Powered by Deep Web Technologies
Note: This page contains sample records for the topic "dis tri ct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Network protocol changes can improve DisCom WAN performance : evaluating TCP modifications and SCTP in the ASC tri-lab environment.  

SciTech Connect (OSTI)

The Advanced Simulation and Computing (ASC) Distance Computing (DisCom) Wide Area Network (WAN) is a high performance, long distance network environment that is based on the ubiquitous TCP/IP protocol set. However, the Transmission Control Protocol (TCP) and the algorithms that govern its operation were defined almost two decades ago for a network environment vastly different from the DisCom WAN. In this paper we explore and evaluate possible modifications to TCP that purport to improve TCP performance in environments like the DisCom WAN. We also examine a much newer protocol, SCTP (Stream Control Transmission Protocol) that claims to provide reliable network transport while also implementing multi-streaming, multi-homing capabilities that are appealing in the DisCom high performance network environment. We provide performance comparisons and recommendations for continued development that will lead to network communications protocol implementations capable of supporting the coming ASC Petaflop computing environments.

Tolendino, Lawrence F.; Hu, Tan Chang

2005-06-01T23:59:59.000Z

2

Try This  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Activities Explore Science Explore Explore these Topics Activities Videos Cool Links Favorite Q&A invisible utility element Try This Exercise your science muscles Look around you;...

3

Conditions on (dis)harmony  

E-Print Network [OSTI]

(cont.) Chapter 4 turns to microvariation within the (dis)harmony system of a single language, examining transparency variation in Hungarian front vowels, and distance-based variation in Hungarian neutral vowel sequences, ...

Nevins, Andrew

2005-01-01T23:59:59.000Z

4

Nuclear correction factors from neutrino DIS  

E-Print Network [OSTI]

Neutrino Deep Inelastic Scattering on nuclei is an essential process to constrain the strange quark parton distribution functions in the proton. The critical component on the way to using the neutrino DIS data in a proton PDF analysis is understanding the nuclear effects in parton distribution functions. We parametrize these effects by nuclear parton distribution functions and we use this framework to analyze the consistency of neutrino DIS data with other nuclear data.

K. Kovarik

2011-07-15T23:59:59.000Z

5

The Tri--Methane Rearrangement  

E-Print Network [OSTI]

The Tri--Methane Rearrangement #12;Cirkva, Vladimir; Zuraw, Michael J.; Zimmerman, Howard E.* Department of Chemistry, University of Wisconsin, Madison, WI 53706 #12;INTRODUCTION The tri--methane of a cyclopentene 5a, but only in crystalline medium. However, in the solution photochemistry of tri--methane system

Cirkva, Vladimir

6

The Tri--Methane Rearrangement  

E-Print Network [OSTI]

The Tri--Methane Rearrangement #12;Církva, Vladimír; Zuraw, Michael J.; Zimmerman, Howard E.* Department of Chemistry, University of Wisconsin, Madison, WI 53706 #12;INTRODUCTION The tri--methane of a cyclopentene 5a, but only in crystalline medium. However, in the solution photochemistry of tri--methane system

Cirkva, Vladimir

7

Charm production in diffractive DIS and PHP at ZEUS  

E-Print Network [OSTI]

The ZEUS experiment has measured charm production in diffractive DIS and in photoproduction. The data are in agreement with perturbative QCD calculations based on various parameterisations of diffractive parton distribution functions. The results are consistent with QCD factorisation in diffractive DIS and direct photoproduction.

Isabell-Alissandra Melzer-Pellmann; for the ZEUS collaboration

2007-08-03T23:59:59.000Z

8

DIS 2007, DIFF 8/SPIN 7, Munich, 18/04/07 Andreas Mussgiller  

E-Print Network [OSTI]

) Longitudinal Target Spin Asymmetry (LTSA) #12; The HERMES Spectrometer A. Mussgiller, DIS 2007, Munich, 18

9

Brian Foster -DIS01 -Bologna HERA II Physics  

E-Print Network [OSTI]

V2 Q2 = 200 GeV2 Q2 = 2000 GeV2 #12;Brian Foster - DIS01 - Bologna 8 Active Filter Calorimeter ZEUS 6 systematics plus precision electron tagger. "Standard" Pb/scintillator calorimeter plus "active filter" of aerogel. Dipole spectrometer to measure converting e+e- pairs. "6m tagger" W/fibre to measure the energy

10

STATE OF OHIO, IN THE UNITED STATES DISTRICT FOR THE .SOUTHERN DIS~CT OF  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September2-SCORECARD-01-24-13 Page 1 of 1 ThisAprilOCTOBERSTART Projects.. ..

11

Summary of Future of DIS Working Group Session  

SciTech Connect (OSTI)

Despite the closure of the HERA accelerator in the past few years, much physics still remains to be understood, from the quark and gluon content of the nucleon/nucleus across all x to the still unknown spin structure of the proton. The 'Future of DIS' working group was dedicated to discussions on these and many other subjects. This paper represents a brief overview of the discussions. For further details, please refer to individual contributions.

Lamont M.; Guzey, V.; Polini, A.

2011-04-11T23:59:59.000Z

12

Tri-Generation Success Story: World's First Tri-Gen EnergyStation...  

Energy Savers [EERE]

Energy Department, the Fountain Valley energy station is the world's first tri-generation hydrogen energy and electrical power station to provide transportation fuel to the public...

13

Rapidity Gaps Between Jets in PHP DIS 2006 , April 22, 2006 -1Patrick Ryan, Univ. of Wisconsin Patrick Ryan  

E-Print Network [OSTI]

Rapidity Gaps Between Jets in PHP DIS 2006 , April 22, 2006 - 1Patrick Ryan, Univ. of Wisconsin in PHP DIS 2006 , April 22, 2006 - 2Patrick Ryan, Univ. of Wisconsin Hard Diffractive Photoproduction - = Subject of this analysis #12;Rapidity Gaps Between Jets in PHP DIS 2006 , April 22, 2006 - 3Patrick Ryan

14

NETL CT Imaging Facility  

SciTech Connect (OSTI)

NETL's CT Scanner laboratory is equipped with three CT scanners and a mobile core logging unit that work together to provide characteristic geologic and geophysical information at different scales, non-destructively.

None

2013-09-04T23:59:59.000Z

15

NETL CT Imaging Facility  

ScienceCinema (OSTI)

NETL's CT Scanner laboratory is equipped with three CT scanners and a mobile core logging unit that work together to provide characteristic geologic and geophysical information at different scales, non-destructively.

None

2014-05-21T23:59:59.000Z

16

Nuclear Medicine CT Angiography  

E-Print Network [OSTI]

Nuclear Medicine CT Angiography Stress Testing Rotation The Nuclear Medicine/CT angiography. Understand the indications for exercise treadmill testing and specific nuclear cardiology tests, safe use Level 2 proficiency in performing and interpreting cardiac nuclear imaging tests. Progression

Ford, James

17

The 1-Jettiness DIS event shape: NNLL + NLO results  

E-Print Network [OSTI]

We present results for the complete NNLL+NLO (~ \\alpha_s) 1-jettiness (\\tau_1) event shape distribution for single jet (J) production in electron-nucleus (N_A) collisions e^- + N_A \\to e^- + J + X, in the deep inelastic scattering (DIS) region where the hard scale is set by the jet transverse momentum P_{J_T}. These results cover the entire \\tau_1-spectrum including the resummation (\\tau_1radiation effects, the anti-k_T jet algorithm in the fixed-order calculation, and a smooth matching between the resummation and fixed-order perturbative QCD regions. The matching smoothly connects the spectrum in the resummation region, which can be computed without reference to an external jet algorithm, and the fixed-order region where an explicit jet algorithm must be specified. Our code, used for generating the numerical results, is flexible enough to incorporate different jet algorithms for the fixed-order calculation. We also perform a jet shape analysis, defined within the 1-jettiness framework, which allows one to control the amount of radiation included in the definition of the final state jet. This formalism can allow for detailed studies of jet energy-loss mechanisms and nuclear medium effects. The analysis presented here can be used for precision studies of QCD and as a probe of nuclear dynamics using data collected at HERA and in proposed future electron-ion colliders such as the EIC and the LHeC.

Zhong-Bo Kang; Xiaohui Liu; Sonny Mantry

2014-07-25T23:59:59.000Z

18

CAREERS & the disABLED Magazine's Career Expo for People with...  

Broader source: Energy.gov (indexed) [DOE]

People with Disabilities CAREERS & the disABLED Magazine's Career Expo for People with Disabilities November 22, 2013 1:00PM EST Washington DC Contact http:www.eop.comexpos.php...

19

Educational (dis)continuities: coordinating physics instruction in pre-college and university  

E-Print Network [OSTI]

education courses [and, 2] expanding successful dual or concurrent enrollment programs between high schools1 Educational (dis)continuities: coordinating physics instruction in pre-college and university have increased dramatically. However, while the education system has expanded significantly

Finkelstein, Noah

20

function of temperature. Similar studies (with neutrons) on uranium led to the dis-  

E-Print Network [OSTI]

1059 function of temperature. Similar studies (with neutrons) on uranium led to the dis- covery to the North Pole and that there was northward mo- tion of the Pacific plate. Conversely, if all seamounts had

Steinberger, Bernhard

Note: This page contains sample records for the topic "dis tri ct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

-CT CT)Computed Tomography(. ,. , -100 ,  

E-Print Network [OSTI]

. , , , , . , " , , . , . , . : . 2-4 . 2-3 -. ) D,DMAIC, SPC, FMEA, Control Plan, Lean) 8(-. -. . . NPI . , , .' , " . " * . : ) B.A ,(-. 4-6. ) QFD, CtQ breakdown, DfSS, SPC, AQP, FMEA, Control Plan.( Six Sigma GB

Pinsky, Ross

22

Testing tri-state and pass transistor circuit structures  

E-Print Network [OSTI]

Tri-state structures are used to implement multiplexers and buses because these structures are faster than AND/OR logic structures. But testing of tri-state structures has some issues associated with it. A stuck open control line of a tri-state gate...

Parikh, Shaishav Shailesh

2005-11-01T23:59:59.000Z

23

Characterization of Tri-lab Tantalum Plate.  

SciTech Connect (OSTI)

This report provides a detailed characterization Tri-lab Tantalum (Ta) plate jointly purchased from HCStark Inc. by Sandia, Los Alamos and Lawrence Livermore National Laboratories. Data in this report was compiled from series of material and properties characterization experiments carried out at Sandia (SNL) and Los Alamos (LANL) Laboratories through a leveraged effort funded by the C2 campaign. Results include microstructure characterization detailing the crystallographic texture of the material and an increase in grain size near the end of the rolled plate. Mechanical properties evaluations include, compression cylinder, sub-scale tension specimen, micohardness and instrumented indentation testing. The plate was found to have vastly superior uniformity when compare with previously characterized wrought Ta material. Small but measurable variations in microstructure and properties were noted at the end, and at the top and bottom edges of the plate.

Buchheit, Thomas E.; Cerreta, Ellen K.; Deibler, Lisa Anne; Chen, Shu-Rong; Michael, Joseph R.

2014-09-01T23:59:59.000Z

24

DisProt: the Database of Disordered Proteins Megan Sickmeier1  

E-Print Network [OSTI]

suggested to depend on, or have been experimentally demonstrated to depend on, proteins that lack fixed 3D that lack the relatively fixed structure of enzymes and other globular proteins have been calledDisProt: the Database of Disordered Proteins Megan Sickmeier1 , Justin A. Hamilton1 , Tanguy Le

Obradovic, Zoran

25

Nature Macmillan Publishers Ltd 1997 ill man-made climate change dis-  

E-Print Network [OSTI]

Nature © Macmillan Publishers Ltd 1997 W ill man-made climate change dis- rupt the ocean currents that have guaranteed Europe's mild climate for the past 10,000 years? A number of recent simplified climate model. They conclude that ocean circulation stability depends not only on the total

Stocker, Thomas

26

ABSORPTION TIME AND TREE LENGTH OF THE KINGMAN COALESCENT AND THE GUMBEL DIS-  

E-Print Network [OSTI]

ABSORPTION TIME AND TREE LENGTH OF THE KINGMAN COALESCENT AND THE GUMBEL DIS- TRIBUTION M. M¨ohle1 to revisit the moments and central moments of the classical Gumbel distribution. Keywords: absorption time of coalescent processes (restricted to a sample of size n N) such as the number of jumps, the absorption time

Möhle, Martin

27

Tri-Cities Index of Innovation and Technology  

SciTech Connect (OSTI)

In 2001 and 2004, the Economic Development Office of Pacific Northwest National Laboratory published companion reports to the Washington Technology Center Index studies that provided additional information on the Tri-Cities (Kennewick-Richland-Pasco) area of the state, its technology businesses, and important advantages that the Tri-Cities have as places to live and do business. These reports also compared the Tri-Cities area to other technology-based metropolitan areas in the Pacific Northwest and nation along critical dimensions known to be important to technology firms. This report updates the material in these earlier reports, and highlights a growing Tri-Cities metropolitan area.

Fowler, Richard A.; Scott, Michael J.; Butner, Ryan S.

2011-01-17T23:59:59.000Z

28

BUSINESS SENSITIVE 1 Tri-Cities Research District  

E-Print Network [OSTI]

BUSINESS SENSITIVE 1 Tri-Cities Research District Speaker Series: Advancing Research Parks networking. Shady Grove Life Sciences Park (Montgomery County, MD) Research Triangle Park Live

29

CT Solar Loan  

Broader source: Energy.gov [DOE]

The Clean Energy Finance and Investment Authority is offering a pilot loan program, CT Solar Loan, to provide homeowners with 15-year loans for solar PV equipment. The loans are administered...

30

Tri-Party Agreement Template and Sample Tri-Party Agreement | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7 thFuel27, 2008,Inc.Energy Tri-Party

31

PECIAL REPORS T Tri-County Health Department  

E-Print Network [OSTI]

PECIAL REPORS T Tri-County Health Department in Colorado Does More Than Just Review and benefits of land use choices and improve the quality of land use decision making. Background Tri-County counties of the metropolitan Denver area, has offered development review services to its jurisdictions

32

(TWST = Tri-Cities West Building) West Building  

E-Print Network [OSTI]

Elevator (TWST = Tri-Cities West Building) West Building 1st Floor Stage to parking lot Nursing TV Parking Lot and Cougar Garden Admissions Elevator Elevator Commons To the East Building Mac Lab Vet Center Professional Programs Student Affairs Nursing Lab Media Services Lobby West Building 2nd Floor (TWST = Tri

Collins, Gary S.

33

TFC-0004- In the Matter of Tri-Valley CARES  

Broader source: Energy.gov [DOE]

Tri-Valley CARES filed an Appeal from a determination that the National Nuclear Security Administration (NNSA) issued on June 2, 2010. In that determination, NNSA denied in part a request for information that Tri-Valley CARES had submitted on September 8, 2008, pursuant to the Freedom of Information Act (FOIA), 5 U.S.C. 552.

34

The Tri--methane Rearrangement: Mechanistic and Exploratory Organic  

E-Print Network [OSTI]

The Tri--methane Rearrangement: Mechanistic and Exploratory Organic Photochemistry1 Howard E zimmerman@bert.chem.wisc.edu Received May 31, 2000 ABSTRACT The di--methane rearrangement is firmly established as a mode of synthesizing three-membered-ring compounds. We now report the tri-- methane

Cirkva, Vladimir

35

DIS08 Jol Feltesse 1 Combination of H1 and ZEUS  

E-Print Network [OSTI]

fitted H1-ZEUS combined H1-value 2 exp Mi,true , j ) = i Mi,true - Mi + j Mi j j ) 2 2 i + j j 2 j Mi i j Mi j Mi,true Mi j j #12;DIS08 Joël Feltesse 11 definition (cont'd) Caution : Most errors are provided smaller averages ! (checked with a toy model) Can be avoided by modifying chi2 definition 2 2 exp Mi

36

N. Raicevic EPS 2007 1 Measurement of the Neutral Current DIS  

E-Print Network [OSTI]

N. Raicevic EPS 2007 1 Measurement of the Neutral Current DIS Cross Section at H1 Natasa Raicevië Manchester 19th ­ 25th July, 2007 #12;N. Raicevic EPS 2007 2 In 2000-2002 HERA-I (Ep = 820, 920 GeV) upgraded to HERA-II (Ep = 920 GeV) · Increased luminosity · Polarised leptons Since April 2007 until the end

37

Compiti scritti di Robotica 2 http://www.dis.uniroma1.it/labrob/people/deluca/rob2.html  

E-Print Network [OSTI]

Compiti scritti di Robotica 2 http://www.dis.uniroma1.it/labrob/people/deluca/rob2.html Anno Data.06 1 Pianificazione del moto con decomposizione approssimata in celle soluzione (ex Robotica

De Luca, Alessandro

38

Resonant Soft X-Ray Scattering of Tri-Block Copolymers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resonant Soft X-Ray Scattering of Tri-Block Copolymers Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print Wednesday, 30 May 2012 00:00 In principle, tri-block copolymers...

39

Tri-Cities research may help biofuels take flight  

SciTech Connect (OSTI)

Monthly economic diversity column for the Tri-City Herald. Excerpt: If you stop and think about it, some pretty interesting stuff has roots in the Tri-Cities, but reaches far beyond. Many Tri-Citians have gone on to be professional athletes, entertainers, scientists and engineers, doctors, lawyers, and humanitarians to name just a few. And a lot of groundbreaking discoveries - many born of strategic collaborations resulting from purposeful economic development efforts - have emerged from work at our local national laboratory. Just recently, Pacific Northwest National Laboratory entered into a $2M collaboration with Seattle biofuel producer Imperium Renewables and other partners to develop a new method to make renewable jet fuels. Successful development of the catalytic process, which converts biomass-based alcohols into renewable drop-in jet fuels, could lead to additional renewable jet fuel production facilities being built and operated in the Pacific Northwest.

Madison, Alison L.

2011-12-04T23:59:59.000Z

40

DisClose: Discovering Colossal Closed Itemsets via a Memory Efficient Compact Row-Tree  

SciTech Connect (OSTI)

Itemset mining has recently focused on discovery of frequent itemsets from high-dimensional datasets with relatively few rows and a larger number of items. With exponentially in-creasing running time as average row length increases, mining such datasets renders most conventional algorithms impracti-cal. Unfortunately, large cardinality closed itemsets are likely to be more informative than small cardinality closed itemsets in this type of dataset. This paper proposes an approach, called DisClose, to extract large cardinality (colossal) closed itemsets from high-dimensional datasets. The approach relies on a memory-efficient Compact Row-Tree data structure to represent itemsets during the search process. The search strategy explores the transposed representation of the dataset. Large cardinality itemsets are enumerated first followed by smaller ones. In addition, we utilize a minimum cardinality threshold to further reduce the search space. Experimental result shows that DisClose can complete the extraction of colossal closed itemsets in the considered dataset, even for low support thresholds. The algorithm immediately discovers closed itemsets without needing to check if each new closed itemset has previously been found.

Zulkurnain, Nurul F.; Keane, John A.; Haglin, David J.

2013-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "dis tri ct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

ContaCt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group andCompositionalInitial Validation andPWRContaCt The nuclear

42

CT NC0  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -MiamiYVE r.x-L* d! CT NC0 - i , ,.

43

RENEWAL THEORY IN ANALYSIS OF TRIES AND SVANTE JANSON  

E-Print Network [OSTI]

RENEWAL THEORY IN ANALYSIS OF TRIES AND STRINGS SVANTE JANSON To my colleague and friend Allan Gut on the occasion of his retirement Abstract. We give a survey of a number of simple applications of renewal theory been realized that renewal theory is a useful tool in the study of random strings and related

Janson, Svante

44

Tri-Met's Experience With Automatic Passenger Counter and Automatic Vehicle Location Systems  

E-Print Network [OSTI]

on an earlier draft. #12;Introduction The Tri-County Metropolitan Transportation District of Oregon (TriTri-Met's Experience With Automatic Passenger Counter and Automatic Vehicle Location Systems James State University Portland, OR 97207 This report is benefited from interviews of Tri-Met staff involved

Bertini, Robert L.

45

Developing DisCo: A distributed co-design, on-line tool SUBMITTED TO THE COLLEGE OF INFORMATION STUDIES DOCTORAL  

E-Print Network [OSTI]

Developing DisCo: A distributed co-design, on-line tool SUBMITTED TO THE COLLEGE OF INFORMATION-based design tool that facilitates distributed co-design through Layered Elaboration. Layered Elaboration-based system allows co-designers to work asynchronously while being geographically distributed. DisCo contains

Golbeck, Jennifer

46

Eclipse mapping of RW Tri in the low luminosity state  

E-Print Network [OSTI]

We analyzed the eclipse light curve of the nova-like star RW Tri in its low luminosity state. During approximately 150 days, RW Tri was about one magnitude fainter than in its usual state. Our eclipse map shows that the brightness temperature in the disc ranges from 19000 K near the white dwarf to 8700 at the disc edge. For the inner parts of accretion disc, the radial temperature distribution is flatter than that predicted from the steady state models, and for the outer parts, it is close to the R^(-3/4) law. Fitting of the temperature distribution with one for the steady state disc model gives a mean accretion rate of (3.85+-0.19) 10^{-9} M year^(-1). The hotspot in the disc is placed at a distance of 0.17a from the white dwarf, where a is the orbital separation.

A. V. Halevin; A. A. Henden

2008-06-12T23:59:59.000Z

47

Tri-County Electric Coop, Inc (Florida) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, IncTipmontInformationKentucky) Jump to:Tri-County

48

Quark helicity flip and the transverse spin dependence of inclusive DIS  

SciTech Connect (OSTI)

Inclusive DIS with unpolarized beam exhibits a subtle dependence on the transverse target spin, arising from the interference of one-photon and two-photon exchange amplitudes in the cross section. We argue that this observable probes mainly the quark helicity-flip amplitudes induced by the non-perturbative vacuum structure of QCD (spontaneous chiral symmetry breaking). This conjecture is based on (a) the absence of significant Sudakov suppression of the helicity-flip process if soft gluon emission in the quark subprocess is limited by the chiral symmetry breaking scale mu^2_{chiral} >> Lambda^2_{QCD}; (b) the expectation that the quark helicity-conserving twist-3 contribution is small. The normal target spin asymmetry is estimated to be of the order 10^{-4} in the kinematics of the planned Jefferson Lab Hall A experiment.

Andrei Afanasev; Mark Strikman; Christian Weiss

2007-05-21T23:59:59.000Z

49

The 1-Jettiness DIS Spectrum: Factorization, Resummation, and Jet Algorithm Dependence  

E-Print Network [OSTI]

The 1-Jettiness (tau_1) event shape for Deep Inelastic Scattering (DIS), allows for a quantitative and global description of the pattern of QCD radiation for single jet (J) production in electron-nucleus (N_A) collisions e^- + N_A \\to e^- + J + X. It allows for precision studies of QCD and is a sensitive probe of nuclear structure and dynamics. The large transverse momentum (P_{J_T}) of the final state jet $J$, characterizes the hard scale in the problem. The region of phase space where tau_1 radiation (E~ P_{J_T}) is only along either the single jet direction or the beam direction with only soft radiation (E ~ \\tau_1 radiation are allowed. The \\tau_1-distribution depends on the jet algorithm used to find the leading jet in the region tau_1 ~ P_{J_T}, unlike the resummation region where this dependence is power suppressed in tau_1/P_{J_T} data.

Zhong-Bo Kang; Xiaohui Liu; Sonny Mantry; Jianwei Qiu

2015-03-13T23:59:59.000Z

50

Achieving Energy Performance in spite of complex systems and dis-jointed design  

E-Print Network [OSTI]

Achieving Energy Performance in spite of complex systems and dis-jointed design Caoimhin Ardren1 and Dr Paul Bannister2 1 BSc(QS), AAIQS, ICEC, GSAP (Sydney, Australia). 2 BSc (1st Hons, Maths & Physics), PhD (Eng. Physics). M.IPENZB. (Canberra... Jan?12 Feb?12 Mar?12 Apr?12 May?12 Jun?12 To ta l?E m iss io ns ?? Sc op e? 1, 2? &? 3? (k gC O2 ) Base?Building?Actual?Emissions Base?Building?Target?Emissions 5 4.5 4 0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 Oct...

Ardren, C.; Bannister, P.

2012-01-01T23:59:59.000Z

51

Abstract Microgrids are a new concept for future energy dis-tribution systems that enable renewable energy integration and  

E-Print Network [OSTI]

distributed generators (DGs) that are usually integrated via power-electronic inverters. In order to enhance generators (DGs) has been significantly improved. Inverter-interfaced DGs can be flexibly deployed in power1 Abstract ­ Microgrids are a new concept for future energy dis- tribution systems that enable

Collins, Emmanuel

52

Tri-Party Agreement databases, access mechanism and procedures  

SciTech Connect (OSTI)

This document contains the information required for the Washington State Department of Ecology (Ecology) and the US Environmental Protection Agency (EPA) to access databases related to the Hanford Federal Facility Agreement and Consent Order [also known as the Tri-Party Agreement (TPA)] (Ecology et al. 1992). It identifies the procedure required to obtain access to the Hanford computer networks and the TPA related databases. It addresses security requirements, access methods, database availability dates, database access procedures, and the minimum computer hardware and software configurations required to operate within the Hanford networks.

Brulotte, P.J.; Christensen, K.C.

1993-10-01T23:59:59.000Z

53

TRI State Motor Transit to Resume Shipping Waste to WIPP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign Object DamageSystemsU.S.EnergyTri-State Motor Transit

54

Tri-Party Agreement Agencies Annual Hanford Public Involvement Survey  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2TopoPortal Hydrogen andTrent Tuckerof 17 Tri-Party

55

Tri-County Elec Member Corp | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, IncTipmontInformationKentucky) Jump to: navigation,Tri-County

56

Tri-County Electric Coop Assn | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, IncTipmontInformationKentucky) Jump to:Tri-County Electric

57

Tri-County Electric Coop, Inc (Oklahoma) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, IncTipmontInformationKentucky) Jump to:Tri-CountyOklahoma)

58

Tri-County Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, IncTipmontInformationKentucky) Jump to:Tri-CountyOklahoma)Inc

59

High Temperature Fuel Cell Tri-Generation of Power, Heat & H2...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas High Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas Success story about using waste water...

60

Transverse target spin asymmetry in inclusive DIS with two-photon exchange  

SciTech Connect (OSTI)

We study the transverse target spin dependence of the cross section for the inclusive electron-nucleon scattering with unpolarized beam. Such dependence is absent in the one-photon exchange approximation (Christ-Lee theorem) and arises only in higher orders of the QED expansion, from the interference of one-photon and absorptive two-photon exchange amplitudes as well as from real photon emission (bremsstrahlung). We demonstrate that the transverse spin-dependent two-photon exchange cross section is free of QED infrared and collinear divergences. We argue that in DIS kinematics the transverse spin dependence should be governed by a "parton-like" mechanism in which the two-photon exchange couples mainly to a single quark. We calculate the normal spin asymmetry in an approximation where the dominant contribution arises from quark helicity flip due to interactions with non-perturbative vacuum fields (constituent quark picture) and is proportional to the quark transversity distribution in the nucleon. Such helicity-flip processes are not significantly Sudakov-suppressed if the infrared scale for gluon emission in the photon-quark subprocess is of the order of the chiral symmetry breaking scale, mu^2_chiral>>Lambda^2_QCD. We estimate the asymmetry in the kinematics of the planned Jefferson Lab Hall A experiment to be of the order 10^-4, with different sign for proton and neutron. We also comment on the spin dependence in the limit of soft high-energy scattering.

Andrei Afanasev; Mark Strikman; Christian Weiss

2007-09-06T23:59:59.000Z

Note: This page contains sample records for the topic "dis tri ct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The DIS(chi) Scheme for Heavy Quark Production at Small x.  

E-Print Network [OSTI]

ar X iv :h ep -p h/ 06 05 32 1v 1 2 9 M ay 2 00 6 February 2, 2008 6:9 Proceedings Trim Size: 9in x 6in Cavendish-HEP-2006/12 THE DIS(?) SCHEME FOR HEAVY QUARK PRODUCTION AT SMALL X C. D. WHITE Cavendish Laboratory, J. J. Thomson Avenue... 10-4 Q2(GeV2) F 2 p (x ,Q 2 ) + 0 .25 (9- i) LL resummed NLO 0 0.5 1 1.5 2 2.5 3 3.5 4 1 10 10 2 10 3 x=510-4 x=6.3210-4 x=810-4 x=1.310-3 x=1.6110-3 x=210-3 x=3.210-3 x=510-3 x=810-3 H1 (1.02) ZEUS(1.004) NMC(0.996) LL resummed NLO Q2(GeV2...

White, C D

62

An Analysis of Client Satisfaction and Company Efficiency at Tri Lake Consultants  

E-Print Network [OSTI]

meetings. County of Riverside In the past, Tri Lake providedTri Lake currently has contracts with the Cities of Perris, San Jacinto, Canyon Lake, Menifee, and the CountyCounty Sheriff Department. The low level of interaction and impact between Tri

Sunde, Christopher Nathan

2012-01-01T23:59:59.000Z

63

Hanford Diversification and the Tri-Cities Economy FY 1999  

SciTech Connect (OSTI)

The missions of the U.S. Department of Energy's Richland Operations Office (DOE/RL) are to safely manage the Hanford Site, to manage and clean up its legacy wastes, and to develop and deploy new science and technology in the environmental and energy fields. Collectively, DOE/RL and its contractors are the most important single entity in the Tri-Cities local economy (Pasco, Kennewick, and Richland, Washington, and the surrounding area). Although the relevant economic region affected by DOE/RL and its contractors actually embraces a geographic area reaching from Yakima in the west to Walla Walla in the east and from Moses Lake in the north to Pendleton, Oregon, in the south, over 90% of economic impacts likely occur in Benton and Franklin Counties. These two counties are defined as the ''local'' Tri-Cities economy for purposes of this study. In the federal fiscal year (FY) 1999 (October 1, 1998 through September 30, 1999), the total impact of DOE'S local $1.59 billion budget was felt through payrolls of $542 million and local purchases of goods and services of $226 million. The total local spending of $768 million was up slightly from the FY 1998 total of $765 million. Taking into account the multiplier effects of this spending, the DOE/RL budget sustained an estimated 32% of all local employment (28,250 out of 88,100 jobs) and about 35% of local earned income (almost $1.08 billion out of $3.08 billion). The decrease in these percentages from last year's report reflects an update of the model's economic structure based on the 1997 economic census year, a correction of a programming error in the model found during the update, and a broader definition of earnings that includes proprietor income, not just wages (see the Appendix for revisions to the previous forecasts). DOE budget increases in FY 2000 are expected to result in no change to the number of local DOE contractor jobs and about a $29 million increase in direct local spending.

SCOTT, M.J.

2000-06-05T23:59:59.000Z

64

Yukawa and Tri-scalar Processes in Electroweak Baryogenesis  

E-Print Network [OSTI]

We derive the contributions to the quantum transport equations for electroweak baryogenesis due to decays and inverse decays induced by tri-scalar and Yukawa interactions. In the Minimal Supersymmetric Standard Model (MSSM), these contributions give rise to couplings between Higgs and fermion supermultiplet densities, thereby communicating the effects of CP-violation in the Higgs sector to the baryon sector. We show that the decay and inverse decay-induced contributions that arise at zeroth order in the strong coupling, \\alpha_s, can be substantially larger than the O(\\alpha_s) terms that are generated by scattering processes and that are usually assumed to dominate. We revisit the often-used approximation of fast Yukawa-induced processes and show that for realistic parameter choices it is not justified. We solve the resulting quantum transport equations numerically with special attention on the impact of Yukawa rates and study the dependence of the baryon-to-entropy ratio Y_B on MSSM parameters.

Cirigliano, V; Ramsey-Musolf, M J; Tulin, S; Cirigliano, Vincenzo; Lee, Christopher; Ramsey-Musolf, Michael J.; Tulin, Sean

2006-01-01T23:59:59.000Z

65

Try-A Global Database of Plant Traits  

SciTech Connect (OSTI)

Plant traits the morphological, anatomical, physiological, biochemical and phenological characteristics of plants and their organs determine how primary producers respond to environmental factors, affect other trophic levels, influence ecosystem processes and services and provide a link from species richness to ecosystem functional diversity. Trait data thus represent the raw material for a wide range of research from evolutionary biology, community and functional ecology to biogeography. Here we present the global database initiative named TRY, which has united a wide range of the plant trait research community worldwide and gained an unprecedented buy-in of trait data: so far 93 trait databases have been contributed. The data repository currently contains almost three million trait entries for 69 000 out of the world s 300 000 plant species, with a focus on 52 groups of traits characterizing the vegetative and regeneration stages of the plant life cycle, including growth, dispersal, establishment and persistence. A first data analysis shows that most plant traits are approximately log-normally distributed, with widely differing ranges of variation across traits. Most trait variation is between species (interspecific), but significant intraspecific variation is also documented, up to 40% of the overall variation. Plant functional types (PFTs), as commonly used in vegetation models, capture a substantial fraction of the observed variation but for several traits most variation occurs within PFTs, up to 75% of the overall variation. In the context of vegetation models these traits would better be represented by state variables rather than fixed parameter values. The improved availability of plant trait data in the unified global database is expected to support a paradigm shift from species to trait-based ecology, offer new opportunities for synthetic plant trait research and enable a more realistic and empirically grounded representation of terrestrial vegetation in Earth system models.

Thornton, Peter E [ORNL

2011-01-01T23:59:59.000Z

66

Resonant Soft X-Ray Scattering of Tri-Block Copolymers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

biomolecular materials to structured electrolytes for lithum-ion batteries and supercapacitors. Drawings of 12 possible morphologies Varying morphologies of linear tri-block...

67

Atomistic Study of the Migration of Di- and Tri-Interstitials...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

silicon is performed using classical molecular dynamics simulations with a Stillinger-Weber potential. At first the structures and energetics of the di- and the tri-interstitial...

68

Tri-County solid waste-to-fuel production project feasibility study  

SciTech Connect (OSTI)

The analysis and preliminary findings of refuse-derived fuel and recovered components markets are presented. Other topics covered are: municipal solid waste composition, quantity and constraints; technical assessment and capital cost assessment; economic feasibility of burning process residue to generate steam; review of commercially available equipment for the densification of refuse-derived fuel; final pre-feasibility analysis for the Tri-County Municipal Solid Waste to Fuel Production Project; preliminary economic and sensitivity analysis for the Tri-County Project; risks assessment for the Tri-County Project; and environmental, health, safety, and socioeconomic assessment for the Tri-County Project. (MHR)

Not Available

1983-09-01T23:59:59.000Z

69

Tri-Laboratory Linux Capacity Cluster 2007 SOW  

SciTech Connect (OSTI)

The Advanced Simulation and Computing (ASC) Program (formerly know as Accelerated Strategic Computing Initiative, ASCI) has led the world in capability computing for the last ten years. Capability computing is defined as a world-class platform (in the Top10 of the Top500.org list) with scientific simulations running at scale on the platform. Example systems are ASCI Red, Blue-Pacific, Blue-Mountain, White, Q, RedStorm, and Purple. ASC applications have scaled to multiple thousands of CPUs and accomplished a long list of mission milestones on these ASC capability platforms. However, the computing demands of the ASC and Stockpile Stewardship programs also include a vast number of smaller scale runs for day-to-day simulations. Indeed, every 'hero' capability run requires many hundreds to thousands of much smaller runs in preparation and post processing activities. In addition, there are many aspects of the Stockpile Stewardship Program (SSP) that can be directly accomplished with these so-called 'capacity' calculations. The need for capacity is now so great within the program that it is increasingly difficult to allocate the computer resources required by the larger capability runs. To rectify the current 'capacity' computing resource shortfall, the ASC program has allocated a large portion of the overall ASC platforms budget to 'capacity' systems. In addition, within the next five to ten years the Life Extension Programs (LEPs) for major nuclear weapons systems must be accomplished. These LEPs and other SSP programmatic elements will further drive the need for capacity calculations and hence 'capacity' systems as well as future ASC capability calculations on 'capability' systems. To respond to this new workload analysis, the ASC program will be making a large sustained strategic investment in these capacity systems over the next ten years, starting with the United States Government Fiscal Year 2007 (GFY07). However, given the growing need for 'capability' systems as well, the budget demands are extreme and new, more cost effective ways of fielding these systems must be developed. This Tri-Laboratory Linux Capacity Cluster (TLCC) procurement represents the ASC first investment vehicle in these capacity systems. It also represents a new strategy for quickly building, fielding and integrating many Linux clusters of various sizes into classified and unclassified production service through a concept of Scalable Units (SU). The programmatic objective is to dramatically reduce the overall Total Cost of Ownership (TCO) of these 'capacity' systems relative to the best practices in Linux Cluster deployments today. This objective only makes sense in the context of these systems quickly becoming very robust and useful production clusters under the crushing load that will be inflicted on them by the ASC and SSP scientific simulation capacity workload.

Seager, M

2007-03-22T23:59:59.000Z

70

Tri-County High School Exhibition Call for Entries Wayne State University  

E-Print Network [OSTI]

Tri-County High School Exhibition Call for Entries Wayne State University James Pearson Duffy for its Tri-County High School Exhibition. The exhibition dates are March 2 ­ March 23, 2012 counties. ABOUT THE GALLERY The Art Department Gallery hosts annual undergraduate exhibitions, provides

Berdichevsky, Victor

71

Technology transfer and commercialization initiatives at TRI/Austin: Resources and examples  

SciTech Connect (OSTI)

Located at TRI/Austin, and operated under a Department of Defense contract, is the Nondestructive Testing Information Analysis Center (NTIAC). This is a full service Information Analysis Center sponsored by the Defense Technical Information Center (DTIC), although services of NTIAC are available to other government agencies, government contractors, industry and academia. The principal objective of NTIAC is to help increase the productivity of the nation`s scientists, engineers, and technical managers involved in, or requiring, nondestructive testing by providing broad information analysis services of technical excellence. TRI/Austin is actively pursuing commercialization of several products based on results from outside funded R and D programs. As a small business, TRI/Austin has limited capabilities for large scale fabrication, production, marketing or distribution. Thus, part of a successful commercialization process involves making appropriate collaboration arrangements with other organizations to augment TRI/Austin`s capabilities. Brief descriptions are given here of two recent commercialization efforts at TRI/Austin.

Matzkanin, G.A.; Dingus, M.L. [Texas Research Institute, Austin, Inc., TX (United States). Nondestructive Testing Information Analysis Center

1995-12-31T23:59:59.000Z

72

A new CT grading system for hip osteoarthritis  

E-Print Network [OSTI]

protocol and methodology and were then free to examine test cases over the next few weeks. A second meeting followed this familiarisation period to cover any questions on methodology. The first interpretation run was performed in a randomised order? #28... , and Doherty M. Radiographic patterns and associations of osteoarthritis of the hip. Ann Rheum Dis 1992;51(10):1111-6. 23. Solomon L, Schnitzler CM, and Browett JP. Osteoarthritis of the hip: the patient behind the disease. Ann Rheum Dis 1982...

Turmezei, T. D.; Fotiadou, A.; Lomas, D. J.; Hopper, M. A.; Poole, K. E. S.

2014-03-15T23:59:59.000Z

73

Siemens AG, CT, September 2001 CORPORATETECHNOLOGY  

E-Print Network [OSTI]

s Siemens AG, CT, September 2001 CORPORATETECHNOLOGY Research and Technology at Siemens Transportation Power Information & Communications Health Automation & Control #12;2 Siemens AGResearch and Technology at Siemens CORPORATETECHNOLOGY CT / E 020 a - 02.01 Key Figures for 2000 Amounts in billions

74

Limited View Angle Iterative CT Reconstruction  

E-Print Network [OSTI]

;Some Prior Literature in Limited View Tomography CT with limited-angle data and few views IRR algorithm Iterative Reconstruction-Reprojection (IRR) : An Algorithm for Limited Data Cardiac- Computed-views and limited-angle data in divergent-beam CT by E. Y. Sidky, CM Kao, and X. Pan (2006) Few-View Projection

75

SteriSol: A Solar-Powered Steriliza1on and Dis1lla1on Unit for Low Resource Areas  

E-Print Network [OSTI]

full of water to condense the steam. Figure 4: The base of the mirror $ 14.00 Autoclave Unit $ 78.32 Frame $ 37.35 Condenser $ 16.39 Opera1 with an a_ached pressure gauge, and during disEllaEon, steam flows from the pressure

McGaughey, Alan

76

Iran J Arthropod-Borne Dis, 2010, 4(2): 5660 A Nasiri et al.: Tick Infestation Rate of ... Short Communication  

E-Print Network [OSTI]

Iran J Arthropod-Borne Dis, 2010, 4(2): 56­60 A Nasiri et al.: Tick Infestation Rate of ... 56 Province, Iran, 2007-2008 A Nasiri1 , *Z Telmadarraiy1 , H Vatandoost1 , S Chinikar2 , M Moradi2 , MA of Public Health, Tehran University of Medical Sciences, Tehran, Iran 2 Pasteur Institute of Iran, Tehran

Paris-Sud XI, Université de

77

Tri-County Electric Cooperative- Energy Efficient Water Heater Rebate Program  

Broader source: Energy.gov [DOE]

Tri-County Electric Cooperative offers a $75 rebate on the purchase of energy-efficient electric water heaters. The rebate is valid for new or replacement units which have an Energy Factor Rating...

78

The sequence and characterization of TRI1, a cytochrome P450 monooxygenase involved in T-2 toxin biosynthesis  

E-Print Network [OSTI]

% 22 P1 hyg B 900 bp 300 bp TRI1 pIKE9 FIG. 5. The TRI1 complementation vector. The plasmid plKE9, contains a 3. 2 kb genomic fragment of TRI1, which is flanked by the P1:hyg B cassette. 23 Novozyme 234 (InterSpex Products), 1 /o driselase...

Meek, Isaac Burton

2001-01-01T23:59:59.000Z

79

Tri-party agreement databases, access mechanism and procedures. Revision 2  

SciTech Connect (OSTI)

This document contains the information required for the Washington State Department of Ecology (Ecology) and the U.S. Environmental Protection Agency (EPA) to access databases related to the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). It identifies the procedure required to obtain access to the Hanford Site computer networks and the Tri-Party Agreement related databases. It addresses security requirements, access methods, database availability dates, database access procedures, and the minimum computer hardware and software configurations required to operate within the Hanford Site networks. This document supersedes any previous agreements including the Administrative Agreement to Provide Computer Access to U.S. Environmental Protection Agency (EPA) and the Administrative Agreement to Provide Computer Access to Washington State Department of Ecology (Ecology), agreements that were signed by the U.S. Department of Energy (DOE), Richland Operations Office (RL) in June 1990, Access approval to EPA and Ecology is extended by RL to include all Tri-Party Agreement relevant databases named in this document via the documented access method and date. Access to databases and systems not listed in this document will be granted as determined necessary and negotiated among Ecology, EPA, and RL through the Tri-Party Agreement Project Managers. The Tri-Party Agreement Project Managers are the primary points of contact for all activities to be carried out under the Tri-Party Agreement. Action Plan. Access to the Tri-Party Agreement related databases and systems does not provide or imply any ownership on behalf of Ecology or EPA whether public or private of either the database or the system. Access to identified systems and databases does not include access to network/system administrative control information, network maps, etc.

Brulotte, P.J.

1996-01-01T23:59:59.000Z

80

Student ConduCt Student Affairs  

E-Print Network [OSTI]

Code of Student ConduCt 2013-14 Student Affairs #12;Contents Letter from the Dean of Students .........................................................................................ii University Code of Student Conduct Preamble............................................. 1 Section I: Rules of Student Conduct.............................................................. 1 Section

Suzuki, Masatsugu

Note: This page contains sample records for the topic "dis tri ct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

CT imaging of enhanced oil recovery experiments  

SciTech Connect (OSTI)

X-ray computerized tomography (Cr) has been used to study fluid distributions during chemical enhanced oil recovery experiments. Four CT-monitored corefloods were conducted, and oil saturation distributions were calculated at various stages of the experiments. Results suggested that this technique could add significant information toward interpretation and evaluation of surfactant/polymer EOR recovery methods. CT-monitored tracer tests provided information about flow properties in the core samples. Nonuniform fluid advance could be observed, even in core that appeared uniform by visual inspection. Porosity distribution maps based on CT density calculations also showed the presence of different porosity layers that affected fluid movement through the cores. Several types of CT-monitored corefloods were conducted. Comparisons were made for CT-monitored corefloods using chemical systems that were highly successful in reducing residual oil saturations in laboratory experiments and less successful systems. Changes were made in surfactant formulation and in concentration of the mobility control polymer. Use of a poor mobility control agent failed to move oil that was not initially displaced by the injected surfactant solution; even when a good'' surfactant system was used. Use of a less favorable surfactant system with adequate mobility control could produce as much oil as the use of a good surfactant system with inadequate mobility control. The role of mobility control, therefore, becomes a critical parameter for successful application of chemical EOR. Continuation of efforts to use CT imaging in connection with chemical EOR evaluations is recommended.

Gall, B.L.

1992-12-01T23:59:59.000Z

82

CT imaging of enhanced oil recovery experiments  

SciTech Connect (OSTI)

X-ray computerized tomography (Cr) has been used to study fluid distributions during chemical enhanced oil recovery experiments. Four CT-monitored corefloods were conducted, and oil saturation distributions were calculated at various stages of the experiments. Results suggested that this technique could add significant information toward interpretation and evaluation of surfactant/polymer EOR recovery methods. CT-monitored tracer tests provided information about flow properties in the core samples. Nonuniform fluid advance could be observed, even in core that appeared uniform by visual inspection. Porosity distribution maps based on CT density calculations also showed the presence of different porosity layers that affected fluid movement through the cores. Several types of CT-monitored corefloods were conducted. Comparisons were made for CT-monitored corefloods using chemical systems that were highly successful in reducing residual oil saturations in laboratory experiments and less successful systems. Changes were made in surfactant formulation and in concentration of the mobility control polymer. Use of a poor mobility control agent failed to move oil that was not initially displaced by the injected surfactant solution; even when a ``good`` surfactant system was used. Use of a less favorable surfactant system with adequate mobility control could produce as much oil as the use of a good surfactant system with inadequate mobility control. The role of mobility control, therefore, becomes a critical parameter for successful application of chemical EOR. Continuation of efforts to use CT imaging in connection with chemical EOR evaluations is recommended.

Gall, B.L.

1992-12-01T23:59:59.000Z

83

Semi-inclusive DIS Experiments Using Transversely Polarized Targets in Hall-A: Current Results and Future Plans  

SciTech Connect (OSTI)

Measurement of single (SSA) and double spin asymmetries (DSA) in semi-inclusive DIS reactions using polarized targets provide a powerful method to probe transverse momentum dependent parton distribution functions (TMDs). In particular, the experimentally measured SSA on nucleon targets can help in extracting the transversity and Sivers distribution functions of u and d-quarks. Similarly, the measured DSA are sensitive to the quark spin-orbital correlations, and provide an access to the TMD parton distribution function (g{sub 1T} ). A recent experiment conducted in Hall-A Jefferson Lab using transversely polarized {sup 3}He provide first such measurements on neutron target. The measurement was performed using 5.9 GeV beam from CEBAF and measured the target SSA/DSA in the SIDIS reaction {sup 3}He{sup {dagger}}(e,e'{pi}{sup {+/-}} )X. The kinematical range, x = 0.19 ~ 0.34, at Q{sup 2} = 1.77 ~ 2.73 (GeV/c){sup 2} , was focused on the valence quark region. The results from this measurement along with our plans for future high precision measurements in Hall-A are presented.

Kalyan Allada

2012-12-01T23:59:59.000Z

84

Hanford and the Tri-Cities Economy: Historical Trends 1970-2008  

SciTech Connect (OSTI)

This white paper examines the effect that the Hanford Site has had on the Tri-Cities economy from 1970-2008. Total area employment levels, population, and the real estate market are compared to DOE contractor employment and funding levels, which tended to follow each other until the mid-1990s. Since 1994, area employment, total incomes, population and the real estate market have increased significantly despite very little changes in Hanford employment levels. The data indicate that in recent history, the Tri-Cities economy has become increasingly independent of Hanford.

Fowler, Richard A.; Scott, Michael J.

2009-10-01T23:59:59.000Z

85

Friction Reduction for Microhole CT Drilling  

SciTech Connect (OSTI)

The objective of this 24 month project focused on improving microhole coiled tubing drilling bottom hole assembly (BHA) reliability and performance, while reducing the drilling cost and complexity associated with inclined/horizontal well sections. This was to be accomplished by eliminating the need for a downhole drilling tractor or other downhole coiled tubing (CT) friction mitigation techniques when drilling long (>2,000 ft.) of inclined/horizontal wellbore. The technical solution to be developed and evaluated in this project was based on vibrating the coiled tubing at surface to reduce the friction along the length of the downhole CT drillstring. The Phase 1 objective of this project centered on determining the optimum surface-applied vibration system design for downhole CT friction mitigation. Design of the system would be based on numerical modeling and laboratory testing of the CT friction mitigation achieved with various types of surface-applied vibration. A numerical model was developed to predict how far downhole the surface-applied vibration would travel. A vibration test fixture, simulating microhole CT drilling in a horizontal wellbore, was constructed and used to refine and validate the numerical model. Numerous tests, with varying surface-applied vibration parameters were evaluated in the vibration test fixture. The data indicated that as long as the axial force on the CT was less than the helical buckling load, axial vibration of the CT was effective at mitigating friction. However, surface-applied vibration only provided a small amount of friction mitigation as the helical buckling load on the CT was reached or exceeded. Since it would be impractical to assume that routine field operations be conducted at less than the helical buckling load of the CT, it was determined that this technical approach did not warrant the additional cost and maintenance issues that would be associated with the surface vibration equipment. As such, the project was concluded following completion of Phase 1, and Phase 2 (design, fabrication, and testing of a prototype surface vibration system) was not pursued.

Ken Newman; Patrick Kelleher; Edward Smalley

2007-03-31T23:59:59.000Z

86

TRI-M]AL ELECTRIC FIELD I'MASIJRN$NTS FOR DETERMII.IINGDEEP OCEANWATERMOTIONS  

E-Print Network [OSTI]

TRI-M]AL ELECTRIC FIELD I'MASIJRN$NTS FOR DETERMII.IINGDEEP OCEANWATERMOTIONS: TECHNIQUESAND A PREL OF THE by G e o r g e H . S u t t o n #12;I \\ t ABSTRACT Deep ocean electric field neasureEents provide information on oceanic water uotions and on the electrical conductivity sEructure of the earthrs crust

Luther, Douglas S.

87

23rd Annual Tri-County Pesticide Update Lake Butler Community Center  

E-Print Network [OSTI]

23rd Annual Tri-County Pesticide Update Lake Butler Community Center Lake Butler, FL Tuesday, CED, Union County 5:55 Pesticide Safety Barton Wilder, UF/IFAS, Extension Agent Alachua County 6:00 Update on Weed Control Barton Wilder, UF/IFAS Extension Agent Alachua County 7:25 CORE: Law & Rule

Hill, Jeffrey E.

88

Fractally deforested landscape: Pattern and process in a tri-national Amazon frontier  

E-Print Network [OSTI]

Fractally deforested landscape: Pattern and process in a tri-national Amazon frontier Jing Sun a 32611, USA Keywords: Amazon Deforestation Fractal analysis Fixed-grid scans Bottom-up plan Configuration of deforestation at a pixel level from 1986 to 2010 in the study region. The evolving pattern of development

89

Analysis of a Third-Generation Princeton Tri-leaflet Mechanical Heart Valve  

E-Print Network [OSTI]

Analysis of a Third-Generation Princeton Tri-leaflet Mechanical Heart Valve Michael Hsu Advisor heart valve · Static analysis of leaflet under uniform pressure of 10 MPa Summer Objectives · Find Heart valve disease · Over 5 million affected · Over 225,000 valve- replacement surgeries performed

Petta, Jason

90

How to search resources If you are looking for an article, try  

E-Print Network [OSTI]

in the search box. -You can also perform an advanced search on Google scholar by clicking on `Advanced Scholar to title or author by using `Advanced Scholar Search'. Searching for articles at MHow to search resources If you are looking for an article, try: Google Scholar: This search engine

McPhee-Shaw, Erika

91

Bosnia-Herzegovina: Trying to Build a Federal State on Paradoxes Introduction  

E-Print Network [OSTI]

1 Bosnia-Herzegovina: Trying to Build a Federal State on Paradoxes Jens Woelk Introduction The basis for federalism in Bosnia-Herzegovina1 is rather peculiar due to the unique complexity. This was to be accomplished by physical reconstruction as well as by preserving Bosnia and Herzegovina as one country

Wintner, Shuly

92

Comparison of CT and MR-CT Fusion for Prostate Post-Implant Dosimetry  

SciTech Connect (OSTI)

Purpose: The use of T2 MR for postimplant dosimetry (PID) after prostate brachytherapy allows more anatomically accurate and precise contouring but does not readily permit seed identification. We developed a reproducible technique for performing MR-CT fusion and compared the resulting dosimetry to standard CT-based PID. Methods and Materials: CT and T1-weighted MR images for 45 patients were fused and aligned based on seed distribution. The T2-weighted MR image was then fused to the aligned T1. Reproducibility of the fusion technique was tested by inter- and intraobserver variability for 13 patients. Dosimetry was computed for the prostate as a whole and for the prostate divided into anterior and posterior sectors of the base, mid-prostate, and apex. Results: Inter- and intraobserver variability for the fusion technique showed less than 1% variation in D90. MR-CT fusion D90 and CT D90 were nearly equivalent for the whole prostate, but differed depending on the identification of superior extent of the base (p = 0.007) and on MR/CT prostate volume ratio (p = 0.03). Sector analysis showed a decrease in MR-CT fusion D90 in the anterior base (ratio 0.93 {+-}0.25, p < 0.05) and an increase in MR-CT fusion D90 in the apex (p < 0.05). The volume of extraprostatic tissue encompassed by the V100 is greater on MR than CT. Factors associated with this difference are the MR/CT volume ratio (p < 0.001) and the difference in identification of the inferior extent of the apex (p = 0.03). Conclusions: We developed a reproducible MR-CT fusion technique that allows MR-based dosimetry. Comparing the resulting postimplant dosimetry with standard CT dosimetry shows several differences, including adequacy of coverage of the base and conformity of the dosimetry around the apex. Given the advantage of MR-based tissue definition, further study of MR-based dosimetry is warranted.

Maletz, Kristina L. [Department of Radiation Oncology, St. Luke's-Roosevelt Hospital Center, Beth Israel Medical Center, Continuum Health Partners, New York, NY (Israel); Columbia University College of Physicians and Surgeons, New York, NY (United States); Ennis, Ronald D., E-mail: REnnis@chpnet.org [Department of Radiation Oncology, St. Luke's-Roosevelt Hospital Center, Beth Israel Medical Center, Continuum Health Partners, New York, NY (Israel); Ostenson, Jason; Pevsner, Alexander [Department of Radiation Oncology, St. Luke's-Roosevelt Hospital Center, Beth Israel Medical Center, Continuum Health Partners, New York, NY (Israel); Kagen, Alexander [Department of Radiology, Beth Israel Medical Center, St. Luke's-Roosevelt Hospital, Continuum Health Partners, New York, NY (Israel); Wernick, Iddo [Department of Radiation Oncology, St. Luke's-Roosevelt Hospital Center, Beth Israel Medical Center, Continuum Health Partners, New York, NY (Israel)

2012-04-01T23:59:59.000Z

93

abdominal ct images: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

methods establish microCT imaging as a useful tool for comparative Metscher, Brian 31 CT-PET Landmark-based Lung Registration Using a Dynamic Breathing Model S. Chambon1 Physics...

94

abdominal ct findings: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

planning. It includes an abdominal computer tomography (CT) image Leow, Wee Kheng 11 CT-PET Landmark-based Lung Registration Using a Dynamic Breathing Model S. Chambon1 Physics...

95

Anatomic measurement accuracy: CT parameters and 3D rendering effects  

E-Print Network [OSTI]

Anatomic measurement accuracy: CT parameters and 3D rendering effects Brian J Whyms a, E Michael of Neuroscience #12;INTRODUCTION Measurements from 3D-CT rendering are used in research and clinical management-CT rendering techniques on measurements #12;METHODS Scanned: 3 human mandibles a phantom object Phantom

Vorperian, Houri K.

96

Diffusion and Catalytic Cracking of 1,3,5 Tri-iso-propyl-benzene in FCC Catalysts  

E-Print Network [OSTI]

1 Diffusion and Catalytic Cracking of 1,3,5 Tri-iso- propyl-benzene in FCC Catalysts S.Al-Khattaf1 describes catalytic cracking experiments developed in a novel CREC Riser Simulator using 1,3,5-Tri-iso

Al-Khattaf, Sulaiman

97

My Generation--The Who People try to put us d-down  

E-Print Network [OSTI]

My Generation--The Who Intro: G F People try to put us d-down G F G(once) Talkin' 'bout my generation Just because we get around G F G(once) Talkin' 'bout my generation Things they do look awful cold G F G(once) Talkin' 'bout my generation I hope I die before I get old G F G(once) Talkin' 'bout my

Reiners, Peter W.

98

Comparison of CT, PET, and PET/CT for Staging of Patients with Indolent Non-Hodgkins Lymphoma  

E-Print Network [OSTI]

B. J. Fueger et al. : PET/CT for indolent lymphoma Table 2.Performance for detection of nodal disease Sensitivity PETCT PET/CT pG0.001 vs PET, CT Specificity pG0.001 vs PET

Fueger, Barbara J.; Yeom, Kristen; Czernin, Johannes; Sayre, James W.; Phelps, Michael E.; Allen-Auerbach, Martin S.

2009-01-01T23:59:59.000Z

99

Close-in blasting at the TRI-MET light rail tunnels in Portland, Oregon  

SciTech Connect (OSTI)

Frontier/Traylor Joint Venture is presently constructing a section of the Tri-County Metropolitan Transit District of Oregon`s (TRI-MET) Westside Light Rail System. This new section will extend Portland`s existing transit system to the western suburbs of Beaverton and Hillsboro. The drill-blast excavations at this project include 10,000 feet of 20 foot tunnel, 18 cross passages, three shafts, an underground railway station, and a U-wall open cut. From a blast designer`s perspective, this job has been extremely challenging. Blast vibration is limited to 0.5 ips at 200 feet or at the nearest structure, and airblast is limited to 129 dB--linear peak and 96 dB--C scale. The tunnels pass under heavily built up areas and have top of tunnel to surface cover distances as low as 70 feet. Surface blasting in the 26,000 cubic yard U-wall excavation was limited to five short nighttime periods due to its proximity to the very busy highway 26. This paper describes the techniques that were used to develop safe blasting designs for the TRI-MET Surface blasts and tunnel rounds. It also discusses the measures that were necessary to mitigate noise, vibration, and flyrock.

Revey, G.F.; Painter, D.Z.

1995-12-31T23:59:59.000Z

100

Implications of CT noise and artifacts for quantitative {sup 99m}Tc SPECT/CT imaging  

SciTech Connect (OSTI)

Purpose: This paper evaluates the effects of computed tomography (CT) image noise and artifacts on quantitative single-photon emission computed-tomography (SPECT) imaging, with the aim of establishing an appropriate range of CT acquisition parameters for low-dose protocols with respect to accurate SPECT attenuation correction (AC). Methods: SPECT images of two geometric and one anthropomorphic phantom were reconstructed iteratively using CT scans acquired at a range of dose levels (CTDI{sub vol} = 0.4 to 46 mGy). Resultant SPECT image quality was evaluated by comparing mean signal, background noise, and artifacts to SPECT images reconstructed using the highest dose CT for AC. Noise injection was performed on linear-attenuation (?) maps to determine the CT noise threshold for accurate AC. Results: High levels of CT noise (? ? 200400 HU) resulted in low ?-maps noise (? ? 1%3%). Noise levels greater than ?10% in 140 keV ?-maps were required to produce visibly perceptible increases of ?15% in {sup 99m}Tc SPECT images. These noise levels would be achieved at low CT dose levels (CTDI{sub vol} = 4 ?Gy) that are over 2 orders of magnitude lower than the minimum dose for diagnostic CT scanners. CT noise could also lower (bias) the expected ? values. The relative error in reconstructed SPECT signal trended linearly with the relative shift in ?. SPECT signal was, on average, underestimated in regions corresponding with beam-hardening artifacts in CT images. Any process that has the potential to change the CT number of a region by ?100 HU (e.g., misregistration between CT images and SPECT images due to motion, the presence of contrast in CT images) could introduce errors in ?{sub 140} {sub keV} on the order of 10%, that in turn, could introduce errors on the order of ?10% into the reconstructed {sup 99m}Tc SPECT image. Conclusions: The impact of CT noise on SPECT noise was demonstrated to be negligible for clinically achievable CT parameters. Because CT dose levels that affect SPECT quantification is low (CTDI{sub vol} ? 4 ?Gy), the low dose limit for the CT exam as part of SPECT/CT will be guided by CT image quality requirements for anatomical localization and artifact reduction. A CT technique with higher kVp in combination with lower mAs is recommended when low-dose CT images are used for AC to minimize beam-hardening artifacts.

Hulme, K. W.; Kappadath, S. C., E-mail: skappadath@mdanderson.org [Department of Imaging Physics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030 and The University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77030 (United States)

2014-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "dis tri ct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

First analysis of eight Algol-type systems: V537 And, GS Boo, AM CrB, V1298 Her, EL Lyn, FW Per, RU Tri, and WW Tri  

E-Print Network [OSTI]

Analyzing available photometry from the Super WASP and other databases, we performed the very first light curve analysis of eight eclipsing binary systems V537 And, GS Boo, AM CrB, V1298 Her, EL Lyn, FW Per, RU Tri, and WW Tri. All of these systems were found to be detached ones of Algol-type, having the orbital periods of the order of days. 722 new times of minima for these binaries were derived and presented, trying to identify the period variations caused by the third bodies in these systems.

Zasche, P

2014-01-01T23:59:59.000Z

102

Automated size-specific CT dose monitoring program: Assessing variability in CT dose  

SciTech Connect (OSTI)

Purpose: The potential health risks associated with low levels of ionizing radiation have created a movement in the radiology community to optimize computed tomography (CT) imaging protocols to use the lowest radiation dose possible without compromising the diagnostic usefulness of the images. Despite efforts to use appropriate and consistent radiation doses, studies suggest that a great deal of variability in radiation dose exists both within and between institutions for CT imaging. In this context, the authors have developed an automated size-specific radiation dose monitoring program for CT and used this program to assess variability in size-adjusted effective dose from CT imaging. Methods: The authors radiation dose monitoring program operates on an independent health insurance portability and accountability act compliant dosimetry server. Digital imaging and communication in medicine routing software is used to isolate dose report screen captures and scout images for all incoming CT studies. Effective dose conversion factors (k-factors) are determined based on the protocol and optical character recognition is used to extract the CT dose index and dose-length product. The patient's thickness is obtained by applying an adaptive thresholding algorithm to the scout images and is used to calculate the size-adjusted effective dose (ED{sub adj}). The radiation dose monitoring program was used to collect data on 6351 CT studies from three scanner models (GE Lightspeed Pro 16, GE Lightspeed VCT, and GE Definition CT750 HD) and two institutions over a one-month period and to analyze the variability in ED{sub adj} between scanner models and across institutions. Results: No significant difference was found between computer measurements of patient thickness and observer measurements (p= 0.17), and the average difference between the two methods was less than 4%. Applying the size correction resulted in ED{sub adj} that differed by up to 44% from effective dose estimates that were not adjusted by patient size. Additionally, considerable differences were noted in ED{sub adj} distributions between scanners, with scanners employing iterative reconstruction exhibiting significantly lower ED{sub adj} (range: 9%-64%). Finally, a significant difference (up to 59%) in ED{sub adj} distributions was observed between institutions, indicating the potential for dose reduction. Conclusions: The authors developed a robust automated size-specific radiation dose monitoring program for CT. Using this program, significant differences in ED{sub adj} were observed between scanner models and across institutions. This new dose monitoring program offers a unique tool for improving quality assurance and standardization both within and across institutions.

Christianson, Olav; Li Xiang; Frush, Donald; Samei, Ehsan [Clinical Imaging Physics Group, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 and Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Clinical Imaging Physics Group, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States) and Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Clinical Imaging Physics Group, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Department of Physics, Duke University, Durham, North Carolina 27710 (United States); and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States)

2012-11-15T23:59:59.000Z

103

CT volumetry of the skeletal tissues  

SciTech Connect (OSTI)

Computed tomography (CT) is an important and widely used modality in the diagnosis and treatment of various cancers. In the field of molecular radiotherapy, the use of spongiosa volume (combined tissues of the bone marrow and bone trabeculae) has been suggested as a means to improve the patient-specificity of bone marrow dose estimates. The noninvasive estimation of an organ volume comes with some degree of error or variation from the true organ volume. The present study explores the ability to obtain estimates of spongiosa volume or its surrogate via manual image segmentation. The variation among different segmentation raters was explored and found not to be statistically significant (p value >0.05). Accuracy was assessed by having several raters manually segment a polyvinyl chloride (PVC) pipe with known volumes. Segmentation of the outer region of the PVC pipe resulted in mean percent errors as great as 15% while segmentation of the pipe's inner region resulted in mean percent errors within {approx}5%. Differences between volumes estimated with the high-resolution CT data set (typical of ex vivo skeletal scans) and the low-resolution CT data set (typical of in vivo skeletal scans) were also explored using both patient CT images and a PVC pipe phantom. While a statistically significant difference (p value <0.002) between the high-resolution and low-resolution data sets was observed with excised femoral heads obtained following total hip arthroplasty, the mean difference between high-resolution and low-resolution data sets was found to be only 1.24 and 2.18 cm{sup 3} for spongiosa and cortical bone, respectively. With respect to differences observed with the PVC pipe, the variation between the high-resolution and low-resolution mean percent errors was a high as {approx}20% for the outer region volume estimates and only as high as {approx}6% for the inner region volume estimates. The findings from this study suggest that manual segmentation is a reasonably accurate and reliable means for the in vivo estimation of spongiosa volume. This work also provides a foundation for future studies where spongiosa volumes are estimated by various raters in more comprehensive CT data sets.

Brindle, James M.; Alexandre Trindade, A.; Pichardo, Jose C.; Myers, Scott L.; Shah, Amish P.; Bolch, Wesley E. [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, Florida 32611 (United States); Department of Statistics, University of Florida, Gainesville, Florida 32611 (United States); Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, Florida 32611 (United States); Department of Orthopaedics and Rehabilitation, University of Florida, Gainesville, Florida 32611 (United States); MD Anderson Cancer Center Orlando, Orlando, Florida 32806 (United States); Department of Nuclear and Radiological and Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611 (United States)

2006-10-15T23:59:59.000Z

104

Kinetic study of the interaction of hydroxide ions with some tri- and tetrasubstituted nitronaphthalenes  

E-Print Network [OSTI]

nitrite was assayed by pipeting 50. 00 ml of standard 0. 100N potassium permanganate, 5 ml of 1:5 sulfuric acid, and 25. 00 ml of approximately 0. 1 N sodium nitrite solution (3. 45 g per liter) into a glass-stoppered f'lask. The stoppered flask...'our nitrosubstituted i-iapi", , na", enes, 1 . . =, 5 i8- tetr?-, 1 4 . 5 . , 8-tet ra , i, 3, 8-tri - and 1, 4, 5- r i nl t' , onaphii'ial E. , ', s, w re s * u '. ", ihi . ' '"ors ' ants for formation and oecomposstion of tne interiiiediate Meiscnneirier...

Liu, Li-jen

1974-01-01T23:59:59.000Z

105

1-nm-thick graphene tri-layer as the ultimate copper diffusion barrier  

SciTech Connect (OSTI)

We demonstrate the thinnest ever reported Cu diffusion barrier, a 1-nm-thick graphene tri-layer. X-ray diffraction patterns and Raman spectra show that the graphene is thermally stable at up to 750?C against Cu diffusion. Transmission electron microscopy images show that there was no inter-diffusion in the Cu/graphene/Si structure. Raman analyses indicate that the graphene may have degraded into a nanocrystalline structure at 750?C. At 800?C, the perfect carbon structure was damaged, and thus the barrier failed. The results of this study suggest that graphene could be the ultimate Cu interconnect diffusion barrier.

Nguyen, Ba-Son [Department of Mechanical Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Lin, Jen-Fin [Department of Mechanical Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Perng, Dung-Ching, E-mail: dcperng@ee.ncku.edu.tw [Institute of Microelectronics and Electrical Engineering Department, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China)

2014-02-24T23:59:59.000Z

106

TRI-STATE GENERATION AND TRANSMISSION ASSOCIATION, INC. HEADQUARTERS: P.O  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClient updateTRI-STATE GENERATION AND TRANSMISSION

107

Generic TriBITS PRoject, Build, Test, and Install Quick Reference Guide  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky Learning Fun withGenepoolCrystals. |Generic TriBITS PRoject,

108

Tri-Party Agreement U.S. Department of Energy Washington State Department of Ecology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2TopoPortal Hydrogen andTrent Tuckerof 17 Tri-Party

109

Complications in CT-guided Procedures: Do We Really Need Postinterventional CT Control Scans?  

SciTech Connect (OSTI)

PurposeThe aim of this study is twofold: to determine the complication rate in computed tomography (CT)-guided biopsies and drainages, and to evaluate the value of postinterventional CT control scans.MethodsRetrospective analysis of 1,067 CT-guided diagnostic biopsies (n=476) and therapeutic drainages (n=591) in thoracic (n=37), abdominal (n=866), and musculoskeletal (ms) (n=164) locations. Severity of any complication was categorized as minor or major. To assess the need for postinterventional CT control scans, it was determined whether complications were detected clinically, on peri-procedural scans or on postinterventional scans only.ResultsThe complication rate was 2.5% in all procedures (n=27), 4.4% in diagnostic punctures, and 1.0% in drainages; 13.5% in thoracic, 2.0% in abdominal, and 3.0% in musculoskeletal procedures. There was only 1 major complication (0.1%). Pneumothorax (n=14) was most frequent, followed by bleeding (n=9), paresthesia (n=2), material damage (n=1), and bone fissure (n=1). Postinterventional control acquisitions were performed in 65.7% (701 of 1,067). Six complications were solely detectable in postinterventional control acquisitions (3 retroperitoneal bleeds, 3 pneumothoraces); all other complications were clinically detectable (n=4) and/or visible in peri-interventional controls (n=21).ConclusionComplications in CT-guided interventions are rare. Of these, thoracic interventions had the highest rate, while pneumothoraces and bleeding were most frequent. Most complications can be detected clinically or peri-interventionally. To reduce the radiation dose, postinterventional CT controls should not be performed routinely and should be restricted to complicated or retroperitoneal interventions only.

Nattenmller, Johanna, E-mail: johanna.nattenmueller@med.uni-heidelberg.de; Filsinger, Matthias, E-mail: Matthias_filsinger@web.de; Bryant, Mark, E-mail: mark.bryant@med.uni-heidelberg.de; Stiller, Wolfram, E-mail: Wolfram.Stiller@med.uni-heidelberg.de; Radeleff, Boris, E-mail: boris.radeleff@med.uni-heidelberg.de; Grenacher, Lars, E-mail: lars.grenacher@med.uni-heidelberg.de; Kauczor, Hans-Ullrich, E-mail: hu.kauczor@med.uni-heidelberg.de; Hosch, Waldemar, E-mail: waldemar.hosch@urz.uni-heidelberg.de [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology (Germany)

2013-06-19T23:59:59.000Z

110

Extraction of Plutonium into 30 Percent Tri-Butyl Phosphate from Nitric Acid Solution Containing Fluoride, Aluminum, and Boron  

SciTech Connect (OSTI)

This work consists of experimental batch extraction data for plutonium into 30 volume-percent tri-butyl phosphate at ambient temperature from such a solution matrix and a model of this data using complexation constants from the literature.

Kyser, E.A.

2000-01-06T23:59:59.000Z

111

Webinar: 2011-2012 Hydrogen Student Design Contest Winners: On-Campus Tri-Generation Fuel Cell Systems  

Broader source: Energy.gov [DOE]

Video recording of the Fuel Cell Technologies Office webinar, 2011-2012 Hydrogen Student Design Contest Winners: On-Campus Tri-Generation Fuel Cell Systems, originally presented on September 4, 2012.

112

Green alternatives to toxic release inventory (TRI) chemicals in the process industry  

SciTech Connect (OSTI)

Driven by TRI reporting requirements, the chemical process industry is searching for innovative ways to reduce pollution at the source. Distinct environmental advantages of biobased green chemicals (biochemicals) mean are attractive alternatives to petrochemicals. Biochemicals are made from renewable raw materials in biological processes, such as aerobic and anaerobic fermentation, that operate at ambient temperatures and pressures, and produce only nontoxic waste products. Key TRI chemicals and several classes of commodity and intermediate compounds, used on consumer end-products manufacturing, are examined and alternatives are suggested. Specific substitution options for chlorofluorocarbons, industrial solvents, and commodity organic and inorganic chemicals are reviewed. Currently encouraged pollution prevention alternatives in the manufacturing sector are briefly examined for their long-term feasibility such as bioalternatives to bleaching in the pulp & paper industry, solvent cleaning in the electronics and dry cleaning industries, and using petroleum-based feedstocks in the plastics industry. Total life cycle and cost/benefit analyses are employed to determine whether biochemicals are environmentally feasible and commercially viable as pollution prevention tools. Currently available green chemicals along with present and projected costs and premiums are also presented. Functional compatibility of biochemicals with petrochemicals and bioprocessing systems with conventional chemical processing methods are explored. This review demonstrates that biochemicals can be used cost effectively in certain industrial chemical operations due to their added environmental benefits.

Ahmed, I.; Baron, J.; Hamilton, C. [Booz-Allen & Hamilton Inc., McLean, VA (United States)

1995-12-01T23:59:59.000Z

113

The transverse space-charge force in tri-gaussian distribution  

SciTech Connect (OSTI)

In tracking, the transverse space-charge force can be represented by changes in the horizontal and vertical divergences, {Delta}x{prime} and {Delta}y{prime} at many locations around the accelerator ring. In this note, they are going to list some formulas for {Delta}x{prime} and {delta}y{prime} arising from space-charge kicks when the beam is tri-Gaussian distributed. They will discuss separately a flat beam and a round beam. they are not interested in the situation when the emittance growth arising from space charge becomes too large and the shape of the beam becomes weird. For this reason, they can assume the bunch still retains its tri-Gaussian distribution, with its rms sizes {sigma}{sub x}, {sigma}{sub y}, and {sigma}{sub z} increasing by certain factors. Thus after each turn, {sigma}{sub x}, {sigma}{sub y}, and {sigma}{sub z} can be re-calculated.

Ng, K.Y.; /Fermilab

2005-12-01T23:59:59.000Z

114

CT. L-2 United States Government  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -MiamiYVE r.x-L* d! CT NC0 - i ,

115

Siemens Corporate Technology CT | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation,Pvt LtdShrub Oak, New York: EnergySibleySidney,EnergyCT

116

Explosive Detection in Aviation Applications Using CT  

SciTech Connect (OSTI)

CT scanners are deployed world-wide to detect explosives in checked and carry-on baggage. Though very similar to single- and dual-energy multi-slice CT scanners used today in medical imaging, some recently developed explosives detection scanners employ multiple sources and detector arrays to eliminate mechanical rotation of a gantry, photon counting detectors for spectral imaging, and limited number of views to reduce cost. For each bag scanned, the resulting reconstructed images are first processed by automated threat recognition algorithms to screen for explosives and other threats. Human operators review the images only when these automated algorithms report the presence of possible threats. The US Department of Homeland Security (DHS) has requirements for future scanners that include dealing with a larger number of threats, higher probability of detection, lower false alarm rates and lower operating costs. One tactic that DHS is pursuing to achieve these requirements is to augment the capabilities of the established security vendors with third-party algorithm developers. A third-party in this context refers to academics and companies other than the established vendors. DHS is particularly interested in exploring the model that has been used very successfully by the medical imaging industry, in which university researchers develop algorithms that are eventually deployed in commercial medical imaging equipment. The purpose of this paper is to discuss opportunities for third-parties to develop advanced reconstruction and threat detection algorithms.

Martz, H E; Crawford, C R

2011-02-15T23:59:59.000Z

117

Outline c and b Production in pp c and b Production in DIS Photoproduction of c and b b Production at HERA Conclusions Heavy Flavor Production at HERA and the  

E-Print Network [OSTI]

Outline c and b Production in pp c and b Production in DIS Photoproduction of c and b b Production at HERA Conclusions Heavy Flavor Production at HERA and the Tevatron Bruce Straub, University of Oxford Physics in Collision, Buzios, Brazil , 5-9 July 2006 Heavy Flavor Production at HERA and the Tevatron

118

Initiation Temperature for Runaway Tri-n-Butyl Phosphate/Nitric Acid Reaction  

SciTech Connect (OSTI)

In a review of the safety basis for solvent extraction processes at the Department of Energy's Savannah River Site, a question was raised concerning the safety margin associated with a postulated accident involving a runaway tri-n-butyl phosphate (TBP)/nitric acid reaction due to the inadvertent heating of a tank. The safety margin was based on studies which showed the maximum temperature would not exceed 128 degrees Celsius compared to 130 degrees Celsius, the minimum initiation temperature for runaway reaction established in the 1950's following damaging incidents at the Savannah River and Hanford Sites. The reviewers were concerned the minimum temperature was not conservative since data for solutions containing 20 wt percent dissolved solids showed initiation temperatures at or below 130 degrees Celsius and process solutions normally contain some dissolved solids.

Rudisill, T.S.

2001-09-14T23:59:59.000Z

119

A thermodynamic model of nitric acid extraction by tri-n-butyl phosphate  

SciTech Connect (OSTI)

A thermodynamic model is presented for nitric acid extraction by tri-n-butyl phosphate (TBP). This model is based on the formation of the organic phase species: TBP.HNO/sub 3/ and (TBP)/sub 2/.HNO/sub 3/. The model works successfully at TBP concentrations of 5 to 100 vol% and was found to be effective at predicting the extraction of HNO/sub 3/ from HNO/sub 3//NaNO/sub 3/ and HNO/sub 3//LiNO/sub 3/ solutions. Within the TBP concentration range of 5 to 30%, a single set of extraction constants was sufficient to fit extraction data. Stoichiometric activity coefficients of nitric acid in HNO/sub 3//NaNO/sub 3/ and HNO/sub 3//LiNO/sub 3/ mixtures were calculated using a model developed by Bromley.

Chaiko, D.J.; Vandegrift, G.F.

1988-07-01T23:59:59.000Z

120

Tri-City Herald OpEd: Electric Vehicles are a smart choice  

SciTech Connect (OSTI)

Why are so many of us at the Pacific Northwest National Laboratory, a national thought leader in power industry issues located right here in the Tri-Cities, so bullish on the future of EVs? And why do we think it's so important that this country, especially THIS part of the country, be leaders in the adoption of EVs? Is it that we all just happen to like driving polluting golf carts? The answer is that, like most everyone else, most of us here at PNNL drive to work every day, and like most people, we care about the cost of gasoline and the impact that burning imported oil has on the environment and on our foreign policy. The reality is that electric vehicles are simply more efficient, pollute much less, use locally-generated energy, and cost MUCH less to drive.

Christensen, Peter C.; Haas, Anne M.

2010-12-10T23:59:59.000Z

Note: This page contains sample records for the topic "dis tri ct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Toxic Release Inventory (TRI), Iowa, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to-Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99- 499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

122

Toxic Release Inventory (TRI), Delaware, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to-Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99- 499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

123

Toxic Release Inventory (TRI), Colorado, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to-Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99- 499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

124

Toxic Release Inventory (TRI), Massachusetts, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

125

Toxic Release Inventory (TRI), Illinois, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to-Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99- 499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

126

Toxic Release Inventory (TRI), Florida, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to-Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99- 499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

127

Toxic Release Inventory (TRI), Wisconsin, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

128

Toxic Release Inventory (TRI), Kentucky, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to-Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off-site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

129

Toxic Release Inventory (TRI), Connecticut, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to-Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99- 499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility; the first nine digit alphanumeric number a facility holds under the National Pollutant Discharge Elimination Systems.

Not Available

1992-01-01T23:59:59.000Z

130

Toxic Release Inventory (TRI), Ohio, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

131

Toxic Release Inventory (TRI), Utah, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

132

Toxic Release Inventory (TRI), Hawaii, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to-Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99- 499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

133

Toxic Release Inventory (TRI), Missouri, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

134

Toxic Release Inventory (TRI), Minnesota, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

135

Toxic Release Inventory (TRI), Michigan, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

136

Toxic Release Inventory (TRI), Georgia, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to-Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99- 499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

137

Toxic Release Inventory (TRI), Arkansas, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to-Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99- 499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

138

Toxic Release Inventory (TRI), Kansas, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to-Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off-site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

139

Toxic Release Inventory (TRI), Nevada, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

140

Toxic Release Inventory (TRI), Nebraska, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dis tri ct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Toxic Release Inventory (TRI), Maryland, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

142

Toxic Release Inventory (TRI), Oklahoma, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

143

Toxic Release Inventory (TRI), Arizona, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to-Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99- 499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

144

Toxic Release Inventory (TRI), Louisiana, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

145

Toxic Release Inventory (TRI), Montana, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

146

Toxic Release Inventory (TRI), Indiana, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to-Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99- 499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

147

Toxic Release Inventory (TRI), Alaska, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year.Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

148

Toxic Release Inventory (TRI), Pennsylvania, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility; the first nine digit alphanumeric number a facility holds under the National Pollutant Discharge Elimination Systems.

Not Available

1992-01-01T23:59:59.000Z

149

Toxic Release Inventory (TRI), Oregon, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

150

Toxic Release Inventory (TRI), Vermont, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

151

Toxic Release Inventory (TRI), Mssissippi, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

152

Toxic Release Inventory (TRI), Tennessee, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

153

Toxic Release Inventory (TRI), California, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to-Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99- 499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

154

Toxic Release Inventory (TRI), Washington, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

155

Toxic Release Inventory (TRI), Wyoming, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

156

Toxic Release Inventory (TRI), Idaho, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to-Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99- 499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

157

Toxic Release Inventory (TRI), Alabama, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year.Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

158

Toxic Release Inventory (TRI), Texas, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

159

Toxic Release Inventory (TRI), Maine, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

160

CT Poison Control Center 2014 Video Contest Rules  

E-Print Network [OSTI]

entry form (found on posioncontrol.uchc.edu) b. Include a link to your video from your You Tube account and community partners. Judges will consider: length of video, appropriate format, accuracy of information poison center means to you, value of the CT Poison Control Center · Programming your phone with the CT

Kim, Duck O.

Note: This page contains sample records for the topic "dis tri ct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

MicroCT: Semi-Automated Analysis of CT Reconstructed Data of Home Made Explosive Materials Using the Matlab MicroCT Analysis GUI  

SciTech Connect (OSTI)

This Standard Operating Procedure (SOP) provides the specific procedural steps for analyzing reconstructed CT images obtained under the IDD Standard Operating Procedures for data acquisition [1] and MicroCT image reconstruction [2], per the IDD Quality Assurance Plan for MicroCT Scanning [3]. Although intended to apply primarily to MicroCT data acquired in the HEAFCAT Facility at LLNL, these procedures may also be applied to data acquired at Tyndall from the YXLON cabinet and at TSL from the HEXCAT system. This SOP also provides the procedural steps for preparing the tables and graphs to be used in the reporting of analytical results. This SOP applies to R and D work - for production applications, use [4].

Seetho, I M; Brown, W D; Kallman, J S; Martz, H E; White, W T

2011-09-22T23:59:59.000Z

162

MicroCT: Automated Analysis of CT Reconstructed Data of Home Made Explosive Materials Using the Matlab MicroCT Analysis GUI  

SciTech Connect (OSTI)

This Standard Operating Procedure (SOP) provides the specific procedural steps for analyzing reconstructed CT images obtained under the IDD Standard Operating Procedures for data acquisition [1] and MicroCT image reconstruction [2], per the IDD Quality Assurance Plan for MicroCT Scanning [3]. Although intended to apply primarily to MicroCT data acquired in the HEAFCAT Facility at LLNL, these procedures may also be applied to data acquired at Tyndall from the YXLON cabinet and at TSL from the HEXCAT system. This SOP also provides the procedural steps for preparing the tables and graphs to be used in the reporting of analytical results. This SOP applies to production work - for R and D there are two other semi-automated methods as given in [4, 5].

Seetho, I M; Brown, W D; Kallman, J S; Martz, H E; White, W T

2011-09-22T23:59:59.000Z

163

E-Print Network 3.0 - angiographic cone-beam ct Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: medical multi-slicecone-beam CT scanners typically use equiangular projection data, our new formula may... : Computed tomography (CT), cone-beam geometry, Feldkamp-type...

164

Synthesis, Structure, and Reactivity ofbis(1,2,4-tri-t-butylcyclopentadienyl) Complexes of Cerium  

SciTech Connect (OSTI)

The sterically demanding 1,2,4-tri-t-butylcyclopentadienylligand (1,2,4-(Me3C)3C5H2, hereafter Cp') has been used to preparemonomeric cerium metallocenes, Cp 2CeX (X = Cl, I, OSO2CF3), which areused to synthesize the benzyl, Cp'2CeCH2C6H5. The benzyl is a usefulstarting material for preparing other complexes in the Cp'2CeZ system (Z= BF4, F, NH2, C6H5, H). X-ray crystal structures of Cp'2CeOSO2CF3,Cp'2CeF, Cp'2CeCH2C6H5, and Cp'2CeH are presented. The benzyl slowlydecomposes in solution to toluene and a metallacycle,[Cp'][(Me3C)2C5H2(CMe2CH2)]Ce. The ring CMe3 groups of both themetallacycle and the hydride, Cp'2CeH, can be fully deuterated byprolonged exposure to C6D6, providing a useful labeling tool inmechanistic studies.The hydride activates C-F and/or C-H bonds influorobenzenes, C6HxF6-x , x = 0-5. The reactions are selective, with theselectivity depending on the presence of two fluorines ortho to thereaction site more than on the type of bond activated. Complexes of thetype Cp'2CeC6HxF5-x , x = 0-4, are formed as intermediates, which slowlydecompose in solution to Cp'2CeF and fluorobenzynes, C6HxF4-x, x = 0-4,which are trapped. The rate at which Cp'2CeC6HxF5-x complexes decomposeincreases as the number of fluorines decreases. Complexes with oneortho-fluorine decompose much faster than those with two ortho-fluorines.The metallacycle activates only C-H bonds in fluorobenzenes, permittingthe synthesis of specific Cp'2CeC6HxF5-x complexes. The crystal structureof Cp'2CeC6F5 is presented. The hydride and the metallacycle react withfluoromethanes, CH4-xFx, x = 1-3, through postulated Cp'2CeCH3-xFxintermediates to generate Cp'2CeF and other products. The other products,CH4, tri-t-butylbenzenes, tri-t-butylfluorobenzenes, and a presumedmetallocene cerium fluoride with one Cp' and one (Me2EtC)(Me3C)2C5H2ligand, suggest a decomposition pathway for Cp'2CeCH3-xFx , x = 1-3, thatinvolves carbenes or carbenoids, which are trapped. The hydridepolymerizes ethylene, but hydrogenates other olefins. The metallacycleactivates C-H bonds in olefins and aromatics to generate new complexeswith Ce-C bonds. The hydride reacts with one equivalent of CO in pentaneto generate (Cp'2Ce)2CH2O, whose crystal structure shows the presence ofa bridging dianionic formaldehyde ligand. (Cp'2Ce)2CH2O reacts H2 to givethe hydride and Cp'2CeOMe, or with a mixture of H2 and CO to generateCp'2CeOMe exclusively. (Cp'2Ce)2CH2O or the hydride can react with anadditional equivalent of CO to generate dimeric enediolate,(Cp'2CeCHO)2.

Werkema, Evan L.

2005-05-19T23:59:59.000Z

165

Effect of temperature on the extraction of uranium(VI) from nitric acid by tri-n-amyl phosphate  

SciTech Connect (OSTI)

Studies have been carried out on the effect of temperature on the extraction of U(VI) from nitric acid medium by tri-n-amyl phosphate/n-dodecane, measured as a function of the extractant concentration and aqueous phase acidity. The results indicate that the extraction is exothermic as in the case of tri-n-butyl phosphate. From the data available an effort has been made to calculate the equilibrium constant, the Gibbs energy change and the entropy changes of the extraction reaction. 21 refs., 3 figs., 4 tabs.

Srinivasan, T.G.; Rao, P.R.V. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Sood, D.D. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India)]|[BARC, Mumbai (India)

1997-01-01T23:59:59.000Z

166

Weather data for simplified energy calculation methods. Volume II. Middle United States: TRY data  

SciTech Connect (OSTI)

The objective of this report is to provide a source of weather data for direct use with a number of simplified energy calculation methods available today. Complete weather data for a number of cities in the United States are provided for use in the following methods: degree hour, modified degree hour, bin, modified bin, and variable degree day. This report contains sets of weather data for 22 cities in the continental United States using Test Reference Year (TRY) source weather data. The weather data at each city has been summarized in a number of ways to provide differing levels of detail necessary for alternative simplified energy calculation methods. Weather variables summarized include dry bulb and wet bulb temperature, percent relative humidity, humidity ratio, wind speed, percent possible sunshine, percent diffuse solar radiation, total solar radiation on horizontal and vertical surfaces, and solar heat gain through standard DSA glass. Monthly and annual summaries, in some cases by time of day, are available. These summaries are produced in a series of nine computer generated tables.

Olsen, A.R.; Moreno, S.; Deringer, J.; Watson, C.R.

1984-08-01T23:59:59.000Z

167

Initiation Temperature for Runaway Tri-n-Butyl Phosphate/Nitric Acid Reaction  

SciTech Connect (OSTI)

During a review of the H-Canyon authorization basis, Defense Nuclear Facility Safety Board (DNFSB) staff members questioned the margin of safety associated with a postulated tri-n-butyl phosphate (TBP)/nitric acid runaway reaction due to the inadvertent heating of a canyon tank containing greater than 3000 lbs (1362 kg) of TBP. The margin of safety was partially based on experiments and calculations performed by the Actinide Technology Section (ATS) to support deletion of indication of tank agitation as a Safety Class System. In the technical basis for deletion of this system, ATS personnel conservatively calculated the equilibrium temperature distribution of a canyon tank containing TBP and nitric acid layers which were inadvertently heated by a steam jet left on following a transfer. The maximum calculated temperature (128 degrees C) was compared to the minimum initiation temperature for a runaway reaction (greater than 130 degrees C) documented by experimental work in the mid 195 0s. In this work, the initiation temperature as a function of nitric acid concentration was measured for 0 and 20 wt percent dissolved solids. The DNFSB staff members were concerned that data for 0 wt percent dissolved solids were not conservative given the facts that data for 20 wt percent dissolved solids show initiation temperatures at or below 130 degrees C and H-Canyon solutions normally contained a small amount of dissolved solids.

Rudisill, T.S.

2000-11-28T23:59:59.000Z

168

Thorium ions transport across Tri-n-butyl phosphate-benzene based supported liquid membranes  

SciTech Connect (OSTI)

Transport of Th(IV) ions across tri-n-butyl phosphate (TBP) benzene based liquid membranes supported in microporous hydrophobic polypropylene film (MHPF) has been studied. Various parameters such as variation of nitric acid concentration in the feed, TBP concentration in the membrane, and temperature on the given metal ions transport have been investigated. The effects of nitric acid and TBP concentrations on the distribution coefficient were also studied, and the data obtained were used to determine the Th ions-TBP complex diffusion coefficient in the membrane. Permeability coefficients of Th(IV) ions were also determined as a function of the TBP and nitric acid concentrations. The optimal conditions for the transport of Th(IV) ions across the membrane are 6 mol{sm_bullet}dm{sup -3} HNO{sub 3} concentration, 2.188 mol {center_dot} dm{sup -3} TBP concentration, and 25{degrees}C. The stoichiometry of the chemical species involved in chemical reaction during the transport of Th(IV) ions has also been studied.

Rasul, G.; Chaudry, M.A. [Pakistan Institute of Nuclear Chemistry, Islamabad (Pakistan); Afzal, M. [Quaid-I-Azam Univ., Islamabad (Pakistan)

1995-12-01T23:59:59.000Z

169

Tri-county pre-commercial analysis of converting wastes to marketable products  

SciTech Connect (OSTI)

Open field burning of harvest residues is an effective, low cost method of controlling diseases, insects and weeds in many agricultural operations. Restrictions have been imposed against this practice in several areas and these restrictions are expected to increase in the near future. The agricultural community in the Tri-County area of Nevada recognized that eventually burning would be an unacceptable practice of disposal. A biomass inventory was jointly funded by the area seed producers and Western Regional Biomass Energy Program that revealed a sufficient biomass resource to justify further work to answer the question: Can economic alternative methods of disposal be developed either through export of biomass or through conversion technologies in the local area? Technically the answer is yes. Several methods are available, either singly or in combination, capable of converting the difficult residues into energy or commodity products. Economically, the answer is not clear. There are many assumptions made in the financial analyses reported by the process developers that combine with a lack of concrete markets resulting in the conclusion that economic viability cannot be attained at the present time.

Frolich, M. [Integrated Resource Development, Gardnerville, NV (United States); Munk, G. [Nevada Bio-Serv, Lovelock, NV (United States); McArthur, K. [Univ. of Nevada, Reno, NV (United States)] [and others

1996-12-31T23:59:59.000Z

170

Weather data for simplified energy calculation methods. Volume I. Eastern United States: TRY data  

SciTech Connect (OSTI)

The objective of this report is to provide a source of weather data for direct use with a number of simplified energy calculation methods available today. Complete weather data for a number of cities in the United States are provided for use in the following methods: degree hour, modified degree hour, bin, modified bin, and variable degree day. This report contains sets of weather data for 23 cities in the continental United States using Test Reference Year (TRY) source weather data. The weather data at each city has been summarized in a number of ways to provide differing levels of detail necessary for alternative simplified energy calculation methods. Weather variables summarized include dry bulb and wet bulb temperature, percent relative humidity, humidity ratio, wind speed, percent possible sunshine, percent diffuse solar radiation, total solar radiation on horizontal and vertical surfaces, and solar heat gain through standard DSA glass. Monthly and annual summaries, in some cases by time of day, are available. These summaries are produced in a series of nine computer generated tables.

Olsen, A.R.; Moreno, S.; Deringer, J.; Watson, C.R.

1984-08-01T23:59:59.000Z

171

On the ambiguities in the tri-bimaximal mixing matrix and corresponding charged lepton corrections  

E-Print Network [OSTI]

Two negative signs naturally appear in the $U_{\\mu 1}$ and $U_{\\tau 2}$ elements of the Tri-bimaximal (TBM) matrix for positive values of the mixing angles $\\theta_{12}$ and $\\theta_{23}$. Apart from this, in other TBM matrices negative signs are shifted to other elements in each case. They account for positive as well as negative values of $\\theta_{12}$ and $\\theta_{23}$. We discuss the sign ambiguity in the TBM matrix and find that the TBM matrices, in fact, can be divided into two groups under certain circumstances. Interestingly, this classification of TBM matrices is accompanied by two different $\\mu-\\tau$ symmetric mass matrices which can separately be related to the groups. To accommodate non-zero value of $\\theta_{13}$ and deviate $\\theta_{23}$ towards first octant, we then perturb the TBM mixing ansatz with the help of charged lepton correction. The diagonalizing matrices for charged lepton mass matrices also possess sign ambiguity and respect the grouping of TBM matrices. They are parametrized in te...

Duarah, Chandan

2015-01-01T23:59:59.000Z

172

A new TriBeam system for three-dimensional multimodal materials analysis  

SciTech Connect (OSTI)

The unique capabilities of ultrashort pulse femtosecond lasers have been integrated with a focused ion beam (FIB) platform to create a new system for rapid 3D materials analysis. The femtosecond laser allows for in situ layer-by-layer material ablation with high material removal rates. The high pulse frequency (1 kHz) of ultrashort (150 fs) laser pulses can induce material ablation with virtually no thermal damage to the surrounding area, permitting high resolution imaging, as well as crystallographic and elemental analysis, without intermediate surface preparation or removal of the sample from the chamber. The TriBeam system combines the high resolution and broad detector capabilities of the DualBeam{sup TM} microscope with the high material removal rates of the femtosecond laser, allowing 3D datasets to be acquired at rates 4-6 orders of magnitude faster than 3D FIB datasets. Design features that permit coupling of laser and electron optics systems and positioning of a stage in the multiple analysis positions are discussed. Initial in situ multilayer data are presented.

Echlin, McLean P.; Mottura, Alessandro; Torbet, Christopher J.; Pollock, Tresa M. [Materials Department, University of California at Santa Barbara, Santa Barbara, California 93101 (United States)

2012-02-15T23:59:59.000Z

173

Single-scattering properties of tri-axial ellipsoidal mineral dust aerosols: A database for application to radiative transfer calculations  

E-Print Network [OSTI]

Single-scattering properties of tri-axial ellipsoidal mineral dust aerosols: A database Applications and Research, Camp Spring, MD 20746, USA a r t i c l e i n f o Article history: Received 14 Optical properties Database a b s t r a c t This paper presents a user-friendly database software package

Liou, K. N.

174

926 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 53, NO. 5, MAY 2006 Tri-Polar Concentric Ring Electrode Development for  

E-Print Network [OSTI]

for approximating the analytical Laplacian based on a nine-point finite difference method (NPM). For direct comparison, the FPM, quasi-bipolar method (a hybrid NPM), and NPM were calculated over a 400 400 mesh with 1, and the results were verified with tank experiments. The tri-polar configuration and the NPM were found to have

Besio, Walter G.

175

Three-Color Passive-Matrix Pixels Using Dye-Diffusion-Patterned Tri-Layer Polymer-Based LED  

E-Print Network [OSTI]

Three-Color Passive-Matrix Pixels Using Dye-Diffusion-Patterned Tri-Layer Polymer-Based LED Ke Long of Electrical Engineering, Princeton University, Princeton, New Jersey 08544 ABSTRACT Dry dye-printing and solvent-enhanced dye diffusion were used to locally dope a previously spin-coated poly(9-vinylcarbazole

176

View the newsletter at caeo.unlv.edu UNLV Celebrates National TRiO/GEAR UP Day  

E-Print Network [OSTI]

March 2013 View the newsletter at caeo.unlv.edu UNLV Celebrates National TRiO/GEAR UP Day Adult Educational Services Educational Talent Search Family Support Services GEAR UP McNair ScholarsO and GEAR UP participants both past and present. Shortly after 5 p.m., there were only a few seats empty

Hemmers, Oliver

177

Low-Dose Dual-Energy CT for PET Attenuation Correction with Statistical Sinogram Restoration  

E-Print Network [OSTI]

1 Low-Dose Dual-Energy CT for PET Attenuation Correction with Statistical Sinogram Restoration. of Michigan & Univ. of Washington Outline Introduction - PET/CT background - CT-based attenuation correction for PET Conventional sinogram decomposition in DE-CT Statistically motivated sinogram restoration in DE

Fessler, Jeffrey A.

178

Multi-atlas segmentation in head and neck CT scans  

E-Print Network [OSTI]

We investigate automating the task of segmenting structures in head and neck CT scans, to minimize time spent on manual contouring of structures of interest. We focus on the brainstem and left and right parotids. To generate ...

Arbisser, Amelia M

2012-01-01T23:59:59.000Z

179

Obscure pulmonary masses: bronchial impaction revealed by CT  

SciTech Connect (OSTI)

Dilated bronchi impacted with mucus or tumor are recognized on standard chest radiographs because they are surrounded by aerated pulmonary parenchyma. When imaged in different projections, these lesions produce a variety of appearances that are generally familiar. This report characterizes less familiar computed tomographic (CT) findings in eight patients with pathologic bronchial distension of congenital, neoplastic, or infectious etiologies and correlates them with chest films. In seven patients, CT readily revealed dilated bronchi and/or regional lung hypodensity. In four of these cases, CT led to the initial suspicion of dilated bronchi. CT should be used early in the evaluation of atypical pulmonary mass lesions or to confirm suspected bronchial impaction because of the high probability it will reveal diagnostic features.

Pugatch, R.D.; Gale, M.E.

1983-11-01T23:59:59.000Z

180

Tri-Lateral Noor al Salaam High Concentration Solar Central Receiver Program  

SciTech Connect (OSTI)

This report documents the efforts conducted primarily under the Noor al Salaam (Light of Peace) program under DOE GRANT NUMBER DE-FC36-02GO12030, together with relevant technical results from a closely related technology development effort, the U.S./Israel Science and Technology Foundation (USISTF) High Concentration Solar Central Receiver program. These efforts involved preliminary design, development, and test of selected prototype power production subsystems and documentation of an initial version of the system definition for a high concentration solar hybrid/gas electrical power plant to be built in Zaafarana, Egypt as a first step in planned commercialization. A major part of the planned work was halted in 2007 with an amendment in October 2007 requiring that we complete the technical effort by December 31, 2007 and provide a final report to DOE within the following 90 days. This document summarizes the work conducted. The USISTF program was a 50/50 cost-shared program supported by the Department of Commerce through the U.S./Israel Science and Technology Commission (USISTC). The USISTC was cooperatively developed by President Clinton and the late Prime Minister Rabin of Israel "to encourage technological collaboration" and "support peace in the Middle East through economic development". The program was conducted as a follow-on effort to Israel's Magnet/CONSOLAR Program, which was an advanced development effort to design, fabricate, and test a solar central receiver and secondary optics for a "beam down" central receiver concept. The status of these hardware development programs is reviewed, since they form the basis for the Noor al Salaam program. Descriptions are provided of the integrated system and the major subsystems, including the heliostat, the high temperature air receiver, the power conversion unit, tower and tower reflector, compound parabolic concentrator, and the master control system. One objective of the USISTF program was to conduct marketing research, identify opportunities for use of this technology, and to the extent possible, secure an agreement leading to a pre-commercialization demonstration or prototype plant. This was accomplished with the agreement to conduct the Noor al Salaam program as a tri-lateral project between Egypt, Israel, and the U.S. The tri-lateral project was led by the University of Alabama in Huntsville (UAH); this included the Egyptian New and Renewable Energy Authority and the Israeli USISTC participants. This project, known was Noor al Salaam, was funded by the U.S. Agency for International Development (USAID) through the Department of Energy (DOE). The Egyptian activity was under the auspices of the Egyptian Ministry of Energy and Electricity, New and Renewable Energy Authority (NREA) as part of Egypt's plans for renewable energy development. The objective of the Noor al Salaam project was to develop the conditions necessary to obtain funding and construct and operate an approximately 10 to 20 Megawatt hybrid solar/natural gas demonstration power plant in Zaafarana, Egypt that could serve both as a test bed for advanced solar technology evaluations, and as a forerunner to commercial plant designs. This plant, termed Noor Al Salaam, or Light of Peace, reached the initial phase of system definition before being curtailed, in part by changes in USAID objectives, coupled with various delays that were beyond the scope of the program to resolve. The background of the USISTF technology development and pre-commercialization effort is provided in this report, together with documentation of the technology developments conducted under the Noor al Salaam program. It should be noted that only a relatively small part of the Noor al Salaam funding was expended over the approximately five years for which UAH was prime contractor before the program was ordered closed (Reference 1) so that the remaining funds could be returned to USAID.

Blackmon, James B

2008-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "dis tri ct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

TLD assessment of mouse dosimetry during microCT imaging  

SciTech Connect (OSTI)

Advances in laboratory animal imaging have provided new resources for noninvasive biomedical research. Among these technologies is microcomputed tomography (microCT) which is widely used to obtain high resolution anatomic images of small animals. Because microCT utilizes ionizing radiation for image formation, radiation exposure during imaging is a concern. The objective of this study was to quantify the radiation dose delivered during a standard microCT scan. Radiation dose was measured using thermoluminescent dosimeters (TLDs), which were irradiated employing an 80 kVp x-ray source, with 0.5 mm Al filtration and a total of 54 mA s for a full 360 deg rotation of the unit. The TLD data were validated using a 3.2 cm{sup 3} CT ion chamber probe. TLD results showed a single microCT scan air kerma of 78.0{+-}5.0 mGy when using a poly(methylmethacrylate) (PMMA) anesthesia support module and an air kerma of 92.0{+-}6.0 mGy without the use of the anesthesia module. The validation CT ion chamber study provided a measured radiation air kerma of 81.0{+-}4.0 mGy and 97.0{+-}5.0 mGy with and without the PMMA anesthesia module, respectively. Internal TLD analysis demonstrated an average mouse organ radiation absorbed dose of 76.0{+-}5.0 mGy. The author's results have defined x-ray exposure for a routine microCT study which must be taken into consideration when performing serial molecular imaging studies involving the microCT imaging modality.

Figueroa, Said Daibes; Winkelmann, Christopher T.; Miller, William H.; Volkert, Wynn A.; Hoffman, Timothy J. [Harry S. Truman Memorial VA Hospital, Columbia, Missouri 65201 (United States) and Department of Radiology, University of Missouri, Columbia, Missouri 65201 (United States); Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri 65201 (United States); Nuclear Science and Engineering Institute, University of Missouri, Columbia, Missouri 65201 (United States); Department of Radiology, University of Missouri, Columbia, Missouri 65201 (United States); Harry S. Truman Memorial VA Hospital, Columbia, Missouri 65201 (United States) and Departments of Internal Medicine, Chemistry, and the Nuclear Science and Engineering Institute, University of Missouri, Columbia, Missouri 65201 (United States)

2008-09-15T23:59:59.000Z

182

X-ray MicroCT Training Presentation  

E-Print Network [OSTI]

X-ray MicroCT Training Presentation T. Fettah Kosar, PhD Center for Nanoscale Systems Harvard) Model: HMXST225 (max. 225 kV) #12;Overview 3 Introduction to X-ray imaging and Computed Tomography (CT) · What are X-rays and how do we generate and image them? · How do we magnify X-ray images and keep them

183

Superfund explanation of significant difference for the record of decision (EPA Region 5): Tri-County Landfill/Waste Management Illinois, South Elgin, IL, April 23, 1998  

SciTech Connect (OSTI)

The Tri-County/Elgin Landfill Superfund Site (TCLF) encompasses both the Tri-County and Elgin Landfills. The purpose of this ESD is to explain why the design for the landfill cap component of the remedy differs from that set forth in the ROD (PB93-964133) and to address the cost differentials associated with the change.

NONE

1999-03-01T23:59:59.000Z

184

Design and synthesis of a novel, orally active, brain penetrant, tri-substituted thiophene based JNK inhibitor  

SciTech Connect (OSTI)

The SAR of a series of tri-substituted thiophene JNK3 inhibitors is described. By optimizing both the N-aryl acetamide region of the inhibitor and the 4-position of the thiophene we obtained single digit nanomolar compounds, such as 47, which demonstrated an in vivo effect on JNK activity when dosed orally in our kainic acid mouse model as measured by phospho-c-jun reduction.

Bowers, Simeon; Truong, Anh P.; Neitz, R. Jeffrey; Neitzel, Martin; Probst, Gary D.; Hom, Roy K.; Peterson, Brian; Galemmo, Jr., Robert A.; Konradi, Andrei W.; Sham, Hing L.; Tth, Gergley; Pan, Hu; Yao, Nanhua; Artis, Dean R.; Brigham, Elizabeth F.; Quinn, Kevin P.; Sauer, John-Michael; Powell, Kyle; Ruslim, Lany; Ren, Zhao; Bard, Frdrique; Yednock, Ted A.; Griswold-Prenner, Irene (Elan)

2012-02-28T23:59:59.000Z

185

Tri-State Synfuels Project Review: Volume 12. Fluor project status. [Proposed Henderson, Kentucky coal to gasoline plant; engineering  

SciTech Connect (OSTI)

The purpose of this report is to document and summarize activities associated with Fluor's efforts on the Tri-State Synfuels Project. The proposed facility was to be coal-to-transport fuels facility located in Henderson, Kentucky. Tri-State Synfuels Company was participating in the project as a partner of the US Department of Energy per terms of a Cooperative Agreement resulting from DOE's synfuel's program solicitation. Fluor's initial work plan called for preliminary engineering and procurement services to the point of commitment for construction for a Sasol Fischer-Tropsch plant. Work proceeded as planned until October 1981 when results of alternative coal-to-methanol studies revealed the economic disadvantage of the Synthol design for US markets. A number of alternative process studies followed to determine the best process configuration. In January 1982 Tri-State officially announced a change from Synthol to a Methanol to Gasoline (MTG) design basis. Further evaluation and cost estimates for the MTG facility eventually led to the conclusion that, given the depressed economic outlook for alternative fuels development, the project should be terminated. Official announcement of cancellation was made on April 13, 1982. At the time of project cancellation, Fluor had completed significant portions of the preliminary engineering effort. Included in this report are descriptions and summaries of Fluor's work during this project. In addition location of key project data and materials is identified and status reports for each operation are presented.

Not Available

1982-06-01T23:59:59.000Z

186

On Recent Claims Concerning the R_h=ct Universe  

E-Print Network [OSTI]

The R_h=ct Universe is a Friedmann-Robertson-Walker (FRW) cosmology which, like LCDM, assumes the presence of dark energy in addition to (baryonic and non-luminous) matter and radiation. Unlike LCDM, however, it is also constrained by the equation of state (EOS) p=-rho/3, in terms of the total pressure p and energy density rho. One-on-one comparative tests between R_h=ct and LCDM have been carried out using over 14 different cosmological measurements and observations. In every case, the data have favoured R_h=ct over the standard model, with model selection tools yielding a likelihood ~90-95% that the former is correct, versus only ~5-10% for the latter. In other words, the standard model without the EOS p=-rho/3 does not appear to be the optimal description of nature. Yet in spite of these successes---or perhaps because of them---several concerns have been published recently regarding the fundamental basis of the theory itself. The latest paper on this subject even claims---quite remarkably---that R_h=ct is a vacuum solution, though quite evidently rho is not 0. Here, we address these concerns and demonstrate that all criticisms leveled thus far against R_h=ct, including the supposed vacuum condition, are unwarranted. They all appear to be based on incorrect assumptions or basic theoretical errors. Nevertheless, continued scrutiny such as this will be critical to establishing R_h=ct as the correct description of nature.

Fulvio Melia

2014-10-17T23:59:59.000Z

187

PET/CT-guided Interventions: Personnel Radiation Dose  

SciTech Connect (OSTI)

PurposeTo quantify radiation exposure to the primary operator and staff during PET/CT-guided interventional procedures.MethodsIn this prospective study, 12 patients underwent PET/CT-guided interventions over a 6 month period. Radiation exposure was measured for the primary operator, the radiology technologist, and the nurse anesthetist by means of optically stimulated luminescence dosimeters. Radiation exposure was correlated with the procedure time and the use of in-room image guidance (CT fluoroscopy or ultrasound).ResultsThe median effective dose was 0.02 (range 0-0.13) mSv for the primary operator, 0.01 (range 0-0.05) mSv for the nurse anesthetist, and 0.02 (range 0-0.05) mSv for the radiology technologist. The median extremity dose equivalent for the operator was 0.05 (range 0-0.62) mSv. Radiation exposure correlated with procedure duration and with the use of in-room image guidance. The median operator effective dose for the procedure was 0.015 mSv when conventional biopsy mode CT was used, compared to 0.06 mSv for in-room image guidance, although this did not achieve statistical significance as a result of the small sample size (p = 0.06).ConclusionThe operator dose from PET/CT-guided procedures is not significantly different than typical doses from fluoroscopically guided procedures. The major determinant of radiation exposure to the operator from PET/CT-guided interventional procedures is time spent in close proximity to the patient.

Ryan, E. Ronan, E-mail: ronan@ronanryan.com; Thornton, Raymond; Sofocleous, Constantinos T.; Erinjeri, Joseph P. [Memorial Sloan-Kettering Cancer Center, Department of Radiology (United States); Hsu, Meier [Memorial Sloan-Kettering Cancer Center, Department of Epidemiology and Biostatistics (United States); Quinn, Brian; Dauer, Lawrence T. [Memorial Sloan-Kettering Cancer Center, Department of Medical Physics (United States); Solomon, Stephen B. [Memorial Sloan-Kettering Cancer Center, Department of Radiology (United States)

2013-08-01T23:59:59.000Z

188

Molecular imaging in oncology: the acceptance of PET/CT and the emergence of MR/PET imaging  

E-Print Network [OSTI]

CTComputed tomography . PETPositron Emission Tomography .body imaging with MRI or PET/CT: the future for single-Sollitto RA et al (2009) 18F-FDG PET/CT of transitional cell

Schiepers, Christiaan; Dahlbom, Magnus

2011-01-01T23:59:59.000Z

189

Unusual association of alveolar rhabdomyosarcoma with pancreatic metastasis: emerging role of PET-CT in tumor staging  

E-Print Network [OSTI]

Christie R, Daw NC et al ( 2005) PET/CT in the evaluation ofComparative study of FDG PET/CT and conventional imaging inet al (2009) Diagnostic value of PET/CT for the staging and

2010-01-01T23:59:59.000Z

190

Introduction New currents in DIS  

E-Print Network [OSTI]

for precision measurement of the scattered lepton ZEUS Depleted Uranium Calorimeter Optimised for precision

191

VACT: Visualization-Aware CT Reconstruction Ziyi Zheng and Klaus Mueller, Senior Member, IEEE  

E-Print Network [OSTI]

Abstract-- Computed tomography (CT) reconstruction methods are often unaware of the requirements Medical routine frequently utilizes 3D visualization tools for diagnosis. Computed tomography (CT between the raw projection data and their visualization via vol- ume rendering. Our framework can

Mueller, Klaus

192

E-Print Network 3.0 - aneurysm ct evaluation Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

OF SURGERY VOL 30 NO 4 OCTOBER 2007 2007 Elsevier. All rights reserved. Summary: tomography (CT). Follow-up CT scan at 22 months showed the presence of a markedly enlarged...

193

Detektion von Phochromozytomen und rekurrenten medullren Schilddrsenkarzinomen mit F18 DOPA PET/CT.  

E-Print Network [OSTI]

??Evaluating [18F]dihydroxyphenylalanine (DOPA) in patients with clinical suspicion for a primary or recurrent pheochromocytoma (pheo) by means of whole body PET/CT. In pheos PET/CT detects (more)

Zeich, Katrin

2009-01-01T23:59:59.000Z

194

Driving conditions dependence of magneto-electroluminescence in tri-(8-hydroxyquinoline)-aluminum based organic light emitting diodes  

E-Print Network [OSTI]

we investigated the magneto-electroluminescence (MEL) in tri-(8-hydroxyquinoline)-aluminum based organic light-emitting diodes (OLEDs) through the steady-state and transient method simultaneously. The MELs show the great different behaviors when we turn the driving condition from a constant voltage to a pulse voltage. For devices driven by the constant voltage, the MELs are similar with the literature data; for devices driven by the pulse voltage, the MELs are quite different, they firstly increase to a maximum then decrease as the magnetic field increases continuously. Negative MELs can be seen when both the magnetic field and driving voltage are high enough.

Peng, Qiming; Li, Xianjie; Li, Mingliang; Li, Feng

2011-01-01T23:59:59.000Z

195

On Recent Claims Concerning the R_h=ct Universe  

E-Print Network [OSTI]

The R_h=ct Universe is a Friedmann-Robertson-Walker (FRW) cosmology which, like LCDM, assumes the presence of dark energy in addition to (baryonic and non-luminous) matter and radiation. Unlike LCDM, however, it is also constrained by the equation of state (EOS) p=-rho/3, in terms of the total pressure p and energy density rho. One-on-one comparative tests between R_h=ct and LCDM have been carried out using over 14 different cosmological measurements and observations. In every case, the data have favoured R_h=ct over the standard model, with model selection tools yielding a likelihood ~90-95% that the former is correct, versus only ~5-10% for the latter. In other words, the standard model without the EOS p=-rho/3 does not appear to be the optimal description of nature. Yet in spite of these successes---or perhaps because of them---several concerns have been published recently regarding the fundamental basis of the theory itself. The latest paper on this subject even claims---quite remarkably---that R_h=ct is ...

Melia, Fulvio

2014-01-01T23:59:59.000Z

196

Status and Promise CT's and Magnetized Target Fusion  

E-Print Network [OSTI]

. Hill (LLNL) #12;CT's: Spheromaks & Field Reversed Configurations At LLNL, the SSPX experiment is investigating spheromak formation, sustainment, and confinement issues. (Hill, Mclean, Wood, Ryutov). At UC-Davis, formation and acceleration of spheromaks. (Hwang) At the U of Washington, field reversed configuration

197

AUTOCORRECTING RECONSTRUCTION FOR FLEXIBLE CT SCANNERS Jeff Orchard  

E-Print Network [OSTI]

revolutionize the world of computed tomography (CT). Tiny x-ray emitters and detectors could be embedded scanners. Index Terms: computed tomography, image reconstruction, entropy, nanotechnology, autofocus 1. An automatic (data-driven) motion-correction method for SPECT (single photon emission computed tomog- raphy

Orchard, Jeffery J.

198

Saturday Workshop 2/7/2009 RS: Molly Burke CT's: Roy Center & Lee Kelly  

E-Print Network [OSTI]

Saturday Workshop 2/7/2009 RS: Molly Burke CT's: Roy Center & Lee Kelly Drosophila Handbook page 1 2/7/2009 RS: Molly Burke CT's: Roy Center & Lee Kelly Drosophila Handbook page 2 Table of Contents Standards 22 #12;Saturday Workshop 2/7/2009 RS: Molly Burke CT's: Roy Center & Lee Kelly Drosophila Handbook

Rose, Michael R.

199

Thoracic CT-PET Registration Using a 3D Breathing Model  

E-Print Network [OSTI]

Thoracic CT-PET Registration Using a 3D Breathing Model Antonio Moreno1 , Sylvie Chambon1 , Anand P Orlando, USA Abstract. In the context of thoracic CT-PET volume registration, we present a novel method applications. We consider Computed Tomography (CT) and Positron Emission Tomography (PET) in thoracic regions

Paris-Sud XI, Université de

200

Measurements from 3D-CT renderings are used in research and clinical management  

E-Print Network [OSTI]

Measurements from 3D-CT renderings are used in research and clinical management: Characterization for the prism]) RENDERING TECHNIQUES USED in ANALYZE 10.0: - Volume Render - (2) Volumes of Interest 1) VOI-Auto & 2) VOI-Manual TOTAL 3D-CT MODELS: 3 mandibles X 18 CT series X 3 rendering techniques = 162 mandible

Vorperian, Houri K.

Note: This page contains sample records for the topic "dis tri ct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

X-Ray CT Image Reconstruction via Wavelet Frame Based Regularization and Radon Domain  

E-Print Network [OSTI]

to reconstruct high quality CT images from limited and noisy projection data. One of the common CT systems Bin Dong Jia Li Zuowei Shen December 22, 2011 Abstract X-ray computed tomography (CT) has been,8]. Numerical simulations and comparisons will be presented at the end. Keywords: Computed tomography, wavelet

Zakharov, Vladimir

202

EA-1915: Conveyance of Approximately 1,641 Acres of Unimproved Land to the Tri-City Development Council, the Local Community Reuse Organization, Richland, WA  

Broader source: Energy.gov [DOE]

This EA will evaluate the environmental impacts of conveyance of approximately 1,641 acres of unimproved land at DOEs Hanford Site, Richland, Washington to the Tri-City Development Council (TRIDEC), the local community reuse organization (CRO).

203

In-patient to isocenter KERMA ratios in CT  

SciTech Connect (OSTI)

Purpose: To estimate in-patient KERMA for specific organs in computed tomography (CT) scanning using ratios to isocenter free-in-air KERMA obtained using a Rando phantom.Method: A CT scan of an anthropomorphic phantom results in an air KERMA K at a selected phantom location and air kerma K{sub CT} at the CT scanner isocenter when the scan is repeated in the absence of the phantom. The authors define the KERMA ratio (R{sub K}) as K/ K{sub CT}, which were experimentally determined in a Male Rando Phantom using lithium fluoride chips (TLD-100). R{sub K} values were obtained for a total of 400 individual point locations, as well as for 25 individual organs of interest in CT dosimetry. CT examinations of Rando were performed on a GE LightSpeed Ultra scanner operated at 80 kV, 120 kV, and 140 kV, as well as a Siemens Sensation 16 operated at 120 kV. Results: At 120 kV, median R{sub K} values for the GE and Siemens scanners were 0.60 and 0.64, respectively. The 10th percentile R{sub K} values ranged from 0.34 at 80 kV to 0.54 at 140 kV, and the 90th percentile R{sub K} values ranged from 0.64 at 80 kV to 0.78 at 140 kV. The average R{sub K} for the 25 Rando organs at 120 kV was 0.61 {+-} 0.08. Average R{sub K} values in the head, chest, and abdomen showed little variation. Relative to R{sub K} values in the head, chest, and abdomen obtained at 120 kV, R{sub K} values were about 12% lower in the pelvis and about 58% higher in the cervical spine region. Average R{sub K} values were about 6% higher on the Siemens Sensation 16 scanner than the GE LightSpeed Ultra. Reducing the x-ray tube voltage from 120 kV to 80 kV resulted in an average reduction in R{sub K} value of 34%, whereas increasing the x-ray tube voltage to 140 kV increased the average R{sub K} value by 9%. Conclusions: In-patient to isocenter relative KERMA values in Rando phantom can be used to estimate organ doses in similar sized adults undergoing CT examinations from easily measured air KERMA values at the isocenter (free in air). Conversion from in-patient air KERMA values to tissue dose would require the use of energy-appropriate conversion factors.

Huda, Walter; Ogden, Kent M.; Lavallee, Robert L.; Roskopf, Marsha L.; Scalzetti, Ernest M. [Department of Radiology and Radiological Science, Medical University of South Carolina (MUSC), 96 Jonathan Lucas Street (MSC 323), Charleston, South Carolina 29425-3230 (United States); Department of Radiology, SUNY Upstate Medical University, 750 E Adams Street, Syracuse, New York 13210 (United States)

2011-10-15T23:59:59.000Z

204

Upright cone beam CT imaging using the onboard imager  

SciTech Connect (OSTI)

Purpose: Many patients could benefit from being treated in an upright position. The objectives of this study were to determine whether cone beam computed tomography (CBCT) could be used to acquire upright images for treatment planning and to demonstrate whether reconstruction of upright images maintained accurate geometry and Hounsfield units (HUs). Methods: A TrueBeam linac was programmed in developer mode to take upright CBCT images. The gantry head was positioned at 0, and the couch was rotated to 270. The x-ray source and detector arms were extended to their lateral positions. The x-ray source and gantry remained stationary as fluoroscopic projections were taken and the couch was rotated from 270 to 90. The x-ray tube current was normalized to deposit the same dose (measured using a calibrated Farmer ion chamber) as that received during a clinical helical CT scan to the center of a cylindrical, polyethylene phantom. To extend the field of view, two couch rotation scans were taken with the detector offset 15 cm superiorly and then 15 cm inferiorly. The images from these two scans were stitched together before reconstruction. Upright reconstructions were compared to reconstructions from simulation CT scans of the same phantoms. Two methods were investigated for correcting the HUs, including direct calibration and mapping the values from a simulation CT. Results: Overall geometry, spatial linearity, and high contrast resolution were maintained in upright reconstructions. Some artifacts were created and HU accuracy was compromised; however, these limitations could be removed by mapping the HUs from a simulation CT to the upright reconstruction for treatment planning. Conclusions: The feasibility of using the TrueBeam linac to take upright CBCT images was demonstrated. This technique is straightforward to implement and could be of enormous benefit to patients with thoracic tumors or those who find a supine position difficult to endure.

Fave, Xenia, E-mail: xjfave@mdanderson.org; Martin, Rachael [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030 (United States)] [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030 (United States); Yang, Jinzhong; Balter, Peter; Court, Laurence [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)] [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Carvalho, Luis [Varian Medical Systems, Zug 6303 (Switzerland)] [Varian Medical Systems, Zug 6303 (Switzerland); Pan, Tinsu [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)] [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

2014-06-15T23:59:59.000Z

205

Toxic Release Inventory (TRI), Puerto Rico, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

206

Toxic Release Inventory (TRI), Kansas, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

207

Toxic Release Inventory (TRI), Nebraska, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

208

Toxic Release Inventory (TRI), New Hampshire, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

209

Toxic Release Inventory (TRI), Montana, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

210

Toxic Release Inventory (TRI), Utah, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

211

Toxic Release Inventory (TRI), Texas, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

212

Toxic Release Inventory (TRI), Idaho, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

213

Toxic Release Inventory (TRI), Rhode Island, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

214

Toxic Release Inventory (TRI), Florida, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

215

Toxic Release Inventory (TRI), New Hampshire, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

216

Toxic Release Inventory (TRI), Oklahoma, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

217

Toxic Release Inventory (TRI), West Virginia, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

218

Toxic Release Inventory (TRI), South Dakota, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

219

Toxic Release Inventory (TRI), Missouri, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

220

Toxic Release Inventory (TRI), New Mexico, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dis tri ct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Toxic Release Inventory (TRI), Washington, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

222

Toxic Release Inventory (TRI), Maryland, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

223

Toxic Release Inventory (TRI), North Dakota, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

224

Toxic Release Inventory (TRI), Arizona, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

225

Toxic Release Inventory (TRI), American Samoa, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

226

Toxic Release Inventory (TRI), Alaska, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

227

Toxic Release Inventory (TRI), Connecticut, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

228

Toxic Release Inventory (TRI), vVrginia, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

229

Toxic Release Inventory (TRI), Puerto Rico, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

230

Toxic Release Inventory (TRI), Pennsylvania, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

231

Toxic Release Inventory (TRI), Minnesota, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

232

Toxic Release Inventory (TRI), Iowa, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

233

Toxic Release Inventory (TRI), South Carolina, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

234

Toxic Release Inventory (TRI), Oregon, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

235

Toxic Release Inventory (TRI), Georgia, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

236

Toxic Release Inventory (TRI), Wyoming, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

237

Toxic Release Inventory (TRI), North Dakota, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

238

Toxic Release Inventory (TRI), Arkansas, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

239

Toxic Release Inventory (TRI), Louisiana, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

240

Toxic Release Inventory (TRI), United States and Territories, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year.Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility; the first nine digit alphanumeric number a facility holds under the National Pollutant Discharge Elimination Systems.

Not Available

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dis tri ct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Toxic Release Inventory (TRI), North Carolina 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

242

Toxic Release Inventory (TRI), Virgin Islands, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

243

Toxic Release Inventory (TRI), Indiana, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

244

Toxic Release Inventory (TRI), California, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

245

Toxic Release Inventory (TRI), Virgin Islands, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

246

Toxic Release Inventory (TRI), New Jersey, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

247

Toxic Release Inventory (TRI), Vermont, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

248

Toxic Release Inventory (TRI), Wisconsin, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

249

Toxic Release Inventory (TRI), Maine, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

250

Toxic Release Inventory (TRI), West Virginia, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

251

Toxic Release Inventory (TRI), Illinois, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

252

Toxic Release Inventory (TRI), New Jersey, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

253

Toxic Release Inventory (TRI), Rhode Island, 1991 and 1992 (in dbase iii plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

254

Toxic Release Inventory (TRI), Virginia, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

255

Toxic Release Inventory (TRI), New Mexico, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

256

Toxic Release Inventory (TRI), South Dakota, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

257

Toxic Release Inventory (TRI), Tennessee, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

258

Toxic Release Inventory (TRI), Massachusetts, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

259

Toxic Release Inventory (TRI), Ohio, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

260

Toxic Release Inventory (TRI), American Samoa, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dis tri ct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Toxic Release Inventory (TRI), New York, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

262

Toxic Release Inventory (TRI), Alabama, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

263

Toxic Release Inventory (TRI), Hawaii, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

264

Toxic Release Inventory (TRI), South Carolina, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

265

Toxic Release Inventory (TRI), Mississippi, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

266

Toxic Release Inventory (TRI), Delaware, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

267

Toxic Release Inventory (TRI), Michigan, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

268

Toxic Release Inventory (TRI), Kentucky, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

269

Toxic Release Inventory (TRI), Nevada, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

270

Toxic Release Inventory (TRI), North Carolina, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

271

Toxic Release Inventory (TRI), Colorado, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

272

Toxic Release Inventory (TRI), New York, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

273

Try This: Household Magnets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButlerTransportation

274

Tri-Lab Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2TopoPortal Hydrogen andTrent Tucker About Us

275

Superfund record of decision (EPA Region 4): Tri-City Disposal Company, operable unit 2, Bullitt County, Brooks, KY, March 29, 1996  

SciTech Connect (OSTI)

The document presents the decision made by the U.S. Environmental protection Agency (USEPA) for the second phase of remedial action (Operable Unit No. 2) at the Tri-City Industrial Disposal Site. Based on the results of additional sampling at Tri-City, monitoring reports, and risk evaluation, no further remedial action is necessary at the site to ensure protection of human health and the environment. This decision is the final remedial action for the site. Although EPA has determined that no additional Superfund action is warranted for the second operable unit, treatment and monitoring of contaminated groundwater (OU1) (PB92-964004) will continue at the site as necessary.

NONE

1996-08-01T23:59:59.000Z

276

E-Print Network 3.0 - air ct cisternography Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

James E. Mason* and Cristina L. Archer1 Summary: supply with electricity from compressed air energy storage combustion turbine (CAES CT) power plants... compressed air energy...

277

E-Print Network 3.0 - axial ct scan Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biology and Medicine 12 Projection-based features for reducing false positives in computer-aided detection of colonic polyps in CT colonography Summary: indicates one IPC....

278

E-Print Network 3.0 - abdominal multislice ct Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ge Wanga) and Michael W. Vannier Department... in multislice spiralhelical computed tomography CT and provide guidelines for scanner design and protocol... optimization....

279

E-Print Network 3.0 - abdominal ct replace Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Leeds Collection: Computer Technologies and Information Sciences 23 ARTICLE IN PRESS Computer-Aided Design ( ) Summary: a limited number of CT images. The three- dimensional...

280

E-Print Network 3.0 - aided ct image Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

10 ARTICLE IN PRESS Computer-Aided Design ( ) Summary: a limited number of computed tomography (CT) images. The three-dimensional template geometry of a healthy... contour shown...

Note: This page contains sample records for the topic "dis tri ct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

CT Scans of Cores Metadata, Barrow, Alaska 2015  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, throughout 2013 and 2014. Cores were drilled along different transects to sample polygonal features (i.e. the trough, center and rim of high, transitional and low center polygons). Most cores were drilled around 1 meter in depth and a few deep cores were drilled around 3 meters in depth. Three-dimensional images of the frozen cores were constructed using a medical X-ray computed tomography (CT) scanner. TIFF files can be uploaded to ImageJ (an open-source imaging software) to examine soil structure and densities within each core.

Katie McKnight; Tim Kneafsey; Craig Ulrich

282

DOE - Office of Legacy Management -- Dorr Corp - CT 14  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here Home »HillNY 28Dorr Corp - CT 14

283

DOE - Office of Legacy Management -- Fenn Machinery Co - CT 11  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here Home »HillNYEra ToolFenn Machinery Co - CT

284

AMENDMENT OF SOLICITATION/MODIFICATION OF CONTR.l\CT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011Astudies smartHistory:CONTR.l\CT 2.

285

Molecular Dynamics Simulations of Tri-n-butyl-phosphate/n-Dodecane Mixture: Thermophysical Properties and Molecular Structure  

SciTech Connect (OSTI)

Molecular dynamics simulations of tri-n-butyl-phosphate (TBP)/n-dodecane mixture in the liquid phase have been carried out using two recently developed TBP force field models (J. Phys. Chem. B 2012, 116, 305) in combination with the all-atom optimized potentials for liquid simulations (OPLS-AA) force field model for n-dodecane. Specifically, the electric dipole moment of TBP, mass density of the mixture, and the excess volume of mixing were computed with TBP mole fraction ranging from 0 to 1. It is found that the aforementioned force field models accurately predict the mass density of the mixture in the entire mole fraction range. Commensurate with experimental measurements, the electric dipole moment of the TBP was found to slightly increase with the mole fraction of TBP in the mixture. Also, in accord with experimental data, the excess volume of mixing is positive in the entire mole fraction range, peaking at TBP mole fraction range 0.3 0.5. Finally, a close examination of the spatial pair correlation functions between TBP molecules, and between TBP and n-dodecane molecules, revealed formation of TBP dimers through self-association at close distance, a phenomenon with ample experimental evidence.

de Almeida, Valmor F [ORNL; Cui, Shengting [ORNL; Khomami, Bamin [ORNL

2014-01-01T23:59:59.000Z

286

Tri-axial magnetic anisotropies in RE{sub 2}Ba{sub 4}Cu{sub 7}O{sub 15?y} superconductors  

SciTech Connect (OSTI)

We report a novel quantification method of tri-axial magnetic anisotropy in orthorhombic substances containing rare earth (RE) ions using tri-axial magnetic alignment and tri-axial magnetic anisotropies depending on the type of RE in RE-based cuprate superconductors. From the changes in the axes for magnetization in magnetically aligned powders of (RE?{sub 1?x}RE?{sub x}){sub 2}Ba{sub 4}Cu{sub 7}O{sub y} [(RE?,RE?)247] containing RE ions with different single-ion magnetic anisotropies, the ratios of three-dimensional magnetic anisotropies between RE?247 and RE?247 could be determined. The results in (Y,Er)247, (Dy,Er)247, (Ho,Er)247, and (Y,Eu)247 systems suggest that magnetic anisotropies largely depended on the type of RE? (or RE?), even in the heavy RE ions with higher magnetic anisotropies. An appropriate choice of RE ions in RE-based cuprate superconductors enables the reduction of the required magnetic field for the production of their bulks and thick films based on the tri-axial magnetic alignment technique using modulated rotation magnetic fields.

Horii, Shigeru, E-mail: horii.shigeru.7e@kyoto-u.ac.jp; Doi, Toshiya [Graduate School of Energy Science, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan); Okuhira, Shota; Yamaki, Momoko [Department of Environmental Systems Engineering, Kochi University of Technology, Tosa-Yamada, Kami-shi, Kochi 782-8502 (Japan); Kishio, Kohji; Shimoyama, Jun-ichi [Department of Applied Chemistry, University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan)

2014-03-21T23:59:59.000Z

287

Simultaneous CT and SPECT tomography using CZT detectors  

DOE Patents [OSTI]

A method for simultaneous transmission x-ray computed tomography (CT) and single photon emission tomography (SPECT) comprises the steps of: injecting a subject with a tracer compound tagged with a .gamma.-ray emitting nuclide; directing an x-ray source toward the subject; rotating the x-ray source around the subject; emitting x-rays during the rotating step; rotating a cadmium zinc telluride (CZT) two-sided detector on an opposite side of the subject from the source; simultaneously detecting the position and energy of each pulsed x-ray and each emitted .gamma.-ray captured by the CZT detector; recording data for each position and each energy of each the captured x-ray and .gamma.-ray; and, creating CT and SPECT images from the recorded data. The transmitted energy levels of the x-rays lower are biased lower than energy levels of the .gamma.-rays. The x-ray source is operated in a continuous mode. The method can be implemented at ambient temperatures.

Paulus, Michael J. (Knoxville, TN); Sari-Sarraf, Hamed (Lubbock, TX); Simpson, Michael L. (Knoxville, TN); Britton, Jr., Charles L. (Alcoa, TN)

2002-01-01T23:59:59.000Z

288

Validation of Plaster Endocast Morphology Through 3D CT Image Analysis  

E-Print Network [OSTI]

Validation of Plaster Endocast Morphology Through 3D CT Image Analysis P. Thomas Schoenemann,1 by creating endo- casts out of rubber latex shells filled with plaster. The extent to which the method questions. Pairs of virtual endocasts (VEs) created from high-resolution CT scans of corresponding latex/plaster

Schoenemann, P. Thomas

289

Hemorrhage Slices Detection in Brain CT Images Ruizhe Liu, Chew Lim Tan, Tze Yun Leong  

E-Print Network [OSTI]

Hemorrhage Slices Detection in Brain CT Images Ruizhe Liu, Chew Lim Tan, Tze Yun Leong Department) scans are widely used in today's diagnosis of head traumas. It is effective to disclose the bleeding Tomography (CT) scans are widely used in today's diagnosis of head traumas. It is effective to disclose

Tan, Chew Lim

290

Siemens AG, CT IC 4, H.-G. Zimmermann1 CORPORATETECHNOLOGY  

E-Print Network [OSTI]

Siemens AG, CT IC 4, H.-G. Zimmermann1 CORPORATETECHNOLOGY System Identification & Forecasting with Advanced Neural Networks Principles, Techniques, Applications Hans Georg Zimmermann Siemens AG Email : Hans_Georg.Zimmermann@siemens.com Siemens AG, CT IC 4, H.-G. Zimmermann2 CORPORATETECHNOLOGY . . . . ! " i ii wxw 0 w1 wn xn x1 Distinct

Schmidhuber, Juergen

291

Bone Surface Reconstruction From CT/MR Images Using Fast Marching and Level Set Methods1)  

E-Print Network [OSTI]

Bone Surface Reconstruction From CT/MR Images Using Fast Marching and Level Set Methods1) Istv surfaces reconstructed from MR volumes are shown. 1 Outline of the project One of our current projects steps of bone surface reconstruction from CT/MR slice images. 2 Main steps of reconstruction 2.1

Chetverikov, Dmitry

292

Effects of the difference in tube voltage of the CT scanner on dose calculation  

E-Print Network [OSTI]

Computed Tomography (CT) measures the attenuation coefficient of an object and converts the value assigned to each voxel into a CT number. In radiation therapy, CT number, which is directly proportional to the linear attenuation coefficient, is required to be converted to electron density for radiation dose calculation for cancer treatment. However, if various tube voltages were applied to take the patient CT image without applying the specific CT number to electron density conversion curve, the accuracy of dose calculation would be unassured. In this study, changes in CT numbers for different materials due to change in tube voltage were demonstrated and the dose calculation errors in percentage depth dose (PDD) and a clinical case were analyzed. The maximum dose difference in PDD from TPS dose calculation and Monte Carlo simulation were 1.3 % and 1.1 % respectively when applying the same CT number to electron density conversion curve to the 80 kVp and 140 kVp images. In the clinical case, the different CT nu...

Rhee, Dong Joo; Moon, Young Min; Kim, Jung Ki; Jeong, Dong Hyeok

2015-01-01T23:59:59.000Z

293

Multi-atlas Segmentation in Head and Neck CT Scans Amelia M. Arbisser  

E-Print Network [OSTI]

Multi-atlas Segmentation in Head and Neck CT Scans by Amelia M. Arbisser B.S., Computer Science of Engineering Thesis Committee #12;2 #12;Multi-atlas Segmentation in Head and Neck CT Scans by Amelia M, we employ an atlas of labeled training images. We register each of these images to the unlabeled

Golland, Polina

294

AUTOMATIC HEART ISOLATION FOR CT CORONARY VISUALIZATION USING G. Funka-Lea1  

E-Print Network [OSTI]

AUTOMATIC HEART ISOLATION FOR CT CORONARY VISUALIZATION USING GRAPH-CUTS G. Funka-Lea1 , Y. Boykov3 isolate the outer surface of the entire heart in Computer Tomogra- phy (CT) cardiac scans. Isolating the entire heart allows the coronary vessels on the surface of the heart to be easily visu- alized despite

Boykov, Yuri

295

CT-PET Landmark-based Lung Registration Using a Dynamic Breathing Model S. Chambon1  

E-Print Network [OSTI]

CT-PET Landmark-based Lung Registration Using a Dynamic Breathing Model S. Chambon1 , A. Moreno1-based registration of CT (at two different instants of the breathing cycle, intermediate expirations) and PET images in order to simulate the instant in the breathing cycle most similar to the PET image and guarantee

Paris-Sud XI, Université de

296

GPU IMPLEMENTATION OF A 3D BAYESIAN CT ALGORITHM AND ITS APPLICATION ON REAL FOAM RECONSTRUCTION  

E-Print Network [OSTI]

Tomography (CT) [1, 3]. The limits of these meth- ods appear when the number of projections is small, and as well as any iterative algebraic meth- ods is the computation time and especially for projection solve is to reconstruct the object f from the projection data g collected by a cone beam 3D CT. The link

Paris-Sud XI, Université de

297

Searching Effective Parameters for Low-Dose CT Reconstruction by Ant Colony Optimization  

E-Print Network [OSTI]

, Eric Papenhausen and Klaus Mueller Abstract-- Low-dose Computed Tomography (CT) has been gaining. To cope with the limited data collected at 30% of standard radiation, low-dose CT reconstruction algorithms generally require several iterations of forward projection, back-projection and regularization

Mueller, Klaus

298

Locating the Eyes in CT Brain Scan Data Kostis Kaggelides, Peter J. Elliott  

E-Print Network [OSTI]

, a technique for locating the eyes in Computed Tomography brain scan data, is described. The objective and implemented an algorithm which automaticallyidenti es and locates the eyes in a Computed Tomography(CT) brainLocating the Eyes in CT Brain Scan Data Kostis Kaggelides, Peter J. Elliott IBM UK Scienti c Centre

Fisher, Bob

299

CT-FIRE (V1.3 Beta2) User's Manual, LOCI @ UW-Madison CT-FIRE V1.3 Beta2 User's Manual (November 6 2014)  

E-Print Network [OSTI]

CT-FIRE (V1.3 Beta2) User's Manual, LOCI @ UW-Madison 1 CT-FIRE V1.3 Beta2 User's Manual (November straightness. Using #12;CT-FIRE (V1.3 Beta2) User's Manual, LOCI @ UW-Madison 2 the advanced output control-processing. Major features of the versions Version 1.3 Beta2 (newest): The primary change in CT-FIRE V1.3 Beta2

Yavuz, Deniz

300

Monitoring internal organ motion with continuous wave radar in CT  

SciTech Connect (OSTI)

Purpose: To avoid motion artifacts in medical imaging or to minimize the exposure of healthy tissues in radiation therapy, medical devices are often synchronized with the patient's respiratory motion. Today's respiratory motion monitors require additional effort to prepare the patients, e.g., mounting a motion belt or placing an optical reflector on the patient's breast. Furthermore, they are not able to measure internal organ motion without implanting markers. An interesting alternative to assess the patient's organ motion is continuous wave radar. The aim of this work is to design, implement, and evaluate such a radar system focusing on application in CT.Methods: The authors designed a radar system operating in the 860 MHz band to monitor the patient motion. In the intended application of the radar system, the antennas are located close to the patient's body inside the table of a CT system. One receive and four transmitting antennas are used to avoid the requirement of exact patient positioning. The radar waves propagate into the patient's body and are reflected at tissue boundaries, for example at the borderline between muscle and adipose tissue, or at the boundaries of organs. At present, the authors focus on the detection of respiratory motion. The radar system consists of the hardware mentioned above as well as of dedicated signal processing software to extract the desired information from the radar signal. The system was evaluated using simulations and measurements. To simulate the radar system, a simulation model based on radar and wave field equations was designed and 4D respiratory-gated CT data sets were used as input. The simulated radar signals and the measured data were processed in the same way. The radar system hardware and the signal processing algorithms were tested with data from ten volunteers. As a reference, the respiratory motion signal was recorded using a breast belt simultaneously with the radar measurements.Results: Concerning the measurements of the test persons, there is a very good correlation (?= 0.917) between the respiratory motion phases received by the radar system and the external motion monitor. Our concept of using an array of transmitting antennas turned out to be widely insensitive to the positioning of the test persons. A time shift between the respiratory motion curves recorded with the radar system and the motion curves from the external respiratory monitor was observed which indicates a slight difference between internal organ motion and motion detected by the external respiratory monitor. The simulations were in good accordance with the measurements.Conclusions: A continuous wave radar operating in the near field of the antennas can be used to determine the respiratory motion of humans accurately. In contrast to trigger systems used today, the radar system is able to measure motion inside the body. If such a monitor was routinely available in clinical CT, it would be possible optimizing the scan start with respect to the respiratory state of the patient. Breathing commands would potentially widely be avoided, and as far as uncooperative patients or children are concerned, less sedation might be necessary. Further applications of the radar system could be in radiation therapy or interventional imaging for instance.

Pfanner, Florian [Institute of Medical Physics, University of ErlangenNrnberg, 91052 Erlangen, Germany and Siemens AG, Healthcare Sector, Siemensstr. 1, 91301 Forchheim (Germany)] [Institute of Medical Physics, University of ErlangenNrnberg, 91052 Erlangen, Germany and Siemens AG, Healthcare Sector, Siemensstr. 1, 91301 Forchheim (Germany); Maier, Joscha [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)] [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Allmendinger, Thomas; Flohr, Thomas [Siemens AG, Healthcare Sector, Siemensstr. 1, 91301 Forchheim (Germany)] [Siemens AG, Healthcare Sector, Siemensstr. 1, 91301 Forchheim (Germany); Kachelrie, Marc [Institute of Medical Physics, University of ErlangenNrnberg, 91052 Erlangen, Germany and Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)] [Institute of Medical Physics, University of ErlangenNrnberg, 91052 Erlangen, Germany and Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)

2013-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "dis tri ct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Superfund Record of Decision (EPA Region 5): Tri County/Elgin Landfill Site, Elgin, IL. (First remedial action), September 1992. Final report  

SciTech Connect (OSTI)

The 66-acre Tri County Landfill (TCL) site comprises two former landfills the Tri County Landfill and the Elgin Landfill, located near the junction of Kane, Cook and DuPage Counties, Illinois. The two disposal operations overlapped to the point where the two landfills were indistinguishable. Land use in the area is predominantly agricultural. The local residents and businesses use private wells as their drinking water supply. Prior to the 1940's, both landfills were used for gravel mining operations. From 1968 to 1976, the TCL received liquid and industrial waste. State and county inspection reports revealed that open dumping, area filling, and dumping into the abandonded gravel quarry had occurred at the site. In addition, confined dumping, inadequate daily cover, blowing litter, fires, lack of access restrictions, and leachate flows were typical problems reported. In 1981, the landfill was closed with a final cover.

Not Available

1992-09-30T23:59:59.000Z

302

Synergetic effects of II-VI sensitization upon TiO{sub 2} for photoelectrochemical water splitting; a tri-layered structured scheme  

SciTech Connect (OSTI)

World's energy demands are growing on a higher scale increasing the need of more reliable and long term renewable energy resources. Efficient photo-electrochemical (PEC) devices based on novel nano-structured designs for solar-hydrogen generation need to be developed. This study provides an insight of the tri-layered-TiO2 based nanostructures. Observing the mechanism of hydrogen production, the comparison of the structural order during the synthesis is pronounced. The sequence in the tri-layered structure affects the photogenerated electron (e{sup ?}) and hole (h{sup +}) pair transfer and separation. It is also discussed that not only the semiconductors band gaps alignment is important with respect to the water redox potential but also the interfacial regions. Quasi-Fermi-level adjustment at the interfacial regions plays a key role in deciding the solar to hydrogen efficiency. More efficient multicomponent semiconductor nano-design (MCSN) could be developed with the approach given in this study.

Mumtaz, Asad, E-mail: asad-032@yahoo.com [Department of Fundamental and Applied Sciences, University Teknologi PETRONAS (Malaysia); Mohamed, Norani Muti, E-mail: noranimuti-mohamed@petronas.com.my [Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS (Malaysia)

2014-10-24T23:59:59.000Z

303

CT effective dose per dose length product using ICRP 103 weighting factors  

SciTech Connect (OSTI)

Purpose: To generate effective dose per unit dose length product (E/DLP) conversion factors incorporating ICRP Publication 103 tissue weighting factors. Methods: Effective doses for CT examinations were obtained using the IMPACT Dosimetry Calculator using all 23 dose data sets that are offered by this spreadsheet. CT examinations were simulated for scans performed along the patient long axis for each dosimetry data set using a 4 cm beam width ranging from the upper thighs to top of the head. Five basic body regions (head, neck, chest, abdomen, and pelvis), as well as combinations of the regions (head/neck, chest/abdomen, abdomen/pelvis, and chest/abdomen/pelvis) and whole body CT scans were investigated. Correction factors were generated that can be applied to convert E/DLP conversion factors based on ICRP 60 data to conversion factors that are valid for ICRP 103 data (i.e., E{sub 103}/E{sub 60}). Results: Use of ICRP 103 weighting factors increase effective doses for head scans by {approx}11%, for chest scans by {approx}20%, and decrease effective doses for pelvis scans by {approx}25%. Current E/DLP conversion factors are estimated to be 2.4 {mu}Sv/mGy cm for head CT examinations and range between 14 and 20 {mu}Sv/mGy cm for body CT examinations. Conclusions: Factors that enable patient CT doses to be adjusted to account for ICRP 103 tissue weighting factors are provided, which result in E/DLP factors that were increased in head and chest CT, reduced in pelvis CT, and showed no marked change in neck and abdomen CT.

Huda, Walter; Magill, Dennise; He Wenjun [Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, South Carolina 29425 (United States); Department of Bioengineering, Clemson-MUSC Bioengineering Program, Clemson University, Charleston, South Carolina 29425 (United States)

2011-03-15T23:59:59.000Z

304

Iterative image-domain decomposition for dual-energy CT  

SciTech Connect (OSTI)

Purpose: Dual energy CT (DECT) imaging plays an important role in advanced imaging applications due to its capability of material decomposition. Direct decomposition via matrix inversion suffers from significant degradation of image signal-to-noise ratios, which reduces clinical values of DECT. Existing denoising algorithms achieve suboptimal performance since they suppress image noise either before or after the decomposition and do not fully explore the noise statistical properties of the decomposition process. In this work, the authors propose an iterative image-domain decomposition method for noise suppression in DECT, using the full variance-covariance matrix of the decomposed images. Methods: The proposed algorithm is formulated in the form of least-square estimation with smoothness regularization. Based on the design principles of a best linear unbiased estimator, the authors include the inverse of the estimated variance-covariance matrix of the decomposed images as the penalty weight in the least-square term. The regularization term enforces the image smoothness by calculating the square sum of neighboring pixel value differences. To retain the boundary sharpness of the decomposed images, the authors detect the edges in the CT images before decomposition. These edge pixels have small weights in the calculation of the regularization term. Distinct from the existing denoising algorithms applied on the images before or after decomposition, the method has an iterative process for noise suppression, with decomposition performed in each iteration. The authors implement the proposed algorithm using a standard conjugate gradient algorithm. The method performance is evaluated using an evaluation phantom (Catphan600) and an anthropomorphic head phantom. The results are compared with those generated using direct matrix inversion with no noise suppression, a denoising method applied on the decomposed images, and an existing algorithm with similar formulation as the proposed method but with an edge-preserving regularization term. Results: On the Catphan phantom, the method maintains the same spatial resolution on the decomposed images as that of the CT images before decomposition (8 pairs/cm) while significantly reducing their noise standard deviation. Compared to that obtained by the direct matrix inversion, the noise standard deviation in the images decomposed by the proposed algorithm is reduced by over 98%. Without considering the noise correlation properties in the formulation, the denoising scheme degrades the spatial resolution to 6 pairs/cm for the same level of noise suppression. Compared to the edge-preserving algorithm, the method achieves better low-contrast detectability. A quantitative study is performed on the contrast-rod slice of Catphan phantom. The proposed method achieves lower electron density measurement error as compared to that by the direct matrix inversion, and significantly reduces the error variation by over 97%. On the head phantom, the method reduces the noise standard deviation of decomposed images by over 97% without blurring the sinus structures. Conclusions: The authors propose an iterative image-domain decomposition method for DECT. The method combines noise suppression and material decomposition into an iterative process and achieves both goals simultaneously. By exploring the full variance-covariance properties of the decomposed images and utilizing the edge predetection, the proposed algorithm shows superior performance on noise suppression with high image spatial resolution and low-contrast detectability.

Niu, Tianye; Dong, Xue; Petrongolo, Michael; Zhu, Lei, E-mail: leizhu@gatech.edu [Nuclear and Radiological Engineering and Medical Physics Programs, The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)] [Nuclear and Radiological Engineering and Medical Physics Programs, The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

2014-04-15T23:59:59.000Z

305

Temporal and spectral imaging with micro-CT  

SciTech Connect (OSTI)

Purpose: Micro-CT is widely used for small animal imaging in preclinical studies of cardiopulmonary disease, but further development is needed to improve spatial resolution, temporal resolution, and material contrast. We present a technique for visualizing the changing distribution of iodine in the cardiac cycle with dual source micro-CT. Methods: The approach entails a retrospectively gated dual energy scan with optimized filters and voltages, and a series of computational operations to reconstruct the data. Projection interpolation and five-dimensional bilateral filtration (three spatial dimensions + time + energy) are used to reduce noise and artifacts associated with retrospective gating. We reconstruct separate volumes corresponding to different cardiac phases and apply a linear transformation to decompose these volumes into components representing concentrations of water and iodine. Since the resulting material images are still compromised by noise, we improve their quality in an iterative process that minimizes the discrepancy between the original acquired projections and the projections predicted by the reconstructed volumes. The values in the voxels of each of the reconstructed volumes represent the coefficients of linear combinations of basis functions over time and energy. We have implemented the reconstruction algorithm on a graphics processing unit (GPU) with CUDA. We tested the utility of the technique in simulations and applied the technique in an in vivo scan of a C57BL/6 mouse injected with blood pool contrast agent at a dose of 0.01 ml/g body weight. Postreconstruction, at each cardiac phase in the iodine images, we segmented the left ventricle and computed its volume. Using the maximum and minimum volumes in the left ventricle, we calculated the stroke volume, the ejection fraction, and the cardiac output. Results: Our proposed method produces five-dimensional volumetric images that distinguish different materials at different points in time, and can be used to segment regions containing iodinated blood and compute measures of cardiac function. Conclusions: We believe this combined spectral and temporal imaging technique will be useful for future studies of cardiopulmonary disease in small animals.

Johnston, Samuel M.; Johnson, G. Allan; Badea, Cristian T. [Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina 27710 (United States)

2012-08-15T23:59:59.000Z

306

RIS-M-2586 ELASTIC-PLASTIC FRACTURE MECHANICS ANALYSIS OF A CT-SPECIMEN  

E-Print Network [OSTI]

RIS?-M-2586 ELASTIC-PLASTIC FRACTURE MECHANICS ANALYSIS OF A CT-SPECIMEN - A TWO-DIMENSIONAL APPROACH Gunner C. Larsen Abstract. This report documents the results obtained from an elastic-plastic

307

Low-Dose Spiral CT Scans for Early Lung Cancer Detection  

Broader source: Energy.gov [DOE]

Low-dose spiral computed tomography (CT) scanning is a noninvasive medical imaging test that has been used for the early detection of lung cancer for over 16 years (Sone et al. 1998; Henschke et.al. 1999).

308

Finite Element Analysis of Ballistic Penetration of Plain Weave Twaron CT709 Fabrics: A Parametric Study  

E-Print Network [OSTI]

The ballistic impact of Twaron CT709 plain weave fabrics is studied using an explicit finite element method. Many existing approximations pertaining to woven fabrics cannot adequately represent strain rate-dependent behavior exhibited by the Twaron...

Gogineni, Sireesha

2011-10-21T23:59:59.000Z

309

MicroCT of Coronary Stents: Staining Techniques for 3-D Pathological Analysis  

E-Print Network [OSTI]

for the degree of MASTER OF SCIENCE May 2011 Major Subject: Biomedical Engineering MicroCT of Coronary Stents: Staining Techniques for 3-D Pathological Analysis Copyright 2011 Stephen Daniel Darrouzet... ABSTRACT MicroCT of Coronary Stents: Staining Techniques for 3-D Pathological Analysis. (May 2011) Stephen Daniel Darrouzet, B.S., Texas A&M Unversity Chair of Advisory Committee: Dr. Fred Clubb, Jr. In the area of translational research...

Darrouzet, Stephen 1987-

2011-04-21T23:59:59.000Z

310

TriBITS lifecycle model. Version 1.0, a lean/agile software lifecycle model for research-based computational science and engineering and applied mathematical software.  

SciTech Connect (OSTI)

Software lifecycles are becoming an increasingly important issue for computational science and engineering (CSE) software. The process by which a piece of CSE software begins life as a set of research requirements and then matures into a trusted high-quality capability is both commonplace and extremely challenging. Although an implicit lifecycle is obviously being used in any effort, the challenges of this process - respecting the competing needs of research vs. production - cannot be overstated. Here we describe a proposal for a well-defined software lifecycle process based on modern Lean/Agile software engineering principles. What we propose is appropriate for many CSE software projects that are initially heavily focused on research but also are expected to eventually produce usable high-quality capabilities. The model is related to TriBITS, a build, integration and testing system, which serves as a strong foundation for this lifecycle model, and aspects of this lifecycle model are ingrained in the TriBITS system. Here, we advocate three to four phases or maturity levels that address the appropriate handling of many issues associated with the transition from research to production software. The goals of this lifecycle model are to better communicate maturity levels with customers and to help to identify and promote Software Engineering (SE) practices that will help to improve productivity and produce better software. An important collection of software in this domain is Trilinos, which is used as the motivation and the initial target for this lifecycle model. However, many other related and similar CSE (and non-CSE) software projects can also make good use of this lifecycle model, especially those that use the TriBITS system. Indeed this lifecycle process, if followed, will enable large-scale sustainable integration of many complex CSE software efforts across several institutions.

Willenbring, James M.; Bartlett, Roscoe Ainsworth (Oak Ridge National Laboratory, Oak Ridge, TN); Heroux, Michael Allen

2012-01-01T23:59:59.000Z

311

Solvent Extraction Behavior of Neptunium (IV) Ions between Nitric Acid and Diluted 30% Tri-butyl Phosphate in the Presence of Simple Hydroxamic Acids  

SciTech Connect (OSTI)

Formo- and aceto-hydroxamic acids are very effective reagents for stripping tetravalent actinide ions such as Np(IV) and Pu(IV) ions from a tri-butyl phosphate phase into nitric acid. Distribution data for Np(IV) in the presence of these hydroxamate ions have now been accumulated and trends established. Stability constants for aceto-hydroxamate complexes of Np(IV) and Np(V) ions have also been determined in a perchlorate medium, and these reaffirm the affinity of hydroxamate ligands for actinide (IV) ions over actinyl (V,VI) ions.

Taylor, Robin J.; Sinkov, Sergey I.; Choppin, Gregory R.; May, Iain

2008-01-15T23:59:59.000Z

312

Lung Dose Calculation With SPECT/CT for {sup 90}Yittrium Radioembolization of Liver Cancer  

SciTech Connect (OSTI)

Purpose: To propose a new method to estimate lung mean dose (LMD) using technetium-99m labeled macroaggregated albumin ({sup 99m}Tc-MAA) single photon emission CT (SPECT)/CT for {sup 90}Yttrium radioembolization of liver tumors and to compare the LMD estimated using SPECT/CT with clinical estimates of LMD using planar gamma scintigraphy (PS). Methods and Materials: Images of 71 patients who had SPECT/CT and PS images of {sup 99m}Tc-MAA acquired before TheraSphere radioembolization of liver cancer were analyzed retrospectively. LMD was calculated from the PS-based lung shunt assuming a lung mass of 1 kg and 50 Gy per GBq of injected activity shunted to the lung. For the SPECT/CT-based estimate, the LMD was calculated with the activity concentration and lung volume derived from SPECT/CT. The effect of attenuation correction and the patient's breathing on the calculated LMD was studied with the SPECT/CT. With these effects correctly taken into account in a more rigorous fashion, we compared the LMD calculated with SPECT/CT with the LMD calculated with PS. Results: The mean dose to the central region of the lung leads to a more accurate estimate of LMD. Inclusion of the lung region around the diaphragm in the calculation leads to an overestimate of LMD due to the misregistration of the liver activity to the lung from the patient's breathing. LMD calculated based on PS is a poor predictor of the actual LMD. For the subpopulation with large lung shunt, the mean overestimation from the PS method for the lung shunt was 170%. Conclusions: A new method of calculating the LMD for TheraSphere and SIR-Spheres radioembolization of liver cancer based on {sup 99m}Tc-MAA SPECT/CT is presented. The new method provides a more accurate estimate of radiation risk to the lungs. For patients with a large lung shunt calculated from PS, a recalculation of LMD based on SPECT/CT is recommended.

Yu, Naichang, E-mail: yun@ccf.org [Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH (United States)] [Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH (United States); Srinivas, Shaym M.; DiFilippo, Frank P.; Shrikanthan, Sankaran [Department of Nuclear Medicine, Cleveland Clinic, Cleveland, OH (United States)] [Department of Nuclear Medicine, Cleveland Clinic, Cleveland, OH (United States); Levitin, Abraham; McLennan, Gordon; Spain, James [Department of Interventional Radiology, Cleveland Clinic, Cleveland, OH (United States)] [Department of Interventional Radiology, Cleveland Clinic, Cleveland, OH (United States); Xia, Ping; Wilkinson, Allan [Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH (United States)] [Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH (United States)

2013-03-01T23:59:59.000Z

313

Adaptive mean filtering for noise reduction in CT polymer gel dosimetry  

SciTech Connect (OSTI)

X-ray computed tomography (CT) as a method of extracting 3D dose information from irradiated polymer gel dosimeters is showing potential as a practical means to implement gel dosimetry in a radiation therapy clinic. However, the response of CT contrast to dose is weak and noise reduction is critical in order to achieve adequate dose resolutions with this method. Phantom design and CT imaging technique have both been shown to decrease image noise. In addition, image postprocessing using noise reduction filtering techniques have been proposed. This work evaluates in detail the use of the adaptive mean filter for reducing noise in CT gel dosimetry. Filter performance is systematically tested using both synthetic patterns mimicking a range of clinical dose distribution features as well as actual clinical dose distributions. Both low and high signal-to-noise ratio (SNR) situations are examined. For all cases, the effects of filter kernel size and the number of iterations are investigated. Results indicate that adaptive mean filtering is a highly effective tool for noise reduction CT gel dosimetry. The optimum filtering strategy depends on characteristics of the dose distributions and image noise level. For low noise images (SNR {approx}20), the filtered results are excellent and use of adaptive mean filtering is recommended as a standard processing tool. For high noise images (SNR {approx}5) adaptive mean filtering can also produce excellent results, but filtering must be approached with more caution as spatial and dose distortions of the original dose distribution can occur.

Hilts, Michelle; Jirasek, Andrew [Medical Physics, BC Cancer Agency-Vancouver Island Centre, Victoria, British Columbia, V8R6V5 (Canada); Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, V8W2Y2 (Canada)

2008-01-15T23:59:59.000Z

314

Malignant pleural mesothelioma: value of CT and MR imaging in predicting resectability  

SciTech Connect (OSTI)

OBJECTIVE. The objective was to determine if CT or MR imaging findings could be used to accurately predict resectability in patients with biopsy-proved malignant pleural mesotheliomas. SUBJECTS AND METHODS. CT and MR findings in 41 consecutive patients with malignant mesotheliomas who were referred to the thoracic surgery clinic for extrapleural pneumonectomy were studied by thoracic radiologists before surgery. Review of radiologic studies focused on local invasion of three separate regions: the diaphragm, chest wall, and mediastinum. Results of all imaging examinations were carefully correlated with intraoperative, gross, and microscopic pathologic findings. RESULTS. After radiologic and clinical evaluation, 34 patients (83%) had thoracotomy; 24 of these had tumors that were resectable. The sensitivity was high (> 90%) for both CT and MR in each region. Specificity, however, was low, probably because of the small number of patients with unresectable tumors. CONCLUSION. CT and MR provided similar information on resectability in most cases. Sensitivity was high for both procedures. Because CT is more widely available and used, the authors suggest it as the initial study when determining resectability. In difficult cases, important complementary anatomic information can be derived from MR images obtained before surgical intervention.

Patz, E.F. Jr.; Shaffer, K.; Piwnica-Worms, D.R.; Jochelson, M.; Sarin, M.; Sugarbaker, D.J.; Pugatch, R.D. (Department of Radiology, Brigham and Women's Hospital, Boston, MA (United States))

1992-11-01T23:59:59.000Z

315

A framework to measure myocardial extracellular volume fraction using dual-phase low dose CT images  

SciTech Connect (OSTI)

Purpose: Myocardial extracellular volume fraction (ECVF) is a surrogate imaging biomarker of diffuse myocardial fibrosis, a hallmark of pathologic ventricular remodeling. Low dose cardiac CT is emerging as a promising modality to detect diffuse interstitial myocardial fibrosis due to its fast acquisition and low radiation; however, the insufficient contrast in the low dose CT images poses great challenge to measure ECVF from the image. Methods: To deal with this difficulty, the authors present a complete ECVF measurement framework including a point-guided myocardial modeling, a deformable model-based myocardium segmentation, nonrigid registration of pre- and post-CT, and ECVF calculation. Results: The proposed method was evaluated on 20 patients by two observers. Compared to the manually delineated reference segmentations, the accuracy of our segmentation in terms of true positive volume fraction (TPVF), false positive volume fraction (FPVF), and average surface distance (ASD), were 92.18% 3.52%,?0.31% 0.10%,?0.69 0.14?mm, respectively. The interobserver variability measured by concordance correlation coefficient regarding TPVF, FPVF, and ASD were 0.95,?0.90,?0.94, respectively, demonstrating excellent agreement. Bland-Altman method showed 95% limits of agreement between ECVF at CT and ECVF at MR. Conclusions: The proposed framework demonstrates its efficiency, accuracy, and noninvasiveness in ECVF measurement and dramatically advances the ECVF at cardiac CT toward its clinical use.

Liu, Yixun; Summers, Ronald M.; Yao, Jianhua, E-mail: JYao@cc.nih.gov [Clinical Image Processing Service, Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, Maryland 20892 (United States)] [Clinical Image Processing Service, Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, Maryland 20892 (United States); Liu, Songtao; Sibley, Christopher T.; Bluemke, David A. [Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, Maryland 20892-1182 and Molecular Biomedical Imaging Laboratory, National Institute of Biomedical Imaging and Bioengineering, NIH Clinical Center, Bethesda, Maryland 20892 (United States)] [Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, Maryland 20892-1182 and Molecular Biomedical Imaging Laboratory, National Institute of Biomedical Imaging and Bioengineering, NIH Clinical Center, Bethesda, Maryland 20892 (United States); Nacif, Marcelo S. [Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, Maryland 20892-1182 (United States)] [Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, Maryland 20892-1182 (United States)

2013-10-15T23:59:59.000Z

316

Feature Job-DIS | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences Division at Argonne National Laboratory is looking for a part-time Computer Science (Co-op Student). The prospective co-op student is required to have: Enrollment in...

317

DIS2001 Bologna 2701 May 2001  

E-Print Network [OSTI]

PDFs Herwig5.9: * MRSA for the proton * SaS1D­LO parametrization of #3; PDFs * GRV­LO parametrization(#22; 2 =Q 2 ) non­pQCD #24; Q -4 Lepto: * MRSA for the proton * direct photons only ­ Dorian Kcira

318

DISEASES OF AQUATIC ORGANISMS Dis Aquat Org  

E-Print Network [OSTI]

trade of amphibians for pets, research, bait and consumption has the potential to spread ranaviruses

Gray, Matthew

319

Phenomenology of lepton-nucleus DIS  

E-Print Network [OSTI]

The results of recent phenomenological studies of unpolarized nuclear deep-inelastic scattering are discussed and applied to calculate neutrino charged-current structure functions and cross sections for a number of nuclei.

S. A. Kulagin; R. Petti

2006-02-10T23:59:59.000Z

320

Careers & the disABLED Career Expo  

Broader source: Energy.gov [DOE]

Location: Ronald Reagan Bldg, Washington, DCAttendees: Terri Sosa (Science)POC: Donna FriendWebsite:http://bit.ly/1tlHhNr

Note: This page contains sample records for the topic "dis tri ct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

DISEASES OF AQUATIC ORGANISMS Dis Aquat Org  

E-Print Network [OSTI]

, Broderick & Godley 1999, Fossette et al. 2008, Sherrill-Mix & James 2008). During a study (Reich et al. 2008 identical environ- © Inter-Research 2010 · www.int-res.com*Email: bjorndal@ufl.edu NOTE Effect of repeated

Florida, University of

322

DISEASES OF AQUATIC ORGANISMS Dis Aquat Org  

E-Print Network [OSTI]

2009 at 7 ponds in the Palouse region and quantified Bd zoospores for each sample using quantitative

Rosenblum, Erica Bree

323

DISEASES OF AQUATIC ORGANISMS Dis Aquat Org  

E-Print Network [OSTI]

, Thomas J. Poorten1 1 Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844, USA 2 to hypothesized strain differences in virulence? The scientific effort targeted toward answering these questions

Rosenblum, Erica Bree

324

Towards small x resummed DIS phenomenology  

E-Print Network [OSTI]

We report on recent progress towards quantitative phenomenology of small x resummation of deep-inelastic structure functions. We compute small x resummed K-factors with realistic PDFs and estimate their impact in the HERA kinematical region. These K-factors, which match smoothly to the fixed order NLO results, approximately reproduce the effect of a small x resummed PDF analysis. Typical corrections are found to be of the same order as the NNLO ones, that is, a few percent, but with opposite sign. These results imply that resummation corrections could be relevant for a global PDF analysis, especially with the very precise combined HERA dataset.

Juan Rojo; Guido Altarelli; Richard D. Ball; Stefano Forte

2009-07-02T23:59:59.000Z

325

DISEASES OF AQUATIC ORGANISMS Dis Aquat Org  

E-Print Network [OSTI]

), and hybrid striped bass (Evans et al. 2000). Clinical symptoms of S. iniae infection in fish include loss from the freshwater dolphin Inia geoffrensis (Pier & Madin 1976), S. iniae infects a wide range of fish infection in humans who have handled diseased fish (Weinstein et al. 1997). Despite the need for novel

Nizet, Victor

326

DISEASES OF AQUATIC ORGANISMS Dis Aquat Org  

E-Print Network [OSTI]

. Anderson2,*, John S. Wood3 , Joyce E. Longcore4 , Mary A. Voytek1 1 US Geological Survey, MS 430, 12201

327

Johns, R. H., D. W. Burgess, C. A. Doswell III, M. S. Gilmore, J. A. Hart, and S. F. Piltz, 2013: The 1925 Tri-State tornado damage path and associated storm system. Electronic J. Severe Storms Meteor., 8 (2), 133.  

E-Print Network [OSTI]

mi) east-northeast of the apparent end of the Tri- State tornado damage path in Pike County, IN: The 1925 Tri- State tornado damage path and associated storm system. Electronic J. Severe Storms Meteor., 8 (2), 1­33. 1 The 1925 Tri-State Tornado Damage Path and Associated Storm System ROBERT H. JOHNS

Doswell III, Charles A.

328

Comparison of MRI-based and CT/MRI fusion-based postimplant dosimetric analysis of prostate brachytherapy  

SciTech Connect (OSTI)

Purpose: The aim of this study was to compare the outcomes between magnetic resonance imaging (MRI)-based and computed tomography (CT)/MRI fusion-based postimplant dosimetry methods in permanent prostate brachytherapy. Methods and Materials: Between October 2004 and March 2006, a total of 52 consecutive patients with prostate cancer were treated by brachytherapy, and postimplant dosimetry was performed using CT/MRI fusion. The accuracy and reproducibility were prospectively compared between MRI-based dosimetry and CT/MRI fusion-based dosimetry based on the dose-volume histogram (DVH) related parameters as recommended by the American Brachytherapy Society. Results: The prostate volume was 15.97 {+-} 6.17 cc (mean {+-} SD) in MRI-based dosimetry, and 15.97 {+-} 6.02 cc in CT/MRI fusion-based dosimetry without statistical difference. The prostate V100 was 94.5% and 93.0% in MRI-based and CT/MRI fusion-based dosimetry, respectively, and the difference was statistically significant (p = 0.002). The prostate D90 was 119.4% and 114.4% in MRI-based and CT/MRI fusion-based dosimetry, respectively, and the difference was statistically significant (p = 0.004). Conclusion: Our current results suggested that, as with fusion images, MR images allowed accurate contouring of the organs, but they tended to overestimate the analysis of postimplant dosimetry in comparison to CT/MRI fusion images. Although this MRI-based dosimetric discrepancy was negligible, MRI-based dosimetry was acceptable and reproducible in comparison to CT-based dosimetry, because the difference between MRI-based and CT/MRI fusion-based results was smaller than that between CT-based and CT/MRI fusion-based results as previously reported.

Tanaka, Osamu [Department of Radiology, Gifu University School of Medicine, Gifu City (Japan)]. E-mail: osa-mu@umin.ac.jp; Hayashi, Shinya [Department of Radiology, Gifu University School of Medicine, Gifu City (Japan); Matsuo, Masayuki [Department of Radiology, Gifu University School of Medicine, Gifu City (Japan); Sakurai, Kota [Department of Radiology, Gifu University School of Medicine, Gifu City (Japan); Department of Urology, Gifu University School of Medicine, Gifu City (Japan); Nakano, Masahiro [Department of Urology, Gifu University School of Medicine, Gifu City (Japan); Maeda, Sunaho [Department of Radiology, Gifu University School of Medicine, Gifu City (Japan); Kajita, Kimihiro R.T. [Department of Radiology, Gifu University School of Medicine, Gifu City (Japan); Deguchi, Takashi [Department of Urology, Gifu University School of Medicine, Gifu City (Japan); Hoshi, Hiroaki [Department of Radiology, Gifu University School of Medicine, Gifu City (Japan)

2006-10-01T23:59:59.000Z

329

Brachial Plexus Injury from CT-Guided RF Ablation Under General Anesthesia  

SciTech Connect (OSTI)

Brachial plexus injury in a patient under general anesthesia (GA) is not uncommon, despite careful positioning and, particularly, awareness of the possibility. The mechanism of injury is stretching and compression of the brachial plexus over a prolonged period. Positioning the patient within the computed tomography (CT) gantry for abdominal or chest procedures can simulate a surgical procedure, particularly when GA is used. The potential for brachial plexus injury is increased if the case is prolonged and the patient's arms are raised above the head to avoid CT image degradation from streak artifacts. We report a case of profound brachial plexus palsy following a CT-guided radiofrequency ablation procedure under GA. Fortunately, the patient recovered completely. We emphasize the mechanism of injury and detail measures to combat this problem, such that radiologists are aware of this potentially serious complication.

Shankar, Sridhar, E-mail: shankars@ummhc.org; Sonnenberg, Eric van; Silverman, Stuart G.; Tuncali, Kemal [Brigham and Women's Hospital, Department of Radiology (United States); Flanagan, Hugh L. [Brigham and Women's Hospital, Department of Anesthesia (United States); Whang, Edward E. [Brigham and Women's Hospital, Department of Surgery (United States)

2005-06-15T23:59:59.000Z

330

Georgia Power`s Plant Yates CT-121 demonstration performance results  

SciTech Connect (OSTI)

The Chiyoda CT-121 demonstration project, being conducted at Georgia Power`s Plant Yates` 100 MWe Unit 1, is an evaluation of a unique wet-limestone, forced-oxidized FGD process and is a part of the Innovative Clean Coal Technology (ICCT) program. The CT-121 process uses a single unique absorber vessel made entirely of fiberglass reinforced plastics called a jet bubbling reactor (JBR). The JBR allows concurrent completion of all the necessary reactions to remove sulfur dioxide from the flue gas and to precipitate a gypsum byproduct. This paper will discuss the results of the low-particulate test phase, including the effects of higher-sulfur coal, as well as initial results from the high-particulate test phase (existing electrostatic precipitator deenergized). DOE-sponsored air toxics testing has also been conducted, but final results were not available at the time of this writing. A discussion of limestone selection and its impact on the dewatering properties of the CT-121 gypsum byproduct is also included. Performance results emphasize the efficiency, reliability, and flexibility of the CT-121 process. Preliminary testing of the CT-121 process at Plant Yates has produced excellent performance results. The process has proven itself capable of exceeding its design SO{sub 2} removal efficiency specification of 90%, both with and without the ESP in service. The process has also achieved SO{sub 2} removal efficiencies of greater than 98%. Particulate measurements, conducted with the ESP deenergized, have established the capability of the CT-121 process to remove over 99% of the boiler`s particulate emissions at 100% boiler load.

Burford, D.P. [Southern Co. Services, Inc., Birmingham, AL (United States); Pearl, I.G. [Radian Corp., Tucker, GA (United States)

1994-12-31T23:59:59.000Z

331

Resolution enhancement of lung 4D-CT data using multiscale interphase iterative nonlocal means  

SciTech Connect (OSTI)

Purpose: Four-dimensional computer tomography (4D-CT) has been widely used in lung cancer radiotherapy due to its capability in providing important tumor motion information. However, the prolonged scanning duration required by 4D-CT causes considerable increase in radiation dose. To minimize the radiation-related health risk, radiation dose is often reduced at the expense of interslice spatial resolution. However, inadequate resolution in 4D-CT causes artifacts and increases uncertainty in tumor localization, which eventually results in extra damages of healthy tissues during radiotherapy. In this paper, the authors propose a novel postprocessing algorithm to enhance the resolution of lung 4D-CT data. Methods: The authors' premise is that anatomical information missing in one phase can be recovered from the complementary information embedded in other phases. The authors employ a patch-based mechanism to propagate information across phases for the reconstruction of intermediate slices in the longitudinal direction, where resolution is normally the lowest. Specifically, the structurally matching and spatially nearby patches are combined for reconstruction of each patch. For greater sensitivity to anatomical details, the authors employ a quad-tree technique to adaptively partition the image for more fine-grained refinement. The authors further devise an iterative strategy for significant enhancement of anatomical details. Results: The authors evaluated their algorithm using a publicly available lung data that consist of 10 4D-CT cases. The authors' algorithm gives very promising results with significantly enhanced image structures and much less artifacts. Quantitative analysis shows that the authors' algorithm increases peak signal-to-noise ratio by 3-4 dB and the structural similarity index by 3%-5% when compared with the standard interpolation-based algorithms. Conclusions: The authors have developed a new algorithm to improve the resolution of 4D-CT. It outperforms the conventional interpolation-based approaches by producing images with the markedly improved structural clarity and greatly reduced artifacts.

Zhang Yu [School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China and Department of Radiology and BRIC, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Yap, Pew-Thian; Wu Guorong [Department of Radiology and BRIC, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Feng Qianjin; Chen Wufan [School of Biomedical Engineering, Southern Medical University, Guangzhou 510515 (China); Lian Jun [Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Shen Dinggang [Department of Radiology and BRIC, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Department of Brain and Cognitive Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

2013-05-15T23:59:59.000Z

332

Dynamic cone beam CT angiography of carotid and cerebral arteries using canine model  

SciTech Connect (OSTI)

Purpose: This research is designed to develop and evaluate a flat-panel detector-based dynamic cone beam CT system for dynamic angiography imaging, which is able to provide both dynamic functional information and dynamic anatomic information from one multirevolution cone beam CT scan. Methods: A dynamic cone beam CT scan acquired projections over four revolutions within a time window of 40 s after contrast agent injection through a femoral vein to cover the entire wash-in and wash-out phases. A dynamic cone beam CT reconstruction algorithm was utilized and a novel recovery method was developed to correct the time-enhancement curve of contrast flow. From the same data set, both projection-based subtraction and reconstruction-based subtraction approaches were utilized and compared to remove the background tissues and visualize the 3D vascular structure to provide the dynamic anatomic information. Results: Through computer simulations, the new recovery algorithm for dynamic time-enhancement curves was optimized and showed excellent accuracy to recover the actual contrast flow. Canine model experiments also indicated that the recovered time-enhancement curves from dynamic cone beam CT imaging agreed well with that of an IV-digital subtraction angiography (DSA) study. The dynamic vascular structures reconstructed using both projection-based subtraction and reconstruction-based subtraction were almost identical as the differences between them were comparable to the background noise level. At the enhancement peak, all the major carotid and cerebral arteries and the Circle of Willis could be clearly observed. Conclusions: The proposed dynamic cone beam CT approach can accurately recover the actual contrast flow, and dynamic anatomic imaging can be obtained with high isotropic 3D resolution. This approach is promising for diagnosis and treatment planning of vascular diseases and strokes.

Cai Weixing; Zhao Binghui; Conover, David; Liu Jiangkun; Ning Ruola [Department of Imaging Sciences, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642 (United States); Department of Radiology, Shanghai 6th People's Hospital, 600 Yishan Road, Xuhui, Shanghai (China); Koning Corporation, Lennox Tech Enterprise Center, 150 Lucius Gordon Drive Suite 112, West Henrietta, New York 14586 (United States); Department of Imaging Sciences, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642 (United States); Department of Imaging Sciences, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642 (United States) and Koning Corporation, Lennox Tech Enterprise Center, 150 Lucius Gordon Drive Suite 112, West Henrietta, New York 14586 (United States)

2012-01-15T23:59:59.000Z

333

Resolution enhancement of lung 4D-CT via group-sparsity  

SciTech Connect (OSTI)

Purpose: 4D-CT typically delivers more accurate information about anatomical structures in the lung, over 3D-CT, due to its ability to capture visual information of the lung motion across different respiratory phases. This helps to better determine the dose during radiation therapy for lung cancer. However, a critical concern with 4D-CT that substantially compromises this advantage is the low superior-inferior resolution due to less number of acquired slices, in order to control the CT radiation dose. To address this limitation, the authors propose an approach to reconstruct missing intermediate slices, so as to improve the superior-inferior resolution.Methods: In this method the authors exploit the observation that sampling information across respiratory phases in 4D-CT can be complimentary due to lung motion. The authors approach uses this locally complimentary information across phases in a patch-based sparse-representation framework. Moreover, unlike some recent approaches that treat local patches independently, the authors approach employs the group-sparsity framework that imposes neighborhood and similarity constraints between patches. This helps in mitigating the trade-off between noise robustness and structure preservation, which is an important consideration in resolution enhancement. The authors discuss the regularizing ability of group-sparsity, which helps in reducing the effect of noise and enables better structural localization and enhancement.Results: The authors perform extensive experiments on the publicly available DIR-Lab Lung 4D-CT dataset [R. Castillo, E. Castillo, R. Guerra, V. Johnson, T. McPhail, A. Garg, and T. Guerrero, A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets, Phys. Med. Biol. 54, 18491870 (2009)]. First, the authors carry out empirical parametric analysis of some important parameters in their approach. The authors then demonstrate, qualitatively as well as quantitatively, the ability of their approach to achieve more accurate and better localized results over bicubic interpolation as well as a related state-of-the-art approach. The authors also show results on some datasets with tumor, to further emphasize the clinical importance of their method.Conclusions: The authors have proposed to improve the superior-inferior resolution of 4D-CT by estimating intermediate slices. The authors approach exploits neighboring constraints in the group-sparsity framework, toward the goal of achieving better localization and noise robustness. The authors results are encouraging, and positively demonstrate the role of group-sparsity for 4D-CT resolution enhancement.

Bhavsar, Arnav; Wu, Guorong; Shen, Dinggang [Department of Radiology and BRIC, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)] [Department of Radiology and BRIC, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Lian, Jun [Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)] [Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)

2013-12-15T23:59:59.000Z

334

Modeling of the simultaneous extraction of nitric acid and uranyl nitrate with tri-n-butyl phosphate. Application to extraction operation  

SciTech Connect (OSTI)

A mathematical model developed for the equilibrium HNO{sub 3}-UO{sub 2}(NO{sub 3}){sub 2}-tri-n-butyl phosphate (TBP)-diluent is the basis of the computation of distribution isotherms. The isotherms are used to study the influence of TBP concentration on two chosen operation parameters, distribution coefficients and number of theoretical stages, for the selected flow sheets. It is established that an increase in TBP concentration leads to a decrease in the number of theoretical stages for the extraction flow sheets but to their increase for the striping flow sheets. Given diagrams can be used to determine the efficiency of extraction processes. Agreement with available literature calculations on the number of theoretical stages supports the use of the model in the computation of distribution isotherms, of the system quoted above, in a wide range of nitric acid, uranyl nitrate, and TBP concentrations.

Comor, J.J.; Tolic, A.S.; Kopecni, M.M.; Petkovic, D.M. [Vinca Inst. of Nuclear Sciences, Belgrade (Yugoslavia). Chemical Dynamics Lab.] [Vinca Inst. of Nuclear Sciences, Belgrade (Yugoslavia). Chemical Dynamics Lab.

1999-01-01T23:59:59.000Z

335

Public health assessment for tri-county landfill waste management of Illinois, South Elgin, Kane County, Illinois, Region 5. Cerclis No. ILD048306183. Final report  

SciTech Connect (OSTI)

The Tri-County and Elgin Landfills pose a public health hazard because the concentrations of lead in downgradient private wells are high enough to be a long-term health concern. Completed exposure pathways include the exposure to contaminated water from on- and off-site private wells (inhalation, ingestion, dermal contact; past, present, future). Contaminants of concern in on-site groundwater include bis(2-chloroethyl)ether, vinyl chloride, antimony, arsenic, barium, cadmium, fluoride, lead, manganese, nickel, nitrate + nitrite, and thallium. Chemicals of concern in on-site surface soil and sediments include PCBs, arsenic, cadmium, and nickel. Contaminants of concern in on-site subsurface soil include PCBs, arsenic, cadmium, lead, and nickel. This public health assessment recommends health professionals education and community health education be conducted for the community impacted by the landfills.

NONE

1995-08-29T23:59:59.000Z

336

Toxic Release Inventory (TRI), United States and Territories, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

337

for Proton CT R. P. Johnson, Member, IEEE, V. Bashkirov, V. Giacometti, R. F. Hurley, P. Piersimoni,  

E-Print Network [OSTI]

treatment planning and pre-treatment verification in patients undergoing treatment with particle beam a combination of the residual energy and range of the proton, from which we derive the water equivalent path. INTRODUCTION roton CT (pCT) is an evolving technology that promises to improve proton treatment planning

California at Santa Cruz, University of

338

A method for measuring joint kinematics designed for accurate registration of kinematic data to models constructed from CT data  

E-Print Network [OSTI]

for position and 0.1 degrees for orientation for linkage digitization and better than +/- 0.2 mm and +/- 0.2 degrees for CT digitization. Surface models of the radius and ulna were constructed from CT data, as an example application. Kinematics of the bones...

Fischer, Kenneth J.; Manson, T. T.; Pfaeffle, H. J.; Tomaino, M. M.; Woo, S. L-Y

2001-03-01T23:59:59.000Z

339

SU-E-J-86: Lobar Lung Function Quantification by PET Galligas and CT Ventilation Imaging in Lung Cancer Patients  

SciTech Connect (OSTI)

Purpose: The purpose of this study was to quantify the lobar lung function using the novel PET Galligas ([68Ga]-carbon nanoparticle) ventilation imaging and the investigational CT ventilation imaging in lung cancer patients pre-treatment. Methods: We present results on our first three lung cancer patients (2 male, mean age 78 years) as part of an ongoing ethics approved study. For each patient a PET Galligas ventilation (PET-V) image and a pair of breath hold CT images (end-exhale and end-inhale tidal volumes) were acquired using a Siemens Biograph PET CT. CT-ventilation (CT-V) images were created from the pair of CT images using deformable image registration (DIR) algorithms and the Hounsfield Unit (HU) ventilation metric. A comparison of ventilation quantification from each modality was done on the lobar level and the voxel level. A Bland-Altman plot was used to assess the difference in mean percentage contribution of each lobe to the total lung function between the two modalities. For each patient, a voxel-wise Spearmans correlation was calculated for the whole lungs between the two modalities. Results: The Bland-Altman plot demonstrated strong agreement between PET-V and CT-V for assessment of lobar function (r=0.99, p<0.001; range mean difference: ?5.5 to 3.0). The correlation between PET-V and CT-V at the voxel level was moderate(r=0.60, p<0.001). Conclusion: This preliminary study on the three patients data sets demonstrated strong agreement between PET and CT ventilation imaging for the assessment of pre-treatment lung function at the lobar level. Agreement was only moderate at the level of voxel correlations. These results indicate that CT ventilation imaging has potential for assessing pre-treatment lobar lung function in lung cancer patients.

Eslick, E; Kipritidis, J; Keall, P [University of Sydney, Camperdown, NSW (Australia); Bailey, D; Bailey, E [Royal North Shore Hospital, St. Leonards, NSW (Australia)

2014-06-01T23:59:59.000Z

340

Tri-Generation Success World's First Tri-Gen  

E-Print Network [OSTI]

station uses anaerobically digested biogas from the municipal wastewater treatment plant as the fuel SAE protocols for rapid 3-minute complete tank refueling. Gas or Biogas H2 is produced at anode Gas the versatility of fuel cells to utilize multiple feedstocks, such as biogas and natural gas, to produce power

Note: This page contains sample records for the topic "dis tri ct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

E-Print Network 3.0 - abnormal brain ct Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

P R I N G 2 0 0 7 N Y U P H Y S I C I A N S P R I N G 2 0 0 7 1 1 Summary: to put their head in a CT scanner," says Dr. de Leon. At the time, brain scans were used in dementia...

342

Hydro-thermal flow in a rough fracture EC Contract SES6-CT-2003-502706  

E-Print Network [OSTI]

Hydro-thermal flow in a rough fracture EC Contract SES6-CT-2003-502706 PARTICIPANT ORGANIZATION NAME: CNRS Synthetic 2nd year report Related with Work Package............ HYDRO-THERMAL FLOW in the influence of a realistic geometry of the fracture on its hydro-thermal response. Several studies have

Schmittbuhl, Jean

343

DAWN: A JOURNEY TO THE BEGINNING OF THE SOLAR SYSTEM C.T. Russell(1)  

E-Print Network [OSTI]

-ray/neutron spectrometer, a magnetometer and a gravity investigation. Dawn uses solar arrays to power its xenon ion engine solar panels roughly 21 m tip-to-tip, a 5 m magnetometer boom and three ion thrusters, one of whichDAWN: A JOURNEY TO THE BEGINNING OF THE SOLAR SYSTEM C.T. Russell(1) , A. Coradini(2) , W

Zuber, Maria

344

Surface Extraction from Multi-Material Components for Metrology using Dual Energy CT  

E-Print Network [OSTI]

materials (e.g., carbon-fibre-reinforced plas- tics) induce manufacturers to design new functionSurface Extraction from Multi-Material Components for Metrology using Dual Energy CT Christoph surface models of multi-material components using dual energy com- puted tomography (DECT

345

Multi-energy CT Based on a Prior Rank, Intensity and Sparsity Model (PRISM)  

E-Print Network [OSTI]

Multi-energy CT Based on a Prior Rank, Intensity and Sparsity Model (PRISM) Hao Gao1 , Hengyong Yu2 spectrum. Besides, the energy-dependent intensity information can be incorporated into the PRISM in terms on the generalized rank and sparsity of a multi-energy image, and intensity/spectral characteristics of base

Soatto, Stefano

346

The Mathematics of the Imaging Techniques of MEG, CT, PET and SPECT  

E-Print Network [OSTI]

The Mathematics of the Imaging Techniques of MEG, CT, PET and SPECT A.S. Fokas, V. Marinakis), of positron emission tomography (PET) and of single photon emission computed to­ mography (SPECT) are reviewed techniques of positron emission tomography (PET) and of single photon emission computed tomography (SPECT

Fokas, A. S.

347

CLASSIFICATION OF BIOMEDICAL HIGH-RESOLUTION MICRO-CT IMAGES FOR DIRECT VOLUME RENDERING  

E-Print Network [OSTI]

CLASSIFICATION OF BIOMEDICAL HIGH-RESOLUTION MICRO-CT IMAGES FOR DIRECT VOLUME RENDERING Maite L,cerquide,davidm,anna}@maia.ub.es ABSTRACT This paper introduces a machine learning approach into the process of direct volume rendering that generates the classification func- tion within the optical property function used for rendering. Briefly

López-Sánchez, Maite

348

Lack of Correlation Between External Fiducial Positions and Internal Tumor Positions During Breath-Hold CT  

SciTech Connect (OSTI)

Purpose: For thoracic tumors, if four-dimensional computed tomography (4DCT) is unavailable, the internal margin can be estimated by use of breath-hold (BH) CT scans acquired at end inspiration (EI) and end expiration (EE). By use of external surrogates for tumor position, BH accuracy is estimated by minimizing the difference between respiratory extrema BH and mean equivalent-phase free breathing (FB) positions. We tested the assumption that an external surrogate for BH accuracy correlates with internal tumor positional accuracy during BH CT. Methods and Materials: In 16 lung cancer patients, 4DCT images, as well as BH CT images at EI and EE, were acquired. Absolute differences between BH and mean equivalent-phase (FB) positions were calculated for both external fiducials and gross tumor volume (GTV) centroids as metrics of external and internal BH accuracy, respectively, and the results were correlated. Results: At EI, the absolute difference between mean FB and BH fiducial displacement correlated poorly with the absolute difference between FB and BH GTV centroid positions on CT images (R{sup 2} = 0.11). Similarly, at EE, the absolute difference between mean FB and BH fiducial displacements correlated poorly with the absolute difference between FB and BH GTV centroid positions on CT images (R{sup 2} = 0.18). Conclusions: External surrogates for tumor position are not an accurate metric of BH accuracy for lung cancer patients. This implies that care should be taken when using such an approach because an incorrect internal margin could be generated.

Hunjan, Sandeep, E-mail: shunjan@mdanderson.or [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Starkschall, George; Prado, Karl; Dong Lei; Balter, Peter [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)

2010-04-15T23:59:59.000Z

349

Enlarged longitudinal dose profiles in cone-beam CT and the need for modified dosimetry  

SciTech Connect (OSTI)

In order to examine phantom length necessary to assess radiation dose delivered to patients in cone-beam CT with an enlarged beamwidth, we measured dose profiles in cylindrical phantoms of sufficient length using a prototype 256-slice CT-scanner developed at our institute. Dose profiles parallel to the rotation axis were measured at the central and peripheral positions in PMMA (polymethylmethacrylate) phantoms of 160 or 320 mm diameter and 900 mm length. For practical application, we joined unit cylinders (150 mm long) together to provide phantoms of 900 mm length. Dose profiles were measured with a pin photodiode sensor having a sensitive region of approximately 2.8x2.8 mm{sup 2} and 2.7 mm thickness. Beamwidths of the scanner were varied from 20 to 138 mm. Dose profile integrals (DPI) were calculated using the measured dose profiles for various beamwidths and integration ranges. For the body phantom (320-mm-diam phantom), 76% of the DPI was represented for a 20 mm beamwidth and 60% was represented for a 138 mm beamwidth if dose profiles were integrated over a 100 mm range, while more than 90% of the DPI was represented for beamwidths between 20 and 138 mm if integration was carried out over a 300 mm range. The phantom length and integration range for dosimetry of cone-beam CT needed to be more than 300 mm to represent more than 90% of the DPI for the body phantom with the beamwidth of more than 20 mm. Although we reached this conclusion using the prototype 256-slice CT-scanner, it may be applied to other multislice CT-scanners as well.

Mori, Shinichiro; Endo, Masahiro; Nishizawa, Kanae; Tsunoo, Takanori; Aoyama, Takahiko; Fujiwara, Hideaki; Murase, Kenya [National Institute of Radiological Sciences, Chiba 263-8555 (Japan); School of Health Sciences, Nagoya University, Nagoya 461-8673 (Japan); School of Allied Health Sciences, Faculty of Medicine, Osaka University, Osaka 565-0871 (Japan)

2005-04-01T23:59:59.000Z

350

Comparison of Fusion Imaging Using a Combined SPECT/CT System and Intra-arterial CT: Assessment of Drug Distribution by an Implantable Port System in Patients Undergoing Hepatic Arterial Infusion Chemotherapy  

SciTech Connect (OSTI)

Hepatic arterial infusion (HAI) chemotherapy is effective for treating primary and metastatic carcinoma of the liver. We compared the perfusion patterns of HAI chemotherapy on intra-arterial port-catheter computed tomography (iapc-CT) and fused images obtained with a combined single-photon emission computed tomography/computed tomography (SPECT/CT) system. We studied 28 patients with primary or metastatic carcinoma of the liver who bore an implantable HAI port system. All underwent abdominal SPECT using Tc-99m-MAA (185 Mbq); the injection rate was 1 mL/min, identical to the chemotherapy infusion rate, and 0.5 mL/sec for iapc-CT. Delivery was through an implantable port. We compared the intrahepatic perfusion (IHP) and extrahepatic perfusion (EHP) patterns of HAI chemotherapy on iapc-CT images and fused images obtained with a combined SPECT/CT system. In 23 of 28 patients (82%), IHP patterns on iapc-CT images and fused images were identical. In 5 of the 28 patients (18%), IHP on fusion images was different from IHP on iapc-CT images. EHP was seen on fused images in 12 of the 28 patients (43%) and on iapc-CT images in 8 patients (29%). In 17 patients (61%), upper gastrointestinal endoscopy revealed gastroduodenal mucosal lesions. EHP was revealed on fused images in 10 of these patients; 9 of them manifested gastroduodenal toxicity at the time of subsequent HAI chemotherapy. Fusion imaging using the combined SPECT/CT system reflects the actual distribution of the infused anticancer agent. This information is valuable not only for monitoring adequate drug distribution but also for avoiding potential extrahepatic complications.

Ikeda, Osamu, E-mail: osamu-3643ik@do9.enjoy.ne.jp; Kusunoki, Shinichiroh; Nakaura, Takeshi; Shiraishi, Shinya; Kawanaka, Kouichi; Tomiguchi, Seiji; Yamashita, Yasuyuki [Kumamoto University Graduate School of Medical and Pharmaceutical Sciences, Department of Diagnostic Radiology (Japan); Takamori, Hiroshi; Chikamoto, Akira; Kanemitsu, Keiichiro [Kumamoto University Graduate School of Medical and Pharmaceutical Sciences, Gastroenterological Surgery (Japan)

2006-06-15T23:59:59.000Z

351

Transport study of hafnium(IV) and zirconium(IV) ions mutual separation by using Tri-n-butyl phosphate-xylene-based supported liquid membranes  

SciTech Connect (OSTI)

A Hf transport study through supported liquid membranes has been carried out to determine flux and permeability data for this metal ion. Tri-n-butyl phosphate (TBP)-xylene-based liquid membranes supported in polypropylene hydrophobic microporous film have been used. These data for hafnium and the previous data for zirconium have furnished the Zr to Hf flux ratio (S) as a function of nitric acid and TBP concentrations of the order of 12 in a single stage at room temperature. Optimum conditions for the separation of these two metal ions appear to 5-6 TBP mol/dm{sup 3} HNO{sub 3}, concentrations {le} 2.93 mol/dm{sup 3}, and 10C. The value of S from an aqueous solution containing 2.4% Hf with respect to Zr has been found to be >125 at 10C and 1.78 mol/dm{sup 3} TBP concentration in the membrane. The technique appears to be feasible for purification of Zr respect to Hf or vice versa.

Chaudry, M.A.; Ahmed, B. (Pakistan Inst. of Nuclear Science and Technology, Islamabad (Pakistan))

1992-02-01T23:59:59.000Z

352

Tri-State Synfuels Project Review: Volume 8. Commercial status of licensed process units. [Proposed Henderson, Kentucky coal to gasoline plant; licensed commercial processes  

SciTech Connect (OSTI)

This document demonstrates the commercial status of the process units to be used in the Tri-State Synfuels Project at Henderson, Kentucky. The basic design philosophy as established in October, 1979, was to use the commercial SASOL II/III plants as a basis. This was changed in January 1982 to a plant configuration to produce gasoline via a methanol and methanol to gasoline process. To accomplish this change the Synthol, Oil workup and Chemical Workup Units were eliminated and replaced by Methanol Synthesis and Methanol to Gasoline Units. Certain other changes to optimize the Lurgi liquids processing eliminated the Tar Distillation and Naphtha Hydrotreater Units which were replaced by the Partial Oxidation Unit. The coals to be gasified are moderately caking which necessitates the installation of stirring mechanism in the Lurgi Dry Bottom gasifier. This work is in the demonstration phase. Process licenses either have been obtained or must be obtained for a number of processes to be used in the plant. The commercial nature of these processes is discussed in detail in the tabbed sections of this document. In many cases there is a list of commercial installations at which the licensed equipment is used.

Not Available

1982-06-01T23:59:59.000Z

353

Estimation of the weighted CTDI{sub {infinity}} for multislice CT examinations  

SciTech Connect (OSTI)

Purpose: The aim of this study was to examine the variations of CT dose index (CTDI) efficiencies, {epsilon}(CTDI{sub 100})=CTDI{sub 100}/CTDI{sub {infinity}}, with bowtie filters and CT scanner types. Methods: This was an extension of our previous study [Li, Zhang, and Liu, Phys. Med. Biol. 56, 5789-5803 (2011)]. A validated Monte Carlo program was used to calculate {epsilon}(CTDI{sub 100}) on a Siemens Somatom Definition scanner. The {epsilon}(CTDI{sub 100}) dependencies on tube voltages and beam widths were tested in previous studies. The influences of different bowtie filters and CT scanner types were examined in this work. The authors tested the variations of {epsilon}(CTDI{sub 100}) with bowtie filters on the Siemens Definition scanner. The authors also analyzed the published CTDI measurements of four independent studies on five scanners of four models from three manufacturers. Results: On the Siemens Definition scanner, the difference in {epsilon}(CTDI{sub W}) between using the head and body bowtie filters was 2.5% (maximum) in the CT scans of the 32-cm phantom, and 1.7% (maximum) in the CT scans of the 16-cm phantom. Compared with CTDI{sub W}, the weighted CTDI{sub {infinity}} increased by 30.5% (on average) in the 32-cm phantom, and by 20.0% (on average) in the 16-cm phantom. These results were approximately the same for 80-140 kV and 1-40 mm beam widths (4.2% maximum deviation). The differences in {epsilon}(CTDI{sub 100}) between the simulations and the direct measurements of four previous studies were 1.3%-5.0% at the center/periphery of the 16-cm/32-cm phantom (on average). Conclusions: Compared with CTDI{sub vol}, the equilibrium dose for large scan lengths is 30.5% higher in the 32-cm phantom, and is 20.0% higher in the 16-cm phantom. The relative increases are practically independent of tube voltages (80-140 kV), beam widths (up to 4 cm), and the CT scanners covered in this study.

Li Xinhua; Zhang Da; Liu, Bob [Division of Diagnostic Imaging Physics, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States)

2012-02-15T23:59:59.000Z

354

PET/CT image registration: Preliminary tests for its application to clinical dosimetry in radiotherapy  

SciTech Connect (OSTI)

The quality of dosimetry in radiotherapy treatment requires the accurate delimitation of the gross tumor volume. This can be achieved by complementing the anatomical detail provided by CT images through fusion with other imaging modalities that provide additional metabolic and physiological information. Therefore, use of multiple imaging modalities for radiotherapy treatment planning requires an accurate image registration method. This work describes tests carried out on a Discovery LS positron emission/computed tomography (PET/CT) system by General Electric Medical Systems (GEMS), for its later use to obtain images to delimit the target in radiotherapy treatment. Several phantoms have been used to verify image correlation, in combination with fiducial markers, which were used as a system of external landmarks. We analyzed the geometrical accuracy of two different fusion methods with the images obtained with these phantoms. We first studied the fusion method used by the PET/CT system by GEMS (hardware fusion) on the basis that there is satisfactory coincidence between the reconstruction centers in CT and PET systems; and secondly the fiducial fusion, a registration method, by means of least-squares fitting algorithm of a landmark points system. The study concluded with the verification of the centroid position of some phantom components in both imaging modalities. Centroids were estimated through a calculation similar to center-of-mass, weighted by the value of the CT number and the uptake intensity in PET. The mean deviations found for the hardware fusion method were: vertical bar {delta}x vertical bar {+-}{sigma}=3.3 mm{+-}1.0 mm and vertical bar {delta}y vertical bar {+-}{sigma}=3.6 mm{+-}1.0 mm. These values were substantially improved upon applying fiducial fusion based on external landmark points: vertical bar {delta}x vertical bar {+-}{sigma}=0.7 mm{+-}0.8 mm and vertical bar {delta}y vertical bar {+-}{sigma}=0.3 mm{+-}1.7 mm. We also noted that differences found for each of the fusion methods were similar for both the axial and helical CT image acquisition protocols.

Banos-Capilla, M. C.; Garcia, M. A.; Bea, J.; Pla, C.; Larrea, L.; Lopez, E. [Department of Medical Physics, Radiation Oncology, Hospital Virgen del Consuelo, Callosa de Ensarria 12-Valencia, Valencia 46007 (Spain); Department of Radiation Oncology, H. NISA 'Virgen del Consuelo', Valencia (Spain)

2007-06-15T23:59:59.000Z

355

lthough proportional-integral-derivative (PID) controllers are widely used in the process indus-try, their effectiveness is often limited due to poor tuning. The manual tuning of PID controllers,  

E-Print Network [OSTI]

A lthough proportional-integral-derivative (PID) controllers are widely used in the process indus- try, their effectiveness is often limited due to poor tuning. The manual tuning of PID controllers, and it is not desirable to open the process loop for system identifica- tion. Thus, a method for tuning PID parameters

Krstic, Miroslav

356

Cholecystokinin-Assisted Hydrodissection of the Gallbladder Fossa during FDG PET/CT-guided Liver Ablation  

SciTech Connect (OSTI)

A 68-year-old female with colorectal cancer developed a metachronous isolated fluorodeoxyglucose-avid (FDG-avid) segment 5/6 gallbladder fossa hepatic lesion and was referred for percutaneous ablation. Pre-procedure computed tomography (CT) images demonstrated a distended gallbladder abutting the segment 5/6 hepatic metastasis. In order to perform ablation with clear margins and avoid direct puncture and aspiration of the gallbladder, cholecystokinin was administered intravenously to stimulate gallbladder contraction before hydrodissection. Subsequently, the lesion was ablated successfully with sufficient margins, of greater than 1.0 cm, using microwave with ultrasound and FDG PET/CT guidance. The patient tolerated the procedure very well and was discharged home the next day.

Tewari, Sanjit O., E-mail: tewaris@mskcc.org [Memorial Sloan-Kettering Cancer Center, Molecular Imaging and Therapy Service, Department of Radiology (United States); Petre, Elena N., E-mail: petree@mskcc.org [Memorial Sloan-Kettering Cancer Center, Interventional Radiology Service, Department of Radiology (United States); Osborne, Joseph, E-mail: osbornej@mskcc.org [Memorial Sloan-Kettering Cancer Center, Molecular Imaging and Therapy Service, Department of Radiology (United States)] [Memorial Sloan-Kettering Cancer Center, Molecular Imaging and Therapy Service, Department of Radiology (United States); Sofocleous, Constantinos T., E-mail: sofoclec@mskcc.org [Memorial Sloan-Kettering Cancer Center, Interventional Radiology Service, Department of Radiology (United States)

2013-12-15T23:59:59.000Z

357

PET/CT com FDG-18 F em pacientes com suspeita de recidiva de carcinoma de ovrio.  

E-Print Network [OSTI]

??O exame PET/CT com FDG-18F um mtodo de diagnstico por imagem, til em oncologia. O cncer de ovrio o cncer ginecolgico de maior (more)

Sanja Dragosavac

2011-01-01T23:59:59.000Z

358

American Ref-Fuel of SE CT Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility Jump to: navigation, search Name American

359

Coronary artery wall imaging in mice using osmium tetroxide and micro-computed tomography (micro-CT)  

SciTech Connect (OSTI)

The high spatial resolution of micro-computed tomography (micro-CT) is ideal for 3D imaging of coronary arteries in intact mouse heart specimens. Previously, micro-CT of mouse heart specimens utilized intravascular contrast agents that hardened within the vessel lumen and allowed a vascular cast to be made. However, for mouse coronary artery disease models, it is highly desirable to image coronary artery walls and highlight plaques. For this purpose, we describe an ex vivo contrast-enhanced micro-CT imaging technique based on tissue staining with osmium tetroxide (OsO{sub 4}) solution. As a tissue-staining contrast agent, OsO{sub 4} is retained in the vessel wall and surrounding tissue during the fixation process and cleared from the vessel lumens. Its high X-ray attenuation makes the artery wall visible in CT. Additionally, since OsO{sub 4} preferentially binds to lipids, it highlights lipid deposition in the artery wall. We performed micro-CT of heart specimens of 5- to 25-week-old C57BL/6 wild-type mice and 5- to 13-week-old apolipoprotein E knockout (apoE{sup -/-}) mice at 10 {mu}m resolution. The results show that walls of coronary arteries as small as 45 {mu}m in diameter are visible using a table-top micro-CT scanner. Similar image clarity was achieved with 1/2000th the scan time using a synchrotron CT scanner. In 13-week-old apoE mice, lipid-rich plaques are visible in the aorta. Our study shows that the combination of OsO{sub 4} and micro-CT permits the visualization of the coronary artery wall in intact mouse hearts.

Pai, Vinay M.; Kozlowski, Megan; Donahue, Danielle; Miller, Elishiah; Xiao, Xianghui; Chen, Marcus Y.; Yu, Zu-Xi; Connelly, Patricia; Jeffries, Kenneth; Wen, Han (NIH)

2012-05-10T23:59:59.000Z

360

CT-Guided Interventions Using a Free-Hand, Optical Tracking System: Initial Clinical Experience  

SciTech Connect (OSTI)

PurposeThe present study was designed to evaluate the geometrical accuracy and clinical applicability of a new, free-hand, CT-guided, optical navigation system.MethodsFifteen procedures in 14 consecutive patients were retrospectively analyzed. The navigation system was applied for interventional procedures on small target lesions, in cases with long needle paths, narrow access windows, or when an out-of-plane access was expected. Mean lesion volume was 27.9 ml, and mean distance to target measured was 107.5 mm. Eleven of 15 needle trajectories were planned as out-of-plane approaches regarding the axial CT plane.ResultsNinety-one percent of the biopsies were diagnostic. All therapeutic interventions were technically successful. Targeting precision was high with a mean distance of the needle tip from planned target of 1.98 mm. Mean intervention time was 1:12 h. A statistically significant correlation between angular needle deviation and intervention time (p = 0.007), respiratory movement of the target (p = 0.008), and body mass index (p = 0.02) was detected. None of the evaluated parameters correlated significantly with the distance from the needle tip to the planned target.ConclusionsThe application of a navigation system for complex CT-guided procedures provided safe and effective targeting within a reasonable intervention time in our series.

Schubert, Tilman, E-mail: TSchubert@uhbs.ch; Jacob, Augustinus L.; Pansini, Michele [University Hospital Basel, Department of Radiology and Nuclear Medicine (Switzerland); Liu, David [Vancouver General Hospital, University of British Columbia, Department of Radiology (Canada); Gutzeit, Andreas [Winterthur Cantonal Hospital, Department of Radiology (Switzerland); Kos, Sebastian [University Hospital Basel, Department of Radiology and Nuclear Medicine (Switzerland)

2013-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "dis tri ct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Retrocrural splanchnic nerve alchohol neurolysis with a CT-guided anterior transaortic approach  

SciTech Connect (OSTI)

Retrocrural splanchnic nerve alcohol neurolysis with a CT-guided anterior transonic approach, a new method for splanchnic block alleviation of chronic abdominal pain, is described. Ten patients with chronic abdominal pain requiring narcotic treatment, six with pancreatic carcinoma, one with gastric carcinoma, two with chronic pancreatitis, and one with pain of unknown etiology, were referred for splanchnic nerve neurolysis. With CT guidance, a 20 gauge needle was placed through the aorta into the retrocrural space at T11-T12, and 5-15 ml 96% alcohol was injected into the retrocrural space. Following the procedure, 6 of 10 patients were pain free, 2 patients had temporary pain relief, and 2 patients were without response. There were no significant complications. CT-guided anterior transaortic retrocrural splanchnic nerve alcohol neurolysis is technically feasible, easier to perform than the classic posterolateral approach, and may have less risk of complications. The success rate in this initial trial was reasonable and, therefore, this technique provides an additional method for the treatment of abdominal pain. 12 refs., 2 figs.

Fields, S. [Hadassah University Hospital, Jerusalem (Israel)] [Hadassah University Hospital, Jerusalem (Israel)

1996-01-01T23:59:59.000Z

362

Effect of the substrate temperature on the physical properties of molybdenum tri-oxide thin films obtained through the spray pyrolysis technique  

SciTech Connect (OSTI)

Polycrystalline molybdenum tri-oxide thin films were prepared using the spray pyrolysis technique; a 0.1 M solution of ammonium molybdate tetra-hydrated was used as a precursor. The samples were prepared on Corning glass substrates maintained at temperatures ranging between 423 and 673 K. The samples were characterized through micro Raman, X-ray diffraction, optical transmittance and DC electrical conductivity. The species MoO{sub 3} (H{sub 2}O){sub 2} was found in the sample prepared at a substrate temperature of 423 K. As the substrate temperature rises, the water disappears and the samples crystallize into {alpha}-MoO{sub 3}. The optical gap diminishes as the substrate temperature rises. Two electrical transport mechanisms were found: hopping under 200 K and intrinsic conduction over 200 K. The MoO{sub 3} films' sensitivity was analyzed for CO and H{sub 2}O in the temperature range 160 to 360 K; the results indicate that CO and H{sub 2}O have a reduction character. In all cases, it was found that the sensitivity to CO is lower than that to H{sub 2}O. - Highlights: Black-Right-Pointing-Pointer A low cost technique is used which produces good material. Black-Right-Pointing-Pointer Thin films are prepared using ammonium molybdate tetra hydrated. Black-Right-Pointing-Pointer The control of the physical properties of the samples could be done. Black-Right-Pointing-Pointer A calculation method is proposed to determine the material optical properties. Black-Right-Pointing-Pointer The MoO{sub 3} thin films prepared by spray pyrolysis could be used as gas sensor.

Martinez, H.M. [Grupo de Materiales con Aplicaciones Tecnologicas, Departamento de Fisica Universidad Nacional de Colombia sede Bogota (Colombia)] [Grupo de Materiales con Aplicaciones Tecnologicas, Departamento de Fisica Universidad Nacional de Colombia sede Bogota (Colombia); Torres, J., E-mail: njtorress@unal.edu.co [Grupo de Materiales con Aplicaciones Tecnologicas, Departamento de Fisica Universidad Nacional de Colombia sede Bogota (Colombia); Lopez Carreno, L.D. [Grupo de Materiales con Aplicaciones Tecnologicas, Departamento de Fisica Universidad Nacional de Colombia sede Bogota (Colombia)] [Grupo de Materiales con Aplicaciones Tecnologicas, Departamento de Fisica Universidad Nacional de Colombia sede Bogota (Colombia); Rodriguez-Garcia, M.E. [Departamento de Nanotecnologia, Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, Campus Juriquilla, Queretaro, Qro., Mexico (Colombia)] [Departamento de Nanotecnologia, Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, Campus Juriquilla, Queretaro, Qro., Mexico (Colombia)

2013-01-15T23:59:59.000Z

363

Micro-earthquake monitoring and tri-axial drill-bit VSP in NEDO {open_quotes}Deep-seated geothermal reservoir survey{close_quotes} in Kakkonda, Japan  

SciTech Connect (OSTI)

New Energy and Industrial Technology Development Organization has been drilling well WD-1 and employing micro-earthquake monitoring and tri-axial drill-bit VSP as the exploration techniques for the deep geothermal reservoir in the Kakkonda geothermal field, Japan. The results of them are as follows: (1) More than 1000 micro-earthquakes were observed from December 23, 1994 to July 1, 1995 in the Kakkonda geothermal field. Epicenters are distributed NW-SE from a macroscopic viewpoint; they distribute almost in the same areas as the fractured zone in the Kakkonda shallow reservoir as pointed out by Doi et al. (1988). They include three groups trending NE-SW. Depths of hypocenters range from the ground surface to about -2.5 km Sea level; they seem to be deeper in the western part. (2) Well WD-1 drilled into a swarm of micro-earthquakes at depths 1200 to 2200 m and encountered many lost circulations in those depths. However, these earthquakes occurred before well WD-1 reached those depths. (3) The bottom boundary of micro-earthquake distribution has a very similar shape to that of the top of the Kakkonda granite, though all of the micro-earthquakes are plotted 300 m shallower than the top of the granite. (4) The TAD VSP shows a possibility of existence of seismic reflectors at sea levels around -2.0, -2.2 and -2.6 km. These reflectors seem to correspond to the top of the Pre-Tertiary formation, the top of the Kakkonda granite and reflectors within the Kakkonda granite.

Takahashi, M.; Kondo, T.; Suzuki, I. [Japan Metals and Chemicals Co., Ltd., Iwate (Japan)] [and others

1995-12-31T23:59:59.000Z

364

Quality assurance for image-guided radiation therapy utilizing CT-based technologies: A report of the AAPM TG-179  

SciTech Connect (OSTI)

Purpose: Commercial CT-based image-guided radiotherapy (IGRT) systems allow widespread management of geometric variations in patient setup and internal organ motion. This document provides consensus recommendations for quality assurance protocols that ensure patient safety and patient treatment fidelity for such systems. Methods: The AAPM TG-179 reviews clinical implementation and quality assurance aspects for commercially available CT-based IGRT, each with their unique capabilities and underlying physics. The systems described are kilovolt and megavolt cone-beam CT, fan-beam MVCT, and CT-on-rails. A summary of the literature describing current clinical usage is also provided. Results: This report proposes a generic quality assurance program for CT-based IGRT systems in an effort to provide a vendor-independent program for clinical users. Published data from long-term, repeated quality control tests form the basis of the proposed test frequencies and tolerances.Conclusion: A program for quality control of CT-based image-guidance systems has been produced, with focus on geometry, image quality, image dose, system operation, and safety. Agreement and clarification with respect to reports from the AAPM TG-101, TG-104, TG-142, and TG-148 has been addressed.

Bissonnette, Jean-Pierre; Balter, Peter A.; Dong Lei; Langen, Katja M.; Lovelock, D. Michael; Miften, Moyed; Moseley, Douglas J.; Pouliot, Jean; Sonke, Jan-Jakob; Yoo, Sua [Task Group 179, Department of Radiation Physics, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, M5G 2M9 (Canada); Department of Radiation Physics, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030 (United States); Department of Radiation Oncology, M. D. Anderson Cancer Center Orlando, Orlando, Florida 32806 (United States); Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York 10021 (United States); Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado 80045 (United States); Department of Radiation Physics, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, M5G 2M9 (Canada); Department of Radiation Oncology, UCSF Comprehensive Cancer Center, 1600 Divisadero St., Suite H 1031, San Francisco, California 94143-1708 (United States); Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Department of Radiation Oncology, Duke University, Durham, North Carolina 27710 (United States)

2012-04-15T23:59:59.000Z

365

Freehand Two-Step CT-Guided Brain Tumor Biopsy: A Fast and Effective Interventional Procedure in Selected Patients  

SciTech Connect (OSTI)

Purpose. To evaluate the efficacy and safety of CT-guided needle biopsy of brain lesions without a stereotactic device, and to determine the best possible indications for this technique. Methods. From February 2001 to February 2004, 20 patients (12 men, 8 women; age 61-82 years) underwent CT-guided brain lesion biopsy. The procedure started with a brain CT scan for lesion localization and for selection of the inlet for needle insertion. The patient was then transported to the operating room where cranioanatrisis was performed. Subsequently, the biopsy was performed under CT guidance using a 14G brain biopsy needle with a blind smooth end and lateral holes. At the end of the biopsy, the field was checked for possible complications with a CT scan. Results. Histopathologic results were: brain tumor in 16 patients (80%), inflammatory process in 3 (15%), and no conclusive diagnosis in 1 (5%). A repeat of the process was required in 2 patients. A minor complication of local hematoma was found in 1 patient (5%). There were no deaths or other serious complications.Conclusion. CT-guided biopsy is a reliable method for histopathologic diagnosis of brain lesions in selected cases. It is a simple, fast, effective, low-cost procedure with minimal complications, indicated especially for superficial and large tumors.

Thanos, Loukas, E-mail: loutharad@yahoo.com; Mylona, Sofia; Galani, Panagiota; Kalioras, Vasilios; Pomoni, Maria; Batakis, Nikolaos ['Korgialeneio-Benakeio', Hellenic Red-Cross Hospital of Athens, Radiology Department (Greece)

2006-04-15T23:59:59.000Z

366

The effects of gantry tilt on breast dose and image noise in cardiac CT  

SciTech Connect (OSTI)

Purpose: This study investigated the effects of tilted-gantry acquisition on image noise and glandular breast dose in females during cardiac computed tomography (CT) scans. Reducing the dose to glandular breast tissue is important due to its high radiosensitivity and limited diagnostic significance in cardiac CT scans.Methods: Tilted-gantry acquisition was investigated through computer simulations and experimental measurements. Upon IRB approval, eight voxelized phantoms were constructed from previously acquired cardiac CT datasets. Monte Carlo simulations quantified the dose deposited in glandular breast tissue over a range of tilt angles. The effects of tilted-gantry acquisition on breast dose were measured on a clinical CT scanner (CT750HD, GE Healthcare) using an anthropomorphic phantom with MOSFET dosimeters in the breast regions. In both simulations and experiments, scans were performed at gantry tilt angles of 030, in 5 increments. The percent change in breast dose was calculated relative to the nontilted scan for all tilt angles. The percent change in noise standard deviation due to gantry tilt was calculated in all reconstructed simulated and experimental images.Results: Tilting the gantry reduced the breast dose in all simulated and experimental phantoms, with generally greater dose reduction at increased gantry tilts. For example, at 30 gantry tilt, the dosimeters located in the superior, middle, and inferior breast regions measured dose reductions of 74%, 61%, and 9%, respectively. The simulations estimated 0%30% total breast dose reduction across the eight phantoms and range of tilt angles. However, tilted-gantry acquisition also increased the noise standard deviation in the simulated phantoms by 2%50% due to increased pathlength through the iodine-filled heart. The experimental phantom, which did not contain iodine in the blood, demonstrated decreased breast dose and decreased noise at all gantry tilt angles.Conclusions: Tilting the gantry reduced the dose to the breast, while also increasing noise standard deviation. Overall, the noise increase outweighed the dose reduction for the eight voxelized phantoms, suggesting that tilted gantry acquisition may not be beneficial for reducing breast dose while maintaining image quality.

Hoppe, Michael E.; Gandhi, Diksha; Schmidt, Taly Gilat [Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin 53233 (United States)] [Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin 53233 (United States); Stevens, Grant M. [GE Healthcare, Waukesha, Wisconsin 53188 (United States)] [GE Healthcare, Waukesha, Wisconsin 53188 (United States); Foley, W. Dennis [Department of Radiology, Medical College of Wisconsin, Froedtert Memorial Lutheran Hospital, Milwaukee, Wisconsin 53226 (United States)] [Department of Radiology, Medical College of Wisconsin, Froedtert Memorial Lutheran Hospital, Milwaukee, Wisconsin 53226 (United States)

2013-12-15T23:59:59.000Z

367

Correlation between internal fiducial tumor motion and external marker motion for liver tumors imaged with 4D-CT  

SciTech Connect (OSTI)

Purpose: We investigated the correlation between the motions of an external marker and internal fiducials implanted in the liver for 8 patients undergoing respiratory-based computed tomography (four-dimensional CT [4D-CT]) procedures. Methods and Materials: The internal fiducials were gold seeds, 3 mm in length and 1.2 mm in diameter. Four patients each had one implanted fiducial, and the other four had three implanted fiducials. The external marker was a plastic box, which is part of the Real-Time Position Management System (RPM) used to track the patient's respiration. Each patient received a standard helical CT scan followed by a time-correlated CT-image acquisition (4D-CT). The 4D-CT images were reconstructed in 10 separate phases covering the entire respiratory cycle. Results: The internal fiducial motion is predominant in the superior-inferior direction, with a range of 7.5-17.5 mm. The correlation between external respiration and internal fiducial motion is best during expiration. For 2 patients with their three fiducials separated by a maximum of 3.2 cm, the motions of the fiducials were well correlated, whereas for 2 patients with more widely spaced fiducials, there was less correlation. Conclusions: In general, there is a good correlation between internal fiducial motion imaged by 4D-CT and external marker motion. We have demonstrated that gating may be best performed at the end of the respiratory cycle. Special attention should be paid to gating for patients whose fiducials do not move in synchrony, because targeting on the correct respiratory amplitude alone would not guarantee that the entire tumor volume is within the treatment field.

Beddar, A. Sam [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)]. E-mail: abeddar@mdanderson.org; Kainz, Kristofer [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Briere, Tina Marie [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Tsunashima, Yoshikazu [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Pan Tinsu [Department of Diagnostic Imaging, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Prado, Karl [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Mohan, Radhe [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Gillin, Michael [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Krishnan, Sunil [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)

2007-02-01T23:59:59.000Z

368

SU-E-I-18: CT Scanner QA Using Normalized CTDI Ratio  

SciTech Connect (OSTI)

Purpose: To create a ratio of weighted computed tomography dose index (CTDIw) data normalized to in-air measurements (CTDIair) as a function of beam quality to create a look-up table for frequent, rapid quality assurance (QA) checks of CTDI. Methods: The CTDIw values were measured according to TG-63 protocol using a pencil ionization chamber (Unfors Xi CT detector) and head and body Polymethyl methacrylate (PMMA) phantoms (16 and 32 cm diameter, respectively). Single scan dose profiles were measured at each clinically available energy (80,100,120,140 kVp) on three different CT scanners (two Siemens SOMATOM Definition Flash and one GE Optima), using a tube current of 400 mA, a one second rotation time, and the widest available beam width (32 0.6 mm and 16 1.25 mm, respectively). These values were normalized to CTDIair measurements using the same conditions as CTDIw. The ratios (expressed in cGy/R) were assessed for each scanner as a function of each energy's half value layer (HVL) paired with the phantom's appropriate bow tie filter measured in mmAl. Results: Normalized CTDI values vary linearly with HVL for both the head and body phantoms. The ratios for the two Siemens machines are very similar at each energy. Compared to the GE scanner, these values vary between 1020% for each kVp setting. Differences in CTDIair contribute most to the deviation of the ratios across machines. Ratios are independent of both mAs and collimation. Conclusion: Look-up tables constructed of normalized CTDI values as a function of HVL can be used to derive CTDIw data from only three in-air measurements (one for CTDIair and two with added filtration for HVL) to allow for simple, frequent QA checks without CT phantom setup. Future investigations will involve comparing results with Monte Carlo simulations for validation.

Randazzo, M; Tambasco, M; Russell, B [San Diego State University, San Diego, CA (United States)

2014-06-01T23:59:59.000Z

369

A comparison of CT- and ultrasound-based imaging to localize the prostate for external beam radiotherapy  

SciTech Connect (OSTI)

Purpose: This study assesses the accuracy of NOMOS B-mode acquisition and targeting system (BAT) compared with computed tomography (CT) in localizing the prostate. Methods and Materials: Twenty-six patients were CT scanned, and the prostate was localized by 3 observers using the BAT system. The BAT couch shift measurements were compared with the CT localization. Six of the patients had gold markers present in the prostate, and the prostate movement determined by BAT was compared with the movement determined by the gold markers. Results: Using the BAT system, the 3 observers determined the prostate position to be a mean of 1-5 mm over all directions with respect to the CT. The proportion of readings with a difference >3 mm between the observers was in the range of 25% to 44%. The prostate movement based on gold markers was an average of 3-5 mm different from that measured by BAT. The literature assessing the accuracy and reproducibility on BAT is summarized and compared with our findings. Conclusions: We have found that there are systematic differences between the BAT-defined prostate position compared with that estimated on CT using gold grain marker seeds.

McNair, Helen A. [Department of Radiotherapy, Royal Marsden NHS Foundation Trust, Sutton (United Kingdom)]. E-mail: Helen.McNair@rmh.nhs.uk; Mangar, Stephen A. [Department of Academic Urology Unit, Royal Marsden NHS Foundation Trust, Sutton (United Kingdom); Coffey, Jerome [Department of Academic Urology Unit, Royal Marsden NHS Foundation Trust, Sutton (United Kingdom); Shoulders, Beverley [Department of Radiotherapy, Royal Marsden NHS Foundation Trust, Sutton (United Kingdom); Hansen, Vibeke N. [Department of Physics, Royal Marsden NHS Foundation Trust, Sutton (United Kingdom); Norman, Andrew [Department of Radiotherapy, Royal Marsden NHS Foundation Trust, Sutton (United Kingdom); Department of Physics, Royal Marsden NHS Foundation Trust, Sutton (United Kingdom); Department of Radiology, Royal Marsden NHS Foundation Trust, Sutton (United Kingdom); Department of Academic Urology Unit, Royal Marsden NHS Foundation Trust, Sutton (United Kingdom); Staffurth, John [Department of Academic Urology Unit, Royal Marsden NHS Foundation Trust, Sutton (United Kingdom); Sohaib, S. Aslam [Department of Radiology, Royal Marsden NHS Foundation Trust, Sutton (United Kingdom); Warrington, Alan P. [Department of Physics, Royal Marsden NHS Foundation Trust, Sutton (United Kingdom); Dearnaley, David P. [Department of Academic Urology Unit, Royal Marsden NHS Foundation Trust, Sutton (United Kingdom)

2006-07-01T23:59:59.000Z

370

Improving best-phase image quality in cardiac CT by motion correction with MAM optimization  

SciTech Connect (OSTI)

Purpose: Research in image reconstruction for cardiac CT aims at using motion correction algorithms to improve the image quality of the coronary arteries. The key to those algorithms is motion estimation, which is currently based on 3-D/3-D registration to align the structures of interest in images acquired in multiple heart phases. The need for an extended scan data range covering several heart phases is critical in terms of radiation dose to the patient and limits the clinical potential of the method. Furthermore, literature reports only slight quality improvements of the motion corrected images when compared to the most quiet phase (best-phase) that was actually used for motion estimation. In this paper a motion estimation algorithm is proposed which does not require an extended scan range but works with a short scan data interval, and which markedly improves the best-phase image quality. Methods: Motion estimation is based on the definition of motion artifact metrics (MAM) to quantify motion artifacts in a 3-D reconstructed image volume. The authors use two different MAMs, entropy, and positivity. By adjusting the motion field parameters, the MAM of the resulting motion-compensated reconstruction is optimized using a gradient descent procedure. In this way motion artifacts are minimized. For a fast and practical implementation, only analytical methods are used for motion estimation and compensation. Both the MAM-optimization and a 3-D/3-D registration-based motion estimation algorithm were investigated by means of a computer-simulated vessel with a cardiac motion profile. Image quality was evaluated using normalized cross-correlation (NCC) with the ground truth template and root-mean-square deviation (RMSD). Four coronary CT angiography patient cases were reconstructed to evaluate the clinical performance of the proposed method. Results: For the MAM-approach, the best-phase image quality could be improved for all investigated heart phases, with a maximum improvement of the NCC value by 100% and of the RMSD value by 81%. The corresponding maximum improvements for the registration-based approach were 20% and 40%. In phases with very rapid motion the registration-based algorithm obtained better image quality, while the image quality of the MAM algorithm was superior in phases with less motion. The image quality improvement of the MAM optimization was visually confirmed for the different clinical cases. Conclusions: The proposed method allows a software-based best-phase image quality improvement in coronary CT angiography. A short scan data interval at the target heart phase is sufficient, no additional scan data in other cardiac phases are required. The algorithm is therefore directly applicable to any standard cardiac CT acquisition protocol.

Rohkohl, Christopher; Bruder, Herbert; Stierstorfer, Karl [Siemens AG, Healthcare Sector, Siemensstrasse 1, 91301 Forchheim (Germany); Flohr, Thomas [Siemens AG, Healthcare Sector, Siemensstrasse 1, 91301 Forchheim (Germany); Institute of Diagnostic Radiology, Eberhard Karls University, Hoppe-Seyler-Str. 3, 72076 Tuebingen (Germany)

2013-03-15T23:59:59.000Z

371

Quantitative comparison of noise texture across CT scanners from different manufacturers  

SciTech Connect (OSTI)

Purpose: To quantitatively compare noise texture across computed tomography (CT) scanners from different manufacturers using the noise power spectrum (NPS). Methods: The American College of Radiology CT accreditation phantom (Gammex 464, Gammex, Inc., Middleton, WI) was imaged on two scanners: Discovery CT 750HD (GE Healthcare, Waukesha, WI), and SOMATOM Definition Flash (Siemens Healthcare, Germany), using a consistent acquisition protocol (120 kVp, 0.625/0.6 mm slice thickness, 250 mAs, and 22 cm field of view). Images were reconstructed using filtered backprojection and a wide selection of reconstruction kernels. For each image set, the 2D NPS were estimated from the uniform section of the phantom. The 2D spectra were normalized by their integral value, radially averaged, and filtered by the human visual response function. A systematic kernel-by-kernel comparison across manufacturers was performed by computing the root mean square difference (RMSD) and the peak frequency difference (PFD) between the NPS from different kernels. GE and Siemens kernels were compared and kernel pairs that minimized the RMSD and |PFD| were identified. Results: The RMSD (|PFD|) values between the NPS of GE and Siemens kernels varied from 0.01 mm{sup 2} (0.002 mm{sup -1}) to 0.29 mm{sup 2} (0.74 mm{sup -1}). The GE kernels 'Soft,''Standard,''Chest,' and 'Lung' closely matched the Siemens kernels 'B35f,''B43f,''B41f,' and 'B80f' (RMSD < 0.05 mm{sup 2}, |PFD| < 0.02 mm{sup -1}, respectively). The GE 'Bone,''Bone+,' and 'Edge' kernels all matched most closely with Siemens 'B75f' kernel but with sizeable RMSD and |PFD| values up to 0.18 mm{sup 2} and 0.41 mm{sup -1}, respectively. These sizeable RMSD and |PFD| values corresponded to visually perceivable differences in the noise texture of the images. Conclusions: It is possible to use the NPS to quantitatively compare noise texture across CT systems. The degree to which similar texture across scanners could be achieved varies and is limited by the kernels available on each scanner.

Solomon, Justin B.; Christianson, Olav; Samei, Ehsan [Carl E. Ravin Advanced Imaging Laboratories and Clinical Imaging Physics Group, Department of Radiology, Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories and Clinical Imaging Physics Group, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories and Clinical Imaging Physics Group, Medical Physics Graduate Program, Departments of Radiology, Physics, Biomedical Engineering, and Electrical and Computer Engineering, Duke University, Durham, North Carolina 27705 (United States)

2012-10-15T23:59:59.000Z

372

Implementation and commissioning of an integrated micro-CT/RT system with computerized independent jaw collimation  

SciTech Connect (OSTI)

Purpose: To design, construct, and commission a set of computer-controlled motorized jaws for a micro-CT/RT system to perform conformal image-guided small animal radiotherapy.Methods: The authors designed and evaluated a system of custom-built motorized orthogonal jaws, which allows the delivery of off-axis rectangular fields on a GE eXplore CT 120 preclinical imaging system. The jaws in the x direction are independently driven, while the y-direction jaws are symmetric. All motors have backup encoders, verifying jaw positions. Mechanical performance of the jaws was characterized. Square beam profiles ranging from 2 2 to 60 60 mm{sup 2} were measured using EBT2 film in the center of a 70 70 22 mm{sup 3} solid water block. Similarly, absolute depth dose was measured in a solid water and EBT2 film stack 50 50 50 mm{sup 3}. A calibrated Farmer ion chamber in a 70 70 20 mm{sup 3} solid water block was used to measure the output of three field sizes: 50 50, 40 40, and 30 30 mm{sup 2}. Elliptical target plans were delivered to films to assess overall system performance. Respiratory-gated treatment was implemented on the system and initially proved using a simple sinusoidal motion phantom. All films were scanned on a flatbed scanner (Epson 1000XL) and converted to dose using a fitted calibration curve. A Monte Carlo beam model of the micro-CT with the jaws has been created using BEAMnrc for comparison with the measurements. An example image-guided partial lung irradiation in a rat is demonstrated.Results: The averaged random error of positioning each jaw is less than 0.1 mm. Relative output factors measured with the ion chamber agree with Monte Carlo simulations within 2%. Beam profiles and absolute depth dose curves measured from the films agree with simulations within measurement uncertainty. Respiratory-gated treatments applied to a phantom moving with a peak-to-peak amplitude of 5 mm showed improved beam penumbra (80%20%) from 3.9 to 0.8 mm.Conclusions: A set of computer-controlled motorized jaws for a micro-CT/RT system were constructed with position reliably better than a tenth of a millimeter. The hardware system is ready for image-guided conformal radiotherapy for small animals with capability of respiratory-gated delivery.

Jensen, Michael D. [Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada)] [Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada); Hrinivich, W. Thomas; Jung, Jongho A. [Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada)] [Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada); Holdsworth, David W. [Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, London, Ontario N6A 5K8 (Canada) [Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, London, Ontario N6A 5K8 (Canada); Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada); Department of Surgery, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada); Drangova, Maria [Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, London, Ontario N6A 5K8, Canada and Department of Medical Biophysics, The University of Western Ontario 1151 Richmond Street, London, Ontario N6A 3K7 (Canada)] [Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, London, Ontario N6A 5K8, Canada and Department of Medical Biophysics, The University of Western Ontario 1151 Richmond Street, London, Ontario N6A 3K7 (Canada); Chen, Jeff [Department of Physics and Engineering, London Regional Cancer Program, London Health Sciences Centre, 800 Commissioners Road East, London, Ontario N6A 5W9 (Canada) [Department of Physics and Engineering, London Regional Cancer Program, London Health Sciences Centre, 800 Commissioners Road East, London, Ontario N6A 5W9 (Canada); Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada); Department of Oncology, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada); Wong, Eugene [Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada) [Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada); Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada); Department of Oncology, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada); Department of Physics and Engineering, London Regional Cancer Program, London Health Sciences Centre, 800 Commissioners Road East, London, Ontario N6A 5W9 (Canada)

2013-08-15T23:59:59.000Z

373

DOE - Office of Legacy Management -- Metals Selling Corp - CT 0-01  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here HomeGunnison-EngineerSelling Corp - CT 0-01

374

Percutaneous Extraction of Cement Leakage After Vertebroplasty Under CT and Fluoroscopy Guidance: A New Technique  

SciTech Connect (OSTI)

Purpose: We report a new minimally invasive technique of extraction of cement leakage following percutaneous vertebroplasty in adults. Methods: Seven adult patients (five women, two men; mean age: 81 years) treated for vertebral compression fractures by percutaneous vertebroplasty had cement leakage into perivertebral soft tissues along the needle route. Immediately after vertebroplasty, the procedure of extraction was performed under computed tomography (CT) and fluoroscopy guidance: a Chiba needle was first inserted using the same route as the vertebroplasty until contact was obtained with the cement fragment. This needle was then used as a guide for an 11-gauge Trocar t'am (Thiebaud, France). After needle withdrawal, a 13-gauge endoscopy clamp was inserted through the cannula to extract the cement fragments. The whole procedure was performed under local anesthesia. Results: In each patient, all cement fragments were withdrawn within 10 min, without complication. Conclusions: This report suggests that this CT- and fluoroscopy-guided percutaneous technique of extraction could reduce the rate of cement leakage-related complications.

Amoretti, Nicolas, E-mail: amorettinicolas@yahoo.fr; Huwart, Laurent, E-mail: huwart.laurent@wanadoo.fr [Centre Hospitalo-Universitaire de Nice, Department of Radiology (France)

2012-12-15T23:59:59.000Z

375

Sparse signal reconstruction from polychromatic X-ray CT measurements via mass attenuation discretization  

SciTech Connect (OSTI)

We propose a method for reconstructing sparse images from polychromatic x-ray computed tomography (ct) measurements via mass attenuation coefficient discretization. The material of the inspected object and the incident spectrum are assumed to be unknown. We rewrite the Lambert-Beers law in terms of integral expressions of mass attenuation and discretize the resulting integrals. We then present a penalized constrained least-squares optimization approach for reconstructing the underlying object from log-domain measurements, where an active set approach is employed to estimate incident energy density parameters and the nonnegativity and sparsity of the image density map are imposed using negative-energy and smooth ?{sub 1}-norm penalty terms. We propose a two-step scheme for refining the mass attenuation discretization grid by using higher sampling rate over the range with higher photon energy, and eliminating the discretization points that have little effect on accuracy of the forward projection model. This refinement allows us to successfully handle the characteristic lines (Dirac impulses) in the incident energy density spectrum. We compare the proposed method with the standard filtered backprojection, which ignores the polychromatic nature of the measurements and sparsity of the image density map. Numerical simulations using both realistic simulated and real x-ray ct data are presented.

Gu, Renliang; Dogandi?, Aleksandar [Iowa State University, Center for Nondestructive Evaluation, 1915 Scholl Road, Ames, IA 50011 (United States)

2014-02-18T23:59:59.000Z

376

Dose calculation software for helical tomotherapy, utilizing patient CT data to calculate an independent three-dimensional dose cube  

SciTech Connect (OSTI)

Purpose: Treatment plans for the TomoTherapy unit are produced with a planning system that is integral to the unit. The authors have produced an independent dose calculation system, to enable plans to be recalculated in three dimensions, using the patient's CT data. Methods: Software has been written using MATLAB. The DICOM-RT plan object is used to determine the treatment parameters used, including the treatment sinogram. Each projection of the sinogram is segmented and used to calculate dose at multiple calculation points in a three-dimensional grid using tables of measured beam data. A fast ray-trace algorithm is used to determine effective depth for each projection angle at each calculation point. Calculations were performed on a standard desktop personal computer, with a 2.6 GHz Pentium, running Windows XP. Results: The time to perform a calculation, for 3375 points averaged 1 min 23 s for prostate plans and 3 min 40 s for head and neck plans. The mean dose within the 50% isodose was calculated and compared with the predictions of the TomoTherapy planning system. When the modified CT (which includes the TomoTherapy couch) was used, the mean difference for ten prostate patients, was -0.4% (range -0.9% to +0.3%). With the original CT (which included the CT couch), the mean difference was -1.0% (range -1.7% to 0.0%). The number of points agreeing with a gamma 3%/3 mm averaged 99.2% with the modified CT, 96.3% with the original CT. For ten head and neck patients, for the modified and original CT, respectively, the mean difference was +1.1% (range -0.4% to +3.1%) and 1.1% (range -0.4% to +3.0%) with 94.4% and 95.4% passing a gamma 4%/4 mm. The ability of the program to detect a variety of simulated errors has been tested. Conclusions: By using the patient's CT data, the independent dose calculation performs checks that are not performed by a measurement in a cylindrical phantom. This enables it to be used either as an additional check or to replace phantom measurements for some patients. The software has potential to be used in any application where one wishes to model changes to patient conditions.

Thomas, Simon J.; Eyre, Katie R.; Tudor, G. Samuel J.; Fairfoul, Jamie [Medical Physics Department, Addenbrooke's Hospital, Cambridge CB2 0QQ (United Kingdom)

2012-01-15T23:59:59.000Z

377

SU-E-J-113: The Influence of Optimizing Pediatric CT Simulator Protocols On the Treatment Dose Calculation in Radiotherapy  

SciTech Connect (OSTI)

Purpose: To investigate the possibility of applying optimized scanning protocols for pediatric CT simulation by quantifying the dosimetric inaccuracy introduced by using a fixed HU to density conversion. Methods: The images of a CIRS electron density reference phantom (Model 062) were acquired by a Siemens CT simulator (Sensation Open) using the following settings of tube voltage and beam current: 120 kV/190mA (the reference protocol used to calibrate CT for our treatment planning system (TPS)); Fixed 190mA combined with all available kV: 80, 100, and 140; fixed 120 kV and various current from 37 to 444 mA (scanner extremes) with interval of 30 mA. To avoid the HU uncertainty of point sampling in the various inserts of known electron densities, the mean CT numbers of the central cylindrical volume were calculated using DICOMan software. The doses per 100 MU to the reference point (SAD=100cm, Depth=10cm, Field=10X10cm, 6MV photon beam) in a virtual cubic phantom (30X30X30cm) were calculated using Eclipse TPS (calculation model: AcurosXB-11031) by assigning the CT numbers to HU of typical materials acquired by various protocols. Results: For the inserts of densities less than muscle, CT number fluctuations of all protocols were within the tolerance of 10 HU as accepted by AAPM-TG66. For more condensed materials, fixed kV yielded stable HU with any mA combination where largest disparities were found in 1750mg/cc insert: HU{sub reference}=1801(106.6cGy), HU{sub minimum}=1799 (106.6cGy, error{sub dose}=0.00%), HU{sub maximum}=1815 (106.8cGy, error{sub dose}=0.19%). Yet greater disagreements were observed with increasing density when kV was modified: HU{sub minimum}=1646 (104.5cGy, error{sub dose}=- 1.97%), HU{sub maximum}=2487 (116.4cGy, error{sub dose}=9.19%) in 1750mg/cc insert. Conclusion: Without affecting treatment dose calculation, personalized mA optimization of CT simulator can be conducted by fixing kV for a better cost-effectiveness of imaging dose and quality especially for children. Unless recalibrated, kV should be constant for all anatomical sites if diagnostic CT scanner is used as a simulator. This work was partially supported by Capital Medical Development Scientific Research Fund of China.

Zhang, Y; Zhang, J; Hu, Q; Tie, J; Wu, H [Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiotherapy, Peking University Cancer Hospital ' Institute, Beijing (China); Deng, J [Department of Therapeutic Radiology, Yale University, New Haven, CT (United States)

2014-06-01T23:59:59.000Z

378

Verh. Zool.-Bot. Ges. sterreich 147, 2010, 9398 Value-adding application of micro-CT  

E-Print Network [OSTI]

. Keywords: Pragmites australis, knot sections, transverse sections, micro-tomography. Introduction rigid plant tissues: Phragmites australis (Cav.) Trin. Ex Steud. knot sections Gabriele OkOrn, Brian australis Cav. Trin ex Steud.), grown in natural habitats and in constructed wetlands, authors tried

Metscher, Brian

379

Accuracy of volume measurement using 3D ultrasound and development of CT-3D US image fusion algorithm for prostate cancer radiotherapy  

SciTech Connect (OSTI)

Purpose: To evaluate the accuracy of measuring volumes using three-dimensional ultrasound (3D US), and to verify the feasibility of the replacement of CT-MR fusion images with CT-3D US in radiotherapy treatment planning. Methods: Phantoms, consisting of water, contrast agent, and agarose, were manufactured. The volume was measured using 3D US, CT, and MR devices. A CT-3D US and MR-3D US image fusion software was developed using the Insight Toolkit library in order to acquire three-dimensional fusion images. The quality of the image fusion was evaluated using metric value and fusion images. Results: Volume measurement, using 3D US, shows a 2.8 {+-} 1.5% error, 4.4 {+-} 3.0% error for CT, and 3.1 {+-} 2.0% error for MR. The results imply that volume measurement using the 3D US devices has a similar accuracy level to that of CT and MR. Three-dimensional image fusion of CT-3D US and MR-3D US was successfully performed using phantom images. Moreover, MR-3D US image fusion was performed using human bladder images. Conclusions: 3D US could be used in the volume measurement of human bladders and prostates. CT-3D US image fusion could be used in monitoring the target position in each fraction of external beam radiation therapy. Moreover, the feasibility of replacing the CT-MR image fusion to the CT-3D US in radiotherapy treatment planning was verified.

Baek, Jihye; Huh, Jangyoung; Hyun An, So; Oh, Yoonjin [Department of Medical Sciences, Ewha Womans University, Seoul 158-710 (Korea, Republic of); Kim, Myungsoo; Kim, DongYoung; Chung, Kwangzoo; Cho, Sungho; Lee, Rena [Department of Radiation Oncology, School of Medicine, Ewha Womans University, Seoul 158-710 (Korea, Republic of)

2013-02-15T23:59:59.000Z

380

Multi-GPU parallelization of a 3D Bayesian CT algorithm and its application on real foam reconstruction with incomplete  

E-Print Network [OSTI]

Tomography (CT) [1,2]. The limits of these methods appear when the number of projections is small, and for example, the data set are not complete due to the limited acquistion time. In this specific context is the computation time and especially for projection and backprojection steps. In this study, first we show how we

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "dis tri ct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Methods for reduced platen compression (RPC) test specimen cutting locations using micro-CT and planar radiographs  

E-Print Network [OSTI]

to complete an RPC analysis and improving the quality of the obtained results. High-resolution micro-CT scans are used to gain a better understanding of rat long bone anatomy by quantifying the location, shape, and orientation of the growth plate, primary...

Lemmon, Heber

2004-09-30T23:59:59.000Z

382

Specific-Heat of the Organic Metal Bis(tetrathiotetracene) Tri-Iodide from 20-K to 100-K, the Vicinity of the Metal-Nonmetal Phase-Transition  

E-Print Network [OSTI]

selenium ana- log, the transition-metal complex KCP, ' and tetrathiofulvalenium-thiocyanate [TTF(SCN) 0588] and its selenium analog' which are similar to the organic metal studied in this work. That the metallic state is stabilized by impurities...PHYSICAL REVIEW B VOLUME 24, NUMBER 7 1 OCTOBER 1981 Specific heat of the organic metal bis(tetrathiotetracene) tri-iodide from 20 to 100 K, the vicinity of the metal-nonmetal phase transition B. Cort' and D. G. Naugle Department of Physics...

CORT, B.; Naugle, Donald G.

1981-01-01T23:59:59.000Z

383

TRACE/PARCS calculations of exercises 1 and 2 of the V1000CT-2 benchmark  

SciTech Connect (OSTI)

Exercises 1 and 2 of the VVER-1000 Coolant Transient Benchmark Phase 2 (V1000CT-2) are investigated using coupled three-dimensional (3-D) neutron kinetics/thermal-hydraulics code TRACE/PARCS. Two coarse mesh 3-D thermal-hydraulic models (with six angular sectors and with eighteen angular sectors) were developed for the system code TRACE for Exercise 1 and their applicability is evaluated using the test data provided in the benchmark specification. The six sector model is then coupled with the PARCS 3-D neutron kinetics model in order to analyze Exercise 2 of the benchmark. The results show that TRACE code is accurate enough to simulate the flow mixing occurring in the downcomer of the VVER-1000 reactor. (authors)

Ivanov, B.; Ivanov, K. [Pennsylvania State Univ., 230 Reber Bldg, Univ. Park, PA 16801 (United States); Popov, E. [Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN 37831 (United States)

2006-07-01T23:59:59.000Z

384

Fast Scatter Artifacts Correction for Cone-Beam CT without System Modification and Repeat Scan  

E-Print Network [OSTI]

We provide a fast and accurate scatter artifacts correction algorithm for cone beam CT (CBCT) imaging. The method starts with an estimation of coarse scatter profile for a set of CBCT images. A total-variation denoising algorithm designed specifically for Poisson signal is then applied to derive the final scatter distribution. Qualitatively and quantitatively evaluations using Monte Carlo (MC) simulations, experimental CBCT phantom data, and \\emph{in vivo} human data acquired for a clinical image guided radiation therapy were performed. Results show that the proposed algorithm can significantly reduce scatter artifacts and recover the correct HU within either projection domain or image domain. Further test shows the method is robust with respect to segmentation procedure.

Zhao, Wei; Wang, Luyao

2015-01-01T23:59:59.000Z

385

CT Measurements of Two-Phase Flow in Fractured Porous Media  

SciTech Connect (OSTI)

This report describes the design, construction, and preliminary results of an experiment that studies imbibition displacement in two fracture blocks. Multiphase (oil/water) displacements will be conducted at the same rate on three core configurations. The configurations are a compact core, a two-block system with a 1 mm spacer between the blocks, and a two-block system with no spacer. The blocks are sealed in epoxy so that saturation measurements can be made throughout the displacement experiments using a Computed Tomography (CT) scanner. Preliminary results are presented from a water/air experiment. These results suggest that it is incorrect to assume negligible capillary continuity between matrix blocks as is often done.

Brigham, William E.; Castanier Louis M.; Hughes, Richard G.

1999-08-09T23:59:59.000Z

386

Dynamic Multiscale Boundary Conditions for 4D CT Images of Healthy and Emphysematous Rat  

SciTech Connect (OSTI)

Changes in the shape of the lung during breathing determine the movement of airways and alveoli, and thus impact airflow dynamics. Modeling airflow dynamics in health and disease is a key goal for predictive multiscale models of respiration. Past efforts to model changes in lung shape during breathing have measured shape at multiple breath-holds. However, breath-holds do not capture hysteretic differences between inspiration and expiration resulting from the additional energy required for inspiration. Alternatively, imaging dynamically without breath-holds allows measurement of hysteretic differences. In this study, we acquire multiple micro-CT images per breath (4DCT) in live rats, and from these images we develop, for the first time, dynamic volume maps. These maps show changes in local volume across the entire lung throughout the breathing cycle and accurately predict the global pressure-volume (PV) hysteresis.

Jacob, Rick E.; Carson, James P.; Thomas, Mathew; Einstein, Daniel R.

2013-06-14T23:59:59.000Z

387

CT imaging during microwave ablation: Analysis of spatial and temporal tissue contraction  

SciTech Connect (OSTI)

Purpose: To analyze the spatial distribution and temporal development of liver tissue contraction during high-temperature ablation by using intraprocedural computed tomography (CT) imaging. Methods: A total of 46 aluminum fiducial markers were positioned in a 60 45 mm grid, in a single plane, around a microwave ablation antenna in each of six ex vivo bovine liver samples. Ablations were performed for 10 min at 100 W. CT data of the liver sample were acquired every 30 s during ablation. Fiducial motion between acquisitions was tracked in postprocessing and used to calculate measures of tissue contraction and contraction rates. The spatial distribution and temporal evolution of contraction were analyzed. Results: Fiducial displacement indicated that the zone measured postablation was 8.2 1.8 mm (?20%) smaller in the radial direction and 7.1 1.0 mm (?10%) shorter in the longitudinal direction than the preablation tissue dimension. Therefore, the total ablation volume was reduced from its preablation value by approximately 45%. Very little longitudinal contraction was noted in the distal portion of the ablation zone. Central tissues contracted more than 60%, which was near an estimated limit of ?70% based on initial water content. More peripheral tissues contracted only 15% in any direction. Contraction rates peaked during the first 60 s of heating with a roughly exponential decay over time. Conclusions: Ablation zones measured posttreatment are significantly smaller than the pretreatment tissue dimensions. Tissue contraction is spatially dependent, with the greatest effect occurring in the central ablation zone. Contraction rate peaks early and decays over time.

Liu, Dong; Brace, Christopher L., E-mail: clbrace@wisc.edu [Departments of Radiology and Biomedical Engineering, University of Wisconsin, Madison, Wisconsin 53705 (United States)

2014-11-01T23:59:59.000Z

388

Patient radiation dose in prospectively gated axial CT coronary angiography and retrospectively gated helical technique with a 320-detector row CT scanner  

SciTech Connect (OSTI)

Purpose: The aim of this study was to evaluate radiation dose to patients undergoing computed tomography coronary angiography (CTCA) for prospectively gated axial (PGA) technique and retrospectively gated helical (RGH) technique. Methods: Radiation doses were measured for a 320-detector row CT scanner (Toshiba Aquilion ONE) using small sized silicon-photodiode dosimeters, which were implanted at various tissue and organ positions within an anthropomorphic phantom for a standard Japanese adult male. Output signals from photodiode dosimeters were read out on a personal computer, from which organ and effective doses were computed according to guidelines published in the International Commission on Radiological Protection Publication 103. Results: Organs that received high doses were breast, followed by lung, esophagus, and liver. Breast doses obtained with PGA technique and a phase window width of 16% at a simulated heart rate of 60 beats per minute were 13 mGy compared to 53 mGy with RGH technique using electrocardiographically dependent dose modulation at the same phase window width as that in PGA technique. Effective doses obtained in this case were 4.7 and 20 mSv for the PGA and RGH techniques, respectively. Conversion factors of dose length product to the effective dose in PGA and RGH were 0.022 and 0.025 mSv mGy{sup -1} cm{sup -1} with a scan length of 140 mm. Conclusions: CTCA performed with PGA technique provided a substantial effective dose reduction, i.e., 70%-76%, compared to RGH technique using the dose modulation at the same phase windows as those in PGA technique. Though radiation doses in CTCA with RGH technique were the same level as, or some higher than, those in conventional coronary angiography (CCA), the use of PGA technique reduced organ and effective doses to levels less than CCA except for breast dose.

Seguchi, Shigenobu; Aoyama, Takahiko; Koyama, Shuji; Fujii, Keisuke; Yamauchi-Kawaura, Chiyo [Graduate School of Medicine, Nagoya University, Daikominami, Higashi-ku, Nagoya 461-8673 (Japan) and Department of Medical Technology, Nagoya Daini Red Cross Hospital, Myouken-chou, Showa-ku, Nagoya 466-8650 (Japan); Graduate School of Medicine, Nagoya University, Daikominami, Higashi-ku, Nagoya 461-8673 (Japan); Section of Radiological Protection, National Institute of Radiological Sciences, Anagawa, Inage-ku, Chiba 263-8555 (Japan); Graduate School of Medicine, Nagoya University, Daikominami, Higashi-ku, Nagoya 461-8673 (Japan)

2010-11-15T23:59:59.000Z

389

Assessment of contrast enhanced respiration managed cone-beam CT for image guided radiotherapy of intrahepatic tumors  

SciTech Connect (OSTI)

Purpose: Contrast enhancement and respiration management are widely used during image acquisition for radiotherapy treatment planning of liver tumors along with respiration management at the treatment unit. However, neither respiration management nor intravenous contrast is commonly used during cone-beam CT (CBCT) image acquisition for alignment prior to radiotherapy. In this study, the authors investigate the potential gains of injecting an iodinated contrast agent in combination with respiration management during CBCT acquisition for liver tumor radiotherapy. Methods: Five rabbits with implanted liver tumors were subjected to CBCT with and without motion management and contrast injection. The acquired CBCT images were registered to the planning CT to determine alignment accuracy and dosimetric impact. The authors developed a simulation tool for simulating contrast-enhanced CBCT images from dynamic contrast enhanced CT imaging (DCE-CT) to determine optimal contrast injection protocols. The tool was validated against contrast-enhanced CBCT of the rabbit subjects and was used for five human patients diagnosed with hepatocellular carcinoma. Results: In the rabbit experiment, when neither motion management nor contrast was used, tumor centroid misalignment between planning image and CBCT was 9.2 mm. This was reduced to 2.8?mm when both techniques were employed. Tumors were not visualized in clinical CBCT images of human subjects. Simulated contrast-enhanced CBCT was found to improve tumor contrast in all subjects. Different patients were found to require different contrast injections to maximize tumor contrast. Conclusions: Based on the authors animal study, respiration managed contrast enhanced CBCT improves IGRT significantly. Contrast enhanced CBCT benefits from patient specific tracer kinetics determined from DCE-CT.

Jensen, Nikolaj K. G., E-mail: nkyj@regionsjaelland.dk [Physics and Engineering, London Regional Cancer Program, London, Ontario N6A3K7 (Canada)] [Physics and Engineering, London Regional Cancer Program, London, Ontario N6A3K7 (Canada); Stewart, Errol [Radiology, St. Joseph's Health Care, London, Ontario N6A 4V2 (Canada) [Radiology, St. Joseph's Health Care, London, Ontario N6A 4V2 (Canada); Imaging Research Lab, Robarts Research Institute, London, Ontario N6A 5B7 (Canada); Imaging Program, Lawson Health Research Institute, London, Ontario N6C 2R5 (Canada); Lock, Michael; Fisher, Barbara [Radiation Oncology, London Regional Cancer Program, London, Ontario N6A3K7 (Canada) [Radiation Oncology, London Regional Cancer Program, London, Ontario N6A3K7 (Canada); Department of Oncology, University of Western Ontario, London, Ontario N6A 4L6 (Canada); Kozak, Roman [Radiology, St. Joseph's Health Care, London, Ontario N6A 4V2 (Canada)] [Radiology, St. Joseph's Health Care, London, Ontario N6A 4V2 (Canada); Chen, Jeff [Physics and Engineering, London Regional Cancer Program, London, Ontario N6A3K7 (Canada) [Physics and Engineering, London Regional Cancer Program, London, Ontario N6A3K7 (Canada); Department of Oncology, University of Western Ontario, London, Ontario N6A 4L6 (Canada); Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 5C1 (Canada); Lee, Ting-Yim [Radiology, St. Joseph's Health Care, London, Ontario N6A 4V2 (Canada) [Radiology, St. Joseph's Health Care, London, Ontario N6A 4V2 (Canada); Imaging Research Lab, Robarts Research Institute, London, Ontario N6A 5B7 (Canada); Imaging Program, Lawson Health Research Institute, London, Ontario N6C 2R5 (Canada); Department of Oncology, University of Western Ontario, London, Ontario N6A 4L6 (Canada); Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 5C1 (Canada); Wong, Eugene [Physics and Engineering, London Regional Cancer Program, London, Ontario N6A3K7 (Canada) [Physics and Engineering, London Regional Cancer Program, London, Ontario N6A3K7 (Canada); Department of Oncology, University of Western Ontario, London, Ontario N6A 4L6 (Canada); Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 5C1 (Canada); Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada)

2014-05-15T23:59:59.000Z

390

Inter-slice bidirectional registration-based segmentation of the prostate gland in MR and CT image sequences  

SciTech Connect (OSTI)

Purpose: Accurate segmentation and volume estimation of the prostate gland in magnetic resonance (MR) and computed tomography (CT) images are necessary steps in diagnosis, treatment, and monitoring of prostate cancer. This paper presents an algorithm for the prostate gland volume estimation based on the semiautomated segmentation of individual slices in T2-weighted MR and CT image sequences. Methods: The proposedInter-Slice Bidirectional Registration-based Segmentation (iBRS) algorithm relies on interslice image registration of volume data to segment the prostate gland without the use of an anatomical atlas. It requires the user to mark only three slices in a given volume dataset, i.e., the first, middle, and last slices. Next, the proposed algorithm uses a registration algorithm to autosegment the remaining slices. We conducted comprehensive experiments to measure the performance of the proposed algorithm using three registration methods (i.e., rigid, affine, and nonrigid techniques). Results: The results with the proposed technique were compared with manual marking using prostate MR and CT images from 117 patients. Manual marking was performed by an expert user for all 117 patients. The median accuracies for individual slices measured using the Dice similarity coefficient (DSC) were 92% and 91% for MR and CT images, respectively. The iBRS algorithm was also evaluated regarding user variability, which confirmed that the algorithm was robust to interuser variability when marking the prostate gland. Conclusions: The proposed algorithm exploits the interslice data redundancy of the images in a volume dataset of MR and CT images and eliminates the need for an atlas, minimizing the computational cost while producing highly accurate results which are robust to interuser variability.

Khalvati, Farzad, E-mail: farzad.khalvati@uwaterloo.ca; Tizhoosh, Hamid R. [Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)] [Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Salmanpour, Aryan; Rahnamayan, Shahryar [Department of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, Ontario L1H 7K4 (Canada)] [Department of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, Ontario L1H 7K4 (Canada); Rodrigues, George [Department of Radiation Oncology, London Regional Cancer Program, London, Ontario N6C 2R6, Canada and Department of Epidemiology/Biostatistics, University of Western Ontario, London, Ontario N6A 3K7 (Canada)] [Department of Radiation Oncology, London Regional Cancer Program, London, Ontario N6C 2R6, Canada and Department of Epidemiology/Biostatistics, University of Western Ontario, London, Ontario N6A 3K7 (Canada)

2013-12-15T23:59:59.000Z

391

Calculations of two new dose metrics proposed by AAPM Task Group 111 using the measurements with standard CT dosimetry phantoms  

SciTech Connect (OSTI)

Purpose: AAPM Task Group 111 proposed to measure the equilibrium dose-pitch product D-caret{sub eq} for scan modes involving table translation and the midpoint dose D{sub L}(0) for stationary-table modes on the central and peripheral axes of sufficiently long (e.g., at least 40 cm) phantoms. This paper presents an alternative approach to calculate both metrics using the measurements of scanning the standard computed tomographic (CT) dosimetry phantoms on CT scanners.Methods: D-caret{sub eq} was calculated from CTDI{sub 100} and ?(CTDI{sub 100}) (CTDI{sub 100} efficiency), and D{sub L}(0) was calculated from D-caret{sub eq} and the approach to equilibrium function H(L) =D{sub L}(0)/D{sub eq}, where D{sub eq} was the equilibrium dose. CTDI{sub 100} may be directly obtained from several sources (such as medical physicist's CT scanner performance evaluation or the IMPACT CT patient dosimetry calculator), or be derived from CTDI{sub Vol} using the central to peripheral CTDI{sub 100} ratio (R{sub 100}). The authors have provided the required ?(CTDI{sub 100}) and H(L) data in two previous papers [X. Li, D. Zhang, and B. Liu, Med. Phys. 39, 901905 (2012); and ibid. 40, 031903 (10pp.) (2013)]. R{sub 100} was assessed for a series of GE, Siemens, Philips, and Toshiba CT scanners with multiple settings of scan field of view, tube voltage, and bowtie filter.Results: The calculated D{sub L}(0) and D{sub L}(0)/D{sub eq} in PMMA and water cylinders were consistent with the measurements on two GE CT scanners (LightSpeed 16 and VCT) by Dixon and Ballard [Med. Phys. 34, 33993413 (2007)], the measurements on a Siemens CT scanner (SOMATOM Spirit Power) by Descamps et al. [J. Appl. Clin. Med. Phys. 13, 293302 (2012)], and the Monte Carlo simulations by Boone [Med. Phys. 36, 45474554 (2009)].Conclusions: D-caret{sub eq} and D{sub L}(0) can be calculated using the alternative approach. The authors have provided the required ?(CTDI{sub 100}) and H(L) data in two previous papers. R{sub 100} is presented for a majority of multidetector CT scanners currently on the market, and can be easily assessed for other CT scanners or operating conditions not covered in this study. The central to peripheral D{sub eq} ratio is about 1.50 and 1.12 times of R{sub 100} for the 32- and 16-cm diameter PMMA phantom, respectively.

Li, Xinhua; Zhang, Da; Liu, Bob [Division of Diagnostic Imaging Physics and Webster Center for Advanced Research and Education in Radiation, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States)] [Division of Diagnostic Imaging Physics and Webster Center for Advanced Research and Education in Radiation, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States)

2013-08-15T23:59:59.000Z

392

Effects of ray profile modeling on resolution recovery in clinical CT  

SciTech Connect (OSTI)

Purpose: Iterative image reconstruction gains more and more interest in clinical routine, as it promises to reduce image noise (and thereby patient dose), to reduce artifacts, or to improve spatial resolution. However, among vendors and researchers, there is no consensus of how to best achieve these goals. The authors are focusing on the aspect of geometric ray profile modeling, which is realized by some algorithms, while others model the ray as a straight line. The authors incorporate ray-modeling (RM) in nonregularized iterative reconstruction. That means, instead of using one simple single needle beam to represent the x-ray, the authors evaluate the double integral of attenuation path length over the finite source distribution and the finite detector element size in the numerical forward projection. Our investigations aim at analyzing the resolution recovery (RR) effects of RM. Resolution recovery means that frequencies can be recovered beyond the resolution limit of the imaging system. In order to evaluate, whether clinical CT images can benefit from modeling the geometrical properties of each x-ray, the authors performed a 2D simulation study of a clinical CT fan-beam geometry that includes the precise modeling of these geometrical properties. Methods: All simulations and reconstructions are performed in native fan-beam geometry. A water phantom with resolution bar patterns and a Forbild thorax phantom with circular resolution patterns representing calcifications in the heart region are simulated. An FBP reconstruction with a RamLak kernel is used as a reference reconstruction. The FBP is compared to iterative reconstruction techniques with and without RM: An ordered subsets convex (OSC) algorithm without any RM (OSC), an OSC where the forward projection is modeled concerning the finite focal spot and detector size (OSC-RM) and an OSC with RM and with a matched forward and backprojection pair (OSC-T-RM, T for transpose). In all cases, noise was matched to be able to focus on comparing spatial resolution. The authors use two different simulation settings. Both are based on the geometry of a typical clinical CT system (0.7 mm detector element size at isocenter, 1024 projections per rotation). Setting one has an exaggerated source width of 5.0 mm. Setting two has a realistically small source width of 0.5 mm. The authors also investigate the transition from setting one to two. To quantify image quality, the authors analyze line profiles through the resolution patterns to define a contrast factor (CF) for contrast-resolution plots, and the authors compare the normalized cross-correlation (NCC) with respect to the ground truth of the circular resolution patterns. To independently analyze whether RM is of advantage, the authors implemented several iterative reconstruction algorithms: The statistical iterative reconstruction algorithm OSC, the ordered subsets simultaneous algebraic reconstruction technique (OSSART) and another statistical iterative reconstruction algorithm, denoted with ordered subsets maximum likelihood (OSML) algorithm. All algorithms were implemented both without RM (denoted as OSC, OSSART, and OSML) and with RM (denoted as OSC-RM, OSSART-RM, and OSML-RM). Results: For the unrealistic case of a 5.0 mm focal spot the CF can be improved by a factor of two due to RM: the 4.2 LP/cm bar pattern, which is the first bar pattern that cannot be resolved without RM, can be easily resolved with RM. For the realistic case of a 0.5 mm focus, all results show approximately the same CF. The NCC shows no significant dependency on RM when the source width is smaller than 2.0 mm (as in clinical CT). From 2.0 mm to 5.0 mm focal spot size increasing improvements can be observed with RM. Conclusions: Geometric RM in iterative reconstruction helps improving spatial resolution, if the ray cross-section is significantly larger than the ray sampling distance. In clinical CT, however, the ray is not much thicker than the distance between neighboring ray centers, as the focal spot size is small and detector crosstalk is negligi

Hofmann, Christian [Institute of Medical Physics, FriedrichAlexander University (FAU), Erlangen, Bavaria 91052 (Germany)] [Institute of Medical Physics, FriedrichAlexander University (FAU), Erlangen, Bavaria 91052 (Germany); Knaup, Michael [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg 69120 (Germany)] [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg 69120 (Germany); Kachelrie, Marc, E-mail: marc.kachelriess@dkfz-heidelberg.de [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany and Institute of Medical Physics, FriedrichAlexander University (FAU), Erlangen, Bavaria 91052 (Germany)] [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany and Institute of Medical Physics, FriedrichAlexander University (FAU), Erlangen, Bavaria 91052 (Germany)

2014-02-15T23:59:59.000Z

393

Characterization of adaptive statistical iterative reconstruction algorithm for dose reduction in CT: A pediatric oncology perspective  

SciTech Connect (OSTI)

Purpose: This study demonstrates a means of implementing an adaptive statistical iterative reconstruction (ASiR Trade-Mark-Sign ) technique for dose reduction in computed tomography (CT) while maintaining similar noise levels in the reconstructed image. The effects of image quality and noise texture were assessed at all implementation levels of ASiR Trade-Mark-Sign . Empirically derived dose reduction limits were established for ASiR Trade-Mark-Sign for imaging of the trunk for a pediatric oncology population ranging from 1 yr old through adolescence/adulthood. Methods: Image quality was assessed using metrics established by the American College of Radiology (ACR) CT accreditation program. Each image quality metric was tested using the ACR CT phantom with 0%-100% ASiR Trade-Mark-Sign blended with filtered back projection (FBP) reconstructed images. Additionally, the noise power spectrum (NPS) was calculated for three common reconstruction filters of the trunk. The empirically derived limitations on ASiR Trade-Mark-Sign implementation for dose reduction were assessed using (1, 5, 10) yr old and adolescent/adult anthropomorphic phantoms. To assess dose reduction limits, the phantoms were scanned in increments of increased noise index (decrementing mA using automatic tube current modulation) balanced with ASiR Trade-Mark-Sign reconstruction to maintain noise equivalence of the 0% ASiR Trade-Mark-Sign image. Results: The ASiR Trade-Mark-Sign algorithm did not produce any unfavorable effects on image quality as assessed by ACR criteria. Conversely, low-contrast resolution was found to improve due to the reduction of noise in the reconstructed images. NPS calculations demonstrated that images with lower frequency noise had lower noise variance and coarser graininess at progressively higher percentages of ASiR Trade-Mark-Sign reconstruction; and in spite of the similar magnitudes of noise, the image reconstructed with 50% or more ASiR Trade-Mark-Sign presented a more smoothed appearance than the pre-ASiR Trade-Mark-Sign 100% FBP image. Finally, relative to non-ASiR Trade-Mark-Sign images with 100% of standard dose across the pediatric phantom age spectrum, similar noise levels were obtained in the images at a dose reduction of 48% with 40% ASIR Trade-Mark-Sign and a dose reduction of 82% with 100% ASIR Trade-Mark-Sign . Conclusions: The authors' work was conducted to identify the dose reduction limits of ASiR Trade-Mark-Sign for a pediatric oncology population using automatic tube current modulation. Improvements in noise levels from ASiR Trade-Mark-Sign reconstruction were adapted to provide lower radiation exposure (i.e., lower mA) instead of improved image quality. We have demonstrated for the image quality standards required at our institution, a maximum dose reduction of 82% can be achieved using 100% ASiR Trade-Mark-Sign ; however, to negate changes in the appearance of reconstructed images using ASiR Trade-Mark-Sign with a medium to low frequency noise preserving reconstruction filter (i.e., standard), 40% ASiR Trade-Mark-Sign was implemented in our clinic for 42%-48% dose reduction at all pediatric ages without a visually perceptible change in image quality or image noise.

Brady, S. L.; Yee, B. S.; Kaufman, R. A. [Department of Radiological Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105 (United States)

2012-09-15T23:59:59.000Z

394

SU-E-I-78: Improving Prostatic Delineation Using Dual-Energy CT  

SciTech Connect (OSTI)

Purpose: Visual prostatic definition is difficult using conventional CT. This is because the prostate is surrounded closely with tissue of similar electron density. Definition is further hindered when the region contains high-Z material (such as fiducial markers). Dual-energy CT (DECT) is a technique where images are rendered using two tube voltages during a single scan session. This study evaluates DECT as a means of improving prostatic volume delineation for radiation oncology. Methods: The patients were scanned using a Definition AS20 (Siemens Healthcare, Malvern, PA). This device uses a single-tube configuration, where two scans of differing energies are performed in serial. The scans are acquired with tube voltage of 80kVp and 140kVp. Following acquisition, these scan data were used to generate effective monoenergetic scans ranging from 40keV to 190keV. In the current study, the data were presented to observers using a novel program, which allows real-time adjustment of window, level, and effective keV; all while scrolling through volumetric slices. Three patients were scanned, each with a different high-contrast material in or around the prostate: I-125 seeds, gold fiducial markers, and prostatic calcifications. These images are compared to a weighted average of the 80kVp and 140kVP scans, which yield a scan similar to that of a 120 kVp scan, which is a common tube voltage in radiation oncology. Results: Prostatic definition improved in each case. Differentiation of soft tissue from surrounding adipose improved with lower keV, while higher keV provided a reduction of high-z artifacts. Furthermore, the dynamic adjustment of the keV allowed observers to better recognize regions of differing tissue composition within this relatively homogeneous area. Conclusion: By simultaneously providing the observer with the benefits of high-energy images and low-energy images, and allowing adjustment in real-time, improved imaging in highly homogeneous regions such as the male pelvis is achievable.

Gersh, J; Fried, D [Gibbs Cancer Center ' Research Institute - Pelham, Greer, SC (United States)

2014-06-01T23:59:59.000Z

395

Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT  

SciTech Connect (OSTI)

Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8.9-fold speed-up of the processing (from 1336 to 150 s). Conclusions: Adaptive anisotropic filtering has the potential to substantially improve image quality and/or reduce the radiation dose required for obtaining 3D image data using cone beam CT.

Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu Lei; Strobel, Norbert; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Department of Radiology, Stanford University, Stanford, California 94305 (United States) and Center for Medical Image Science and Visualization, Linkoeping University, Linkoeping (Sweden); Pattern Recognition Laboratory, Department of Computer Science, Friedrich-Alexander University of Erlangen-Nuremberg, 91054, Erlangen (Germany); Nuclear and Radiological Engineering and Medical Physics Programs, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Siemens AG Healthcare, Forchheim 91301 (Germany); Department of Radiology, Stanford University, Stanford, California 94305 (United States)

2011-11-15T23:59:59.000Z

396

Cone-Beam CT with Flat-Panel-Detector Digital Angiography System: Early Experience in Abdominal Interventional Procedures  

SciTech Connect (OSTI)

We developed a cone-beam computed tomography (CBCT) system equipped with a large flat-panel detector. Data obtained by 200{sup o} rotation imaging are reconstructed by means of CBCT to generate three-dimensional images. We report the use of CBCT angiography using CBCT in 10 patients with 8 liver malignancies and 2 hypersplenisms during abdominal interventional procedures. CBCT was very useful for interventional radiologists to confirm a perfusion area of the artery catheter wedged on CT by injection of contrast media through the catheter tip, although the image quality was slightly degraded, scoring as 2.60 on average by streak artifacts. CBCT is space-saving because it does not require a CT system with a gantry, and it is also time-saving because it does not require the transfer of patients.

Hirota, Shozo, E-mail: hirota-s@hyo-med.ac.jp; Nakao, Norio; Yamamoto, Satoshi; Kobayashi, Kaoru; Maeda, Hiroaki; Ishikura, Reiichi; Miura, Koui; Sakamoto, Kiyoshi [Hyogo College of Medicine, Department of Radiology (Japan); Ueda, Ken [Hitachi Medical Corporation, Research and Development Center (Japan); Baba, Rika [Hitachi Limited, Central Research Laboratory (Japan)

2006-12-15T23:59:59.000Z

397

Methane hydrate distribution from prolonged and repeated formation in natural and compacted sand samples: X-ray CT observations  

SciTech Connect (OSTI)

To study physical properties of methane gas hydrate-bearing sediments, it is necessary to synthesize laboratory samples due to the limited availability of cores from natural deposits. X-ray computed tomography (CT) and other observations have shown gas hydrate to occur in a number of morphologies over a variety of sediment types. To aid in understanding formation and growth patterns of hydrate in sediments, methane hydrate was repeatedly formed in laboratory-packed sand samples and in a natural sediment core from the Mount Elbert Stratigraphic Test Well. CT scanning was performed during hydrate formation and decomposition steps, and periodically while the hydrate samples remained under stable conditions for up to 60 days. The investigation revealed the impact of water saturation on location and morphology of hydrate in both laboratory and natural sediments during repeated hydrate formations. Significant redistribution of hydrate and water in the samples was observed over both the short and long term.

Rees, E.V.L.; Kneafsey, T.J.; Seol, Y.

2010-07-01T23:59:59.000Z

398

Application of X-ray CT for investigating fluid flow and conformance control during CO2 injection in highly heterogeneous media  

E-Print Network [OSTI]

were performed using homogeneous and heterogeneous cores and a 4th generation X-Ray CT scanner was used to visualize heterogeneity and fluid flow in the core. Porosity and saturation measurements were made during the course of the experiment...

Chakravarthy, Deepak

2005-08-29T23:59:59.000Z

399

SU-E-J-92: On-Line Cone Beam CT Based Planning for Emergency and Palliative Radiation Therapy  

SciTech Connect (OSTI)

Purpose: To evaluate and develop the feasibility of on-line cone beam CT based planning for emergency and palliative radiotherapy treatments. Methods: Subsequent to phantom studies, a case library of 28 clinical megavoltage cone beam CT (MVCBCT) was built to assess dose-planning accuracies on MVCBCT for all anatomical sites. A simple emergency treatment plan was created on the MVCBCT and copied to its reference CT. The agreement between the dose distributions of each image pair was evaluated by the mean dose difference of the dose volume and the gamma index of the central 2D axial plane. An array of popular urgent and palliative cases was also evaluated for imaging component clearance and field-of-view. Results: The treatment cases were categorized into four groups (head and neck, thorax/spine, pelvis and extremities). Dose distributions for head and neck treatments were predicted accurately in all cases with a gamma index of >95% for 2% and 2 mm criteria. Thoracic spine treatments had a gamma index as low as 60% indicating a need for better uniformity correction and tissue density calibration. Small anatomy changes between CT and MVCBCT could contribute to local errors. Pelvis and sacral spine treatment cases had a gamma index between 90% and 98% for 3%/3 mm criteria. The limited FOV became an issue for large pelvis patients. Imaging clearance was difficult for cases where the tumor was positioned far off midline. Conclusion: The MVCBCT based dose planning and delivery approach is feasible in many treatment cases. Dose distributions for head and neck patients are unrestrictedly predictable. Some FOV restrictions apply to other treatment sites. Lung tissue is most challenging for accurate dose calculations given the current imaging filters and corrections. Additional clinical cases for extremities need to be included in the study to assess the full range of site-specific planning accuracies. This work is supported by Siemens.

Held, M; Morin, O; Pouliot, J [UC San Francisco, San Francisco, CA (United States)

2014-06-01T23:59:59.000Z

400

Introduction of heat map to fidelity assessment of compressed CT images  

SciTech Connect (OSTI)

Purpose: This study aimed to introduce heat map, a graphical data presentation method widely used in gene expression experiments, to the presentation and interpretation of image fidelity assessment data of compressed computed tomography (CT) images. Methods: The authors used actual assessment data that consisted of five radiologists' responses to 720 computed tomography images compressed using both Joint Photographic Experts Group 2000 (JPEG2000) 2D and JPEG2000 3D compressions. They additionally created data of two artificial radiologists, which were generated by partly modifying the data from two human radiologists. Results: For each compression, the entire data set, including the variations among radiologists and among images, could be compacted into a small color-coded grid matrix of the heat map. A difference heat map depicted the advantage of 3D compression over 2D compression. Dendrograms showing hierarchical agglomerative clustering results were added to the heat maps to illustrate the similarities in the data patterns among radiologists and among images. The dendrograms were used to identify two artificial radiologists as outliers, whose data were created by partly modifying the responses of two human radiologists. Conclusions: The heat map can illustrate a quick visual extract of the overall data as well as the entirety of large complex data in a compact space while visualizing the variations among observers and among images. The heat map with the dendrograms can be used to identify outliers or to classify observers and images based on the degree of similarity in the response patterns.

Lee, Hyunna; Kim, Bohyoung; Seo, Jinwook; Park, Seongjin; Shin, Yeong-Gil [School of Computer Science and Engineering, Seoul National University, 599 Kwanak-ro, Kwanak-gu, Seoul 151-742 (Korea, Republic of); Kim, Kil Joong [Department of Radiation Applied Life Science, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul 110-744 (Korea, Republic of); Lee, Kyoung Ho [Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Institute of Radiation Medicine and Seoul National University Medical Research Center, 300 Gumi-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707 (Korea, Republic of)

2011-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "dis tri ct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Kinetics and mechanism of the thermal dissociation of O,O'-bis(1,3,5-TRI-tert-butyl-4-oxo-2,5-cyclo-hexadienyl)-p-benzoquinone dioxime in solution  

SciTech Connect (OSTI)

The kinetics and mechanism of the thermal dissociation of O,O'-bis(1,3,5-tri-tert-butyl-4-oxo-2,5-cyclohexadienyl)-p-benzoquinone dioxime (quinol ether) in solutions in nonpolar solvents were investigated. The dissociation of the quinol ether is reversible two-stage process and involves the formation of an intermediate radical. In relation to the reaction conditions (initial concentration, temperature) the dissociation rate of the quinol ether obeys the kinetic equations omega = k/sub eff/ x c/sup 1/2/ or omega = k/sub 1/c. The change in the reaction order is due to the ratio of the rates of dissociation of the intermediate radical and of its reaction with the phenoxyl radical. The ESR spectra were recorded on a Varian E-9 radiospectrometer with high-frequency modulation of 100 kHz.

Khizhnyi, V.A.; Danilova, T.A.; Goloverda, G.Z.; Dobronravova, Z.A.

1987-09-20T23:59:59.000Z

402

The human ACC2 CT-domain C-terminus is required for full functionality and has a novel twist  

SciTech Connect (OSTI)

Inhibition of acetyl-CoA carboxylase (ACC) may prevent lipid-induced insulin resistance and type 2 diabetes, making the enzyme an attractive pharmaceutical target. Although the enzyme is highly conserved amongst animals, only the yeast enzyme structure is available for rational drug design. The use of biophysical assays has permitted the identification of a specific C-terminal truncation of the 826-residue human ACC2 carboxyl transferase (CT) domain that is both functionally competent to bind inhibitors and crystallizes in their presence. This C-terminal truncation led to the determination of the human ACC2 CT domain-CP-640186 complex crystal structure, which revealed distinctions from the yeast-enzyme complex. The human ACC2 CT-domain C-terminus is comprised of three intertwined -helices that extend outwards from the enzyme on the opposite side to the ligand-binding site. Differences in the observed inhibitor conformation between the yeast and human structures are caused by differing residues in the binding pocket.

Madauss, Kevin P.; Burkhart, William A.; Consler, Thomas G.; Cowan, David J.; Gottschalk, William K.; Miller, Aaron B; Short, Steven A.; Tran, Thuy B.; Williams, Shawn P.; (GSKNC); (Duke); (UNC)

2009-06-15T23:59:59.000Z

403

Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization  

SciTech Connect (OSTI)

Purpose: Dual-energy CT (DECT) is being increasingly used for its capability of material decomposition and energy-selective imaging. A generic problem of DECT, however, is that the decomposition process is unstable in the sense that the relative magnitude of decomposed signals is reduced due to signal cancellation while the image noise is accumulating from the two CT images of independent scans. Direct image decomposition, therefore, leads to severe degradation of signal-to-noise ratio on the resultant images. Existing noise suppression techniques are typically implemented in DECT with the procedures of reconstruction and decomposition performed independently, which do not explore the statistical properties of decomposed images during the reconstruction for noise reduction. In this work, the authors propose an iterative approach that combines the reconstruction and the signal decomposition procedures to minimize the DECT image noise without noticeable loss of resolution. Methods: The proposed algorithm is formulated as an optimization problem, which balances the data fidelity and total variation of decomposed images in one framework, and the decomposition step is carried out iteratively together with reconstruction. The noise in the CT images from the proposed algorithm becomes well correlated even though the noise of the raw projections is independent on the two CT scans. Due to this feature, the proposed algorithm avoids noise accumulation during the decomposition process. The authors evaluate the method performance on noise suppression and spatial resolution using phantom studies and compare the algorithm with conventional denoising approaches as well as combined iterative reconstruction methods with different forms of regularization. Results: On the Catphan600 phantom, the proposed method outperforms the existing denoising methods on preserving spatial resolution at the same level of noise suppression, i.e., a reduction of noise standard deviation by one order of magnitude. This improvement is mainly attributed to the high noise correlation in the CT images reconstructed by the proposed algorithm. Iterative reconstruction using different regularization, including quadratic orq-generalized Gaussian Markov random field regularization, achieves similar noise suppression from high noise correlation. However, the proposed TV regularization obtains a better edge preserving performance. Studies of electron density measurement also show that our method reduces the average estimation error from 9.5% to 7.1%. On the anthropomorphic head phantom, the proposed method suppresses the noise standard deviation of the decomposed images by a factor of ?14 without blurring the fine structures in the sinus area. Conclusions: The authors propose a practical method for DECT imaging reconstruction, which combines the image reconstruction and material decomposition into one optimization framework. Compared to the existing approaches, our method achieves a superior performance on DECT imaging with respect to decomposition accuracy, noise reduction, and spatial resolution.

Dong, Xue; Niu, Tianye; Zhu, Lei, E-mail: leizhu@gatech.edu [Nuclear and Radiological Engineering and Medical Physics Programs, The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)] [Nuclear and Radiological Engineering and Medical Physics Programs, The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

2014-05-15T23:59:59.000Z

404

The effect of spatial micro-CT image resolution and surface complexity on the morphological 3D analysis of open porous structures  

SciTech Connect (OSTI)

In material science microfocus X-ray computed tomography (micro-CT) is one of the most popular non-destructive techniques to visualise and quantify the internal structure of materials in 3D. Despite constant system improvements, state-of-the-art micro-CT images can still hold several artefacts typical for X-ray CT imaging that hinder further image-based processing, structural and quantitative analysis. For example spatial resolution is crucial for an appropriate characterisation as the voxel size essentially influences the partial volume effect. However, defining the adequate image resolution is not a trivial aspect and understanding the correlation between scan parameters like voxel size and the structural properties is crucial for comprehensive material characterisation using micro-CT. Therefore, the objective of this study was to evaluate the influence of the spatial image resolution on the micro-CT based morphological analysis of three-dimensional (3D) open porous structures with a high surface complexity. In particular the correlation between the local surface properties and the accuracy of the micro-CT-based macro-morphology of 3D open porous Ti6Al4V structures produced by selective laser melting (SLM) was targeted and revealed for rough surfaces a strong dependence of the resulting structure characteristics on the scan resolution. Reducing the surface complexity by chemical etching decreased the sensitivity of the overall morphological analysis to the spatial image resolution and increased the detection limit. This study showed that scan settings and image processing parameters need to be customized to the material properties, morphological parameters under investigation and the desired final characteristics (in relation to the intended functional use). Customization of the scan resolution can increase the reliability of the micro-CT based analysis and at the same time reduce its operating costs. - Highlights: We examine influence of the image resolution on ?CT-based morphological analysis. Surface properties influence accuracy of ?CT-based morphology of porous structures. Total porosity was the least sensitive to surface complexity and scan voxel size. The beam thickness analysis was overestimated by the surface roughness. Voxel size customization can significantly reduce a cost of the ?CT-based analysis.

Pyka, Grzegorz, E-mail: gregory.pyka@mtm.kuleuven.be [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 PB2450, B-3001 Leuven (Belgium); Kerckhofs, Greet [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 PB2450, B-3001 Leuven (Belgium); Biomechanics Research Unit, Universit de Liege, Chemin des Chevreuils 1 - BAT 52/3, B-4000 Lige (Belgium); Schrooten, Jan; Wevers, Martine [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 PB2450, B-3001 Leuven (Belgium)

2014-01-15T23:59:59.000Z

405

CT measurements of two-phase flow in fractured porous media  

SciTech Connect (OSTI)

The simulation of flow in naturally fractured reservoirs commonly divides the reservoir into two continua - the matrix system and the fracture system. Flow equations are written presuming that the primary flow between grid blocks occurs through the fracture system and that the primary fluid storage is in the matrix system. The dual porosity formulation of the equations assumes that there is no flow between matrix blocks while the dual permeability formulation allows fluid movement between matrix blocks. Since most of the fluid storage is contained in the matrix, recovery is dominated by the transfer of fluid from the matrix to the high conductivity fractures. The physical mechanisms influencing this transfer have been evaluated primarily through numerical studies. Relatively few experimental studies have investigated the transfer mechanisms. Early studies focused on the prediction of reservoir recoveries from the results of scaled experiments on single reservoir blocks. Recent experiments have investigated some of the mechanisms that are dominant in gravity drainage situations and in small block imbibition displacements. The mechanisms active in multiphase flow in fractured media need to be further illuminated, since some of the experimental results appear to be contradictory. This report describes the design, construction, and preliminary results of an experiment that studies imbibition displacement in two fracture blocks. Multiphase (oil/water) displacements will be conducted at the same rate on three core configurations. The configurations are a compact core, a two-block system with a 1 mm spacer between the blocks, and a two-block system with no spacer. The blocks are sealed in epoxy so that saturation measurements can be made throughout the displacement experiments using a Computed Tomography (CT) scanner.

Hughes, R.G.; Brigham, W.E.; Castanier, L.M.

1997-06-01T23:59:59.000Z

406

MicroCT-Based Skeletal Models for Use in Tomographic Voxel Phantoms for Radiological Protection  

SciTech Connect (OSTI)

ABSTRACT The University of Florida (UF) proposes to develop two high-resolution image-based skeletal dosimetry models for direct use by ICRP Committee 2s Task Group on Dose Calculation in their forthcoming Reference Voxel Male (RVM) and Reference Voxel Female (RVF) whole-body dosimetry phantoms. These two phantoms are CT-based, and thus do not have the image resolution to delineate and perform radiation transport modeling of the individual marrow cavities and bone trabeculae throughout their skeletal structures. Furthermore, new and innovative 3D microimaging techniques will now be required for the skeletal tissues following Committee 2s revision of the target tissues of relevance for radiogenic bone cancer induction. This target tissue had been defined in ICRP Publication 30 as a 10-?m cell layer on all bone surfaces of trabecular and cortical bone. The revised target tissue is now a 50-?m layer within the marrow cavities of trabecular bone only and is exclusive of the marrow adipocytes. Clearly, this new definition requires the use of 3D microimages of the trabecular architecture not available from past 2D optical studies of the adult skeleton. With our recent acquisition of two relatively young cadavers (males of age 18-years and 40-years), we will develop a series of reference skeletal models that can be directly applied to (1) the new ICRP reference voxel man and female phantoms developed for the ICRP, and (2) pediatric phantoms developed to target the ICRP reference children. Dosimetry data to be developed will include absorbed fractions for internal beta and alpha-particle sources, as well as photon and neutron fluence-to-dose response functions for direct use in external do