23 69 46 February 137 125 262 48 62.5 30 80 49 March 137 151 288 39 34.8 51 25 -25 April 140 172 312 17 11.2 42 21 -22 May 140 211 352

300

Microsoft Word - table_08.doc  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 8. Supplemental Gas Supplies by State, 2005 (Million Cubic Feet) Colorado ...................... 0 2 0 0 5,283 5,285 Connecticut.................. 0 273 0 0 0 273 Delaware ..................... 0 * 0 0 0 * Georgia........................ 0 * 0 0 0 * Hawaii.......................... 2,593 14 0 0 0 2,606 Illinois........................... 0 11 0 4 0 15 Indiana......................... 0 30 0 0 1,958 1,988 Iowa ............................. 0 2 0 30 0 31 Kentucky...................... 0 15 0 0 0 15 Maryland ...................... 0 382 0 0 0 382 Massachusetts............. 0 46 0 0 0 46 Minnesota .................... 0 154 0 0 0 154 Missouri ....................... 0 15 0 0 0 15 Nebraska ..................... 0 16 0 * 0 16 New Hampshire ........... 0 84 0 0 0 84 New Jersey .................. 0 0 0 0 435 435 New York

Note: This page contains sample records for the topic "discharge halogen table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

17 17 Table C12. Total Energy Consumption, Gross Domestic Product (GDP), Energy Consumption per Real Dollar of GDP, Ranked by State, 2011 Rank Total Energy Consumption Gross Domestic Product (GDP) Energy Consumption per Real Dollar of GDP State Trillion Btu State Billion Chained (2005) Dollars State Thousand Btu per Chained (2005) Dollar 1 Texas 12,206.6 California 1,735.4 Louisiana 19.7 2 California 7,858.4 Texas 1,149.9 Wyoming 17.5 3 Florida 4,217.1 New York 1,016.4 North Dakota 15.4 4 Louisiana 4,055.3 Florida 661.1 Alaska 14.3 5 Illinois 3,977.8 Illinois 582.1 Mississippi 13.8 6 Ohio 3,827.6 Pennsylvania 500.4 Kentucky 13.5

302

Microsoft Word - table_06.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 6. Wellhead Value and Marketed Production of Natural Gas, 2003-2007, and by State, 2007 2003 Total ............................ 14,589,545 -- 4.88 19,974,360 97,555,375 2004 Total ............................ 15,223,749 -- 5.46 19,517,491 106,521,974 2005 Total ............................ 15,425,867 -- 7.33 18,927,095 138,750,746 2006 Total ............................ R 15,981,421 -- R 6.39 R 19,409,674 R 124,074,399 2007 Total ............................ 16,031,199 -- 6.37 20,019,321 127,530,680 Alabama ............................... 259,062 1,926,374 7.44 270,407 2,010,736 Alaska................................... 368,344 2,072,647 5.63 433,485 2,439,193 Arizona ................................. 634 3,791 5.98 655 3,913 Arkansas...............................

303

Microsoft Word - table_07.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 7. Natural Gas Processed, Liquids Extracted, and Estimated Extraction Loss by State, 2010 Alabama .................................. 242,444 13,065 19,059 47,741 Alaska...................................... 2,731,803 17,798 20,835 79,355 Arkansas.................................. 9,599 160 213 692 California ................................. 204,327 10,400 13,244 42,509 Colorado .................................. 1,434,003 57,924 82,637 209,191 Kansas..................................... 341,778 18,424 26,251 70,425 Kentucky.................................. 66,579 3,317 4,576 13,311 Louisiana ................................. 2,207,760 71,231 102,448 262,178 Michigan .................................. 23,449 2,207 2,943 8,272 Mississippi ...............................

304

Microsoft Word - table_07.doc  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 Table 7. Supplemental gas supplies by state, 2012 (million cubic feet) Colorado 0 99 0 4,313 4,412 Georgia 0 0 660 0 660 Hawaii 2,491 20 0 0 2,510 Illinois 0 1 0 0 1 Indiana 0 1 0 0 1 Kentucky 0 1 0 0 1 Louisiana 0 0 553 0 553 Maryland 0 116 0 0 116 Minnesota 0 9 0 0 9 Missouri * 0 0 0 * Nebraska 0 4 0 0 4 New Jersey 0 0 0 139 139 North Dakota 52,541 0 0 0 52,541 Ohio 0 6 360 0 366 Pennsylvania 0 2 0 0 2 Vermont 0 3 0 0 3 Virginia 0 48 0 0 48 Total 55,032 309 1,573 4,452 61,366 State Synthetic Natural Gas Propane-Air Biomass Gas Other Total * Volume is less than 500,000 cubic feet.

305

Acoustic Emission Mapping of Discharges in Spark Erosion Machining.  

E-Print Network (OSTI)

?? Electrical discharge machining (EDM) is a non-conventional machining process utilizing a series of electrical discharges to melt and vaporize workpiece material. In a wire (more)

Smith, Craig

2012-01-01T23:59:59.000Z

306

Report of Waste Discharge application (Form 200) | Open Energy...  

Open Energy Info (EERE)

application (Form 200) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Report of Waste Discharge application (Form 200) Abstract Persons discharging or...

307

Hydrothermal Heat Discharge In The Cascade Range, Northwestern...  

Open Energy Info (EERE)

Heat Discharge In The Cascade Range, Northwestern United States Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Hydrothermal Heat Discharge In...

308

WSDE Report: Wastewater Discharge Permits in Washington State...  

Open Energy Info (EERE)

Wastewater Discharge Permits in Washington State Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: WSDE Report: Wastewater Discharge Permits in Washington...

309

All Price Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

4) 4) June 2007 State Energy Price and Expenditure Estimates 1970 Through 2004 2004 Price and Expenditure Summary Tables Table S1a. Energy Price Estimates by Source, 2004 (Nominal Dollars per Million Btu) State Primary Energy Electric Power Sector d,e Retail Electricity Total Energy d,f Coal Natural Gas Petroleum Nuclear Fuel Biomass c Total d,e,f Distillate Fuel Jet Fuel LPG a Motor Gasoline Residual Fuel Other b Total Alabama 1.57 7.72 11.91 8.82 15.78 13.68 4.78 8.25 12.28 0.43 1.81 5.32 1.68 18.01 11.29 Alaska 1.91 3.59 12.43 9.61 19.64 15.55 3.63 12.09 11.05 - 6.68 9.07 3.18 32.29 11.09 Arizona 1.31 6.84 13.59 9.53 18.40 15.33 5.29 7.23 13.92 0.45 5.90 6.68 2.18 21.83 15.24 Arkansas 1.25 8.09 12.01 8.30 14.80 13.97 4.67 11.02 12.77 0.49 1.79 6.59 1.43 16.76 11.89 California 1.82 7.63 13.58

310

All Price Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

7) 7) August 2009 State Energy Price and Expenditure Estimates 1970 Through 2007 2007 Price and Expenditure Summary Tables Table S1a. Energy Price Estimates by Source, 2007 (Nominal Dollars per Million Btu) State Primary Energy Electric Power Sector e,f Retail Electricity Total Energy e,g Coal Natural Gas a Petroleum Nuclear Fuel Biomass Total e,f,g Distillate Fuel Oil Jet Fuel LPG b Motor Gasoline Residual Fuel Oil Other c Total Wood and Waste d Alabama 2.17 9.06 19.43 16.20 21.84 21.26 8.46 14.19 19.62 0.42 2.71 7.47 2.29 22.46 16.01 Alaska 2.34 5.76 19.43 16.35 28.63 22.14 11.51 23.69 17.97 - 10.51 14.88 4.94 38.96 17.87 Arizona 1.61 8.44 19.84 16.24 27.16 21.95 10.04 11.27 20.50 0.57 10.86 9.61 2.78 25.02 20.72 Arkansas 1.65 9.33 19.63 15.73 21.10 21.54 8.65 18.76 20.42 0.57 2.66 9.45 1.98 20.57

311

TABLE OF CONTENTS SECTION A: PREINTERVIEW OBSERVATION  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE OF CONTENTS TABLE OF CONTENTS SECTION A: PREINTERVIEW OBSERVATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 SECTION B: HOUSING TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 SECTION C: HOME HEATING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 SECTION D: AIR CONDITIONING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 SECTION E: WATER HEATING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 SECTION F: LIGHTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 SECTION G: APPLIANCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Cooking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Refrigerators and Freezers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

312

Supplemental Tables to the Annual Energy Outlook  

Reports and Publications (EIA)

The Annual Energy Outlook (AEO) Supplemental tables were generated for the reference case of the AEO using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets. Most of the tables were not published in the AEO, but contain regional and other more detailed projections underlying the AEO projections.

2014-01-01T23:59:59.000Z

313

Tables in Context: Integrating Horizontal Displays with  

E-Print Network (OSTI)

design challenges for tabletop interfaces: integrating access to public and private information, managing a cooperative gesture to organize digital documents on an interactive table. Our tabletop interface designTables in Context: Integrating Horizontal Displays with Ubicomp Environments Abstract Our work

Klemmer, Scott

314

Tafel Musik: Formatting algorithm of tables  

Science Journals Connector (OSTI)

This paper provides a description on the formatting algorithm of tables that the authors have developed. This algorithm is an important component of the so called TafeMusik (Tafel Musik) environment. TafeMusikprovides the user with an environment to ... Keywords: First-fit algorithm, Linear programming, Optimization, Tables, Tabular formatting, Tabular layout

K. -H. Shin; K. Kobayashi; A. Suzuki

1997-07-01T23:59:59.000Z

315

Energy Information Administration (EIA) - Supplement Tables  

Gasoline and Diesel Fuel Update (EIA)

7 7 Regional Energy Consumption and Prices by Sector Energy Consumption by Sector Table 1. New England Consumption & Prices by Sector & Census Division. Need help, contact the National Energy Information Center at 202-586-8800. Table 2. Middle Atlantic Consumption & Prices by Sector & Census Division. Need help, contact the National Energy Information Center at 202-586-8800. Table 3. East North Central Consumption & Prices by Sector & Census Division. Need help, contact the National Energy Information Center at 202-586-8800. Table 4. West North Central Consumption & Prices by Sector & Census Division. Need help, contact the National Energy Information Center at 202-586-8800. Table 5. South Atlantic Consumption & Prices by Sector & Census Division. Need help, contact the National Energy Information Center at 202-586-8800.

316

Table lamp with dynamically controlled lighting distribution and uniformly illuminated luminous shade  

DOE Patents (OSTI)

A double lamp table or floor lamp lighting system has a pair of compact fluorescent lamps (CFLs) or other lamps arranged vertically, i.e. one lamp above the other, with a reflective septum in between. By selectively turning on one or both of the CFLs, down lighting, up lighting, or both up and down lighting is produced. The control system can also vary the light intensity from each CFL. The reflective septum ensures that almost all the light produced by each lamp will be directed into the desired light distribution pattern which is selected and easily changed by the user. In a particular configuration, the reflective septum is bowl shaped, with the upper CFL sitting in the bowl, and a luminous shade hanging down from the bowl. The lower CFL provides both task lighting and uniform shade luminance. Planar compact fluorescent lamps, e.g. circular CFLs, particularly oriented horizontally, are preferable. CFLs provide energy efficiency. However, other types of lamps, including incandescent, halogen, and LEDs can also be used in the fixture. The lighting system may be designed for the home, hospitality, office or other environments.

Siminovitch, Michael J. (Pinole, CA); Page, Erik R. (Berkeley, CA)

2002-01-01T23:59:59.000Z

317

Glow discharge plasma deposition of thin films  

DOE Patents (OSTI)

A glow discharge plasma reactor for deposition of thin films from a reactive RF glow discharge is provided with a screen positioned between the walls of the chamber and the cathode to confine the glow discharge region to within the region defined by the screen and the cathode. A substrate for receiving deposition material from a reactive gas is positioned outside the screened region. The screen is electrically connected to the system ground to thereby serve as the anode of the system. The energy of the reactive gas species is reduced as they diffuse through the screen to the substrate. Reactive gas is conducted directly into the glow discharge region through a centrally positioned distribution head to reduce contamination effects otherwise caused by secondary reaction products and impurities deposited on the reactor walls.

Weakliem, Herbert A. (Pennington, NJ); Vossen, Jr., John L. (Bridgewater, NJ)

1984-05-29T23:59:59.000Z

318

Transition from Glow to Arc Discharge  

Science Journals Connector (OSTI)

... I HAVE suggested1 a mechanism to account for the occurrence of long electrical discharges in ... in electric fields which are only of the order of one per cent of those generally believed2 ...

CHAS. E. R. BRUCE

1948-04-03T23:59:59.000Z

319

Discharge dynamics of pin-to-plate dielectric barrier discharge at atmospheric pressure  

SciTech Connect

The discharge dynamics of pin-to-plate dielectric barrier discharge was studied in atmospheric helium at 20 kHz. The discharge was predominately ignited in positive half cycle of applied voltage with sinusoidal waveform. The temporal evolution of the discharge was investigated vertically along the discharge gap and radically on the dielectric surface by time resolved imaging. It is found that a discharge column with a diameter of 2 mm was ignited above the pin electrode and expanded toward a plate electrode. On the dielectric surface with space charge accumulation, plasma disk in terms of plasma ring was formed with radius up to 25 mm. The expansion velocity of plasma ring can reach a hypersonic speed of 3.0 km/s. The ionization wave due to electron diffusion is considered to be the mechanism for plasma ring formation and dynamics.

Sun Liqun [College of Science, Donghua University, Shanghai 201620 (China); Huang, Xiaojiang [College of Science, Donghua University, Shanghai 201620 (China); Member of Magnetic Confinement Fusion Research Center, Ministry of Education of the People's Republic of China, Shanghai 201620 (China); Zhang Jie [College of Science, Donghua University, Shanghai 201620 (China); State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620 (China); Zhang Jing; Shi, J. J. [College of Science, Donghua University, Shanghai 201620 (China); State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620 (China); Member of Magnetic Confinement Fusion Research Center, Ministry of Education of the People's Republic of China, Shanghai 201620 (China)

2010-11-15T23:59:59.000Z

320

Quantitative structureactivity relationships for toxicity and genotoxicity of halogenated aliphatic compounds: Wing spot test of Drosophila melanogaster  

Science Journals Connector (OSTI)

Halogenated aliphatic compounds were evaluated for toxic and genotoxic effects in the somatic mutation and recombination test employing Drosophila melanogaster. The tested chemicals included chlorinated, brominated and iodinated; mono-, di- and tri-substituted; saturated and unsaturated alkanes: 1,2-dibromoethane, 1-bromo-2-chloroethane, 1-iodopropane, 2,3-dichloropropene, 3-bromo-1-propene, epibromohydrin, 2-iodobutane, 3-chloro-2-methylpropene, 1,2,3-trichloropropane, 1,2-dichloroethane, 1,2-dichlorobutane, 1-chloro-2-methylpropane, 1,3-dichloropropane, 1,2-dichloropropane, 2-chloroethymethylether, 1-bromo-2-methylpropane and 1-chloropentane. N-methyl-N-nitrosourea served as the positive and distilled water as the negative control. The set of chemicals for the toxicological testing was selected by the use of statistical experiment design. Group of unsaturated aliphatic hydrocarbons were generally more toxic than saturated analogues. The genotoxic effect was observed with 14 compounds in the wing spot test, while 3 substances did not show any genotoxicity by using the wing spot test at 50% lethal concentration. The highest number of wing spots was observed in genotoxicity assay with 1-bromo-2-chloroethane, 1,2-dichloroethane, 1,2-dibromoethane and 1-iodopropane. Nucleophilic superdelocalizability calculated by quantum mechanics appears to be a good parameter for prediction of both toxicity and genotoxicity effects of halogenated aliphatic compounds.

Karel Chroust; Martina Pavlov; Zbyn?k Prokop; Jan Mendel; Kate?ina Bokov; Zden?k Kubt; Veronika Zaj??kov; Ji?? Damborsk

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "discharge halogen table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Magnetic dipole discharges. II. Cathode and anode spot discharges and probe diagnostics  

SciTech Connect

The high current regime of a magnetron-type discharge has been investigated. The discharge uses a permanent magnet as a cold cathode which emits secondary electrons while the chamber wall or a grounded electrode serves as the anode. As the discharge voltage is increased, the magnet develops cathode spots, which are short duration arcs that provide copious electrons to increase the discharge current dramatically. Short (1 ?s), high current (200 A) and high voltage (750 V) discharge pulses are produced in a relaxation instability between the plasma and a charging capacitor. Spots are also observed on a negatively biased plane Langmuir probe. The probe current pulses are as large as those on the magnet, implying that the high discharge current does not depend on the cathode surface area but on the properties of the spots. The fast current pulses produce large inductive voltages, which can reverse the electrical polarity of the magnet and temporarily operate it as an anode. The discharge current may also oscillate at the frequency determined by the charging capacitor and the discharge circuit inductance. Each half cycle of high-current current pulses exhibits a fast (?10 ns) current rise when a spot is formed. It induces high frequency (10100 MHz) transients and ringing oscillations in probes and current circuits. Most probes behave like unmatched antennas for the electromagnetic pulses of spot discharges. Examples are shown to distinguish the source of oscillations and some rf characteristics of Langmuir probes.

Stenzel, R. L.; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)] [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States); Ionita, C.; Schrittwieser, R. [Institute for Ion Physics and Applied Physics, University of Innsbruck, A-6020 Innsbruck (Austria)] [Institute for Ion Physics and Applied Physics, University of Innsbruck, A-6020 Innsbruck (Austria)

2013-08-15T23:59:59.000Z

322

1999 Commercial Buildings Energy Consumption Survey Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption and Expenditures Tables Table C1. Total Energy Consumption by Major Fuel ............................................... 124 Table C2. Total Energy Expenditures by Major Fuel................................................ 130 Table C3. Consumption for Sum of Major Fuels ...................................................... 135 Table C4. Expenditures for Sum of Major Fuels....................................................... 140 Table C5. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels................................................................................................... 145 Table C6. Expenditures by Census Region for Sum of Major Fuels......................... 150 Table C7. Consumption and Gross Energy Intensity by Building Size for Sum of

323

T-583: Linux Kernel OSF Partition Table Buffer Overflow Lets...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Linux Kernel OSF Partition Table Buffer Overflow Lets Local Users Obtain Information T-583: Linux Kernel OSF Partition Table Buffer Overflow Lets Local Users Obtain Information...

324

Table 4-3 Site Wide Environmental Management Matrix  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Table 4-3. Site-Wide Environmental Management Matrix National Renewable Energy Laboratory's South Table Mountain Complex FINAL POTENTIAL ISSUES PROGRAM OF IMPROVEMENTS Off- Site...

325

Microsoft Word - table_03.doc  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 Created on: 12/12/2013 2:04:58 PM Table 3. Selected national average natural gas prices, 2008-2013 (dollars per thousand cubic feet, except where noted) Year and Month NGL Composite Spot Price a Natural Gas Spot Price b Citygate Price Delivered to Consumers Electric Power Price d Residential Commercial Industrial Price % of Total c Price % of Total c Price % of Total c 2008 Annual Average 15.20 8.86 9.18 13.89 97.5 12.23 79.7 9.65 20.4 9.26 2009 Annual Average 8.99 5.24 6.48 12.14 97.4 10.06 77.8 5.33 18.8 4.93 2010 Annual Average 11.83 4.37 6.18 11.39 97.4 9.47 77.5 5.49 18.0 5.27 2011 January 13.03 4.49 5.69 9.90 96.5 R 8.74 72.8 R 5.66 R 16.8 5.66 February 13.64 4.09 5.75 10.14 96.5 8.88 72.0 R 5.77 R 16.6

326

Microsoft Word - table_06.doc  

Gasoline and Diesel Fuel Update (EIA)

5 5 Table 6. Natural gas processed, liquids extracted, and estimated extraction loss by state, 2011 Alabama 230,546 12,265 17,271 43,636 Alaska 2,721,396 18,314 21,554 82,255 Arkansas 5,611 212 268 883 California 180,648 9,831 12,095 39,909 Colorado 1,507,467 63,075 90,801 223,858 Illinois 15,727 705 1,043 2,409 Kansas 322,944 18,098 25,804 67,845 Kentucky 60,941 3,398 4,684 13,377 Louisiana 2,048,175 66,426 95,630 239,349 Michigan 21,518 2,132 2,465 7,875 Mississippi 126,859 7,732 11,221 28,404 Montana 11,185 927 1,252 3,744 New Mexico 795,069 61,857 90,291 223,829 North Dakota 112,206 10,199 14,182 41,156 Oklahoma 1,218,855 91,963 134,032 328,694 Pennsylvania 131,959 6,721 8,931 26,896 Tennessee 6,200

327

Microsoft Word - table_18.doc  

Gasoline and Diesel Fuel Update (EIA)

5 5 Table 18. Natural Gas Delivered to Industrial Consumers for the Account of Others by State, 2001-2005 (Volumes in Million Cubic Feet) Alabama ............................... 120,717 77.85 125,467 78.45 124,857 78.77 R 129,337 R 79.22 115,449 76.41 Alaska................................... 2,539 3.78 6,411 9.76 11,433 27.77 15,472 R 33.10 16,582 31.35 Arizona ................................. 11,380 53.61 10,089 58.81 9,174 60.05 9,290 44.85 9,569 56.37 Arkansas............................... 114,976 94.00 112,544 95.03 105,215 94.65 R 94,613 R 94.06 84,177 94.77 California .............................. 606,097 90.94 682,886 92.26 740,589 95.06 791,981 94.75 738,704 94.54 Colorado ............................... 136,704 99.27 128,709 98.75 111,291 99.07 111,316 99.23 125,618 99.41

328

Microsoft Word - table_05.doc  

Gasoline and Diesel Fuel Update (EIA)

3 3 Table 5. Number of producing gas wells by state and the Gulf of Mexico, December 31, 2008-2012 Alabama 6,860 6,913 7,026 7,063 6,327 Alaska 261 261 269 277 185 Arizona 6 6 5 5 5 Arkansas 5,592 6,314 7,397 8,388 8,538 California 1,645 1,643 1,580 1,308 1,423 Colorado 25,716 27,021 28,813 30,101 32,000 Gulf of Mexico 1,527 1,984 1,852 1,559 1,474 Illinois 45 51 50 40 40 Indiana 525 563 620 914 819 Kansas 17,862 21,243 22,145 25,758 24,697 Kentucky 16,290 17,152 17,670 14,632 17,936 Louisiana 19,213 18,860 19,137 21,235 19,792 Maryland 7 7 7 8 9 Michigan 9,995 10,600 10,100 11,100 10,900 Mississippi 2,343 2,320 1,979 5,732 1,669 Missouri 0 0 0 53 100 Montana 7,095 7,031 6,059 6,477 6,240 Nebraska 322 285 276 322 270 Nevada 0 0 0 0 0 New Mexico 44,241 44,784

329

Microsoft Word - table_02.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 2. Natural gas production, transmission, and consumption, by state, 2011 (million cubic feet) Alabama 195,581 17,271 -53,277 480,317 0 7,282 0 598,068 Alaska 356,225 21,554 14,450 0 -16,398 0 0 332,723 Arizona 168 0 -17,607 348,820 -42,026 0 0 289,357 Arkansas 1,072,212 268 3,943 -791,878 0 212 0 283,797 California 250,177 12,095 72,353 1,954,947 -91,287 20,598 0 2,153,498 Colorado 1,637,576 90,801 -76,093 -1,005,837 0 3,128 4,268 465,985 Connecticut 0 0 1,253 228,585 0 129 0 229,710 Delaware 0 0 11,756 67,928 0 -31 0 79,716 District of Columbia 0 0 1,961 31,016 0 0 0 32,976 Florida 15,125 0 -5,102 1,208,317 0 0 0 1,218,340 Georgia 0 0 -10,315 459,390 75,641 2,542 701 522,874 Gulf of Mexico 1,812,328 0 -82 -1,711,029 0

330

Microsoft Word - table_26.doc  

Gasoline and Diesel Fuel Update (EIA)

5 5 Table 26. Percent distribution of natural gas supply and disposition by state, 2011 Alabama 0.8 2.5 Alaska 1.5 1.4 Arizona < 1.2 Arkansas 4.7 1.2 California 1.0 8.8 Colorado 6.8 1.9 Connecticut -- 0.9 Delaware -- 0.3 District of Columbia -- 0.1 Florida 0.1 5.0 Georgia -- 2.1 Gulf of Mexico 7.9 0.4 Hawaii -- < Idaho -- 0.3 Illinois < 4.0 Indiana < 2.6 Iowa -- 1.3 Kansas 1.2 1.1 Kentucky 0.5 0.9 Louisiana 12.8 5.7 Maine -- 0.3 Maryland < 0.8 Massachusetts -- 1.8 Michigan 0.6 3.2 Minnesota -- 1.7 Mississippi 0.3 1.8 Missouri -- 1.1 Montana 0.3 0.3 Nebraska < 0.7 Nevada < 1.0 New Hampshire -- 0.3 New Jersey -- 2.7 New Mexico 5.0 1.0 New York 0.1

331

Microsoft Word - table_23.doc  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 23. Average Price of Natural Gas Delivered to Consumers by State and Sector, 2008 (Nominal Dollars per Thousand Cubic Feet) Alabama ............................... 18.30 100.00 15.58 80.17 10.57 27.20 17.32 10.03 Alaska................................... 8.72 100.00 8.66 74.90 5.49 78.23 -- W Arizona ................................. 17.60 100.00 13.01 93.06 10.47 29.65 11.00 8.60 Arkansas............................... 14.09 100.00 11.32 64.49 10.56 3.87 -- 9.23 California .............................. 12.75 99.31 11.75 56.69 10.80 4.85 11.32 8.23 Colorado ............................... 9.77 100.00 9.01 95.24 8.76 0.56 13.57 7.02 Connecticut........................... 17.85 97.75 13.81 70.71 12.63 47.28 24.04 10.48 Delaware .............................. 16.07 100.00 14.24

332

Microsoft Word - table_18.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 Table 18. Natural Gas Delivered to Industrial Consumers for the Account of Others by State, 2004-2008 (Volumes in Million Cubic Feet) Alabama ............................... 129,337 79.22 115,449 76.41 114,699 76.48 R 114,325 R 75.97 103,662 72.80 Alaska................................... 15,472 33.10 16,582 31.35 11,619 36.94 5,934 30.04 1,304 21.77 Arizona ................................. 9,290 44.85 9,569 56.37 11,457 62.11 13,292 68.67 14,200 70.35 Arkansas............................... 94,613 94.06 84,177 94.77 83,347 95.22 82,213 95.85 81,841 96.13 California .............................. 791,981 94.75 738,704 94.54 690,491 94.32 699,283 94.69 726,927 95.15 Colorado ............................... 111,316 99.23 125,618 99.41 110,565 99.38 116,699 99.55 119,032 99.44 Connecticut...........................

333

Microsoft Word - table_11.doc  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 11. Summary of U.S. Natural Gas Exports By Point of Exit, 2005-2009 (Volumes in Million Cubic Feet, Prices in Dollars per Thousand Cubic Feet) Pipeline (Canada) Calais, ME .......................... 0 -- 0 -- 0 -- 0 -- 2,131 5.62 Detroit, MI ........................... 40,255 8.12 22,156 7.61 22,904 6.88 27,220 8.37 43,980 4.01 Eastport, ID......................... 0 -- 0 -- 0 -- 252 7.43 113 4.49 Marysville, MI...................... 5,222 7.92 3,483 7.36 9,158 7.77 8,756 7.48 14,925 4.85 Sault Ste. Marie, MI ............ 5,537 8.13 5,070 8.11 4,389 7.13 3,122 8.75 2,044 5.04 St. Clair, MI ......................... 286,804 7.77 286,582 7.39 418,765 7.24 R 492,235 R 8.96 612,369 4.62 Noyes, MN .......................... 0 -- 0 -- 0 -- 0 -- 0 -- Babb, MT ............................

334

Microsoft Word - table_22.doc  

Gasoline and Diesel Fuel Update (EIA)

5 5 Table 22. Average City Gate Price of Natural Gas in the United States, 2003-2007 (Nominal Dollars per Thousand Cubic Feet) Alabama ............................... 6.06 6.65 8.47 10.26 8.78 Alaska................................... 2.33 3.05 3.74 5.25 6.75 Arizona ................................. 4.87 5.63 7.32 7.67 8.25 Arkansas............................... 6.07 7.12 8.83 7.96 8.55 California .............................. 5.16 6.04 7.88 6.76 6.82 Colorado ............................... 4.11 5.02 6.10 7.61 6.23 Connecticut........................... 5.59 7.56 9.74 9.11 8.67 Delaware .............................. 5.88 6.13 8.32 8.84 7.58 Florida................................... 5.87 6.60 9.30 8.32 7.97 Georgia................................. 6.25 6.81 9.85 9.37 8.15

335

Microsoft Word - table_14.doc  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Table 14. Underground natural gas storage capacity by state, December 31, 2012 (million cubic feet) Alabama 1 16,150 21,900 0 0 0 1 11,200 13,500 2 27,350 35,400 Arkansas 0 0 0 0 0 0 2 12,178 21,853 2 12,178 21,853 California 0 0 0 0 0 0 14 349,296 592,411 14 349,296 592,411 Colorado 0 0 0 0 0 0 10 60,582 124,253 10 60,582 124,253 Illinois 0 0 0 17 215,594 779,862 11 87,368 220,070 28 302,962 999,931 Indiana 0 0 0 12 19,215 80,746 10 13,809 30,003 22 33,024 110,749 Iowa 0 0 0 4 90,313 288,210 0 0 0 4 90,313 288,210 Kansas 1 375 931 0 0 0 18 122,968 283,974 19 123,343 284,905 Kentucky 0 0 0 3 6,629 9,567 20 100,971 212,184 23 107,600 221,751 Louisiana 11 200,702 297,020 0 0 0 7 211,780 402,626 18 412,482

336

Microsoft Word - table_18.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 Table 18. Natural Gas Delivered to Industrial Consumers for the Account of Others by State, 2005-2009 (Volumes in Million Cubic Feet) Alabama ............................... 115,449 76.4 114,699 76.5 114,325 76.0 103,662 72.8 94,597 72.1 Alaska................................... 16,582 31.4 11,619 36.9 5,934 30.0 1,304 21.8 1,827 27.5 Arizona ................................. 9,569 56.4 11,457 62.1 13,292 68.7 14,200 70.4 12,730 70.9 Arkansas............................... 84,177 94.8 83,347 95.2 82,213 95.8 81,841 96.1 74,752 96.4 California .............................. 738,704 94.5 690,491 94.3 699,283 94.7 R 683,512 R 94.9 673,034 95.3 Colorado ............................... 125,618 99.4 110,565 99.4 116,699 99.5 119,032 99.4 112,995 99.5 Connecticut...........................

337

Microsoft Word - table_14.doc  

Gasoline and Diesel Fuel Update (EIA)

5 5 Table 14. Underground Natural Gas Storage Capacity by State, December 31, 2006 (Capacity in Million Cubic Feet) Alabama ............................... 1 8,300 0 0 1 11,000 2 19,300 0.23 Arkansas............................... 0 0 0 0 2 22,000 2 22,000 0.26 California .............................. 0 0 0 0 12 484,711 12 484,711 5.82 Colorado ............................... 0 0 0 0 8 98,068 8 98,068 1.18 Illinois.................................... 0 0 18 881,037 11 103,731 29 984,768 11.82 Indiana.................................. 0 0 12 81,490 10 32,804 22 114,294 1.37 Iowa ...................................... 0 0 4 275,200 0 0 4 275,200 3.30 Kansas.................................. 1 1,088 0 0 18 287,295 19 288,383 3.46 Kentucky............................... 0 0 3 9,567 20 208,827 23 218,394

338

Microsoft Word - table_04.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 4. Offshore Gross Withdrawals of Natural Gas by State and the Gulf of Mexico, 2002-2006 (Million Cubic Feet) 2002 Total ................ 485,126 211,778 696,905 3,722,249 893,193 4,615,443 5,312,348 Alabama.................. 202,002 0 202,002 NA NA NA 202,002 Alaska..................... 102,972 190,608 293,580 0 0 0 293,580 California................. 0 7,068 7,068 3,080 64,735 67,816 74,884 Gulf of Mexico......... 0 0 0 3,719,169 828,458 4,547,627 4,547,627 Louisiana ................ 125,481 11,711 137,192 NA NA NA 137,192 Texas...................... 54,672 2,391 57,063 NA NA NA 57,063 2003 Total ................ 456,090 254,150 710,240 3,565,614 939,828 4,505,443 5,215,683 Alabama.................. 194,339 0 194,339 NA NA NA 194,339 Alaska..................... 85,606 236,404 322,010

339

Microsoft Word - table_11.doc  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 11. Summary of U.S. Natural Gas Exports By Point of Exit, 2004-2008 (Volumes in Million Cubic Feet, Prices in Nominal Dollars per Thousand Cubic Feet) Pipeline (Canada) Eastport, ID......................... 48 5.36 0 -- 0 -- 0 -- 252 7.43 Detroit, MI ........................... 40,030 6.47 40,255 8.12 22,156 7.61 22,904 6.88 27,220 8.37 Marysville, MI...................... 4,455 6.83 5,222 7.92 3,483 7.36 9,158 7.77 8,756 7.48 Sault Ste. Marie, MI ............ 6,666 6.38 5,537 8.13 5,070 8.11 4,389 7.13 3,122 8.75 St. Clair, MI ......................... 317,797 6.56 286,804 7.77 286,582 7.39 418,765 7.24 524,065 8.98 Noyes, MN .......................... 2,193 5.77 0 -- 0 -- 0 -- 0 -- Babb, MT ............................ 1,429 4.98 0 -- 0 -- 0 -- 0 -- Havre, MT ...........................

340

Microsoft Word - table_22.doc  

Gasoline and Diesel Fuel Update (EIA)

5 5 Table 22. Average City Gate Price of Natural Gas in the United States, 2004-2008 (Nominal Dollars per Thousand Cubic Feet) Alabama ............................... 6.65 8.47 10.26 8.78 9.84 Alaska................................... 3.05 3.74 5.25 6.75 6.74 Arizona ................................. 5.63 7.32 7.67 8.25 8.49 Arkansas............................... 7.12 8.83 7.96 8.55 8.88 California .............................. 6.04 7.88 6.76 6.82 8.11 Colorado ............................... 5.02 6.10 7.61 6.23 6.98 Connecticut........................... 7.56 9.74 9.11 8.67 10.24 Delaware .............................. 6.13 8.32 8.84 7.58 8.32 Florida................................... 6.60 9.30 8.32 7.97 9.73 Georgia................................. 6.81 9.85 9.37 8.15 9.35

Note: This page contains sample records for the topic "discharge halogen table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Microsoft Word - table_08.doc  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 8. Summary of U.S. natural gas imports, 2007-2011 Imports Volume (million cubic feet) Pipeline Canada a 3,782,708 3,589,089 3,271,107 3,279,752 3,117,081 Mexico 54,062 43,314 28,296 29,995 2,672 Total Pipeline Imports 3,836,770 3,632,403 3,299,402 3,309,747 3,119,753 LNG Algeria 77,299 0 0 0 0 Egypt 114,580 54,839 160,435 72,990 35,120 Equatorial Guinea 17,795 0 0 0 0 Nigeria 95,028 12,049 13,306 41,733 2,362 Norway 0 14,882 29,327 26,014 15,175 Peru 0 0 0 16,045 16,620 Qatar 18,352 3,108 12,687 45,583 90,972 Trinidad/Tobago 447,758 266,821 236,202 189,748 128,620 Yemen 0 0 0 38,897 60,071 Total LNG Imports 770,812 351,698

342

Microsoft Word - table_23.doc  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 23. Average Price of Natural Gas Delivered to Consumers by State and Sector, 2007 (Nominal Dollars per Thousand Cubic Feet) Alabama ............................... 18.13 100.00 15.07 79.82 8.70 24.02 -- 7.19 Alaska................................... 8.68 100.00 7.57 76.01 4.67 69.96 -- 3.58 Arizona ................................. 17.21 100.00 12.84 93.36 10.49 31.33 9.40 6.84 Arkansas............................... 13.08 100.00 10.07 70.38 9.51 4.15 8.39 7.04 California .............................. 11.57 99.50 10.20 60.63 9.07 5.31 7.71 6.72 Colorado ............................... 8.84 100.00 8.10 95.70 7.21 0.45 8.72 4.35 Connecticut........................... 16.39 98.20 12.61 71.49 10.54 50.04 20.57 7.81 Delaware .............................. 16.21 100.00 14.48

343

Microsoft Word - table_13.doc  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 13. Additions to and Withdrawals from Gas Storage by State, 2005 (Million Cubic Feet) Alabama ................... 15,572 15,356 216 493 606 -114 103 Alaska....................... 0 0 0 738 738 0 0 Arkansas................... 4,394 4,707 -313 72 51 20 -293 California .................. 190,055 179,359 10,696 82 50 31 10,727 Colorado ................... 38,588 39,442 -854 0 0 0 -854 Connecticut............... 0 0 0 1,383 682 701 701 Delaware .................. 0 0 0 138 145 -7 -7 Georgia..................... 0 0 0 4,179 2,660 1,520 1,520 Idaho......................... 0 0 0 46 189 -143 -143 Illinois........................ 260,515 259,288 1,226 3 405 -402 824 Indiana...................... 21,405 22,827 -1,422 831 1,066 -236 -1,658 Iowa .......................... 66,827 70,206 -3,379 2,626 2,845 -219

344

Microsoft Word - table_04.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 4. Offshore Gross Withdrawals of Natural Gas by State and the Gulf of Mexico, 2005-2009 (Million Cubic Feet) 2005 Total ................ 363,652 321,019 684,671 2,474,076 730,830 3,204,906 3,889,577 Alabama.................. 152,902 0 152,902 NA NA NA 152,902 Alaska..................... 74,928 305,641 380,568 0 0 0 380,568 California................. 0 6,685 6,685 684 53,404 54,088 60,773 Gulf of Mexico......... 0 0 0 2,473,392 677,426 3,150,818 3,150,818 Louisiana ................ 99,290 8,294 107,584 NA NA NA 107,584 Texas...................... 36,532 400 36,932 NA NA NA 36,932 2006 Total ................ 321,261 308,391 629,652 2,272,669 681,869 2,954,538 3,584,190 Alabama.................. 145,762 0 145,762 NA NA NA 145,762 Alaska..................... 62,156 292,660 354,816

345

Microsoft Word - table_20.doc  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 20. Number of natural gas residential consumers by type of service and state, 2011-2012 Alabama R 772,892 0 R 772,892 767,412 0 767,412 Alaska 121,736 0 121,736 122,983 0 122,983 Arizona 1,146,280 6 1,146,286 1,157,682 6 1,157,688 Arkansas 551,795 0 551,795 549,959 0 549,959 California R 10,545,585 R 79,605 10,625,190 10,547,706 134,210 10,681,916 Colorado 1,645,711 5 1,645,716 1,659,803 5 1,659,808 Connecticut 494,065 905 494,970 503,241 897 504,138 Delaware 152,005 0 152,005 153,307 0 153,307 District of Columbia 130,888 14,636 145,524 129,674 16,264 145,938 Florida 664,564 R 14,635 R 679,199 672,160 14,861 687,021 Georgia 321,515 1,418,491 1,740,006 319,179 1,420,364 1,739,543 Hawaii 25,305 0 25,305

346

Microsoft Word - table_11.doc  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 11. Summary of U.S. Natural Gas Exports By Point of Exit, 2003-2007 (Volumes in Million Cubic Feet, Prices in Nominal Dollars per Thousand Cubic Feet) Pipeline (Canada) Eastport, ID......................... 15 4.34 48 5.36 0 -- 0 -- 0 -- Detroit, MI ........................... 19,737 5.47 40,030 6.47 40,255 8.12 22,156 7.61 22,904 6.88 Marysville, MI...................... 811 5.06 4,455 6.83 5,222 7.92 3,483 7.36 9,158 7.77 Sault Ste. Marie, MI ............ 605 4.94 6,666 6.38 5,537 8.13 5,070 8.11 4,389 7.13 St. Clair, MI ......................... 238,444 6.13 317,797 6.56 286,804 7.77 286,582 7.39 418,765 7.24 Noyes, MN .......................... 172 5.43 2,193 5.77 0 -- 0 -- 0 -- Babb, MT ............................ 38 6.48 1,429 4.98 0 -- 0 -- 0 -- Havre, MT ...........................

347

Microsoft Word - table_04.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 4. Offshore Gross Withdrawals of Natural Gas by State and the Gulf of Mexico, 2006-2010 (Million Cubic Feet) 2006 Total ................ 321,261 308,391 629,652 2,272,669 681,869 2,954,538 3,584,190 Alabama.................. 145,762 0 145,762 NA NA NA 145,762 Alaska..................... 62,156 292,660 354,816 0 0 0 354,816 California................. 156 6,654 6,809 2,094 38,313 40,407 47,217 Gulf of Mexico......... 0 0 0 2,270,575 643,556 2,914,131 2,914,131 Louisiana ................ 88,657 8,822 97,479 NA NA NA 97,479 Texas...................... 24,529 255 24,785 NA NA NA 24,785 2007 Total ................ 276,117 341,925 618,042 2,204,379 654,334 2,858,713 3,476,755 Alabama.................. 134,451 0 134,451 NA NA NA 134,451 Alaska..................... 48,876 325,328 374,204

348

Microsoft Word - table_03.doc  

Gasoline and Diesel Fuel Update (EIA)

9 9 Table 3. Gross withdrawals and marketed production of natural gas by state and the Gulf of Mexico, 2008-2012 (million cubic feet) 2008 Total 15,134,644 5,609,425 2,022,228 2,869,960 25,636,257 3,638,622 166,909 718,674 21,112,053 953,451 20,158,602 2009 Total 14,414,287 5,674,120 2,010,171 3,958,315 26,056,893 3,522,090 165,360 721,507 21,647,936 1,024,082 20,623,854 2010 Total 13,247,498 5,834,703 1,916,762 5,817,122 26,816,085 3,431,587 165,928 836,698 22,381,873 1,066,366 21,315,507 2011 Total 12,291,070 5,907,919 1,779,055 8,500,983 28,479,026 3,365,313 209,439 867,922 24,036,352 1,134,473 22,901,879 2012 Total 12,736,678 4,969,668 1,539,395 10,296,572 29,542,313 3,259,680 212,848 761,836 25,307,949 1,250,340 24,057,609

349

Microsoft Word - table_07.doc  

Gasoline and Diesel Fuel Update (EIA)

0 0 Created on: 1/7/2014 9:25:31 AM Table 7. Marketed production of natural gas in selected states and the Federal Gulf of Mexico, 2008-2013 (million cubic feet) Year and Month Alaska Louisiana New Mexico Oklahoma Texas Wyoming Other a States Federal Gulf of Mexico U.S. Total 2008 Total 398,442 1,377,969 1,446,204 1,886,710 6,960,693 2,274,850 4,452,843 2,314,342 21,112,053 2009 Total 397,077 1,548,607 1,383,004 1,901,556 6,818,973 2,335,328 4,834,474 2,428,916 21,647,936 2010 Total 374,226 2,210,099 1,292,185 1,827,328 6,715,294 2,305,525 5,412,154 2,245,062 22,381,873 2011 January 31,027 224,410 100,352 154,940 588,714 178,331 496,362 178,597 1,952,732 February 31,076 208,495 88,553

350

Microsoft Word - table_14.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 Table 14. Underground Natural Gas Storage Capacity by State, December 31, 2007 (Capacity in Million Cubic Feet) Alabama ............................... 1 8,300 0 0 1 11,000 2 19,300 0.23 Arkansas............................... 0 0 0 0 2 22,000 2 22,000 0.26 California .............................. 0 0 0 0 12 487,711 12 487,711 5.80 Colorado ............................... 0 0 0 0 8 98,068 8 98,068 1.17 Illinois.................................... 0 0 18 876,960 11 103,731 29 980,691 11.67 Indiana.................................. 0 0 12 81,490 10 32,804 22 114,294 1.36 Iowa ...................................... 0 0 4 278,238 0 0 4 278,238 3.31 Kansas.................................. 1 931 0 0 18 287,996 19 288,926 3.44 Kentucky............................... 0 0 3 9,567 20 210,792 23 220,359

351

Microsoft Word - table_03.doc  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 3. Gross Withdrawals and Marketed Production of Natural Gas by State and the Gulf of Mexico, 2004-2008 (Million Cubic Feet) 2004 Total ............. 17,885,247 6,084,431 NA 23,969,678 3,701,656 96,408 654,124 19,517,491 926,600 18,590,891 2005 Total ............. 17,471,847 5,984,975 NA 23,456,822 3,699,535 119,097 711,095 18,927,095 876,497 18,050,598 2006 Total ............. 17,995,554 5,539,464 NA 23,535,018 3,264,929 129,469 730,946 19,409,674 906,069 18,503,605 2007 Total ............. 17,065,375 R 5,818,405 1,779,875 R 24,663,656 R 3,662,685 R 143,457 R 661,168 R 20,196,346 930,320 R 19,266,026 2008 Total ............. 18,011,151 5,844,798 1,898,399 25,754,348 3,638,563 166,588 709,681 21,239,516 953,451 20,286,065 Alabama Total ...... 159,912 6,368 111,273 277,553 475 1,801 17,394

352

Microsoft Word - table_04.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 4. Offshore Gross Withdrawals of Natural Gas by State and the Gulf of Mexico, 2004-2008 (Million Cubic Feet) 2004 Total ................ 401,662 279,249 680,911 3,214,488 840,852 4,055,340 4,736,252 Alabama.................. 165,630 0 165,630 NA NA NA 165,630 Alaska..................... 73,457 260,667 334,125 0 0 0 334,125 California................. 0 6,966 6,966 850 53,805 54,655 61,622 Gulf of Mexico......... 0 0 0 3,213,638 787,047 4,000,685 4,000,685 Louisiana ................ 117,946 11,299 129,245 NA NA NA 129,245 Texas...................... 44,630 316 44,946 NA NA NA 44,946 2005 Total ................ 363,652 321,019 684,671 2,474,076 730,830 3,204,906 3,889,577 Alabama.................. 152,902 0 152,902 NA NA NA 152,902 Alaska..................... 74,928 305,641 380,568

353

Microsoft Word - table_02.doc  

U.S. Energy Information Administration (EIA) Indexed Site

5 5 Created on: 12/12/2013 1:57:32 PM Table 2. Natural gas consumption in the United States, 2008-2013 (billion cubic feet) Delivered to Consumers Year and Month Lease and Plant Fuel a Pipeline and Distribution Use b Residential Commercial Industrial Electric Power Vehicle Fuel Total Total Consumption 2008 Total 1,220 648 4,892 3,153 6,670 6,668 26 21,409 23,277 2009 Total 1,275 670 4,779 3,119 6,167 6,873 27 20,965 22,910 2010 Total 1,286 674 4,782 3,103 6,826 7,387 29 22,127 24,087 2011 January 107 R 83 970 528 R 659 540 3 R 2,699 R 2,889 February 97 70 R 768 432 R 600 484 2 R 2,285 R 2,452 March 111 63 R 595 R 361 R 616 482 3 R 2,056 R 2,230 April 109 51 R 341 R 232 R 569 521 R 2 R 1,665 R 1,825 May 112 46 R 205 R 166 R

354

Microsoft Word - table_14.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 Table 14. Underground Natural Gas Storage Capacity by State, December 31, 2008 (Capacity in Million Cubic Feet) Alabama ............. 1 11,900 15,900 0 0 0 1 9,000 11,000 2 20,900 26,900 Arkansas............. 0 0 0 0 0 0 2 14,500 22,000 2 14,500 22,000 California ............ 0 0 0 0 0 0 12 283,796 498,705 12 283,796 498,705 Colorado ............. 0 0 0 0 0 0 8 42,579 95,068 8 42,579 95,068 Illinois.................. 0 0 0 18 244,900 874,384 10 51,418 103,606 28 296,318 977,989 Indiana................ 0 0 0 12 19,978 81,991 10 12,791 32,946 22 32,769 114,937 Iowa .................... 0 0 0 4 87,350 284,747 0 0 0 4 87,350 284,747 Kansas................ 1 375 931 0 0 0 18 118,885 281,291 19 119,260 282,221 Kentucky............. 0 0 0 3 6,629 9,567 20 94,598 210,792 23 101,227 220,359 Louisiana ............

355

Microsoft Word - table_13.doc  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 13. Additions to and Withdrawals from Gas Storage by State, 2006 (Million Cubic Feet) Alabama ................... 20,604 12,127 8,477 704 698 7 8,484 Arkansas................... 4,789 4,081 707 45 57 -12 695 California .................. 168,957 182,247 -13,290 92 76 16 -13,274 Colorado ................... 35,836 38,506 -2,670 0 0 0 -2,670 Connecticut............... 0 0 0 532 246 286 286 Delaware .................. 0 0 0 68 68 * * Georgia..................... 0 0 0 7,705 1,963 5,742 5,742 Idaho......................... 0 0 0 415 275 140 140 Illinois........................ 242,754 235,590 7,163 238 358 -119 7,044 Indiana...................... 23,598 20,707 2,891 1,447 1,172 275 3,165 Iowa .......................... 68,750 65,187 3,563 2,438 1,540 899 4,462 Kansas...................... 103,105 99,698 3,407

356

Microsoft Word - table_04.doc  

Gasoline and Diesel Fuel Update (EIA)

9 9 Table 4. Offshore Gross Withdrawals of Natural Gas by State and the Gulf of Mexico, 2001-2005 (Million Cubic Feet) 2001 Total ................ 508,374 170,206 678,580 4,146,993 989,969 5,136,962 5,815,542 Alabama.................. 200,862 0 200,862 NA NA NA 200,862 Alaska..................... 113,870 149,067 262,937 0 0 0 262,937 California................. 0 7,262 7,262 3,913 67,034 70,947 78,209 Gulf of Mexico......... 0 0 0 4,143,080 922,935 5,066,015 5,066,015 Louisiana ................ 140,358 13,513 153,871 NA NA NA 153,871 Texas...................... 53,285 364 53,649 NA NA NA 53,649 2002 Total ................ 485,126 211,778 696,905 3,722,249 893,193 4,615,443 5,312,348 Alabama.................. 202,002 0 202,002 NA NA NA 202,002 Alaska..................... 102,972 190,608 293,580

357

Microsoft Word - table_25.doc  

Gasoline and Diesel Fuel Update (EIA)

9 9 Table 25. Average Price of Natural Gas Delivered to Residential and Commercial Sector Consumers by Local Distribution and Marketers in Selected States, 2009-2010 (Dollars per Thousand Cubic Feet) Florida................................... 20.22 R 18.41 20.18 97.7 17.85 19.44 17.89 97.9 Georgia................................. 13.20 16.81 16.30 14.1 12.18 15.67 15.17 14.3 Maryland ............................... 13.09 R 16.80 13.73 82.8 12.20 13.51 12.44 81.7 New Jersey ........................... 14.49 R 16.52 14.54 97.7 12.77 14.87 12.84 96.6 New York .............................. 14.96 R 15.38 15.05 77.1 13.87 14.55 14.04 74.6 Ohio ...................................... 11.64 13.64 12.68 47.8 10.28 11.80 11.13 43.7 Pennsylvania ........................ 14.56 R 16.46 14.74 90.9

358

Microsoft Word - table_22.doc  

Gasoline and Diesel Fuel Update (EIA)

3 3 Table 22. Average City Gate Price of Natural Gas in the United States, 2002-2006 (Dollars per Thousand Cubic Feet) Alabama ............................... 4.74 6.06 6.65 8.47 10.26 Alaska................................... 2.36 2.33 3.05 3.74 5.25 Arizona ................................. 3.77 4.87 5.63 7.32 7.67 Arkansas............................... 5.17 6.07 7.12 8.83 7.96 California .............................. 3.20 5.16 6.04 7.88 6.76 Colorado ............................... 2.72 4.11 5.02 6.10 7.61 Connecticut........................... 6.42 5.59 7.56 R 9.74 9.11 Delaware .............................. 5.37 5.88 6.13 8.32 8.84 Florida................................... 3.90 5.87 6.60 9.30 8.32 Georgia................................. 4.55 6.25 6.81 9.85 9.37 Hawaii...................................

359

Microsoft Word - table_20.doc  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 20. Number of Natural Gas Residential Consumers by Type of Service and State, 2009-2010 Alabama ...................... R 785,005 0 R 785,005 768,921 0 768,921 Alaska.......................... 120,124 0 120,124 121,166 0 121,166 Arizona ........................ 1,130,047 0 1,130,047 1,138,448 0 1,138,448 Arkansas...................... 557,355 0 557,355 549,970 0 549,970 California ..................... R 10,454,747 R 56,203 R 10,510,950 10,469,734 72,850 10,542,584 Colorado ...................... 1,622,429 5 1,622,434 1,634,582 5 1,634,587 Connecticut.................. 488,614 735 489,349 489,380 805 490,185 Delaware ..................... 149,006 0 149,006 150,458 0 150,458 District of Columbia...... 129,738 13,698 143,436 130,048 14,103 144,151 Florida.......................... 659,725 14,365

360

Microsoft Word - table_20.doc  

Gasoline and Diesel Fuel Update (EIA)

9 9 Table 20. Number of Natural Gas Commercial Consumers by Type of Service and State, 2008-2009 Alabama ...................... R 65,193 120 R 65,313 67,468 128 67,596 Alaska.......................... 12,267 497 12,764 12,854 363 13,217 Arizona ........................ 57,481 105 57,586 57,022 169 57,191 Arkansas...................... 68,943 201 69,144 68,794 249 69,043 California ..................... 417,531 29,629 447,160 406,270 35,225 441,495 Colorado ...................... 144,543 176 144,719 145,455 169 145,624 Connecticut.................. 50,023 3,880 53,903 50,106 4,404 54,510 Delaware ..................... 12,619 84 12,703 12,726 113 12,839 District of Columbia...... 6,838 3,186 10,024 6,706 3,582 10,288 Florida.......................... 41,164 16,961 58,125 41,748 17,801 59,549

Note: This page contains sample records for the topic "discharge halogen table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Microsoft Word - table_23.doc  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 23. Average Price of Natural Gas Delivered to Consumers by State and Sector, 2009 (Dollars per Thousand Cubic Feet) Alabama ............................... 18.12 100.0 14.93 78.7 6.48 27.9 19.17 4.30 Alaska................................... 10.23 100.0 9.51 85.3 4.02 72.5 -- W Arizona ................................. 17.65 100.0 12.15 88.0 8.19 29.1 14.96 4.16 Arkansas............................... 13.39 100.0 10.71 59.4 8.47 3.6 -- 4.14 California .............................. 9.43 98.9 7.75 54.9 6.57 4.7 7.61 4.44 Colorado ............................... 8.80 100.0 7.56 94.8 6.57 0.5 9.12 4.27 Connecticut........................... 14.81 97.5 9.92 69.0 8.44 37.5 15.26 4.89 Delaware .............................. 17.79 100.0 15.87 53.5 13.99 2.1 14.12 W District of Columbia...............

362

Microsoft Word - table_13.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 Table 13. Additions to and Withdrawals from Gas Storage by State, 2010 (Million Cubic Feet) Alabama ................... 23,026 16,740 6,286 946 968 -21 6,264 Arkansas................... 4,672 4,368 304 42 40 2 306 California .................. 226,810 203,653 23,157 56 54 2 23,159 Colorado ................... 43,250 45,010 -1,760 0 0 0 -1,760 Connecticut............... 0 0 0 651 473 178 178 Delaware .................. 0 0 0 73 76 -2 -2 Georgia..................... 0 0 0 2,693 2,314 379 379 Idaho......................... 0 0 0 142 72 70 70 Illinois........................ 247,458 245,135 2,323 398 325 74 2,397 Indiana...................... 21,943 22,454 -511 1,983 1,148 835 324 Iowa .......................... 76,407 78,444 -2,037 1,458 1,312 146 -1,891 Kansas...................... 113,253 121,737 -8,484

363

Microsoft Word - table_24.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 Table 24. Average Price of Natural Gas Delivered to Residential and Commercial Sector Consumers by Local Distribution and Marketers in Selected States, 2006-2007 (Nominal Dollars per Thousand Cubic Feet) Florida................................... 21.48 24.62 21.54 97.95 20.55 23.23 20.61 97.79 Georgia................................. 15.84 18.81 R 18.37 14.70 14.64 18.02 17.53 14.35 Maryland ............................... 16.14 17.41 16.36 82.27 14.95 16.26 15.17 83.26 New Jersey ........................... 14.87 17.69 R 14.91 98.66 14.45 16.50 14.48 98.35 New York .............................. 15.09 16.99 15.35 86.06 15.50 15.46 15.49 84.07 Ohio ...................................... 14.41 14.36 14.39 58.77 13.05 13.95 13.47 53.01 Pennsylvania ........................ 16.48 16.06 16.45

364

Microsoft Word - table_06.doc  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 6. Wellhead Value and Marketed Production of Natural Gas, 2001-2005, and by State, 2005 2001 Total ............................ 19,577,660 -- 4.00 20,570,295 82,202,805 2002 Total ............................ 14,467,289 -- 2.95 19,884,780 58,596,868 2003 Total ............................ 14,589,545 -- 4.88 19,974,360 97,555,375 2004 Total ............................ 15,223,749 -- 5.46 R 19,517,491 R 106,521,974 2005 Total ............................ 15,525,771 -- 7.33 18,950,734 138,987,902 Alabama ............................... 285,237 2,645,780 9.28 296,528 2,750,513 Alaska................................... 502,887 2,387,581 4.75 487,282 2,313,492 Arizona ................................. 211 1,445 6.86 233 1,599 Arkansas............................... 190,533 1,383,193 7.26

365

Microsoft Word - table_14.doc  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 14. Underground Natural Gas Storage Capacity by State, December 31, 2010 (Capacity in Million Cubic Feet) Alabama ............. 1 16,150 21,900 0 0 0 1 9,000 11,000 2 25,150 32,900 Arkansas............. 0 0 0 0 0 0 2 13,898 21,760 2 13,898 21,760 California ............ 0 0 0 0 0 0 13 311,096 542,511 13 311,096 542,511 Colorado ............. 0 0 0 0 0 0 9 49,119 105,768 9 49,119 105,768 Illinois.................. 0 0 0 17 216,132 772,381 11 87,368 218,106 28 303,500 990,487 Indiana................ 0 0 0 13 19,437 81,268 9 13,545 30,003 22 32,982 111,271 Iowa .................... 0 0 0 4 90,613 288,010 0 0 0 4 90,613 288,010 Kansas................ 1 375 931 0 0 0 18 122,814 283,891 19 123,190 284,821 Kentucky............. 0 0 0 3 6,629 9,567 20 100,971 212,184 23 107,600 221,751 Louisiana ............

366

Microsoft Word - table_24.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 Table 24. Average Price of Natural Gas Delivered to Residential and Commercial Sector Consumers by Local Distribution and Marketers in Selected States, 2007-2008 (Nominal Dollars per Thousand Cubic Feet) Florida................................... 20.55 23.23 20.61 97.79 21.11 25.00 21.19 97.78 Georgia................................. 14.64 18.02 17.53 14.35 15.46 18.73 18.26 14.43 Maryland ............................... 14.95 16.26 15.17 83.26 15.98 16.54 16.08 83.15 New Jersey ........................... 14.45 16.50 14.48 98.35 15.15 18.07 15.21 97.98 New York .............................. R 15.79 15.46 R 15.73 R 82.34 16.79 16.57 16.75 80.64 Ohio ...................................... 13.05 13.95 13.47 53.01 14.60 14.45 14.52 52.47 Pennsylvania ........................

367

Microsoft Word - table_14.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 Table 14. Underground Natural Gas Storage Capacity by State, December 31, 2009 (Capacity in Million Cubic Feet) Alabama ............. 1 11,900 15,900 0 0 0 1 9,000 11,000 2 20,900 26,900 Arkansas............. 0 0 0 0 0 0 2 13,898 21,760 2 13,898 21,760 California ............ 0 0 0 0 0 0 13 296,096 513,005 13 296,096 513,005 Colorado ............. 0 0 0 0 0 0 9 48,129 105,768 9 48,129 105,768 Illinois.................. 0 0 0 18 252,344 885,848 10 51,418 103,606 28 303,761 989,454 Indiana................ 0 0 0 12 19,367 81,328 10 12,791 32,946 22 32,157 114,274 Iowa .................... 0 0 0 4 87,414 284,811 0 0 0 4 87,414 284,811 Kansas................ 1 375 931 0 0 0 18 118,964 281,370 19 119,339 282,300 Kentucky............. 0 0 0 3 6,629 9,567 20 96,855 210,801 23 103,484 220,368 Louisiana ............

368

Microsoft Word - table_08.doc  

U.S. Energy Information Administration (EIA) Indexed Site

5 5 Table 8. Summary of U.S. natural gas imports, 2008-2012 Imports Volume (million cubic feet) Pipeline Canada a 3,589,089 3,271,107 3,279,752 3,117,081 2,962,827 Mexico 43,314 28,296 29,995 2,672 314 Total Pipeline Imports 3,632,403 3,299,402 3,309,747 3,119,753 2,963,140 LNG by Vessel Egypt 54,839 160,435 72,990 35,120 2,811 Nigeria 12,049 13,306 41,733 2,362 0 Norway 14,882 29,327 26,014 15,175 6,212 Peru 0 0 16,045 16,620 0 Qatar 3,108 12,687 45,583 90,972 33,823 Trinidad/Tobago 266,821 236,202 189,748 128,620 112,207 Yemen 0 0 38,897 60,071 19,595 Total LNG Imports 351,698 451,957 431,010 348,939 174,649 Total Imports 3,984,101 3,751,360

369

Microsoft Word - table_19.doc  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 19. Number of Natural Gas Residential Consumers by Type of Service and State, 2004-2005 Alabama ...................... R 806,660 R 0 R 806,660 799,256 0 799,256 Alaska.......................... 104,360 0 104,360 108,401 0 108,401 Arizona ........................ 993,885 0 993,885 1,042,662 0 1,042,662 Arkansas...................... R 554,844 0 R 554,844 555,861 0 555,861 California ..................... 9,921,331 R 36,081 R 9,957,412 10,092,466 31,967 10,124,433 Colorado ...................... R 1,496,873 3 R 1,496,876 1,524,810 3 1,524,813 Connecticut.................. 468,918 414 469,332 474,807 414 475,221 District of Columbia...... 120,709 17,425 138,134 127,139 13,873 141,012 Delaware ..................... 133,197 0 133,197 137,115 0 137,115 Florida.......................... R 628,104 10,910

370

Microsoft Word - table_20.doc  

Gasoline and Diesel Fuel Update (EIA)

9 9 Table 20. Number of Natural Gas Commercial Consumers by Type of Service and State, 2006-2007 Alabama ...................... R 66,222 115 R 66,337 65,738 118 65,856 Alaska.......................... 12,858 1,526 14,384 12,491 917 13,408 Arizona ........................ 56,955 136 57,091 57,047 122 57,169 Arkansas...................... 69,318 157 69,475 69,319 176 69,495 California ..................... 426,379 15,673 442,052 421,449 24,671 446,120 Colorado ...................... 139,566 180 139,746 141,201 219 141,420 Connecticut.................. 49,056 3,926 52,982 48,522 3,867 52,389 Delaware ..................... 12,288 57 12,345 12,507 69 12,576 District of Columbia...... 7,004 3,406 10,410 6,867 3,048 9,915 Florida.......................... 41,190 14,069 55,259 41,325 15,995 57,320

371

Microsoft Word - table_11.doc  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 11. Summary of U.S. Natural Gas Exports By Point of Exit, 2001-2005 (Volumes in Million Cubic Feet, Prices in Dollars per Thousand Cubic Feet) Pipeline (Canada) Eastport, ID......................... 0 -- 176 4.40 15 4.34 48 5.36 0 -- Detroit, MI ........................... 35,644 4.57 7,431 3.03 19,737 5.47 40,030 6.47 40,255 8.12 Marysville, MI...................... 3,651 3.92 0 -- 811 5.06 4,455 6.83 5,222 7.92 Sault Ste. Marie, MI ............ 0 -- 0 -- 605 4.94 6,666 6.38 5,537 8.13 St. Clair, MI ......................... 122,293 3.82 164,084 3.42 238,444 6.13 317,797 6.56 286,804 7.77 Noyes, MN .......................... 0 -- 71 1.99 172 5.43 2,193 5.77 0 -- Babb, MT ............................ 549 3.55 143 2.28 38 6.48 1,429 4.98 0 -- Havre, MT ...........................

372

Microsoft Word - table_23.doc  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 23. Average Price of Natural Gas Delivered to Consumers by State and Sector, 2005 (Dollars per Thousand Cubic Feet) Alabama ............................... 15.82 100.00 13.13 81.65 9.51 23.59 -- 9.67 Alaska................................... 5.73 100.00 4.93 51.19 2.59 68.65 -- 3.42 Arizona ................................. 13.54 100.00 9.85 93.29 8.53 43.63 7.91 8.24 Arkansas............................... 13.65 100.00 10.20 74.07 9.44 5.23 10.16 8.59 California .............................. 11.86 99.66 10.69 68.67 9.84 5.46 8.80 8.09 Colorado ............................... 10.29 99.99 9.39 95.15 8.68 0.59 8.17 7.41 Connecticut........................... 16.24 98.75 13.00 70.34 11.68 46.41 14.60 9.31 District of Columbia............... 16.87 79.76 13.17 100.00 --

373

Microsoft Word - table_04.doc  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 4. Offshore gross withdrawals of natural gas by state and the Gulf of Mexico, 2007-2011 (million cubic feet) 2007 Total 276,117 341,925 618,042 2,204,379 654,334 2,858,713 3,476,755 Alabama 134,451 0 134,451 NA NA NA 134,451 Alaska 48,876 325,328 374,204 0 0 0 374,204 California 312 6,977 7,289 2,137 43,379 45,516 52,805 Gulf of Mexico 0 0 0 2,202,242 610,955 2,813,197 2,813,197 Louisiana 63,357 9,512 72,868 NA NA NA 72,868 Texas 29,121 108 29,229 NA NA NA 29,229 2008 Total 297,565 356,139 653,704 1,849,891 524,965 2,374,857 3,028,561 Alabama 125,502 0 125,502 NA NA NA 125,502 Alaska 43,079 345,109 388,188 0 0 0 388,188 California 266 6,764 7,029 1,601 43,300 44,902

374

Microsoft Word - table_04.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 4. Offshore Gross Withdrawals of Natural Gas by State and the Gulf of Mexico, 2003-2007 (Million Cubic Feet) 2003 Total ................ 456,090 254,150 710,240 3,565,614 939,828 4,505,443 5,215,683 Alabama.................. 194,339 0 194,339 NA NA NA 194,339 Alaska..................... 85,606 236,404 322,010 0 0 0 322,010 California................. 0 6,866 6,866 1,731 56,363 58,095 64,961 Gulf of Mexico......... 0 0 0 3,563,883 883,465 4,447,348 4,447,348 Louisiana ................ 123,939 9,517 133,456 NA NA NA 133,456 Texas...................... 52,206 1,363 53,569 NA NA NA 53,569 2004 Total ................ 401,662 279,249 680,911 3,214,488 840,852 4,055,340 4,736,252 Alabama.................. 165,630 0 165,630 NA NA NA 165,630 Alaska..................... 73,457 260,667 334,125

375

Microsoft Word - table_25.doc  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Table 25. Average price of natural gas delivered to residential and commercial sector consumers by local distribution and marketers in selected states, 2011-2012 (dollars per thousand cubic feet) Georgia 11.98 16.38 15.72 15.1 12.47 16.82 16.23 13.5 New York 13.52 14.22 13.71 72.4 12.72 13.59 12.97 71.2 Ohio 10.32 11.09 10.78 40.8 8.75 10.42 9.91 30.9 Residential 2011 2012 State Local Distribution Company Average Price a Marketer Average Price b Combined Average Price c Percent Sold by Local Distribution Company Local Distribution Company Average Price a Marketer Average Price b Combined Average Price c Percent Sold by Local Distribution Company a Price derived from Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition."

376

EIA - Reference Case Projection Tables 1990-2030  

Gasoline and Diesel Fuel Update (EIA)

Tables (1990-2030) Tables (1990-2030) International Energy Outlook 2006 Reference Case Projections Tables (1990-2030) Formats Data Table Titles (1 to 14 complete) Reference Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Reference Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table A1 World Total Primary Energy Consumption by Region, Reference Case Reference Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Reference Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table A2 World Total Energy Consumption by Region and Fuel, Reference Case Reference Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800.

377

Water molecules insert into N-HCl-M hydrogen bonds while M-ClX-C halogen bonds remain intact in dihydrates of halopyridinium hexachloroplatinates  

Science Journals Connector (OSTI)

Crystals of the dihydrates of three halopyridinium hexachloroplatinate salts form networks that are propagated via N-HO and O-HCl-Pt hydrogen bonds and Pt-ClX-C halogen bonds. The water molecules can be considered to have been inserted into N-HCl-Pt hydrogen bonds anticipated in the anyhdrous form of such salts.

Zordan, F.

2004-09-15T23:59:59.000Z

378

Magnetic dipole discharges. I. Basic properties  

SciTech Connect

A simple discharge is described which uses a permanent magnet as a cold cathode and the metallic chamber wall as an anode. The magnet's equator is biased strongly negative, which produces secondary electrons due to the impact of energetic ions. The emitted electrons are highly confined by the strong dipolar magnetic field and the negative potential in the equatorial plane of the magnet. The emitted electrons ionize near the sheath and produce further electrons, which drift across field lines to the anode while the nearly unmagnetized ions are accelerated back to the magnet. A steady state discharge is maintained at neutral pressures above 10{sup ?3} mbar. This is the principle of magnetron discharges, which commonly use cylindrical and planar cathodes rather than magnetic dipoles as cathodes. The discharge properties have been investigated in steady state and pulsed mode. Different magnets and geometries have been employed. The role of a background plasma has been investigated. Various types of instabilities have been observed such as sheath oscillations, current-driven turbulence, relaxation instabilities due to ionization, and high frequency oscillations created by sputtering impulses, which are described in more detail in companion papers. The discharge has also been operated in reactive gases and shown to be useful for sputtering applications.

Stenzel, R. L.; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)] [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States); Teodorescu-Soare, C. T.; Ionita, C.; Schrittwieser, R. [Institute for Ion Physics and Applied Physics, University of Innsbruck, A-6020 Innsbruck (Austria)] [Institute for Ion Physics and Applied Physics, University of Innsbruck, A-6020 Innsbruck (Austria)

2013-08-15T23:59:59.000Z

379

INVESTIGATION OF THE TOTAL ORGANIC HALOGEN ANALYTICAL METHOD AT THE WASTE SAMPLING AND CHARACTERIZATION FACILITY  

SciTech Connect

Total organic halogen (TOX) is used as a parameter to screen groundwater samples at the Hanford Site. Trending is done for each groundwater well, and changes in TOX and other screening parameters can lead to costly changes in the monitoring protocol. The Waste Sampling and Characterization Facility (WSCF) analyzes groundwater samples for TOX using the United States Environmental Protection Agency (EPA) SW-S46 method 9020B (EPA 1996a). Samples from the Soil and Groundwater Remediation Project (SGRP) are submitted to the WSCF for analysis without information regarding the source of the sample; each sample is in essence a ''blind'' sample to the laboratory. Feedback from the SGRP indicated that some of the WSCF-generated TOX data from groundwater wells had a number of outlier values based on the historical trends (Anastos 200Sa). Additionally, analysts at WSCF observed inconsistent TOX results among field sample replicates. Therefore, the WSCF lab performed an investigation of the TOX analysis to determine the cause of the outlier data points. Two causes were found that contributed to generating out-of-trend TOX data: (1) The presence of inorganic chloride in the groundwater samples: at inorganic chloride concentrations greater than about 10 parts per million (ppm), apparent TOX values increase with increasing chloride concentration. A parallel observation is the increase in apparent breakthrough of TOX from the first to the second activated-carbon adsorption tubes with increasing inorganic chloride concentration. (2) During the sample preparation step, excessive purging of the adsorption tubes with oxygen pressurization gas after sample loading may cause channeling in the activated carbon bed. This channeling leads to poor removal of inorganic chloride during the subsequent wash step with aqueous potassium nitrate. The presence of this residual inorganic chloride then produces erroneously high TOX values. Changes in sample preparation were studied to more effectively remove inorganic chloride from the activated-carbon adsorption tubes. With the TOX sample preparation equipment and TOX analyzers at WSCF, the nitrate wash recommended by EPA SW-846 method 9020B was found to be inadequate to remove inorganic chloride interference. Increasing the nitrate wash concentration from 10 grams per liter (g/L) to 100 giL potassium nitrate and increasing the nitrate wash volume from 3 milliliters (mL) to 10 mL effectively removed the inorganic chloride up to at least 100 ppm chloride in the sample matrix. Excessive purging of the adsorption tubes during sample preparation was eliminated. These changes in sample preparation have been incorporated in the analytical procedure. The results using the revised sample preparation procedure show better agreement of TOX values both for replicate analyses of single samples and for the analysis of replicate samples acquired from the same groundwater well. Furthermore, less apparent adsorption tube breakthrough now occurs with the revised procedure. One additional modification made to sample preparation was to discontinue the treatment of groundwater samples with sodium bisulfite. Sodium bisulfite is used to remove inorganic chlorine from the sample; inorganic chlorine is not expected to be a constituent in these groundwater samples. Several other factors were also investigated as possible sources of anomalous TOX results: (1) Instrument instability: examination of the history of results for TOX laboratory control samples and initial calibration verification standards indicate good long-term precision for the method and instrument. Determination of a method detection limit of 2.3 ppb in a deionized water matrix indicates the method and instrumentation have good stability and repeatability. (2) Non-linear instrument response: the instrument is shown to have good linear response from zero to 200 parts per billion (ppb) TOX. This concentration range encompasses the majority of samples received at WSCF for TOX analysis. Linear response was checked using both non-volatile TOX species (trichlorophenol) an

JG DOUGLAS; HK MEZNARICH, PHD; JR OLSEN; GA ROSS PHD; M STAUFFER

2009-02-13T23:59:59.000Z

380

INVESTIGATION OF THE TOTAL ORGANIC HALOGEN ANALYTICAL METHOD AT THE WASTE SAMPLING CHARACTERIZATION FACILITY (WSCF)  

SciTech Connect

Total organic halogen (TOX) is used as a parameter to screen groundwater samples at the Hanford Site. Trending is done for each groundwater well, and changes in TOX and other screening parameters can lead to costly changes in the monitoring protocol. The Waste Sampling and Characterization Facility (WSCF) analyzes groundwater samples for TOX using the United States Environmental Protection Agency (EPA) SW-846 method 9020B (EPA 1996a). Samples from the Soil and Groundwater Remediation Project (S&GRP) are submitted to the WSCF for analysis without information regarding the source of the sample; each sample is in essence a 'blind' sample to the laboratory. Feedback from the S&GRP indicated that some of the WSCF-generated TOX data from groundwater wells had a number of outlier values based on the historical trends (Anastos 2008a). Additionally, analysts at WSCF observed inconsistent TOX results among field sample replicates. Therefore, the WSCF lab performed an investigation of the TOX analysis to determine the cause of the outlier data points. Two causes were found that contributed to generating out-of-trend TOX data: (1) The presence of inorganic chloride in the groundwater samples: at inorganic chloride concentrations greater than about 10 parts per million (ppm), apparent TOX values increase with increasing chloride concentration. A parallel observation is the increase in apparent breakthrough of TOX from the first to the second activated-carbon adsorption tubes with increasing inorganic chloride concentration. (2) During the sample preparation step, excessive purging of the adsorption tubes with oxygen pressurization gas after sample loading may cause channeling in the activated-carbon bed. This channeling leads to poor removal of inorganic chloride during the subsequent wash step with aqueous potassium nitrate. The presence of this residual inorganic chloride then produces erroneously high TOX values. Changes in sample preparation were studied to more effectively remove inorganic chloride from the activated carbon adsorption tubes. With the TOX sample preparation equipment and TOX analyzers at WSCF, the nitrate wash recommended by EPA SW-846 method 9020B was found to be inadequate to remove inorganic chloride interference. Increasing the nitrate wash concentration from 10 grams per liter (g/L) to 100 g/L potassium nitrate and increasing the nitrate wash volume from 3 milliliters (mL) to 10 mL effectively removed the inorganic chloride up to at least 100 ppm chloride in the sample matrix. Excessive purging of the adsorption tubes during sample preparation was eliminated. These changes in sample preparation have been incorporated in the analytical procedure. The results using the revised sample preparation procedure show better agreement of TOX values both for replicate analyses of single samples and for the analysis of replicate samples acquired from the same groundwater well. Furthermore, less apparent column breakthrough now occurs with the revised procedure. One additional modification made to sample preparation was to discontinue the treatment of groundwater samples with sodium bisulfite. Sodium bisulfite is used to remove inorganic chlorine from the sample; inorganic chlorine is not expected to be a constituent in these groundwater samples. Several other factors were also investigated as possible sources of anomalous TOX results: (1) Instrument instability: examination of the history of results for TOX laboratory control samples and initial calibration verification standards indicate good long-term precision for the method and instrument. Determination of a method detection limit of 2.3 ppb in a deionized water matrix indicates the method and instrumentation have good stability and repeatability. (2) Non-linear instrument response: the instrument is shown to have good linear response from zero to 200 parts per billion (ppb) TOX. This concentration range encompasses the majority of samples received at WSCF for TOX analysis. (3) Improper sample preservation: ion-chromatographic analysis of several samples wit

DOUGLAS JG; MEZNARICH HD, PHD; OLSEN JR; ROSS GA; STAUFFER M

2008-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "discharge halogen table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Discharge characteristics of atmospheric-pressure radio-frequency glow discharges with argon/nitrogen  

SciTech Connect

In this letter, atmospheric-pressure glow discharges in {gamma} mode with argon/nitrogen as the plasma-forming gas using water-cooled, bare copper electrodes driven by radio-frequency power supply at 13.56 MHz are achieved. The preliminary studies on the discharge characteristics show that, induced by the {alpha}-{gamma} coexisting mode or {gamma} mode discharge of argon, argon-nitrogen mixture with any mixing ratios, even pure nitrogen, can be employed to generate the stable {gamma} mode radio-frequency, atmospheric-pressure glow discharges and the discharge voltage rises with increasing the fraction of nitrogen in the argon-nitrogen mixture for a constant total gas flow rate.

Wang Huabo; Sun Wenting; Li Heping; Bao Chengyu; Gao Xing; Luo Huiying [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); School of Public Health and Family Medicine, Capital University of Medical Sciences, Beijing 100069 (China); Beijing Center for Diseases Control and Prevention, Beijing 100013 (China)

2006-10-16T23:59:59.000Z

382

Discharge ignition characteristics of pulsed radio-frequency glow discharges in atmospheric helium  

Science Journals Connector (OSTI)

An experimental study of radio-frequency (15 MHz) glow discharges in atmospheric helium modulated by pulses with repetition frequency of 500 kHz and duty cycle of 6% and 8% is presented in this paper. In each discharge burst the discharge is restricted to operate in ignition phase with duration of one or two radio-frequency cycles. The ignition characteristics in terms of spatial-temporal evolution of discharge interelectrode structure and optical emission intensity are investigated by time resolved imaging. Optical emission intensities at lines of 706 and 777 nm are used to capture clearly the temporal evolution of energetic electrons and active specie of atom oxygen generated in discharge.

Jianjun Shi; Yeqing Cai; Jie Zhang; Ke Ding; Jing Zhang

2009-01-01T23:59:59.000Z

383

Discharge ignition characteristics of pulsed radio-frequency glow discharges in atmospheric helium  

SciTech Connect

An experimental study of radio-frequency (15 MHz) glow discharges in atmospheric helium modulated by pulses with repetition frequency of 500 kHz and duty cycle of 6% and 8% is presented in this paper. In each discharge burst, the discharge is restricted to operate in ignition phase with duration of one or two radio-frequency cycles. The ignition characteristics in terms of spatial-temporal evolution of discharge interelectrode structure and optical emission intensity are investigated by time resolved imaging. Optical emission intensities at lines of 706 and 777 nm are used to capture clearly the temporal evolution of energetic electrons and active specie of atom oxygen generated in discharge.

Shi Jianjun; Cai Yeqing; Zhang Jie; Ding Ke; Zhang Jing [State Key Lab for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, and College of Science, Donghua University, Shanghai 201620 (China)

2009-07-15T23:59:59.000Z

384

FY 2005 Control Table by Organization  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Organization Organization (dollars in thousands - OMB Scoring) Table of Contents Summary...................................................................................................... 1 Mandatory Funding....................................................................................... 2 National Nuclear Security Administration..................................................... 3 Energy Efficiency and Renewable Energy.................................................... 4 Electric Transmission and Distribution......................................................... 4 Fossil Energy................................................................................................ 5 Nuclear Energy, Science and Technology...................................................

385

Federal Buildings Supplemental Survey -- Publication and Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Overview > Publication and Tables Overview > Publication and Tables Publication and Tables Percent of FBSS Buildings and Floorspace by Selected Agencies, FY 1993 Percent of FBSS buildings and floorspace by selected agencies, FY 1993 Sources: Energy Information Administration, Energy Markets and End Use, 1993 Federal Buildings Supplemental Survey. Separater Bar Separater Bar You have the option of downloading the entire report or selected sections of the report. Full Report - Federal Buildings Supplemental Survey, 1993 (file size 1.15 MB) pages: 183 Selected Sections Main Text (file size 161,775 bytes) pages: 17. - Requires Adobe Acrobat Reader Contacts Preface Contents Introduction At a Glance Highlights on Federal Buildings Detailed Tables Appendices Appendix A. How the Survey Was Conducted (file size 45,191 bytes) pages: 8.

386

Precision Flow Table | Open Energy Information  

Open Energy Info (EERE)

Table Table Jump to: navigation, search Basic Specifications Facility Name Flow Table Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Flow Table Length(m) 2.4 Beam(m) 1.2 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system Cameras None Available Sensors Flow, Pressure Range(psi), Turbulence, Velocity, Wave Probe Data Generation Capability Real-Time No Test Services Test Services Yes Past Pertinent Test Experience Users are District Engineers, Planners, and Engineering Consultants

387

FY 2005 Control Table by Appropriation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appropriation Appropriation (dollars in thousands - OMB Scoring) Table of Contents Summary...................................................................................................... 1 Mandatory Funding....................................................................................... 3 Energy Supply.............................................................................................. 4 Non-Defense site acceleration completion................................................... 5 Uranium enrichment D&D fund.................................................................... 5 Non-Defense environmental services.......................................................... 5 Science.........................................................................................................

388

Commercial Buildings Characteristics 1992 - Publication and Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings Characteristics Data > Publication and Tables Buildings Characteristics Data > Publication and Tables Publication and Tables Percent of Buildings and Floorspace by Census Region, 1992 figure on percent of building and floorspace by census region, 1992 separater bar To View and/or Print Reports (requires Adobe Acrobat Reader) - Download Adobe Acrobat Reader If you experience any difficulties, visit our Technical Frequently Asked Questions. You have the option of downloading the entire report or selected sections of the report. Full Report - Commercial Buildings Characteristics, 1992 with only selected tables (file size 1.34 MB) pages: 157 Selected Sections: Main Text (file size 883,980 bytes) pages: 28, includes the following: Contacts Contents Executive Summary Introduction Background Organization of the report

389

ii Colorado Climate Table of Contents  

E-Print Network (OSTI)

#12;ii Colorado Climate Table of Contents Web: http://climate.atmos.colostate.edu Colorado Climate Spring 2002 Vol. 3, No. 2 Lightning in Colorado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Colorado Climate in Review

390

TableHC11.12.xls  

Annual Energy Outlook 2012 (EIA)

... 2.8 0.3 Q 0.2 Million U.S. Housing Units Home Electronics Usage Indicators Table HC11.12 Home Electronics Usage Indicators by Northeast Census Region,...

391

TableHC6.13.xls  

Annual Energy Outlook 2012 (EIA)

Q 5 or More... 0.3 N Q Q Q Q Lighting Usage Indicators 4 Members 5 or More Members Table HC6.13 Lighting Usage Indicators by...

392

TABLES3.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

S3. Crude Oil and Petroleum Product Imports, 1988 - Present (Thousand Barrels per Day) See footnotes at end of table. 1988 Average ... 300 58 345 343 92 80 0 0 1989...

393

Table of Contents Resilient Sustainable Communities  

E-Print Network (OSTI)

..................................... 5 Onondaga County: Sustainable Development Plan....................... 9 Comparison of the Hazard Mitigation Plan and Onondaga County Sustainable Development Plan DraftTable of Contents Resilient Sustainable Communities: Integrating Hazard Mitigation & Sustainability

394

Table of Contents Chapter and Content Pages  

E-Print Network (OSTI)

#12;Page 2 Table of Contents Chapter and Content Pages 1. Field Trip Itinerary ................................................................................. 7 4. Geologic Framework of the Netherlands Antilles 5. Coral Reefs of the Netherlands Antilles

Fouke, Bruce W.

395

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

2 2 State Energy Data 2011: Consumption Table C9. Electric Power Sector Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Nuclear Electric Power Hydroelectric Power b Biomass Geothermal Solar/PV d Wind Net Electricity Imports e Total f Distillate Fuel Oil Petroleum Coke Residual Fuel Oil Total Wood and Waste c Alabama ............. 586.1 349.4 1.1 0.0 0.0 1.1 411.8 86.3 4.6 0.0 0.0 0.0 0.0 1,439.3 Alaska ................. 6.0 42.3 3.3 0.0 1.5 4.8 0.0 13.1 0.0 0.0 0.0 0.1 (s) 66.3 Arizona ............... 449.9 183.9 0.6 0.0 0.0 0.6 327.3 89.1 2.4 0.0 0.8 2.5 1.5 1,057.9 Arkansas ............. 300.5 109.2 0.5 0.0 0.1 0.6 148.5 28.7 1.3 0.0 0.0 0.0 0.0 588.9 California ............ 19.7 630.1 0.4 11.1 (s) 11.5 383.6 413.4 69.0 122.0 8.4 75.3 20.1 1,753.1 Colorado ............. 362.4 88.1 0.3 0.0 0.0 0.3 0.0 20.2 0.9

396

Microsoft Word - table_03.doc  

Gasoline and Diesel Fuel Update (EIA)

9 9 Table 3. Gross withdrawals and marketed production of natural gas by state and the Gulf of Mexico, 2007-2011 (million cubic feet) 2007 Total R 14,991,891 R 5,681,871 R 1,999,748 1,990,145 24,663,656 3,662,685 143,457 661,168 20,196,346 930,320 19,266,026 2008 Total R 15,134,644 R 5,609,425 R 2,022,228 R 2,869,960 25,636,257 3,638,622 166,909 718,674 21,112,053 953,451 20,158,602 2009 Total R 14,414,287 R 5,674,120 R 2,010,171 R 3,958,315 26,056,893 3,522,090 165,360 721,507 21,647,936 1,024,082 20,623,854 2010 Total R 13,247,498 R 5,834,703 1,916,762 5,817,122 R 26,816,085 3,431,587 165,928 836,698 R 22,381,873 R 1,066,366 R 21,315,507 2011 Total 12,291,070 5,907,919 1,779,055 8,500,983 28,479,026 3,365,313 209,439 867,922 24,036,352 1,134,473 22,901,879

397

Microsoft Word - table_18.doc  

Gasoline and Diesel Fuel Update (EIA)

5 5 Table 18. Natural gas delivered to commercial consumers for the account of others by state, 2008-2012 (volumes in million cubic feet) Alabama 4,999 19.8 5,160 21.2 5,494 20.3 5,313 21.1 5,126 23.8 Alaska 4,274 25.1 2,448 14.7 1,951 12.3 2,208 R 11.4 1,005 5.1 Arizona 2,258 6.9 3,866 12.0 3,605 11.3 3,988 12.2 4,213 13.4 Arkansas 13,112 35.5 14,776 40.6 17,862 44.4 19,402 48.5 24,772 59.8 California 108,738 43.3 111,702 45.1 113,903 45.9 R 112,448 45.7 126,571 50.0 Colorado 3,132 4.8 3,240 5.2 3,118 5.4 3,457 6.2 4,061 7.8 Connecticut 11,032 29.3 12,324 31.0 14,068 34.6 15,519 34.6 14,774 34.9 Delaware 2,611 29.4 5,438 46.5 6,117 50.2 4,879 46.6 5,647 56.3 District of Columbia 15,110 82.1 15,550 83.1 15,507 83.6 14,029

398

Microsoft Word - table_18.doc  

Gasoline and Diesel Fuel Update (EIA)

5 5 Table 18. Natural gas delivered to commercial consumers for the account of others by state, 2007-2011 (volumes in million cubic feet) Alabama 4,722 20.2 4,999 19.8 5,160 21.2 5,494 R 20.3 5,313 21.1 Alaska 4,499 24.0 4,274 25.1 2,448 14.7 1,951 12.3 2,208 13.3 Arizona 2,172 6.6 2,258 6.9 3,866 12.0 3,605 11.3 3,988 12.2 Arkansas 9,534 29.6 13,112 35.5 14,776 40.6 17,862 44.4 19,402 48.5 California 98,776 39.3 108,738 43.3 111,702 45.1 113,903 45.9 112,561 45.7 Colorado 2,721 4.3 3,132 4.8 3,240 5.2 R 3,118 5.4 3,457 6.2 Connecticut 10,252 28.5 11,032 29.3 12,324 31.0 14,068 34.6 15,519 34.6 Delaware 2,178 25.2 2,611 29.4 5,438 46.5 6,117 50.2 4,879 46.6 District of Columbia 15,703 81.4 15,110 82.1 15,550 83.1 15,507 83.6 14,029

399

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

State State Energy Data 2011: Consumption 11 Table C8. Transportation Sector Energy Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Retail Electricity Sales Net Energy Electrical System Energy Losses e Total Aviation Gasoline Distillate Fuel Oil Jet Fuel b LPG c Lubricants Motor Gasoline d Residual Fuel Oil Total Alabama ............. 0.0 23.5 0.4 124.4 13.4 0.3 2.3 316.3 6.7 463.7 0.0 487.2 0.0 487.2 Alaska ................. 0.0 3.5 0.8 44.4 118.2 (s) 0.4 32.9 0.4 197.2 0.0 200.7 0.0 200.7 Arizona ............... 0.0 15.6 1.0 111.3 21.5 0.8 1.6 318.2 0.0 454.5 0.0 470.1 0.0 470.1 Arkansas ............. 0.0 11.5 0.4 99.7 5.9 0.4 2.0 171.3 0.0 279.8 (s) 291.2 (s) 291.2 California ............ 0.0 25.7 1.9 440.9 549.7 3.8 13.3 1,770.1 186.9 2,966.5 2.8 2,995.1 5.5 3,000.5 Colorado ............. 0.0 14.7 0.6 83.2 58.3 0.3

400

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

9 9 Table C6. Commercial Sector Energy Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Hydro- electric Power e Biomass Geothermal Retail Electricity Sales Net Energy g Electrical System Energy Losses h Total g Distillate Fuel Oil Kerosene LPG b Motor Gasoline c Residual Fuel Oil Total d Wood and Waste f Alabama ............. 0.0 25.5 7.0 (s) 2.7 0.2 0.0 10.0 0.0 0.9 0.0 75.9 112.4 144.8 257.2 Alaska ................. 9.4 16.9 10.1 0.1 0.6 0.7 0.0 11.5 0.0 0.3 0.1 9.7 48.0 20.2 68.2 Arizona ............... 0.0 33.1 6.8 (s) 1.5 0.7 0.0 8.9 0.0 0.5 (s) 100.7 143.2 202.3 345.5 Arkansas ............. 0.0 40.6 3.6 (s) 1.2 0.4 0.0 5.2 0.0 1.3 0.0 41.4 88.6 86.1 174.7 California ............ 0.0 250.9 47.9 0.1 8.7 1.4 0.0 58.1 (s) 17.4 0.7 418.9 746.2 809.9 1,556.1 Colorado ............. 3.2 57.6 5.9 (s) 2.9 0.2 0.0 9.1 0.0 1.2 0.2

Note: This page contains sample records for the topic "discharge halogen table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Microsoft Word - table_24.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 Table 24. Average price of natural gas delivered to consumers by state and sector, 2011 (dollars per thousand cubic feet) Alabama 15.09 100.0 12.37 78.9 5.56 23.4 11.45 4.36 Alaska 8.77 100.0 8.77 86.7 3.84 60.8 -- 5.04 Arizona 15.04 100.0 9.99 87.8 6.86 24.2 7.73 5.02 Arkansas 11.46 100.0 8.90 51.5 7.44 2.1 -- 4.73 California 9.93 98.3 8.28 54.3 7.04 4.5 7.32 4.71 Colorado 8.25 100.0 7.84 93.8 6.42 7.6 9.56 4.97 Connecticut 13.83 96.8 8.48 65.4 9.16 31.4 18.59 5.09 Delaware 15.38 100.0 13.58 53.4 11.69 1.6 28.76 W District of Columbia 13.06 75.0 12.24 16.9 -- -- 4.17 -- Florida 18.16 98.1 11.11 39.8 8.07 3.0 4.93 5.86 Georgia 15.72 100.0 10.51 100.0 5.90 18.2 5.57 4.72 Hawaii 55.28 100.0 45.58

402

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

0 0 State Energy Data 2011: Consumption Table C7. Industrial Sector Energy Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Hydro- electric power e Biomass Geo- thermal Retail Electricity Sales Net Energy h,i Electrical System Energy Losses j Total h,i Distillate Fuel Oil LPG b Motor Gasoline c Residual Fuel Oil Other d Total Wood and Waste f Losses and Co- products g Alabama ............. 65.0 179.1 23.9 3.7 3.3 6.7 46.3 83.9 0.0 147.2 0.0 (s) 115.1 590.4 219.5 810.0 Alaska ................. 0.1 253.8 19.2 0.1 1.0 0.0 27.1 47.4 0.0 0.1 0.0 0.0 4.5 306.0 9.4 315.4 Arizona ............... 10.0 22.0 33.2 1.4 4.6 (s) 18.4 57.6 0.0 1.4 3.1 0.2 42.1 136.5 84.7 221.2 Arkansas ............. 5.6 93.1 31.1 2.6 4.0 0.1 17.4 55.1 0.0 72.7 0.0 (s) 58.0 284.5 120.5 405.0 California ............ 35.6 767.4 77.2 23.9 29.6 (s) 312.5

403

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

8 8 State Energy Data 2011: Consumption Table C5. Residential Sector Energy Consumption Estimates, 2011 (Trillion Btu) State Coal a Natural Gas b Petroleum Biomass Geothermal Solar/PV e Retail Electricity Sales Net Energy f Electrical System Energy Losses g Total f Distillate Fuel Oil Kerosene LPG c Total Wood d Alabama ............. 0.0 37.2 0.1 0.1 6.0 6.2 6.0 0.1 0.2 112.6 162.2 214.7 376.9 Alaska ................. 0.0 20.5 8.1 0.1 0.5 8.8 1.9 0.1 (s) 7.3 38.6 15.1 53.7 Arizona ............... 0.0 39.1 (s) (s) 5.5 5.5 2.6 (s) 7.9 112.9 168.0 226.8 394.7 Arkansas ............. 0.0 34.2 0.1 (s) 5.2 5.3 8.6 0.7 0.2 64.1 113.1 133.2 246.3 California ............ 0.0 522.4 0.6 0.6 30.9 32.2 33.3 0.2 43.2 301.6 932.9 583.1 1,516.1 Colorado ............. 0.0 134.2 0.1 (s) 12.3 12.4 8.3 0.2 0.7 62.4 216.5 136.5 353.0 Connecticut ......... 0.0 46.0 59.6

404

Microsoft Word - table_24.doc  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 Table 24. Average price of natural gas delivered to consumers by state and sector, 2012 (dollars per thousand cubic feet) Alabama 16.20 100.0 12.55 76.2 4.35 22.1 17.99 3.09 Alaska 8.47 100.0 8.09 94.9 5.11 100.0 -- 4.32 Arizona 15.75 100.0 9.35 86.6 5.78 21.4 13.19 3.51 Arkansas 11.82 100.0 7.99 40.2 6.38 1.9 9.04 3.19 California 9.14 97.5 7.05 50.0 5.77 4.2 7.01 3.68 Colorado 8.31 100.0 7.58 92.2 5.79 6.8 11.65 W Connecticut 14.17 96.7 8.40 65.1 8.83 32.3 13.70 3.99 Delaware 15.24 100.0 13.31 43.7 11.61 0.3 30.97 -- District of Columbia 12.10 73.9 11.19 17.9 -- -- 9.38 -- Florida 18.31 97.7 10.41 37.0 6.96 2.7 9.83 4.80 Georgia 16.23 100.0 9.74 100.0 4.60 20.0 14.51 3.40 Hawaii 52.86 100.0 47.03

405

Central peaking of magnetized gas discharges  

SciTech Connect

Partially ionized gas discharges used in industry are often driven by radiofrequency (rf) power applied at the periphery of a cylinder. It is found that the plasma density n is usually flat or peaked on axis even if the skin depth of the rf field is thin compared with the chamber radius a. Previous attempts at explaining this did not account for the finite length of the discharge and the boundary conditions at the endplates. A simple 1D model is used to focus on the basic mechanism: the short-circuit effect. It is found that a strong electric field (E-field) scaled to electron temperature T{sub e}, drives the ions inward. The resulting density profile is peaked on axis and has a shape independent of pressure or discharge radius. This universal profile is not affected by a dc magnetic field (B-field) as long as the ion Larmor radius is larger than a.

Chen, Francis F. [Electrical Engineering Department, University of California, Los Angeles, California 90095 (United States)] [Electrical Engineering Department, University of California, Los Angeles, California 90095 (United States); Curreli, Davide [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana Champaign, Urbana, Illinois 61801 (United States)] [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana Champaign, Urbana, Illinois 61801 (United States)

2013-05-15T23:59:59.000Z

406

Characteristics of the Dense Plasma Focus Discharge  

Science Journals Connector (OSTI)

The dense plasma focus discharge is produced in a hydromagnetic coaxial plasma accelerator. The final heating and compression of the plasma is accomplished by a partial conversion of the stored magnetic energy residing in the region behind the current sheath to plasma energy. The electrical behavior of the discharge is examined to determine the fraction of the initial energy involved in mechanical sheath motion inductive storage in the accelerator and Ohmic losses associated with the external and plasma discharge. Many analysis of this kind of datum show no definite correlation between the energy converted and neutron production. Presumably this arises from a lack of information as to how the collapse uses this energy and to the amount of plasma ejected from the dense plasma region during the collapse. From soft x?ray pinhole and Schlieren photographs the collapse and the development of the dense plasma is unquestionably a two?dimensional pinch compression.

Joseph W. Mather; Paul J. Bottoms

1968-01-01T23:59:59.000Z

407

Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal  

SciTech Connect

This paper presents a comparison of impacts of halogen species on the elemental mercury (Hg(0)) oxidation in a real coal-derived flue gas atmosphere. It is reported there is a higher percentage of Hg(0) in the flue gas when burning sub-bituminous coal (herein Powder River Basin (PRB) coal) and lignite, even with the use of selective catalytic reduction (SCR). The higher Hg(0) concentration in the flue gas makes it difficult to use the wet-FGD process for the mercury emission control in coal-fired utility boilers. Investigation of enhanced Hg(0) oxidation by addition of hydrogen halogens (HF, HCl, HBr, and HI) was conducted in a slipstream reactor with and without SCR catalysts when burning PRB coal. Two commercial SCR catalysts were evaluated. SCR catalyst no. 1 showed higher efficiencies of both NO reduction and Hg(0) oxidation than those of SCR catalyst no. 2. NH{sub 3} addition seemed to inhibit the Hg(0) oxidation, which indicated competitive processes between NH{sub 3} reduction and Hg(0) oxidation on the surface of SCR catalysts. The hydrogen halogens, in the order of impact on Hg(0) oxidation, were HBr, HI, and HCl or HF. Addition of HBr at approximately 3 ppm could achieve 80% Hg(0) oxidation. Addition of HI at approximately 5 ppm could achieve 40% Hg(0) oxidation. In comparison to the empty reactor, 40% Hg(0) oxidation could be achieved when HCl addition was up to 300 ppm. The enhanced Hg(0) oxidation by addition of HBr and HI seemed not to be correlated to the catalytic effects by both evaluated SCR catalysts. The effectiveness of conversion of hydrogen halogens to halogen molecules or interhalogens seemed to be attributed to their impacts on Hg(0) oxidation. 30 refs., 4 figs.

Yan Cao; Zhengyang Gao; Jiashun Zhu; Quanhai Wang; Yaji Huang; Chengchung Chiu; Bruce Parker; Paul Chu; Wei-ping Pan [Western Kentucky University (WKU), Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology (ICSET)

2008-01-01T23:59:59.000Z

408

RSE Table 7.5 Relative Standard Errors for Table 7.5  

U.S. Energy Information Administration (EIA) Indexed Site

5 Relative Standard Errors for Table 7.5;" " Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate","Natural ","LPG and" "Characteristic(a)","Electricity","Fuel...

409

RSE Table 10.12 Relative Standard Errors for Table 10.12  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 10.12;" " Unit: Percents." ,,"LPG",,,"Alternative Energy Sources(b)" ,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural...

410

Qualified Energy Conservation Bond State-by-State Summary Tables  

Energy.gov (U.S. Department of Energy (DOE))

Provides a list of qualified energy conservation bond state summary tables. Author: Energy Programs Consortium

411

The effect of spin-orbit splitting on the association kinetics of barrierless halogen atom-hydrocarbon radical reactions.  

SciTech Connect

The effect of the geometry dependence of spin-orbit splitting on transition state theory (TST) predictions for radical-radical recombination rate coefficients is examined. The effects are illustrated with direct ab initio variable-reaction-coordinate (VRC)-TST calculations for the reactions of two types of hydrocarbon radicals (R = CH{sub 3} and CH{sub 2}CHCH{sub 2}) with three halogen atoms (X = F, Cl, and Br). These halogen atoms exhibit a range of spin-orbit interaction strengths, while their interactions with the two hydrocarbon radicals exhibit a range of attractiveness. The transition state dividing surfaces for these barrierless reactions occur over a range of R-X fragment separations ({approx}3-7 {angstrom}) where the magnitude of the spin-orbit splitting is strongly geometry dependent. Perturbative models for incorporating the energetic effect of spin-orbit splitting into barrierless kinetics are presented and tested. Simply neglecting the variation in the spin-orbit splitting is demonstrated to contribute an error of less than 15% to the predicted rate coefficients for all but the CH{sub 2}CHCH{sub 2} + Br reaction, where its neglect increases the rate by up to a factor of 2. For the CH{sub 2}CHCH{sub 2} + Br reaction, the effect of spin-orbit splitting is not perturbative and instead qualitatively changes the long-range interaction potential and association dynamics. The present theoretical predictions are compared with available experimental measurements and previous theoretical work. For the CH{sub 3} + F association reaction, the errors associated with limitations in the basis set and in the active space are studied, and a detailed comparison is made between VRC-TST and rigid rotor-harmonic oscillator variational TST.

Jasper, A. W.; Klippenstein, S. J.; Harding, L. B. (Chemical Sciences and Engineering Division); (SNL)

2010-01-01T23:59:59.000Z

412

Residential Transportation Historical Data Tables for 1983-2001  

U.S. Energy Information Administration (EIA) Indexed Site

RTECS Historical Data Tables RTECS Historical Data Tables Residential Transportation Historical Data Tables Released: May 2008 Below are historical data tables from the Residential Transportation Energy Consumption Survey (RTECS) and Household Vehicles Energy Use: Latest Data & Trends report. These tables cover the trends in energy consumption for household transportation throughout the survey years. The data focus on several important indicators of demand for transportation: number and type of vehicles per household; vehicle-miles traveled per household and per vehicle; fuel consumption; fuel expenditures; and fuel economy. Excel PDF Trends in Households & Vehicles Table 1. Number of Households with Vehicles excel pdf Table 2. Percent of Households with Vehicles excel pdf

413

EIA - Low Economic Growth Case Projection Tables 1990-2030  

Gasoline and Diesel Fuel Update (EIA)

Low Economic Growth Case Projection Tables (1990-2030) Low Economic Growth Case Projection Tables (1990-2030) International Energy Outlook 2006 Low Economic Growth Case Projection Tables (1990-2030) Formats Data Table Titles (1 to 13 complete) Low Economic Growth Case Projection Tables. Need help, contact the National Energy Information Center at 202-586-8800. Low Economic Growth Case Projection Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table C1 World Total Primary Energy Consumption by Region, Low Economic Growth Case Low Economic Growth Case Projection Tables. Need help, contact the National Energy Information Center at 202-586-8800. Low Economic Growth Case Projection Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table C2 World Total Energy Consumption by Region and Fuel, Low Economic Growth Case

414

EIA - Appendix A - Reference Case Projection Tables 1990-2030  

Gasoline and Diesel Fuel Update (EIA)

Tables (1990-2030) Tables (1990-2030) International Energy Outlook 2009 Reference Case Projections Tables (1990-2030) Formats Data Table Titles (1 to 14 complete) Reference Case Projections Tables (1990-2030). Need help, contact the National Energy Information Center at 202-586-8800. Reference Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table A1 World Total Primary Energy Consumption by Region Table A1. World Total Primary Energy Consumption by Region. Need help, contact the National Energy Information Center at 202-586-8800. Table A2 World Total Energy Consumption by Region and Fuel Table A2. World Total Energy Consumption by Region and Fuel. Need help, contact the National Energy Information Center at 202-586-8800.

415

EIA - Appendix D - High Price Case Projections Tables  

Gasoline and Diesel Fuel Update (EIA)

High Price Case Projections Tables (2005-2035) High Price Case Projections Tables (2005-2035) International Energy Outlook 2010 High Oil Price Case Projections Tables (2005-2035) Formats Data Table Titles (1 to 12 complete) High Oil Price Case Projections Tables (1990-2030). Need help, contact the National Energy Information Center at 202-586-8800. Appendix D. High Oil Price Case Projections Tables (1990-2030). Need help, contact the National Energy Information Center at 202-586-8800. Table D1 World Total Primary Energy Consumption by Region Table D1. World Total Primary Energy Consumption by Region. Need help, contact the National Energy Information Center at 202-586-8800. Table D2 World Total Energy Consumption by Region and Fuel Table D2. World total Energy Consumption by Region and Fuel. Need help, contact the National Energy Information Center at 202-586-8800.

416

EIA - Appendix A - Reference Case Projection Tables 1990-2030  

Gasoline and Diesel Fuel Update (EIA)

Reference Case Projections Tables (1990-2030) Reference Case Projections Tables (1990-2030) International Energy Outlook 2008 Reference Case Projections Tables (1990-2030) Formats Data Table Titles (1 to 14 complete) Reference Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Reference Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table A1 World Total Primary Energy Consumption by Region Table A1. World Total Primary Energy Consumption by Region. Need help, contact the National Energy Information Center at 202-586-8800. Table A2 World Total Energy Consumption by Region and Fuel Table A2. World Total Energy Consumption by Region and Fuel. Need help, contact the National Energy Information Center at 202-586-8800.

417

EIA - International Energy Outlook 2007-Reference Case Projection Tables  

Gasoline and Diesel Fuel Update (EIA)

Reference Case Projections Tables (1990-2030) Reference Case Projections Tables (1990-2030) International Energy Outlook 2007 Reference Case Projections Tables (1990-2030) Formats Data Table Titles (1 to 14 complete) Reference Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Reference Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table A1 World Total Primary Energy Consumption by Region Table A1. World Total Primary Energy Consumption by Region. Need help, contact the National Energy Information Center at 202-586-8800. Table A2 World Total Energy Consumption by Region and Fuel Table A2. World Total Energy Consumption by Region and Fuel. Need help, contact the National Energy Information Center at 202-586-8800.

418

Influence of discharge gap on the discharge stability in a short vacuum arc ion source  

SciTech Connect

The influence of the discharge gap between cathode and anode on the discharge stability in a short vacuum arc (SVA) ion source is presented in this paper. Planar cathode and cylindrical hollow anode made of titanium are investigated. There is a great need in present accelerator injection research for SVA source to produce the small deviation of the ion current beam. Current research shows that increasing the short discharge gap can reduce the level of ion current deviation and ion charge deviation from 29% and 31% to 15% and 17%, respectively. A microplasma plume generation mechanism in SVA and scanning electron microscopic results can be used to explain this interesting phenomenon.

Chen, L. [Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Zhang, G. L.; Jin, D. Z.; Dai, J. Y. [Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Yang, L. [Institute of Nuclear Science and Technology, Louzhou University, Lanzhou, Gansu 730000 (China)

2012-02-15T23:59:59.000Z

419

High intensity discharge device containing oxytrihalides  

DOE Patents (OSTI)

A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO[sub 2], with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube. 7 figs.

Lapatovich, W.P.; Keeffe, W.M.; Liebermann, R.W.; Maya, J.

1987-06-09T23:59:59.000Z

420

High intensity discharge device containing oxytrihalides  

DOE Patents (OSTI)

A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO.sub.2, with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube.

Lapatovich, Walter P. (Hudson, MA); Keeffe, William M. (Rockport, MA); Liebermann, Richard W. (Danvers, MA); Maya, Jakob (Brookline, MA)

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "discharge halogen table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

RSE Table 3.5 Relative Standard Errors for Table 3.5  

U.S. Energy Information Administration (EIA) Indexed Site

5 Relative Standard Errors for Table 3.5;" 5 Relative Standard Errors for Table 3.5;" " Unit: Percents." " "," "," "," "," "," "," "," ","Waste",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars" "NAICS"," "," ","Furnace/Coke","Waste","Petroleum","or","Wood Chips,","and Waste" "Code(a)","Subsector and Industry","Total","Oven Gases","Gas","Coke","Black Liquor","Bark","Materials"

422

Shake Table for Calibration of Velocity Pickups  

Science Journals Connector (OSTI)

A Shake Table was developed and built by the Engineering Research Institute to calibrate low?frequency (0 to 200 cps) velocity pickups. The platform that supports the pickup to be tested is 6 in. in diameter and will support a load of approximately 30 lb. This makes the use of a table limited by force it can deliver except at very low frequencies. The table will operate with a 10 lb load to a frequency of 150 cps. The platform displacement is 0.125 in. peak?to?peak. The platform and its load are supported by air bellows. This is an improvement over a spring support due to the fact that it has greater damping and it is more easily adjusted to different loads. The adjustment consists of just putting more air in the bellows. The table is driven by a dc push?pull power amplifier. This delivers a current to a tapped coil on the Shake Table that is located in a magnetic field. The field is set up by a coil energized by 24 volts. The power amplifier can be driven by any convenient source delivering about 1 volt. (Parts of this research were supported by Tri?service Contract No. DA?36?039?sc?52654.)

J. W. Wescott; J. H. Prout; W. H. Follett

1957-01-01T23:59:59.000Z

423

EIA - Supplemental Tables to the Annual Energy Outlook 2008  

Gasoline and Diesel Fuel Update (EIA)

Supplemental Tables to the AEO 2008 Supplemental Tables to the AEO 2008 Supplemental Tables to the Annual Energy Outlook 2008 The AEO Supplemental tables were generated for the reference case of the Annual Energy Outlook 2008 (AEO2008) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 2005 to 2030. Most of the tables were not published in the AEO2008, but contain regional and other more detailed projections underlying the AEO2008 projections. The files containing these tables are in spreadsheet format. A total of one hundred and seventeen tables are presented. The data for tables 10 and 20 match those published in AEO2008 Appendix tables A2 and A3, respectively. Projections for 2007 and 2008 may differ slightly from values published in the Short Term Energy Outlook, which are the official EIA short-term projections and are based on more current information than the AEO.

424

EIA - High Economic Growth Case Projection Tables 1990-2030  

Gasoline and Diesel Fuel Update (EIA)

High Economic Growth Case Projection Tables (1990-2030) High Economic Growth Case Projection Tables (1990-2030) International Energy Outlook 2006 High Economic Growth Case Projection Tables (1990-2030) Formats Data Table Titles (1 to 13 complete) High Economic Growth Case Projection Tables. Need help, contact the National Energy Information Center at 202-586-8800. High Economic Growth Case Projection Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table B1 World Total Primary Energy Consumption by Region, High Economic Growth Case High Economic Growth Case Projection Tables. Need help, contact the National Energy Information Center at 202-586-8800. High Economic Growth Case Projection Tables. Need help, contact the National Energy Information Center at 202-586-8800.

425

Electrochemical and Electro-Discharge Machining with a Threshold Current  

Science Journals Connector (OSTI)

......machining and electro-discharge machining of a metal...problems in which the electric potential satisfies...ECM), electro-discharge machining (EDM...method of electrochemical arc machining (ECAM...depending upon the local electric current density. In......

A. A. LACEY; M. SHILLOR

1987-01-01T23:59:59.000Z

426

CONTROL OF AN ARC DISCHARGE BY MEANS OF A GRID  

Science Journals Connector (OSTI)

CONTROL OF AN ARC DISCHARGE BY MEANS OF A GRID Albert...Research Laboratory, General Electric Co., Schenectady , N. Y. CONTROL OF AN ARC DISCHARGE BY MEANS OF A GRID. | Research Laboratory, General Electric Co., Schenectady , N...

Albert W. Hull; Irving Langmuir

1929-01-01T23:59:59.000Z

427

Discharge convective instability as modifier of nonlinear hydrodynamic spectrum  

E-Print Network (OSTI)

Discharge source is considered as modifier of flow hydrodynamic spectrum. Characteristic frequency of nonlinear spectrum and spectrum power were determined under conditions of arc sliding discharge in supersonic flow. Two stages of discharge were defined: sliding stage and still stage. It was found that stage transition occurs due to convective instability of discharge. Fraction of sliding stage in overall discharge duration is determined by averaged current that is general stable discharge parameter. This phenomenon gives opportunity to control power of pressure fluctuations spectrum. Theoretical insight of field and hydrodynamic factors influencing on pulsations frequency was achieved. Hydrodynamic resistance of discharge region and holding cathode electric field turned out to be basic factors of frequency modification. Corresponding experimental verification was taken. Basic frequency law was determined for several discharge regimes.

Sergey Kamenshchikov

2012-04-26T23:59:59.000Z

428

Montana Facilities Which Do Not Discharge Process Wastewater...  

Open Energy Info (EERE)

Which Do Not Discharge Process Wastewater (MDEQ Form 2E) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Montana Facilities Which Do Not Discharge Process...

429

A power supply unit for discharging the plasma electron source  

Science Journals Connector (OSTI)

A power supply unit for discharging a low-temperature plasma generator based on discharge in the crossed electric and magnetic fields is described. The unit operates in a stationary mode with a preset stabiliz...

D. A. Antonovich; V. A. Gruzdev; V. G. Zalesskii

430

FY 2013 Control Table by Appropriation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summary Control Table by Appropriation Summary Control Table by Appropriation (dollars in thousands - OMB Scoring) FY 2011 FY 2012 FY 2013 Current Enacted Congressional Approp. Approp. * Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy efficiency and renewable energy......................................... 1,771,721 1,809,638 2,337,000 +527,362 +29.1% Electricity delivery and energy reliability.......................................... 138,170 139,103 143,015 +3,912 +2.8% Nuclear energy................................................................................ 717,817 765,391 770,445 +5,054 +0.7% Fossil energy programs Clean coal technology..................................................................

431

Particle Data Group - 2012 Reviews, Tables, Plots  

NLE Websites -- All DOE Office Websites (Extended Search)

Downloadable figures are available for these reviews. Complete list of Reviews in the Particle Listings.. Categories: Constants, Units, Atomic and Nuclear Properties Physical Constants (rev.) Astrophysical Constants International System of units (SI) Periodic table of the elements (rev.) Electronic structure of the elements (rev.) Atomic and nuclear properties of materials PDF / Interactive Electromagnetic relations Naming scheme for hadrons Collapse table Standard Model and Related Topics Quantum Chromodynamics (rev.) Electroweak model and constraints on new physics (rev.) Cabibbo-Kobayashi-Maskawa quark-mixing matrix (rev.) CP violation (rev.) Neutrino mass, mixing, and oscillations (rev.) Quark model (rev.) Grand Unified Theories (rev.) Heavy-Quark and Soft-Collinear Effective Theory (new)

432

FY 2009 Control Table by Appropriation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Control Table by Appropriation Control Table by Appropriation (dollars in thousands - OMB Scoring) FY 2007 FY 2008 FY 2009 Current Current Congressional Op. Plan Approp. Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy efficiency and renewable energy.......................... -- 1,722,407 1,255,393 -467,014 -27.1% Electricity delivery and energy reliability........................... -- 138,556 134,000 -4,556 -3.3% Nuclear energy.................................................................. -- 961,665 853,644 -108,021 -11.2% Legacy management........................................................ -- 33,872 -- -33,872 -100.0% Energy supply and Conservation...................................... 2,145,149 -- -- -- -- Fossil energy programs

433

Saddle-field glow-discharge deposition of amorphous semiconductors  

SciTech Connect

The authors present a dc saddle-field glow-discharge deposition procedure which combines the positive attributes of the conventional dc and rf glow-discharge techniques. Preliminary mass spectra analyses of both silane and methane glow-discharges demonstrates that ions constitute a significant fraction of the species reaching the film surface. Growth rate analyses suggest that ions play a significant role in the saddle-field glow-discharge deposition of amorphous semiconducting films.

Gaspari, F.; Sidhu, L.S.; O`Leary, S.K.; Zukotynski, S. [Univ. of Toronto, Ontario (Canada). Dept. of Electrical and Computer Engineering

1996-12-31T23:59:59.000Z

434

Continuous nanoparticle generation and assembly by atmospheric pressure arc discharge  

E-Print Network (OSTI)

Continuous nanoparticle generation and assembly by atmospheric pressure arc discharge Jesse J. Cole a dc arc discharge plasma. The particles are positively charged by the arc and form a room temperature precursor materials.5,6 High temperature plasmas in the form of dc arc discharges led to the discovery

Jacobs, Heiko O.

435

Frequency spectrum analysis of electromagnetic waves radiated by electrical discharges  

Science Journals Connector (OSTI)

In this study, we analyzed the frequency spectrum of the electromagnetic waves radiated by an electric discharge as a basic method for developing an on-line diagnostic technique for power equipment installed inside closed-switchboards. In order to simulate ... Keywords: closed-switchboard, electromagnetic shielding room, electromagnetic wave, frequency spectrum, local discharge, series arc discharge

Hyeon-Kyu Cha; Sun-Jae Kim; Dae-Won Park; Gyung-Suk Kil

2011-03-01T23:59:59.000Z

436

Multiobjective optimization of the dry electric discharge machining process  

E-Print Network (OSTI)

January 15, 2009 Abstract Dry Electric Discharge Machining (EDM) is an environment­friendly modification: Electric Discharge Machining (EDM), Dry EDM, Design of experiments, Multi­objective optimization, NSGA II;1 Introduction Electric Discharge Machining (EDM) is a thermo­electric process in which material removal takes

Paris-Sud XI, Université de

437

EIA - Annual Energy Outlook (AEO) 2013 Data Tables  

Gasoline and Diesel Fuel Update (EIA)

2013 (See release cycle changes) | correction | full 2013 (See release cycle changes) | correction | full report Overview Data Reference Case Side Cases Interactive Table Viewer Topics Source Oil/Liquids Natural Gas Coal Electricity Renewable/Alternative Nuclear Sector Residential Commercial Industrial Transportation Energy Demand Other Emissions Prices Macroeconomic International Efficiency Publication Chapter Market Trends Issues in Focus Legislation & Regulations Comparison Appendices View All Filter By Source Oil Natural Gas Coal Electricity Renewable/Alternative Nuclear Sector Residential Commercial Industrial Transportation Other Topics Emissions Prices Macroeconomic International Data TablesAll Tables Reference case summary & detailed tables... + EXPAND ALL Summary Case Tables additional formats Table 1. Total Energy Supply, Disposition, and Price Summary XLS

438

Gas mixture for diffuse-discharge switch  

DOE Patents (OSTI)

Gaseous medium in a diffuse-discharge switch of a high-energy pulse generator is formed of argon combined with a compound selected from the group consisting of CF/sub 4/, C/sub 2/F/sub 6/, C/sub 3/F/sub 8/, n-C/sub 4/F/sub 10/, WF/sub 6/, (CF/sub 3/)/sub 2/S and (CF/sub 3/)/sub 2/O.

Christophorou, L.G.; Carter, J.G.; Hunter, S.R.

1982-08-31T23:59:59.000Z

439

ii Colorado Climate Table of Contents  

E-Print Network (OSTI)

#12;ii Colorado Climate Table of Contents Web: http://climate.atmos.colostate.edu Colorado Climate Winter 2001-2002 Vol. 3, No. 1 Why Is the Park Range Colorado's Snowfall Capital? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 The Cold-Land Processes Field Experiment: North-Central Colorado

440

ii Colorado Climate Table of Contents  

E-Print Network (OSTI)

#12;ii Colorado Climate Table of Contents An Unusually Heavy Snowfall in North Central Colorado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 A Brief History of Colorado's Most Notable Snowstorms" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Colorado Climate Water Year 2003 Vol. 4, No. 1-4 If you have a photo or slide that your would like

Note: This page contains sample records for the topic "discharge halogen table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Student Mobile Device Survey Table of Contents  

E-Print Network (OSTI)

CiCS. Student Mobile Device Survey 2011 Table of Contents Section Number Subject Page 1 With little information and supporting evidence on student ownership and usage of mobile devices at the University of Sheffield, making decisions on our services and support for mobile devices has been based

Martin, Stephen John

442

Table of Contents Dean's Seminar 1  

E-Print Network (OSTI)

-ray Training and Technique Replica) peeking out from a dental chair, radiology resembles more of a fun house than a diagnostic screening room. "It is a weird area," admitted Kelly Wiss, lead dental radiologyTable of Contents Dean's Seminar 1 Radiology 2 IPE Opportunity 3 Recent Photos 4 Short Takes *The

Chapman, Michael S.

443

Table of Contents Division Organization 2  

E-Print Network (OSTI)

National Initiative for Cybersecurity Education (NICE) 12 Smart Grid Cyber Security 13 Supply Chain Risk Security and Forensics 33 NIST Cloud Computing Project 34 Policy Machine 35 Security for Grid#12;2002 Table of Contents Welcome 1 Division Organization 2 The Computer Security Division

444

STUDENT HANDBOOK Table of Contents Page Number  

E-Print Network (OSTI)

STUDENT HANDBOOK Campus #12;Table of Contents Page Number Welcome 1 The School 1 Mission Statement Student Resources 8 Financial Aid and Funding Sources Writing Supports 9 Special Needs Computers Libraries RefWorks 10 Student Services 11 Administrative Information 14 Student ID, and Email Accounts U of R

Saskatchewan, University of

445

FIRE PREVENTION AND PROTECTION Table Of Contents  

E-Print Network (OSTI)

EM 385-1-1 XX Sep 13 i Section 9 FIRE PREVENTION AND PROTECTION Table Of Contents Section: Page 09 and Melting Kettles.............................9-25 09.F First response Fire Protection FIRE PREVENTION AND PROTECTION 09.A GENERAL 09.A.01 A fire prevention plan shall be written for all

US Army Corps of Engineers

446

CONTENTDM ADVANCED SEARCH TUTORIAL Table of Contents  

E-Print Network (OSTI)

1 CONTENTDM ADVANCED SEARCH TUTORIAL Table of Contents 1. Accessing the Advanced Search Page 1 2. Navigating the Advanced Search Page 3 3. Selecting your collection to search Advanced Search from the right navigation menu. 2 This will take you into the CONTENTdm database

O'Laughlin, Jay

447

Microsoft Word - table_B2.doc  

U.S. Energy Information Administration (EIA) Indexed Site

8 Table B2. Thermal conversion factors and data, 2009-2013 Conversion Factor (Btu per cubic foot) Production Marketed 1,101 1,098 1,142 R 1,091 1,100 NGPL Production 2,627 2,598...

448

Highperformance routingtable lookup  

Science Journals Connector (OSTI)

...is a trie to which trie completion is applied. Three levels...in a hit and, thus, an index into the next hop table, or in a miss and, thus, an index into an array of chunks...In the rst case, an index to an array of chunks of...

2000-01-01T23:59:59.000Z

449

General Conditions Applicable to Water Discharge Permits and Procedures and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

General Conditions Applicable to Water Discharge Permits and General Conditions Applicable to Water Discharge Permits and Procedures and Criteria for Issuing Water Discharge Permits (Connecticut) General Conditions Applicable to Water Discharge Permits and Procedures and Criteria for Issuing Water Discharge Permits (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection

450

Table 24. Refining Industry Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

- Corrections to Tables 24 to 32 - Corrections to Tables 24 to 32 Table 24. Refining Industry Energy Consumption 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2002- 2025 Carbon Dioxide Emissions 4/ (million metric tons) 190.4 185.7 188.0 191.3 207.3 215.6 220.0 222.8 225.1 226.3 228.0 230.7 234.1 237.5 238.5 239.4 239.4 238.6 240.6 240.5 242.2 244.2 245.9 246.3 246.6 1.2% Table 25. Food Industry Energy Consumption 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2002- 2025 Carbon Dioxide Emissions 3/ (million metric tons) 87.8 89.4 87.5 87.8 89.2 90.2 90.9 91.4 92.2 93.5 94.5 95.7 96.7 97.7 98.6 99.6 100.8 101.9 102.9 104.1 105.4 107.0 108.7 110.3 112.1 1.0% Table 26. Paper Industry Energy Consumption 2001 2002 2003 2004 2005 2006 2007

451

EIA - Appendix E-Low Price Case Projections Tables  

Gasoline and Diesel Fuel Update (EIA)

10 > Low Price Case Projections (2005-2035) 10 > Low Price Case Projections (2005-2035) International Energy Outlook 2010 Low Oil Price Case Projections Tables (2005-2035) Formats Table Data Titles (1 to 12 complete) Low Oil Price Case Projections Tables (1990-2030). Need help, contact the National Energy Information Center at 202-586-8800. Appendix E. Low Oil Price Case Projections Tables (1990-2030). Need help, contact the National Energy Information Center at 202-586-8800. Table E1 World Total Energy Consumption by Region Table E1. World Total Energy Consumption by Region. Need help, contact the National Energy Information Center at 202-586-8800. Table E2 World Total Energy Consumption by Region and Fuel Table E2. World Total Energy Consumption by Region and Fuel. Need help, contact the National Energy Information Center at 202-586-8800.

452

Supplemental Tables to the Annual Energy Outlook 2003  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2003 Annual Energy Outlook 2003 Assumptions to the AEO2003 Nattional Energy Modeling System/Annual Energy Outlook 2003 Conference E-Mail Subscription Lists Forecasts Home Page Supplement Tables to the Annual Energy Outlook 2003 AEO Supplement Reference Case Forecast (2000-2025) - (HTML) Table 1. Energy Consumption by Source and Sector (New England) Table 2. Energy Consumption by Source and Sector (Middle Atlantic) Table 3. Energy Consumption by Source and Sector (East North Central) Table 4. Energy Consumption by Source and Sector (West North Central) Table 5. Energy Consumption by Source and Sector (South Atlantic) Table 6. Energy Consumption by Source and Sector (East South Central) Table 7. Energy Consumption by Source and Sector (West South Central)

453

Petroleum Products Table 31. Motor Gasoline Prices by Grade...  

Annual Energy Outlook 2012 (EIA)

99.2 - 105.3 See footnotes at end of table. 56 Energy Information AdministrationPetroleum Marketing Annual 2000 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD...

454

Petroleum Products Table 31. Motor Gasoline Prices by Grade...  

Gasoline and Diesel Fuel Update (EIA)

66.6 - 72.3 See footnotes at end of table. 56 Energy Information Administration Petroleum Marketing Annual 1995 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD...

455

Petroleum Products Table 43. Refiner Motor Gasoline Volumes...  

Annual Energy Outlook 2012 (EIA)

133.6 - 276.4 See footnotes at end of table. 220 Energy Information AdministrationPetroleum Marketing Annual 2000 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type,...

456

Petroleum Products Table 43. Refiner Motor Gasoline Volumes...  

Annual Energy Outlook 2012 (EIA)

201.3 - 453.3 See footnotes at end of table. 262 Energy Information Administration Petroleum Marketing Annual 1995 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type,...

457

Fusion Tables : new ways to collaborate on structured data  

E-Print Network (OSTI)

Fusion Tables allows data collaborators to create, merge, navigate and set access control permissions on structured data. This thesis focuses on the collaboration tools that were added to Googles Fusion Tables. The ...

Kidon, Jonathan Goldberg

2010-01-01T23:59:59.000Z

458

Sensitive glow discharge ion source for aerosol and gas analysis  

DOE Patents (OSTI)

A high sensitivity glow discharge ion source system for analyzing particles includes an aerodynamic lens having a plurality of constrictions for receiving an aerosol including at least one analyte particle in a carrier gas and focusing the analyte particles into a collimated particle beam. A separator separates the carrier gas from the analyte particle beam, wherein the analyte particle beam or vapors derived from the analyte particle beam are selectively transmitted out of from the separator. A glow discharge ionization source includes a discharge chamber having an entrance orifice for receiving the analyte particle beam or analyte vapors, and a target electrode and discharge electrode therein. An electric field applied between the target electrode and discharge electrode generates an analyte ion stream from the analyte vapors, which is directed out of the discharge chamber through an exit orifice, such as to a mass spectrometer. High analyte sensitivity is obtained by pumping the discharge chamber exclusively through the exit orifice and the entrance orifice.

Reilly, Peter T. A. (Knoxville, TN)

2007-08-14T23:59:59.000Z

459

RSE Table 3.2 Relative Standard Errors for Table 3.2  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 3.2;" 2 Relative Standard Errors for Table 3.2;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," " "NAICS"," "," ","Net","Residual","Distillate","Natural","LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",4,5,25,20,5,27,6,0,10

460

RSE Table 5.2 Relative Standard Errors for Table 5.2  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 5.2;" 2 Relative Standard Errors for Table 5.2;" " Unit: Percents." " "," "," ",," ","Distillate"," "," ",," " " "," ",,,,"Fuel Oil",,,"Coal" "NAICS"," "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," " "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Other(f)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES"

Note: This page contains sample records for the topic "discharge halogen table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

RSE Table 7.3 Relative Standard Errors for Table 7.3  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 7.3;" 3 Relative Standard Errors for Table 7.3;" " Unit: Percents." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources" " "," ","Electricity","from Local","Other than","Natural Gas","from Local","Other than","Steam","from Local","Other than"

462

RSE Table 5.4 Relative Standard Errors for Table 5.4  

U.S. Energy Information Administration (EIA) Indexed Site

4 Relative Standard Errors for Table 5.4;" 4 Relative Standard Errors for Table 5.4;" " Unit: Percents." " "," ",," ","Distillate"," "," " " "," ","Net Demand",,"Fuel Oil",,,"Coal" "NAICS"," ","for ","Residual","and","Natural ","LPG and","(excluding Coal" "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"TOTAL FUEL CONSUMPTION",2,3,6,2,3,9

463

RSE Table 7.9 Relative Standard Errors for Table 7.9  

U.S. Energy Information Administration (EIA) Indexed Site

9 Relative Standard Errors for Table 7.9;" 9 Relative Standard Errors for Table 7.9;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," " "NAICS"," "," ",,"Residual","Distillate","Natural ","LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","and Breeze","Other(e)" ,,"Total United States" 311,"Food",4,4,24,21,5,23,7,0,20

464

RSE Table 1.2 Relative Standard Errors for Table 1.2  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 1.2;" 2 Relative Standard Errors for Table 1.2;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," "," " " "," "," ",," "," ",," "," ",," ","Shipments" "NAICS"," ",,"Net","Residual","Distillate","Natural","LPG and",,"Coke and"," ","of Energy Sources" "Code(a)","Subsector and Industry","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

465

RSE Table 7.7 Relative Standard Errors for Table 7.7  

U.S. Energy Information Administration (EIA) Indexed Site

7 Relative Standard Errors for Table 7.7;" 7 Relative Standard Errors for Table 7.7;" " Unit: Percents." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,,,,,,,,," " " "," ",,,"Electricity",,,"Natural Gas",,,"Steam" " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources" "NAICS"," ","Electricity","from Local","Other than","Natural Gas","from Local","Other than","Steam","from Local","Other than"

466

ITO-free organic solar cells with roll-to-roll coated organic functional layers from non-halogenated solvents  

Science Journals Connector (OSTI)

Abstract This work reports on indium tin oxide (ITO)-free organic solar cells with roll to roll (R2R) processed organic functional layers. The device stack comprises a chromiumaluminumchromium (CrAlCr) electron contact layer on a polyethylene terephthalate (PET) film, a photoactive layer of poly(3-hexylthiophene) (P3HT): (6,6)-phenyl C61 butyric acid methyl ester (PCBM), a hole transport layer of Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) and a silver (Ag) grid for current collection. For the photoactive layer the non-halogenated solvent o-Xylene was used in order to reduce the impact on health and environment for R2R coating on ambient atmospheric conditions. The CrAlCr layers were sputtered onto the PET rolls in a batch process while the photoactive layer as well as the hole transport layer were applied in a continuous R2R process by slot die coating. The Ag grid was either thermally evaporated through a shadow mask as reference process or deposited by aerosol printing as a more production compatible process. Device efficiencies up to 2.9% on an active area of 1.1cm2 were obtained with no difference for the method of grid processing. These experimental results demonstrate that R2R coated organic functional layers in ITO-free devices obtain the same device performance as compared to spin coated laboratory cells.

Deepak Kaduwal; Hans-Frieder Schleiermacher; Jan Schulz-Gericke; Thomas Kroyer; Birger Zimmermann; Uli Wrfel

2014-01-01T23:59:59.000Z

467

Environmental Regulatory Update Table, January/February 1995  

SciTech Connect

The Environmental Regulatory Update Table provides information on regulatory initiatives impacting environmental, health, and safety management responsibilities. the table is updated bi-monthly with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M.; Hawkins, G.T.; Bock, R.E.; Mayer, S.J.; Salk, M.S.

1995-03-01T23:59:59.000Z

468

Analysis of radiofrequency discharges in plasma  

DOE Patents (OSTI)

Separation of laser optogalvanic signals in plasma into two components: (1) an ionization rate change component, and (2) a photoacoustic mediated component. This separation of components may be performed even when the two components overlap in time, by measuring time-resolved laser optogalvanic signals in an rf discharge plasma as the rf frequency is varied near the electrical resonance peak of the plasma and associated driving/detecting circuits. A novel spectrometer may be constructed to make these measurements. Such a spectrometer would be useful in better understanding and controlling such processes as plasma etching and plasma deposition. 15 figs.

Kumar, D.; McGlynn, S.P.

1992-08-04T23:59:59.000Z

469

Analysis of radiofrequency discharges in plasma  

DOE Patents (OSTI)

Separation of laser optogalvanic signals in plasma into two components: (1) an ionization rate change component, and (2) a photoacoustic mediated component. This separation of components may be performed even when the two components overlap in time, by measuring time-resolved laser optogalvanic signals in an rf discharge plasma as the rf frequency is varied near the electrical resonance peak of the plasma and associated driving/detecting circuits. A novel spectrometer may be constructed to make these measurements. Such a spectrometer would be useful in better understanding and controlling such processes as plasma etching and plasma deposition.

Kumar, Devendra (Baton Rouge, LA); McGlynn, Sean P. (Baton Rouge, LA)

1992-01-01T23:59:59.000Z

470

Un exemple de conversion d'une table de production en volume en tables de production en biomasse  

E-Print Network (OSTI)

Un exemple de conversion d'une table de production en volume en tables de production en biomasse secteur ligérien, proposée par PARD? en 1962, est convertie en quatre tables de production en biomasse correspondant chacune à une partie de l'arbre ou à l'arbre entier, biomasse foliaire exclue. La conversion est

Paris-Sud XI, Université de

471

FY 2010 Control Table by Appropriation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Control Table by Appropriation Control Table by Appropriation (dollars in thousands - OMB Scoring) FY 2008 FY 2009 FY 2009 FY 2010 Current Current Current Congressional Approp. Approp. Recovery Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy efficiency and renewable energy.......................................... 1,704,112 2,178,540 16,800,000 2,318,602 +140,062 +6.4% Electricity delivery and energy reliability............................................ 136,170 137,000 4,500,000 208,008 +71,008 +51.8% Nuclear energy................................................................................... 960,903 792,000 -- 761,274 -30,726 -3.9% Legacy management.......................................................................... 33,872 -- -- --

472

FY 2012 Control Table by Organization  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 Summary Control Table by Organization 2 Summary Control Table by Organization (dollars in thousands - OMB Scoring) FY 2010 FY 2011 FY 2011 FY 2012 Current Congressional Annualized Congressional Approp. Request CR Request $ % Discretionary Summary By Organization Department Of Energy By Organization National Nuclear Security Administration Weapons Activities * ............................................................................. 6,386,371 7,008,835 7,008,835 7,629,716 +620,881 +8.9% Defense Nuclear Nonproliferation * ...................................................... 2,131,382 2,687,167 2,136,709 2,549,492 -137,675 -5.1% Naval Reactors * ................................................................................... 945,133 1,070,486 945,133 1,153,662 +83,176 +7.8% Office of the Administrator * ................................................................. 410,754 448,267 410,754 450,060

473

Computers in Commercial Buildings - Table 2  

U.S. Energy Information Administration (EIA) Indexed Site

EIA Home > Commercial Home > Data Reports > EIA Home > Commercial Home > Data Reports > Computers in Commercial Buildings >Table 2 Table 2. Photocopiers in Commercial Buildings, 1999 Number of Buildings (thousand) Total Floorspace (million square feet) Number of Employees (thousand) Total Photocopiers (thousand) Photocopiers per Million Square Feet Photocopiers per Thousand Employees All Buildings 4,657 67,338 81,852 4,934 73 60 Principal Building Activity Education 327 8,651 8,927 433 50 48 Food Sales 174 994 980 41 42 42 Food Service 349 1,851 4,031 Q Q 26 Health Care 127 2,918 6,219 401 138 65 Inpatient 11 1,865 3,350 187 100 56 Outpatient 116 1,053 2,869 214 204 75 Lodging 153 4,521 2,356 78 17 33 Mercantile 667 10,398 11,384 526 51 46

474

FY 2011 Statistical Table by Appropriation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2009 FY 2009 FY 2010 FY 2011 Current Current Current Congressional Approp. Recovery Approp. Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy efficiency and renewable energy........................................... 2,156,865 16,771,907 2,242,500 2,355,473 +112,973 +5.0% Electricity delivery and energy reliability............................................. 134,629 4,495,712 171,982 185,930 +13,948 +8.1% Nuclear energy................................................................................... 791,444 0 786,637 824,052 +37,415 +4.8% Fossil energy programs Clean coal technology..................................................................... 0 0 0 0

475

FY 2007 Control Table by Organization  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Control Table by Organization Control Table by Organization (dollars in thousands - OMB Scoring) FY 2005 FY 2006 FY 2007 Current Current Congressional Approp. Approp. Request $ % Discretionary Summary By Organization National Security Weapons................................................................................. 6,625,542 6,369,597 6,407,889 +38,292 +0.6% Defense Nuclear Nonproliferation.......................................... 1,507,966 1,614,839 1,726,213 +111,374 +6.9% Naval Reactors........................................................................ 801,437 781,605 795,133 +13,528 +1.7% Office of the Administrator...................................................... 363,350 338,450 386,576 +48,126 +14.2% Total, National Nuclear Security Administration........................ 9,298,295 9,104,491

476

FY 2009 Control Table by Organization  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 Control Table by Organization 9 Control Table by Organization (dollars in thousands - OMB Scoring) FY 2007 FY 2008 FY 2009 Current Current Congressional Op. Plan Approp. Request $ % Discretionary Summary By Organization National Security Weapons................................................................................. 6,258,583 6,297,466 6,618,079 +320,613 +5.1% Defense Nuclear Nonproliferation........................................... 1,824,202 1,335,996 1,247,048 -88,948 -6.7% Naval Reactors....................................................................... 781,800 774,686 828,054 +53,368 +6.9% Office of the Administrator...................................................... 358,291 402,137 404,081 +1,944 +0.5% Total, National Nuclear Security Administration.......................

477

FY 2011 Control Table by Appropriation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summary Control Table by Appropriation Summary Control Table by Appropriation (dollars in thousands - OMB Scoring) FY 2009 FY 2009 FY 2010 FY 2011 Current Current Current Congressional Approp. Recovery Approp. Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy efficiency and renewable energy........................................... 2,156,865 16,771,907 2,242,500 2,355,473 +112,973 +5.0% Electricity delivery and energy reliability............................................. 134,629 4,495,712 171,982 185,930 +13,948 +8.1% Nuclear energy................................................................................... 791,444 0 786,637 824,052 +37,415 +4.8% Fossil energy programs Clean coal technology..................................................................... 0 0 0 0

478

FY 2008 Control Table by Appriopriation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Control Table by Appropriation Control Table by Appropriation (dollars in thousands - OMB Scoring) FY 2006 FY 2007 FY 2008 Current Congressional Congressional Approp. Request Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy supply and Conservation..................................... 1,812,397 1,923,361 2,187,943 +264,582 +13.8% Fossil energy programs Clean coal technology................................................... -20,000 -- -58,000 -58,000 N/A Fossil energy research and development..................... 580,669 469,686 566,801 +97,115 +20.7% Naval petroleum and oil shale reserves........................ 21,285 18,810 17,301 -1,509 -8.0% Elk Hills school lands fund............................................

479

FY 2013 Control Table by Organization  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 Summary Control Table by Organization 3 Summary Control Table by Organization (dollars in thousands - OMB Scoring) FY 2011 FY 2012 FY 2013 Current Enacted Congressional Approp. Approp. * Request $ % Discretionary Summary By Organization Department Of Energy By Organization National Nuclear Security Administration Weapons Activities.............................................................................. 6,865,775 7,214,120 7,577,341 +363,221 +5.0% Defense Nuclear Nonproliferation........................................................ 2,281,371 2,295,880 2,458,631 +162,751 +7.1% Naval Reactors.................................................................................... 985,526 1,080,000 1,088,635 +8,635 +0.8% Office of the Administrator................................................................... 393,293 410,000 411,279

480

FY 2011 Control Table by Organization  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Summary Control Table by Organization 1 Summary Control Table by Organization (dollars in thousands - OMB Scoring) FY 2009 FY 2009 FY 2010 FY 2011 Current Current Current Congressional Approp. Recovery Approp. Request $ % Discretionary Summary By Organization National Security Weapons................................................................................................. 6,410,000 0 6,384,431 7,008,835 +624,404 +9.8% Defense Nuclear Nonproliferation........................................................... 1,545,071 0 2,136,709 2,687,167 +550,458 +25.8% Naval Reactors........................................................................................ 828,054 0 945,133 1,070,486 +125,353 +13.3% Office of the Administrator....................................................................... 439,190 0 410,754 448,267

Note: This page contains sample records for the topic "discharge halogen table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

FY 2007 Control Table by Appropriation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Control Table by Appropriation Control Table by Appropriation (dollars in thousands - OMB Scoring) FY 2005 FY 2006 FY 2007 Current Current Congressional Approp. Approp. Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy supply and Conservation......................................... 1,801,815 1,812,627 1,923,361 +110,734 +6.1% Fossil energy programs Clean coal technology....................................................... -160,000 -20,000 -- +20,000 +100.0% Fossil energy research and development........................ 560,852 592,014 469,686 -122,328 -20.7% Naval petroleum and oil shale reserves........................... 17,750 21,285 18,810 -2,475 -11.6% Elk Hills school lands fund................................................

482

EIA - Annual Energy Outlook (AEO) 2012 Data Tables  

Gasoline and Diesel Fuel Update (EIA)

2 2 Release Date: June 25, 2012 | Next Early Release Date: December 5, 2012 | Report Number: DOE/EIA-0383(2012) Overview Data Reference Case Side Cases Interactive Table Viewer Topics Source Oil/Liquids Natural Gas Coal Electricity Renewable/Alternative Nuclear Sector Residential Commercial Industrial Transportation Energy Demand Other Emissions Prices Macroeconomic International Efficiency Publication Chapter Executive Summary Market Trends Issues in Focus Legislation & Regulations Comparison Appendices View All Filter By Source Oil Natural Gas Coal Electricity Renewable/Alternative Nuclear Sector Residential Commercial Industrial Transportation Other Topics Emissions Prices Macroeconomic International Data TablesAll Tables Reference case summary & detailed tables... + EXPAND ALL Summary Case Tables Additional Formats

483

The 1993 atomic mass evaluation: (I) Atomic mass table  

Science Journals Connector (OSTI)

This paper is the first of a series of four. In it, a table is given to replace the 1983 atomic mass table. The differences with the earlier table are briefly discussed and information is given of interest for the users of this table. Part II of this series gives values for several derived quantities (decay-, separation- and reaction energies), part III shows graphs of several of those quantities, and part IV gives a list of input data and full information on the used input data and on the procedures used in deriving the tables in the preceding parts.

G. Audi; A.H. Wapstra

1993-01-01T23:59:59.000Z

484

Table of Contents for Desk Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Real Estate Desk Guide Real Estate Desk Guide Revised May, 2013 U. S. Department of Energy - Real Estate Desk Guide Revised 2013 Real Estate Desk Guide Table of Contents Chapter 1-- Purpose of Desk Guide ........................................................................ 1 Chapter 2-- Introduction ......................................................................................... 3 Chapter 3-- Planning Policy .................................................................................... 7 Chapter 4-- Real Estate Function ......................................................................... 10 Chapter 5-- Acquisition of Interests in Real Property ........................................ 14 Chapter 6-- Acquisition by Lease ......................................................................... 34

485

Table of Contents for Desk Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Real Estate Desk Guide Real Estate Desk Guide Revised May, 2013 U. S. Department of Energy - Real Estate Desk Guide Revised 2013 Real Estate Desk Guide Table of Contents Chapter 1-- Purpose of Desk Guide ........................................................................ 1 Chapter 2-- Introduction ......................................................................................... 3 Chapter 3-- Planning Policy .................................................................................... 7 Chapter 4-- Real Estate Function ......................................................................... 10 Chapter 5-- Acquisition of Interests in Real Property ........................................ 14 Chapter 6-- Acquisition by Lease ......................................................................... 34

486

Bake-Fiesta Table of Contents  

E-Print Network (OSTI)

Cook-Off & Bake-Fiesta V??~ U??~ 2014 #12;Table of Contents 1. Registration 2. Set up/Check In 3. Cook-off Schedule 12. Frontier Fiesta Contact Information 13. Chili Addendum 14. Cook-off, Bake Fiesta in the Cook-Off and Bake Fiesta Forms Packet no later than February 15th , 2014, by 5 PM ­ NO EXCEPTIONS B

Azevedo, Ricardo

487

Tables of thermodynamic properties of sodium  

SciTech Connect

The thermodynamic properties of saturated sodium, superheated sodium, and subcooled sodium are tabulated as a function of temperature. The temperature ranges are 380 to 2508 K for saturated sodium, 500 to 2500 K for subcooled sodium, and 400 to 1600 K for superheated sodium. Tabulated thermodynamic properties are enthalpy, heat capacity, pressure, entropy, density, instantaneous thermal expansion coefficient, compressibility, and thermal pressure coefficient. Tables are given in SI units and cgs units.

Fink, J.K.

1982-06-01T23:59:59.000Z

488

The Potential Field in and around a Gas Discharge, and Its Influence on the Discharge Mechanism  

Science Journals Connector (OSTI)

In the first part of the paper, results on the spatial extension of cathode and anode fall regions in carbon arcs are reported. Potential-probe measurements reveal that the potential drop in front of either electrode is confined to less than one tenth of a millimeter. In the second part of the paper, the distortion of the potential field in and around any discharge, as caused by the non-uniform space charge distribution in the discharge, is discussed for the cases of a low current carbon arc and a negative point corona; for the latter case use was made of data by Loeb. The potential field distortions result in radial electric fields which, depending on their polarity, seem to hinder or support the radial expansion of the discharge. Potential-probe measurements in low and high current carbon arcs are in good agreement with this theoretical analysis and prove the transitional region between the distorted potential field in the arc and the undistorted potential field outside of the discharge to be a fairly thin one.

W. Finkelnburg and S. M. Segal

1951-08-01T23:59:59.000Z

489

DC Discharge Studies Using PIC-MCC: Unmagnetized Glow Discharge Theory Jeff Hammel & John Verboncoeur  

E-Print Network (OSTI)

in Gases. John Wiley and Sons, Inc., New York, 1939. · Yuri P. Raizer. Gas Discharge Physics. Springer-dimensional bounded plasma simulation codes. Journal of Computational Physics, 131:149-163, 1997. · John P bounded plasma simulation codes. Journal of Computational Physics, 104:321-328, 1993. · John P

Wurtele, Jonathan

490

EIS-0023-FEIS-Tables-1979.pdf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TABLE TABLE 1-1 Quantifiable Environmental Impacts and Cost .4 Ztemti.e 1 Cont*nued Tmk Pam @eRltti Occupational Radiation Exposures Based on SRP Experience, .an-re@ 360 OffSite Pop.latio" Dose risk, mm-red 1,400 Offsite Population DOS. Risk, man-remc 24,000 Offsite Population Dose Risk, .an-re& 2,300 Non-nuclear Accidental Fatalities frm Construction and operations 17.1 BudgetaryCost, mil lions of 1980 dO1lar,e 510 3,800 2>700 2,400 650 220 340 650 340 340 6.5 6.6 6.2 3,600 3,750 3,610 a. Campaign totals for .11 workers b. Cmseq.mces times probabilities, sumed over all events and integrated f.. 300 years. . . Assming tanks are abandoned after 100 years, according to proposed EPA criterion. d. Integrated for 10,000 year,. .. Includes capital and operating cost* TABLE 1.2 Sumary of DiFficu lt-to-Q.antifyFactors Relative DeEree of Action ... q.ir.d by F.c.re Generations

491

EIA - Supplemental Tables to the Annual Energy Outlook 2009  

Gasoline and Diesel Fuel Update (EIA)

Analysis > Supplemental Tables to the AEO 2009 Analysis > Supplemental Tables to the AEO 2009 Supplemental Tables to the Annual Energy Outlook 2009 The Early Release for next year's Annual Energy Outlook will be presented at the John Hopkins Kenney Auditorium on December 14th The AEO Supplemental tables were generated for the reference case of the Annual Energy Outlook 2009 (AEO2009) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 2006 to 2030. Most of the tables were not published in the AEO2009, but contain regional and other more detailed projections underlying the AEO2009 projections. The files containing these tables are in spreadsheet format. A total of one hundred and twenty-eight tables are presented.

492

CBECS 1993 - Federal Buildings Supplement Survey - Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Publication > Detailed Tables Publication > Detailed Tables Detailed Tables Percent of FBSS Buildings and Floorspace by Selected Agencies, FY 1993 Percent of FBSS Buildings and Floorspace by Selected Agencies, FY 1993 Sources: Energy Information Administration, Energy Markets and End Use, 1993 Federal Buildings Supplemental Survey. Divider Line To View and/or Print Reports (requires Adobe Acrobat Reader) - Download Adobe Acrobat Reader If you experience any difficulties, visit our Technical Frequently Asked Questions. Divider Line You have the option of downloading the entire set of tables or selected tables by data item. Full Set of Tables - Federal Buildings Supplemental Survey, 1993 (file size 770,290 bytes) pages: 123 Detailed Table Information (file size 45,044 bytes) pages: 7, includes:

493

Hydrothermal Heat Discharge In The Cascade Range, Northwestern United  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Hydrothermal Heat Discharge In The Cascade Range, Northwestern United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Hydrothermal Heat Discharge In The Cascade Range, Northwestern United States Details Activities (3) Areas (1) Regions (0) Abstract: Hydrothermal heat discharge in the Cascade Range includes the heat discharged by thermal springs, by "slightly thermal" springs that are only a few degrees warmer than ambient temperature, and by fumaroles. Thermal-spring heat discharge is calculated on the basis of chloride-flux measurements and geothermometer temperatures and totals ~ 240 MW in the U.S. part of the Cascade Range, excluding the transient post-1980 discharge

494

High-Intensity Discharge Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High-Intensity Discharge Lighting Basics High-Intensity Discharge Lighting Basics High-Intensity Discharge Lighting Basics August 15, 2013 - 5:59pm Addthis High-intensity discharge (HID) lighting provides the highest efficacy and longest service life of any lighting type. It can save 75%-90% of lighting energy when it replaces incandescent lighting. Illustration of a high-intensity discharge (HID) lIllustration amp. The lamp is a tall cylindrical shape, and a cutout of the outer tube shows the materials inside. A long, thin cylinder called the arc tube runs through the lamp between two electrodes. The space around the arc tube is labeled as a vacuum. In a high-intensity discharge lamp, electricity arcs between two electrodes, creating an intensely bright light. Mercury, sodium, or metal halide gas

495

Point Source Discharges to Surface Waters (North Carolina) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Point Source Discharges to Surface Waters (North Carolina) Point Source Discharges to Surface Waters (North Carolina) Point Source Discharges to Surface Waters (North Carolina) < Back Eligibility Commercial Industrial Construction Transportation Savings Category Buying & Making Electricity Program Info State North Carolina Program Type Siting and Permitting Provider Department of Environment and Natural Resources This rule requires permits for control of sources of water pollution by providing the requirements and procedures for application and issuance of state National Pollutant Discharge Elimination System (NPDES) permits for a discharge from an outlet, point source, or disposal system discharging to the surface waters of the state, and for the construction, entering a contract for construction, and operation of treatment works with such a

496

EIA-Annual Energy Outlook 2010 - Low Oil PriceTables  

Gasoline and Diesel Fuel Update (EIA)

Oil Price Tables (2007-2035) Oil Price Tables (2007-2035) Annual Energy Outlook 2010 Main Low Oil Price Tables (2007- 2035) Table Title Formats Summary Low Oil Price Case Tables PDF Gif Year-by-Year Low Oil Price Case Tables Excel Gif Table 1. Total Energy Supply and Disposition Summary Excel Gif Table 2. Energy Consumption by Sector and Source Excel Gif Table 3. Energy Prices by Sector and Source Excel Gif Table 4. Residential Sector Key Indicators and Consumption Excel Gif Table 5. Commercial Sector Indicators and Consumption Excel Gif Table 6. Industrial Sector Key Indicators and Consumption Excel Gif Table 7. Transportation Sector Key Indicators and Delivered Energy Consumption Excel Gif Table 8. Electricity Supply, Disposition, Prices, and Emissions Excel Gif Table 9. Electricity Generating Capacity

497

Notice of Intent (NOI) for Storm Water Discharges Associated with  

Open Energy Info (EERE)

Intent (NOI) for Storm Water Discharges Associated with Intent (NOI) for Storm Water Discharges Associated with Construction Activities under TPDES General Permit (TXR150000) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Reference Material: Notice of Intent (NOI) for Storm Water Discharges Associated with Construction Activities under TPDES General Permit (TXR150000) Details Activities (0) Areas (0) Regions (0) Abstract: Unavailable Author(s): Unknown Published: Texas Commission on Environmental Quality, Date Unknown Document Number: Unavailable DOI: Unavailable Source: View Original Document Retrieved from "http://en.openei.org/w/index.php?title=Notice_of_Intent_(NOI)_for_Storm_Water_Discharges_Associated_with_Construction_Activities_under_TPDES_General_Permit_(TXR150000)&oldid=598006"

498

Design of a high precision desktop wire electrical discharge machine.  

E-Print Network (OSTI)

??This thesis discusses the design of a wire electrical discharge machine that is small enough to be deemed a desktop machine that achieves sub micron (more)

Dunlop, David James

2010-01-01T23:59:59.000Z

499

Cathode fall measurement in a dielectric barrier discharge in helium  

SciTech Connect

A method based on the zero-length voltage extrapolation is proposed to measure cathode fall in a dielectric barrier discharge. Starting, stable, and discharge-maintaining voltages were measured to obtain the extrapolation zero-length voltage. Under our experimental conditions, the zero-length voltage gave a cathode fall of about 185 V. Based on the known thickness of the cathode fall region, the spatial distribution of the electric field strength in dielectric barrier discharge in atmospheric helium is determined. The strong cathode fall with a maximum field value of approximately 9.25 kV/cm was typical for the glow mode of the discharge.

Hao, Yanpeng; Zheng, Bin; Liu, Yaoge [School of Electric Power, South China University of Technology, Guangzhou 510640 (China)] [School of Electric Power, South China University of Technology, Guangzhou 510640 (China)

2013-11-15T23:59:59.000Z

500

The effect of riverine discharge on biogeochemical processes in ...  

Science Journals Connector (OSTI)

A prolonged drought decreased river discharge, altered the salinity gradient in the estuary, and profoundly affected anaerobic respiratory processes in the...