Powered by Deep Web Technologies
Note: This page contains sample records for the topic "dirt rubble waterproofing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Plants and Dirt Compaction  

NLE Websites -- All DOE Office Websites (Extended Search)

Dirt Compaction Name: Conor Location: NA Country: NA Date: NA Question: When growing corn and soybean plants does the compaction of dirt effect the growth of the plant? Replies:...

2

PELICAN ISLAND Graded dirt road  

E-Print Network (OSTI)

Audubon SanctuaryRecommended route A B C D E F 0.5 mile BOLIVAR PENINSULA N to Crystal Beach Paved road #12;Bryan Beach Old Brazos River 1 mile N Paved road Graded dirt road Walking path Dike/Berm Mudflat

Lee, Cin-Ty Aeolus

3

Waterproof, Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Waterproof, Louisiana: Energy Resources Waterproof, Louisiana: Energy Resources (Redirected from Waterproof, LA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.8048847°, -91.383449° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.8048847,"lon":-91.383449,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

4

Methods for predicting rubble motion during blasting  

SciTech Connect

Recent applications of explosives and blasting agents to rubble rock have led to requirements for more elaborate design and analysis methods. In most blasting uses, it is necessary not only to fracture the rock, but also to move the broken rubble in a predictable manner. Many in situ extraction techniques require rubblization to take place in a confined region where rock motion is a predominate factor in creating a permeable broken bed. In this paper, two analytical methods are presented which describe the large rubble motion during blasting. These methods provide the blast designer with a tool for evaluation and further refinement of blasting patterns and timing sequences.

Schamaun, J.T.

1984-01-01T23:59:59.000Z

5

Baseline Risk Assessment for the F-Area Burning/Rubble Pits and Rubble Pit  

SciTech Connect

This document provides an overview of the Savannah River Site (SRS) and a description of the F-Area Burning/Rubble Pits (BRPs) and Rubble Pit (RP) unit. It also describes the objectives and scope of the baseline risk assessment (BRA).

Palmer, E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

1996-03-01T23:59:59.000Z

6

Methods for predicting rubble motion during blasting  

SciTech Connect

Recent applications of explosives and blasting agents to rubble rock have led to requirements for more elaborate design and analysis methods. Many in situ extraction techniques require rubblization to take place in a confined region where rock motion is a predominate factor in creating a permeable broken bed. Two analytical methods are presented which describe the large rubble motion during blasting. These methods are intended to provide the blast designer with a tool for evaluation and further refinement of blasting patterns and timing sequences. In both these methods, the rock medium is represented by a series of discrete, discontinuous regions (bodies, masses). The use of discontinuous techniques rather than the classical continuum methods, results in better approximations to the rubble motion. These regions are set in motion by pressure loads from the explosive. The motion of these regions is then calculated numerically using interaction laws between regions in contact. The basis for these models or methods is presented along with the background for selecting explosive pressure loads and rock mass material behavior. Typical examples, including both cratering and bench blasting geometries, are discussed which illustrate the use of these models to predict rubble motion. Such engineering representations appear to provide a practical method for use in predicting rubble motion and a tool for design evaluation of blasting in confined geometries.

Schamaun, J.T.

1984-03-01T23:59:59.000Z

7

Self balancing measuring probe enclosure and method for waterproofing same  

DOE Patents (OSTI)

Waterproofing standard linear position measuring transducers often requires a sacrifice in measuring accuracy when the transducer must be used at varying water depths. To obviate this disadvantage, the disclosed waterproofing structure is constructed such that increasing or decreasing forces applied to the transducer as its depth in the water changes will not apply unbalanced forces to the transducer thereby causing false readings. Similarly, the nominal gauging force developed by the instrument is unaffected by varying water depths.

Fodor, G.; Nilsen, R.J.

1991-02-13T23:59:59.000Z

8

ESTIMATE OF RADIUM-226 CONCENTRATIONS IN RUBBLED PCB WAREHOUSE...  

Office of Legacy Management (LM)

IN RUBBLED PCB WAREHOUSE ON VICINITY PROPERTY B ADJACENT TO THE NIAGARA FALLS STORAGE SITE MAY 1987 Prepared for UNITED STATES DEPARTMENT OF ENERGY OAK RIDGE OPERATIONS...

9

Monfort dirt lot experiments. Status report  

DOE Green Energy (OSTI)

A mobile processing unit is being used to investigate the feasibility of producing fuel gas and an energy-intensive refeed product from dirt feedlot residues by anaerobic fermentation. Results to date have shown that: a stable fermentation can be achieved utilizing aged feedlot pen residue if a sufficient adaptation period is provided. Methane yields of 2.75 ft/sup 3//pound volatile solids fed can be attained at a loading rate of 0.25 pounds volatile solids/ft/sup 3/, 10 day retention time and thermophilic temperature of 57/sup 0/C. The fermentor liquid effluent is acceptable to cattle as a feed ingredient and was used to provide one-half the daily supplemental protein for twenty steers. Residual pharmaceuticals and low levels of heavy metals as well as various anions and cations may possibly impose some additional stress upon the system but do not present a significant detriment to successful operation. Feedlot residue is highly variable in both dry matter and inert content with typical particle size in the micron range.

Not Available

1978-03-31T23:59:59.000Z

10

Engineering model for predicting rubble motion during blasting  

SciTech Connect

Recent applications of explosives and blasting agents to rubble rock have led to requirements for more elaborate design and analysis methods. In most blasting uses, it is necessary not only to fracture the rock, but also to move the broken rubble in a predictable manner. Many in-situ extraction techniques require rubblization to take place in a confined region where rock motion is a predominate factor in creating a permeable broken bed. In this paper, an engineering model is presented which describes the large rubble motion during blasting. This model is intended to provide the blast designer with a tool for evaluation and further refinement of blasting patterns and timing sequences. In this model the rock medium is represented by a discrete series of circular regions of fractured material. These regions are set in motion by pressure loads from the explosive. The motion of the regions is calculated using a step-wise, explicit, numerical time integration method. Interaction of adjacent regions is based on inelastic impact of spherical bodies. The derivation of this model is presented along with the background for selecting loading pressure based on explosive behavior. Three typical examples, including both cratering and bench geometries, are discussed which illustrate the use of this model to predict rubble motion. This engineering representation appears to provide a practical model for use in predicting rubble motion and a tool for design evaluation of blasting in confined geometries. 15 figures.

Schamaun, J.T.

1982-12-01T23:59:59.000Z

11

Engineering model for predicting rubble motion during blasting  

SciTech Connect

Recent applications of explosives and blasting agents to rubble rock have led to requirements for more elaborate design and analysis methods. In most blasting uses, it is necessary not only to fracture the rock, but also to move the broken rubble in a predictable manner. Many in situ extraction techniques require rubblization to take place in a confined region where rock motion is a predominate factor in creating a permeable broken bed. In this paper, an engineering model is presented which describes the large rubble motion during blasting. This model is intended to provide the blast designer with a tool for evaluation and further refinement of blasting patterns and timing sequences. In this model the rock medium is represented by a discrete series of circular regions of fractured material. These regions are set in motion by pressure loads from the explosive. The motion of the regions is calculated using a step-wise, explicit, numerical time integration method. Interaction of adjacent regions is based on inelastic impact of spherical bodies. The derivation of this model is presented along with the background for selecting loading pressure based on explosive behavior. Three typical examples, including both cratering and bench geometries, are discussed which illustrate the use of this model to predict rubble motion. This engineering representation appears to provide a practical model for use in predicting rubble motion and a tool for design evaluation of blasting in confined geometries. 15 figures, 1 table.

Schamaun, J.T.

1983-01-01T23:59:59.000Z

12

Waterproofing and Strengthening Volcanic Tuff in Waste Repositories  

Science Conference Proceedings (OSTI)

Waste repositories from surface trenches and shafts at Los Alamos to drilled tunnels at Yucca Mountain are being built in volcanic Tuff, a soft compacted material that is permeable to water and air. US Department of Energy documents on repository design identify the primary design goal of 'preventing water from reaching the waste canisters, dissolving the canisters and carrying the radioactive waste particles away from the repository'. Designers expect to achieve this by use of multiple barriers along with careful placement of the repository both well above the water table and well above the ground level in a mountain. Though repositories are located in areas that have a historically dry climate to minimize the impact of rainfall infiltration, global warming phenomena may have the potential to alter regional climate patterns - potentially leading to higher infiltration rates. Conventional methods of sealing fractures within volcanic tuff may not be sufficiently robust or long lived to isolate a repository shaft from water for the required duration. A new grouting technology based on molten wax shows significant promise for producing the kind of long term sealing performance required. Molten wax is capable of permeating a significant distance through volcanic tuff, as well as sealing fractures by permeation that is thermally dependent instead of chemically or time dependent. The wax wicks into and saturates tuff even if no fractures are present, but penetrates and fills only the heated area. Heated portions of the rock fill like a vessel. The taffy-like wax has been shown to waterproof the tuff, and significantly increase its resistance to fracture. This wax was used in 2004 for grouting of buried radioactive beryllium waste at the Idaho National Laboratory, chiefly to stop the water based corrosion reactions of the waste. The thermoplastic material contains no water and does not dry out or change with age. Recent studies indicate that this kind of wax material may be inherently resistant to bio-degradation. (authors)

Carter, E.E.; Carter, P.E. [Technologies Co, Texas (United States); Cooper, D.C. [Ph.D. Idaho National Laboratory, Idaho Falls, ID (United States)

2008-07-01T23:59:59.000Z

13

Explanation of Significant Difference (ESD) for the A-Area Burning/Rubble Pits (731-A/1A) and Rubble Pit (731-2A) (U)  

DOE Green Energy (OSTI)

The A-Area Burning/Rubble Pits (731-A/1A) and Rubble Pit (731-2A) (ABRP) operable unit (OU) is located in the northwest portion of Savannah River Site (SRS), approximately 2.4 kilometers (1.5 miles) south of the A/M Area operations. Between 1951 and 1973, Pits 731-A and 731-1A were used to burn paper, plastics, wood, rubber, rags, cardboard, oil, degreasers, and solvents. Combustible materials were burned monthly. After burning was discontinued in 1973, Pits 731-A and 731-1A were also converted to rubble pits and used to dispose of concrete rubble, bricks, tile, asphalt, plastics, metal, wood products, and rubber until about 1978. When the pits were filled to capacity, there were covered with compacted clay-rich native soils and vegetation was established. Pit 731-2A was only used as a rubble pit until 1983 after which the area was backfilled and seeded. Two other potential source areas within the OU were investigated and found to be clean. The water table aquifer (M-Area aquifer) was also investigated.

Morgan, Randall

2000-11-17T23:59:59.000Z

14

Characterization of the Burma Road Rubble Pit at the Savannah River Site, Aiken, South Carolina  

Science Conference Proceedings (OSTI)

The Burma Road Rubble Pit (BRRP) is located at the Savannah River Site (SRS). The BRRP unit consists of two unlined earthen pits dug into surficial soil and filled with various waste materials. It was used from 1973--1983 for the disposal of dry inert rubble such as metal, concrete, lumber, poles, light fixtures, and glass. No record of the disposal of hazardous substances at the BRRP has been found. In 1983, the BRRP was closed by covering it with soil. In September 1988, a Ground Penetrating Radar survey detected three disturbed areas of soil near the BRRP, and a detailed and combined RCRA Facility Investigation/Remedial Investigation was conducted from November 1993 to February 1994 to determine whether hazardous substances were present in the subsurface, to evaluate the nature and extent of contamination, and to evaluate the risks posed to the SRS facility due to activities conducted at the BRRP site. Metals, semi-volatile organic compounds, volatile organic compounds, radionuclides and one pesticide (Aldrin) were detected in soil and groundwater samples collected from seventeen BRRP locations. A baseline risk assessment (BRA) was performed quantitatively to evaluate whether chemical and radionuclide concentrations detected in soil and groundwater at the BRRP posed an unacceptable threat to human health and the environment. The exposure scenarios identifiable for the BRRP were for environmental researchers, future residential and occupational land use. The total site noncancer hazard indices were below unity, and cancer risk levels were below 1.0E-06 for the existing and future case environmental researcher scenario. The future case residential and occupational scenarios showed total hazard and risk levels which exceeded US EPA criterion values relative to groundwater scenarios. For the most part, the total carcinogenic risks were within the 1.0E-04 to 1.0E-06 risk range. Only the future adult residential scenario was associated with risks exceeding 1.0E-04.

Ward, K.G.; Frazier, W.L.; McAdams, T.D.; McFalls, S.L.; Rabin, M. [Westinghouse Savannah River Co., Aiken, SC (United States); Voss, L. [Westinghouse Savannah River Co., Aiken, SC (United States)]|[Neptune and Co., Los Alamos, NM (United States)

1996-05-01T23:59:59.000Z

15

System for producing a uniform rubble bed for in-situ processes  

DOE Patents (OSTI)

A method and a cutter are disclosed for producing a large cavity filled with a uniform bed of rubblized oil shale or other material, for in-situ processing. A raise drill head has a hollow body with a generally circular base and sloping upper surface. A hollow shaft extends from the hollow body. Cutter teeth are mounted on the upper surface of the body and relatively small holes are formed in the body between the cutter teeth. Relatively large peripheral flutes around the body allow material to drop below the drill head. A pilot hole is drilled into the oil shale deposit. The pilot hole is reamed into a large diameter hole by means of a large diameter raise drill head or cutter to produce a cavity filled with rubble. A flushing fluid, such as air, is circulated through the pilot hole during the reaming operation to remove fines through the raise drill, thereby removing sufficient material to create sufficient void space, and allowing the larger particles to fill the cavity and provide a uniform bed of rubblized oil shale.

Galloway, T.R.

1981-04-10T23:59:59.000Z

16

System for producing a uniform rubble bed for in situ processes  

DOE Patents (OSTI)

A method and a cutter for producing a large cavity filled with a uniform bed of rubblized oil shale or other material, for in situ processing. A raise drill head (72) has a hollow body (76) with a generally circular base and sloping upper surface. A hollow shaft (74) extends from the hollow body (76). Cutter teeth (78) are mounted on the upper surface of the body (76) and relatively small holes (77) are formed in the body (76) between the cutter teeth (78). Relatively large peripheral flutes (80) around the body (76) allow material to drop below the drill head (72). A pilot hole is drilled into the oil shale deposit. The pilot hole is reamed into a large diameter hole by means of a large diameter raise drill head or cutter to produce a cavity filled with rubble. A flushing fluid, such as air, is circulated through the pilot hole during the reaming operation to remove fines through the raise drill, thereby removing sufficient material to create sufficient void space, and allowing the larger particles to fill the cavity and provide a uniform bed of rubblized oil shale.

Galloway, Terry R. (Berkeley, CA)

1983-01-01T23:59:59.000Z

17

System for producing a uniform rubble bed for in situ processes  

DOE Patents (OSTI)

A method and a cutter are disclosed for producing a large cavity filled with a uniform bed of rubblized oil shale or other material, for in situ processing. A raise drill head has a hollow body with a generally circular base and sloping upper surface. A hollow shaft extends from the hollow body. Cutter teeth are mounted on the upper surface of the body and relatively small holes are formed in the body between the cutter teeth. Relatively large peripheral flutes around the body allow material to drop below the drill head. A pilot hole is drilled into the oil shale deposit. The pilot hole is reamed into a large diameter hole by means of a large diameter raise drill head or cutter to produce a cavity filled with rubble. A flushing fluid, such as air, is circulated through the pilot hole during the reaming operation to remove fines through the raise drill, thereby removing sufficient material to create sufficient void space, and allowing the larger particles to fill the cavity and provide a uniform bed of rubblized oil shale. 4 figs.

Galloway, T.R.

1983-07-05T23:59:59.000Z

18

Buildings Energy Data Book: 1.4 Environmental Data  

Buildings Energy Data Book (EERE)

2 2 Characteristics of U.S. Construction Waste - Two to seven tons of waste (a rough average of 4 pounds of waste per square foot) are generated during the construction of a new single-family detached house. - 15 to 70 pounds of hazardous waste are generated during the construction of a detached, single-family house. Hazardous wastes include paint, caulk, roofing cement, aerosols, solvents, adhesives, oils, and greases. - Each year, U.S. builders produce between 30 and 35 million tons of construction, renovation, and demolition (C&D) waste. - Annual C&D debris accounts for roughly 24% of the municipal solid waste stream. - Wastes include wood (27% of total) and other (73% of total, including cardboard and paper; drywall/plaster; insulation; siding; roofing; metal; concrete, asphalt, masonry, bricks, and dirt rubble; waterproofing materials; and

19

Results of Water and Sediment Toxicity Tests and Chemical Analyses Conducted at the Central Shops Burning Rubble Pit Waste Unit, January 1999  

SciTech Connect

The Central Shops Burning Rubble Pit Operable Unit consists of two inactive rubble pits (631-1G and 631-3G) that have been capped, and one active burning rubble pit (631-2G), where wooden pallets and other non-hazardous debris are periodically burned. The inactive rubble pits may have received hazardous materials, such as asbestos, batteries, and paint cans, as well as non-hazardous materials, such as ash, paper, and glass. In an effort to determine if long term surface water flows of potentially contaminated water from the 631-1G, 631-3G, and 631-2G areas have resulted in an accumulation of chemical constituents at toxic levels in the vicinity of the settling basin and wetlands area, chemical analyses for significant ecological preliminary constituents of concern (pCOCs) were performed on aqueous and sediment samples. In addition, aquatic and sediment toxicity tests were performed in accordance with U.S. EPA methods (U.S. EPA 1989, 1994). Based on the results of the chemical analyses, unfiltered water samples collected from a wetland and settling basins located adjacent to the CSBRP Operable Unit exceed Toxicity Reference Values (TRVs) for aluminum, barium, chromium, copper, iron, lead, and vanadium at one or more of the four locations that were sampled. The water contained very high concentrations of clay particles that were present as suspended solids. A substantial portion of the metals were present as filterable particulates, bound to the clay particles, and were therefore not biologically available. Based on dissolved metal concentrations, the wetland and settling basin exceeded TRVs for aluminum and barium. However, the background reference location also exceeded the TRV for barium, which suggests that this value may be too low, based on local geochemistry. The detection limits for both total and dissolved mercury were higher than the TRV, so it was not possible to determine if the TRV for mercury was exceeded. Dissolved metal levels of chromium, copper, iron, lead and vanadium were below the TRVs. Metal concentrations in the sediment exceeded the TRVs for arsenic, chromium, copper, and mercury but not for antimony and lead. The results of the water toxicity tests indicated no evidence of acute toxicity in any of the samples. The results of the chronic toxicity tests indicated possible reproductive impairment at two locations. However, the results appear to be anomalous, since the toxicity was unrelated to concentration, and because the concentrations of pCOCs were similar in the toxic and the non-toxic samples. The results of the sediment toxicity tests indicated significant mortality in all but one sample, including the background reference sediment. When the results of the CSBRP sediment toxicity tests were statistically compared to the result from the background reference sediment, there was no significant mortality. These results suggest that the surface water and sediment at the CSBRP Operable Unit are not toxic to the biota that inhabit the wetland and the settling basin.

Specht, W.L.

1999-06-02T23:59:59.000Z

20

An analysis of residential window waterproofing systems  

E-Print Network (OSTI)

The prevalence of vinyl nail-on windows in the North American new home construction market has prompted ASTM International to write ASTM E2112-01 "Standard Practice for Installation of Exterior Windows, Doors and Skylights". ...

Parsons, Austin, 1959-

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dirt rubble waterproofing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

An analysis of residential window waterproofing systems.  

E-Print Network (OSTI)

??The prevalence of vinyl nail-on windows in the North American new home construction market has prompted ASTM International to write ASTM E2112-01 "Standard Practice for (more)

Parsons, Austin, 1959-

2004-01-01T23:59:59.000Z

22

Hitting Pay Dirt with Copper Mining Waste - Materials Technology ...  

Science Conference Proceedings (OSTI)

Aug 24, 2010 ... They also typically add copper, which retards the growth of algae, moss, and lichen. The Michigan team believes the stamp sand could prove...

23

Out of Ashes and Rubble: The Pirelli Tower  

E-Print Network (OSTI)

tower was novel, experimental architecture because it was the first skyscraper to be built in Italy; it was an extremely tall

Ziegler, Claudia J.

2009-01-01T23:59:59.000Z

24

Measure Guideline: Hybrid Foundation Insulation Retrofits  

Science Conference Proceedings (OSTI)

This measure guideline provides recommendations for designs and variations for retrofit hybrid assemblies in improving interior foundation insulation and water management of basements. Variations include closed cell spray foam (ccSPF) with membrane waterproofing or air gap membrane drainage layers, rigid board foam insulation at flat walls (cast concrete or CMU block), a 'partial drainage' detail making use of the bulk water drainage that occurs through the field of a rubble stone wall, and non-drained spray foam assemblies (including slab insulation).

Ueno, K.; Lstiburek, J.

2012-05-01T23:59:59.000Z

25

Dirt feedlot residue experiments. Quarterly progress report, October 1, 1977--November 30, 1977  

DOE Green Energy (OSTI)

Progress is reported in development of a mobile fermentation system at the Monfort feedlot. Continued use was made of aged pen 307 residue at a nominal loading rate of 0.25 pounds volatile solids/ft/sup 3//day along with a 10-day retention time and an operating temperature of 57/sup 0/C for the purpose of establishing comparative yields. The ten-day running average of specific methane yield increased to an indicated yield of 3.0 ft/sup 3/ CH/sub 4//No. volatile solids representing approximately 75 percent of that obtained from the fresh residue. During this entire period no attempts at controlling total volatile acid concentration were made. Preliminary investigation of the centrifuge capture efficiency was begun. (JGB)

Turk, M.

1977-01-01T23:59:59.000Z

26

Getting the dirt on mud MHERST (AP) -There's something shocking going on in  

E-Print Network (OSTI)

and the second photon shutter assembly drawings. Both shutters have the same configuration employing a "hockey. The hockey stick absorber blade is hinged from both ends (Figs. 8 and 9), and the complete assembly can

Lovley, Derek

27

Dirt feedlot residue experiments. Quarterly progress report, December 1977--March 1978  

DOE Green Energy (OSTI)

Performance of the mobile fermentation system is reported. It made use of aged pen residue at the nominal loading rate of 0.25 lbs. volatile solids/ft./sup 3//day with a 10-day retention time and a fermentation temperature of 57/sup 0/C. Results of an experimental cattle feeding trial utilizing the protein in the fermentor liquid effluent as a replacement for standard protein supplements were encouraging. The evaluation of the capture efficiency of the system centrifuge both with and without a chemical flocculant was completed. An experimental cattle feeding trial utilizing the protein fermentation product (PFP) harvested by the centrifuge as replacement for the standard protein supplementwas initiated. The characterization of the cattle residues found in various cattle pens, feedlots, and locations was continued. An investigation was initiated into methods of separating the organic content of the feedlot residue from the sand and grit content. (JGB)

Turk, M.

1978-04-01T23:59:59.000Z

28

Challenge of efficiently retorting very nonuniform beds of oil shale rubble  

DOE Green Energy (OSTI)

Recent experimental pilot scale retort work has shown significant declines in oil recovery yield as the size of the shale block increases. Current analyses of the problem are reviewed, together with experimental evidence for the key fluid mechanical, heat transfer and mass transfer processes that cause these lower yields. It is found that loss in retort oil yield is dominated by the flow patterns in the matrix material around the large blocks and by the thermal transient characteristics within the blocks. The principal mechanism appears to be burning and cracking of the produced oil in the gas phase near the larger shale blocks. The use of process control methods involving air/steam ratio, total flow, and flow variations coupled with monitored exit gas composition appears feasible to maximize oil production.

Galloway, T.R.

1979-03-16T23:59:59.000Z

29

GeoHealth Laboratory Research & Applications  

E-Print Network (OSTI)

process. #12;27 Precautions were taken to waterproof the foam cone. A sealant was sprayed upon the cone

Hickman, Mark

30

Cleaning of Workpieces  

Science Conference Proceedings (OSTI)

...and the filler metal. Shop dirt, paint, grease, oil, machine lubricants, processing chemicals, temperature-indicating sticks, marking crayons, oxide

31

Woodmont Enterprises LLC | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

adoption of our waterproofing coating solution. Woodmont has been working with other polymer-based coatings that were costly. We were introduced to the technology transfer...

32

Historical change in coral reef communities in Caribbean Panama  

E-Print Network (OSTI)

coral rubble analyzed for offshore and lagoonal sites. Analysis of species proportions, offshore and lagoonal106 Figure 2.5. Offshore sites, Bocas del Toro. Mean

Cramer, Katie Lynn

2011-01-01T23:59:59.000Z

33

CX-010400: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Engineered Rubble Pile for Training Exercises at the Hazardous Materials Management and Emergency Response Training and Education Facility CX(s) Applied: B1.15 Date: 05162013...

34

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

May 19, 2009... by making the surfaces self-cleaning, which enables rain or dew to wash away the dust and dirt that can accumulate on photovoltaic arrays.

35

Michael Rybowiak  

Science Conference Proceedings (OSTI)

... A few of the novel devices he has made are shown here. Mike enjoys all kinds of outdoor activities: camping, fishing, dirt biking and gardening. ...

2012-10-01T23:59:59.000Z

36

The Xirrus Wi-Fi Array XS4, XS8 Security Policy Xirrus, Inc.  

Science Conference Proceedings (OSTI)

... Production-grade components and production-grade opaque ... dirt, or oil. ... The security strap should be pulled tight to disallow turning of the mounting ...

2011-04-01T23:59:59.000Z

37

The Xirrus Wi-Fi Array XN4, XN8, XN12, XN16 Security Policy ...  

Science Conference Proceedings (OSTI)

... Production?grade components and production?grade opaque ... the surface area of any grease, dirt, or oil. ... strap should be pulled tight to disallow ...

2011-05-05T23:59:59.000Z

38

Controlled Atmospheres  

Science Conference Proceedings (OSTI)

...for the removal of oxides, coatings, grease, oil, dirt, or other foreign materials from the parts to be brazed. All parts for brazing must be subjected to

39

FIPS 140-2 Security Policy CEP100, CEP100 VSE, CEP100 ...  

Science Conference Proceedings (OSTI)

... Copyright 2012, Certes Networks Inc. All rights reserved. ... 2. Clean the CEP of any grease, dirt or oil before applying the tamper evident labels. . ...

2012-08-29T23:59:59.000Z

40

FIPS 140-2 Security Policy CEP10 VSE, CEP10-R, and ...  

Science Conference Proceedings (OSTI)

... Copyright 2012, CipherOptics Inc. All rights reserved. ... 2. Clean the CEP of any grease, dirt or oil before applying the tamper evident labels. . ...

2012-09-06T23:59:59.000Z

Note: This page contains sample records for the topic "dirt rubble waterproofing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... sample analysis system - Three complex samples that can be successfully analyzed by the technique: (b) whole milk, (c) dirt and (d) coal fly ash. ...

42

Tech Beat November 17, 2009  

Science Conference Proceedings (OSTI)

... Photographs at bottom show three complex samples that can be successfully analyzed by the technique: (b) whole milk, (c) dirt and (d) coal fly ash. ...

2010-11-05T23:59:59.000Z

43

'No Muss, No Fuss' Miniaturized Analysis for Complex ...  

Science Conference Proceedings (OSTI)

... Photographs at bottom show three complex samples that can be successfully analyzed by the technique: (b) whole milk, (c) dirt and (d) coal fly ash. ...

2012-10-15T23:59:59.000Z

44

High Level Waste System at SRS  

Tank Under Construction Tanks are built at grade and then backfilled with dirt to provide ... Hanford discussion. 2005-01-19 2005-01-19 HLW Overview ...

45

Nexus 7000 10 Slot FIPS 140-2 Non-Proprietary Security ...  

Science Conference Proceedings (OSTI)

... ports provided by the module are mapped to four ... Of Service (COS) value for a control plane policy map. ... of any grease, dirt, or oil before applying ...

2012-07-18T23:59:59.000Z

46

Huawei Technologies Co  

Science Conference Proceedings (OSTI)

... SFP+ Enhanced Small Form-Factor Pluggable ... business continuity and disaster recovery sites, metropolitan ... any grease, dirt, or oil before applying ...

2013-03-19T23:59:59.000Z

47

FOS 4.3.6 FG-5000 Series FIPS Level 2 Security Policy.book  

Science Conference Proceedings (OSTI)

... OT Reserved for future use. ... The surfaces should be cleaned with 99% Isopropyl alcohol to remove dirt and oil before applying the seals. ...

2013-10-22T23:59:59.000Z

48

HP MSR30/50 Routers with Encryption Accelerator Modules  

Science Conference Proceedings (OSTI)

... 1 The RS-232/485 interfaces is reserved and not supported at present. ... Officer shall clean the module of any grease, dirt, or oil before applying the ...

2013-10-21T23:59:59.000Z

49

Schwertmannite and Fe oxides formed by biological low-pH Fe(II) oxidation versus abiotic neutralization: Impact  

E-Print Network (OSTI)

of a composite breakwater where a monolithic vertical concrete caisson rests on a rubble mound foundation has been attributed to experience and continued research. The con- ventional rubble mound breakwaters). However, economic benefits of composite breakwaters are realized as the water depth in- creases and also

Borch, Thomas

50

Effective Modeling of Urban Water Systems, Monograph 13. W. James, K . N. Irvine, E. A. McBean & R.E. Pitt, Eds. ISBN 0-9736716-0-2 CHI 2004. www.computationalhydraulics.com  

E-Print Network (OSTI)

traffic and a residential street with light traffic in Toronto were monitored about twice a week for three the accumulation characteristics of street dirt. One of the first research studies to attempt to measure street purpose of this early EPA-funded research project was to investigate the role of street dirt as a water

Pitt, Robert E.

51

aps_safey_notice_LN2.qxp  

NLE Websites -- All DOE Office Websites (Extended Search)

all PPE and cryogenic equip- ment prior to use. 2. Wear safety glasses and a face shield. 3. Wear waterproof, loose-fitting, cryo- genic gloves. 4. Wear cuffless pants and...

52

Seagate Crystal Reports - RADCM  

Office of Environmental Management (EM)

Illinois Illinois SITE: Argonne-E PROGRAM: EM WASTE TYPE: Low Level Waste OPERATIONS OFFICE: Chicago Operations Office % of Stream Argonne-E - Low Level Waste - LLW-Contaminated Rubble/Debris WASTE STREAM CODE: 01133 STREAM NAME:LLW-Contaminated Rubble/Debris MPC NAME:Asphalt Debris TOTAL CURIES: Approved Volume : 400.000 Future Volume Avg: 50.000 Future Volume Lower Limit: Future Volume Upper Limit: STATE: Illinois SITE: Argonne-E PROGRAM: EM WASTE TYPE: Mixed Low Level Waste OPERATIONS OFFICE: Chicago Operations Office % of Stream Argonne-E - Mixed Low Level Waste - MLLW-Contaminated D&D Rubble/Debris (Metals) WASTE STREAM CODE: 01134 STREAM NAME:MLLW-Contaminated D&D Rubble/Debris (Metals) MPC NAME:Elemental Hazardous Metals TOTAL CURIES: Approved Volume : 49.110 Future Volume Avg: 64.900

53

Mercury Species and Other Selected Constituent Concentrations in Water, Sediment, and Biota of  

E-Print Network (OSTI)

with gravel and some asphalt pavement and used to store bulk materials. About 0.012 km2 in the central PSNS, rubble, spent abrasive grit ("blaster sand" and copper slag), and dredged sediment. In 1998, this area

54

Aquatic Habitat Institute An Assessment of The Loading  

E-Print Network (OSTI)

with gravel and some asphalt pavement and used to store bulk materials. About 0.012 km2 in the central PSNS, rubble, spent abrasive grit ("blaster sand" and copper slag), and dredged sediment. In 1998, this area

55

U.S. Department of Energy Categorical Exclusion ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Well ASH-06 Tie-In to A-Area Burning Rubble Pit (ABRP) Soil Vapor Extraction Unit (SVEU) Savannah River Site AikenAikenSouth Carolina Well number ASH-06 Tie-In to the A-Area...

56

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Download CX-010140: Categorical Exclusion Determination Well ASH-06 Tie-In to A-Area Burning Rubble Pit (ABRP) Soil Vapor Extraction Unit (SVEU) CX(s) Applied: B6.1 Date: 0307...

57

CX-010140: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-010140: Categorical Exclusion Determination Well ASH-06 Tie-In to A-Area Burning Rubble Pit (ABRP) Soil Vapor Extraction Unit (SVEU) CX(s) Applied: B6.1 Date: 0307...

58

HANFORD DECOMMISSIONING UPDATE 09/2007  

SciTech Connect

Fluor Hanford's K Basins Closure (KBC) Project tallied three major accomplishments at the U.S. Department of Energy's (DOE's) Hanford Site in Southeastern Washington State this past summer. The Project finished emptying the aging K East Basin of both sludge and the last pieces of scrap spent nuclear fuel. It also Completed vacuuming the bulk of the sludge in the K West Basin into underwater containers. The 54-year-old concrete basins once held more than four million pounds of spent nuclear fuel and sit less than 400 yards from the Columbia River. Each basin holds more than a million gallons of radioactive water. In 2004, Fluor finished removing all the spent nuclear fuel from the K Basins. Nearly 50 cubic meters of sludge remained--a combination of dirt, sand, small pieces of corroded uranium fuel and fuel cladding, corrosion products from racks and canisters, ion-exchange resin beads, polychlorinated biphenyls, and fission products that had formed during the decades that the spent nuclear fuel was stored underwater. Capturing the sludge into underwater containers in the K East Basin took more than two years, and vacuuming the much smaller volume of sludge into containers in the K West Basin required seven months. Workers stood on grating above the basin water and vacuumed the sludge through long, heavy hoses. The work was complicated by murky water and contaminated solid waste (debris). Pumping was paused several times to safely remove and package debris that totaled more than 370 tons. In October 2006, Fluor Hanford workers began pumping the sludge captured in the K East Basin containers out through a specially designed pipeline to underwater containers in the K West Basin, about a half mile away. They used a heavy but flexible, double-walled ''hose-in-hose'' system. Pumping work progressed slowly at first, but ramped up in spring 2007 and was completed on May 31. Just a week before sludge transfers finished, the KBC Project removed the last few small pieces of irradiated fuel (about 19 pounds) found as the last remnants of sludge were vacuumed up. The fuel was loaded into a cask that sat underwater. The cask was hoisted out of the water, decontaminated, and transported to the K West Basin, where it is now being stored underwater until it can be dried and taken to storage in central Hanford. Removing the sludge and fuel from the K East Basin eliminated the final major radioactive sources there, and made the Columbia River and the adjacent environment safer for everyone who lives downstream. Fluor's priority at the K East Basin quickly turned to final preparations for demolishing the structure. Final activities to sort debris are progressing, along with plans to de-water the basin and turn it to rubble in the next two years. At the K West Basin, after the bulk sludge was removed July 3, workers began preparing to load out the last of the ''found'' nuclear fuel and to complete final pass sludge collection this coming year.

GERBER, M.S.

2007-08-20T23:59:59.000Z

59

One West Third Street Tulsa Oklahoma  

NLE Websites -- All DOE Office Websites (Extended Search)

a bit surprised to see trees, and quite a few of them. She had expected little more than sand and dirt. A short time later, during her processing, she took notice of and was...

60

AOCS Official Method Ca 3a-46  

Science Conference Proceedings (OSTI)

Insoluble Impurities AOCS Official Method Ca 3a-46 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION This method determines dirt, meal, and other foreign substance

Note: This page contains sample records for the topic "dirt rubble waterproofing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Clothing that is brought back home should be washed several times before packing to  

E-Print Network (OSTI)

disinfectant at least twice, and dry on the hot setting. 5. Ways you can help keep foreign animal diseases away as listed on back page. 2. Remove any organic matter (dirt, manure) from luggage, cameras, cell phones

Bolding, M. Chad

62

IN TECHNOLOGY /MEDIA /POLITICS SCIENCE /BUSINESS  

E-Print Network (OSTI)

MICROSCOPY VISUALISATIONS RENDERED BY JURGEN ZIEWE S C I E N C E 300 NANOMETRES SCALE 440 VANADIUM PENTOXIDE that these tiny pieces of carbon help loosen crystallised fat and dirt from surfaces. This increases

Herz, Laura M.

63

Photon Sciences Directorate | 2010 Annual Report | Year In Review  

NLE Websites -- All DOE Office Websites (Extended Search)

Year In Review The NSLS-II construction site transformed from a field of dirt to a fully formed steel ring half a mile in circumference, a new education program introduced a...

64

TTUS FP&C Design & Building Standards Division 7 Thermal & Moisture Protection  

E-Print Network (OSTI)

TTUS FP&C Design & Building Standards Division 7 ­ Thermal & Moisture Protection Division for this project. Exterior Insulation and Finish Systems (EIFS) are not allowed without permission from the TTUS & Building Standards Division 7 ­ Thermal & Moisture Protection Bituminous Waterproofing Surfaces

Gelfond, Michael

65

Porous insulation in HVAC systems  

Science Conference Proceedings (OSTI)

Porous insulation used to line the air stream surfaces of HVAC equipment provides a locus for the accumulation of dirt and debris. Dirt and debris are hydrophilic and the insulation on the air stream surfaces of mechanical cooling systems thus provides a niche for mold growth. The mold growing on porous insulation unlike moldy debris on a hard surface such as sheetmetal cannot be removed by duct cleaning. Actions for proactively preventing biocontamination of HVAC insulation include the following. (1) Porous insulation shall not be used to line the air stream surfaces of HVAC plenums where wetting is likely such as in the vicinity of cooling coils

Philip R. Morey

1995-01-01T23:59:59.000Z

66

A GUIDE TO ECOLOGICAL AND POLITICAL ISSUES SURROUNDING  

E-Print Network (OSTI)

to the existing harbor at Port Lions, Alaska, provides a new rubble- mound breakwater, 1,360 feet in length to obtain the projected navigation benefits, including GNF; lands, easements, rights-of-way, and relocations cost of $1,000. Equivalent annual benefits are estimated at $884,000, for a benefit-to-cost ratio of 1

Love, Milton

67

A publication of the Department of Geology  

E-Print Network (OSTI)

of the Strawberry River, in section 22, T. 2 S, R. 12 W. In addition to limestone, tan and red quartzose sand- stone, with float and rubble of sand- stone predominant. Orthoquartzite and limestone are gen- erally more resistant and friable, and at times calcareous. Orthoquartzites are hard and tight and appear to comprise most

Seamons, Kent E.

68

4 Acoustic Wave Biosensor: Rapid Point-of-Care Medical Diagnostics  

E-Print Network (OSTI)

Securing a peaceful and free world through technologyFront Cover: Sandias GEMINI-Scout Mine Rescue Robot is equipped to handle any number of obstacles, including rubble piles and flooded rooms, to help rescuers reach trapped miners safely and efficiently.

unknown authors

2012-01-01T23:59:59.000Z

69

Preliminary concept Post-Piledriver Exploratory Program  

SciTech Connect

This is the concept for a series of post-shot investigations at the Piledriver site, Area 15, Nevada Test Site (NTS), to gain information on: Chimney geometry and associated wall rock conditions resulting from a deeply buried (1500 ft) nuclear explosion in granite; The characteristics and distribution of rubble and radioactivity in the chimney; and Data pertinent to in-situ leaching.

Nordyke, M. D.

1966-10-13T23:59:59.000Z

70

Fire and explosion hazards of oil shale  

SciTech Connect

The US Bureau of Mines publication presents the results of investigations into the fire and explosion hazards of oil shale rocks and dust. Three areas have been examined: the explosibility and ignitability of oil shale dust clouds, the fire hazards of oil shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles. 10 refs., 54 figs., 29 tabs.

1989-01-01T23:59:59.000Z

71

Method for rubblizing an oil shale deposit for in situ retorting  

DOE Patents (OSTI)

A method for rubblizing an oil shale deposit that has been formed in alternate horizontal layers of rich and lean shale, including the steps of driving a horizontal tunnel along the lower edge of a rich shale layer of the deposit, sublevel caving by fan drilling and blasting of both rich and lean overlying shale layers at the distal end of the tunnel to rubblize the layers, removing a substantial amount of the accessible rubblized rich shale to permit the overlying rubblized lean shale to drop to tunnel floor level to form a column of lean shale, performing additional sublevel caving of rich and lean shale towards the proximate end of the tunnel, removal of a substantial amount of the additionally rubblized rich shale to allow the overlying rubblized lean shale to drop to tunnel floor level to form another column of rubblized lean shale, similarly performing additional steps of sublevel caving and removal of rich rubble to form additional columns of lean shale rubble in the rich shale rubble in the tunnel, and driving additional horizontal tunnels in the deposit and similarly rubblizing the overlying layers of rich and lean shale and forming columns of rubblized lean shale in the rich, thereby forming an in situ oil shale retort having zones of lean shale that remain permeable to hot retorting fluids in the presence of high rubble pile pressures and high retorting temperatures.

Lewis, Arthur E. (Los Altos, CA)

1977-01-01T23:59:59.000Z

72

The twentieth oil shale symposium proceedings  

Science Conference Proceedings (OSTI)

This book contains 20 selections. Some of the titles are: The technical contributions of John Ward Smith in oil shale research; Oil shale rubble fires: ignition and extinguishment; Fragmentation of eastern oil shale for in situ recovery; A study of thermal properties of Chinese oil shale; and Natural invasion of native plants on retorted oil shale.

Gary, J.H.

1987-01-01T23:59:59.000Z

73

OVERVIEW OF ASSESSMENT PROBLEM FORMULATION 149 Figure 4.19 Stilling well at Bellevue flow monitoring Figure 4.20 Level recorder at Bellevue flow monitor  

E-Print Network (OSTI)

, which is heavily canopied along most of its length, can be considered light-limited. Maximum fish growth, Corvallis Environ mental Research Laboratory, Corvallis, OR. 1982.) #12;154 STORMWATER EFFECTS HANDBOOK, while the street dirt PAHs are from petroleum product spills. In August of 1980, ash from the eruption

Pitt, Robert E.

74

Plastron Shielding Technologies Liquid Repellent Surface Coating  

E-Print Network (OSTI)

elastic materials such as polymers, carbon nanotubes or ceramic nanofibers. The surfaces repel dirt recognize neither international sales nor expansion into the many other signifi- cant industrial for raising money from targeted industry companies and customizing the technology for its industry market

Jawitz, James W.

75

Drill Rig Safety Topics of the Presentation  

E-Print Network (OSTI)

· Check oil level daily -engine oil & coolant -compressor air/oil tank -hydraulic tank -pump oil (water injection, mud, etc.) -pump drive gearboxes · Grease daily (must purge dirt) ­ Floating Sub ­ Rollers ­ Air · Fuel and Oil Leaks · Hose Leaks and Failures · Electrical · Smoking #12;Schramm Electrical Safety

76

F A C I L I T I E S M A N A G E M E N T A N D O P E R A T I O N S C E N T E R Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of  

E-Print Network (OSTI)

15401 Plumbing June 9, 2011 Revision 0 SAND 2011-3946P This document has been reviewed by a Derivative they are free of dirt and grit, and are well lubricated. 3 Run-up all nuts finger tight. 4 Develop the required. The joints must be made perfectly tight by the use of Teflon tape or approved Teflon thread sealing

77

Radiochronological Age of a Uranium Metal Sample from an Abandoned Facility  

SciTech Connect

A piece of scrap uranium metal bar buried in the dirt floor of an old, abandoned metal rolling mill was analyzed using multi-collector inductively coupled plasma mass spectroscopy (MC-ICP-MS). The mill rolled uranium rods in the 1940s and 1950s. Samples of the contaminated dirt in which the bar was buried were also analyzed. The isotopic composition of uranium in the bar and dirt samples were both the same as natural uranium, though a few samples of dirt also contained recycled uranium; likely a result of contamination with other material rolled at the mill. The time elapsed since the uranium metal bar was last purified can be determined by the in-growth of the isotope {sup 230}Th from the decay of {sup 234}U, assuming that only uranium isotopes were present in the bar after purification. The age of the metal bar was determined to be 61 years at the time of this analysis and corresponds to a purification date of July 1950 {+-} 1.5 years.

Meyers, L A; Williams, R W; Glover, S E; LaMont, S P; Stalcup, A M; Spitz, H B

2012-03-16T23:59:59.000Z

78

PHYSICS DIVISION ESH BULLETIN 11-03  

E-Print Network (OSTI)

. Flying fragments, objects, large chips, particles, sand, dirt, etc. Spectacles with side protection). High temperature exposure Screen face shields, reflective face shields. See notes (1), (2), (3). CHEMICALS ­ Acid and chemical handling, use of cleaning products, paint use and clean-up products, pesticide

79

Registered Student Organizations Resource Guide  

E-Print Network (OSTI)

, focus on encouraging brake pad manufacturers to reduce the use of copper. The effectiveness of most system. The road dust and dirt quality is affected by vehicle fluid drips and spills (e.g., gasoline, oils) and vehicle exhaust, along with various vehicle wear, local soil erosion, and pavement wear

80

Furniture Care and Handling http://www.si.edu/mci/english/learn_more/taking_care/index.html  

E-Print Network (OSTI)

dirt and oil residue, scrubbing the piece with a soft bristle brush. After drying, the surface can Preserving the furniture contributes to the future understanding of our particular moment in history in introducing silicone oils and other contaminants onto furniture. In addition, they may contain solvents

Mathis, Wayne N.

Note: This page contains sample records for the topic "dirt rubble waterproofing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Young Jack Pine Site  

NLE Websites -- All DOE Office Websites (Extended Search)

NSA-YJP) The hut, tent, and dirt road from the flux tower The sun photometer on top of the hut The bottom of the YJP flux tower NSA-YJP taken at a low sun angle to show the subtle...

82

High Speed Rotational Motor Unit with Optimized Couplant Feed System for Ultrasonic Examination of Steam Generator Tubes  

Science Conference Proceedings (OSTI)

A high-speed rotational motor unit was designed and built to increase the ultrasonic data acquisition speed of steam generator tube examination in field applications. Rotational and couplant delivery speeds were optimized as they have a significant impact on data acquisition speed. The motor unit was designed to be waterproof and to move couplant (water) to the ultrasonic search unit in an efficient manner. Lessons learned from design and operations of laboratory motors were applied to this design. The r...

2005-11-15T23:59:59.000Z

83

Condition Assessment Survey (CAS) Program. Deficiency standards and inspections methods manual: Volume 1, 0.01 Foundations and footings  

SciTech Connect

General information is presented for asset determinant factor/CAS repair codes/CAS cost factors; guide sheet tool & material listing; testing methods; inspection frequency; standard system design life tables; system work breakdown structure; and general system/material data. Deficiency standards and inspection methods are given for footings - spread/strip/grade beams; foundation walls; foundation dampproofing/waterproofing; excavation/backfill/ and piles & caissons.

Not Available

1993-05-01T23:59:59.000Z

84

Rob Roy`s earthwood home  

Science Conference Proceedings (OSTI)

This article describes a 2,000 square foot house near the Canadian border, heated for $75 during the winter and maintaining a steady temperature. Among the design characteristics discussed are the following: round shape; earth sheltering; cordwood masonry; insulation and thermal mass; solar orientation; masonry stove; burning waste wood; floating slab foundation; surface bonded blocks; post and beam octoagon; waterproofing walls; drainage; earth roof.

Roy, R. [Earthwood Building School, West Chazy, NY (United States)

1995-04-01T23:59:59.000Z

85

Confined volume blasting experiments: Description and analysis  

SciTech Connect

A series of bench-scale blasting experiments was conducted to produce rubble beds for use in retorting experiments. The experiments consisted of blasting oil shale with explosives within a confined volume containing 25% void. A variety of blasting geometries was used to control the fragment size distribution and void distribution in the rubble. The series of well controlled tests provided excellent data for use in validating rock fragmentation models. Analyses of the experiments with PRONTO, a dynamic finite element computer code, and a newly developed fracturing model provided good agreement between code predictions and experimental measurements of fracture extent and fragment size. CAROM, a dynamic distinct element code developed to model rock motion during blasting, was used to model the fully fragmented tests. Calculations of the void distribution agreed well with experimentally measured values. 9 refs., 11 figs., 1 tab.

Gorham-Bergeron, E.; Kuszmaul, J.S.; Bickel, T.C.; Shirey, D.L.

1987-01-01T23:59:59.000Z

86

Seagate Crystal Reports - RADCM  

Office of Environmental Management (EM)

Idaho Idaho SITE: Argonne-W PROGRAM: EM WASTE TYPE: Low Level Waste OPERATIONS OFFICE: Chicago Operations Office % of Stream Argonne-W - Low Level Waste - Phyto-Remediation Residuals WASTE STREAM CODE: 01181 STREAM NAME:Phyto-Remediation Residuals MPC NAME:Debris W aste TOTAL CURIES: Approved Volume : 1.800 Future Volume Avg: 0.000 Future Volume Lower Limit: Future Volume Upper Limit: % of Stream Argonne-W - Low Level Waste - LLW Contaminated Rubble/Debris WASTE STREAM CODE: 04081 STREAM NAME:LLW Contaminated Rubble/Debris MPC NAME:Debris W aste TOTAL CURIES: Approved Volume : 0.000 Future Volume Avg: 40.000 Future Volume Lower Limit: Future Volume Upper Limit: STATE: Idaho SITE: Argonne-W PROGRAM: EM WASTE TYPE: Mixed Low Level Waste OPERATIONS OFFICE: Chicago Operations Office

87

Remaining Sites Verification Package for the 100-B-18, 184-B Powerhouse Debris Pile, Waste Site Reclassification Form 2007-020  

SciTech Connect

The 100-B-18 Powerhouse Debris Pile contained miscellaneous demolition waste from the decommissioning activities of the 184-B Powerhouse. The debris covered an area roughly 15 m by 30 m and included materials such as concrete blocks, mixed aggregate/concrete slabs, stone rubble, asphalt rubble, traces of tar/coal, broken fluorescent lights, brick chimney remnants, and rubber hoses. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2007-11-30T23:59:59.000Z

88

Gas seal for an in situ oil shale retort and method of forming thermal barrier  

DOE Patents (OSTI)

A gas seal is provided in an access drift excavated in a subterranean formation containing oil shale. The access drift is adjacent an in situ oil shale retort and is in gas communication with the fragmented permeable mass of formation particles containing oil shale formed in the in situ oil shale retort. The mass of formation particles extends into the access drift, forming a rubble pile of formation particles having a face approximately at the angle of repose of fragmented formation. The gas seal includes a temperature barrier which includes a layer of heat insulating material disposed on the face of the rubble pile of formation particles and additionally includes a gas barrier. The gas barrier is a gas-tight bulkhead installed across the access drift at a location in the access drift spaced apart from the temperature barrier.

Burton, III, Robert S. (Mesa, CO)

1982-01-01T23:59:59.000Z

89

Chemical processing in geothermal nuclear chimney  

DOE Patents (OSTI)

A closed rubble filled nuclear chimney is provided in a subterranean geothermal formation by detonation of a nuclear explosive device therein, with reagent input and product output conduits connecting the chimney cavity with appropriate surface facilities. Such facilities will usually comprise reagent preparation, product recovery and recycle facilities. Proccsses are then conducted in the nuclear chimney which processes are facilitated by temperature, pressure, catalytic and other conditions existent or which are otherwise provided in the nuclear chimney. (auth)

Krikorian, O.H.

1973-10-01T23:59:59.000Z

90

Waste Management Programmes in Response to Large Disasters  

E-Print Network (OSTI)

a ...the re-use of materials salvaged from damaged buildings should be promoted where feasible, either as primary construction materials (bricks or stone masonry, roof timber, roof tiles, etc.) or as secondary material (rubble for foundations or levelling roads, etc.). SPHERE Handbook, Shelter and Settlement, Standard 5: Construction, Guidance note 1, 2004 ...the production and supply of construction material and the building process minimises the long-term depletion of natural resources.

Joseph Ashmore; Maoya Bassiouni; Martin Bjerregard; Tom Corsellis; Igor Fedotov; Heiner Gloor

2004-01-01T23:59:59.000Z

91

NEPA COMPLIANCE SURVEY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 Project Information Project Title: Repair flowline at 83-AX-4 Date: 2-17-2010 DOE Code: Contractor Code: Project Lead: Bernard Winfrey Project Overview 1. What are the environmental Repair a flowline leak and test the line at 83-AX-4. Dug up pipeline, will backfill with clean fi ll dirt. Oil impacts? contaminated soil will be hauled to the east side landfarm and clean dirt will be brought in from section 20. 2. What is the legal location? 83-AX-4, N43 17'40.5" w. 10612'46.0" 3. What is the duration of the project? Approximately 2 days 4. What major equipment will be used if any (work over rig, drilling rig, Backhoe with operator and one to three workers. etc.)? The table below is to be completed by the Project Lead and reviewed by the Environmental Specialist and the DOE NEPA

92

U.S. Department of Energy Office of Legacy Management National Envkonmental Policy Act Environmental Checklist  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- - 19-10 U.S. Department of Energy Office of Legacy Management National Envkonmental Policy Act Environmental Checklist Project/Activity: Drill one exploratory hole on L.T. c-WM-17 by Golden Eagle Uranium A. Brief Project! Activity Descl'iptioll Golden Eagle Uranium (LLC) proposes to drill one 5-inch-diameter exploratory borehole on U.S. Department of Energy (DOE) lease tract C-WM-17, located in western Montrose County, Colorado. The drilling would be completed by a truck-mounted rotary drill rig capable of boring to 1,000 feet (ft) below ground surface (bgs). The proposed location of the drill hole is in a previously disturbed area and is adjacent to a two-track dirt road. Access to the site would be on existing dirt roads. The drilling would be completed dry to an estimated depth of 550 ft bgs. Once data are collected, the hole

93

NEPA COMPLIANCE SURVEY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Project lnfonnation Project Title: C-EA 3. Dirt work in the specified areas that have been previously and substantially disturbed Date: 617/2011 DOE Code: Contractor Code: Project Lead: Michael J. Taylor [NCO] Project Overview 1 . Brief project description [include anything that could impact the environment] 2. Legallocation 3. Duration of the project 4. Major equipment to be used C-EA 3. Dirt work in the specified areas that have been previously and substantially disturbed: ex 81.3 Includes previously-bladed areas immediately within "only" the following facilities as defined by the May 2010 Aerial Photos: B-1-3 B-1-1 0 B-2-10 T-1-11 B-1-20 T-2-34 T-5-3 South Terminal Car Wash (SG2) SG4 ESS&H Bldg. Lower Production Office and Shop Bldg

94

NEPA COMPLIANCE SURVEY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Project lnfonnation Project Title: Restoration of 77 -13-SX-3 Date: 2-8-1 0 DOE Code: Contractor Code: Project Lead: Jeff Jones Project Overview We will be restoring 77-SX-3 per procedure. 1. What are the environmental impacts? The duration of this project will be 3-4 days. 2. What is the leg al location? 3. What is the duration of the project? The equipment to be used will be Backhoe, welder, tiller dump truck. 4. What major equipment will be used if any (work over rig , drilling rig , We will take oil contaminated dirt to the Eastside landfarm and backfill with d ean fill dirt from sec. 20. etc.)? The table below is to be completed by the Project Lead and reviewed by the Environmental Specialist and the DOE NEPA Compliance Officer. NOTE: If Change of Scope occurs, Project Lead must submit a new NEPA Compliance Survey and

95

Categorical Exclusion for Access Road  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Access Road Access Road Improvements along the Pinnacle Peak- Prescott 230-kV Transmission Line between Structures 16813 and 170/1 Yavapai County. Arizona * RECORD OF CATEGORICAL EXCLUSION DETERMINATION A. Proposed Action: Western proposes to improve access roads along a portion of the Pinnacle Peak to Prescott 230-kV Transmission Line (Structures 168/3 and 170/1). which are currently impassable. to maintain worker safety and the reliability of the bulk electric system. Western plans to blade and grade the existing access road where it enters and leaves three washes so that Western's maintenance vehicles can drive across the washes. We will remove dirt from the road prism by starting at wash edges and pulling dirt up slope in order to create ramps with grades suitable for our equipment.

96

CX-002692: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

692: Categorical Exclusion Determination 692: Categorical Exclusion Determination CX-002692: Categorical Exclusion Determination Drill One Exploratory Hole On Lease Tract C-WM-17 by Golden Eagle Uranium CX(s) Applied: B3.1, B1.3 Date: 06/02/2010 Location(s): Montrose County, Colorado Office(s): Legacy Management Golden Eagle Uranium (LLC) proposes to drill one 5-inch-diameter exploratory borehole on U.S. Department of Energy (DOE) lease tract C-WM-17, located in western Montrose County, Colorado. The drilling would be completed by a truck-mounted rotary drill rig capable of boring to 1,000 feet (ft) below ground surface (bgs). The proposed location of the drill hole is in a previously disturbed area and is adjacent to a two-track dirt road. Access to the site would be on existing dirt roads. DOCUMENT(S) AVAILABLE FOR DOWNLOAD

97

Microsoft Word - DOE-ID-INL-12-024..doc  

NLE Websites -- All DOE Office Websites (Extended Search)

PostingNo.: DOE-ID-INL-12-024 PostingNo.: DOE-ID-INL-12-024 SECTION A. Project Title: Rigby Bus Lot Northwest Entrance SECTION B. Project Description: The purpose of the proposed action is to provide an additional bus entrance to the Rigby Park and Ride Bus Lot. A portion of chain link fencing (running east to west) on the northwest corner of the Rigby Park and Ride Bus Lot would be relocated to allow an opening off of the City of Rigby dirt access road so that buses may enter the Rigby Park and Ride Lot from the northwest. The existing fence material would then be placed across the City of Rigby dirt access road (running north and south). The new entrance would be for buses only. Approximately 4 to 6 buses would use this entrance. No personnel vehicles will have access. Buses would start using the new

98

An engineering model for prediction of in situ oil shale retort blasting  

SciTech Connect

The in situ extraction of oil from most oil shale beds is highly dependent upon explosive fracturing and rubbling of rock in a controlled and predictable manner. In blasting, it is necessary not only to fracture the rock, but also to move the broken rubble in a predictable manner. Most in situ extraction techniques require rubblization to take place in a confined region where rock motion is a predominate factor in creating a permeable broken bed. In this paper, an engineering model is presented which describes the large rubble motion during blasting. In this model the rock medium is represented by a discrete series of circular regions of fractured material. These regions are set in motion by pressure loads from the explosive. The motion of the regions is calculated using a step-wise, explicit, numerical time integration method. Interaction of adjacent regions is based on inelastic impact of spherical bodies. The derivation of this model is presented along with the background for selecting loading pressure based on explosive behavior.

Quong, R.

1983-04-01T23:59:59.000Z

99

Influence of site-specific geology on oil shale fragmentation experiments at the Colony Mine, Garfield County, Colorado  

SciTech Connect

The Los Alamos National Laboratory executed 19 intermediate scale cratering experiments in oil shale at the Colony Mine in Garfield County, Colorado. These experiments have led to a better understanding of fracture characteristics and fragmentation of in situ oil shale by use of a conventional high explosive. Geologic site characterization included detailed mapping, coring, and sample analyses. Site-specific geology was observed to be a major influence on the resulting crater geometry. The joint patterns at the experimental site frequently defined the final crater symmetry. Secondary influences included vugs, lithology changes, and grade fluctuations in the local stratigraphy. Most experiments, in both the rib and floor, were conducted to obtain data to investigate the fragmentation results within the craters. The rubble was screened for fragment-size distributions. Geologic features in proximity to the explosive charge had minimal effect on the rubble due to the overpowering effect of the detonation. However, these same features became more influential on the fracture and rubble characteristics with greater distances from the shothole. Postshot cores revealed a direct relationship between the grade of the oil shale and its susceptibility to fracturing. The Colony Mine experiments have demonstrated the significant role of geology in high explosive/oil shale interaction. It is probable that this role will have to be considered for larger applications to blast patterns and potential problems in retort stability in the future of oil shale development.

Ray, J.M.; Harper, M.D.; Craig, J.L.; Edwards, C.L.

1982-01-01T23:59:59.000Z

100

REMEDIAL ACTION PLAN  

E-Print Network (OSTI)

designated site consists of the 111-acre tailings pile, the mill yard, and piles of demolition rubble awaiting burial. The site contains 2.659 million cubic yards of tailings including 277,000 cubic yards of contaminated material in the mill yard, ore storage area, and Ann Lee Mine area; 151,000 cubic yards in the protore storage and leach pad areas; and 664,000 cubic yards of windblown contaminated soil, including excess soil that would result from excavation. Remedial action The remedial action will start with the excavation of windblown contaminated material and placement around the west, south, and east sides of the pile to buttress the slopes for increased stability. Most of the demolition rubble will be placed in the southern part of the pile and be covered with tailings. The northern part of the tailings pile (one million cubic yards) will then be excavated and placed on the south part of the pile to reduce the size of the disposal cell footprint. Demolition rubble that

Inactive Uranium; Mill Tailings Site; Uranium Mill Tremedial

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dirt rubble waterproofing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Characterization of in situ oil shale retorts prior to ignition  

DOE Patents (OSTI)

Method and system for characterizing a vertical modified in situ oil shale retort prior to ignition of the retort. The retort is formed by mining a void at the bottom of a proposed retort in an oil shale deposit. The deposit is then sequentially blasted into the void to form a plurality of layers of rubble. A plurality of units each including a tracer gas cannister are installed at the upper level of each rubble layer prior to blasting to form the next layer. Each of the units includes a receiver that is responsive to a coded electromagnetic (EM) signal to release gas from the associated cannister into the rubble. Coded EM signals are transmitted to the receivers to selectively release gas from the cannisters. The released gas flows through the retort to an outlet line connected to the floor of the retort. The time of arrival of the gas at a detector unit in the outlet line relative to the time of release of gas from the cannisters is monitored. This information enables the retort to be characterized prior to ignition.

Turner, Thomas F. (Laramie, WY); Moore, Dennis F. (Laramie, WY)

1984-01-01T23:59:59.000Z

102

Effluent treatment in the textile industry: Excluding dyes. (Latest citations from World Textile abstracts). Published Search  

SciTech Connect

The bibliography contains citations concerning the treatment and reuse of textile industry effluents exclusive of dyes. Topics include the recovery of lubricants, lye, sizing agents, polyvinyl alcohol, zinc, dirt, and heat from textile effluents. Air and water pollution control technology that is effective in treating textile effluents is discussed. Effluents from synthetic fiber manufacture and wool scouring processes are emphasized. Effluents that contain dyes are discusssed in a separate bibliography. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-01-01T23:59:59.000Z

103

Effluent treatment in the textile industry: Excluding dyes. (Latest citations from World Textile abstracts). Published Search  

SciTech Connect

The bibliography contains citations concerning the treatment and reuse of textile industry effluents exclusive of dyes. Topics include the recovery of lubricants, lye, sizing agents, polyvinyl alcohol, zinc, dirt, and heat from textile effluents. Air and water pollution control technology that is effective in treating textile effluents is discussed. Effluents from synthetic fiber manufacture and wool scouring processes are emphasized. Effluents that contain dyes are discusssed in a separate bibliography. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-01-01T23:59:59.000Z

104

Superhydrophobic Materials Technology-PVC Bonding Techniques  

SciTech Connect

The purpose of the technology maturation project was to develop an enhanced application technique for applying diatomaceous earth with pinned polysiloxane oil to PVC pipes and materials. The oil infiltration technique is applied as a spray of diluted oil in a solvent onto the superhydrophobic diatomaceous earth substrate. This makes the surface take on the following characteristics: wet?cleanable anti?biofouling waterproof anti?corrosion. The project involved obtaining input and supplies from VeloxFlow and the development of successful techniques that would quickly result in a commercial license agreement with VeloxFlow and other companies that use PVC materials in a variety of other fields of use.

Hunter, Scott R. [Oak Ridge National Laboratory; Efird, Marty [VeloxFlow, LLC

2013-05-03T23:59:59.000Z

105

Retrofit Ventilation Strategies in Multifamily Buildings Webinar  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Foundation Retrofits Foundation Retrofits Building America Webinar November 30, 2011 Kohta Ueno Hybrid Foundation Retrofits 2 Background Hybrid Foundation Retrofits 3 Background  Space conditioning energy use for basements  Known moisture-safe solutions (previous research)  Persistent bulk water (leakage) issues  Retrofits of existing foundations  Especially uneven wall (rubble stone) foundations  "Hybrid" insulation and bulk water control assemblies Hybrid Foundation Retrofits 4 Foundations w. bulk water issues  Severe and rapid damage to interior insulation and finishes due to bulk water intrusion Hybrid Foundation Retrofits 5 Insulation Location Choices * Retrofits: interior insulation is often the only

106

Thermal Removal Of Tritium From Concrete And Soil To Reduce Groundwater Impacts  

SciTech Connect

Legacy heavy-water moderator operations at the Savannah River Site (SRS) have resulted in the contamination of equipment pads, building slabs, and surrounding soil with tritium. At the time of discovery the tritium had impacted the shallow (< 3-m) groundwater at the facility. While tritium was present in the groundwater, characterization efforts determined that a significant source remained in a concrete slab at the surface and within the associated vadose zone soils. To prevent continued long-term impacts to the shallow groundwater a CERCLA non-time critical removal action for these source materials was conducted to reduce the leaching of tritium from the vadose zone soils and concrete slabs. In order to minimize transportation and disposal costs, an on-site thermal treatment process was designed, tested, and implemented. The on-site treatment consisted of thermal detritiation of the concrete rubble and soil. During this process concrete rubble was heated to a temperature of 815 deg C (1,500 deg F) resulting in the dehydration and removal of water bound tritium. During heating, tritium contaminated soil was used to provide thermal insulation during which it's temperature exceeded 100 deg C (212 deg F), causing drying and removal of tritium. The thermal treatment process volatiles the water bound tritium and releases it to the atmosphere. The released tritium was considered insignificant based upon Clean Air Act Compliance Package (CAP88) analysis and did not exceed exposure thresholds. A treatability study evaluated the effectiveness of this thermal configuration and viability as a decontamination method for tritium in concrete and soil materials. Post treatment sampling confirmed the effectiveness at reducing tritium to acceptable waste site specific levels. With American Recovery and Reinvestment Act (ARRA) funding three additional treatment cells were assembled utilizing commercial heating equipment and common construction materials. This provided a total of four units to batch treat concrete rubble and soil. Post treatment sampling verified that the activity in the treated soil and concrete met the treatment standards for each medium which allowed the treated concrete rubble and soil to be disposed of on site as backfill. During testing and operations a total of 1,261-m{sup 3} (1,650-yd{sup 3}) of contaminated concrete and soils were treated with an actual incurred cost of $3,980,000. This represents a unit treatment cost of $3,156/m{sup 3} ($2,412/yd{sup 3}). In 2011 the project was recognized with an e-Star Sustainability Award by DOE's Office of Environmental Management.

Jackson, Dennis G.; Blount, Gerald C.; Wells, Leslie H.; Cardoso-Neto, Joao E.; Kmetz, Thomas F.; Reed, Misty L.

2012-12-04T23:59:59.000Z

107

Remaining Sites Verification Package for 132-H-1, 116-H Reactor Stack Burial Site, Waste Site Reclassification Form 2006-053  

SciTech Connect

The 132-H-1 waste site includes the 116-H exhaust stack burial trench and the buried stack foundation (which contains an embedded vertical 15-cm (6-in) condensate drain line). The 116-H reactor exhaust stack and foundation were decommissioned and demolished using explosives in 1983, with the rubble buried in situ beneath clean fill at least 1 m (3.3 ft) thick. Residual concentrations support future land uses that can be represented by a rural-residential scenario and pose no threat to groundwater or the Columbia River based on RESRAD modeling.

L. M. Dittmer

2007-06-26T23:59:59.000Z

108

Remaining Sites Verification Package for 132-D-2, 117-D Filter Building, Waste Site Reclassification Form 2005-024  

SciTech Connect

The 132-D-2 site (117-D Filter Building) and associated below-grade ductwork were decommissioned and demolished in two phases in 1985 and 1986, with a portion of the rubble left in situ beneath clean fill at least 1 m (3.3 ft) thick. Decommissioning included removal of contaminated equipment, including filters. Residual concentrations support future land uses that can be represented by a rural-residential scenario and pose no threat to groundwater or the Columbia River based on RESRAD modeling.

R. A. Carlson

2006-05-09T23:59:59.000Z

109

High removal rate laser-based coating removal system  

DOE Patents (OSTI)

A compact laser system that removes surface coatings (such as paint, dirt, etc.) at a removal rate as high as 1000 ft.sup.2 /hr or more without damaging the surface. A high repetition rate laser with multiple amplification passes propagating through at least one optical amplifier is used, along with a delivery system consisting of a telescoping and articulating tube which also contains an evacuation system for simultaneously sweeping up the debris produced in the process. The amplified beam can be converted to an output beam by passively switching the polarization of at least one amplified beam. The system also has a personal safety system which protects against accidental exposures.

Matthews, Dennis L. (Moss Beach, CA); Celliers, Peter M. (Berkeley, CA); Hackel, Lloyd (Livermore, CA); Da Silva, Luiz B. (Danville, CA); Dane, C. Brent (Livermore, CA); Mrowka, Stanley (Richmond, CA)

1999-11-16T23:59:59.000Z

110

Loaded Transducer Fpr Downhole Drilling Component  

DOE Patents (OSTI)

A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force," urging them closer together.

Hall, David R. (Provo, UT); Hall, H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT); Fox, Joe (Spanish Fork, UT)

2005-07-05T23:59:59.000Z

111

Effluent treatment in the textile industry: Excluding dyes. (Latest citations from World Textile abstracts). Published Search  

SciTech Connect

The bibliography contains citations concerning the treatment and reuse of textile industry effluents exclusive of dyes. Topics include the recovery of lubricants, lye, sizing agents, polyvinyl alcohol, zinc, dirt, and heat from textile effluents. Air and water pollution control technology that is effective in treating textile effluents is discussed. Effluents from synthetic fiber manufacture and wool scouring processes are emphasized. Effluents that contain dyes are discusssed in a separate bibliography.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-09-01T23:59:59.000Z

112

Extending gear life in a coal pulverizer gearbox  

Science Conference Proceedings (OSTI)

A coal-fired power plant in the Western United States experienced short gearbox life in the 13 coal pulverizers operating at the plant. Wear on the bronze bull gear faces was suspected to have been caused by high particulate loading of coal dust and dirt in the gear oil, catalytic reaction between gear oil additives and some of the particulates generated, and high levels of copper in the gear oil. By addressing particulate ingress, adding filtration and switching to a synthetic gear oil, significant benefits were made to the power plant and gear oil life was extended. 2 photos., 1 tab.

Hansen, T.

2007-08-15T23:59:59.000Z

113

Damage Development on Stone Armored Breakwaters and Revetments  

E-Print Network (OSTI)

method to calculate damage progression on a rubble-mound breakwater, revetment, or jetty trunk armor layer. The methods apply to uniform-sized armor stone (0.75W50 ? W50 ? 1.25W50, W50 = median weight of armor stone) as well as riprap (0.125W50 ? W50 ? 4W50) exposed to depthlimited wave conditions. The equations discussed herein are primarily intended to be used as part of a life-cycle analysis, to predict the damage for a series of storms throughout the lifetime of the structure. This lifecycle analysis including damage prediction allows engineers to balance initial cost with expected maintenance costs in order to reduce the overall cost of the structure. The equations are intended to provide a tool for accurate damage estimates in order to reduce the possibility of unexpected maintenance costs. INTRODUCTION: Rubble-mound breakwater, revetment, and jetty projects require accurate damage prediction as part of life-cycle analyses. But few studies have been conducted to determine damage progression on stone armor layers for variable wave conditions over the life of a structure. Previous armor stability lab studies were intended to determine damage for the peak of a design storm. As such, most previous laboratory studies were begun with an undamaged

Jeffery A. Melby

2002-01-01T23:59:59.000Z

114

Seagate Crystal Reports - RADCM  

Office of Environmental Management (EM)

Kentucky Kentucky SITE: Paducah PROGRAM: EM WASTE TYPE: Low Level Waste OPERATIONS OFFICE: Oak Ridge Operations Office % of Stream Paducah - Low Level Waste - LLW Rubble/Debris WASTE STREAM CODE: 00438 STREAM NAME:LLW Rubble/Debris MPC NAME:Debris W aste TOTAL CURIES: Approved Volume : Future Volume Avg: Future Volume Lower Limit: Future Volume Upper Limit: 100.000 LLW Debris Isotopes Neptunium-237 Avg Concentration: 1.0000E+000 pCi/g Low Limit Concent:0.0000E+000 pCi/g Upper Limit Concent:2.4000E+001 pCi/g Technetium-99 Avg Concentration: 5.0000E+001 pCi/g Low Limit Concent:0.0000E+000 pCi/g Upper Limit Concent:1.4210E+003 pCi/g Uranium-238 Avg Concentration: 5.0000E+001 pCi/g Low Limit Concent:0.0000E+000 pCi/g Upper Limit Concent:9.7800E+002 pCi/g Uranium-235 Avg Concentration: 7.0000E-001 wt%

115

MHK Technologies/Tidal Lagoons | Open Energy Information  

Open Energy Info (EERE)

Tidal Lagoons Tidal Lagoons < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Lagoons.jpg Technology Profile Primary Organization Tidal Electric Project(s) where this technology is utilized *MHK Projects/Dandong City *MHK Projects/Swansea Bay Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description idal Lagoons are situated a mile or more offshore in high tidal range areas, and use a rubble mound impoundment structure and low-head hydroelectric bulb turbines. Shallow tidal flats provide the most economical sites. Multi-cell Tidal Lagoons provide higher load factors (about 62%) and have the flexibility to shape the output curve in order to dispatch power in response to demand price signals. The impoundment structure is a conventional rubble mound breakwater (loose rock, concrete, and marine sheetpiles are among the types of appropriate materials for the impoundment structure), with ordinary performance specifications and is built from the most economical materials. The barrage is much shorter than an impoundment structure with the same output capacity, but the barrage is a much larger structure. The offshore tidal generator uses conventional low-head hydroelectric generation equipment and control systems. The equipment consists of a mixed-flow reversible bulb turbine, a generator, and the control system. Manufacturers/suppliers include Alstom, GE, Kvaerner, Siemens, Voith, Sulzer, and others.

116

Field Measurement of Am241 and Total Uranium at a Mixed Oxide Fuel Facility with Variable Uranium Enrichments Ranging from 0.3% to 97% U235  

SciTech Connect

The uranium and transuranic content of site soils and building rubble can be accurately measured using a NaI(Tl) well counter, without significant soil preparation. Accurate measurements of total uranium in uranium-transuranic mixtures can be made, despite a wide range (0.3% to 97%) of uranium enrichment, sample mass, and activity concentrations. The appropriate uranium scaling factors needed to include the undetected uranium isotopes, particularly U 234 can be readily determined on a sample by sample basis as a part of the field analysis, by comparing the relative response of the U 235 186 keV peak versus the K shell X rays of U 238 , U 235, and their immediate ingrowth daughters. The ratio of the two results is a sensitive and accurate predictor of the uranium enrichment and scaling factors. The case study will illustrate how NaI(Tl) gamma spectrometry was used to provide rapid turnaround uranium and transuranic activity levels for soil and building rubble with sample by sample determination of the appropriate scaling factor to include the U234 and Uranium238 content.

Conway, K. C.

2002-02-28T23:59:59.000Z

117

Tunnel closure calculations  

SciTech Connect

When a deeply penetrating munition explodes above the roof of a tunnel, the amount of rubble that falls inside the tunnel is primarily a function of three parameters: first the cube-root scaled distance from the center of the explosive to the roof of the tunnel. Second the material properties of the rock around the tunnel, and in particular the shear strength of that rock, its RQD (Rock Quality Designator), and the extent and orientation of joints. And third the ratio of the tunnel diameter to the standoff distance (distance between the center of explosive and the tunnel roof). The authors have used CALE, a well-established 2-D hydrodynamic computer code, to calculate the amount of rubble that falls inside a tunnel as a function of standoff distance for two different tunnel diameters. In particular they calculated three of the tunnel collapse experiments conducted in an iron ore mine near Kirkeness, Norway in the summer of 1994. The failure model that they used in their calculations combines an equivalent plastic strain criterion with a maximum tensile strength criterion and can be calibrated for different rocks using cratering data as well as laboratory experiments. These calculations are intended to test and improve the understanding of both the Norway Experiments and the ACE (Array of conventional Explosive) phenomenology.

Moran, B.; Attia, A.

1995-07-01T23:59:59.000Z

118

Comparison of the Acceptability of Various Oil Shale Processes  

Science Conference Proceedings (OSTI)

While oil shale has the potential to provide a substantial fraction of our nation's liquid fuels for many decades, cost and environmental acceptability are significant issues to be addressed. Lawrence Livermore National Laboratory (LLNL) examined a variety of oil shale processes between the mid 1960s and the mid 1990s, starting with retorting of rubble chimneys created from nuclear explosions [1] and ending with in-situ retorting of deep, large volumes of oil shale [2]. In between, it examined modified-in-situ combustion retorting of rubble blocks created by conventional mining and blasting [3,4], in-situ retorting by radio-frequency energy [5], aboveground combustion retorting [6], and aboveground processing by hot-solids recycle (HRS) [7,8]. This paper reviews various types of processes in both generic and specific forms and outlines some of the tradeoffs for large-scale development activities. Particular attention is given to hot-recycled-solids processes that maximize yield and minimize oil shale residence time during processing and true in-situ processes that generate oil over several years that is more similar to natural petroleum.

Burnham, A K; McConaghy, J R

2006-03-11T23:59:59.000Z

119

Just Say No to Carbon Emissions (LBNL Science at the Theater)  

DOE Green Energy (OSTI)

Learn about three efforts our grandchildren may thank us for: cheap solar energy, bringing energy efficiency to China, and learning how to store carbon deep underground. Can solar energy be dirt cheap? We're all potentially billionaires when it comes to solar energy. The trick is learning how to convert sunlight to electricity using cheap and plentiful materials. Ramamoorthy Ramesh, an innovative materials scientist at Berkeley Lab, will discuss how he and other researchers are working to make photovoltaic cells using the most abundant elements in the Earth's crust -- materials that are literally as common as dirt. Energy efficiency in China: Nan Zhou is a researcher with Berkeley Labs China Energy Group. She will speak about Chinas energy use and the policies that have been implemented to increase energy efficiency and reduce CO2 emission growth. Her work focuses on building China's capacity to evaluate, adopt and implement low-carbon development strategies. Zhou has an architecture degree from China, and a Master and Ph.D. in Engineering from Japan. Understanding geologic carbon sequestration: Even with continued growth of renewable energy sources such as wind and solar, fossil fuels will likely remain cheap and plentiful for decades to come. Geologist Curt Oldenburg, who heads Berkeley Lab's Geologic Carbon Sequestration Program, will discuss a strategy to reduce carbon emissions from coal and natural gas. It involves pumping compressed CO2 captured from large stationary sources into underground rock formations that can store it for geological time scales.

Ramesh, Ramamoorthy; Zhou, Nan; Oldenburg, Curt

2010-04-26T23:59:59.000Z

120

NEPA COMPLIANCE SURVEY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 Project lnfonnation Project Title: Repair flowline 100 feet North of 71-3-SX-3 Date: 2-16-2010 DOE Code: Contractor Code: Project Lead: Rick Mclaughlin Project Overview Emergency Repair tor a "owline leak north of 71-3-SX-3. Dug up pipeline, repaired line and backfilled with 1. What are the environmental impacts? clean fill dirt. Oil contaminated soH was hauled to the east side landfarm and dean dirt was brought in from section 20. 2 What 1s the legal location? 3. What is the duration of the project? North of 71-3-SX-3. N43 1 7'53 6~ W. 10611'49.3" 4. What major equipment will be used Approximately 4 hours if any (work over rig, drilling rig, etc.)? Backhoe with operator and one wor1

Note: This page contains sample records for the topic "dirt rubble waterproofing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Water Bugs  

NLE Websites -- All DOE Office Websites (Extended Search)

Bugs Bugs Nature Bulletin No. 221-A March 12, 1966 Forest Preserve District of Cook County Seymour Simon, President Roland F. Eisenbeis, Supt. of Conservation WATER BUGS It is fascinating to lie in a boat or on a log at the edge of the water and watch the drama that unfolds among the small water animals. Among the star performers in small streams and ponds are the Water Bugs. These are aquatic members of that large group of insects called the "true bugs", most of which live on land. Moreover, unlike many other types of water insects, they do not have gills but get their oxygen directly from the air. Those that do go beneath the surface usually carry an oxygen supply with them in the form of a shiny glistening sheath of air imprisoned among a covering of fine waterproof hairs. The common water insect known to small boys at the "Whirligig Bug" is not a water bug but a beetle.

122

Energy Efficiency and Conservation Block Grant Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MA-City-Taunton MA-City-Taunton Location: City Taunton MA American Recovery and Reinvestment Act: Proposed Action or Project Description 1) Energy efficiency and conservation strategy, 2) energy efficiency lighting retrofits of Martin Middle School to high-efficiency lighting with automated controls, 3) building retrofits/renovation of a section of roof at Martin Middle School with a new waterproof membrane insulation and installation of a vegetative roofing system, 4) installation of outdoor lighting control system in school district, and 5) installation of a roof-top solar photovoltaic system (10 kW). Conditions: None Categorical Exclusion(s) Applied: A9, A11, B1.32, B2.5, B5.1 *-For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, see Subpart D of 10 CFR10 21

123

CX-003848: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

848: Categorical Exclusion Determination 848: Categorical Exclusion Determination CX-003848: Categorical Exclusion Determination San Diego Center for Algae Biotechnology CX(s) Applied: B3.6 Date: 08/30/2010 Location(s): San Diego, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Federal and cost share funds will be used for three tasks. The first task will involve renovating the Bonner Hall Algal Culture Growth Facility. All remodeling will be done in a current facility on the University's campus. Some internal walls will be removed and new ones built to create an enclosed algal growth room and a separate algal characterization laboratory. Also, new waterproof floors, a heap-filter system, and new outlets will be added. The second task will running the algal bioreactors,

124

Tips: Energy-Efficient Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy-Efficient Roofs Energy-Efficient Roofs Tips: Energy-Efficient Roofs April 24, 2012 - 4:29pm Addthis Tips: Energy-Efficient Roofs If you've ever stood on a roof on a hot summer day, you know how hot it can get. The heat from your roof makes your air conditioner work even harder to keep your home cool. Cool Roofs If you are building a new home, decide during planning whether you want a cool roof, and if you want to convert an existing roof, you can: Retrofit the roof with specialized heat-reflective material. Re-cover the roof with a new waterproofing surface (such as tile coating). Replace the roof with a cool one. A cool roof uses material that is designed to reflect more sunlight and absorb less heat than a standard roof. Cool roofs can be made of a highly reflective type of paint, a sheet covering, or highly reflective tiles or

125

Underwater manipulator  

DOE Patents (OSTI)

Self-contained, waterproof, water-submersible, remote-controlled apparatus is provided for manipulating a device, such as an ultrasonic transducer for measuring crack propagation on an underwater specimen undergoing shock testing. The subject manipulator includes metal bellows for transmittal of angular motions without the use of rotating shaft seals or O-rings. Inside the manipulator, a first stepper motor controls angular movement. In the preferred embodiment, the bellows permit the first stepper motor to move an ultrasonic transducer .+-.45 degrees in a first plane and a second bellows permit a second stepper motor to move the transducer .+-.10 degrees in a second plane orthogonal to the first. In addition, an XY motor-driven table provides XY motion.

Schrum, Phillip B. (Clairton, PA); Cohen, George H. (Pittsburgh, PA)

1993-01-01T23:59:59.000Z

126

Woodmont Enterprises LLC | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Woodmont Woodmont Enterprises LLC America's Next Top Energy Innovator Challenge 703 likes Woodmont Enterprises LLC Oak Ridge National Laboratory Woodmont Enterprises LLC has historically developed a polymer-based solution to protect other companies' coatings that are topcoat solutions placed onto oriented strand board (OSB) - a construction material made of wooden strips compressed and bonded together with wax and resin. Our validation partner with topcoat solutions has strong active channelized sales today with needs of protecting their product during transport. Our primary focus has been to identify a price that would allow immediate client adoption of our waterproofing coating solution. Woodmont has been working with other polymer-based coatings that were costly. We were introduced to the technology transfer initiative out of Oak

127

Educational Material Science Games  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Science Games Material Science Games Do you have a great material science game? Please click our Ideas page. Featured Games: >KS2 Bitsize BBC - Materials KS2 Bitsize BBC - Materials Sponsored by the BBC, K2S Bitsize offers tons of free online science games including a section on materials. Learn about the changes in materials, changing states, heat, rocks, soils, solids, liquids, gases, and much more. Science Kids - Properties of Materials Science Kids - Properties of Materials Learn about the properties of materials as you experiment with a variety of objects in this great science activity for kids. Discover the interesting characteristics of materials; are they flexible, waterproof, strong or transparent? Characteristics of Materials - BBC Schools Characteristics of Materials - BBC Schools

128

NREL: Awards and Honors - R&D 100 Award Winners from 1999 through 1982  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL R&D 100 Award Winners from 1999 through 1982 NREL R&D 100 Award Winners from 1999 through 1982 1999 Advanced Direct-Contact Condenser: A new way of condensing steam that enables geothermal electric plants to generate more electricity more cheaply. 1999 Siemens Solar St-Family of Solar (CIS) Modules: The first large-area solar electric modules made from the promising thin-film material of copper indium diselenide. 1998 UNI-SOLAR Triple-Junction Amorphous-Silicon Solar-Electric Modules: Thin, flexible, waterproof roof shingles that efficiently produce electricity from sunlight. 1998 "Vermont" High-Throughput Gasifier: Turns wood chips into a clean gas for use in fuel cells or gas turbines to produce electricity. 1997 "PV Optics" Software Light-Trapping Model for Solar Cells: Software

129

Woodmont Enterprises LLC | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Woodmont Woodmont Enterprises LLC America's Next Top Energy Innovator Challenge 703 likes Woodmont Enterprises LLC Oak Ridge National Laboratory Woodmont Enterprises LLC has historically developed a polymer-based solution to protect other companies' coatings that are topcoat solutions placed onto oriented strand board (OSB) - a construction material made of wooden strips compressed and bonded together with wax and resin. Our validation partner with topcoat solutions has strong active channelized sales today with needs of protecting their product during transport. Our primary focus has been to identify a price that would allow immediate client adoption of our waterproofing coating solution. Woodmont has been working with other polymer-based coatings that were costly. We were introduced to the technology transfer initiative out of Oak

130

User:Aaronbeach | Open Energy Information  

Open Energy Info (EERE)

Aaronbeach Aaronbeach Jump to: navigation, search File:Aaron beach1.jpg Name Aaron Beach Location Denver, Colorado Edits 3 Friends User Edits Jweers 12301 Aaron grew up in Denver, Colorado where he played a lot of sports and worked in construction as a waterproofer and an electrician. He attended Northwestern University from 2002-2006, where he studied Computer Science. During this time, he received research grants from Northwestern University, Motorola, and the Ford Motor Company (mostly to research vehicular networks). He began his PhD study at the University of Colorado in 2006. He was a visiting research specialist at the National Center for Atmospheric Research during the summer of 2007. In 2008 he received an NSF GK-12 fellowship and started a company with his adviser, focused on Mobile Social

131

MHK Technologies/Bluetec | Open Energy Information  

Open Energy Info (EERE)

Bluetec Bluetec < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Bluetec.jpg Technology Profile Primary Organization Bluewater Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Bluetec platform is a unified floating support structure which can hold any type of turbines in any waterdepth It offers waterproof housing for vulnerable systems above the waterline unique in the tidal industry Power cables are connected dry rather than under water reducing risks and costs significantly The Bluetec structure is much lighter than the gravity based designs requiring less tonnage steel per MW The device itself is floating and therefore installation can be executed with widely available vessels without the need for expensive floating cranes or jack ups

132

Energy saving cover for mobile home  

SciTech Connect

An insulating and weatherproof protective cover adapted to protect and insulate a mobile home has an outer layer of waterproof material and an inner layer preferably of foam-type insulating material bonded to the outer layer for enclosing the roof and side walls of a mobile home. Openings are cut in the sides to permit the opening and closing of windows and doors. Transparent coverings may be provided which roll up and away from the window openings. Door panels may be provided and hinged from the sides of the mobile home cover to insulate the door. Tiedowns are provided along the lower edge of the cover and may be used to secure the cover to the undercarriage of the mobile home or its supporting pad.

Leonard, M.L.

1980-06-10T23:59:59.000Z

133

Modular, multi-level groundwater sampler  

DOE Patents (OSTI)

Apparatus for taking a multiple of samples of groundwater or pressure measurements from a well simultaneously. The apparatus comprises a series of chambers arranged in an axial array, each of which is dimensioned to fit into a perforated well casing and leave a small gap between the well casing and the exterior of the chamber. Seals at each end of the container define the limits to the axial portion of the well to be sampled. A submersible pump in each chamber pumps the groundwater that passes through the well casing perforations into the gap from the gap to the surface for analysis. The power lines and hoses for the chambers farther down the array pass through each chamber above them in the array. The seals are solid, water-proof, non-reactive, resilient disks supported to engage the inside surface of the well casing. Because of the modular design, the apparatus provides flexibility for use in a variety of well configurations.

Nichols, Ralph L. (812 Plantation Point Dr., N. Augusta, SC 29841); Widdowson, Mark A. (4204 Havana Ct., Columbia, SC 29206); Mullinex, Harry (10 Cardross La., Columbia, SC 29209); Orne, William H. (12 Martha Ct., Sumter, SC 29150); Looney, Brian B. (1135 Ridgemont Dr., Aiken, SC 29803)

1994-01-01T23:59:59.000Z

134

Underwater manipulator  

DOE Patents (OSTI)

This invention is comprised of a self-contained, waterproof, water-submersible, remote-controlled apparatus provided for manipulating a device, such as an ultrasonic transducer for measuring crack propagation on an underwater specimen undergoing shock testing. The subject manipulator includes metal bellows for transmittal of angular motions without the use of rotating shaft seals or O-rings. Inside the manipulator, a first stepper motor controls angular movement. In the preferred embodiment, the bellows permit the first stepper motor to move an ultrasonic transducer {plus_minus} 45 degrees in a first plane and a second bellows permit a second stepper motor to move the transducer {plus_minus} 10 degrees in a second plane orthogonal to the first. In addition, an XY motor-driven table provides XY motion.

Schrum, P.B.; Cohen, G.H.

1992-12-31T23:59:59.000Z

135

Underwater manipulator  

DOE Patents (OSTI)

Self-contained, waterproof, water-submersible, remote-controlled apparatus is described for manipulating a device, such as an ultrasonic transducer for measuring crack propagation on an underwater specimen undergoing shock testing. The subject manipulator includes metal bellows for transmittal of angular motions without the use of rotating shaft seals or O-rings. Inside the manipulator, a first stepper motor controls angular movement. In the preferred embodiment, the bellows permit the first stepper motor to move an ultrasonic transducer [plus minus]45 degrees in a first plane and a second bellows permit a second stepper motor to move the transducer [plus minus]10 degrees in a second plane orthogonal to the first. In addition, an XY motor-driven table provides XY motion.

Schrum, P.B.; Cohen, G.H.

1993-04-20T23:59:59.000Z

136

Method for constructing a lined underground cavity by underreaming, grouting, and boring through the grouting  

DOE Patents (OSTI)

A method is described for constructing a lined underground cavity. The process includes the steps of securing a casing in a borehole by grouting, underreaming the casing, filling the underreamed region with additional grouting, and then drilling through and underreaming the added grouting, thereby forming a room having a lining formed of the grouting. By using a structurally strong grouting that is impervious to water, the resulting room is waterproof and is suitable for on-site storage of an atomic device and its associated equipment prior to an underground atomic event. Such cavities also have other uses; for example, the cavities may be made very deep and used for storage of various fluids such as natural gas storage. (5 claims)

Johnson, W.H.

1971-02-02T23:59:59.000Z

137

Progress on a New Integrated 3-D UCG Simulator and its Initial Application  

Science Conference Proceedings (OSTI)

A comprehensive simulator is being developed for underground coal gasification (UCG), with the capability to support site selection, design, hazard analyses, operations, and monitoring (Nitao et al., 2010). UCG is computationally challenging because it involves tightly-coupled multi-physical/chemical processes, with vastly different timescales. This new capability will predict cavity growth, product gas composition and rate, and the interaction with the host environment, accounting for site characteristics, injection gas composition and rate, and associated water-well extraction rates. Progress on the new simulator includes completion and system integration of a wall model, a rock spalling model, a cavity boundary tracking model, a one-dimensional cavity gas reactive transport model, a rudimentary rubble heat, mass, and reaction model, and coupling with a pre-existing hydrology simulator. An existing geomechanical simulator was enhanced to model cavity collapse and overburden subsidence. A commercial computational fluid dynamics (CFD) code is being evaluated to model cavity gas flow and combustion in two and three dimensions. Although the simulator is midway in its development, it was applied to modeling the Hoe Creek III field test (Stephens, 1981) conducted in the 1970s, in order to evaluate and demonstrate the simulator's basic capabilities, gain experience, and guide future development. Furthermore, it is consistent with our philosophy of incremental, spiral software development, which helps in identifying and resolving potential problems early in the process. The simulation accounts for two coal seams, two injection points, and air and oxygen phases. Approximate extent and shape of cavity growth showed reasonable agreement with interpreted field data. Product gas composition and carbon consumed could not be simultaneously matched for a given set of parameter values due to the rudimentary rubble model currently used, although they can be matched using separate parameter sets. This result is not surprising and confirms plans for a more sophisticated rubble model as our next step, as well as adding geomechanical collapse modeling and higher accuracy cavity gas reactive transport models. The results are very encouraging and demonstrate that our approach is sound.

Nitao, J J; Camp, D W; Buscheck, T A; White, J A; Burton, G C; Wagoner, J L; Chen, M

2011-09-22T23:59:59.000Z

138

Department of Environmental Protection ATTN: Mr. Frank Cosolito  

Office of Legacy Management (LM)

3, 1981 3, 1981 Department of Environmental Protection ATTN: Mr. Frank Cosolito 380 Scotch Road Trenton, NJ 08628 Office of Economic Development City Hall ATTN: Mr. Paul Byrne, Director 280 Grove Street Jersey City, NJ 07302 Jersey City Division of Health ATTN: Walter Lezynski, Health Officer City Hall 280 Grove Street Jersey City, NJ 07302 Honorable Gerald McCann, Mayor City Hall 280 Grove Street Jersey City, NJ 07302 Mr. Sol Goldman 660 Madison Avenue New York, NY 10000 Gentlemen: RADIOLOGICAL CHARACTERIZATION OF THE KELLEX SITE - PIERPONT PROPERTY Remedial action (decontamination) activities at the former Kellex site Jersey City, NJ, were initiated in July 1979 and completed in January f980. About one thousand 55-gallon drums of slightly radioactive soil and rubble

139

Seagate Crystal Reports - RADCM  

Office of Environmental Management (EM)

Colorado Colorado SITE: GrJuncOff PROGRAM: EM WASTE TYPE: 11e(2) Byproduct Waste OPERATIONS OFFICE: Idaho Operations Office % of Stream GrJuncOff - 11e(2) Byproduct Waste - RRM Contaminated Soil WASTE STREAM CODE: 01091 STREAM NAME:RRM Contaminated Soil MPC NAME:Soil TOTAL CURIES: Approved Volume : 30.000 Future Volume Avg: 0.000 Future Volume Lower Limit: Future Volume Upper Limit: 100.000 RRM Contaminated Soil Isotopes Radium-226 Avg Concentration: Low Limit Concent: Upper Limit Concent: Uranium-234 Avg Concentration: Low Limit Concent: Upper Limit Concent: Uranium-238 Avg Concentration: Low Limit Concent: Upper Limit Concent: Thorium-230 Avg Concentration: Low Limit Concent: Upper Limit Concent: Uranium-235 Avg Concentration: Low Limit Concent: Upper Limit Concent: % of Stream GrJuncOff - 11e(2) Byproduct Waste - RRM Contaminated Rubble/Debris

140

U.S. Department of Energy Categorical Exclusion Determination Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Additional Characterization and Well Installations at the M-Area Hazardous Waste Management Facility Additional Characterization and Well Installations at the M-Area Hazardous Waste Management Facility Savannah River Site Aiken/Aiken/South Carolina Six wells will be drilled to depths ranging from approximately 100 to 200 feet to characterize the distal portion of the volatile organic compound (VOC) plume down-gradient of the A-Area Burning Rubble Pits/Miscellaneous Chemical Basin/Metals Burning Pit Operable Unit (ABRP/MCB/ MBP OU) airlift recirculation well system. The monitoring wells will be screened in the Upper or Lower Lost Lake Aquifer Zone (ULLAZ or LLLAZ). B3.1 - Site characterization and environmental monitoring Andrew R. Grainger Digitally signed by Andrew R. Grainger DN: cn=Andrew R. Grainger, o=DOE-SR, ou=EQMD, email=drew.grainger@srs.gov, c=US

Note: This page contains sample records for the topic "dirt rubble waterproofing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Property:Past Pertinent Test Experience | Open Energy Information  

Open Energy Info (EERE)

Past Pertinent Test Experience Past Pertinent Test Experience Jump to: navigation, search Property Name Past Pertinent Test Experience Property Type Text Pages using the property "Past Pertinent Test Experience" Showing 25 pages using this property. (previous 25) (next 25) 1 1.5-ft Wave Flume Facility + Rubble mounds, stepped-seawalls, recurved seawalls, floating breakwaters, pile-supported structures have been tested on the flumes 10-ft Wave Flume Facility + Generalized breakwater deterioration R&D study, Lajes, Azores, Kamumalapau, Kodiak, Alaska breakwater stability study 11-ft Wave Flume Facility + Used for testing sandbag configurations, CORE-LOC units, shoreline stability designs, etc. 2 2-ft Flume Facility + Studies done for Yaquina, WA, RIB floating breakwater, generalized Core-Loc stability tests, Cresent City, CA, generalized dolos structural tests, jetty stability

142

CX-010313: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Categorical Exclusion Determination 3: Categorical Exclusion Determination CX-010313: Categorical Exclusion Determination Additional Characterization and Well Installations at the M-Area Hazardous Waste Management Facility CX(s) Applied: B3.1 Date: 04/25/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office Six wells will be drilled to depths ranging from approximately 100 to 200 feet to characterize the distal portion of the volatile organic compound (VOC) plume down-gradient of the A-Area Burning Rubble Pits/Miscellaneous Chemical Basin/Metals Burning Pit Operable Unit (ABRP/MCB/MBP OU) airlift recirculation well system. CX-010313.pdf More Documents & Publications CX-009066: Categorical Exclusion Determination CX-010140: Categorical Exclusion Determination CX-009110

143

U.S. Department of Energy Categorical Exclusion Determination Form  

NLE Websites -- All DOE Office Websites (Extended Search)

Additional Characterization and Well Installations at the M-Area Hazardous Waste Management Facility Additional Characterization and Well Installations at the M-Area Hazardous Waste Management Facility Savannah River Site Aiken/Aiken/South Carolina Six wells will be drilled to depths ranging from approximately 100 to 200 feet to characterize the distal portion of the volatile organic compound (VOC) plume down-gradient of the A-Area Burning Rubble Pits/Miscellaneous Chemical Basin/Metals Burning Pit Operable Unit (ABRP/MCB/ MBP OU) airlift recirculation well system. The monitoring wells will be screened in the Upper or Lower Lost Lake Aquifer Zone (ULLAZ or LLLAZ). B3.1 - Site characterization and environmental monitoring Andrew R. Grainger Digitally signed by Andrew R. Grainger DN: cn=Andrew R. Grainger, o=DOE-SR, ou=EQMD, email=drew.grainger@srs.gov, c=US

144

Solid Waste Management (Kansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid Waste Management (Kansas) Solid Waste Management (Kansas) Solid Waste Management (Kansas) < Back Eligibility Commercial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Kansas Program Type Environmental Regulations Provider Health and Environment This act aims to establish and maintain a cooperative state and local program of planning and technical and financial assistance for comprehensive solid waste management. No person shall construct, alter or operate a solid waste processing facility or a solid waste disposal area of a solid waste management system, except for clean rubble disposal sites, without first obtaining a permit from the secretary. Every person desiring to obtain a permit shall make application for such a permit on forms

145

The mission of the Remediation of Mercury and Industrial  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remediation of Mercury and Industrial Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative is to control the flux of contaminants in soil and water environments for the purpose of protecting surface water, groundwater, and ecological receptors. For more information, contact: Eric Pierce Oak Ridge National Laboratory 1 Bethel Valley Road, MS 6038 Oak Ridge, TN 37831 pierceem@ornl.gov (865) 574-9968 Kurt Gerdes DOE-EM Office of Groundwater and Soil Remediation kurt.gerdes@em.doe.gov (301) 903-7289 Sediment Biota Groundwater Flow Fluctuating Water Table Hg in building structures and rubble Waterborne mercury (mercury being transported via water being released from the facilities to the creeks) Hg currently present in the creek and sediments along the base of the creek

146

Quantitative analysis of inclusion distributions in hot pressed silicon carbide  

SciTech Connect

ABSTRACT Depth of penetration measurements in hot pressed SiC have exhibited significant variability that may be influenced by microstructural defects. To obtain a better understanding regarding the role of microstructural defects under highly dynamic conditions; fragments of hot pressed SiC plates subjected to impact tests were examined. Two types of inclusion defects were identified, carbonaceous and an aluminum-iron-oxide phase. A disproportionate number of large inclusions were found on the rubble, indicating that the inclusion defects were a part of the fragmentation process. Distribution functions were plotted to compare the inclusion populations. Fragments from the superior performing sample had an inclusion population consisting of more numerous but smaller inclusions. One possible explanation for this result is that the superior sample withstood a greater stress before failure, causing a greater number of smaller inclusions to participate in fragmentation than in the weaker sample.

Michael Paul Bakas

2012-12-01T23:59:59.000Z

147

Explosively produced fracture of oil shale. Progress report, April-June 1982  

SciTech Connect

The Los Alamos National Laboratory is conducting rock fragmentation research in oil shale to develop the blasting technologies and designs required to prepare a rubble bed for a modified in situ retort. The first section of this report describes the progress in our experimental work at Anvil Points Mine in cooperation with the Oil Shale Consortium, Sandia National Laboratories, and Science Applications, Inc. It details further studies in explosive characterization and in validation of numerical calculation techniques. It also discusses the development of a physical theory for the determination of permeability and describes the file experiments conducted this quarter. The second section focuses on the cratering experiments at the Colony Mine and the influence of site-specific geology on oil shale fragmentation experiments. 40 figures, 1 table.

1982-11-01T23:59:59.000Z

148

Multiple-tracer gas analyzer  

SciTech Connect

A multi-gas tracer system has been designed, built, and used on an explosively fractured oil shale rubble bed. This paper deals exclusively with the hardware, software, and overall operation of the tracer system. This system is a field portable, self-contained unit, which utilizes a mass spectrometer for gas analysis. The unit has a 20 channel sample port capability and is controlled by a desk top computer. The system is configured to provide a dynamic sensitivity range of up to six orders of magnitude. A roots blower is manifolded to the unit to provide continuous flow in all sample lines. The continuous flow process allows representative samples as well as decreasing the time between each measurement. Typical multiplex cycle time to evaluate four unique gases is approximately 12 seconds.

Uhl, J.E.

1982-01-01T23:59:59.000Z

149

Post-piledriver concept letter  

SciTech Connect

This is the concept for a series of post-shot investigations at the Piledriver site, Area 15, Nevada Test Site (NTS), to gain information on: Chimney geometry and associated wall rock conditions resulting from a deeply buried (1500-ft) nuclear explosion in granite; The characteristics and distribution of rubble and radioactivity in the chimney; and Data pertinent to in-situ leaching. These categories define the three phases of this proposal in chronological order. The technical programs under Phases II and III will depend on the results of Phase 1. Presently, it is not known whether or not there has been a collapse of the Piledriver cavity. If collapse occurred, the predicted dimensions of the chimney, based on Hardhat experience, are expected to be 250 ft in diameter and 560 ft high. For the purpose of this discussion, it is assumed this condition exists.

Werth, G. C.

1967-07-01T23:59:59.000Z

150

Instrumentation and diagnostic techniques used by Los Alamos National Laboratory in fragmentation experiments in oil shale  

SciTech Connect

Discussed are the instrumentation and diagnostic techniques used to evaluate the explosive fragmentation experiments in oil shale at the Colony and Anvil Points Mines in Colorado. These experiments were conducted to investigate some of the many parameters that control the fragmenting or rubblizing of oil shale in preparation for subsurface retorting. Framing and TV cameras were used to study the size and speed of the ejected shale fragments. Stress and accelerometer gauges provided quantitative data about the explosively induced stress field in the rock. The CORRTEX technique was used to determine the detonation velocity of the explosive and the induced fracture velocity in the oil shale. Postshot measurements included the crater dimensions and rubble size distribution. In addition preshot and postshot geological mapping was done to relate fractures and joints to crater size and shape.

Edwards, C.L.; Adams, T.F.; Dick, R.D.

1981-01-01T23:59:59.000Z

151

Numerical modeling of a true in situ oil shale retort  

DOE Green Energy (OSTI)

A numerical model has been developed to simulate the true in situ retorting process. The retort is assumed to be a low-porosity fractured bed composed of large seams of competent shale separated at intervals by open fractures. Kerogen and carbonate decomposition and char, oil, and gas combustion, as well as other reactions, are considered. In contrast to the results of rubbled-bed models, the retorting of seams thicker than one meter is characterized by incomplete retorting and significant oil combustion (10 to 40% of that retorted). The amount of shale retorted can, however, be maximized by proper control of air and steam injection rates, with the injected gas being optimally 40 to 50% steam. The oil available for recovery from a two meter seam can then be, for example, as high as 50% of Fischer Assay.

Tyner, C.E.; Hommert, P.J.

1979-01-01T23:59:59.000Z

152

Some observations of retorting phenomena in shale blocks. [Large blocks in oxidizing and nonoxidizing atmospheres  

DOE Green Energy (OSTI)

A small retort (nominal capacity, one-half-ton oil shale) with glass viewing ports was designed and operated to provide additional information on the retorting characteristics of large blocks of oil shale in oxidizing and nonoxidizing atmospheres. Shale blocks selected for retorting ranged in weight from 240 to 680 pounds and represented shale grades of 14 to 36 gallons of oil per ton. In all tests, temperature profiles show a lag in heating rate of the inside of these blocks compared to the heating rate for the shale rubble surrounding them. Analytical data on the vent gases and gas samples taken from inside the blocks are included along with physical observations to expand the technology on retorting large blocks of oil shale.

Minster, R.A.; Martel, R.A.; Harak, A.E.

1976-10-01T23:59:59.000Z

153

Geophysical investigation: New Production Reactor Complex, Idaho National Engineering Laboratory  

Science Conference Proceedings (OSTI)

Seismic crosshole and downhole velocity measurements were performed for two borehole arrays approximately 300 feet deep in conjunction with verticality measurements and geophysical logging of borehole WO-2 (to a depth of 4,960 feet) at the NPR site of the INEL. Past studies show that the site area is covered by a thin layer of soil which overlies numerous basalt flows interrupted by sandy and clayey interbeds. Compressional and shear wave velocities computed for these arrays revealed low velocity zones at the following elevation ranges for crosshole array No. 1: 4,893 feet to 4,873 feet (basalt rubble zone) and 4,705 feet to 4,686 feet (sediment interbed). Corresponding elevation ranges for crosshole array No. 2 include: 4,830 feet to 4,815 feet (sediment interbed), 4,785 feet to 4,765 feet (highly vesicular and fractured basalt), 4,715 feet to 4,705 feet (basalt rubble zone), and 4,672 feet to 4,667 feet (sediment interbed). In general, crosshole velocity data correlated between arrays with velocity differences possibly explained by localized lithologic changes. Due to scatter in the downhole velocity data, only velocity averages were computed. However, these downhole velocities correlated to the approximate mean crosshole velocity values and therefore independent confirmed the crosshole data. Geophysical logging of well WO-2 included natural gamma, neutron, and compensated density logs to a depth of 4,960 feet at which a viscous borehole fluid inhibited further investigation. Second runs of small sections of these logs were repeated satisfactorily for confirmation of certain anomalous areas.

Filipkowski, F.; Blackey, M.; Davies, D.; Levine, E.N.; Murphy, V. [Weston Geophysical Corp., Westboro, MA (US)

1991-12-01T23:59:59.000Z

154

Minimum bed parameters for in situ processing of oil shale. Second quarterly report, January 1-March 31, 1980  

DOE Green Energy (OSTI)

This is the second in a series of quarterly reports on the Minimum Bed Parameters for In Situ Processing of Oil Shale Program (FE Control No. 4-79 ET 14165.000). It describes activities during the period January 1 to March 31, 1980, including modification of the laboratory retorting system to eliminate problems with the ignition and product collecttion systems and the successful retorting of a 16% void sample. The sample consisted of a 7.6 cm diameter by 23 cm competent core of oil shale with three 0.64 cm slices of material removed parallel to the axis of the cylinder. The 1.4 cm thick slabs constituted 70% of the sample volume, while oil shale rubble (-.32 + .16 cm) was used to occupy nearly half the remaining volume (14%), leaving 16% void. The sample was instrumented, sealed in an insulated retort vessel, ignited with hot (700/sup 0/C) air, and combustion-retorted with air. The observed retorting rate was 10 cm/hr, the local heating rate near the block surface in the retorting zone was 18/sup 0/C/min, and peak temperatures were about 825/sup 0/C. Temperature profiles across the retort cross-section indicated some limited heat loss. Oil yield was 92% of Fischer Assay. Results of block retort model calculations (without rubble in the fracture) are in good agreement with those observed, namely a retorting rate of 12 cm/hr, a local heating rate of 7/sup 0/C/min, peak temperatures around 900/sup 0/C, and a yield of 90% FA.

Tyner, C.E.

1980-06-01T23:59:59.000Z

155

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

81 - 17890 of 28,905 results. 81 - 17890 of 28,905 results. Download CX-006717: Categorical Exclusion Determination Enhanced Oil Recovery Steam Generator CX(s) Applied: Date: 03/30/2011 Location(s): Casper, Wyoming Office(s): RMOTC http://energy.gov/nepa/downloads/cx-006717-categorical-exclusion-determination Download CX-006693: Categorical Exclusion Determination Dirt Work in the Specified Areas that have been Previously and Substantially Disturbed CX(s) Applied: B1.3 Date: 01/00/1900 Location(s): Casper, Wyoming Office(s): RMOTC http://energy.gov/nepa/downloads/cx-006693-categorical-exclusion-determination Download Policy Flash 20012-15 This AL is a reissuance (under the new AL number of 2012-05) of the AL on Meal Costs in Management and Operating Contracts that was originally issued on http://energy.gov/management/downloads/policy-flash-20012-15

156

ARM - Instrument - hsrl  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentshsrl govInstrumentshsrl Documentation HSRL : Instrument Mentor Monthly Summary (IMMS) reports HSRL : Data Quality Assessment (DQA) reports ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : High Spectral Resolution Lidar (HSRL) Beneficiary of Recovery Act funding. Instrument Categories Aerosols, Cloud Properties The High Spectral Resolution Lidar (HSRL ) provides calibrated measurements of aerosol optical depth, volume backscatter coefficient, cross section, and depolarization. Measurements are computed from ratios of the particulate scattering to the measured molecular scattering. This provides absolute calibration and makes the calibration insensitive to dirt or precipitation on the output window. A very narrow, angular field-of-view

157

NEPA COMPLIANCE SURVEY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

;l,[p~ ;l,[p~ Project Information Project Title: Restoration of 54-TPX-1 0 Date: DOE Code: Contractor Code: Project Lead: Jeff Jones Project Overview 1. What are the environmental We will be restoring 54-TPX-10. The work to be done will be to dig 5ft below surface cut casing and impacts? install a marker. We will do the same with the flowline. Any contaminated soil will be replaced with clean fill dirt. The contaminated soil will be transferrred to the lanclfarm. The base will be moved to section 14. 2. What is the legal location? We will then blade, till and reseed with native grasses. The equipment to be used will be as follows: 3. What is the duration of the project? Backhoe, Blade, Shovels, Torch, Welder, And Tiller. This project will also require a hotwork permit for the

158

MS_Oil_Studyguide.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LOOKING DOWN AN OIL WELL LOOKING DOWN AN OIL WELL Ever wonder what oil looks like underground, down deep, hundreds or thousands of feet below the surface, buried under millions of tons of rock and dirt? If you could look down an oil well and see oil where nature created it, you might be surprised. You wouldn't see a big underground lake, as a lot of people think. Oil doesn't exist in deep, black pools. In fact, an underground oil formation-called an "oil reservoir" -looks very much like any other rock formation. It looks a lot like...well, rock. Oil exists underground as tiny droplets trapped inside the open spaces, called "pores," inside rocks. Th e "pores" and the oil droplets can be seen only through a microscope. Th e droplets cling to the rock, like drops of water cling

159

NEPA COMPLIANCE SURVEY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 Project Information Project Title: T-6-10 abandoment and storage relocation Date: 912812009 DOE Code: Contractor Code: Project Lead: Jeff Jones Project Overview We will be reclaiming this loc. we will dig down approx. 4ft. cut off pipes and cap them. And haul of dirt from the berms . We will then blade loc. . The worX to be done is to reclaim this location. In preparation for this 1. What are the environmental worX we will need to remove the old shipping building and a old set of tank stairs. These will be placed in storage in section 14. Upon reading SOP: EN.8000.01 reviewed on July 23rd 2009 I believe this falls under impacts? 2. What is the legal location? NEPA exclusion ex 81 .3 and CX 85.3. Which reads: When moving portable buildings to another disturbed

160

NEPA COMPLIANCE SURVEY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 Project lnfonnation Project Title: Restoration of 62-42 SX 10 DOE Code: Project Lead: Jeff Jones Project Overview We will be restoring this location 62-42 SX-1 0. What are the environmental Date: 2/25/2010 Contractor Code: impacts? We will be removing all oil contaminated soil from location to the landfarm and recording it in the book. W e 2. What is the legal location? will then back fill with clean fill dirt from sec.20. We will remove well head and place a dry hole marker. 3. What is the duration of the project? Flush flowline and remove it. Then we will till the location and plant with native grasses. 4. What major equipment will be used if any (work over rig, drilling rig , 3-4 days etc.)? The equipment to be used will be a backhoe, tiller, dumptruck, and welder.

Note: This page contains sample records for the topic "dirt rubble waterproofing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Austin Using Green Innovation to Beat the Utility Blues | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Austin Using Green Innovation to Beat the Utility Blues Austin Using Green Innovation to Beat the Utility Blues Austin Using Green Innovation to Beat the Utility Blues January 17, 2012 - 1:03pm Addthis An aerial view of the Hornsby Bend Biosolids Management Plant in Austin, Texas. | Photo courtesy of Austin Water. An aerial view of the Hornsby Bend Biosolids Management Plant in Austin, Texas. | Photo courtesy of Austin Water. Todd G. Allen Project Officer, Golden Field Office What does this project do? New biogas generators harness the methane produced during the production of a soil conditioner called "Dillo Dirt" to power the entire production plant. Sewage treatment has always been a dirty business, dating back to the frontier days when "waste management" meant the guy who followed after the

162

U.S. Department of Energy Categorical Exclusion Determination Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DIKE CONSTRUCTION AND DIKE CONSTRUCTION AND MODIFICATIONS (CX-GEN-006) Program or Field Office: Oak Ridge Office, Oak Ridge, Tennessee Location(s) (City/County/State): Oak Ridge, TN; Berkeley, CA; Menlo Park, CA; Newport News, VA; and other DOE-operated facilities and ancillary areas associated with these sites, programs, and projects Proposed Action Description: The proposed actions would involve construction or modification of new or existing secondary containment structures such as dikes, berms, curbing, diversion structures, weirs, booms, and other barriers which would meet the requirements for secondary containment, as specified in 40 CFR Part 112.7(c), to prevent accidental discharges from reaching navigable water courses. The actions taken would include, but would not be limited to, the following types of actions: excavation of dirt, clay, gravel, rock, etc.;

163

Energy Saver Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 30, 2009 July 30, 2009 What Will You be Buying for an Energy Tax Credit? On Tuesday, Allison talked about her experience shopping for a patio door that met the requirements for a federal tax credit for energy efficiency. She found that it's important to make sure the manufacturer can provide a certification statement verifying that the product meets all requirements for a federal tax credit. What will you be buying for an energy tax credit? July 28, 2009 Give Me My Tax Credit! (Or, How I Almost Bought the Wrong Patio Door) Over the past few weeks, my husband and I have been shopping for a new patio door. We currently have a sliding glass door that we have always hated-full exposure to winds from the west and to open fields behind our house mean that we always have dirt and dust getting in through that door,

164

Wind Farm Brings Clean, Affordable Energy to Alaskan Cooperative |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Farm Brings Clean, Affordable Energy to Alaskan Cooperative Wind Farm Brings Clean, Affordable Energy to Alaskan Cooperative Wind Farm Brings Clean, Affordable Energy to Alaskan Cooperative September 26, 2013 - 5:50pm Addthis Wind Farm Brings Clean, Affordable Energy to Alaskan Cooperative A train carrying wind turbine components arrives in Alaska. The components were then transported to the Eva Creek Wind Farm site. | Photo courtesy of Golden Valley Electric Association A train carrying wind turbine components arrives in Alaska. The components were then transported to the Eva Creek Wind Farm site. | Photo courtesy of Golden Valley Electric Association Wind turbine blades are transported up the 10-mile-long, narrow dirt road to the Eva Creek Wind Farm site. | Photo courtesy of Golden Valley Electric Association

165

Outdoor Manners  

NLE Websites -- All DOE Office Websites (Extended Search)

Outdoor Manners Outdoor Manners Nature Bulletin No. 683-A June 10, 1978 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation OUTDOOR MANNERS I AM AN OLD TIME COUNTRY LANE -- just a plain dirt road with a lot of ups and downs, built by the pioneers who settled this region. I was abandoned, thank goodness, after those tin Lizzies began to honk and rattle through the country. They didn't like me and I didn't like them. For more than a century, people went this way on foot, on horseback, and in vehicles drawn by horses or mules. I became well acquainted with many of them and some of their great-grandchildren. They became acquainted with my trees, my wildflowers, the birds and all of my wild creatures. In those days most folks were friendly, neighborly people. They had time to stop, visit, look and listen.

166

ENVIRONMENTAL REVIEW FOR CATEGORICAL EXCLUSION DETERMINATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Montrose Operations Center Asphalt Overlay Project Montrose Operations Center Asphalt Overlay Project Montrose County, Colorado A. Brief Description of Proposal: Western Area Power Administration (Western) proposes to conduct routine maintenance activities by installing an asphalt slurry overlay on the parking lots and roadways at Western's Montrose Operations Center in Montrose, Colorado. The slurry seal involves the creation of a mixture of asphalt emulsion and fine crushed aggregate that is spread on the surface of a road. Existing asphalt surfaces would be cleaned to make it free of loose material, dirt, dust, and debris. A tack coat would be applied followed with a v.. inch asphalt slurry seal coat. The final step would be painting pavement markings. Areas to receive the asphalt overlay:

167

ENVIRONMENTAL REVIEW FOR CATEGORICAL EXCLUSION DETERMINATION  

NLE Websites -- All DOE Office Websites (Extended Search)

Montrose Operations Center Asphalt Overlay Project Montrose Operations Center Asphalt Overlay Project Montrose County, Colorado A. Brief Description of Proposal: Western Area Power Administration (Western) proposes to conduct routine maintenance activities by installing an asphalt slurry overlay on the parking lots and roadways at Western's Montrose Operations Center in Montrose, Colorado. The slurry seal involves the creation of a mixture of asphalt emulsion and fine crushed aggregate that is spread on the surface of a road. Existing asphalt surfaces would be cleaned to make it free of loose material, dirt, dust, and debris. A tack coat would be applied followed with a \4 inch asphalt slurry seal coat. The final step would be painting pavement markings. Areas to receive the asphalt overlay:

168

NEPA COMPLIANCE SURVEY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 Project lnfonnation Project Title: e-EA5. Reclamation of well sites Date: 8/4/2011 DOE Code: Contractor Code: Project Lead: Michael J. Taylor [NCO] Project Overview e-EA 5. Reclamation of wellsites : ex 81.3 and ex 86.1 1. Brief project description [include anything that could impact the Small-scale, short-term cleanup actions including excavation and environment] consolidation of contaminated soils, removal of underground piping, removal of rig anchors or T-bars, drainage control , transport and backfilling of clean soil I fill dirt, and reseeding . The table below is to be completed by the Project Lead and reviewed by the Environmental Specialist and the DOE NEPA Compliance Officer. NOTE: If Change of Scope occurs, Project Lead must submit a new NEPA Compliance Survey and

169

Western Area Power Administration, Desert Southwest Region  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Western Area Power Administration, Desert Southwest Region Liberty-Parker #2 230-kV Transmission Line Optical Power Ground Wire Repairs - Continuation Sheet Project Description The scope of work includes digging a trenching and burying a 1.25-inch OPGW conduit. The conduit trench will be about 4 feet deep and 10 inches wide, with warning tape placed above the conduit in the trench. Once the conduit has been placed, the trench will be backfilled with the original surface material. About 5.3 linear miles of trenching will be required, mostly within the existing dirt access road associated with the LIB-PAD #2 transmission line. Four pullboxes will be installed along the route. The pullboxes measure 2 feet by 3 feet by 2 feet and will be installed at least 24 inches below grade. An

170

CX-002480: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

80: Categorical Exclusion Determination 80: Categorical Exclusion Determination CX-002480: Categorical Exclusion Determination State Energy Program: 21st Century Energy Grants- AAA Cab Service CX(s) Applied: B5.1 Date: 05/26/2010 Location(s): Phoenix, Arizona Office(s): Energy Efficiency and Renewable Energy, Golden Field Office The State of Arizona will provide $30,000 in Recovery Act funds to AAA Cab Service to install an above-ground tank at their fueling stating. The location of the station is between the Phoenix airport and the I-10 freeway. The fueling station, above ground storage tank, and new concrete driveway will be located on a dirt lot that has been previously disturbed. The lot is located in a highly industrialized area with some light commercial use. DOCUMENT(S) AVAILABLE FOR DOWNLOAD

171

U.S. Department of Energy Categorical Exclusion Determination Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Parker Dam to Gila 161-kV Transmission Line, Cross Arm Replacement at Structure 0/7 Parker Dam to Gila 161-kV Transmission Line, Cross Arm Replacement at Structure 0/7 Program or Field Office:Western Area Power Administration, Desert Southwest Regional Office Location(s) (Citv/County/State): San Bernardino County, California Proposed Action Description: Submit by E -mail Western proposes to conduct cross arm replacements at a single wood H-frame structure located on the existing Parker Dam to Gila 161-kV transmission line. Structure 0/7 is located on private lands in Township 2 North, Range 27 East, Section 4, San Bernardino County, California, about 12 miles northeast of Parker, Arizona. The wood cross arms on structure 0/7 will be replaced in-kind. Access to the structure will be via existing dirt roads. The existing spur road from

172

NEPA COMPLIANCE SURVEY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 9 Project Information Project Title: Restoration of 73 SX 1 OH DOE Code: Project Lead: Jeff Jones Project Overview We will be restoring this location 73 SX 10H. What are the environmental Date: 3/3/2010 Contractor Code: impacts? We will be removing all oil contaminated soil from location to the landfarm and recording it in the book. We 2. What is the legal location? will then back fill with clean fill dirt from sec.20. We will remove well head and place a dry hole marker. 3. What is the duration of the project? Flush flowline and remove it.Then we will till the location and plant with native grasses. 4. What major equipment will be used if any (work over rig , drilling rig, 3-4 days etc.)? The equipment to be used will be a backhoe, tiller, dumptruck, and welder.

173

NEPA COMPLIANCE SURVEY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

283 283 Project Information Project Title: Restoration of61 -36-SX-10 DOE Code: Project Lead: Jeff Jones Project Ove rview We will be restoring this location 61 -36-SX-10. What are the environmental Da te: 2-9-2010 Cont rac tor Code: impacts? We will be removing all oil contaminated soil from location to the landfarm and recording it in the book. We 2. What is the legal location? will then back fill with clean fill dirt from sec.20. We will remove well head and place a dry hole marl

174

Energy Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 28, 2009 July 28, 2009 Give Me My Tax Credit! (Or, How I Almost Bought the Wrong Patio Door) Over the past few weeks, my husband and I have been shopping for a new patio door. We currently have a sliding glass door that we have always hated-full exposure to winds from the west and to open fields behind our house mean that we always have dirt and dust getting in through that door, not to mention cold air in the winter and heat in the summer. The final straw was a warped and squeaky track, no doubt aggravated by our dog's constant indecision over whether he wants to be inside or outside (oh, the dilemma!). July 27, 2009 Induction Lighting: An Old Lighting Technology Made New Again Induction lighting is one of the best kept secrets in energy-efficient lighting. Simply stated, induction lighting is essentially a fluorescent

175

ARM - SGP Rural Driving Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

Rural Driving Hazards Rural Driving Hazards SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts SGP Rural Driving Hazards The rural location of the Southern Great Plains (SGP) site facilities requires that visitors travel on unpaved, dirt and gravel, roads. Visitors should be aware of the driving hazards this presents by taking the following precautions: Proceed cautiously: Many rural roads have unmarked and blind intersections. Slow down: Sanded and gravel raods can cause a vehicle to swerve. Maintain a safe following distance: During the dry season, vehicles

176

NEPA COMPLIANCE SURVEY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

D D Project lnfonnation Project Title: Emergency flowline repair 78-sx-34 & 68-66-sx-34 Date: 12-29-09 DOE Code: Contractor Code: Project Lead: RickM. Project Overview We dug up the line where the oil was coming out of the ground and had to put 2 clamps on to seal the leak. 1. What are the environmental impacts? The contaminated dirt was hauled to the land farm and after the line was tested we backfilled the hole. this job took 5 hrs. to complete and required a backhoe and two hands. this leak was 100 yards south of well No. 2. What is the legal location? 68-66-sx-34. 3. What is the duration of the project? 4. What major equipment will be used if any (work over rig, drilling rig, etc.)? The table below is to be completed by the Project Lead and reviewed by the Environmental Specialist and the DOE NEPA

177

NEPA COMPLIANCE SURVEY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Project Information Project Title: 17 -AX-11 Restoration Date: DOE Code: Contractor Code: Project Lead: Jim Bell Project Overview The environmental impacts should be minimal . Using Best Management Practies for erosion prevention; 1. What are the environmental impacts? we will dig out all unused pipeing and electrical wire and get rid of the concrete pad on the location. this will require the use of a backhoe, blade ,dozer and farm tractor. Containeated siol will be trensferred to the 2. What is the legal location? landfarm and clean fill dirt will be used for replacement. We will restore the location back to the origanal 3. What is the duration of the project? contour and reseed it. This should take around 4 days to complete. 4. What major equipment will be used

178

NEPA COMPLIANCE SURVEY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 7 Project lnfonnation Project Title: Restoration 72-12-SX-1 0 Date: 2/26/2010 DOE Code: Contractor Code: Project Lead: Jeff Jones Project Overview We will be restoring 71-12-SX1 0. This will include digging 5ft down and cutting well head off and placing 1. What are the environmental impacts? OHM. We will haul contaminated soils to the Eastside landfarm and record in log book. We will replace all dirt hauled off with clean fill from sec.20. 2. What is the legal location? 71-12 SX10 3. What is the duration of the project? Approximately 3-4 days 4. What major equipment will be used if any (work over rig , drilling rig , Backhoe with operator, welder, tiller and one worker. etc.)? The table below is to be completed by the Project Lead and reviewed by the Environmental Specialist and the DOE NEPA

179

EMSL: Environmental Molecular Sciences Laboratory  

NLE Websites -- All DOE Office Websites

Science Science FAQ Search EMSL Home About EMSL Science Capabilities User Access Publications News Contacts Back Pause Slideshow Slide 1 Next Biofuel breakdown A collaborative study shows that Enterobacter lignolyticus SCF1 can multitask quite successfully: degrade lignin as both a food source and for breathing - the first soil bacterium to demonstrate this dual capability. Research Highlights Watch a virtual tour of EMSL The hidden ties that bind EMSL scientists took advantage of advanced instrumental capabilities, a specially designed experimental cell and theoretical modeling to successfully deduce the how molecules of carboxylic acid- a common organic acid found in nature - bind to ceria nanoparticle surfaces. Research Highlights Watch a virtual tour of EMSL Ditch the dirt

180

American Recovery & Reinvestment Act Newsletter - Issue 13  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery and Reinvestment Act Newsletter d Volume 2, No. 3 d March 2010 Recovery and Reinvestment Act Newsletter d Volume 2, No. 3 d March 2010 Fusion Researchers Gather to Say Goodbye to Pioneering Facility TSTA building saw early advances in nuclear fusion  Fusion Researchers Gather to Say Goodbye to Pioneering Facility ...1  Offi cials Brief Stakeholders on Progress .......................................2  Paul Bellesen is Thrilled to Trade Sun for Dirt ..................................3  'Chem Plant' Decontamination and Decommissioning Advances at Idaho Site .................................4  Demolition Efforts Under Way at ORNL's 2000 Complex ...........5  The Recovery Act Effect .............6  Cleanout Boxes Removal Complete at Hanford Tank Farms ................7  Over 116,000 Tons of Contaminated

Note: This page contains sample records for the topic "dirt rubble waterproofing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Early Cook County Roads -- Part Two  

NLE Websites -- All DOE Office Websites (Extended Search)

Two Two Nature Bulletin No. 739 January 18, 1964 Forest Preserve District of Cook County Seymour Simon, President Roberts Mann, Conservation Editor EARLY COOK COUNTY ROADS -- PART TWO -- THE PLANK ROAD ERA For ten years after Chicago, with a population of 4,170, was chartered as a city in 1837, its commerce and growth were crippled by wretched transportation to and from the hinterlands. During many periods of each year it was surrounded and isolated by mud. To be sure, there were dirt thoroughfares in all directions, graded and drained as best they could in those days, but not surfaced. No one who has never experienced it can appreciate how gooey and gluey a black prairie soil can be when wet. A wagon's wheels often become solid cylinders of mud as wide as a bass drum.

182

Just the Basics: Particulate Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

is Particulate is Particulate Matter? One of the major components of air pollution is particulate matter, or PM. PM refers to airborne particles that include dust, dirt, soot, smoke, and liquid droplets. These particles can range in size from microscopic to large enough to be seen. PM is characterized by its size, with fine particles of less than 2.5 micrometers in size designated as PM 2.5 and coarser particles between 2.5 and 10 micrometers in size designated as PM 10 . PM arises from many sources, including combustion occurring in factories, power plants, cars, trucks, buses, trains, or wood fires; or through simple agitation of existing particulates by tilling of land, quarrying and stone-crushing, and off- road vehicular movement. Of particular interest is PM generated during diesel

183

CX-006645: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Categorical Exclusion Determination 5: Categorical Exclusion Determination CX-006645: Categorical Exclusion Determination T-6-10 Abandonment and Storage Relocation CX(s) Applied: B1.3, B1.22, B5.3 Date: 10/20/2009 Location(s): Casper, Wyoming Office(s): RMOTC We will be reclaiming this location, we will dig down approximately 4 feet, cut off pipes and cap them, and haul off dirt from the berms. We will then blade location. The work to be done is to reclaim this location. In preparation for this work we will need to remove the old shipping building and an old set of tank stairs. These will be placed in storage in section 14. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-006645.pdf More Documents & Publications CX-006725: Categorical Exclusion Determination CX-006650: Categorical Exclusion Determination

184

Microsoft Word - TR05-27.doc  

Office of Legacy Management (LM)

Hallam, Nebraska Hallam, Nebraska June 2010 Page 1 2010 Annual Inspection and Status Report for the Hallam, Nebraska, Decommissioned Reactor Site Summary The former Hallam Nuclear Power Facility (HNPF) was inspected on April 28, 2010. The Intermediate Heat Exchanger (IHX) building, the grass-covered mound, and the monitoring wells were all in good shape. The roof of the IHX building was replaced in 2007 and the building was painted in 2008. Dirt and gravel were placed around the base of the IHX building in 2009 to raise the ground surface and eliminate the potential for water to pool near the base of the building. In 2009, inspectors noted that strong winds had moved roof rock from the corners of the upper roof exposing the underlying roofing fabric. In 2009 paver stones were placed in the corners of both the upper and

185

Western Area Power Administration, Desert Southwest Region  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Western Area Power Administration, Desert Southwest Region Liberty-Parker #2 230-kV Transmission Line Optical Power Ground Wire Repairs - Continuation Sheet Project Description The scope of work includes digging a trenching and burying a 1.25-inch OPGW conduit. The conduit trench will be about 4 feet deep and 10 inches wide, with warning tape placed above the conduit in the trench. Once the conduit has been placed, the trench will be backfilled with the original surface material. About 5.3 linear miles of trenching will be required, mostly within the existing dirt access road associated with the LIB-PAD #2 transmission line. Four pullboxes will be installed along the route. The pullboxes measure 2 feet by 3 feet by 2 feet and will be installed at least 24 inches below grade. An

186

NEPA COMPLIANCE SURVEY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 Project Information Project Title: C-EA 2. Work on existing well location (within 125' Date: 6/6/2011 from well bore) DOE Code: Contractor Code: Project Lead: Michael J. Taylor [NCO] Project Overview C-EA 2. Work on existing well location (within 125' from well bore): 1. Brief project description [include P&A of wells was approved in the October 2008 Sitewide Environmental anything that could impact the Assessment (SWEA) [Section 3.1 .1 , Page 11 , Line 1 ]and Finding of No environment] 2. Legal location Significant Impact (FONSI). CX 85.12 3. Duration of the project Includes well workovers, P&A of wells, and associated dirt work, to include 4. Major equipment to be used repair of anchors I piping I flowlines and construction of temporary workover

187

Categorical Exclusion 4565, Waste Management Construction Support  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FornI FornI Project Title: Waste Management Construction Support (4565) Program or Program Office: Y -12 Site Office Location: Oak Ridge Tennessee Project Description: This work scope is an attempt to cover the general activities that construction would perform in support of Waste Management activities. Work includes construction work performed in support of Waste Management Sustainability and Stewardship projects and programs to include: load waste into containers; open, manipulate containers; empty containers; decommission out-of-service equipment (includes removal of liquids, hazardous, and universal wastes); apply fabric and gravel to ground; transport equipment; transport materials; transport waste; remove vegetation; place barriers; place erosion controls; operate wheeled and tracked equipment; general carpentry. Work will be performed on dirt, vegetated, graveled, or paved surfaces in

188

Oak Ridge National Laboratory Wireless Power Transfer Development for Sustainable Campus Initiative  

SciTech Connect

Wireless power transfer (WPT) is a convenient, safe, and autonomous means for electric and plug-in hybrid electric vehicle charging that has seen rapid growth in recent years for stationary applications. WPT does not require bulky contacts, plugs, and wires, is not affected by dirt or weather conditions, and is as efficient as conventional charging systems. This study summarizes some of the recent Sustainable Campus Initiative activities of Oak Ridge National Laboratory (ORNL) in WPT charging of an on-campus vehicle (a Toyota Prius plug-in hybrid electric vehicle). Laboratory development of the WPT coils, high-frequency power inverter, and overall systems integration are discussed. Results cover the coil performance testing at different operating frequencies, airgaps, and misalignments. Some of the experimental results of insertion loss due to roadway surfacing materials in the air-gap are presented. Experimental lessons learned are also covered in this study.

Onar, Omer C [ORNL; Miller, John M [ORNL; Campbell, Steven L [ORNL; Coomer, Chester [ORNL; White, Cliff P [ORNL; Seiber, Larry Eugene [ORNL

2013-01-01T23:59:59.000Z

189

Evaluation of manure as a feedstock for gas turbines  

DOE Green Energy (OSTI)

A preliminary program on evaluation of feedlot manure as a feed stock for gas turbines has been completed. It was determined that manure can be pulverized and fed into a gas turbine combustion system with the manure burning in much the same manner as a liquid or gaseous fuel. Ash and dirt in the manure did not appear to have a significant effect on combustion and were effectively removed by the cyclone filters. The exhaust gases varied from clear to a blue haze. Severe problems were encountered with slagging of the hot refractory walls of the combustor. Development of a suitable combustor will be required before a commercial size system can be designed. 10 refs., 10 figs., 3 tabs.

Hamrick, J.T.

1988-05-01T23:59:59.000Z

190

High removal rate laser-based coating removal system  

Science Conference Proceedings (OSTI)

A compact laser system is disclosed that removes surface coatings (such as paint, dirt, etc.) at a removal rate as high as 1,000 ft{sup 2}/hr or more without damaging the surface. A high repetition rate laser with multiple amplification passes propagating through at least one optical amplifier is used, along with a delivery system consisting of a telescoping and articulating tube which also contains an evacuation system for simultaneously sweeping up the debris produced in the process. The amplified beam can be converted to an output beam by passively switching the polarization of at least one amplified beam. The system also has a personal safety system which protects against accidental exposures.

Matthews, D.L.; Celliers, P.M.; Hackel, L.; Da Silva, L.B.; Dane, C.B.; Mrowka, S.

1999-11-16T23:59:59.000Z

191

Data transmission element for downhole drilling components  

DOE Patents (OSTI)

A robust data transmission element for transmitting information between downhole components, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The data transmission element components include a generally U-shaped annular housing, a generally U-shaped magnetically conductive, electrically insulating element such as ferrite, and an insulated conductor. Features on the magnetically conducting, electrically insulating element and the annular housing create a pocket when assembled. The data transmission element is filled with a polymer to retain the components within the annular housing by filling the pocket with the polymer. The polymer can bond with the annular housing and the insulated conductor but preferably not the magnetically conductive, electrically insulating element. A data transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT)

2006-01-31T23:59:59.000Z

192

Field demonstration of the ICE 250[trademark] Cleaning System  

SciTech Connect

The ICE 250[trademark] Cleaning System was engineered to convert water into small ice particles for use in cleaning and decontamination applications. Ice crystals are produced in a special icemaker and pressured through a hose-nozzle onto the surface to be cleaned. The Rocky Mountain Oilfield Testing Center and Ice Cleaning Systems, Inc., conducted a test of this system at Naval Petroleum Reserve No. 3 to evaluate the system's cleaning capabilities in an oil field environment. Equipment cleaned included an oil storage tank, a rod pumping unit, a road grader, and a wellhead. Contaminants were unrefined sour crude oil, hydraulic fluid, paraffin, and dirt, occurring separately and as mixtures. In all four demonstration cleaning tasks, the ICE 250 System effectively removed surface contaminant mixtures in a timely manner and left no oily residue. A minimal amount of waste moistur2048s generated, thereby reducing cleanup and disposal costs.

Johnston, J.L.; Jackson, L.M.

1999-10-05T23:59:59.000Z

193

Field demonstration of the ICE 250{trademark} Cleaning System  

SciTech Connect

The ICE 250{trademark} Cleaning System was engineered to convert water into small ice particles for use in cleaning and decontamination applications. Ice crystals are produced in a special icemaker and pressured through a hose-nozzle onto the surface to be cleaned. The Rocky Mountain Oilfield Testing Center and Ice Cleaning Systems, Inc., conducted a test of this system at Naval Petroleum Reserve No. 3 to evaluate the system's cleaning capabilities in an oil field environment. Equipment cleaned included an oil storage tank, a rod pumping unit, a road grader, and a wellhead. Contaminants were unrefined sour crude oil, hydraulic fluid, paraffin, and dirt, occurring separately and as mixtures. In all four demonstration cleaning tasks, the ICE 250 System effectively removed surface contaminant mixtures in a timely manner and left no oily residue. A minimal amount of waste moisture was generated, thereby reducing cleanup and disposal costs.

Johnston, J.L.; Jackson, L.M.

1999-10-05T23:59:59.000Z

194

Search for neutrons from deuterated palladium subject to high electrical currents  

Science Conference Proceedings (OSTI)

Tritium has been detected evolving from samples of deuteriated palladium wires and powders subject to pulsed high voltage at Los Alamos. They wanted to measure whether these samples were emitting neutrons. The idea of pulsing current through the wires and powders was to drive the deuterium in and out by rapid electrical heating. With promising tritium results in hand, the experiments were prepared at Los Alamos, and then taken to BYU and run in the neutron detector located in a tunnel in Provo canyon under 35 m of rock and dirt overburden. The neutrons detector and sample setup are described. Results including total neutron counts, time distributions, and an indication of the energy distributions are discussed. The results do not provide compelling evidence of neutron production, but are not inconsistent with earlier measurements of neutrons and tritium. Difficulties in explaining the difference in tritium and neutron measurements are also discussed. Plans for further work are presented.

Taylor, S.F. [Los Alamos National Lab., NM (United States)]|[Brigham Young Univ., Provo, UT (United States); Claytor, T.N.; Tuggle, D.G. [Los Alamos National Lab., NM (United States); Jones, S.E. [Brigham Young Univ., Provo, UT (United States). Dept. of Physics and Astronomy

1994-04-01T23:59:59.000Z

195

Air cooled turbine component having an internal filtration system  

DOE Patents (OSTI)

A centrifugal particle separator is provided for removing particles such as microscopic dirt or dust particles from the compressed cooling air prior to reaching and cooling the turbine blades or turbine vanes of a turbine engine. The centrifugal particle separator structure has a substantially cylindrical body with an inlet arranged on a periphery of the substantially cylindrical body. Cooling air enters centrifugal particle separator through the separator inlet port having a linear velocity. When the cooling air impinges the substantially cylindrical body, the linear velocity is transformed into a rotational velocity, separating microscopic particles from the cooling air. Microscopic dust particles exit the centrifugal particle separator through a conical outlet and returned to a working medium.

Beeck, Alexander R. (Orlando, FL)

2012-05-15T23:59:59.000Z

196

Weathering and Protection of Wood  

E-Print Network (OSTI)

Introduction When wood is exposed outdoors, above ground, a complex combination of chemical, mechanical, and light energy factors contribute to what is described as weathering (38). Weathering is not to be confused with decay, which results from decay organisms (fungi) acting in the presence of excess moisture and air for an extended period of time (34). Under conditions suitable for the development of decay, wood can deteriorate rapidly and the result is far different than that observed for natural outdoor weathering, Outdoor Weathering Process In outdoor weathering of smooth wood, original surfaces become rough as grain raises and the wood checks, and the checks grow into large cracks; grain may loosen, boards cup and warp and pull away from fasteners (Figs. 1 and 2), The roughened surface changes color, gathers dirt and mildew, and may become unsightly; the wood loses its surface coherence and becomes friable, splinters, and frag ments come off. All these e

William C. Feist

1983-01-01T23:59:59.000Z

197

Most Probable Number Rapid Viability PCR Method to Detect Viable Spores of Bacillus anthracis in Swab Samples  

Science Conference Proceedings (OSTI)

This note presents a comparison of Most-Probable-Number Rapid Viability (MPN-RV) PCR and traditional culture methods for the quantification of Bacillus anthracis Sterne spores in macrofoam swabs generated by the Centers for Disease Control and Prevention (CDC) for a multi-center validation study aimed at testing environmental swab processing methods for recovery, detection, and quantification of viable B. anthracis spores from surfaces. Results show that spore numbers provided by the MPN RV-PCR method were in statistical agreement with the CDC conventional culture method for all three levels of spores tested (10{sup 4}, 10{sup 2}, and 10 spores) even in the presence of dirt. In addition to detecting low levels of spores in environmental conditions, the MPN RV-PCR method is specific, and compatible with automated high-throughput sample processing and analysis protocols.

Letant, S E; Kane, S R; Murphy, G A; Alfaro, T M; Hodges, L; Rose, L; Raber, E

2008-05-30T23:59:59.000Z

198

SOLERAS - Solar Energy Water Desalination Project: DSET Laboratories. Performance testing of the fresnel point focus concentrating dish  

Science Conference Proceedings (OSTI)

The thernal performance of an 80.3 m/sup 2/ (864 ft/sup 2/) Power Kinetics, Inc. (PKI) fresnel point focus concentrating dish was measured over a period of seven months using SYLTHERM 800 as the heat transfer fluid. Three stages of testing were conducted; initial performance, extended all day operational, and final performance testing. The initial and final performance tests each used three different procedures to measure efficiency in order to quantify the solar concentrator's performance. The all day operational testing represented the ''in situ'' performance of the dish. During the seven months of performance testing, the operation of the dish was thoroughly monitored. All significant problems affecting the normal functioning of the PKI solar concentrator are noted in this report along with any corrective action taken to rectify the problems. Also, a small exposure program was conducted on mirror samples to determine if any reduction in total and specular reflectance occurred due to dirt retention on the mirrors.

Not Available

1985-01-01T23:59:59.000Z

199

Measure Guideline: Water Management at Tub and Shower Assemblies  

Science Conference Proceedings (OSTI)

Due to the high concentrations of water and the consequential risk of water damage to the home's structure a comprehensive water management system is imperative to protect the building assemblies underlying the finish surround of tub and shower areas. This guide shows how to install fundamental waterproofing strategies to prevent water related issues at shower and tub areas. When conducting a total gut rehab of a structure or constructing a new home, best practice installation and detailing for effective waterproofing are critically important at bathtub and shower assemblies. Water management issues in a structure may go unrecognized for long periods, so that when they are finally observed, the damage from long-term water exposure is extensive. A gut rehab is often undertaken when a home has experienced a natural disaster or when the homeowners are interested in converting an old, high-energy-use building into a high-quality, efficient structure that meets or exceeds one of the national energy standards, such as ENERGY STAR or LEED for homes. During a gut rehab, bath areas need to be replaced with diligent attention to detail. Employing effective water management practices in the installation and detailing of tub and shower assemblies will minimize or eliminate water issues within the building cavities and on the finished surfaces. A residential tub-and-shower surround or shower-stall assembly is designed to handle a high volume of water - 2.5 gallons per minute, with multiple baths occurring during a typical day. Transitions between dissimilar materials and connections between multiple planes must be installed with care to avoid creating a pathway for water to enter the building assemblies. Due to the high volume of water and the consequential risk of water damage to the home's structure, a comprehensive water management system is imperative to protect the building assemblies underlying the finish surround of tub and shower areas. At each stage of construction, successive trades must take care not to create a defect nor to compound or cover up a previous trade's defect. Covering a defect hides the inevitable point of failure and may even exacerbate the situation.

Dickson, B.

2011-12-01T23:59:59.000Z

200

EI Summary of SIC 22  

U.S. Energy Information Administration (EIA) Indexed Site

Textiles (22) All (20-39) Food (20) Apparel (23) Lumber (24) Furniture (25) Paper (26) Printing (27) Chemicals (28) Refineries (29) Rubber (30) Stone, Clay & Glass(32) Primary Metals (33) Fabricated Metals (34) Machinery (35) Electronic Equipment (36) Instruments (38) Miscellaneous Manufacturing (39) Textiles (22) All (20-39) Food (20) Apparel (23) Lumber (24) Furniture (25) Paper (26) Printing (27) Chemicals (28) Refineries (29) Rubber (30) Stone, Clay & Glass(32) Primary Metals (33) Fabricated Metals (34) Machinery (35) Electronic Equipment (36) Instruments (38) Miscellaneous Manufacturing (39) This major group includes establishments engaged in performing any of the following operations: (1) preparation of fiber and subsequently manufacturing of yarn, thread, braids, twine, or cordage; (2) manufacturing broadwoven fabrics, narrow woven fabrics, knit fabrics, and carpets and rugs from yarn; (3) dyeing and finishing fiber, yarn, fabrics, and knit apparel; (4) coating, waterproofing, or otherwise treating fabrics; (5) the integrated manufacture of knit apparel and other finished articles from yarn; (6) the manufacture of felt goods, lace goods, nonwoven fabrics, and miscellaneous textiles.

Note: This page contains sample records for the topic "dirt rubble waterproofing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Modular, multi-level groundwater sampler  

DOE Patents (OSTI)

An apparatus is described for taking a multiple of samples of groundwater or pressure measurements from a well simultaneously. The apparatus comprises a series of chambers arranged in an axial array, each of which is dimensioned to fit into a perforated well casing and leave a small gap between the well casing and the exterior of the chamber. Seals at each end of the container define the limits to the axial portion of the well to be sampled. A submersible pump in each chamber pumps the groundwater that passes through the well casing perforations into the gap from the gap to the surface for analysis. The power lines and hoses for the chambers farther down the array pass through each chamber above them in the array. The seals are solid, water-proof, non-reactive, resilient disks supported to engage the inside surface of the well casing. Because of the modular design, the apparatus provides flexibility for use in a variety of well configurations. 3 figures.

Nichols, R.L.; Widdowson, M.A.; Mullinex, H.; Orne, W.H.; Looney, B.B.

1994-03-15T23:59:59.000Z

202

Evaluation of an alternative bituminous material as a soil stabilizer  

E-Print Network (OSTI)

Asphalt cements, cutback asphalts, and emulsified asphalts are used as bituminous stabilizing agents in the pavement systems. The emulsified asphalts are increasingly used in lieu of cutback asphalts because of environmental regulations and safety. Consequently, development of a new stabilization material, which is environmentally safe and non-flammable, is desired for replacing cutback asphalts. In this study a petroleum-resin-based (PRB) material was tested to investigate its physical and mechanical characteristics as an alternative bituminous soil stabilizer in terms of replacing the cutback asphalts because the PRB material has been proved an environmentally safe material. Based on various laboratory tests, including an unconfined compressive strength test, a soil suction test, dielectric measurements, a resilient modulus test, and an optical microscopy test, it has been verified that the PRB material affects base-layer waterproofing, but significant strength gain was not found. When mixed with mostly granular base materials, the PRB material coated soil or aggregate particles and decreased the volume of voids, which can be thought as potential water flow channels. Consequently, the PRB material is expected to reduce permeability.

Kim, Yong-Rak

1999-01-01T23:59:59.000Z

203

Preparation of hydrophobic organic aeorgels  

DOE Patents (OSTI)

Synthetic methods for the preparation of hydrophobic organics aerogels. One method involves the sol-gel polymerization of 1,3-dimethoxybenzene or 1,3,5-trimethoxybenzene with formaldehyde in non-aqueous solvents. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be dried using either supercritical solvent extraction to generate the new organic aerogels or air dried to produce an xerogel. Other methods involve the sol-gel polymerization of 1,3,5 trihydroxy benzene (phloroglucinol) or 1,3 dihydroxy benzene (resorcinol) and various aldehydes in non-aqueous solvents. These methods use a procedure analogous to the one-step base and two-step base/acid catalyzed polycondensation of phloroglucinol and formaldehyde, but the base catalyst used is triethylamine. These methods can be applied to a variety of other sol-gel precursors and solvent systems. These hydrophobic organics aerogels have numerous application potentials in the field of material absorbers and water-proof insulation.

Baumann, Theodore F. (Tracy, CA); Satcher, Jr., Joe H. (Patterson, CA); Gash, Alexander E. (Livermore, CA)

2007-11-06T23:59:59.000Z

204

Software Modems for Underwater Sensor Networks  

E-Print Network (OSTI)

Abstract The prohibitive monetary cost and high power consumption of existing acoustic hardware represent an obstacle for underwater sensor network deployment efforts. To address this issue, we propose underwater networks that rely on widely available speakers and microphones in electronic devices, coupled with software modems, to establish acoustic communication links. In this paper, we analytically and empirically explore the potential of this acoustic communication system for the underwater environment with a generic PC microphone as a receiver and with the Tmote Invent sensor module speaker as a transmitter. After waterproofing the components with elastic membranes that provide suitable coupling with the water, our experiments profile the hardware communication capability in a controlled aquatic environment. The medium profiling results expose the favorable frequencies of operation for the hardware, enabling us to design a software FSK modem. The experiments to evaluate the data transfer capability of our 8-frequency FSK software modem in the underwater channel yield an error-free channel capacity of 24 bps, and they also demonstrate that the system supports data rates up to at least 48 bps within a transmission range of 17 m. I.

Raja Jurdak; Pedro Aguiar; Pierre Baldi; Cristina Videira Lopes

2007-01-01T23:59:59.000Z

205

Completion Report for Model Evaluation Well ER-5-5: Corrective Action Unit 98: Frenchman Flat  

Science Conference Proceedings (OSTI)

Model Evaluation Well ER-5-5 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of Nevada Environmental Management Operations at the Nevada National Security Site (formerly known as the Nevada Test Site). The well was drilled in July and August 2012 as part of a model evaluation well program in the Frenchman Flat area of Nye County, Nevada. The primary purpose of the well was to provide detailed geologic, hydrogeologic, chemical, and radiological data that can be used to test and build confidence in the applicability of the Frenchman Flat Corrective Action Unit flow and transport models for their intended purpose. In particular, this well was designed to obtain data to evaluate the uncertainty in model forecasts of contaminant migration from the upgradient underground nuclear test MILK SHAKE, conducted in Emplacement Hole U-5k in 1968, which were considered to be uncertain due to the unknown extent of a basalt lava-flow aquifer present in this area. Well ER-5-5 is expected to provide information to refine the Phase II Frenchman Flat hydrostratigraphic framework model, if necessary, as well as to support future groundwater flow and transport modeling. The 31.1-centimeter (cm) diameter hole was drilled to a total depth of 331.3 meters (m). The completion string, set at the depth of 317.2 m, consists of 16.8-cm stainless-steel casing hanging from 19.4-cm carbon-steel casing. The 16.8-cm stainless-steel casing has one slotted interval open to the basalt lava-flow aquifer and limited intervals of the overlying and underlying alluvial aquifer. A piezometer string was also installed in the annulus between the completion string and the borehole wall. The piezometer is composed of 7.3-cm stainless-steel tubing suspended from 6.0-cm carbon-steel tubing. The piezometer string was landed at 319.2 m, to monitor the basalt lava-flow aquifer. Data collected during and shortly after hole construction include composite drill cuttings samples collected every 3.0 m, various geophysical logs, preliminary water quality measurements, and water-level measurements. The well penetrated 331.3 m of QuaternaryTertiary alluvium, including an intercalated layer of saturated basalt lava rubble. No well development or hydrologic testing was conducted in this well immediately after completion; however, a preliminary water level was measured in the piezometer string at the depth of 283.4 m on September 25, 2012. No tritium above the minimum detection limit of the field instruments was detected in this hole. Future well development, sampling, and hydrologic testing planned for this well will provide more accurate hydrologic information for this site. The stratigraphy, general lithology, and water level were as expected, though the expected basalt lava-flow aquifer is basalt rubble and not the dense, fractured lava as modeled. The lack of tritium transport is likely due to the difference in hydraulic properties of the basalt lava-flow rubble encountered in the well, compared to those of the fractured aquifer used in the flow and transport models.

NSTec Underground Test Area and Boreholes Programs and Operations

2013-01-18T23:59:59.000Z

206

Radionuclide Partitioning in an Underground Nuclear Test Cavity  

Science Conference Proceedings (OSTI)

In 2004, a borehole was drilled into the 1983 Chancellor underground nuclear test cavity to investigate the distribution of radionuclides within the cavity. Sidewall core samples were collected from a range of depths within the re-entry hole and two sidetrack holes. Upon completion of drilling, casing was installed and a submersible pump was used to collect groundwater samples. Test debris and groundwater samples were analyzed for a variety of radionuclides including the fission products {sup 99}Tc, {sup 125}Sb, {sup 129}I, {sup 137}Cs, and {sup 155}Eu, the activation products {sup 60}Co, {sup 152}Eu, and {sup 154}Eu, and the actinides U, Pu, and Am. In addition, the physical and bulk chemical properties of the test debris were characterized using Scanning Electron Microscopy (SEM) and Electron Microprobe measurements. Analytical results were used to evaluate the partitioning of radionuclides between the melt glass, rubble, and groundwater phases in the Chancellor test cavity. Three comparative approaches were used to calculate partitioning values, though each method could not be applied to every nuclide. These approaches are based on: (1) the average Area 19 inventory from Bowen et al. (2001); (2) melt glass, rubble, and groundwater mass estimates from Zhao et al. (2008); and (3) fission product mass yield data from England and Rider (1994). The U and Pu analyses of the test debris are classified and partitioning estimates for these elements were calculated directly from the classified Miller et al. (2002) inventory for the Chancellor test. The partitioning results from this study were compared to partitioning data that were previously published by the IAEA (1998). Predictions of radionuclide distributions from the two studies are in agreement for a majority of the nuclides under consideration. Substantial differences were noted in the partitioning values for {sup 99}Tc, {sup 125}Sb, {sup 129}I, and uranium. These differences are attributable to two factors: chemical volatility effects that occur during the initial plasma condensation, and groundwater remobilization that occurs over a much longer time frame. Fission product partitioning is very sensitive to the early cooling history of the test cavity because the decay of short-lived (t{sub 1/2} data to update the range in partitioning values for contaminant transport models at the Nevada National Security Site (formerly known as the Nevada Test Site).

Rose, T P; Hu, Q; Zhao, P; Conrado, C L; Dickerson, R; Eaton, G F; Kersting, A B; Moran, J E; Nimz, G; Powell, B A; Ramon, E C; Ryerson, F J; Williams, R W; Wooddy, P T; Zavarin, M

2009-01-09T23:59:59.000Z

207

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada  

DOE Green Energy (OSTI)

This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the action necessary for the closure of Corrective Action Unit (CAU) 425, Area 9 Main Lake Construction Debris Disposal Area. This CAU is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO, 1996). This site will be cleaned up under the SAFER process since the volume of waste exceeds the 23 cubic meters (m{sup 3}) (30 cubic yards [yd{sup 3}]) limit established for housekeeping sites. CAU 425 is located on the Tonopah Test Range (TTR) and consists of one Corrective Action Site (CAS) 09-08-001-TA09, Construction Debris Disposal Area (Figure 1). CAS 09-08-001-TA09 is an area that was used to collect debris from various projects in and around Area 9. The site is located approximately 81 meters (m) (265 feet [ft]) north of Edwards Freeway northeast of Main Lake on the TTR. The site is composed of concrete slabs with metal infrastructure, metal rebar, wooden telephone poles, and concrete rubble from the Hard Target and early Tornado Rocket sled tests. Other items such as wood scraps, plastic pipes, soil, and miscellaneous nonhazardous items have also been identified in the debris pile. It is estimated that this site contains approximately 2280 m{sup 3} (3000 yd{sup 3}) of construction-related debris.

K. B. Campbell

2002-04-01T23:59:59.000Z

208

Seagate Crystal Reports - Cm946  

Office of Environmental Management (EM)

Annual Projections for Shipping and Receiving (CM-9) Annual Projections for Shipping and Receiving (CM-9) RECEIVING SITE: Commercial and Other DOE Sites WASTE TYPE: 11e(2) Byproduct Waste STATE: Colorado Commercial and Other DOE Sites - 11e(2) Byproduct Waste - RRM Contaminated Soil 2051-55(P) Year Shipped (m 3 ) Year 2046-50(P) Shipped (m 3 ) Shipped (m 3 ) Shipped (m 3 ) Year Year Shipped (m 3 ) Year 1998 (A) 1999 (A) 2000 (A) 2001 (P) 2002 (P) 2041-45(P) 2004 (P) 2005 (P) 2021-25(P) 2026-30(P) 2031-35(P) 2036-40(P) 2006 (P) 2011-15(P) 2003 (P) Non-Annualized 2016-20(P) 2008(P) 2009(P) 2010(P) 2061-65(P) 2066-70(P) 2056-60(P) 2007 (P) GrJuncOff 0.000 10.000 0.000 30.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Commercial and Other DOE Sites - 11e(2) Byproduct Waste - RRM Contaminated Rubble/Debris

209

Responsiveness summary for the remedial investigation/feasibility study for management of the bulk wastes at the Weldon Spring quarry, Weldon Spring, Missouri  

SciTech Connect

The US Department of Energy (DOE) is responsible for conducting remedial actions at the Weldon Spring site in St. Charles County, Missouri, under its Surplus Facilities Management Program. The site consists of a quarry and a chemical plant area located about 6.4 km (4 mi) northeast of the quarry. The quarry is surrounded by the Weldon Spring Wildfire Area and is near an alluvial well field that constitutes a major source of potable water for St. Charles County; the nearest supply well is located about 0.8 km (0.5 mi) southeast of the quarry. From 1942 to 1969, the quarry was used for the disposal of various radioactively and chemically contaminated materials. Bulk wastes in the quarry consist of contaminated soils and sediments, rubble, metal debris, and equipment. As part of overall site remediation, DOE is proposing to conduct an interim remedial action at the quarry to manage the radioactively and chemically contaminated bulk wastes contained therein. Potential remedial action alternatives for managing the quarry bulk wastes have been evaluated consistent with US Environmental Protection Agency (EPA) guidance for conducting remedial actions under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. The contents of these documents were developed in consultation with EPA Region VII and the state of Missouri and reflect the focused scope defined for this interim remedial action. 9 refs.

Peterson, J.M.; MacDonell, M.M.

1990-08-01T23:59:59.000Z

210

Software-Defined Ultra-wideband Radio Communications: A New RF Technology for Emergency Response Applications  

SciTech Connect

Reliable wireless communication links for local-area (short-range) and regional (long-range) reach capabilities are crucial for emergency response to disasters. Lack of a dependable communication system can result in disruptions in the situational awareness between the local responders in the field and the emergency command and control centers. To date, all wireless communications systems such as cell phones and walkie-talkies use narrowband radio frequency (RF) signaling for data communication. However, the hostile radio propagation environment caused by collapsed structures and rubble in various disaster sites results in significant degradation and attenuation of narrowband RF signals, which ends up in frequent communication breakdowns. To address the challenges of reliable radio communication in disaster fields, we propose an approach to use ultra-wideband (UWB) or wideband RF waveforms for implementation on Software Defined Radio (SDR) platforms. Ultra-wideband communications has been proven by many research groups to be effective in addressing many of the limitations faced by conventional narrowband radio technologies. In addition, LLNL's radio and wireless team have shown significant success in field deployment of various UWB communications system for harsh environments based on LLNL's patented UWB modulation and equalization techniques. Furthermore, using software defined radio platform for UWB communications offers a great deal of flexibility in operational parameters and helps the radio system to dynamically adapt itself to its environment for optimal performance.

Nekoogar, F; Dowla, F

2009-10-19T23:59:59.000Z

211

Explosively produced fracture of oil shale. Progress report, October-December 1982  

SciTech Connect

The Los Alamos National Laboratory is conducting rock fragmentation research in oil shale to develop the blasting and fluid-flow technologies required to prepare a rubble bed for a modified in situ retort. The first section of this report details the continued planning for the DOE/Sandia/Los Alamos joint rock fragmentation program, including preliminary designs for the first stemming tests and the blasting mat experiment. Section I also describes our current and planned computer modeling program for rock fracture, tracer flow, and oil shale retorting. The second section presents three papers, two on computer modeling and theory and one on oil shale field experiments. The first describes the Bedded Crack Model and its theoretical basis. The second discusses a two-dimensional numerical model of underground oil shale retorting that fully couples retorting chemistry with fluid and heat flow. This paper condenses the code documentation manual, which will be published separately with a user's guide. The third paper focuses on the empirical characterization of 200 cratering experiments conducted in Piceance Creek Basin oil shale, evaluates scaling laws as a tool to predict large-scale experiment results, and investigates the influence of geology and shale grade on rock fragmentation.

1983-07-01T23:59:59.000Z

212

Explosively produced fracture of oil shale. Progress report, October-December 1981  

SciTech Connect

The Los Alamos National Laboratory is conducting rock fragmentation research in oil shale to develop the blasting technologies and designs required to prepare a rubble bed for a modified in situ retort. The first section of this report outlines our experimental work at the Anvil Points Mine in Colorado with the Oil Shale Consortium sponsored by six major oil companies and managed by Science Applications, Inc. It details our proposed studies in explosive characterization and describes our progress in numerical calculation techniques to predict fracture of the shale. A detailed geologic characterization of two Anvil Points experiment sites is related to previous work at Colony Mine. The second section focuses on computer modeling and theory. One paper describes our latest generation of the stress wave code SHALE, its three-dimensional potential, and the slide line package for it. The second paper details how new bedded crack model calculations demonstrate agreement between predictions and field data. The final paper discusses a general stress-rate equation that takes energy dependence into account. 13 figures.

Morris, W.A.

1982-05-01T23:59:59.000Z

213

Closure Report for Corrective Action Unit 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 425 is located on the Tonopah Test Range, approximately 386 kilometers (240 miles) northwest of Las Vegas, Nevada. CAU 425 is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) and is comprised of one Corrective Action Site (CAS). CAS 09-08-001-TA09 consisted of a large pile of concrete rubble from the original Hard Target and construction debris associated with the Tornado Rocket Sled Tests. CAU 425 was closed in accordance with the FFACO and the Nevada Division of Environmental Protection-approved Streamlined Approach for Environmental Restoration Plan for CAU 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada (U.S. Department of Energy, Nevada Operations Office, 2002). CAU 425 was closed by implementing the following corrective actions: The approved corrective action for this unit was clean closure. Closure activities included: (1) Removal of all the debris from the site. (2) Weighing each load of debris leaving the job site. (3) Transporting the debris to the U.S. Air Force Construction Landfill for disposal. (4) Placing the radioactive material in a U.S. Department of Transportation approved container for proper transport and disposal. (5) Transporting the radioactive material to the Nevada Test Site for disposal. (6) Regrading the job site to its approximate original contours/elevation.

K. B. Campbell

2003-03-01T23:59:59.000Z

214

Some characteristics of the Hardhat chimney and surrounding wall rock  

SciTech Connect

The Hardhat event was a 4.9 + 1.5 kt nuclear explosion at a depth of 286.2 m in granodiorite. Data from 3 underground drill holes have been analyzed in an effort to further define chimney characteristics. The chimney radius was determined to be 20.3 m near shot point level and 17.7 m near the apical void. The earlier determined cavity radius of 19.2 m was confirmed. Total chimney volume is calculated to be 113,860 cu m consisting of 30,800 cu m of void space and 222 million kg of rock. Of the total chimney volume, 27% is void space. In the rubble column itself, exclusive of the apical void, 22% is void space. The nature of the radioactive melt and its distribution in the puddle suggest that the cavity did not collapse until H + 11 hr when an audible rumble was heard. The zone of highly crushed rock outside the chimney is calculated to have a void column of about 2,500 cu m, roughly 8% of the void volume inside the chimney.

Boardman, C.R.

1966-01-01T23:59:59.000Z

215

Computer simulation of explosive fracture of oil shale  

SciTech Connect

The steps in assembling the computational tools needed to simulate the explosive fracture of oil shale have been described. The resulting code, with its input data, was then used to simulate three explosive field experiments. The results of the calculations are in good agreement with what actually occurred in the field. Further detailed comparisons are in progress for these experiments and the others that have been conducted. As this is done, improvements will be made in the input data and in the code physics. The development of computer codes as tools to predict rock breakage makes a variety of interesting studies possible. The properties of the explosive can be changed to see how the extent of rubbling is affected. Studies of spacing and delays for decked charges are also possible. Finally, the codes can be applied in situations, such as confined-volume blasting, at the frontiers of blasting technology. These areas are vital to the effective utilization of our oil shale resources, especially with in situ techniques. Computer simulation will play a central role in the development of new technology for energy and mineral resource recovery.

Adams, T.F.

1980-01-01T23:59:59.000Z

216

Protection measures against mine subsidence taken at a building site  

Science Conference Proceedings (OSTI)

With little mining information, old abandoned coal workings were grouted beneath a proposed building site. Mine stabilization was found necessary after an investigation of subsidence potential was performed. The investigation indicated that the 67 m deep abandoned mine, although old, still had not collapsed and consequently presented a significant risk of subsidence in the future. Further, based on the history of subsidence over old mines in the area, mine grouting was recommended. To stabilize the mine, about 11,468 m{sup 3} of grout were pumped. The grouting was designed to account for the significant amount of rubble which existed in the mine. There were three grout mixes of different flowability characteristics specified. The 1,725 kPa grout was hatched at a slump of 10 and 20-22 cm and at a flow rate of 30-40 s. Permeation, squeeze (or intrusion), and compaction grouting was performed per the project specifications. Also, to economize on the amount of grouting necessary, subsidence resistant features were incorporated into the design of the building.

Marino, G.G.; Abdel-Maksoud, M.G. [Marino Engineering Associates Inc., Urbana, IL (United States)

2006-03-15T23:59:59.000Z

217

P2 through adaptive use of historic facilities  

SciTech Connect

The construction industry consumes a tremendous amount of natural resources. Demolishing serviceable buildings and hauling the debris to a landfill makes no sense from the standpoint of reducing solid waste and conserving natural resources. Wastes associated with new construction (such as concrete, bricks, asphalt (rubble), particle board, plywood, wood products, metals, plastics/polyresins, and insulation -- some of which contain toxic constituents) comprise approximately 15 to 30 percent of all wastes disposed in landfills. Furthermore, today`s buildings are constructed for relatively short-term physical usefulness based on economic investment: buildings constructed today are engineered for a twenty to forty year use with limited flexibility for upgrades and improvement. Federal tax laws suggest that buildings incorporating new construction practices lose their economic value after 31.5 years. Surprisingly though, new building construction accounts for about 40% of the raw material (natural resources) consumption and 11% of total energy consumption each year. Rehabilitation, which is the process of making an efficient compatible use or adaptive re-use of a property through repair, alterations, and additions, can conserve natural resources, cultural resources, energy, and landfill space. Admittedly, adaptive re-use of a building is much more labor intensive than new construction, but much less material and energy intensive.

Hauschild, N.T.

1998-08-21T23:59:59.000Z

218

AREA COMPLETION STRATEGIES AT SAVANNAH RIVER SITE: CHARACTERIZATION FOR CLOSURE AND BEYOND  

SciTech Connect

During the first four decades of its 56 year existence, the Savannah River Site (SRS) was a key supplier of nuclear material for national defense. During the 1990s, the site's primary missions became waste site closure, environmental restoration, and deactivation and decommissioning (D&D) of remnant cold war apparatus. Since 1989, with the approval of State and Federal regulatory agencies and with the participation of interested stakeholders, SRS has implemented a final remedy for a majority of the more than 500 individual waste sites at the former nuclear materials complex. These waste sites range from small, inert rubble pits to large, heavy industrial areas and radioactive waste disposal grounds. The closure and final remediation of these waste sites mark significant progress toward achieving SRS's overarching goal of reducing or eliminating future environmental damage and human health threats. However, larger challenges remain. For example, what are appropriate and achievable end-states for decommissioned nuclear facilities? What environmental and human health risks are associated with these end-states? To answer these questions within the strictures of smaller budgets and accelerated schedules, SRS is implementing an ''area completion'' strategy that: (1) unites several discrete waste units into one conceptual model, (2) integrates historically disparate environmental characterization and D&D activities, (3) reduces the number of required regulatory documents, and (4) in some cases, compresses schedules for achieving a stakeholder-approved end-state.

Bagwell, L; Mark Amidon, M; Sadika Baladi, S

2007-06-11T23:59:59.000Z

219

TMI-2 (Three Mile Island Unit 2) core region defueling  

SciTech Connect

In July of 1982, a video camera was inserted into the Three Mile Island Unit 2 reactor vessel providing the first visual evidence of core damage. This inspection, and numerous subsequent data acquisition tasks, revealed a central void /approx/1.5 m (5 ft) deep. This void region was surrounded by partial length fuel assemblies and ringed on the periphery by /approx/40 full-length, but partial cross-section, fuel assemblies. All of the original 177 fuel assemblies exhibited signs of damage. The bottom of the void cavity was covered with a bed of granular rubble, fuel assembly upper end fittings, control rod spiders, fuel rod fragments, and fuel pellets. It was obvious that the normal plant refueling system not suitable for removing the damaged core. A new system of defueling tools and equipment was necessary to perform this task. Design of the new system was started immediately, followed by >1 yr of fabrication. Delivery and checkout of the defueling system occurred in mid-1985. Actual defueling was initiated in late 1985 with removal of the debris bed at the bottom of the core void. Obstructions to the debris, such as end fittings and fuel rod fragments ere removed first; then /approx/23,000 kg (50,000lb) of granular debris was quickly loaded into canisters. Core region defueling was completed in late 1987, /approx/2 yr after it was initiated.

Rodabaugh, J.M.; Cowser, D.K.

1988-01-01T23:59:59.000Z

220

L-Area Reactor - 1993 annual - groundwater monitoring report  

Science Conference Proceedings (OSTI)

Groundwater was sampled and analyzed during 1993 from wells monitoring the water table at the following locations in L Area: the L-Area Acid/Caustic Basin (four LAC wells), L-Area Research Wells in the southern portion of the area (outside the fence; three LAW wells), the L-Area Oil and Chemical Basin (four LCO wells), the L-Area Disassembly Basin (two LDB wells), the L-Area Burning/Rubble Pit (four LRP wells), and the L-Area Seepage Basin (four LSB wells). During 1993, tetrachloroethylene was detected above its drinking water standard (DWS) in the LAC, LAW, LCO, and LDB well series. Lead exceeded its 50 {mu}g/L standard in the LAW, LDB, and LRP series, and tritium was above its DWS in the LAW, LCO, and LSB series. Apparently anomalous elevated levels of the common laboratory contaminant bis(2-ethylhexyl)phthalate were reported during first quarter in one well each in the LAC series and LCO series, and during third quarter in a different LCO well. Extensive radionuclide analyses were performed during 1993 in the LAC, LAW, and LCO well series. No radionuclides other than tritium were reported above DWS or Flag 2 criteria.

Chase, J.A.

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "dirt rubble waterproofing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Use of Synthetic Aperture Radar (SAR) for geologic reconnaissance in Arctic regions: An example from the Arctic National Wildlife Refuge, Alaska  

Science Conference Proceedings (OSTI)

Satellite-based synthetic aperture radar (SAR) can provide an additional remote-sensing tool for regional geologic studies in arctic regions. Although SAR data do not yield direct information on rock type and do not replace traditional optical data, SAR data can provide useful geologic information in arctic regions where the stratigraphic column includes a wide range of lithologies, and bedrock exposures have been reduced to rubble by frost action. For example, in ERS-1 SAR data from the Arctic National Wildlife Refuge (ANWR) of the northeastern Brooks Range, Alaska, carbonate and clastic rocks can give remarkably different radar responses on minimally reprocessed SAR data. The different radar response of different lithologies can specifically the size and angularity of scree in talus slopes. Additional postacquisition processing can both remove many of the negative terrain effects common in SAR data and enhance contrasts in bedrock lithology. Because of this ability to discriminate between gross lithologic packages, the ERS-1 SAR data can be used to provide a regional view of ANWR and a detailed look at specific areas. A mosaic of ERS-1 SAR data from all of ANWR provides a synoptic view of the regional structural framework, such as the anticlinoria of northern ANWR and the different allochthonous units of central and southern ANWR. Higher resolution ERS-1 SAR data of the Porcupine Lake area can be used to examine specific structural and stratigraphic problems associated with several major structural boundaries.

Hanks, C.L.; Guritz, R.M. [Univ. of Alaska, Fairbanks, AK (United States)

1997-01-01T23:59:59.000Z

222

LLNL Capabilities in Underground Coal Gasification  

DOE Green Energy (OSTI)

Underground coal gasification (UCG) has received renewed interest as a potential technology for producing hydrogen at a competitive price particularly in Europe and China. The Lawrence Livermore National Laboratory (LLNL) played a leading role in this field and continues to do so. It conducted UCG field tests in the nineteen-seventies and -eighties resulting in a number of publications culminating in a UCG model published in 1989. LLNL successfully employed the ''Controlled Retraction Injection Point'' (CRIP) method in some of the Rocky Mountain field tests near Hanna, Wyoming. This method, shown schematically in Fig.1, uses a horizontally-drilled lined injection well where the lining can be penetrated at different locations for injection of the O{sub 2}/steam mixture. The cavity in the coal seam therefore gets longer as the injection point is retracted as well as wider due to reaction of the coal wall with the hot gases. Rubble generated from the collapsing wall is an important mechanism studied by Britten and Thorsness.

Friedmann, S J; Burton, E; Upadhye, R

2006-06-07T23:59:59.000Z

223

Niagara Falls Storage Site environmental report for calendar year 1989, Lewiston, New York  

SciTech Connect

The environmental monitoring program, which began in 1981, was continued during 1989 at the Niagara Falls Storage Site (NFSS), a United States Department of Energy (DOE) surplus facility located in Niagara County, New York, that is currently used for interim storage of radioactive residues, contaminated soils, and rubble. The monitoring program is being conducted by Bechtel National, Inc. The monitoring program at NFSS measures radon concentrations in air; external gamma radiation levels; and uranium and radium concentrations in surface water, groundwater, and sediment. Additionally, several nonradiological parameters are measured in groundwater. To verify that the site is in compliance with the DOE radiation protection standard and to assess its potential effect on public health, the radiation dose was calculated for a hypothetical maximally exposed individual. Based on the conservative scenario described in this report, this hypothetical individual receives an annual external exposure equivalent to approximately 2 percent of the DOE radiation protection standard of 100 mrem/yr. This exposure is less than a person receives during a one-way flight from New York to Los Angeles (because of the greater amounts of cosmic radiation at higher altitudes). The cumulative dose to the population within an 80-km (50-mi) radius of NFSS that results from radioactive materials present at the site is indistinguishable from the dose that the same population receives from naturally occurring radioactive sources. Results of the 1989 monitoring show that NFSS is in compliance with applicable DOE radiation protection standards. 18 refs., 26 figs., 18 tabs.

Not Available

1990-05-01T23:59:59.000Z

224

Environmental impact assessment for steeply dipping coal beds: North Knobs site  

SciTech Connect

The US Department of Energy is funding an underground coal gasification (UCG) project in steeply dipping coal beds (SDB), at North Knobs, about 8 miles west of Rawlins, Carbon County, Wyoming. The project is being conducted to determine the technical, economic and environmental viability of such a technology. The development of SDB is an interesting target for UCG since such beds contain coals not normally mineable economically by ordinary techniques. Although the underground gasification of SDB has not been attempted in the US, Soviet experience and theoretical work indicate that the gasification of SDB in place offers all the advantages of underground gasification of horizontal coal seams plus some unique characteristics. The steep angle of dip helps to channel the produced gases up dip to offtake holes and permits the ash and rubble to fall away from the reaction zone helping to mitigate the blocking of the reaction zone in swelling coals. The intersection of SDB with the surface makes the seam accessible for drilling and other preparation. The tests at the North Knobs site will consist of three tests, lasting 20, 80 and 80 days, respectively. A total of 9590 tons of coal is expected to be gasified, with surface facilities utilizing 15 acres of the total section of land. The environmental effects of the experiment are expected to be very small. The key environmental impact is potential groundwater contamination by reaction products from coal gasification. There is good evidence that the surrounding coal effectively blocks the migration of these contaminants.

1978-11-08T23:59:59.000Z

225

Preliminary subsurface hydrologic considerations: Columbia River Plateau Physiographic Province. Assessment of effectiveness of geologic isolation systems  

SciTech Connect

This report contains a discussion of the hydrologic conditions of the Columbia River Plateau physiographic province. The Columbia River Plateau is underlain by a thick basalt sequence. The Columbia River basalt sequence contains both basalt flows and sedimentary interbeds. These sedimentary interbeds, which are layers of sedimentary rock between lava flows, are the main aquifer zones in the basalt sequence. Permeable interflow zones, involving the permeable top and/or rubble bottom of a flow, are also water-transmitting zones. A number of stratigraphic units are present in the Pasco Basin, which is in the central part of the Columbia River Plateau. At a conceptual level, the stratigraphic sequence from the surface downward can be separated into four hydrostratigraphic systems. These are: (1) the unsaturated zone, (2) the unconfined aquifer, (3) the uppermost confined aquifers, and (4) the lower Yakima basalt hydrologic sequence. A conceptual layered earth model (LEM) has been developed. The LEM represents the major types of porous media (LEM units) that may be encountered at a number of places on the Columbia Plateau, and specifically in the Pasco Basin. The conceptual LEM is not representative of the actual three-dimensional hydrostratigraphic sequence and hydrologic conditions existing at any specific site within the Columbia Plateau physiographic province. However, the LEM may be useful for gaining a better understanding of how the hydrologic regime may change as a result of disruptive events that may interact with a waste repository in geologic media.

Veatch, M.D.

1980-04-01T23:59:59.000Z

226

The English Sparrow  

NLE Websites -- All DOE Office Websites (Extended Search)

English Sparrow English Sparrow Nature Bulletin No. 139 January 24, 1948 Forest Preserve District of Cook County William N. Erickson, President Roberts Mann, Supt. of Conservation THE ENGLISH SPARROW The first bird a child sees, most places in the civilized world, is likely to be an English sparrow. In the cities, towns and country, the sparrow is a familiar part of everyday life. Like the cockroach, the rat, the house mouse and the house fly, the English sparrow has followed man over most of the earth, adjusting itself to different climates, foods, enemies and nesting places. Everybody thinks he "knows" the English sparrow. Yet this bird -- common as dirt, unloved and neglected -- is more of a world citizen than most birds and less studied than many rarer birds. It has so few distinctive markings that it is hard to describe, particularly the female, and may fool even skilled bird fans. It is of average size, average shape, average color, and has an average chirp. Furthermore, it is not a sparrow but one of the weaver finches a group of birds that build nests with openings in the side. Moreover, they are not particularly English, being native to Europe, Asia and North Africa, it is the " sparrow" mentioned in the Bible.

227

Impacts of Sedimentation from Oil and Gas Development on Stream Macroinvertebrates in Two Adjacent Watersheds of the Allegheny National Forest of Northwestern Pennsylvania  

SciTech Connect

Fritz, Kelley'*, Steven Harris', Harry Edenborn2, and James Sams2. 'Clarion University of Pennsylvania, Clarion, PA 16214, 2National Energy Technology Laboratory, U.S. Dept. Energy, Pittsburgh, PA 15236. Impacts a/Sedimentation/rom Oil and Gas Development on Stream Macroinvertebrates in Two Adjacent Watersheds a/the Allegheny National Forest a/Northwestern Pennsylvania - The Allegheny National Forest (ANF), located in northwestern Pennsy Ivania, is a multiuse forest combining commercial development with recreational and conservation activities. As such, portions of the ANF have been heavily logged and are now the subject of widespread oil and gas development. This rapid increase in oil and gas development has led to concerns about sediment runoff from the dirt and gravel roads associated with development and the potential impact on the aquatic biota of the receiving streams. We examined and compared the benthic macroinvertebrate communities in two adjacent watersheds of similar size and topography in the ANF; the Hedgehog Run watershed has no oil and gas development, while the adjacent Grunder Run watershed has extensive oil and gas development. In Hedgehog and Grunder Run, we collected monthly kicknet samples from riffles and glides at two sites from April to October 2010. At the same intervals, we measured standard water quality parameters, including conductivity and turbidity. Preliminary results have indicated much higher turbidity in Grunder Run, but little difference in the diversity and abundance of benthic macro invertebrates inhabiting the two streams.

Fritz, K.; Harris, S.; Edenborn, H.M.; Sams, J.

2011-01-01T23:59:59.000Z

228

Give Me My Tax Credit! (Or, How I Almost Bought the Wrong Patio Door) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Give Me My Tax Credit! (Or, How I Almost Bought the Wrong Patio Give Me My Tax Credit! (Or, How I Almost Bought the Wrong Patio Door) Give Me My Tax Credit! (Or, How I Almost Bought the Wrong Patio Door) July 28, 2009 - 5:00am Addthis Allison Casey Senior Communicator, NREL Over the past few weeks, my husband and I have been shopping for a new patio door. We currently have a sliding glass door that we have always hated-full exposure to winds from the west and to open fields behind our house mean that we always have dirt and dust getting in through that door, not to mention cold air in the winter and heat in the summer. The final straw was a warped and squeaky track, no doubt aggravated by our dog's constant indecision over whether he wants to be inside or outside (oh, the dilemma!). Since sliding glass doors are known to be inefficient (and ours was already

229

NEPA COMPLIANCE SURVEY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 7 Project Informa t ion Proj ect Title: Restoration South of 54-TPX-1 0 Date : 2-8-1 0 DOE Code : Contractor Code: Project Lead: Jeff Jones Project Ove rview We will be digging contaminated soil out of the ground just to the south of 54-TPX-10. We will be taking all 1. What are the enwonmental 1 mpacts? contaminated soil to the land farm and entering the tot. ats in the log. We will backfill with clean fill dirt from Sec.20. 2. What is the legal location? 3. What is the duration of the project? The dura~Jon should be no longer than 4-6 days T 4 What major equipment will be used if any (work over rig, drilling rig, The equipment to be used is as follows Backhoe. dump truck. Tiller. etc.)? Aller all contaminated soil is removed and fresh fill has been placed we will t\11 the area and seed with native

230

Conceptual design of a 5x CPC for solar total energy systems  

DOE Green Energy (OSTI)

The results of a conceptual design of a nontracking collector for a solar total energy system are described. Sandia Laboratories has responsibility for the evaluation of concentrating collectors in a total energy test bed. A Rankine cycle turbine, generator, controls, thermal storage, and air conditioning equipment have been installed and checked out. The thermal energy for the facility is to be provided by a large (approximately 800 m/sup 2/) concentrating collector field. At present a portion of the area is installed as E-W oriented linear parabolic troughs. Three additional concepts for the remaining area have been selected--a fixed mirror-moving receiver system, fixed receiver-moving reflector slats, and a two-axis tracking parabolic dish. All four systems use diurnal tracking and have the reflecting surfaces exposed to the elements. Argonne National Laboratory has been working on the development of non-tracking concentrators for high temperature operation. The recent experimental results indicate that a 5x CPC collector with only 12 adjustments per year could effectively compete with the systems presently being considered. These collectors would be enclosed under a protective cover glass, eliminating many of the problems with dirt, etc. A conceptual design of a CPC collector system is presented.

Cole, R; Schertz, W W; Teagan, W P

1977-01-01T23:59:59.000Z

231

In-situ conditioning of a strip casting roll  

DOE Patents (OSTI)

A strip caster (10) for producing a continuous strip (24) has a tundish (12) for containing a melt (14) and a pair of horizontally disposed water cooled casting rolls (22). The casting rolls are juxtaposed relative to one another for forming a pouring basin (18) for receiving the melt through a teeming tube (16) thereby establishing a meniscus (20) between the rolls for forming a strip (24). The melt is protected from the outside air by a non-oxidizing gas passed through a supply line (28) to a sealing chamber (26). Devices (29) for conditioning the outer peripheral chill surfaces of the casting rolls includes grit blasting nozzles (30A, 30B, 30C, 30D), a collection trough (32) for gathering the grit, a line (34) for recycling the grit to a bag house (36), a feeder (38) and a pressurized distributor (40) for delivering the grit to the nozzles. The conditioning nozzles remove dirt, metal oxides and surface imperfections providing a clean surface readily wetted by the melt.

Williams, R.S.; Campbell, S.L.

1997-07-29T23:59:59.000Z

232

In-situ conditioning of a strip casting roll  

DOE Patents (OSTI)

A strip caster (10) for producing a continuous strip (24) has a tundish (12) for containing a melt (14) and a pair of horizontally disposed water cooled casting rolls (22). The casting rolls are juxtaposed relative to one another for forming a pouring basin (18) for receiving the melt through a teeming tube (16) thereby establishing a meniscus (20) between the rolls for forming a strip (24). The melt is protected from the outside air by a non-oxidizing gas passed through a supply line (28) to a sealing chamber (26). Devices (29) for conditioning the outer peripheral chill surfaces of the casting rolls includes grit blasting nozzles (30A, 30B, 30C, 30D), a collection trough (32) for gathering the grit, a line (34) for recycling the grit to a bag house (36), a feeder (38) and a pressurized distributor (40) for delivering the grit to the nozzles. The conditioning nozzles remove dirt, metal oxides and surface imperfections providing a clean surface readily wetted by the melt.

Williams, Robert S. (Fairfield, OH); Campbell, Steven L. (Middletown, OH)

1997-01-01T23:59:59.000Z

233

Aging assessment of essential HVAC chillers used in nuclear power plants. Phase 1, Volume 1  

SciTech Connect

The Pacific Northwest Laboratory conducted a Phase I aging assessment of chillers used in the essential safety air-conditioning systems of nuclear power plants. Centrifugal chillers in the 75- to 750-ton refrigeration capacity range are the predominant type used. The chillers used, and air-conditioning systems served, vary in design from plant-to-plant. It is crucial to keep chiller internals very clean and to prevent the leakage of water, air, and other contaminants into the refrigerant containment system. Periodic operation on a weekly or monthly basis is necessary to remove moisture and noncondensable gases that gradually build up inside the chiller. This is especially desirable if a chiller is required to operate only as an emergency standby unit. The primary stressors and aging mechanisms that affect chillers include vibration, excessive temperatures and pressures, thermal cycling, chemical attack, and poor quality cooling water. Aging is accelerated by moisture, non-condensable gases (e.g., air), dirt, and other contamination within the refrigerant containment system, excessive start/stop cycling, and operating below the rated capacity. Aging is also accelerated by corrosion and fouling of the condenser and evaporator tubes. The principal cause of chiller failures is lack of adequate monitoring. Lack of performing scheduled maintenance and human errors also contribute to failures.

Blahnik, D.E.; Klein, R.F. [Pacific Northwest Lab., Richland, WA (United States)

1993-09-01T23:59:59.000Z

234

Closure Report for Corrective Action Unit 540: Spill Sites, Nevada Test Site, Nevada, Rev. No.: 0  

SciTech Connect

This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 540: Spill Sites, Nevada Test Site, Nevada. This CR complies with the requirements of the 'Federal Facility Agreement and Consent Order' (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Corrective Action Unit 540 is located within Areas 12 and 19 of the Nevada Test Site and is comprised of the following Corrective Action Sites (CASs): CAS 12-44-01, ER 12-1 Well Site Release; CAS 12-99-01, Oil Stained Dirt; CAS 19-25-02, Oil Spill; CAS 19-25-04, Oil Spill; CAS 19-25-05, Oil Spill; CAS 19-25-06, Oil Spill; CAS 19-25-07, Oil Spill; CAS 19-25-08, Oil Spills (3); and CAS 19-44-03, U-19bf Drill Site Release. The purpose of this CR is to provide documentation supporting recommendations of no further action for the CASs within CAU 540. To achieve this, the following actions were performed: (1) Reviewed the current site conditions, including the concentration and extent of contamination; (2) Performed closure activities to address the presence of substances regulated by 'Nevada Administrative Code' 445A.2272 (NAC, 2002); and (3) Documented Notice of Completion and closure of CAU 540 issued by the Nevada Division of Environmental Protection.

McClure, Lloyd

2006-10-01T23:59:59.000Z

235

Central receiver solar thermal power system: collector subsystem extended life test. Final report  

SciTech Connect

To evaluate long term durability and stability of heliostat reflector and enclosure materials an extended life test program was performed on Research Experiment Heliostats by Boeing Engineering and Construction. The reflectors and enclosures were periodically evaluated and analyzed for the effects of dirt, sunlight, wind and thermal cycling on the mechanical and optical properties of Tedlar and changes in the Mylar reflector tension and reflectivity. During testing the heliostats were maintained and semi-annualy evaluated for optical and mechanical stability. The heliostats tested were located at the Boeing Boardman, Oregon test facility. The purpose of the program was to obtain data through measurements and observation to aid in heliostat design improvement. Certain weather and time related information, most reliably acquired by real time exposure testing, was sought through performance of mechanical and optical testing of the Boardman heliostats. The key areas of technical concern were: (1) enclosure and reflector optical property retention; (2) enclosure and reflector mechanical property retention; and (3) reflector creep (or loss in membrane tension) using bonded joints. In-place optical measurements as well as laboratory optical measurements on coupons cut from a heliostat, mechanical measurements from heliostat coupons, reflector sag measurements, and observations of the air supply system pressure stability and filter condition were made during the initial and two semi-annual test samplings. Results are summarized and discussed. (WHK)

1979-05-18T23:59:59.000Z

236

Dealing with Uncertainties During Heat Exchanger Design  

E-Print Network (OSTI)

Over the last thirty years much progress has been made in heat exchanger design methodology. Even so, the design engineer still has to deal with a great deal of uncertainty. Whilst the methods used to predict heat transfer coefficients are now quite sophisticated and take account of many physical factors, the results they yield are still inaccurate. Physical property information is required for the estimation of heat transfer coefficients. Available information is often of dubious accuracy. Even given accurate properties modern methods for the predictions of tube-side heat transfer coefficient can be expected to have an accuracy of only 10%. For the shell-side, higher errors (say, around 15%) can be expected. Perhaps worst of all, comes the specification of fouling resistance (the allowance made for the thermal resistance presented by dirt layers deposited on the heat exchanger tubes). In most instances there is little science or understanding behind the specification of these resistances. Traditionally there have been two approaches to dealing with these uncertainties: over-specification of fouling resistance; and, addition of 'design margin' (i.e. addition of extra surface area). There are cases in which both approaches are adopted. The engineer specifying the required duty provides a higher than necessary fouling resistance whilst the exchanger designer adds design margin! Both approaches result in 'over-design'.

Polley, G. T.; Pugh, S. J.

2001-05-01T23:59:59.000Z

237

Visualization of Solution Gas Drive in Viscous Oil, SUPRI TR-126  

SciTech Connect

Several experimental studies of solution gas drive are available in this report. Almost all of the studies have used light oil. Solution gas drive behavior, especially in heavy oil reservoirs, is poorly understood. Experiments were performed in which pore-scale solution gas drive phenomena were viewed in water/carbon dioxide and viscous oil/carbon dioxide systems. A new pressure vessel was designed and constructed to house silicon-wafer micromodels that previously operated at low (<3 atm) pressure. The new apparatus is used for the visual studies. Several interesting phenomena were viewed. The repeated nucleation of gas bubbles was observed at a gas-wet site occupied by dirt. Interestingly, the dissolution of a gas bubble into the liquid phase was previously recorded at the same nucleation site. Gas bubbles in both systems grew to span one ore more pore bodies before mobilization. Liquid viscosity affected the ease with which gas bubbles coalesced. More viscous solutions result in slower rates of coalescence. The transport of solid particles on gas-liquid interfaces was also observed.

George, D.S.; Kovscek, A.R.

2001-07-23T23:59:59.000Z

238

Narrow field electromagnetic sensor system and method  

DOE Patents (OSTI)

A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs.

McEwan, T.E.

1996-11-19T23:59:59.000Z

239

Hazmat Cam Wireless Video System  

SciTech Connect

This paper describes the Hazmat Cam Wireless Video System and its application to emergency response involving chemical, biological or radiological contamination. The Idaho National Laboratory designed the Hazmat Cam Wireless Video System to assist the National Guard Weapons of Mass Destruction - Civil Support Teams during their mission of emergency response to incidents involving weapons of mass destruction. The lightweight, handheld camera transmits encrypted, real-time video from inside a contaminated area, or hot-zone, to a command post located a safe distance away. The system includes a small wireless video camera, a true-diversity receiver, viewing console, and an optional extension link that allows the command post to be placed up to five miles from danger. It can be fully deployed by one person in a standalone configuration in less than 10 minutes. The complete system is battery powered. Each rechargeable camera battery powers the camera for 3 hours with the receiver and video monitor battery lasting 22 hours on a single charge. The camera transmits encrypted, low frequency analog video signals to a true-diversity receiver with three antennas. This unique combination of encryption and transmission technologies delivers encrypted, interference-free images to the command post under conditions where other wireless systems fail. The lightweight camera is completely waterproof for quick and easy decontamination after use. The Hazmat Cam Wireless Video System is currently being used by several National Guard Teams, the US Army, and by fire fighters. The system has been proven to greatly enhance situational awareness during the crucial, initial phase of a hazardous response allowing commanders to make better, faster, safer decisions.

Kevin L. Young

2006-02-01T23:59:59.000Z

240

OSI Passive Seismic Experiment at the Former Nevada Test Site  

SciTech Connect

On-site inspection (OSI) is one of the four verification provisions of the Comprehensive Nuclear Test Ban Treaty (CTBT). Under the provisions of the CTBT, once the Treaty has entered into force, any signatory party can request an on-site inspection, which can then be carried out after approval (by majority voting) of the Executive Council. Once an OSI is approved, a team of 40 inspectors will be assembled to carry out an inspection to ''clarify whether a nuclear weapon test explosion or any other nuclear explosion has been carried out in violation of Article I''. One challenging aspect of carrying out an on-site inspection (OSI) in the case of a purported underground nuclear explosion is to detect and locate the underground effects of an explosion, which may include an explosion cavity, a zone of damaged rock, and/or a rubble zone associated with an underground collapsed cavity. The CTBT (Protocol, Section II part D, paragraph 69) prescribes several types of geophysical investigations that can be carried out for this purpose. One of the methods allowed by the CTBT for geophysical investigation is referred to in the Treaty Protocol as ''resonance seismometry''. This method, which was proposed and strongly promoted by Russia during the Treaty negotiations, is not described in the Treaty. Some clarification about the nature of the resonance method can be gained from OSI workshop presentations by Russian experts in the late 1990s. Our understanding is that resonance seismometry is a passive method that relies on seismic reverberations set up in an underground cavity by the passage of waves from regional and teleseismic sources. Only a few examples of the use of this method for detection of underground cavities have been presented, and those were done in cases where the existence and precise location of an underground cavity was known. As is the case with many of the geophysical methods allowed during an OSI under the Treaty, how resonance seismology really works and its effectiveness for OSI purposes has yet to be determined. For this experiment, we took a broad approach to the definition of ''resonance seismometry''; stretching it to include any means that employs passive seismic methods to infer the character of underground materials. In recent years there have been a number of advances in the use of correlation and noise analysis methods in seismology to obtain information about the subsurface. Our objective in this experiment was to use noise analysis and correlation analysis to evaluate these techniques for detecting and characterizing the underground damage zone from a nuclear explosion. The site that was chosen for the experiment was the Mackerel test in Area 4 of the former Nevada Test Site (now named the Nevada National Security Site, or NNSS). Mackerel was an underground nuclear test of less than 20 kT conducted in February of 1964 (DOENV-209-REV 15). The reason we chose this site is because there was a known apical cavity occurring at about 50 m depth above a rubble zone, and that the site had been investigated by the US Geological Survey with active seismic methods in 1965 (Watkins et al., 1967). Note that the time delay between detonation of the explosion (1964) and the time of the present survey (2010) is nearly 46 years - this would not be typical of an expected OSI under the CTBT.

Sweeney, J J; Harben, P

2010-11-11T23:59:59.000Z

Note: This page contains sample records for the topic "dirt rubble waterproofing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Radionuclide Partitioning in an Underground Nuclear Test Cavity  

SciTech Connect

In 2004, a borehole was drilled into the 1983 Chancellor underground nuclear test cavity to investigate the distribution of radionuclides within the cavity. Sidewall core samples were collected from a range of depths within the re-entry hole and two sidetrack holes. Upon completion of drilling, casing was installed and a submersible pump was used to collect groundwater samples. Test debris and groundwater samples were analyzed for a variety of radionuclides including the fission products {sup 99}Tc, {sup 125}Sb, {sup 129}I, {sup 137}Cs, and {sup 155}Eu, the activation products {sup 60}Co, {sup 152}Eu, and {sup 154}Eu, and the actinides U, Pu, and Am. In addition, the physical and bulk chemical properties of the test debris were characterized using Scanning Electron Microscopy (SEM) and Electron Microprobe measurements. Analytical results were used to evaluate the partitioning of radionuclides between the melt glass, rubble, and groundwater phases in the Chancellor test cavity. Three comparative approaches were used to calculate partitioning values, though each method could not be applied to every nuclide. These approaches are based on: (1) the average Area 19 inventory from Bowen et al. (2001); (2) melt glass, rubble, and groundwater mass estimates from Zhao et al. (2008); and (3) fission product mass yield data from England and Rider (1994). The U and Pu analyses of the test debris are classified and partitioning estimates for these elements were calculated directly from the classified Miller et al. (2002) inventory for the Chancellor test. The partitioning results from this study were compared to partitioning data that were previously published by the IAEA (1998). Predictions of radionuclide distributions from the two studies are in agreement for a majority of the nuclides under consideration. Substantial differences were noted in the partitioning values for {sup 99}Tc, {sup 125}Sb, {sup 129}I, and uranium. These differences are attributable to two factors: chemical volatility effects that occur during the initial plasma condensation, and groundwater remobilization that occurs over a much longer time frame. Fission product partitioning is very sensitive to the early cooling history of the test cavity because the decay of short-lived (t{sub 1/2} < 1 hour) fission-chain precursors occurs on the same time scale as melt glass condensation. Fission product chains that include both volatile and refractory elements, like the mass 99, 125, and 129 chains, can show large variations in partitioning behavior depending on the cooling history of the cavity. Uranium exhibits similar behavior, though the chemical processes are poorly understood. The water temperature within the Chancellor cavity remains elevated (75 C) more than two decades after the test. Under hydrothermal conditions, high solubility chemical species such as {sup 125}Sb and {sup 129}I are readily dissolved and transported in solution. SEM analyses of melt glass samples show clear evidence of glass dissolution and secondary hydrothermal mineral deposition. Remobilization of {sup 99}Tc is also expected during hydrothermal activity, but moderately reducing conditions within the Chancellor cavity appear to limit the transport of {sup 99}Tc. It is recommended that the results from this study should be used together with the IAEA data to update the range in partitioning values for contaminant transport models at the Nevada National Security Site (formerly known as the Nevada Test Site).

Rose, T P; Hu, Q; Zhao, P; Conrado, C L; Dickerson, R; Eaton, G F; Kersting, A B; Moran, J E; Nimz, G; Powell, B A; Ramon, E C; Ryerson, F J; Williams, R W; Wooddy, P T; Zavarin, M

2009-01-09T23:59:59.000Z

242

Feeding and nutritional ecology of the sea urchins Echinometra lucunter (Linnaeus, 1758) and Arbacia punctulata (Lamarck, 1816) Echinodermata: Echinoidea): the importance of animal foods  

E-Print Network (OSTI)

Analysis of gut contents of Echinometra lucunter and Arbacia punctulata revealed that A. punctulata consumes significantly greater amounts of animal material--barnacles, mollusks, and bryozoans--than E. lucunter. Where these two species live sympatrically on the South Padre Island jetty, niche partitioning appears to be occurring. Different behavioral modes of feeding by urchins of the same species were demonstrated. The different natural diets of A. punctulata collected from two different locations (South Padre Island jetty and the Port Aransas jetty) can probably be attributed to food availability. Similarly, E. lucunter collected from the South Padre Island rock rubble area ingested more higher-plant material and less algal material than the same species on the nearby jetty. Determination of digestion coefficients of E. lucunter for three different diets showed that absorption of protein was more efficient from invertebrate (crab and squid) material than from algae or mixed food items. Absorption of carbohydrate was highest for the algal diet treatment. Absorption of lipid occurred at nearly the same efficiency for all three diets. Based on the high absorption efficiencies for protein, these results lend support to the idea that the consumption of invertebrate or animal material by urchins may enhance growth and reproductive fitness. Gonad indices calculated at the termination of the feeding experiment indicated that the diets offered were not adequate to maintain or increase gonad weight. Gonad indices tended to drop off after reaching a maximum in urchins with a test diameter size of 5 cm. Field trials of chemoreception showed that E. lucunter exhibited a greater number of successful movements towards food items than A. punctulata. Nocturnal chemoreception of prey items was demonstrated by E lucunter. E. lucunter did not exhibit a preference in the field for tiny one particular food item.

Pestovic, Jennifer Beth

1995-01-01T23:59:59.000Z

243

Use of wastes derived from earthquakes for the production of concrete masonry partition wall blocks  

Science Conference Proceedings (OSTI)

Highlights: > Solved the scientific and technological challenges impeding use of waste rubble derived from earthquake, by providing an alternative solution of recycling the waste in moulded concrete block products. > Significant requirements for optimum integration on the utilization of the waste aggregates in the production of concrete blocks are investigated. > A thorough understanding of the mechanical properties of concrete blocks made with waste derived from earthquake is reported. - Abstract: Utilization of construction and demolition (C and D) wastes as recycled aggregates in the production of concrete and concrete products have attracted much attention in recent years. However, the presence of large quantities of crushed clay brick in some the C and D waste streams (e.g. waste derived collapsed masonry buildings after an earthquake) renders the recycled aggregates unsuitable for high grade use. One possibility is to make use of the low grade recycled aggregates for concrete block production. In this paper, we report the results of a comprehensive study to assess the feasibility of using crushed clay brick as coarse and fine aggregates in concrete masonry block production. The effects of the content of crushed coarse and fine clay brick aggregates (CBA) on the mechanical properties of non-structural concrete block were quantified. From the experimental test results, it was observed that incorporating the crushed clay brick aggregates had a significant influence on the properties of blocks. The hardened density and drying shrinkage of the block specimens decreased with an increase in CBA content. The use of CBA increased the water absorption of block specimens. The results suggested that the amount of crushed clay brick to be used in concrete masonry blocks should be controlled at less than 25% (coarse aggregate) and within 50-75% for fine aggregates.

Xiao Zhao [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Faculty of Architecture, Civil Engineering and Environment Engineering and Mechanics, Sichuan University (China); Ling, Tung-Chai; Kou, Shi-Cong [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Wang Qingyuan [Faculty of Architecture, Civil Engineering and Environment Engineering and Mechanics, Sichuan University (China); Poon, Chi-Sun, E-mail: cecspoon@polyu.edu.hk [Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)

2011-08-15T23:59:59.000Z

244

Empirical characterization of oil-shale cratering experiments. [RDX, ANFO, PETN, TNT  

SciTech Connect

Numerous small- and intermediate-size cratering experiments have been conducted in Piceance Creek Basin oil shale at the Colony and Anvil Points oil shale mines near Rifle, Colorado. The purpose of these experiments was to evaluate scaling as a tool to infer the behavior of large-scale tests from small-scale experiments, to calibrate the hydrodynamic computer codes used to model explosive fragmentation of oil shale, and to investigate the influence of bedding plane orientation, natural joints, fractures, and the grade of oil shale on rock fragmentation. The small tests were made using PETN and RDX explosive with charge sizes of a few grams. The intermediate-sized tests used ANFO or TNT explosives with charge sizes of 5 to 100 kg. Crater dimensions were measured on all experiments. Crater volumes were calculated from screened rubble volumes on the intermediate-scale experiments and measured directly on the small-scale experiments. Fragment size distributions were measured on most of the intermediate-sized tests and on several of the small-scale experiments. The analyses of these cratering data show: (1) small-scale cratering tests can be used to qualitatively predict the kinds of geologic interactions that will influence a larger-scale experiment; (2) the site specific geology plays a dominant role in the formation of the crater; (3) small flaws and fractures influence crater development and particle size distributions in small-scale craters in the same manner that joint and fracture systems influence intermediate-scale experiments; (4) complex site geology causes increases in the critical and optimum depths of burial and changes the symmetry of the crater; and (5) small- and intermediate-scale cratering experiments can be used to calibrate hydrodynamic computer codes if great care is used to identify the effect of site specific geology. 15 figures, 6 tables.

Edwards, C.L.; Craig, J.L.; Lombardo, K.

1983-01-01T23:59:59.000Z

245

Modeling Collapse Chimney and Spall Zone Settlement as a Source of Post-Shot Subsidence Detected by Synthetic Aperture Radar Interferometry  

Science Conference Proceedings (OSTI)

Ground surface subsidence resulting from the March 1992 JUNCTION underground nuclear test at the Nevada Test Site (NTS) imaged by satellite synthetic aperture radar interferometry (InSAR) wholly occurred during a period of several months after the shot (Vincent et al., 1999) and after the main cavity collapse event. A significant portion of the subsidence associated with the small (less than 20 kt) GALENA and DIVIDER tests probably also occurred after the shots, although the deformation detected in these cases contains additional contributions from coseismic processes, since the radar scenes used to construct the deformation interferogram bracketed these two later events, The dimensions of the seas of subsidence resulting from all three events are too large to be solely accounted for by processes confined to the damage zone in the vicinity of the shot point or the collapse chimney. Rather, the subsidence closely corresponds to the span dimensions predicted by Patton's (1990) empirical relationship between spall radius and yield. This suggests that gravitational settlement of damaged rock within the spall zone is an important source of post-shot subsidence, in addition to settlement of the rubble within the collapse chimney. These observations illustrate the potential power of InSAR as a tool for Comprehensive Nuclear-Test-Ban Treaty (CTBT) monitoring and on-site inspection in that the relatively broad ({approx} 100 m to 1 km) subsidence signatures resulting from small shots detonated at normal depths of burial (or even significantly overburied) are readily detectable within large geographical areas (100 km x 100 km) under favorable observing conditions. Furthermore, the present results demonstrate the flexibility of the technique in that the two routinely gathered satellite radar images used to construct the interferogram need not necessarily capture the event itself, but can cover a time period up to several months following the shot.

Foxwall, W.

2000-07-24T23:59:59.000Z

246

Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings Site, Maybell, Colorado. Remedial action selection report: Attachment 2, Geology report, Final  

Science Conference Proceedings (OSTI)

The Maybell uranium mill tailings site is 25 miles (mi) (40 kilometers [km]) west of the town of Craig, Colorado, in Moffat County, in the northwestern part of the state. The unincorporated town of Maybell is 5 road mi (8 km) southwest of the site. The designated site covers approximately 110 acres (ac) (45 hectares [ha]) and consists of a concave-shaped tailings pile and rubble from the demolition of the mill buildings buried in the former mill area. Contaminated materials at the Maybell processing site include the tailings pile, which has an average depth of 20 feet (ft) (6 meters [m]) and contains 2.8 million cubic yards (yd{sup 3}) (2.1 million cubic meters [m{sup 3}]) of tailings. The former mill processing area is on the north side of the site and contains 20,000 yd{sup 3} (15,000 m{sup 3}) of contaminated demolition debris. Off-pile contamination is present and includes areas adjacent to the tailings pile, as well as contamination dispersed by wind and surface water flow. The volume of off-pile contamination to be placed in the disposal cell is 550,000 yd{sup 3} (420,000 m{sup 3}). The total volume of contaminated materials to be disposed of as part of the remedial action is estimated to be 3.37 million yd{sup 3} (2.58 million m{sup 3}). Information presented in this Final Remedial Action Plan (RAP) and referenced in supporting documents represents the current disposal cell design features and ground water compliance strategy proposed by the US Department of Energy (DOE) for the Maybell, Colorado, tailings site. Both the disposal cell design and the ground water compliance strategy have changed from those proposed prior to the preliminary final RAP document as a result of prudent site-specific technical evaluations.

Not Available

1994-06-01T23:59:59.000Z

247

Revisiting Insights from Three Mile Island Unit 2 Postaccident Examinations and Evaluations in View of the Fukushima Daiichi Accident  

Science Conference Proceedings (OSTI)

The Three Mile Island Unit 2 (TMI-2) accident, which occurred on March 28, 1979, led industry and regulators to enhance strategies to protect against severe accidents in commercial nuclear power plants. Investigations in the years after the accident concluded that at least 45% of the core had melted and that nearly 19 tonnes of the core material had relocated to the lower head. Postaccident examinations indicate that about half of that material formed a solid layer near the lower head and above it was a layer of fragmented rubble. As discussed in this paper, numerous insights related to pressurized water reactor accident progression were gained from postaccident evaluations of debris, reactor pressure vessel (RPV) specimens, and nozzles taken from the RPV. In addition, information gleaned from TMI-2 specimen evaluations and available data from plant instrumentation were used to improve severe accident simulation models that form the technical basis for reactor safety evaluations. Finally, the TMI-2 accident led the nuclear community to dedicate considerable effort toward understanding severe accident phenomenology as well as the potential for containment failure. Because available data suggest that significant amounts of fuel heated to temperatures near melting, the events at Fukushima Daiichi Units 1, 2, and 3 offer an unexpected opportunity to gain similar understanding about boiling water reactor accident progression. To increase the international benefit from such an endeavor, we recommend that an international effort be initiated to (a) prioritize data needs; (b) identify techniques, samples, and sample evaluations needed to address each information need; and (c) help finance acquisition of the required data and conduct of the analyses.

Joy Rempe; Mitchell Farmer; Michael Corradini; Larry Ott; Randall Gauntt; Dana Powers

2012-11-01T23:59:59.000Z

248

Feed Materials Production Center Waste Management Plan  

SciTech Connect

In the process of producing uranium metal products used in Department of Energy (DOE) defense programs at other DOE facilities, various types of wastes are generated at the Feed Materials Production Center (FMPC). Process wastes, both generated and stored, are discussed in the Waste Management Plan and include low-level radioactive waste (LLW), mixed hazardous/radioactive waste, and sanitary/industrial waste. Scrap metal waste and wastes requiring special remediation are also addressed in the Plan. The Waste Management Plan identifies the comprehensive programs developed to address safe storage and disposition of all wastes from past, present, and future operations at the FMPC. Waste streams discussed in this Plan are representative of the waste generated and waste types that concern worker and public health and safety. Budgets and schedules for implementation of waste disposition are also addressed. The waste streams receiving the largest amount of funding include LLW approved for shipment by DOE/ORO to the Nevada Test Site (NTS) (MgF/sub 2/, slag leach filter cake, and neutralized raffinate); remedial action wastes (waste pits, K-65 silo waste); thorium; scrap metal (contaminated and noncontaminated ferrous and copper scrap); construction rubble and soil generated from decontamination and decommissioning of outdated facilities; and low-level wastes that will be handled through the Low-Level Waste Processing and Shipping System (LLWPSS). Waste Management milestones are also provided. The Waste Management Plan is divided into eight major sections: Introduction; Site Waste and Waste Generating Process; Strategy; Projects and Operations; Waste Stream Budgets; Milestones; Quality Assurance for Waste Management; and Environmental Monitoring Program.

Watts, R.E.; Allen, T.; Castle, S.A.; Hopper, J.P.; Oelrich, R.L.

1986-12-31T23:59:59.000Z

249

Feed Materials Production Center waste management plan (Revision to NLCO-1100, R. 6)  

Science Conference Proceedings (OSTI)

In the process of producing uranium metal products used in Department of Energy (DOE) defense programs at other DOE facilities, various types of wastes are generated at the Feed Materials Production Center (FMPC). Process wastes, both generated and stored, are discussed in the Waste Management Plan and include low-level radioactive waste (LLW), mixed hazardous/radioactive waste, and sanitary/industrial waste. Scrap metal waste and wastes requiring special remediation are also addressed in the Plan. The Waste Management Plan identifies the comprehensive programs developed to address safe storage and disposition of all wastes from past, present, and future operations at the FMPC. Waste streams discussed in this Plan are representative of the wastes generated and waste types that concern worker and public health and safety. Budgets and schedules for implementation of waste disposition are also addressed. The waste streams receiving the largest amount of funding include LLW approved for shipment by DOE/ORO to the Nevada Test Site (NTS) (MgF/sub 2/, slag leach filter cake, and neutralized raffinate); remedial action wastes (waste pits, K-65 silo waste); thorium; scrap metal (contaminated and noncontaminated ferrous and copper scrap); construction rubble and soil generated from decontamination and decommissioning of outdated facilities; and low-level wastes that will be handled through the Low-Level Waste Processing and Shipping System (LLWPSS). Waste Management milestones are also provided. The Waste Management Plan is divided into eight major sections: Introduction; Site Waste and Waste Generating Process; Strategy; Projects and Operations; Waste Stream Budgets; Milestones; Quality Assurance for Waste Management; and Environmental Monitoring Program.

Watts, R.E.; Allen, T.; Castle, S.A.; Hopper, J.P.; Oelrich, R.L.

1986-10-15T23:59:59.000Z

250

Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 540: Spill Sites Nevada Test Site, Nevada, Rev. No.: 0, with Errata  

SciTech Connect

This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses closure for Corrective Action Unit (CAU) 540, Spill Sites, identified in the ''Federal Facility Agreement and Consent Order''. Corrective Action Unit 540 consists of the nine following Corrective Action Sites (CASs) located in Areas 12 and 19 of the Nevada Test Site: (1) 12-44-01, ER 12-1, Well Site Release; (2) 12-99-01, Oil Stained Dirt; (3) 19-25-02, Oil Spill; (4) 19-25-04, Oil Spill; (5) 19-25-05, Oil Spill; (6) 19-25-06, Oil Spill; (7) 19-25-07, Oil Spill; (8) 19-25-08, Oil Spills (3); and (9) 19-44-03, U-19bf Drill Site Release. This plan provides the methodology for field activities needed to gather the necessary information for closing each CAS. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 540 using the SAFER process. The data quality objective process developed for this CAU identified the following expected closure options: (1) investigation and confirmation that no contamination exists above the final action levels (FALs), leading to a no further action declaration; (2) characterization of the nature and extent of contamination, leading to closure in place with use restrictions; or (3) clean closure by remediation and verification. The expected closure options were selected based on available information including contaminants of potential concern (COPC), future land use, and assumed risks. A decision flow process was developed to define an approach necessary to achieve closure. There are two decisions that need to be resolved for closure. Decision I is to conduct an investigation to determine whether COPCs are present in concentrations exceeding the FALs. If COPCs are found to be present above FALs, excavation of the contaminated material will occur with the collection of confirmation samples to ensure removal of contaminants below FALs.

Pastor, Laura

2005-11-01T23:59:59.000Z

251

Municipal solid waste management in India: From waste disposal to recovery of resources?  

SciTech Connect

Unlike that of western countries, the solid waste of Asian cities is often comprised of 70-80% organic matter, dirt and dust. Composting is considered to be the best option to deal with the waste generated. Composting helps reduce the waste transported to and disposed of in landfills. During the course of the research, the author learned that several developing countries established large-scale composting plants that eventually failed for various reasons. The main flaw that led to the unsuccessful establishment of the plants was the lack of application of simple scientific methods to select the material to be composted. Landfills have also been widely unsuccessful in countries like India because the landfill sites have a very limited time frame of usage. The population of the developing countries is another factor that detrimentally impacts the function of landfill sites. As the population keeps increasing, the garbage quantity also increases, which, in turn, exhausts the landfill sites. Landfills are also becoming increasingly expensive because of the rising costs of construction and operation. Incineration, which can greatly reduce the amount of incoming municipal solid waste, is the second most common method for disposal in developed countries. However, incinerator ash may contain hazardous materials including heavy metals and organic compounds such as dioxins, etc. Recycling plays a large role in solid waste management, especially in cities in developing countries. None of the three methods mentioned here are free from problems. The aim of this study is thus to compare the three methods, keeping in mind the costs that would be incurred by the respective governments, and identify the most economical and best option possible to combat the waste disposal problem.

Narayana, Tapan [Hidayatullah National Law University, HNLU Bhawan, Civil Lines, Raipur 492001, Chhattisgarh (India)], E-mail: tapan.narayana@gmail.com

2009-03-15T23:59:59.000Z

252

Durability testing of antireflection coatings for solar applications  

DOE Green Energy (OSTI)

Antireflection (AR) coatings can be incorporated into highly transmitting glazings that, depending on their cost, performance, and durability of optical properties, can be economically viable in solar collectors, agricultural greenhouses, and PV systems. A number of AR-coated glazings have been prepared under the auspices of the International Energy Agency (IEA) Working Group on Durability of Materials for Solar Thermal Collectors. The AR coatings are of two types, including (1) various sol-gels applied to glass and (2) an embossed treatment of sheet acrylic. Typically, for unweathered glazings, a 4%--5% increase in solar-weighted transmittance has been achieved. For AR-coated glass, reflectance values as low as 0.5%--0.7% at selected wavelengths (680--720 nm) were obtained. To determine the durability of the hemispherical transmittance, several collaborating countries are testing these materials both outdoors and in accelerated weathering chambers. All materials exposed outdoors are affixed to mini-collector boxes to simulate flat-plate collector conditions. Results for candidate AR coatings weathered at geographically disperse outdoor test sites exhibit changes in spectral transmittance primarily in the high visible range (600--700 nm). Accelerated testing at measured levels of simulated solar irradiance and at different constant levels of temperature and relative humidity have been performed in different countries. Parallel testing with different levels of laboratory-controlled relevant stress factors permits the time-dependent performance of these materials to be compared with measured results from in-service outdoor exposure conditions. Coating adhesion and performance loss resulting from dirt and dust retention are also discussed.

Jorgensen, G.; Brunold, S.; Koehl, M.; Nostell, P.; Roos, A.; Oversloot, H.

2000-01-05T23:59:59.000Z

253

Algae culture for cattle feed and water purification. Final report  

SciTech Connect

The feasibility of algae growth on centrate from anaerobic digester effluent and the refeed of both effluent solids and the algae to feedlot cattle were investigated. The digester was operated with dirt feedlot manure. The study serves as a supplement for the work to design a utility sized digester for the City of Lamar to convert local feedlot manure into a fuel gas. The biogas produced would power the electrical generation plant already in service. Previous studies have established techniques of digester operation and the nutritional value for effluent solids as fed to cattle. The inclusion of a single-strain of algae, Chlorella pyrenidosa in the process was evaluated here for its capability (1) to be grown in both open and closed ponds of the discharge water from the solids separation part of the process, (2) to purify the discharge water, and (3) to act as a growth stimulant for cattle feed consumption and conversion when fed at a rate of 6 grams per head per day. Although it was found that the algae could be cultured and grown on the discharge water in the laboratory, the study was unable to show that algae could accomplish the other objectives successfully. However, the study yielded supplementary information useful to the overall process design of the utility plant. This was (1) measurement of undried digester solids fed to cattle in a silage finishing ration (without algae) at an economic value of $74.99 per dry ton based on nutritional qualities, (2) development of a centrate treatment system to decolorize and disinfect centrate to allow optimum algae growth, and (3) information on ionic and mass balances for the digestion system. It is the recommendation of this study that algae not be used in the process in the Lamar bioconversion plant.

Varani, F.T.; Schellenbach, S.; Veatch, M.; Grover, P.; Benemann, J.

1980-05-16T23:59:59.000Z

254

Materials Characterization Paper In Support of the Proposed Rulemaking: Identification of Nonhazardous Secondary Materials That Are Solid Waste Used Oil  

E-Print Network (OSTI)

EPA defines used oil as any oil that has been refined from crude oil, or any synthetic oil, that has been used and as a result of such use is contaminated by physical or chemical impurities. 1 EPAs criteria for used oil: Origin: Used oil must have been refined from crude oil or made from synthetic materials (i.e., derived from coal, shale, or polymers). Examples of crude-oil derived oils and synthetic oils are motor oil, mineral oil, laminating surface agents, and metal working oils. Thus, animal and vegetable oils are not included. Bottom clean-out from virgin fuel oil storage tanks or virgin oil recovered from a spill, as well as products solely used as cleaning agents or for their solvent properties, and certain petroleum-derived products such as antifreeze and kerosene are also not included. Use: The oil must have been used as a lubricant, coolant, heat (non-contact) transfer fluid, hydraulic fluid, heat transfer fluid or for a similar use. Lubricants include, but are not limited to, used motor oil, metal working lubricants, and emulsions. An example of a hydraulic fluid is transmission fluid. Heat transfer fluids can be materials such as coolants, heating media, refrigeration oils, and electrical insulation oils. Authorized states or regions determine what is considered a similar use on a site-specific basis according to whether the material is used and managed in a manner consistent with Part 279 (e.g., used as a buoyant). Contaminants: The used oil must be contaminated by physical (e.g., high water content, metal shavings, or dirt) or chemical (e.g., lead, halogens, solvents or other hazardous constituents) impurities as a result of use. 2. Annual Quantities of Used Oil Generated and Used

unknown authors

2010-01-01T23:59:59.000Z

255

Radioactive air emissions notice of construction HEPA filtered vacuum radioactive air emission units  

Science Conference Proceedings (OSTI)

This notice of construction (NOC) requests a categorical approval for construction and operation of certain portable high-efficiency particulate air (HEPA) filtered vacuum radionuclide airborne emission units (HVUs). Approval of this NOC application is intended to allow operation of the HVUs without prior project-specific approval. This NOC does not request replacement or supersedence of any previous agreements/approvals by the Washington State Department of Health for the use of vacuums on the Hanford Site. These previous agreement/approvals include the approved NOCs for the use of EuroClean HEPA vacuums at the T Plant Complex (routine technical meeting 12/10/96) and the Kelly Decontamination System at the Plutonium-Uranium Extraction (PUREX) Plant (routine technical meeting 06/25/96). Also, this NOC does not replace or supersede the agreement reached regarding the use of HEPA hand-held/shop-vacuum cleaners for routine cleanup activities conducted by the Environmental Restoration Project. Routine cleanup activities are conducted during the surveillance and maintenance of inactive waste sites (Radioactive Area Remedial Action Project) and inactive facilities. HEPA hand-held/shop-vacuum cleaners are used to clean up spot surface contamination areas found during outdoor radiological field surveys, and to clean up localized radiologically contaminated material (e.g., dust, dirt, bird droppings, animal feces, liquids, insects, spider webs, etc.). This agreement, documented in the October 12, 1994 Routine Meeting Minutes, is based on routine cleanup consisting of spot cleanup of low-level contamination provided that, in each case, the source term potential would be below 0.1 millirem per year.

JOHNSON, R.E.

1999-09-01T23:59:59.000Z

256

Remedial action selection report Maybell, Colorado, site. Final report  

SciTech Connect

The Maybell uranium mill tailings site is 25 miles (mi) (40 kilometers [km]) west of the town of Craig, Colorado, in Moffat County, in the northwestern part of the state. The unincorporated town of Maybell is 5 road mi (8 km) southwest of the site. The site is 2.5 mi (4 km) northeast of the Yampa River on relatively flat terrain broken by low, flat-topped mesas. U.S. Highway 40 runs east-west 2 mi (3.2 km) south of the site. The designated site covers approximately 110 acres (ac) (45 hectares [ha]) and consists of a concave-shaped tailings pile and rubble from the demolition of the mill buildings buried in the former mill area. The site is situated between Johnson Wash to the east and Rob Pit Mine to the west. Numerous reclaimed and unreclaimed mines are in the immediate vicinity. Aerial photographs (included at the end of this executive summary) show evidence of mining activity around the Maybell site. Contaminated materials at the Maybell processing site include the tailings pile, which has an average depth of 20 feet (ft) (6 meters [ml]) and contains 2.8 million cubic yards (yd{sup 3}) (2.1 million cubic meters [m{sup 3}]) of tailings. The former mill processing area is on the north side of the site and contains 20,000 yd 3 (15,000 m{sup 3}) of contaminated demolition debris. Off-pile contamination is present and includes areas adjacent to the tailings pile, as well as contamination dispersed by wind and surface water flow. The volume of off-pile contamination to be placed in the disposal cell is 550,000 yd{sup 3}(420,000 m{sup 3}). The total volume of contaminated materials to be disposed of as part of the remedial action is estimated to be 3.37 million yd{sup 3} (2.58 million m{sup 3}).

NONE

1996-12-01T23:59:59.000Z

257

Design, Control and Motion Planning for a Novel Modular Extendable Robotic Manipulator  

E-Print Network (OSTI)

This dissertation discusses an implementation of a design, control and motion planning for a novel extendable modular redundant robotic manipulator in space constraints, which robots may encounter for completing required tasks in small and constrained environment. The design intent is to facilitate the movement of the proposed robotic manipulator in constrained environments, such as rubble piles. The proposed robotic manipulator with multi Degree of Freedom (m-DOF) links is capable of elongating by 25% of its nominal length. In this context, a design optimization problem with multiple objectives is also considered. In order to identify the benefits of the proposed design strategy, the reachable workspace of the proposed manipulator is compared with that of the Jet Propulsion Laboratory (JPL) serpentine robot. The simulation results show that the proposed manipulator has a relatively efficient reachable workspace, needed in constrained environments. The singularity and manipulability of the designed manipulator are investigated. In this study, we investigate the number of links that produces the optimal design architecture of the proposed robotic manipulator. The total number of links decided by a design optimization can be useful distinction in practice. Also, we have considered a novel robust bio-inspired Sliding Mode Control (SMC) to achieve favorable tracking performance for a class of robotic manipulators with uncertainties. To eliminate the chattering problem of the conventional sliding mode control, we apply the Brain Emotional Learning Based Intelligent Control (BELBIC) to adaptively adjust the control input law in sliding mode control. The on-line computed parameters achieve favorable system robustness in process of parameter uncertainties and external disturbances. The simulation results demonstrate that our control strategy is effective in tracking high speed trajectories with less chattering, as compared to the conventional sliding mode control. The learning process of BLS is shown to enhance the performance of a new robust controller. Lastly, we consider the potential field methodology to generate a desired trajectory in small and constrained environments. Also, Obstacle Collision Avoidance (OCA) is applied to obtain an inverse kinematic solution of a redundant robotic manipulator.

Yi, Hak 1979-

2012-12-01T23:59:59.000Z

258

Understanding Contamination; Twenty Years of Simulating Radiological Contamination  

SciTech Connect

A wide variety of simulated contamination methods have been developed by researchers to reproducibly test radiological decontamination methods. Some twenty years ago a method of non-radioactive contamination simulation was proposed at the Idaho National Laboratory (INL) that mimicked the character of radioactive cesium and zirconium contamination on stainless steel. It involved baking the contamination into the surface of the stainless steel in order to 'fix' it into a tenacious, tightly bound oxide layer. This type of contamination was particularly applicable to nuclear processing facilities (and nuclear reactors) where oxide growth and exchange of radioactive materials within the oxide layer became the predominant model for material/contaminant interaction. Additional simulation methods and their empirically derived basis (from a nuclear fuel reprocessing facility) are discussed. In the last ten years the INL, working with the Defense Advanced Research Projects Agency (DARPA) and the National Homeland Security Research Center (NHSRC), has continued to develop contamination simulation methodologies. The most notable of these newer methodologies was developed to compare the efficacy of different decontamination technologies against radiological dispersal device (RDD, 'dirty bomb') type of contamination. There are many different scenarios for how RDD contamination may be spread, but the most commonly used one at the INL involves the dispersal of an aqueous solution containing radioactive Cs-137. This method was chosen during the DARPA projects and has continued through the NHSRC series of decontamination trials and also gives a tenacious 'fixed' contamination. Much has been learned about the interaction of cesium contamination with building materials, particularly concrete, throughout these tests. The effects of porosity, cation-exchange capacity of the material and the amount of dirt and debris on the surface are very important factors. The interaction of the contaminant/substrate with the particular decontamination technology is also very important. Results of decontamination testing from hundreds of contaminated coupons have lead to certain conclusions about the contamination and the type of decontamination methods being deployed. A recent addition to the DARPA initiated methodology simulates the deposition of nuclear fallout. This contamination differs from previous tests in that it has been developed and validated purely to simulate a 'loose' type of contamination. This may represent the first time that a radiologically contaminated 'fallout' stimulant has been developed to reproducibly test decontamination methods. While no contaminant/methodology may serve as a complete example of all aspects that could be seen in the field, the study of this family of simulation methods provides insight into the nature of radiological contamination.

Emily Snyder; John Drake; Ryan James

2012-02-01T23:59:59.000Z

259

SLUDGE TREATMENT PROJECT ENGINEERED CONTAINER RETRIEVAL AND TRANSFER SYSTEM PRELMINARY DESIGN HAZARD AND OPERABILITY STUDY  

Science Conference Proceedings (OSTI)

This Hazard and Operability (HAZOP) study addresses the Sludge Treatment Project (STP) Engineered Container Retrieval and Transfer System (ECRTS) preliminary design for retrieving sludge from underwater engineered containers located in the 105-K West (KW) Basin, transferring the sludge as a sludge-water slurry (hereafter referred to as 'slurry') to a Sludge Transport and Storage Container (STSC) located in a Modified KW Basin Annex, and preparing the STSC for transport to T Plant using the Sludge Transport System (STS). There are six, underwater engineered containers located in the KW Basin that, at the time of sludge retrieval, will contain an estimated volume of 5.2 m{sup 3} of KW Basin floor and pit sludge, 18.4 m{sup 3} of 105-K East (KE) Basin floor, pit, and canister sludge, and 3.5 m{sup 3} of settler tank sludge. The KE and KW Basin sludge consists of fuel corrosion products (including metallic uranium, and fission and activation products), small fuel fragments, iron and aluminum oxide, sand, dirt, operational debris, and biological debris. The settler tank sludge consists of sludge generated by the washing of KE and KW Basin fuel in the Primary Clean Machine. A detailed description of the origin of sludge and its chemical and physical characteristics can be found in HNF-41051, Preliminary STP Container and Settler Sludge Process System Description and Material Balance. In summary, the ECRTS retrieves sludge from the engineered containers and hydraulically transfers it as a slurry into an STSC positioned within a trailer-mounted STS cask located in a Modified KW Basin Annex. The slurry is allowed to settle within the STSC to concentrate the solids and clarify the supernate. After a prescribed settling period the supernate is decanted. The decanted supernate is filtered through a sand filter and returned to the basin. Subsequent batches of slurry are added to the STSC, settled, and excess supernate removed until the prescribed quantity of sludge is collected. The sand filter is then backwashed into the STSC. The STSC and STS cask are then inerted and transported to T Plant.

CARRO CA

2011-07-15T23:59:59.000Z

260

Effects of Temperature and Humidity on the Characterization of C-4 Explosive Threats  

Science Conference Proceedings (OSTI)

The amount of time that an explosive is present on the surface of a material is dependent upon the original amount of explosive on the surface, adhesive forces, temperature and humidity, as well as other environmental factors. This laboratory study focused on evaluating RDX crystal morphology changes resulting from variations in temperature and humidity conditions of the sample. The temperature and humidity conditions were controlled using a Tenney THRJ environmental chamber and a Tenney T11RC-1.5 environmental chamber. These chambers allow the temperature and humidity to be held within 3C and 5% RH. The temperature and humidity conditions used for this test series were: 40F/40%RH, ~70F/20%RH (samples left on benchtop), 70F/70%RH, 70F/95%RH, 95F/40%RH, 95F/70%RH, and 95F/95%RH. These temperature and humidity set points were chosen to represent a wide range of conditions that may be found in real world scenarios. C-4 (RDX crystals and binder material) was deposited on the surface of one of six substrates by placing a fingerprint from the explosive block onto the matrix surface. The substrates were chosen to provide a range of items that are commonly used. Six substrate types were used during these tests: 50% cotton/50% polyester as found in T-shirts, 100% cotton with a smooth surface such as that found in a cotton dress shirt, 100% cotton on a rough surface such as that found on canvas or denim, suede leather such as might be found on jackets, purses, or shoes, painted metal obtained from a junked car hood, and a computer diskette. The samples were not pre-cleaned prior to testing and contained sizing agents, and in the case of the metal: oil, dirt, scratches, and rust spots. The substrates were photographed at various stages of testing, using a Zeiss Discover V12 stereoscope with Axiocam ICc1 3 megapixel digital camera, to determine any changes in the crystalline morphology. Some of the samples were examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM) in an attempt to determine how the explosive was bound to the substrate.

C. J. Miller

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "dirt rubble waterproofing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Making Steel Framing as Thermally Efficient as Wood  

E-Print Network (OSTI)

In many world regions like North America and Scandinavia wood framing is dominant technology for residential buildings. During last two decades several companies around the world started to promote a low-gage steel framing for residential and commercial buildings. Steel framing has many advantages over wood framing; strength, low weight, dimensional stability, resistance to termite damage, almost 100% recycleability, etc .. However because of several reasons an application of steel as a framing material in US residential building market is relatively low. Steel industry has noticed much more success on commercial building market which is not as rigorous regarding thermal efficiency and energy conservation. Steel framing has one significant disadvantage over wood; Steel members conduct heat extremely well. This effect is known as thermal bridging, and it can sharply reduce a wall's effective Rvalue. The simplest and most common way to overcome this problem is to block the path of heat flow with rigid foam insulation. Adding rigid foam insulation not only increases the whole wall's R-value, but it also reduces the temperature difference between the center of the cavity and the stud area, which cuts down on the possibility of black stains forming from dirt getting asymmetrically attracted to cold spots on a wall's surface. However, rigid foam insulation is an expensive solution. Several material configurations were developed in the past to increase thermal effectiveness of steel-framed structures. This paper is focused on most common options of thermal improvements of steels framed walls. They were as follow: 1) diminishing the contact area between the studs and exterior sheathing materials, 2) reducing the steel stud web area, 3) replacing the steel web with a less conductive material, and 4) placing foam insulation in locations where the thermal shorts are most critical. Researchers at Oak Ridge National Laboratory (ORNL) have utilized both hot box testing and computer simulations in aim to optimize thermal design of steel stud walls.. While examining several material options, ORNL's BTC was also striving to develop energy-efficient steel stud wall technologies that would enable steel-stud walls to beat the performance of traditional 2 x 6 wood stud walls. Several, most current, ORNL developments in steel framing are presented below.

Kosny, J.; Childs, P.

2002-01-01T23:59:59.000Z

262

IN SITU DECOMMISSIONING SENSOR NETWORK, MESO-SCALE TEST BED - PHASE 3 FLUID INJECTION TEST SUMMARY REPORT  

SciTech Connect

The DOE Office of Environmental management (DOE EM) faces the challenge of decommissioning thousands of excess nuclear facilities, many of which are highly contaminated. A number of these excess facilities are massive and robust concrete structures that are suitable for isolating the contained contamination for hundreds of years, and a permanent decommissioning end state option for these facilities is in situ decommissioning (ISD). The ISD option is feasible for a limited, but meaningfull number of DOE contaminated facilities for which there is substantial incremental environmental, safety, and cost benefits versus alternate actions to demolish and excavate the entire facility and transport the rubble to a radioactive waste landfill. A general description of an ISD project encompasses an entombed facility; in some cases limited to the blow-grade portion of a facility. However, monitoring of the ISD structures is needed to demonstrate that the building retains its structural integrity and the contaminants remain entombed within the grout stabilization matrix. The DOE EM Office of Deactivation and Decommissioning and Facility Engineering (EM-13) Program Goal is to develop a monitoring system to demonstrate long-term performance of closed nuclear facilities using the ISD approach. The Savannah River National Laboratory (SRNL) has designed and implemented the In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) to address the feasibility of deploying a long-term monitoring system into an ISD closed nuclear facility. The ISDSN-MSTB goal is to demonstrate the feasibility of installing and operating a remote sensor network to assess cementitious material durability, moisture-fluid flow through the cementitious material, and resulting transport potential for contaminate mobility in a decommissioned closed nuclear facility. The original ISDSN-MSTB installation and remote sensor network operation was demonstrated in FY 2011-12 at the ISDSN-MSTB test cube located at the Florida International University Applied Research Center, Miami, FL (FIU-ARC). A follow-on fluid injection test was developed to detect fluid and ion migration in a cementitious material/grouted test cube using a limited number of existing embedded sensor systems. This In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) - Phase 3 Fluid Injection Test Summary Report summarizes the test implementation, acquired and processed data, and results from the activated embedded sensor systems used during the fluid injection test. The ISDSN-MSTB Phase 3 Fluid Injection Test was conducted from August 27 through September 6, 2013 at the FIU-ARC ISDSN-MSTB test cube. The fluid injection test activated a portion of the existing embedded sensor systems in the ISDSN-MSTB test cube: Electrical Resistivity Tomography-Thermocouple Sensor Arrays, Advance Tensiometer Sensors, and Fiber Loop Ringdown Optical Sensors. These embedded sensor systems were activated 15 months after initial placement. All sensor systems were remotely operated and data acquisition was completed through the established Sensor Remote Access System (SRAS) hosted on the DOE D&D Knowledge Management Information Tool (D&D DKM-IT) server. The ISDN Phase 3 Fluid Injection Test successfully demonstrated the feasibility of embedding sensor systems to assess moisture-fluid flow and resulting transport potential for contaminate mobility through a cementitious material/grout monolith. The ISDSN embedded sensor systems activated for the fluid injection test highlighted the robustness of the sensor systems and the importance of configuring systems in-depth (i.e., complementary sensors and measurements) to alleviate data acquisition gaps.

Serrato, M.

2013-09-27T23:59:59.000Z

263

Final Status Survey Report for Corrective Action Unit 117 - Pluto Disassembly Facility, Building 2201, Nevada National Security Site, Nevada  

SciTech Connect

This document contains the process knowledge, radiological data and subsequent statistical methodology and analysis to support approval for the radiological release of Corrective Action Unit (CAU) 117 Pluto Disassembly Facility, Building 2201 located in Area 26 of the Nevada National Security Site (NNSS). Preparations for release of the building began in 2009 and followed the methodology described in the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM). MARSSIM is the DOE approved process for release of Real Property (buildings and landmasses) to a set of established criteria or authorized limits. The pre-approved authorized limits for surface contamination values and corresponding assumptions were established by DOE O 5400.5. The release criteria coincide with the acceptance criteria of the U10C landfill permit. The U10C landfill is the proposed location to dispose of the radiologically non-impacted, or clean, building rubble following demolition. However, other disposition options that include the building and/or waste remaining at the NNSS may be considered providing that the same release limits apply. The Final Status Survey was designed following MARSSIM guidance by reviewing historical documentation and radiological survey data. Following this review a formal radiological characterization survey was performed in two phases. The characterization revealed multiple areas of residual radioactivity above the release criteria. These locations were remediated (decontaminated) and then the surface activity was verified to be less than the release criteria. Once remediation efforts had been successfully completed, a Final Status Survey Plan (10-015, Final Status Survey Plan for Corrective Action Unit 117 Pluto Disassembly Facility, Building 2201) was developed and implemented to complete the final step in the MARSSIM process, the Final Status Survey. The Final Status Survey Plan consisted of categorizing each individual room into one of three categories: Class 1, Class 2 or Class 3 (a fourth category is a Non-Impacted Class which in the case of Building 2201 only pertained to exterior surfaces of the building.) The majority of the rooms were determined to fall in the less restrictive Class 3 category, however, Rooms 102, 104, 106, and 107 were identified as containing Class 1 and 2 areas. Building 2201 was divided into survey units and surveyed following the requirements of the Final Status Survey Plan for each particular class. As each survey unit was completed and documented, the survey results were evaluated. Each sample (static measurement) with units of counts per minute (cpm) was corrected for the appropriate background and converted to a value with units of dpm/100 cm2. With a surface contamination value in the appropriate units, it was compared to the surface contamination limits, or in this case the derived concentration guideline level (DCGLw). The appropriate statistical test (sign test) was then performed. If the survey unit was statistically determined to be below the DCGLw, then the survey unit passed and the null hypothesis (that the survey unit is above limits) was rejected. If the survey unit was equal to or below the critical value in the sign test, the null hypothesis was not rejected. This process was performed for all survey units within Building 2201. A total of thirty-three Class 1, four Class 2, and one Class 3 survey units were developed, surveyed, and evaluated. All survey units successfully passed the statistical test. Building 2201 meets the release criteria commensurate with the Waste Acceptance Criteria (for radiological purposes) of the U10C landfill permit residing within NNSS boundaries. Based on the thorough statistical sampling and scanning of the buildings interior, Building 2201 may be considered radiologically clean, or free of contamination.

Jeremy Gwin and Douglas Frenette

2010-09-30T23:59:59.000Z

264

MANAGING SPENT NUCLEAR FUEL WASTES AT THE IDAHO NATIONAL LABORATORY  

SciTech Connect

The Idaho National Engineering Laboratory (INL) has a large inventory of diverse types of spent nuclear fuel (SNF). This legacy is in part due to the history of the INL as the National Reactor Testing Station, in part to its mission to recover highly enriched uranium from SNF and in part to its mission to test and examine SNF after irradiation. The INL also has a large diversity of SNF storage facility, some dating back 50 years in the site history. The success of the INL SNF program is measured by its ability to: 1) achieve safe existing storage, 2) continue to receive SNF from other locations, both foreign and domestic, 3) repackage SNF from wet storage to interim dry storage, and 4) prepare the SNF for dispositioning in a federal repository. Because of the diversity in the SNF and the facilities at the INL, the INL is addressing almost very condition that may exist in the SNF world. Many of solutions developed by the INL are applicable to other SNF storage sites as they develop their management strategy. The SNF being managed by the INL are in a variety of conditions, from intact assemblies to individual rods or plates to powders, rubble, and metallurgical mounts. Some of the fuel has been in wet storage for over forty years. The fuel is stored bare, or in metal cans and either wet under water or dry in vaults, caissons or casks. Inspections have shown varying degrees of corrosion and degradation of the fuel and the storage cans. Some of the fuel has been recanned under water, and the conditions of the fuel inside the second or third can are unknown. The fuel has been stored in one of 10 different facilities: five wet pools and one casks storage pad, one vault, two generations of caisson facilities, and one modular Independent Spent Fuel Storage Installation (ISFSI). The wet pools range from forty years old to the most modern pool in the US Department of Energy (DOE) complex. The near-term objective is moving the fuel in the older wet storage facilities to interim dry storage facilities, thus permitting the shutdown and decommission of the older facilities. Two wet pool facilities, one at the Idaho Nuclear Technology and Engineering Center and the other at Test Area North, were targeted for initial SNF movements since these were some of the oldest at the INL. Because of the difference in the SNF materials different types of drying processes had to be developed. Passive drying, as is done with typical commercial SNF was not an option because on the condition of some of the fuel, the materials to be dried, and the low heat generation of some of the SNF. There were also size limitations in the existing facility. Active dry stations were designed to address the specific needs of the SNF and the facilities.

Hill, Thomas J

2005-09-01T23:59:59.000Z

265

Development of Refrigerant Change Indicator and Dirty Air Filter Sensor  

Science Conference Proceedings (OSTI)

The most common problems affecting residential and light commercial heating, ventilation, and air-conditioning (HVAC) systems are slow refrigerant leaks and dirty air filters. Equipment users are usually not aware of a problem until most of the refrigerant has escaped or the air filter is clogged with dirt. While a dirty air filter can be detected with a technology based on the air pressure differential across the filter, such as a ''whistling'' indicator, it is not easy to incorporate this technology into existing HVAC diagnostic equipment. Oak Ridge National Laboratory is developing a low-cost, nonintrusive refrigerant charge indicator and dirty air filter detection sensor. The sensors, based on temperature measurements, will be inexpensive and easy to incorporate into existing heat pumps and air conditioners. The refrigerant charge indicator is based on the fact that when refrigerant starts to leak, the evaporator coil temperature starts to drop and the level of liquid subcooling drops. When the coil temperature or liquid subcooling drops below a preset reading, a signal, such as a yellow warning light, can be activated to warn the equipment user that the system is undercharged. A further drop of coil temperature or liquid subcooling below another preset reading would trigger a second warning signal, such as a red warning light, to warn the equipment user that the unit now detects a leak and immediate action should be taken. The warning light cannot be turned off until it is re-set by a refrigeration repairman. To detect clogged air filters, two additional temperature sensors can be applied, one each across the evaporator. When the air filter is accumulating buildup, the temperature differential across the evaporator will increase because of the reduced airflow. When the temperature differential reaches a pre-set reading, a signal will be sent to the equipment user that the air filter needs to be changed. A traditional refrigerant charge indicator requires intrusion into the system to measure the refrigerant high-side and low-side pressures. Once the pressures are known, based on the equipment's refrigerant charging chart? or in most cases, based on the technician's experience? the refrigerant charging status is determined. However, there is a catch: by the time a refrigeration technician is called, most of the refrigerant has already escaped into the atmosphere. The new technology provides a real-time warning so that when, say, 20% of the refrigerant has leaked, the equipment users will be warned, even though the equipment is still functioning properly at rated capacity. Temperature sensors are becoming very accurate and very low in cost, compared with pressure sensors. Using temperature sensors to detect refrigerant charge status is inherently nonintrusive, inexpensive, and accurate. With the addition of two temperature sensors for detecting dirty air filters, the capability of the diagnostic equipment is further enhanced with very little added cost. This report provides laboratory test data on the change of indoor coil refrigerant temperature and subcooling as a function of refrigerant charge for a 2-ton split heat pump system. The data can be used in designing the indicators for refrigerant loss and dirty air filter sensors.

Mei, V.

2003-06-24T23:59:59.000Z

266

Tonopah Test Range Air Monitoring: CY2012 Meteorological, Radiological, and Airborne Particulate Observations  

SciTech Connect

In 1963, the Atomic Energy Commission (AEC), predecessor to the US Department of Energy (DOE), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range (NAFR)). Operation Roller Coaster consisted of four tests in which chemical explosions were detonated in the presence of nuclear devices to assess the dispersal of radionuclides and evaluate the effectiveness of storage structures to contain the ejected radionuclides. These tests resulted in dispersal of plutonium over the ground surface downwind of the test ground zero. Three tests, Clean Slate 1, 2, and 3, were conducted on the TTR in Cactus Flat; the fourth, Double Tracks, was conducted in Stonewall Flat on the NTTR. DOE is working to clean up and close all four sites. Substantial cleaned up has been accomplished at Double Tracks and Clean Slate 1. Cleanup of Clean Slate 2 and 3 is on the DOE planning horizon for some time in the next several years. The Desert Research Institute installed two monitoring stations, number 400 at the Sandia National Laboratories Range Operations Center and number 401 at Clean Slate 3, in 2008 and a third monitoring station, number 402 at Clean Slate 1, in 2011 to measure radiological, meteorological, and dust conditions. The primary objectives of the data collection and analysis effort are to (1) monitor the concentration of radiological parameters in dust particles suspended in air, (2) determine whether winds are re-distributing radionuclides or contaminated soil material, (3) evaluate the controlling meteorological conditions if wind transport is occurring, and (4) measure ancillary radiological, meteorological, and environmental parameters that might provide insight to the above assessments. The following observations are based on data collected during CY2012. The mean annual concentration of gross alpha and gross beta is highest at Station 400 and lowest at Station 401. This difference may be the result of using filter media at Station 400 with a smaller pore size than the media used at the other two stations. Average annual gamma exposure at Station 401 is slightly greater than at Station 400 and 402. Average annual gamma exposure at all three TTR stations are in the upper range to slightly higher than values reported for the CEMP stations surrounding the TTR. At higher wind speeds, the saltation counts are greater at Station 401 than at Station 402 while the suspended particulate concentrations are greater at Station 402 than at Statin 401. Although these observations seem counterintuitive, they are likely the result of differences in the soil material present at the two sites. Station 401 is located on an interfluve elevated above two adjacent drainage channels where the soil surface is likely to be composed of coarser material. Station 402 is located in finer sediments at the playa edge and is also subject to dust from a dirt road only 500 m to the north. During prolonged high wind events, suspended dust concentrations at Station 401 peaked with the initial winds then decreased whereas dust concentrations at Station 402 peaked with each peak in the wind speed. This likely reflects a limited PM10 source that is quickly expended at Station 401 relative to an abundant PM10 source at Station 402. In CY2013, to facilitate comparisons between radiological analyses of collected dust, the filter media at all three stations will be standardized. In addition, a sequence of samples will be collected at Station 400 using both types of filter media to enable development of a mathematical relationship between the results derived from the two filter types. Additionally, having acquired approximately four years of observations at Stations 400 and 401 and a year of observations at Station 402, a period-of-record analysis of the radiological and airborne dust conditions will be undertaken.

Mizell, Steve A; Nikolich, George; Shadel, Craig; McCurdy, Greg; Miller, Julianne J

2013-07-01T23:59:59.000Z

267

TASK 2.5.5 NATURAL EXPOSURE TESTING IN CALIFORNIA  

Science Conference Proceedings (OSTI)

Airborne particulate matter that settles on a roof can either reflect or absorb incoming solar radiation, dependent on the chemical content and size of the particles. These light scattering and absorption processes occur within a few microns of the surface, and can affect the solar reflectance of the roof. Wilkes et al. (2000) tested 24 different roof coatings on a low-slope test stand and observed about a 25% decrease in the solar reflectance of white-coated and aluminum-coated surfaces as the time of exposure increased; however, the decrease leveled off after 2 years. SPRI Inc. and its affiliates studied the effect of climatic exposure on the surface properties of white thermoplastic single-ply membranes and determined that membranes lose from 30 to 50% of their reflectance over 3 years (Miller et al. 2002). The CMRC and its affiliates AISI, NamZAC, MBMA, MCA and NCCA exposed unpainted and painted metal roofing on both steep- and low-slope test roofs and found that after 3 years, the painted polyvinylidene fluoride (PVDF) metal roofs lost less than 5% of their original reflectance (Miller et al. 2004). The results of the three different weathering studies are very interesting in terms of their solar reflectance after 3 years of exposure. The white thermoplastic membrane and white ceramic coating with white topcoat had original reflectance measures that were about 20 percentage points higher than the painted metal; however, after 3-years of field exposure the solar reflectance of the painted metal exceeds that of the thermoplastic membrane and equals that of the coating. The long-term loss of reflectance appears driven by the ability of the particulate matter to cling to the roof and resist being washed off by wind and or rain. Miller et al. (2002) discovered that aerosol deposition introduced biomass of complex microbial consortia onto the test roofs and the combination of contaminants and biomass accelerated the loss of solar reflectance for the thermoplastic membranes and the roof coatings. Airborne contaminants and biomass were also detected on the painted metal roofs; however, the loss of solar reflectance was less than 5% for the painted metal roofs. The chemistry of the PVDF paint resin system uses similar organic film bonding to that responsible for Teflon , making it extremely chemical resistant and dirt shedding. Miller and Rudolph (2003) found the PVDF painted metals maintained solar reflectance even after 30 years of climatic exposure. Therefore the reduction of roof reflectance is closely related to the composition of the roof and to the chemical profile of the contaminants soiling the roof. Contaminants collected from samples of roof products exposed at seven California weathering sites were analyzed for elements and carbons to characterize the chemical profile of the particles soiling each roof sample and to identify those elements that degrade or enhance solar reflectance. The losses in solar reflectance varied from site to site and also varied at a give site based on the color of the coupon. The least drop in reflectance was observed in the alpine climate of McArthur while the largest drop occurred in sites near urban development. Light color samples were soiled after just one year of exposure. The darker color coupons did not show the same seasonal variations in solar reflectance as observed for the lighter colors. However, after an additional year of exposure the samples at all sites regained most of their solar reflectance due to rain and/or wind washing. The loss of reflectance appears cyclical with the onset of seasons having more rainfall. Solar reflectance of the cool pigmented coupons always exceeded that of the conventional pigmented coupons. Climatic soiling did not cause the cool pigmented roof coupons to lose any more solar reflectance than their conventional pigmented counterparts. The effect of roof slope appears to have more of an effect on lighter color roofs whose solar reflectance exceeds at least 0.5 and visually shows the accumulation of airborne contaminants. The thermal emittance r

Miller, William A [ORNL; Cheng, Mengdawn [ORNL; New, Joshua Ryan [ORNL; Ronnen, Levinson [Lawrence Berkeley National Laboratory (LBNL); Akbari, Hashem [Lawrence Berkeley National Laboratory (LBNL); Berhahl, Paul [Lawrence Berkeley National Laboratory (LBNL)

2010-03-01T23:59:59.000Z

268

Retrofiting survivability of military vehicles  

SciTech Connect

In Iraq the terrain was such that vehicles could be distributed horizontally, which reduced the effectiveness of mines. In the mountainous terrain of Pakistan and Afghanistan vehicles are forced to use the few, passable roads, which are dirt and easily seeded with plentiful, cheap, intelligent mines. It is desirable to reduce the losses to such mines, preferably by retrofit means that do not greatly increase weight or cost or reduce maneuverability. V-bottom vehicles - A known approach to reducing vulnerability is the Buffalo, a large vehicle developed by South Africa to address mine warfare. It has large tires, high axles, and a reinforced, v-shaped bottom that deflects the blast from explosions below. It is developed and tested in combat, but is expensive and has reduced off-road mobility. The domestic MRAP has similar cost and mobility issue. The addition of v-shaped blast deflectors to vehicles such as Humvees could act much as the deflector on a Buffalo, but a Humvee is closer to the ground, so the explosive's expansion would be reduced. The deflector would also reduce a Humvee's clearance for rough terrain, and a deflector of adequate thickness to address the blast by itself could further increase cost and reduce mobility. Reactive armor is developed and has proven effective against shaped and explosive charges from side or top attack. It detects their approach, detonates, and defeats them by interfering with jet formation. If the threat was a shaped charge from below, they would be a logical choice. But the bulk of the damage to Humvees appears to be from the blast from high explosive mines for which the colliding shock from reactive armor could increase that from the explosive. Porous materials such as sand can strongly attenuate the kinetic energy and pressure of a strong shock. Figure 1 shows the kinetic energy (KE), momentum (Mu), velocity (u), and mass (M) of a spherically expanding shock as functions of radius for a material with a porosity of 0.5. Over the range from 0.5 to 4.5 cm the shock KE is attenuated by a factor of {approx}70, while its momentum is changed little. The shock and particle velocity falls by a factor of 200 while the mass increases by a factor of 730. In the limit of very porous media u {approx} 1/M, so KE {approx} 1/M, which falls by a factor of {approx}600, while momentum Mu does not change at all. Figure 2 shows the KE, Mu, u, and M for a material with a porosity of 1.05, for which the KE changes little. In the limit of media of very low porosity, u {approx} 1/{radical}M, so KE is constant while Mu {approx} {radical}M, which increases by a factor of 15. Thus, if the goal is to reduce the peak pressure from strong explosions below, very porous materials, which strongly reduce pressure but do not increase momentum, are preferred to non-porous materials, which amplify momentum but do not decrease pressure. These predictions are in qualitative accord with the results of experiments at Los Alamos in which projectiles from high velocity, large caliber cannons were stopped by one to two sandbags. The studies were performed primarily to determine the effectiveness of sand in stopping fragments of various sizes, but could be extended to study sand's effectiveness in attenuating blast pressure. It would also be useful to test the above predictions on the effectiveness of media with higher porosity. Water barriers have been discussed but not deployed in previous retrofit survivability studies for overseas embassies. They would detect the flash from the mine detonation below, trigger a thin layer of explosive above a layer of water, and drive water droplets into the approaching blast wave. The blast loses energy in evaporating the droplets and loses momentum in slowing them. Under favorable conditions that could attenuate the pressure in the blast enough to prevent the penetration or disruption of the vehicle. However, such barriers would depend on prompt and reliable detonation detection and water droplet dispersal, which have not been tested. There is a large literature on the theoretical effec

Canavan, Gregory H [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

269

NSLS 2009 Activity Report  

DOE Green Energy (OSTI)

2009 was an incredibly exciting year for light sources at Brookhaven. The National Synchrotron Light Source (NSLS) hosted more than 2,200 visiting researchers, who, along with the about 50 members of our scientific staff, produced a total of 957 publications - about 20 percent of which appeared in premier journals. Covering topics ranging from Alzheimer's disease detection to ethanol-powered fuel cells, a sampling of these findings can be found in this Activity Report. We've also seen the resurfacing of some of our long-time users hard work. I was very proud to hear that two of the three recipients of the 2009 Nobel Prize in Chemistry have ties to the NSLS. Venki Ramakrishnan, a former employee in Brookhaven's biology department and long-time user of the NSLS, now at Cambridge University, and Thomas A. Steitz of Yale University, also a long-time NSLS user, shared the prize with Ada E. Yonath of the Weizmann Institute of Science for their work on the structure and function of the ribosome. In the late 1990s, Ramakrishnan and Steitz used protein crystallography at the NSLS to gather atomic-level images of two ribosome subunits: 30S (Ramakrishnan) and 50S (Steitz). Both laureates solved the high-resolution structures for these subunits based on this data. After struggling with a rough budget for several years, we received excellent funding, and then some, this year. In addition to NSLS operations funding, we received $3 million in funds from the American Recovery and Reinvestment Act (ARRA). We used that additional money for two exciting projects: construction of a full-field x-ray microscope and acquisition of several advanced x-ray detectors. The x-ray microscope will be able to image objects with a targeted spatial resolution of 30 nanometers. This capability will be particularly important for new initiatives in energy research and will prepare our users for the projected 1-nanometer resolution benchmark at the National Synchrotron Light Source II (NSLS-II). The detectors project is expected to increase the throughput of several high-demand beamlines by an order of magnitude as well as enable new classes of experiments. In addition, a huge chunk of ARRA money - $150 million - was put toward accelerating the construction of NSLS-II, which is now taking shape across the street. Now physically much more than just a pile of dirt, NSLS-II was granted Critical Decision 3 status by the Department of Energy (DOE) early last year, giving the official go-ahead for construction. In July, construction began, marked by a groundbreaking ceremony that attracted elected officials, media, and DOE, Battelle, and Stony Brook University representatives from across the state and the country. As progress on NSLS-II continues, we're working with Stony Brook University to identify ways to capitalize on the facility's unique capabilities through the Joint Photon Sciences Institute (JPSI). Included in this effort is a series of workshops to encourage the development and application of the photon sciences with collaborative research between industries, universities, and national laboratories. We helped host three of these workshops this year, focusing on microelectronics, energy storage, and materials in next-generation energy systems. The conversation and ideas generated at these meetings has been fresh and valuable and we hope to use this model to organize research opportunities in other scientific fields. Also this year: Brookhaven was deemed the lead institution for one of DOE's 46 Energy Frontier Research Centers, focused on understanding the underlying nature of superconductivity in complex materials by using techniques at the NSLS and CFN; DOE awarded a $100,000 supplemental grant to our detector program to continue the development of a new generation of x-ray detectors that use germanium sensors, which, at high energies, are much more efficient than equivalent ones based on silicon; and funding for one of our largest consortia, Case Western Reserve University's Center for Synchrotron Biosciences (CSB), was renewed through the National Inst

Nasta K.; Mona R.

2009-05-01T23:59:59.000Z