National Library of Energy BETA

Sample records for director coal electric

  1. Deputy Director, Office of Electric Reliability | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reliability Deputy Director, Office of Electric Reliability Submitted by admin on Sat, 2016-01-16 00:16 Job Summary Organization Name Department Of Energy Agency SubElement...

  2. ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,..."Natural Gas ... " " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,..."Natu...

  3. Statement of Patricia Hoffman, Acting Assistant Director for Electricity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery and Energy Reliability, before the Committee on Energy and Natural Resources U.S. Senate, April 22, 2009. | Department of Energy Director for Electricity Delivery and Energy Reliability, before the Committee on Energy and Natural Resources U.S. Senate, April 22, 2009. Statement of Patricia Hoffman, Acting Assistant Director for Electricity Delivery and Energy Reliability, before the Committee on Energy and Natural Resources U.S. Senate, April 22, 2009. Statement of Patricia Hoffman,

  4. Fact #844: October 27, 2014 Electricity Generated from Coal has...

    Broader source: Energy.gov (indexed) [DOE]

    From 2002 to 2012, most states have reduced their reliance on coal for electricity generation. The figure below shows the percent change in electricity generated by coal and ...

  5. AEO 2015 Electricity, Coal, Nuclear and Renewables Preliminary...

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity, Coal, Nuclear and Renewables Preliminary Results For Joint Electricity, Coal, Nuclear, and Renewables AEO2015 Working Group September 15, 2014 | Washington, DC By EIA, ...

  6. Coal based electric generation comparative technologies report

    SciTech Connect (OSTI)

    Not Available

    1989-10-26

    Ohio Clean Fuels, Inc., (OCF) has licensed technology that involves Co-Processing (Co-Pro) poor grade (high sulfur) coal and residual oil feedstocks to produce clean liquid fuels on a commercial scale. Stone Webster is requested to perform a comparative technologies report for grassroot plants utilizing coal as a base fuel. In the case of Co-Processing technology the plant considered is the nth plant in a series of applications. This report presents the results of an economic comparison of this technology with other power generation technologies that use coal. Technologies evaluated were:Co-Processing integrated with simple cycle combustion turbine generators, (CSC); Co-Processing integrated with combined cycle combustion turbine generators, (CCC); pulverized coal-fired boiler with flue gas desulfurization and steam turbine generator, (PC) and Circulating fluidized bed boiler and steam turbine generator, (CFB). Conceptual designs were developed. Designs were based on approximately equivalent net electrical output for each technology. A base case of 310 MWe net for each technology was established. Sensitivity analyses at other net electrical output sizes varying from 220 MWe's to 1770 MWe's were also performed. 4 figs., 9 tabs.

  7. 5,"New Madrid","Coal","Associated Electric Coop, Inc",1154 6...

    U.S. Energy Information Administration (EIA) Indexed Site

    Electric Co - (MO)",1182 5,"New Madrid","Coal","Associated Electric Coop, Inc",1154 6,"Thomas Hill","Coal","Associated Electric Coop, Inc",1133 7,"Sioux","Coal","Union Electric Co ...

  8. South Korean energy outlook: Coal and electricity focus

    SciTech Connect (OSTI)

    Young, E.M.; Johnson, C.J.; Li, B.

    1995-03-01

    This paper concisely outlines the capacity for Korea to generate electricity by using coal. Resources (native and imported) as well as facilities are reviewed.

  9. Electricity production levelized costs for nuclear, gas and coal

    Office of Scientific and Technical Information (OSTI)

    ... Electricity Production in Mexico Independent 15.74% Hydro 7.4% Wind 0.004% Nuclear 5.81% Coal 9.83% Geothermal 3.47% Thermal 58.15% Figure 1. Distribution of the total electricity ...

  10. Electricity from coal and utilization of coal combustion by-products

    SciTech Connect (OSTI)

    Demirbas, A.

    2008-07-01

    Most electricity in the world is conventionally generated using coal, oil, natural gas, nuclear energy, or hydropower. Due to environmental concerns, there is a growing interest in alternative energy sources for heat and electricity production. The major by-products obtained from coal combustion are fly ash, bottom ash, boiler slag, and flue gas desulfurization (FGD) materials. The solid wastes produced in coal-fired power plants create problems for both power-generating industries and environmentalists. The coal fly ash and bottom ash samples may be used as cementitious materials.

  11. Clean coal technologies in electric power generation: a brief overview

    SciTech Connect (OSTI)

    Janos Beer; Karen Obenshain

    2006-07-15

    The paper talks about the future clean coal technologies in electric power generation, including pulverized coal (e.g., advanced supercritical and ultra-supercritical cycles and fluidized-bed combustion), integrated gasification combined cycle (IGCC), and CO{sub 2} capture technologies. 6 refs., 2 tabs.

  12. 1,"Elm Road Generating Station","Coal","Wisconsin Electric Power...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Elm Road Generating Station","Coal","Wisconsin Electric Power Co",1268 2,"Point Beach ...

  13. The Market for Coal Based Electric Power Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Roadmap "CURC/EPRI/DOE Consensus Roadmap" Background Information Go to Roadmap http://www.netl.doe.gov/coalpower/ccpi/pubs/CCT-Roadmap-Background.pdf 04/20/04 The Clean Coal Technology Roadmap is the U.S. Department of Energy's plan to develop the technology needed for future energy plants that use coal to produce electricity and, when economically favored, transportation fuels, and other valuable energy products as well; have near-zero emissions including CO 2 ; are highly efficient;

  14. Director Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director Videos Director Deputy Director Leadership Team Advisory Board Directorate Staff Org Chart Navigate Section Director Deputy Director Leadership Team Advisory Board...

  15. Utility to Purchase Electricity from Innovative DOE-Supported Clean Coal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project | Department of Energy Utility to Purchase Electricity from Innovative DOE-Supported Clean Coal Project Utility to Purchase Electricity from Innovative DOE-Supported Clean Coal Project January 17, 2012 - 12:00pm Addthis Washington, DC - An innovative clean coal technology project in Texas will supply electricity to the largest municipally owned utility in the United States under a recently signed Power Purchase Agreement, the U.S. Department of Energy (DOE) announced today. Under the

  16. Fact #844: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown

    Broader source: Energy.gov [DOE]

    From 2002 to 2012, most states have reduced their reliance on coal for electricity generation. The figure below shows the percent change in electricity generated by coal and natural gas for each...

  17. Construction Begins on First-of-its-Kind Advanced Clean Coal Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generating Facility | Department of Energy Construction Begins on First-of-its-Kind Advanced Clean Coal Electric Generating Facility Construction Begins on First-of-its-Kind Advanced Clean Coal Electric Generating Facility September 10, 2007 - 3:16pm Addthis ORLANDO, Fla. - Officials representing the U.S. Department of Energy (DOE), Southern Company, KBR Inc. and the Orlando Utilities Commission (OUC) today broke ground to begin construction of an advanced 285-megawatt integrated

  18. Should we transport coal, gas, or electricity: cost, efficiency, and environmental implications

    SciTech Connect (OSTI)

    Joule A. Bergerson; Lester B. Lave

    2005-08-15

    The authors examine the life cycle costs, environmental discharges, and deaths of moving coal via rail, coal to synthetic natural gas via pipeline, and electricity via wire from the Powder River Basin (PRB) in Wyoming to Texas. Which method has least social cost depends on how much additional investment in rail line, transmission, or pipeline infrastructure is required, as well as how much and how far energy is transported. If the existing rail lines have unused capacity, coal by rail is the cheapest method (up to 200 miles of additional track could be added). If no infrastructure exists, greater distances and larger amounts of energy favor coal by rail and gasified coal by pipeline over electricity transmission. For 1,000 miles and 9 gigawatts of power, a gas pipeline is cheapest, has less environmental discharges, uses less land, and is least obtrusive. 28 refs., 4 figs., 3 tabs.

  19. Coal combustion products (CCPs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coal combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the largest segment of U.S. electricity generation (45 ...

  20. Rail Coal Transportation Rates to the Electric Power Sector

    Gasoline and Diesel Fuel Update (EIA)

    modes, the Coal Waybill Data is based only on rail shipments. Due to the different nature of the data sources, users should exercise caution when attempting to combine the two...

  1. 2,"Laramie River Station","Coal","Basin Electric Power Coop"...

    U.S. Energy Information Administration (EIA) Indexed Site

    6,"Wyodak","Coal","PacifiCorp",332 7,"Top of the World Windpower Project","Wind","Duke Energy Top Of the World WindPower",200 8,"TransAlta Wyoming Wind","Wind","NextEra ...

  2. Directorate Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directorate Staff Director Deputy Director Leadership Team Advisory Board Directorate Staff Org Chart ⇒ Navigate Section Director Deputy Director Leadership Team Advisory Board Directorate Staff Org Chart Office of the Director MARGARET DICK, Acting Chief of Staff and Leadership Communications Advisor DICK Margaret Dick is the Acting Chief of Staff and Leadership Communications Advisor. A communications professional with a wide range of strategy, media, client relations, and business

  3. Fact #844: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #844: Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown

  4. Fermilab | Directorate | Fermilab Former Directors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Former Directors Dr. Robert Wilson Dr. Robert Wilson Director 1967-1978 Dr. Leon Lederman Dr. Leon Lederman Director 1978-1989 Dr. John Peoples, Jr. Dr. John Peoples, Jr. Director 1989-1999 Dr. Michael Witherell Dr. Michael Witherell Director 1999-2005 Dr. Pier Oddone Dr. Pier Oddone Director 2005-2013 Last modified: 05/27/2014

  5. Deputy Director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About » Leadership, Governance » Deputy Director Deputy Director Rich Kacich, Deputy Director, supports the Laboratory Director on high priority institutional matters. Contact Operator Los Alamos National Laboratory (505) 667-5061 Kacich has 40 years of nuclear industry experience in the private and public sectors. Rich Kacich Rich Marquez, Executive Director Rich Kacich currently serves Los Alamos National Laboratory as deputy director, reporting to the Laboratory director. Kacich has 40

  6. Executive Director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Executive Director Dave Lyons, Executive Director, leads institutional initiatives and provides oversight for numerous Laboratory organizations. Contact Operator Los Alamos National Laboratory (505) 667-5061 Dave Lyons Dave Lyons, Executive Director Dave Lyons currently serves Los Alamos National Laboratory as interim executive director, reporting to the Laboratory director. Lyons leads institutional initiatives and provides oversight for several Laboratory organizations, including Chief

  7. Statement of Patricia A. Hoffman, Deputy Director R&D, Office of Electricity Delivery & Energy Reliability Department of Energy before the Committee on Science and Technology Energy and Environment Subcommittee U.S. House of Representatives, October 3, 20

    Broader source: Energy.gov [DOE]

    Statement of Patricia A. Hoffman, Deputy Director R&D, Office of Electricity Delivery & Energy Reliability Department of Energy before the Committee on Science and Technology, Energy and...

  8. Statement of Patricia Hoffman, Deputy Director R&D, Office of Electricity Delivery & Energy Reliability, Department of Energy before the Committee on Science and Technology Energy and Environment Subcommittee U.S. House of Representatives October 3, 2007

    Broader source: Energy.gov [DOE]

    Statement of Patricia Hoffman, Deputy Director R&D, Office of Electricity Delivery & Energy Reliability, Department of Energy before the Committee on Science and Technology, Energy and...

  9. Table 11b. Coal Prices to Electric Generating Plants, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Coal Prices to Electric Generating Plants, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars per million Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO

  10. Electricity and technical progress: The bituminous coal mining industry, mechanization to automation

    SciTech Connect (OSTI)

    Devine, W.D. Jr.

    1987-07-01

    Development and use of electric mobile machinery facilitated the mechanization of underground bituminous coal mining and has played a lesser but important role in the growth of surface mining. Electricity has been central to the rise of mechanically integrated mining, both underground (after 1950) and on the surface (recently). Increasing labor productivity in coal mining and decreasing total energy use per ton of coal mined are associated with penetration of new electric technology through at least 1967. Productivity declined and energy intensity increased during the 1970s due in part to government regulations. Recent productivity gains stem partly from new technology that permits automation of certain mining operations. On most big electric excavating machines, a pair of large alternating current (ac) motors operate continuously at full speed. These drive direct current (dc) generators that energize dc motors, each matched to the desired power and speed range of a particular machine function. Direct-current motors provide high torque at low speeds, thus reducing the amount of gearing required; each crawler is independently propelled forward or backward by its own variable-speed dc motors. The principal advantages of electric power are that mechanical power-transmission systems - shafts, gears, etc. - are eliminated or greatly simplified. Reliability is higher, lifetime is longer, and maintenance is much simpler with electric power than with diesel power, and the spare parts inventory is considerably smaller. 100 refs., 11 figs., 12 tabs.

  11. Fermilab | Directorate |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    thumb thumb thumb thumb photo Nigel Lockyer Laboratory Director Profile photo Joseph Lykken Deputy Director Profile photo Timothy Meyer Chief Operating Officer Profile photo Christopher Mossey Deputy Director for LBNF Profile The Fermilab Directorate provides the leadership necessary to support and advance the laboratory's scientific mission. This includes setting lab policy and program direction and ensuring support and funding for Fermilab. The Directorate ensures and oversees compliance with

  12. Statement of Patricia Hoffman, Acting Assistant Director for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    22, 2009. Statement of Patricia Hoffman, Acting Assistant Director for Electricity ... 22, 2009. Statement of Patricia Hoffman, Acting Assistant Director for Electricity ...

  13. Coal Study Guide for Elementary School

    Broader source: Energy.gov [DOE]

    Focuses on the basics of coal, history of coal use, conversion of coal into electricity, and climate change concerns.

  14. Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G. A.; O'Donoughue, P.; Vorum, M.

    2012-04-01

    This systematic review and harmonization of life cycle assessments (LCAs) of utility-scale coal-fired electricity generation systems focuses on reducing variability and clarifying central tendencies in estimates of life cycle greenhouse gas (GHG) emissions. Screening 270 references for quality LCA methods, transparency, and completeness yielded 53 that reported 164 estimates of life cycle GHG emissions. These estimates for subcritical pulverized, integrated gasification combined cycle, fluidized bed, and supercritical pulverized coal combustion technologies vary from 675 to 1,689 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh) (interquartile range [IQR]= 890-1,130 g CO{sub 2}-eq/kWh; median = 1,001) leading to confusion over reasonable estimates of life cycle GHG emissions from coal-fired electricity generation. By adjusting published estimates to common gross system boundaries and consistent values for key operational input parameters (most importantly, combustion carbon dioxide emission factor [CEF]), the meta-analytical process called harmonization clarifies the existing literature in ways useful for decision makers and analysts by significantly reducing the variability of estimates ({approx}53% in IQR magnitude) while maintaining a nearly constant central tendency ({approx}2.2% in median). Life cycle GHG emissions of a specific power plant depend on many factors and can differ from the generic estimates generated by the harmonization approach, but the tightness of distribution of harmonized estimates across several key coal combustion technologies implies, for some purposes, first-order estimates of life cycle GHG emissions could be based on knowledge of the technology type, coal mine emissions, thermal efficiency, and CEF alone without requiring full LCAs. Areas where new research is necessary to ensure accuracy are also discussed.

  15. Nitrogen oxides emission control options for coal-fired electric utility boilers

    SciTech Connect (OSTI)

    Ravi K. Srivastava; Robert E. Hall; Sikander Khan; Kevin Culligan; Bruce W. Lani

    2005-09-01

    Recent regulations have required reductions in emissions of nitrogen oxides (NOx) from electric utility boilers. To comply with these regulatory requirements, it is increasingly important to implement state-of-the-art NOx control technologies on coal-fired utility boilers. This paper reviews NOx control options for these boilers. It discusses the established commercial primary and secondary control technologies and examines what is being done to use them more effectively. Furthermore, the paper discusses recent developments in NOx controls. The popular primary control technologies in use in the United States are low-NOx burners and overfire air. Data reflect that average NOx reductions for specific primary controls have ranged from 35% to 63% from 1995 emissions levels. The secondary NOx control technologies applied on U.S. coal-fired utility boilers include reburning, selective noncatalytic reduction (SNCR), and selective catalytic reduction (SCR). Thirty-six U.S. coal-fired utility boilers have installed SNCR, and reported NOx reductions achieved at these applications ranged from 15% to 66%. Recently, SCR has been installed at 150 U.S. coal-fired utility boilers. Data on the performance of 20 SCR systems operating in the United States with low-NOx emissions reflect that in 2003, these units achieved NOx emission rates between 0.04 and 0.07 lb/106 Btu. 106 refs., 6 figs., 6 tabs.

  16. coal contacts | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    coal contacts Strategic Center for Coal Director: Sean Plasynski 412-386-4867 Senior Management & Technical Advisor: Gregory Kawalkin 412-386-6135 Senior Management & Technical ...

  17. Director's Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director's Office Director's Office Print Roger Falcone Director, Advanced Light Source, Ernest Orlando Lawrence Berkeley National Laboratory and Professor of Physics, University of California, Berkeley. Roger Falcone Web page at the University of California, Berkeley Advanced Light Source Lawrence Berkeley National Laboratory 1 Cyclotron Road, MS 80R0114 Berkeley, CA 94720 USA Tel. (510) 486-6692 Fax (510) 486-4960 Email: This e-mail address is being protected from spambots. You need JavaScript

  18. Statement of Patricia A. Hoffman, Deputy Director of Research and Development and Acting Chief Operating Officer, Office of Electricity Delivery & Energy Reliability, Department of Energy before the Committee on Energy and Natural Resources United States

    Broader source: Energy.gov [DOE]

    Statement of Patricia A. Hoffman, Deputy Director of R&D and Acting Chief Operating Officer, Office of Electricity Delivery & Energy Reliability, Department of Energy, before the Senate...

  19. Health and environmental effects of coal-fired electric power plants

    SciTech Connect (OSTI)

    Morris, S.C.; Hamilton, L.D.

    1984-05-01

    This paper describes health and environmental impacts of coal-fired electric power plants. Effects on man, agriculture, and natural ecosystems are considered. These effects may result from direct impacts or exposures via air, water, and food chains. The paper is organized by geographical extent of effect. Occupational health impacts and local environmental effects such as noise and solid waste leachate are treated first. Then, regional effects of air pollution, including acid rain, are analyzed. Finally, potential global impacts are examined. Occupational health concerns considered include exposure to noise, dust, asbestos, mercury, and combustion products, and resulting injury and disease. Local effects considered include noise; air and water emissions of coal storage piles, solid waste operations, and cooling systems. Air pollution, once an acute local problem, is now a regional concern. Acute and chronic direct health effects are considered. Special attention is given to potential effects of radionuclides in coal and of acid rain. Finally, potential global impacts associated with carbon dioxide emissions are considered. 88 references, 9 tables.

  20. Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation

    SciTech Connect (OSTI)

    Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews

    2007-09-15

    The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. 38 refs., 3 figs., 2 tabs.

  1. Laboratory Directors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Siegfried S. Hecker (1985-1997) Donald M. Kerr (1979-1985) Harold M. Agnew (1970-1979) Norris Bradbury (1945-1970) J. Robert Oppenheimer (1943-1945) Laboratory Directors Harold M. ...

  2. Director's Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director's Office Print Roger Falcone Director, Advanced Light Source, Ernest Orlando Lawrence Berkeley National Laboratory and Professor of Physics, University of California, Berkeley. Roger Falcone Web page at the University of California, Berkeley Advanced Light Source Lawrence Berkeley National Laboratory 1 Cyclotron Road, MS 80R0114 Berkeley, CA 94720 USA Tel. (510) 486-6692 Fax (510) 486-4960 Email: This e-mail address is being protected from spambots. You need JavaScript enabled to view

  3. Director's Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director's Office Print Roger Falcone Director, Advanced Light Source, Ernest Orlando Lawrence Berkeley National Laboratory and Professor of Physics, University of California, Berkeley. Roger Falcone Web page at the University of California, Berkeley Advanced Light Source Lawrence Berkeley National Laboratory 1 Cyclotron Road, MS 80R0114 Berkeley, CA 94720 USA Tel. (510) 486-6692 Fax (510) 486-4960 Email: This e-mail address is being protected from spambots. You need JavaScript enabled to view

  4. Fermilab | Directorate | Fermilab Directorate Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fermilab Directorate Documents Red-Bulleted Items are Restricted to Fermilab Green-Bulleted Items are Unrestricted Final Report of Injury Reduction Plan 2006 Contract No. DE-AC02-07CH11359 between US DOE and Fermi Research Alliance, LLC Institutional Plan 2004-2008 Fermilab Engineering Manual, Engineering Risk Assessment Worksheet Fermilab Human Rights Policy Fermilab Director’s Policies Fermilab Environmental Reports Fermilab Regional and Site Characterization Fermilab Comprehensive Land Use

  5. Planning India's long-term energy shipment infrastructures for electricity and coal

    SciTech Connect (OSTI)

    Brian H. Bowen; Devendra Canchi; Vishal Agarwal Lalit; Paul V. Precke; F.T. Sparrow; Marty W. Irwin

    2010-01-15

    The Purdue Long-Term Electricity Trading and Capacity Expansion Planning Model simultaneously optimizes both the expansion of transmission and generation capacity. Most commercial electricity system planning software is limited to only transmission planning. An application of the model to India's national power grid, for 2008-2028, indicates substantial transmission expansion is the cost-effective means of meeting the needs of the nation's growing economy. An electricity demand growth rate of 4% over the 20-year planning horizon requires more than a 50% increase in the Government's forecasted transmission capacity expansion, and 8% demand growth requires more than a six-fold increase in the planned transmission capacity expansion. The model minimizes the long-term expansion costs (operational and capital) for the nation's five existing regional power grids and suggests the need for large increases in load-carrying capability between them. Changes in coal policy affect both the location of new thermal power plants and the optimal pattern inter-regional transmission expansions. 15 refs., 10 figs., 7 tabs.

  6. Table 11a. Coal Prices to Electric Generating Plants, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Coal Prices to Electric Generating Plants, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars per million Btu in ""dollar year"" specific to each AEO)" ,"AEO $ Year",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",1992,1.4699,1.4799,1.53,1.57,1.58,1.57,1.61,1.63,1.68,1.69,1.7,1.72,1.7,1.76,1.79,1.81,1.88,1.92 "AEO

  7. Table 11a. Coal Prices to Electric Generating Plants, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Coal Prices to Electric Generating Plants, Projected vs. Actual Projected Price in Constant Dollars (constant dollars per million Btu in "dollar year" specific to each AEO) AEO $ Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1992 1.47 1.48 1.53 1.57 1.58 1.57 1.61 1.63 1.68 1.69 1.70 1.72 1.70 1.76 1.79 1.81 1.88 1.92 AEO 1995 1993 1.39 1.39 1.38 1.40 1.40 1.39 1.39 1.42 1.41 1.43 1.44 1.45 1.46 1.46 1.46 1.47

  8. Methodology for comparing the health effects of electricity generation from uranium and coal fuels

    SciTech Connect (OSTI)

    Rhyne, W.R.; El-Bassioni, A.A.

    1981-12-08

    A methodology was developed for comparing the health risks of electricity generation from uranium and coal fuels. The health effects attributable to the construction, operation, and decommissioning of each facility in the two fuel cycle were considered. The methodology is based on defining (1) requirement variables for the materials, energy, etc., (2) effluent variables associated with the requirement variables as well as with the fuel cycle facility operation, and (3) health impact variables for effluents and accidents. The materials, energy, etc., required for construction, operation, and decommissioning of each fuel cycle facility are defined as primary variables. The materials, energy, etc., needed to produce the primary variable are defined as secondary requirement variables. Each requirement variable (primary, secondary, etc.) has associated effluent variables and health impact variables. A diverging chain or tree is formed for each primary variable. Fortunately, most elements reoccur frequently to reduce the level of analysis complexity. 6 references, 11 figures, 6 tables.

  9. Nuclear economics 2000: Deterministic and probabilistic projections of nuclear and coal electric power generation costs for the year 2000

    SciTech Connect (OSTI)

    Williams, K.A.; Delene, J.G.; Fuller, L.C.; Bowers, H.I.

    1987-06-01

    The total busbar electric generating costs were estimated for locations in ten regions of the United States for base-load nuclear and coal-fired power plants with a startup date of January 2000. For the Midwest region a complete data set that specifies each parameter used to obtain the comparative results is supplied. When based on the reference set of input variables, the comparison of power generation costs is found to favor nuclear in most regions of the country. Nuclear power is most favored in the northeast and western regions where coal must be transported over long distances; however, coal-fired generation is most competitive in the north central region where large reserves of cheaply mineable coal exist. In several regions small changes in the reference variables could cause either option to be preferred. The reference data set reflects the better of recent electric utility construction cost experience (BE) for nuclear plants. This study assumes as its reference case a stable regulatory environment and improved planning and construction practices, resulting in nuclear plants typically built at the present BE costs. Today's BE nuclear-plant capital investment cost model is then being used as a surrogate for projected costs for the next generation of light-water reactor plants. An alternative analysis based on today's median experience (ME) nuclear-plant construction cost experience is also included. In this case, coal is favored in all ten regions, implying that typical nuclear capital investment costs must improve for nuclear to be competitive.

  10. Greg Rutherford Executive Director Global Power & Utilities Investment...

    Broader source: Energy.gov (indexed) [DOE]

    Rutherford Executive Director Global Power & Utilities Investment Banking Morgan Stanley Bankability of Electricity Transmission, Storage and Distribution Infrastructure Investment...

  11. To: Procurement Directors From: Director Contract...

    Broader source: Energy.gov (indexed) [DOE]

    Date: March 2, 2012 To: Procurement Directors From: Director Contract and Financial Assistance Policy Division Office of Policy Office of Procurement and Assistance Management...

  12. TO: Procurement Directors FROM: Director, Policy Division

    Broader source: Energy.gov (indexed) [DOE]

    4 DATE: April 7, 2011 TO: Procurement Directors FROM: Director, Policy Division Office of Procurement and Assistance Policy Office of Procurement and Assistance Management SUBJECT:...

  13. TO: Procurement Directors FROM: Director, Policy Division

    Energy Savers [EERE]

    POLICY FLASH 2011-56 DATE: March 16, 2011 TO: Procurement Directors FROM: Director, Policy Division Office of Procurement and Assistance Policy Office of Procurement and Assistance...

  14. Table 11b. Coal Prices to Electric Generating Plants, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Coal Prices to Electric Generating Plants, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars per million Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1.50 1.55 1.64 1.73 1.78 1.82 1.92 2.01 2.13 2.22 2.30 2.41 2.46 2.64 2.78 2.90 3.12 3.30 AEO 1995 1.42 1.46 1.49 1.55 1.59 1.62 1.67 1.76 1.80 1.89 1.97 2.05 2.13 2.21 2.28 2.38 2.50 AEO 1996 1.35 1.35 1.37 1.39 1.42 1.46 1.50 1.56 1.62 1.67 1.75

  15. FE Clean Coal News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity from Innovative DOE-Supported Clean Coal Project An innovative clean coal technology project in Texas will supply electricity to the largest municipally owned...

  16. U.S. monthly coal production increases

    U.S. Energy Information Administration (EIA) Indexed Site

    The turnaround comes as power plants are using more coal to generate electricity, reflecting higher electricity demand....and the fact that coal prices this year are more ...

  17. Summary of AEO2015 Renewable Electricity Working Group Meeting

    U.S. Energy Information Administration (EIA) Indexed Site

    August 13, 2014 MEMORANDUM FOR: John Conti Assistant Administrator for Energy Analysis Jim Diefenderfer Office Director Office of Electricity, Coal, Nuclear, and Renewables Analysis Paul Holtberg Team Leader Analysis Integration Team FROM: Renewable Electricity Analysis Team SUBJECT: Summary of AEO2015 Renewable Electricity Working Group Meeting held on July 24, 2014 Presenters: Chris Namovicz, Gwen Bredehoeft Topics included AEO2014 model and data updates, a summary of AEO2014 model results,

  18. Summary of AEO2016 Electricity Working Group Meeting

    U.S. Energy Information Administration (EIA) Indexed Site

    WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE February 10, 2016 MEMORANDUM FOR: John Conti Assistant Administrator for Energy Analysis Jim Diefenderfer Office Director Office of Electricity, Coal, Nuclear, and Renewables Analysis Paul Holtberg Team Leader Analysis Integration Team FROM: Chris Namovicz Acting Team Leader for Electricity Analysis Team SUBJECT: Summary of AEO2016 Electricity Working Group Meeting held on February 10, 2016

  19. Summary of First AEO2014 Electricity Working Group Meeting

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2013 MEMORANDUM FOR: John Conti Assistant Administrator for Energy Analysis Alan Beamon Office Director Office of Electricity, Coal, Nuclear, and Renewables Analysis Paul Holtberg Team Leader Analysis Integration Team FROM: Electricity Analysis Team SUBJECT: Summary of First AEO 2014 Electricity Working Group Meeting held on July 24, 2013 ATTENDEES: Diefenderfer, Jim Aniti, Lori Milton, Carrie Jones, Jeff Martin, Laura Bredehoeft, Gwendolyn Eynon, Bob Leff, Mike Mellish, Mike Kearney, Diane

  20. Summary of First AEO2015 Electricity Working Group Meeting

    U.S. Energy Information Administration (EIA) Indexed Site

    August 8, 2014 MEMORANDUM FOR: John Conti Assistant Administrator for Energy Analysis Jim Diefenderfer Office Director Office of Electricity, Coal, Nuclear, and Renewables Analysis Paul Holtberg Team Leader Analysis Integration Team FROM: Electricity Analysis Team SUBJECT: Summary of First AEO 2015 Electricity Working Group Meeting held on July 31, 2014 ATTENDEES: Krall, Eric Diefenderfer, Jim †Aniti, Lori Bowman, Michelle Hodge, Tyler Mellish, Mike Slater-Thompson, Nancy Marcy, Cara

  1. Summary of Second AEO 2014 Electricity Working Group Meeting

    U.S. Energy Information Administration (EIA) Indexed Site

    7, 2013 MEMORANDUM FOR: John Conti Assistant Administrator for Energy Analysis Alan Beamon Office Director Office of Electricity, Coal, Nuclear, and Renewables Analysis Paul Holtberg Team Leader Analysis Integration Team FROM: Electricity Analysis Team SUBJECT: Summary of Second AEO 2014 Electricity Working Group Meeting held on September 25, 2013 ATTENDEES: Adams, Greg (EIA OEA) Aniti, Lori (EIA OEA) Bredehoeft, Gwendolyn (EIA OEA) Crozat, Matthew P. (US DOE: Office of Nuclear Energy)

  2. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    C. Jean Bustard; Kenneth E. Baldrey; Richard Schlager

    2000-04-01

    The U.S. Department of Energy and ADA Environmental Solutions has begun a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the flyash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. Preliminary testing has identified a class of common deliquescent salts that effectively control flyash resistivity on a variety of coals. A method to evaluate cohesive properties of flyash in the laboratory has been selected and construction of an electrostatic tensiometer test fixture is underway. Preliminary selection of a variety of chemicals that will be screened for effect on flyash cohesion has been completed.

  3. Alexander H. King, Director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alexa McClanahan About Us Alexa McClanahan - Communications Support Contractor to ARPA-E ALexa McClanahan is a Communications Support Contractor to the Department's Advanced Research Projects Agency (ARPA-E). Most Recent Urban Electric Power Takes Energy Storage from Startup to Grid-Scale June 25 ARPA-E and the Military Team Up on New Technologies and Summit Partnerships January 31 ARPA-E's 19 New Projects Focus on Battery Management and Storage August 7

    Alexander H. King, Director 134

  4. TO: Procurement Directors FROM: Director, Policy Division

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    POLICY FLASH 2011-55 DATE: March 14, 2011 TO: Procurement Directors FROM: Director, Policy ... Questions concerning this policy flash should be directed to Rose Johnson at 202-287-1552 ...

  5. Summary of AEO2016 Electricity Working Group Meeting held on December 8, 2015

    U.S. Energy Information Administration (EIA) Indexed Site

    January7, 2016 MEMORANDUM FOR: John Conti Assistant Administrator for Energy Analysis Jim Diefenderfer Director, Office of Electricity, Coal, Nuclear, and Renewables Analysis Paul Holtberg Team Leader Analysis Integration Team Office of Integrated and International Energy Analysis FROM: Chris Namovicz Team Leader for Electricity Analysis (acting) And Thad Huetteman, Electricity Analysis Team SUBJECT: Summary of AEO2016 Electricity Working Group Meeting held on December 8, 2015 Presenters: Chris

  6. EIA projections of coal supply and demand

    SciTech Connect (OSTI)

    Klein, D.E.

    1989-10-23

    Contents of this report include: EIA projections of coal supply and demand which covers forecasted coal supply and transportation, forecasted coal demand by consuming sector, and forecasted coal demand by the electric utility sector; and policy discussion.

  7. George Crabtree, Director | JCESR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    George Crabtree, Director On March 24, 2015 In leadership George Crabtree George Crabtree, an Argonne National Laboratory Distinguished Fellow, is the Director of the Joint...

  8. JV Task 126 - Mercury Control Technologies for Electric Utilities Burning Bituminous Coal

    SciTech Connect (OSTI)

    Jason Laumb; John Kay; Michael Jones; Brandon Pavlish; Nicholas Lentz; Donald McCollor; Kevin Galbreath

    2009-03-29

    The EERC developed an applied research consortium project to test cost-effective mercury (Hg) control technologies for utilities burning bituminous coals. The project goal was to test innovative Hg control technologies that have the potential to reduce Hg emissions from bituminous coal-fired power plants by {ge}90% at costs of one-half to three-quarters of current estimates for activated carbon injection (ACI). Hg control technology evaluations were performed using the EERC's combustion test facility (CTF). The CTF was fired on pulverized bituminous coals at 550,000 Btu/hr (580 MJ/hr). The CTF was configured with the following air pollution control devices (APCDs): selective catalytic reduction (SCR) unit, electrostatic precipitator (ESP), and wet flue gas desulfurization system (WFDS). The Hg control technologies investigated as part of this project included ACI (three Norit Americas, Inc., and eleven Envergex sorbents), elemental mercury (Hg{sup 0}) oxidation catalysts (i.e., the noble metals in Hitachi Zosen, Cormetech, and Hitachi SCR catalysts), sorbent enhancement additives (SEAs) (a proprietary EERC additive, trona, and limestone), and blending with a Powder River Basin (PRB) subbituminous coal. These Hg control technologies were evaluated separately, and many were also tested in combination.

  9. Coal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coal Coal Coal Coal is the largest domestically produced source of energy in America and is used to generate a significant chunk of our nation's electricity. The Energy Department is working to develop technologies that make coal cleaner, so we can ensure it plays a part in our clean energy future. The Department is also investing in development of carbon capture, utilization and storage (CCUS) technologies, also referred to as carbon capture, utilization and sequestration. Featured Energy

  10. Fermilab | Directorate | Director Profiles | Nigel Lockyer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as director of Fermi National Accelerator Laboratory, Americas premier laboratory for particle physics research, on September 3, 2013. An experimental particle physicist,...

  11. Co-production of electricity and alternate fuels from coal. Final report, August 1995

    SciTech Connect (OSTI)

    1995-12-31

    The Calderon process and its process development unit, PDU, were originally conceived to produce two useful products from a bituminous coal: a desulfurized medium BTU gas containing primarily CO, H{sub 2}, CH{sub 4}, CO{sub 2}, and H{sub 2}O; and a desulfurized low BTU gas containing these same constituents plus N{sub 2} from the air used to provide heat for the process through the combustion of a portion of the fuel. The process was viewed as a means for providing both a synthesis gas for liquid fuel production (perhaps CH{sub 3}OH, alternatively CH{sub 4} or NH{sub 3}) and a pressurized, low BTU fuel gas, for gas turbine based power generation. The Calderon coal process comprises three principle sections which perform the following functions: coal pyrolysis in a continuous, steady flow unit based on coke oven technology; air blown, slagging, coke gasification in a moving bed unit based on a blast furnace technology; and a novel, lime pebble based, product gas processing in which a variety of functions are accomplished including the cracking of hydrocarbons and the removal of sulfur, H{sub 2}S, and of particulates from both the medium and low BTU gases. The product gas processing unit, based on multiple moving beds, has also been conceived to regenerate the lime pebbles and recover sulfur as elemental S.

  12. EIS-0105: Conversion to Coal, Baltimore Gas & Electric Company, Brandon Shores Generating Station Units 1 and 2, Anne Arundel County, Maryland

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Economic Regulatory Administration Office of Fuels Program, Coal and Electricity Division prepared this statement to assess the potential environmental and socioeconomic impacts associated with prohibiting the use of petroleum products as a primary energy source for Units 1 and 2 of the Brandon Shores Generating Station, located in Anne Arundel County, Maryland.

  13. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.64,3.76,3.98,3.85,3.71,3.66,2.89,2.34,2.33,2.17,1.91,1.62,1.59,1.57,1.39,1.42,1.45,1.45,1.47,1.51,1.56,1.57,1.53,1.63,1.72 "Average heat value (Btu per

  14. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.09,2,2.19,2.09,1.95,1.76,1.74,1.56,1.51,1.42,1.39,1.34,1.3,1.03,0.99,0.94,0.93,0.92,0.94,1.03,1.08,1.1,1.13,1.13,1.15 "Average heat value (Btu per

  15. Coal | Open Energy Information

    Open Energy Info (EERE)

    Assuming no additional constraints on CO2 emissions, coal remains the largest source of electricity generation in the AEO2011 Reference case because of continued reliance on...

  16. By Coal Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    California (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total...

  17. Jefferson Lab Directorate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directorate Privacy and Security Notice Skip over navigation Search the JLab Site Search Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Jefferson Lab Navigation Home Search News Insight print version Org Charts Directorate Accelerator COO CFO CIO CSO CTO ESH&Q FEL IT Physics Mission of the Directorate The Jefferson Lab Directorate is responsible for supporting the

  18. 2015 Director's Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 Director's Awards 2015 Director's Awards Print ALS staff took top honors in Lawrence Berkeley National Lab's 2015 Director's Awards for Exceptional Achievement and were recognized in a ceremony earlier this month. The ALS recipients comprised nearly half of this year's awardees, receiving recognition in the scientific, early scientific career, and safety categories. The Director's Awards honor individuals in both the scientific and operations divisions for their high achievement,

  19. Director's Fellowships | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director's Fellowships Director's Fellowships are granted to outstanding scientists and engineers who show potential for being leaders in their fields. Director's Fellows make...

  20. Energy, Environmental, and Economic Analyses of Design Concepts for the Co-Production of Fuels and Chemicals with Electricity via Co-Gasification of Coal and Biomass

    SciTech Connect (OSTI)

    Eric Larson; Robert Williams; Thomas Kreutz; Ilkka Hannula; Andrea Lanzini; Guangjian Liu

    2012-03-11

    The overall objective of this project was to quantify the energy, environmental, and economic performance of industrial facilities that would coproduce electricity and transportation fuels or chemicals from a mixture of coal and biomass via co-gasification in a single pressurized, oxygen-blown, entrained-flow gasifier, with capture and storage of CO{sub 2} (CCS). The work sought to identify plant designs with promising (Nth plant) economics, superior environmental footprints, and the potential to be deployed at scale as a means for simultaneously achieving enhanced energy security and deep reductions in U.S. GHG emissions in the coming decades. Designs included systems using primarily already-commercialized component technologies, which may have the potential for near-term deployment at scale, as well as systems incorporating some advanced technologies at various stages of R&D. All of the coproduction designs have the common attribute of producing some electricity and also of capturing CO{sub 2} for storage. For each of the co-product pairs detailed process mass and energy simulations (using Aspen Plus software) were developed for a set of alternative process configurations, on the basis of which lifecycle greenhouse gas emissions, Nth plant economic performance, and other characteristics were evaluated for each configuration. In developing each set of process configurations, focused attention was given to understanding the influence of biomass input fraction and electricity output fraction. Self-consistent evaluations were also carried out for gasification-based reference systems producing only electricity from coal, including integrated gasification combined cycle (IGCC) and integrated gasification solid-oxide fuel cell (IGFC) systems. The reason biomass is considered as a co-feed with coal in cases when gasoline or olefins are co-produced with electricity is to help reduce lifecycle greenhouse gas (GHG) emissions for these systems. Storing biomass-derived CO{sub 2} underground represents negative CO{sub 2} emissions if the biomass is grown sustainably (i.e., if one ton of new biomass growth replaces each ton consumed), and this offsets positive CO{sub 2} emissions associated with the coal used in these systems. Different coal:biomass input ratios will produce different net lifecycle greenhouse gas (GHG) emissions for these systems, which is the reason that attention in our analysis was given to the impact of the biomass input fraction. In the case of systems that produce only products with no carbon content, namely electricity, ammonia and hydrogen, only coal was considered as a feedstock because it is possible in theory to essentially fully decarbonize such products by capturing all of the coal-derived CO{sub 2} during the production process.

  1. Co-production of decarbonized synfuels and electricity from coal + biomass with CO{sub 2} capture and storage: an Illinois case study

    SciTech Connect (OSTI)

    Eric D. Larson; Giulia Fiorese; Guangjian Liu; Robert H. Williams; Thomas G. Kreutz; Stefano Consonni

    2010-07-01

    Energy, carbon, and economic performances are estimated for facilities co-producing Fischer-Tropsch Liquid (FTL) fuels and electricity from a co-feed of biomass and coal in Illinois, with capture and storage of by-product CO{sub 2}. The estimates include detailed modeling of supply systems for corn stover or mixed prairie grasses (MPG) and of feedstock conversion facilities. Biomass feedstock costs in Illinois (delivered at a rate of one million tonnes per year, dry basis) are $ 3.8/GJ{sub HHV} for corn stover and $ 7.2/GJ{sub HHV} for MPG. Under a strong carbon mitigation policy, the economics of co-producing low-carbon fuels and electricity from a co-feed of biomass and coal in Illinois are promising. An extrapolation to the United States of the results for Illinois suggests that nationally significant amounts of low-carbon fuels and electricity could be produced this way.

  2. Methodology and a preliminary data base for examining the health risks of electricity generation from uranium and coal fuels

    SciTech Connect (OSTI)

    El-Bassioni, A.A.

    1980-08-01

    An analytical model was developed to assess and examine the health effects associated with the production of electricity from uranium and coal fuels. The model is based on a systematic methodology that is both simple and easy to check, and provides details about the various components of health risk. A preliminary set of data that is needed to calculate the health risks was gathered, normalized to the model facilities, and presented in a concise manner. Additional data will become available as a result of other evaluations of both fuel cycles, and they should be included in the data base. An iterative approach involving only a few steps is recommended for validating the model. After each validation step, the model is improved in the areas where new information or increased interest justifies such upgrading. Sensitivity analysis is proposed as the best method of using the model to its full potential. Detailed quantification of the risks associated with the two fuel cycles is not presented in this report. The evaluation of risks from producing electricity by these two methods can be completed only after several steps that address difficult social and technical questions. Preliminary quantitative assessment showed that several factors not considered in detail in previous studies are potentially important. 255 refs., 21 figs., 179 tabs.

  3. TO: Procurement Directors FROM: Director, Policy Division

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 DATE: March 21, 2011 TO: Procurement Directors FROM: Director, Policy Division Office of Procurement and Assistance Policy Office of Procurement and Assistance Management SUBJECT: SBA Final Rule affecting the 8(a) Business Development Program SUMMARY: On February 11, 2011, the Small Business Administration (SBA) issued the attached final rule revising the regulations governing the 8(a) Business Development program, small business size regulations, and Small Disadvantaged Business (SDB) status

  4. TO: Procurement Directors FROM: Director, Policy Division

    Office of Environmental Management (EM)

    9 DATE: March 21, 2011 TO: Procurement Directors FROM: Director, Policy Division Office of Procurement and Assistance Policy Office of Procurement and Assistance Management SUBJECT: SBA Final Rule affecting the 8(a) Business Development Program SUMMARY: On February 11, 2011, the Small Business Administration (SBA) issued the attached final rule revising the regulations governing the 8(a) Business Development program, small business size regulations, and Small Disadvantaged Business (SDB) status

  5. TO: Procurement Directors FROM: Director, Policy Division

    Office of Environmental Management (EM)

    2 DATE: February 11, 2011 TO: Procurement Directors FROM: Director, Policy Division Office of Procurement and Assistance Policy Office of Procurement and Assistance Management SUBJECT: Department of Energy Acquisition Regulation (DEAR) Final Rule for Subchapters A, B, and C SUMMARY: Department of Energy Acquisition Regulation (DEAR) Final Rule for Subchapters A, B, and C was published February 11, 2011, in the Federal Register 76 FR 7685. The changes are effective March 14, 2011. This Flash will

  6. TO: Procurement Directors FROM: Director, Policy Division

    Office of Environmental Management (EM)

    63 DATE: April 7, 2011 TO: Procurement Directors FROM: Director, Policy Division Office of Procurement and Assistance Policy Office of Procurement and Assistance Management SUBJECT: Updated Reporting Requirement Checklists and Research Performance Progress Report (RPPR) SUMMARY: Policy Flash 2011-46, transmitted updated copies of the Reporting Requirements Checklist to add coverage for For-Profit audits. This Flash transmits additional updates to the checklists to clarify the submission

  7. TO: Procurement Directors FROM: Director, Policy Division

    Office of Environmental Management (EM)

    5 DATE: June 23, 2011 TO: Procurement Directors FROM: Director, Policy Division Office of Procurement and Assistance Policy Office of Procurement and Assistance Management SUBJECT: U.S. Department of Energy - Guide to Financial Assistance - Audit Requirements for For-Profit Organizations SUMMARY: Policy Flash 2011-46, which was issued in association with the Office of Risk Management, provided the final audit guidance documents to assist for-profit recipients in complying with 10 CFR 600.316. In

  8. Fermilab | Directorate | Director Profiles | Christopher Mossey

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Christopher Mossey Deputy Director for LBNF Christopher Mossey is deputy director for the Long-Baseline Neutrino Facility. He manages all aspects of the LBNF project, the largest international DOE project ever hosted on U.S. soil. A retired and decorated rear admiral with the United States Navy, he has more than three decades of experience leading the design and construction of environmental and facility programs for the Department of the Navy. Chris previously served as the commander of the

  9. Fermilab | Directorate | Director Profiles | Joseph Lykken

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joseph Lykken Deputy Director Deputy Director Joseph Lykken has been with Fermilab since 1989. He began at the laboratory as an associate scientist in the Theory Group. Since then he has joined the CMS experiment at the Large Hadron Collider, researching Higgs physics and supersymmetry. A fellow of both the American Physical Society and the American Association for the Advancement of Science, he received his Ph.D. from the Massachusetts Institute of Technology and has previously worked for the

  10. Director's Office | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director's Office Kelly Gaffney, SSRL Director Chi-Chang Kao, Associate Laboratory Director Kelly Gaffney, SSRL Director Email: Kelly Gaffney, SLAC Associate Laboratory Director...

  11. Electricity Monthly Update

    Gasoline and Diesel Fuel Update (EIA)

    Electric Power Sector Coal Stocks: February 2016 Stocks In February, U.S. coal stockpiles remained relatively flat compared to the previous month, deviating from the normal ...

  12. Alvin A. Taylor Director Robert D. Perry

    Energy Savers [EERE]

    Alvin A. Taylor Director Robert D. Perry Director, Office of Environmental Programs South Carolina Department of Natural Resources 1000 Assembly Street Suite 336 PO Box 167 Columbia, SC 29202 803.734.4199 Office 803.734.9809 Fax vejdaniv@dnr.sc.gov September 27, 2013 Julie A. Smith Office of Electricity Delivery and Energy Reliability Mail Code: OE-20 U.S. Department of Energy 1000 Independence Avenue SW. Washington, DC 20585 REF: Request for Information (RFI) Improving Performance of Federal

  13. Statement of Patricia A. Hoffman, Deputy Director R&D, Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A. Hoffman, Deputy Director R&D, Office of Electricity Delivery & Energy Reliability ... of Electricity Delivery & Energy Reliability Department of Energy before the ...

  14. Statement of Patricia Hoffman, Deputy Director R&D, Office of...

    Broader source: Energy.gov (indexed) [DOE]

    Hoffman, Deputy Director R&D, Office of Electricity Delivery & Energy Reliability, ... of Electricity Delivery & Energy Reliability, Department of Energy before the ...

  15. Weapons Program Associate Directors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    integration we have achieved between the various components of the program," said Bret Knapp, Principal Associate Director for Weapons Programs. "They have both done an...

  16. Coal Combustion Products | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coal Combustion Products Coal Combustion Products Coal combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the largest segment of U.S. electricity generation (45 percent in 2010), finding a sustainable solution for CCPs is an important environmental challenge. PDF icon Fossil Energy Research Benefits - Coal Combustion Products More Documents & Publications EIS-0146: Final Programmatic Environmental Impact Statement Guide to

  17. STEO December 2012 - coal demand

    U.S. Energy Information Administration (EIA) Indexed Site

    meet their electricity and industrial needs. But, U.S. coal exports are likely to decline next year due to an expected weaker European economy and lower international coal prices.

  18. Method of generating electricity using an endothermic coal gasifier and MHD generator

    DOE Patents [OSTI]

    Marchant, David D.; Lytle, John M.

    1982-01-01

    A system and method of generating electrical power wherein a mixture of carbonaceous material and water is heated to initiate and sustain the endothermic reaction of carbon and water thereby providing a gasified stream containing carbon monoxide, hydrogen and nitrogen and waste streams of hydrogen sulfide and ash. The gasified stream and an ionizing seed material and pressurized air from a preheater go to a burner for producing ionized combustion gases having a temperature of about 5000.degree. to about 6000.degree. F. which are accelerated to a velocity of about 1000 meters per second and passed through an MHD generator to generate DC power and thereafter through a diffuser to reduce the velocity. The gases from the diffuser go to an afterburner and from there in heat exchange relationship with the gasifier to provide heat to sustain the endothermic reaction of carbon and water and with the preheater to preheat the air prior to combustion with the gasified stream. Energy from the afterburner can also be used to energize other parts of the system.

  19. Fermilab Project Oversight Model Director Associate Lab Director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director Associate Lab Director Division Head Office of Integrated Planning & Performance Management Project Support Services Projects 150 - 750 M NOvA Mu2e Projects > 750 M...

  20. TO: Procurement Directors FROM: Director Contract and Financial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 DATE: February 26, 2014 TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management...

  1. TO: Procurement Directors/Contracting Officers FROM: Director

    Broader source: Energy.gov (indexed) [DOE]

    October 30 , 2013 TO: Procurement DirectorsContracting Officers FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project...

  2. TO: Procurement Directors/Contracting Officers FROM: Director

    Broader source: Energy.gov (indexed) [DOE]

    January 15, 2014 TO: Procurement DirectorsContracting Officers FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project...

  3. TO: Procurement Directors FROM: Director Contract and Financial...

    Office of Environmental Management (EM)

    2 DATE: March 18, 2014 TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management...

  4. TO: Procurement Directors FROM: Director, Contract and Financial...

    Broader source: Energy.gov (indexed) [DOE]

    58 DATE: June 5, 2013 TO: Procurement Directors FROM: Director, Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management...

  5. TO: Procurement Directors FROM: Director, Contract and Financial...

    Broader source: Energy.gov (indexed) [DOE]

    18, 2012 TO: Procurement Directors FROM: Director, Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT:...

  6. TO: Procurement Directors/Contracting Officers FROM: Director

    Broader source: Energy.gov (indexed) [DOE]

    6, 2014 TO: Procurement DirectorsContracting Officers FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project...

  7. TO: Procurement Directors FROM: Director, Contracts and Financial...

    Broader source: Energy.gov (indexed) [DOE]

    April 10, 2012 TO: Procurement Directors FROM: Director, Contracts and Financial Assistance Policy Division Office of Policy Office of Procurement and Assistance Management...

  8. TO: Procurement Directors/Contracting Officers FROM: Director

    Broader source: Energy.gov (indexed) [DOE]

    November 21, 2012 TO: Procurement DirectorsContracting Officers FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project...

  9. TO: Procurement Directors FROM: Director Contract and Financial...

    Broader source: Energy.gov (indexed) [DOE]

    2, 2012 TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT: Executive...

  10. TO: Procurement Directors/Contracting Officers FROM: Director

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    28 DATE: May 7, 2014 TO: Procurement DirectorsContracting Officers FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and...

  11. TO: Procurement Directors FROM: Director Contract and Financial...

    Broader source: Energy.gov (indexed) [DOE]

    November 07, 2012 TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT:...

  12. TO: Procurement Directors/Contracting Officers FROM: Director

    Broader source: Energy.gov (indexed) [DOE]

    DATE: May 8, 2012 TO: Procurement DirectorsContracting Officers FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Procurement and...

  13. TO: Procurement Directors FROM: Director, Contract and Financial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 DATE: October 21, 2014 TO: Procurement Directors FROM: Director, Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management...

  14. TO: Procurement Directors/Contracting Officers FROM: Director

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 DATE: March 6, 2015 TO: Procurement DirectorsContracting Officers FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Procurement and...

  15. TO: Procurement Directors FROM: Director, Contract and Financial...

    Broader source: Energy.gov (indexed) [DOE]

    DATE: November 13, 2012 TO: Procurement Directors FROM: Director, Contract and Financial Assistance Policy Division Office of Acquisition and Project Management SUBJECT: Hurricane...

  16. TO: Procurement Directors FROM: Director, Contract and Financial...

    Broader source: Energy.gov (indexed) [DOE]

    May 14, 2012 TO: Procurement Directors FROM: Director, Contract and Financial Assistance Policy Division Office of Policy Office of Procurement and Assistance Management SUBJECT:...

  17. TO: Procurement Directors FROM: Director Contract and Financial...

    Broader source: Energy.gov (indexed) [DOE]

    2, 2012 TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT: Class...

  18. TO: Procurement Directors FROM: Director Contracts and Financial...

    Broader source: Energy.gov (indexed) [DOE]

    June 21, 2012 TO: Procurement Directors FROM: Director Contracts and Financial Assistance Policy Division Office of Acquisition and Project Management SUBJECT: Department of Energy...

  19. TO: Procurement Directors FROM: Director Contract and Financial...

    Broader source: Energy.gov (indexed) [DOE]

    December 7, 2013 TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT:...

  20. TO: Procurement Directors FROM: Director Contract and Financial...

    Broader source: Energy.gov (indexed) [DOE]

    , 2013 TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT: Updated...

  1. TO: Procurement Directors FROM: Director, Contract and Financial...

    Broader source: Energy.gov (indexed) [DOE]

    May 23, 2012 TO: Procurement Directors FROM: Director, Contract and Financial Assistance Policy Division Office of Policy Office of Procurement and Assistance Management SUBJECT:...

  2. TO: Procurement Directors FROM: Director Contracts and Financial...

    Broader source: Energy.gov (indexed) [DOE]

    07, 2012 TO: Procurement Directors FROM: Director Contracts and Financial Assistance Policy Division Office of Policy Office of Procurement and Assistance Management SUBJECT:...

  3. TO: Procurement Directors/Contracting Officers FROM: Director

    Broader source: Energy.gov (indexed) [DOE]

    May 14, 2012 TO: Procurement DirectorsContracting Officers FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Procurement and Assistance...

  4. TO: Procurement Directors FROM: Director, Contract and Financial...

    Broader source: Energy.gov (indexed) [DOE]

    DATE: May 14 , 2012 TO: Procurement Directors FROM: Director, Contract and Financial Assistance Policy Division Office of Procurement and Assistance Management SUBJECT:...

  5. TO: Procurement Directors/Contracting Officers FROM: Director

    Broader source: Energy.gov (indexed) [DOE]

    1, 2014 TO: Procurement DirectorsContracting Officers FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project...

  6. TO: Procurement Directors FROM: Director, Contracts and Financial...

    Broader source: Energy.gov (indexed) [DOE]

    April 04, 2012 TO: Procurement Directors FROM: Director, Contracts and Financial Assistance Policy Division Office of Policy Office of Procurement and Assistance Management...

  7. TO: Procurement Directors FROM: Director, Contract and Financial...

    Broader source: Energy.gov (indexed) [DOE]

    DATE: June 7, 2012 TO: Procurement Directors FROM: Director, Contract and Financial Assistance Policy Division Office of Policy Office of Procurement and Assistance Management...

  8. TO: Procurement Directors FROM: Director Contract and Financial...

    Broader source: Energy.gov (indexed) [DOE]

    Directors FROM: Director Contract and Financial Assistance Policy Division Office of ... Guide Chapter 5.1 and Guide to Financial Assistance Chapter 2, Section 2.6.1 ...

  9. TO: Procurement Directors FROM: Director Contract and Financial...

    Energy Savers [EERE]

    10 DATE: November 26 , 2013 TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management...

  10. TO: Procurement Directors FROM: Director Contract and Financial...

    Broader source: Energy.gov (indexed) [DOE]

    DATE: November 26 , 2013 TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management...

  11. Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies. Commercial power plant tests blend of refuse-derived fuel and coal to generate electricity

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    MSW can be converted to energy in two ways. One involves the direct burning of MSW to produce steam and electricity. The second converts MSW into refuse-derived fuel (RDF) by reducing the size of the MSW and separating metals, glass, and other inorganic materials. RDF can be densified or mixed with binders to form fuel pellets. As part of a program sponsored by DOE`s Office of Industrial Technologies, the National Renewable Energy Laboratory participated in a cooperative research and development agreement to examine combustion of binder-enhanced, densified refuse-derived fuel (b-d RDF) pellets with coal. Pelletized b-d RDF has been burned in coal combustors, but only in quantities of less than 3% in large utility systems. The DOE project involved the use of b-d RDF in quantities up to 20%. A major goal was to quantify the pollutants released during combustion and measure combustion performance.

  12. About SRNL - From the Director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 SEARCH SRNL GO From the Director Operational Excellence Leadership Directorates Our History Visiting SRNL SRNL Home About SRNL Operational Excellence SRNL's Four...

  13. Electricity Monthly Update

    Gasoline and Diesel Fuel Update (EIA)

    cheap price of natural gas reduced coals share of electricity production. Days of Burn Days of burn Coal capacity The average number of days of burn held at electric power...

  14. U.S. Coal Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    plants Transportation costs to electric power sector International All coal data reports Analysis & Projections Major Topics Most popular Consumption Environment Imports & ...

  15. Coal Markets

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Markets | Archive Coal Markets Weekly production Dollars per short ton Dollars per mmbtu Average weekly coal commodity spot prices dollars per short ton Week ending Week ago ...

  16. U.S. Energy Information Administration | Annual Coal Distribution...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...... 1 U.S. Energy Information Administration | Annual Coal ... Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants ...

  17. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    United States Electricity Profile 2014 Table 1. 2014 Summary statistics (United States) Item Value Primary energy source Coal Net summer capacity (megawatts) 1,068,422 Electric ...

  18. Upgrading coal plant damper drives

    SciTech Connect (OSTI)

    Hood, N.R.; Simmons, K. [Alamaba Power (United States)

    2009-11-15

    The replacement of damper drives on two coal-fired units at the James H. Miller Jr. electric generating plant by Intelligent Contrac electric rotary actuators is discussed. 2 figs.

  19. Economics of coal fines utilization

    SciTech Connect (OSTI)

    Hathi, V.; McHale, E.; Ramezan, M.; Winslow, J.

    1995-12-31

    In the twentieth century, coal has become the major fuel for electric power generation in the U.S. and most of the nonpetroleum-producing countries of the world. In 1998, the world coal-fired capacity for electric power generation was about 815 GW, consuming large quantities of coals of all ranks. Today, coal provides a third of the world`s energy requirements. In fact, coal use for power generation has grown steadily since the oil embargo in 1973 and has seen an even faster rate of growth in recent years. It has been reported that the global demand for new coal will increase by more than 1500 million tons by the year 2000. However, this increased production of coal has its drawbacks, including the concomitant production of coal waste. Reported estimates indicate that billions of tons of coal waste have already been disposed of in waste impoundments throughout the U.S. Further, in the U.S. today, about 20-25 % of each ton of mined coal is discarded by preparation plants as gob and plant tailings. It appears that the most economical near-term approach to coal waste recovery is to utilize the waste coal fines currently discarded with the refuse stream, rather than attempt to recover coal from waste impoundments that require careful prior evaluation and site preparation. A hypothetical circuit was designed to examine the economics of recovery and utilization of waste coal fines. The circuit recovers products from 100 tons per hour (tph) of coal waste feed recovering 70 tph of fine coal that can be used in coal-fired boilers. The present analysis indicates that the coal waste recovery is feasible and economical. In addition, significant environmental benefits can be expected.

  20. Chemicals, fuels and electricity from coal. A proposed tri-generation concept for utilization of CO{sub 2} from power plants

    SciTech Connect (OSTI)

    Song, C.

    1999-07-01

    A tri-generation concept is proposed for the 21st century for making liquid fuels and chemicals along with electricity using CO{sub 2} from flue gases of coal-based electric power plants. The CO{sub 2} from flue gas in the power plant can be converted with CH{sub 4} (natural gas) to form synthesis gas (CO and H{sub 2} mixture) using the waste heat in the power plant. The H{sub 2}O and O{sub 2} in the flue gas will be used as co-reactants and need not be separated from the flue gas. The hot synthesis gas can be used as feedstock for fuel cells for electricity generation (such as MCFC and SOFC). The hot synthesis gas can also be used for gas turbines to generate electricity. The synthesis gas at moderate temperature can be converted into chemicals and fuels, e.g., methanol and mixed alcohols for chemical and fuel uses, dimethylether (DME) and mixed ethers for diesel fuel, dimethyl carbonate and acetic acid for chemicals. The fuels thus produced may be used either for conventional IC engines or in fuel cell-driven vehicles. This concept could also be applied, in principle, for natural gas-based power plants and IGCC power plants.

  1. Coal sector profile

    SciTech Connect (OSTI)

    Not Available

    1990-06-05

    Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

  2. Clean coal

    SciTech Connect (OSTI)

    Liang-Shih Fan; Fanxing Li

    2006-07-15

    The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

  3. New NERSC Director Sudip Dosanjh

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Director Sudip Dosanjh New NERSC Director Sudip Dosanjh October 5, 2012 by Francesca Verdier New NERSC Director Sudip Dosanjh started October 4. He extends his greetings to all NERSC users and is looking forward to meeting you at the NUG teleconferences, requirements workshops, and other scientific meetings. See https://www.nersc.gov/news-publications/news/nersc-center-news/2012/sandia-s-sudip-dosanjh-named-new-nersc-director/ Subscribe via RSS Subscribe Browse by Date May 2016 April 2016

  4. New Directorate Appointments | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directorate Appointments New Directorate Appointments Jefferson Lab has completed a search to fill its vacancy in the Directorate left by the departure last year of the Chief Operating Officer. The extensive and thorough process attracted a broad field of applicants including some from outside the United States. A short list of excellent candidates was selected and interviews completed on February 19, 20, 2016. As a result of this process, Jefferson Lab has decided to fill two directorate

  5. Beam director design report

    SciTech Connect (OSTI)

    Younger, F.C.

    1986-08-01

    A design and fabrication effort for a beam director is documented. The conceptual design provides for the beam to pass first through a bending and focusing system (or ''achromat''), through a second achromat, through an air-to-vacuum interface (the ''beam window''), and finally through the vernier steering system. Following an initial concept study for a beam director, a prototype permanent magnet 30/sup 0/ beam-bending achromat and prototype vernier steering magnet were designed and built. In volume II, copies are included of the funding instruments, requests for quotations, purchase orders, a complete set of as-built drawings, magnetic measurement reports, the concept design report, and the final report on the design and fabrication project. (LEW)

  6. Role of coal in the world and Asia

    SciTech Connect (OSTI)

    Johnson, C.J.; Li, B.

    1994-10-01

    This paper examines the changing role of coal in the world and in Asia. Particular attention is given to the rapidly growing demand for coal in electricity generation, the importance of China as a producer and consumer of coal, and the growing environmental challenge to coal. Attention is given to the increasing importance of low sulfur coal and Clean Coal Technologies in reducing the environmental impacts of coal burning.

  7. Message from the Director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Message from the Director As the Offce of Scientifc and Technical Information (OSTI) approaches its 70th anniversary (having been established with the Atomic Energy Commission in 1947), our energy, enthusiasm, and commitment to America's science and technology future are as bright-eyed and vibrant as ever. This future includes energy security, environmental stewardship, nuclear security and safety, and leadership in science, technology, and innovation. OSTI has a renewed focus on providing

  8. Fermilab | Directorate | Assurance Council

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assurance Council The purpose of the Assurance Council is to identify and communicate risk and serve as a mechanism to provide reasonable assurance to the laboratory director that sufficient internal control and oversight systems are in place and are operating properly within Fermilab’s CAS management systems. Visit the Assurance Council SharePoint site for more information. Archived meeting minutes Archived documents

  9. Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power from Western Coals-Phase I

    SciTech Connect (OSTI)

    Raymond Hobbs

    2007-05-31

    The Advanced Hydrogasification Process (AHP)--conversion of coal to methane--is being developed through NETL with a DOE Grant and has successfully completed its first phase of development. The results so far are encouraging and have led to commitment by DOE/NETL to begin a second phase--bench scale reactor vessel testing, expanded engineering analysis and economic perspective review. During the next decade new means of generating electricity, and other forms of energy, will be introduced. The members of the AHP Team envision a need for expanded sources of natural gas or substitutes for natural gas, to fuel power generating plants. The initial work the team has completed on a process to use hydrogen to convert coal to methane (pipeline ready gas) shows promising potential. The Team has intentionally slanted its efforts toward the needs of US electric utilities, particularly on fuels that can be used near urban centers where the greatest need for new electric generation is found. The process, as it has evolved, would produce methane from coal by adding hydrogen. The process appears to be efficient using western coals for conversion to a highly sought after fuel with significantly reduced CO{sub 2} emissions. Utilities have a natural interest in the preservation of their industry, which will require a dramatic reduction in stack emissions and an increase in sustainable technologies. Utilities tend to rank long-term stable supplies of fuel higher than most industries and are willing to trade some ratio of cost for stability. The need for sustainability, stability and environmentally compatible production are key drivers in the formation and progression of the AHP development. In Phase II, the team will add a focus on water conservation to determine how the basic gasification process can be best integrated with all the plant components to minimize water consumption during SNG production. The process allows for several CO{sub 2} reduction options including consumption of the CO{sub 2} in the original process as converted to methane. The process could under another option avoid emissions following the conversion to SNG through an adjunct algae conversion process. The algae would then be converted to fuels or other products. An additional application of the algae process at the end use natural gas fired plant could further reduce emissions. The APS team fully recognizes the competition facing the process from natural gas and imported liquid natural gas. While we expect those resources to set the price for methane in the near-term, the team's work to date indicates that the AHP process can be commercially competitive, with the added benefit of assuring long-term energy supplies from North American resources. Conversion of coal to a more readily transportable fuel that can be employed near load centers with an overall reduction of greenhouses gases is edging closer to reality.

  10. Natural gas beats coal in power generation

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural gas beats coal in power generation The amount of U.S. electricity generated by natural gas is expected to exceed the output from coal-fired power plants this year and in ...

  11. NETL: Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal In response to concerns of climate change, the United States is contemplating a ... The integrated Coal Program focuses on retaining the benefits of continuing to use coal to ...

  12. Quarterly Coal Report - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Glossary › FAQS › Overview Data Coal Data Browser (interactive query tool with charting and mapping) Summary Prices Reserves Consumption Production Stocks Imports, exports & distribution Coal-fired electric power plants Transportation costs to electric power sector International All coal data reports Analysis & Projections Major Topics Most popular Consumption Environment Imports & exports Industry characteristics Prices Production Projections Recurring Reserves Stocks All

  13. Annual Coal Distribution Report - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Glossary › FAQS › Overview Data Coal Data Browser (interactive query tool with charting and mapping) Summary Prices Reserves Consumption Production Stocks Imports, exports & distribution Coal-fired electric power plants Transportation costs to electric power sector International All coal data reports Analysis & Projections Major Topics Most popular Consumption Environment Imports & exports Industry characteristics Prices Production Projections Recurring Reserves Stocks All

  14. Coal Markets

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Glossary FAQS Overview Data Coal Data Browser (interactive query tool with charting and mapping) Summary Prices Reserves Consumption Production Stocks Imports, exports ...

  15. Proximate analysis of coal

    SciTech Connect (OSTI)

    Donahue, C.J.; Rais, E.A.

    2009-02-15

    This lab experiment illustrates the use of thermogravimetric analysis (TGA) to perform proximate analysis on a series of coal samples of different rank. Peat and coke are also examined. A total of four exercises are described. These are dry exercises as students interpret previously recorded scans. The weight percent moisture, volatile matter, fixed carbon, and ash content are determined for each sample and comparisons are made. Proximate analysis is performed on a coal sample from a local electric utility. From the weight percent sulfur found in the coal (determined by a separate procedure the Eschka method) and the ash content, students calculate the quantity of sulfur dioxide emissions and ash produced annually by a large coal-fired electric power plant.

  16. Portsmouth Decommissioning and Decontamination Project Director...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decommissioning and Decontamination Project Director's Final Findings and Order Portsmouth Decommissioning and Decontamination Project Director's Final Findings and Order...

  17. Systems and Professional Development - David Brown, Director...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems and Professional Development - David Brown, Director, Systems & Professional Development, OAPM Systems and Professional Development - David Brown, Director, Systems & ...

  18. Computing and Computational Sciences Directorate - Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home About Us Contacts Jeff Nichols Associate Laboratory Director Computing and Computational Sciences Becky Verastegui Directorate Operations Manager Computing and...

  19. Electricity Monthly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Electric Power Sector Coal Stocks: February 2014 Stocks Extreme cold throughout the winter continued in February, leading to a 13.4 million ton decline in coal inventories from...

  20. Underground gasification of coal

    DOE Patents [OSTI]

    Pasini, III, Joseph; Overbey, Jr., William K.; Komar, Charles A.

    1976-01-20

    There is disclosed a method for the gasification of coal in situ which comprises drilling at least one well or borehole from the earth's surface so that the well or borehole enters the coalbed or seam horizontally and intersects the coalbed in a direction normal to its major natural fracture system, initiating burning of the coal with the introduction of a combustion-supporting gas such as air to convert the coal in situ to a heating gas of relatively high calorific value and recovering the gas. In a further embodiment the recovered gas may be used to drive one or more generators for the production of electricity.

  1. Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power from Western Coals

    SciTech Connect (OSTI)

    Sun, Xiaolei; Rink, Nancy

    2011-04-30

    This report presents the results of the research and development conducted on an Advanced Hydrogasification Process (AHP) conceived and developed by Arizona Public Service Company (APS) under U.S. Department of Energy (DOE) contract: DE-FC26-06NT42759 for Substitute Natural Gas (SNG) production from western coal. A double-wall (i.e., a hydrogasification contained within a pressure shell) down-flow hydrogasification reactor was designed, engineered, constructed, commissioned and operated by APS, Phoenix, AZ. The reactor is ASME-certified under Section VIII with a rating of 1150 pounds per square inch gage (psig) maximum allowable working pressure at 1950 degrees Fahrenheit ({degrees}F). The reaction zone had a 1.75 inch inner diameter and 13 feet length. The initial testing of a sub-bituminous coal demonstrated ~ 50% carbon conversion and ~10% methane yield in the product gas under 1625{degrees}F, 1000 psig pressure, with a 11 seconds (s) residence time, and 0.4 hydrogen-to-coal mass ratio. Liquid by-products mainly contained Benzene, Toluene, Xylene (BTX) and tar. Char collected from the bottom of the reactor had 9000-British thermal units per pound (Btu/lb) heating value. A three-dimensional (3D) computational fluid dynamic model simulation of the hydrodynamics around the reactor head was utilized to design the nozzles for injecting the hydrogen into the gasifier to optimize gas-solid mixing to achieve improved carbon conversion. The report also presents the evaluation of using algae for carbon dioxide (CO{sub 2}) management and biofuel production. Nannochloropsis, Selenastrum and Scenedesmus were determined to be the best algae strains for the project purpose and were studied in an outdoor system which included a 6-meter (6M) radius cultivator with a total surface area of 113 square meters (m{sup 2}) and a total culture volume between 10,000 to 15,000 liters (L); a CO{sub 2} on-demand feeding system; an on-line data collection system for temperature, pH, Photosynthetically Activate Radiation (PAR) and dissolved oxygen (DO); and a ~2 gallons per minute (gpm) algae culture dewatering system. Among the three algae strains, Scenedesmus showed the most tolerance to temperature and irradiance conditions in Phoenix and the best self-settling characteristics. Experimental findings and operational strategies determined through these tests guided the operation of the algae cultivation system for the scale-up study. Effect of power plant flue gas, especially heavy metals, on algae growth and biomass adsorption were evaluated as well.

  2. From the Director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Answering questions Los Alamos scientists are answering basic questions about the way ... and materials that do special things like conduct electricity without resistance. ...

  3. TO: Procurement Directors FROM: Director, Contract and Financial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FROM: Director, Contract and Financial Assistance Policy Division Office of Acquisition and Project Management SUBJECT: Implementation of Indian Energy Preference Provision ...

  4. TO: Procurement Directors FROM: Director, Contract and Financial...

    Energy Savers [EERE]

    FROM: Director, Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT: Electronic Products Environmental...

  5. TO: Procurement Directors FROM: Director, Contract and Financial...

    Broader source: Energy.gov (indexed) [DOE]

    FROM: Director, Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT: ENERGY STAR and Electronic Products...

  6. Director's Postdoctoral Fellowship | Careers | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director's Postdoctoral Fellowship Have you completed your Ph.D. within the last two years? Can you demonstrate a promising career of research and leadership? Interested in fellowship positions? Find your opportunity For current director's postdoctoral fellowship job opportunities, click the Find Your Opportunity button above and type "fellowship" in the search box. The NREL Director's Fellowship attracts the next generation of exceptionally qualified scientists and engineers with

  7. Principal Associate Director - Capital Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Principal Associate Director - Capital Projects As Principal Associate Director for Capital Projects, Larry Simmons is responsible for institutional large-project construction and management and environmental cleanup functions. Contact Operator Los Alamos National Laboratory (505) 667-5061 Simmons brings more than 30 years of construction, engineering and project management experience to the Lab. Larry Simmons Paul D. Henry, Principal Associate Director for Capital Projects Larry Simmons is the

  8. About SRNL - From the Director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2/01/2014 SEARCH SRNL GO From the Director Operational Excellence Leadership Directorates Our History Visiting SRNL SRNL Home About SRNL From the Director Dr. Terry Michalske Owner of Multiple Patents: * Micromachine friction test apparatus * Chemical treatment for silica- containing glass surfaces (four patents issued) * Method for forming hermetic coatings for optical fibers * Method for chemical surface modification of fumed silica particles * Glass ceramic toughened with tetragonal zirconia

  9. Director's commitment to diversity recognized

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director's commitment to diversity recognized Director's commitment to diversity recognized Profiles in Diversity Journal is recognizing Director Michael Anastasio for his commitment to workplace diversity. March 11, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos

  10. Weapons Program Associate Directors named

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    integration we have achieved between the various components of the program," said Bret Knapp, Principal Associate Director for Weapons Programs. "They have both done an...

  11. Laboratory names new deputy director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory, valuable insights, and leadership over the last three years," said Laboratory Director Mike Anastasio. "At the same time, I welcome Ike and believe that his experience...

  12. U.S. Energy Information Administration | Quarterly Coal Distribution...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants ... Truck 39 147 260 - 446 - No data reported. Note: Electric Power Sector in this report ...

  13. The 1986-93 Clean Coal Technology Program | Department of Energy

    Energy Savers [EERE]

    1986-93 Clean Coal Technology Program The 1986-93 Clean Coal Technology Program Begun in 1986, the Clean Coal Technology Program was the most ambitious government-industry initiative ever undertaken to develop environmental solutions for the Nation's abundant coal resources. "The U.S. Clean Coal Technology Demonstration Program is the envy of the world." Robert W. Smock Editorial Director, Power Engineering The program's goal: to demonstrate the best, most innovative technology

  14. Jim Groth Director

    National Nuclear Security Administration (NNSA)

    ... 2000 the largest consumer of water was the production of thermo-electric power. Furthermore, water quality is affected by water use at power plants because of the effects of the ...

  15. National Coal Quality Inventory (NACQI)

    SciTech Connect (OSTI)

    Robert Finkelman

    2005-09-30

    The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale, and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.

  16. Delineating coal market regions

    SciTech Connect (OSTI)

    Solomon, B.D.; Pyrdol, J.J.

    1986-04-01

    This study addresses the delineation of US coal market regions and their evolution since the 1973 Arab oil embargo. Dichotomizing into compliance (low sulfur) and high sulfur coal deliveries, market regions are generated for 1973, 1977, and 1983. Focus is restricted to steam coal shipments to electric utilities, which currently account for over 80% of the total domestic market. A two-stage method is used. First, cluster analyses are performed on the origin-destination shipments data to generate baseline regions. This is followed by multiple regression analyses on CIF delivered price data for 1983. Sensitivity analysis on the configuration of the regions is also conducted, and some thoughts on the behavior of coal markets conclude the paper. 37 references, 6 figures, 2 tables.

  17. Coal Transportation Issues (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Most of the coal delivered to U.S. consumers is transported by railroads, which accounted for 64% of total domestic coal shipments in 2004. Trucks transported approximately 12% of the coal consumed in the United States in 2004, mainly in short hauls from mines in the East to nearby coal-fired electricity and industrial plants. A number of minemouth power plants in the West also use trucks to haul coal from adjacent mining operations. Other significant modes of coal transportation in 2004 included conveyor belt and slurry pipeline (12%) and water transport on inland waterways, the Great Lakes, and tidewater areas (9%).

  18. Coal pump

    DOE Patents [OSTI]

    Bonin, John H.; Meyer, John W.; Daniel, Jr., Arnold D.

    1983-01-01

    A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

  19. Application of Pulsed Electrical Fields for Advanced Cooling and Water Recovery in Coal-Fired Power Plant

    SciTech Connect (OSTI)

    Young Cho; Alexander Fridman

    2009-04-02

    The overall objective of the present work was to develop technologies to reduce freshwater consumption in a cooling tower of coal-based power plant so that one could significantly reduce the need of make-up water. The specific goal was to develop a scale prevention technology based an integrated system of physical water treatment (PWT) and a novel filtration method so that one could reduce the need for the water blowdown, which accounts approximately 30% of water loss in a cooling tower. The present study investigated if a pulsed spark discharge in water could be used to remove deposits from the filter membrane. The test setup included a circulating water loop and a pulsed power system. The present experiments used artificially hardened water with hardness of 1,000 mg/L of CaCO{sub 3} made from a mixture of calcium chloride (CaCl{sub 2}) and sodium carbonate (Na{sub 2}CO{sub 3}) in order to produce calcium carbonate deposits on the filter membrane. Spark discharge in water was found to produce strong shockwaves in water, and the efficiency of the spark discharge in cleaning filter surface was evaluated by measuring the pressure drop across the filter over time. Results showed that the pressure drop could be reduced to the value corresponding to the initial clean state and after that the filter could be maintained at the initial state almost indefinitely, confirming the validity of the present concept of pulsed spark discharge in water to clean dirty filter. The present study also investigated the effect of a plasma-assisted self-cleaning filter on the performance of physical water treatment (PWT) solenoid coil for the mitigation of mineral fouling in a concentric counterflow heat exchanger. The self-cleaning filter utilized shockwaves produced by pulse-spark discharges in water to continuously remove scale deposits from the surface of the filter, thus keeping the pressure drop across the filter at a relatively low value. Artificial hard water was used in the present fouling experiments for three different cases: no treatment, PWT coil only, and PWT coil plus self-cleaning filter. Fouling resistances decreased by 59-72% for the combined case of PWT coil plus filter compared with the values for no-treatment cases. SEM photographs showed much smaller particle sizes for the combined case of PWT coil plus filter as larger particles were continuously removed from circulating water by the filter. The x-ray diffraction data showed calcite crystal structures for all three cases.

  20. ELECTRIC

    Office of Legacy Management (LM)

    you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY

  1. U.S. coal outlook in Asia

    SciTech Connect (OSTI)

    Johnson, C.J.

    1997-02-01

    Coal exports from the US to Asia are declining over time as a result of (1) increased competition from coal suppliers within the Asia-Pacific region, (2) changing steel making technologies, (3) decreased emphasis on security of coal supplies, and (4) deregulation of the energy industry--particularly electric utilities. There are no major changes on the horizon that are likely to alter the role of the US as a modest coal supplier to the Asia-Pacific region. The downward trend in US coal exports to Asia is expected to continue over the 1997--2010 period. But economic and policy changes underway in Asia are likely to result in periodic coal shortages, lasting a few months to a year, and short term increased export opportunities for US coal. US coal exports to Asia are projected to fluctuate within the following ranges over the 2000--2010 period: 10--17 million tons in total exports, 6--12 million tons in thermal coal exports, and 4--9 million tons in coking coal exports. The most important role for US coal, from the perspective of Asian coal importing countries, is to ensure a major alternative source of coal supplies that can be turned to in the event of unforeseen disruptions in coal supplies from the Asia-Pacific region or South Africa. However, the willingness of consumers to pay a premium to ensure US export capacity is declining, with increased emphasis on obtaining the lowest cost coal supplies.

  2. TO: Procurement Directors/Contracting Officers FROM: Director

    Office of Environmental Management (EM)

    74 DATE: August 13, 2013 TO: Procurement Directors/Contracting Officers FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT: Quarterly Notification of the DOE's Differing Professional Opinion Process SUMMARY: Attached is a Memorandum issued by the Deputy Secretary on August 2, 2013, highlighting requirements for complying with Department of Energy (DOE) Order (O) 442.2, Differing Professional Opinions for

  3. TO: Procurement Directors FROM: Director Office of Policy Division

    Office of Environmental Management (EM)

    3-42 DATE: March 20, 2013 TO: Procurement Directors FROM: Director Office of Policy Division Office of Acquisition and Project Management SUBJECT: Acquisition Guide Chapter 19.1 - Summary of Small Business Administration and Department of Energy Partnership Agreement SUMMARY: Acquisition Guide Chapter 19.1 is revised to reflect changes in the new partnership agreement (attached). Revisions are indicated by bolded text. This Flash will be available online at the following website:

  4. TO: Procurement Directors/Contracting Officers FROM: Director

    Office of Environmental Management (EM)

    65 DATE: July 03, 2013 TO: Procurement Directors/Contracting Officers FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT: Procurement Evaluation & Re-Engineering Team (PERT) and Establishment of a 5-year Cycle with Corresponding Schedule SUMMARY: The Senior Procurement Executive has issued guidance (attached) that endorses the PERT program, establishes the 5-year cycle and PERT review schedule from FY 2014 to

  5. TO: Procurement Directors/Contracting Officers FROM: Director

    Office of Environmental Management (EM)

    POLICY FLASH 2014-34 DATE: July 7, 2014 TO: Procurement Directors/Contracting Officers FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Procurement and Assistance Management SUBJECT: DOE Order 484.1, Reimbursable Work for the Department of Homeland Security Change SUMMARY: The purpose of this Flash is to inform contracting personnel that the department issued an administrative change to DOE Order 484.1, Reimbursable Work for the Department of Homeland

  6. TO: Procurement Directors/Contracting Officers FROM: Director

    Office of Environmental Management (EM)

    01 DATE: October 2, 2012 TO: Procurement Directors/Contracting Officers FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT: Continuing Appropriations Resolution, 2013 -- Implementation of Division B, Title III, Title V and Division C Title VII, Consolidated Appropriations Act, 2012, Pub. L. No.112-74 and Related Conference Report SUMMARY: Section 101(a)(4) of the Continuing Appropriations Resolution, 2013, Pub. L

  7. TO: Procurement Directors/Contracting Officers FROM: Director

    Office of Environmental Management (EM)

    3 DATE: January 28, 2013 TO: Procurement Directors/Contracting Officers FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT: Department of Energy Acquisition Regulation (DEAR) Final Rule for changes to Parts 908, 945, 952, and 970 regarding Government Property SUMMARY: Department of Energy Acquisition Regulation (DEAR) Final Rule for changes to Parts 908, 945, 952, and 970 regarding Government Property was

  8. Summary of coal export project

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    Through the international coal project and related activities, SSEB has called attention to the problems and potential of the US coal industry. The program has provided an excellent format for frank discussions on the problems facing US coal exports. Every effort must be made to promote coal and its role in the southern economy. Coal is enjoying its best years in the domestic market. While the export market is holding its own, there is increased competition in the world market from Australia, Columbia, China and, to a lesser extent, Russia. This is coming at a time when the US has enacted legislation and plans are underway to deepen ports. In addition there is concern that increased US coal and electricity imports are having a negative impact on coal production. These limiting factors suggest the US will remain the swing supplier of coal on the world market in the near future. This presents a challenge to the US coal and related industry to maintain the present market and seek new markets as well as devote research to new ways to use coal more cleanly and efficiently.

  9. About the Deputy Director: Short Scientific Biography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Deputy Director Horst Simon Horst Simon is an internationally recognized expert in computer science and applied mathematics and the Deputy Director of Lawrence Berkeley...

  10. Project Management Perspective - Paul Bosco, Director, Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Management Perspective - Paul Bosco, Director, Office of Acquisition and Project Management Project Management Perspective - Paul Bosco, Director, Office of Acquisition and ...

  11. Geothermal Technologies Office Director Doug Hollett Keynotes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Director Doug Hollett Keynotes at Annual Technical Conference of the Geothermal Resources Council in September Geothermal Technologies Office Director Doug Hollett Keynotes at ...

  12. Computing and Computational Sciences Directorate - Information...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NVIDIA Highlights GPU Progress on Titan Supercomputer The Top Supercomputing Led ... Led by Director Jim Hack and Deputy Director Dave Bader, the Institute will integrate ...

  13. Mr. Glen Sjoblom Deputy Director

    Office of Legacy Management (LM)

    Safeguards U. S. Nuclear Regulatory Commission Washington, D.C. 20555 Dear Mr. Sjoblom: As ... Nilliam T. Crow, Acting Director Uranium Fuel Licensing Branch U.S. Nuclear Regulatory ...

  14. Foreign Affairs Specialist (Program Director)

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will serve as a Program Director for the Export Control Review and Compliance/Interdiction (ECRC/I) team within the Office of Nuclear Export Controls (ONC)....

  15. Principal Associate Director - Global Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Principal Associate Director - Global Security As Principal Associate Director for Global Security, Terry Wallace leads Laboratory programs with special focus on developing and applying the scientific and engineering capabilities to address complex national and global security threats. Contact Operator Los Alamos National Laboratory (505) 667-5061 Wallace's expertise is forensic seismology, a highly specialized discipline focusing on detection and quantification of nuclear tests. Terry C.

  16. Jefferson Lab Director | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Director Hugh E. Montgomery is the Director of the Thomas Jefferson National Accelerator Facility (Jefferson Lab). As the lab's chief executive officer, he is responsible for ensuring funding for the lab and for setting policy and program direction. In addition, he oversees the delivery of the lab program and ensures that Jefferson Lab complies with all regulations, laws and contract requirements. Montgomery also is responsible for developing and ensuring relationships with

  17. Electric Power Generation Systems | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Power Generation Systems Coal gasification-based power plants Coal combustion-based power plants Natural gas-fueled power plants Turbines Fuel cells Existing power plants...

  18. Director, Office of Oil, Gas, and Coal Supply Statistics | Department...

    Broader source: Energy.gov (indexed) [DOE]

    from all U.S. Citizens. Work Schedule Full-Time Work Type Permanent Series 0340 Salary Basis Per Year Grade 0000 Salary Min 121,956.00 Salary Max 183,300.00 Start Date...

  19. Energy solutionsDirector Eric Isaacs

    SciTech Connect (OSTI)

    Eric ISaacs

    2012-08-08

    Argonne's Director Eric Isaacs talks about the laboratory's efforts for creating new, clean energy solutions.

  20. Energy solutions?Director Eric Isaacs

    ScienceCinema (OSTI)

    Eric ISaacs

    2013-06-05

    Argonne's Director Eric Isaacs talks about the laboratory's efforts for creating new, clean energy solutions.

  1. Innovative Drying Technology Extracts More Energy from High Moisture Coal

    Broader source: Energy.gov [DOE]

    An innovative coal-drying technology that will extract more energy from high moisture coal at less cost and simultaneously reduce potentially harmful emissions is ready for commercial use after successful testing at a Minnesota electric utility.

  2. Letter from the Wind Program Director | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Letter from the Wind Program Director Letter from the Wind Program Director September 18, 2015 - 10:30am Addthis It's an exciting time for the U.S. offshore wind industry. After more than 15 years of laying the groundwork, the United States has finally hit a crucial milestone: in July, Deepwater Wind began offshore construction on what will be the nation's first offshore wind project. The 30-megawatt (MW) Block Island Wind Farm promises to significantly lower electricity prices for the residents

  3. One Procurement Director's Perspective - Patricia Schuneman, Chicago

    Energy Savers [EERE]

    Procurement Director | Department of Energy Procurement Director's Perspective - Patricia Schuneman, Chicago Procurement Director One Procurement Director's Perspective - Patricia Schuneman, Chicago Procurement Director I want you to do things "The Chicago Way" What are you prepared to do? Topics Discussed: Develop Our Employees Encourage Creativity Care for Our Employees PDF icon Workshop 2015 - Schuneman_One Procurement Dir's Perspective.pdf More Documents & Publications 2015

  4. NERSC Seeks New Director - Job Position Posted

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Seeks New Director - Job Position Posted NERSC Seeks New Director - Job Position Posted February 19, 2012 by Francesca Verdier Current NERSC Director Kathy Yelick was named Associate Lab Director for Computing Sciences at Berkeley Lab in September 2010. In order to focus more on strategic planning at the lab, she has opened a search for a new NERSC Division Director. This position provides vision and strategic leadership to establish and maintain the leading-edge computing capability available

  5. Coal - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Glossary › FAQS › Overview Data Coal Data Browser (interactive query tool with charting and mapping) Summary Prices Reserves Consumption Production Stocks Imports, exports & distribution Coal-fired electric power plants Transportation costs to electric power sector International All coal data reports Analysis & Projections Major Topics Most popular Consumption Environment Imports & exports Industry characteristics Prices Production Projections Recurring Reserves Stocks All

  6. Docket No. EO-05-01: Letter from Kevin Kolevar, Director Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Robert Driscoll, CEO Mirant Mid-Atlantic, LLC Docket No. EO-05-01: Letter from Kevin Kolevar, Director Office of Electricity Delivery and Energy Reliability, to Mr. Robert ...

  7. ELECTRIC

    Office of Legacy Management (LM)

    ELECTRIC cdrtrokArJclaeT 3 I+ &i, y$ \I &OF I*- j< t j,fci..- ir )(yiT !E-li, ( \-,v? Cl -p/4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson General ?!!mager Atomic Qxzgy Commission 1901 Constitution Avenue Kashington, D. C. Dear Sir: In the course of OUT nuclenr research we are planning to study the enc:ri;y threshold anti cross section for fission. For thib program we require a s<>piAroted sample of metallic Uranium 258 of high purity. A

  8. Our Director | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director Image Adam Schwartz was named director of the U.S. Department of Energy's (DOE) Ames Laboratory operated by Iowa State University on April 14, 2014 Schwartz served as division leader of the Condensed Matter and Materials Division at Lawrence Livermore National Laboratory, and also coordinated LLNL's projects for the Critical Materials Institute, a $120 million DOE Energy Innovation Hub led by the Ames Laboratory. He began his duties in Ames on June 2, 2014. "Ames is a world-class

  9. Environmental data energy technology characterizations: coal

    SciTech Connect (OSTI)

    Not Available

    1980-04-01

    This document describes the activities leading to the conversion of coal to electricity. Specifically, the activities consist of coal mining and beneficiation, coal transport, electric power generation, and power transmission. To enhance the usefulness of the material presented, resource requirements, energy products, and residuals for each activity area are normalized in terms of 10/sup 12/ Btus of energy produced. Thus, the total effect of producing electricity from coal can be determined by combining the residuals associated with the appropriate activity areas. Emissions from the coal cycle are highly dependent upon the type of coal consumed as well as the control technology assigned to the activity area. Each area is assumed to be equipped with currently available control technologies that meet environmental regulations. The conventional boiler, for example, has an electrostatic precipitator and a flue gas desulfurization scrubber. While this results in the removal of most of the particulate matter and sulfur dioxide in the flue gas stream, it creates other new environmental residuals -- solid waste, sludge, and ash. There are many different types of mined coal. For informational purposes, two types from two major producing regions, the East and the West, are characterized here. The eastern coal is typical of the Northern Appalachian coal district with a high sulfur and heat content. The western coal, from the Powder River Basin, has much less sulfur, but also has a substantially lower heating value.

  10. EIA's Energy in Brief: What is the role of coal in the United States?

    Gasoline and Diesel Fuel Update (EIA)

    What is the role of coal in the United States? Last Updated: January 19, 2016 The United States has the world's largest estimated recoverable reserves of coal, and it is a net exporter of coal. In 2014, U.S. coal mines produced about 1 billion short tons of coal, the first increase in annual coal output in three years. More than 90% of the coal produced in the United States was used by U.S. power plants to generate electricity. Although coal has been the largest source of electricity generation

  11. Gasoline Hybrid Electric Delivery Vehicles Reduce Tailpipe Emissions While

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gasification Gasification The Wabash River Clean Coal Power Plant The Wabash River Clean Coal Power Plant Gasification Technology R&D Coal gasification offers one of the most versatile and clean ways to convert coal into electricity, hydrogen, and other valuable energy products. Coal gasification electric power plants are now operating commercially in the United States and in other nations, and many experts predict that coal gasification will be at the heart of future generations of clean

  12. Coal: Energy for the future

    SciTech Connect (OSTI)

    1995-05-01

    This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

  13. Review of a Proposed Quarterly Coal Publication

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    This Review of a Proposed Quartery Coal Publication contains findings and recommendations regarding the content of a new summary Energy Information Administration (EIA) coal and coke publication entitled The Quarterly Coal Review (QCR). It is divided into five sections: results of interviews with selected EIA data users; identification of major functions of the coal and coke industries; analysis of coal and coke data collection activities; evaluation of issues conerning data presentation including recommendations for the content of the proposed QCR; and comparison of the proposed QCR with other EIA publications. Major findings and recommendations are as follows: (1) User interviews indicate a definite need for a compehensive publication that would support analyses and examine economic, supply and demand trends in the coal industry; (2) the organization of the publication should reflect the natural order of activities of the coal and coke industries. Based on an analysis of the industries, these functions are: production, stocks, imports, exports, distribution, and consumption; (3) current EIA coal and coke surveys collect sufficient data to provide a summary of the coal and coke industries on a quarterly basis; (4) coal and coke data should be presented separately. Coke data could be presented as an appendix; (5) three geographic aggregations are recommended in the QCR. These are: US total, coal producing districts, and state; (6) coal consumption data should be consolidated into four major consumer categories: electric utilities, coke plants, other industrial, and residential commercial; (7) several EIA publications could be eliminated by the proposed QCR.

  14. Zero emission coal

    SciTech Connect (OSTI)

    Ziock, H.; Lackner, K.

    2000-08-01

    We discuss a novel, emission-free process for producing hydrogen or electricity from coal. Even though we focus on coal, the basic design is compatible with any carbonaceous fuel. The process uses cyclical carbonation of calcium oxide to promote the production of hydrogen from carbon and water. The carbonation of the calcium oxide removes carbon dioxide from the reaction products and provides the additional energy necessary to complete hydrogen production without additional combustion of carbon. The calcination of the resulting calcium carbonate is accomplished using the high temperature waste heat from solid oxide fuel cells (SOFC), which generate electricity from hydrogen fuel. Converting waste heat back to useful chemical energy allows the process to achieve very high conversion efficiency from fuel energy to electrical energy. As the process is essentially closed-loop, the process is able to achieve zero emissions if the concentrated exhaust stream of CO{sub 2} is sequestered. Carbon dioxide disposal is accomplished by the production of magnesium carbonate from ultramafic rock. The end products of the sequestration process are stable naturally occurring minerals. Sufficient rich ultramafic deposits exist to easily handle all the world's coal.

  15. TO: Procurement Directors/Contracting Officers FROM: Director

    Office of Environmental Management (EM)

    08 DATE: December 29, 2015 TO: Procurement Directors Heads of Contracting Activities FROM: Acting Chief Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition Management SUBJECT: Archival of Policy Flashes and attachments SUMMARY: This office is reviewing all its energy.gov websites to ensure current guidance is easily accessible and previous guidance is archived for future reference. To that end, all Policy Flashes and attachments from FY2001 - FY2014 have been

  16. Materials challenges in advanced coal conversion technologies

    SciTech Connect (OSTI)

    Powem, C.A.; Morreale, B.D.

    2008-04-15

    Coal is a critical component in the international energy portfolio, used extensively for electricity generation. Coal is also readily converted to liquid fuels and/or hydrogen for the transportation industry. However, energy extracted from coal comes at a large environmental price: coal combustion can produce large quantities of ash and CO{sub 2}, as well as other pollutants. Advanced technologies can increase the efficiencies and decrease the emissions associated with burning coal and provide an opportunity for CO{sub 2} capture and sequestration. However, these advanced technologies increase the severity of plant operating conditions and thus require improved materials that can stand up to the harsh operating environments. The materials challenges offered by advanced coal conversion technologies must be solved in order to make burning coal an economically and environmentally sound choice for producing energy.

  17. Electric Drive Transportation Association Conference | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Image: Photo courtesy of Electric Drive Transportation Association Panel Discussion 2 of 5 Panel Discussion Loan Programs Office Executive Director Peter Davidson speaks during a ...

  18. EIA - Coal Distribution

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal > Annual Coal Distribution Report > Annual Coal Distribution Archives Annual Coal Distribution Archive Release Date: February 17, 2011 Next Release Date: December 2011 Domestic coal distribution by origin State, destination State, consumer category, method of transportation; foreign coal distribution by major coal-exporting state and method of transportation; and domestic and foreign coal distribution by origin state. Year Domestic and foreign distribution of U.S. coal by State of

  19. Quarterly coal report, January--March 1993

    SciTech Connect (OSTI)

    Not Available

    1993-08-20

    The United States produced 242 million short tons of coal in the first quarter of 1993, a decrease of 6 percent (14 million short tons) from the amount produced during the first quarter of 1992. The decrease was due to a decline in production east of the Mississippi River. All major coal-producing States in this region had lower coal production levels led by West Virginia, which produced 5 million short tons less coal. The principal reasons for the overall drop in coal output compared to a year earlier were: A decrease in demand for US coal in foreign markets; a slower rate of producer/distributor stock build-up; and a drawn-down of electric utility coal stocks. Distribution of US coal in the first quarter of 1993 was 10 million short tons lower than in the first quarter of 1992, with 5 million short tons less distributed to both electric utilities and overseas markets. The average price of coal delivered to electric utilities during the first quarter of 1993 was $28.65 per short ton, the lowest value since the first quarter of 1980. Coal consumption in the first quarter of 1993 was 230 million short tons, 4 percent higher than in the first quarter of 1992, due primarily to a 5-percent increase in consumption at electric utility plants. Total consumer stocks, at 153 million short tons, and electric utility stocks, at 144 million short tons, were at their lowest quarterly level since the end of 1989. US. coal exports totaled 19 million short tons, 6 million short tons less than in the first quarter of 1992, and the lowest quarterly level since 1988. The decline was primarily due to a 1-million-short-ton drop in exports to each of the following destinations: Italy, France, Belgium and Luxembourg, and Canada.

  20. Director, Division of Energy Market Oversight

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission is looking for an experienced senior level executive to serve as the Director, Division of Energy Market Oversight. The Director plans and implements the...

  1. U.S. Energy Information Administration | Annual Coal Distribution...

    Gasoline and Diesel Fuel Update (EIA)

    short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 6,085 670...

  2. U.S. Energy Information Administration | Annual Coal Distribution...

    Gasoline and Diesel Fuel Update (EIA)

    tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 6,982 679...

  3. U.S. Energy Information Administration | Annual Coal Distribution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total...

  4. U.S. Energy Information Administration | Annual Coal Distribution...

    Gasoline and Diesel Fuel Update (EIA)

    short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total...

  5. Coal Market Module

    Gasoline and Diesel Fuel Update (EIA)

    power generation, industrial steam generation, coal-to-liquids production, coal coke manufacturing, residentialcommercial consumption, and coal exports) within the CMM. By...

  6. Coal industry annual 1994

    SciTech Connect (OSTI)

    1995-10-01

    This report presents data on coal consumption, distribution, coal stocks, quality, prices, coal production information, and emissions for a wide audience.

  7. Coal Distribution Database, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    Processing Coal Plants and Commercial and Institutional Coal Users" and Form EIA-7A, "Coal Production and Preparation Report." Appendix A Assigning Missing Data to EIA-923...

  8. FEMP Director's Blog | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FEMP Director's Blog FEMP Director's Blog RSS Federal Energy Management Program Director Timothy Unruh shares his thoughts on topics related to energy management. November 30, 2015 FEMP Director's Blog Making a Difference: Federal Energy Management Down on the Farm Support from the Federal Energy Management Program (FEMP) has helped the USDA develop shelters for agricultural equipment that are also generate solar power. The "Solar Shaded AgPort" is a model of interagency cooperation

  9. Dr. Martin Keller - Laboratory Director | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dr. Martin Keller - Laboratory Director A photo of Martin Keller, Laboratory Director of NREL Martin Keller became the National Renewable Energy Laboratory's (NREL) 10th director on November 30, 2015. He also serves as the President of Alliance for Sustainable Energy, LLC. Keller has joined NREL from Oak Ridge National Laboratory (ORNL) where he served as the Associate Laboratory Director for Energy and Environmental Sciences, which includes ORNL's programs in biosciences, environmental

  10. Sudip Dosanjh Named New NERSC Director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia's Sudip Dosanjh Named New NERSC Director Sudip Dosanjh Named New NERSC Director Extreme-scale Computing Expert Joins Berkeley Lab from Sandia National Lab August 22, 2012 Jon Bashor, Jbashor@lbl.gov, +1 510-486-5849 Sudip-Dosanjh.jpg Sudip Dosanjh is NERSC's new division director. Sudip Dosanjh, a leader in extreme-scale computing at Sandia National Laboratories in Albuquerque, has been named director of the National Energy Research Scientific Computing (NERSC) Division at Lawrence

  11. Quarterly coal report, April--June 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-26

    In the second quarter of 1993, the United States produced 235 million short tons of coal. This brought the total for the first half of 1993 to 477 million short tons, a decrease of 4 percent (21 million short tons) from the amount produced during the first half of 1992. The decrease was due to a 26-million-short-ton decline in production east of the Mississippi River, which was partially offset by a 5-million-short-ton increase in coal production west of the Mississippi River. Compared with the first 6 months of 1992, all States east of the Mississippi River had lower coal production levels, led by West Virginia and Illinois, which produced 9 million short tons and 7 million short tons less coal, respectively. The principal reasons for the drop in coal output for the first 6 months of 1993 compared to a year earlier were: a decrease in demand for US coal in foreign markets, particularly the steam coal markets; a draw-down of electric utility coal stocks to meet the increase in demand for coal-fired electricity generation; and a lower producer/distributor stock build-up. Distribution of US coal in the first half of 1993 was 15 million short tons lower than in the first half of 1992, with 13 million short tons less distributed to overseas markets and 2 million short tons less distributed to domestic markets.

  12. MEMORANDUM FOR JOHN M. SATTLER DIRECTOR BROOKHAVEN FEDERAL PROJECT...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    l 4 2011 MEMORANDUM FOR JOHN M. SATTLER DIRECTOR BROOKHAVEN FEDERAL PROJECT OFFICE FROM: SUBJECT: Designation of Federal Project Director and Deputy Federal Project Director for...

  13. Mr. Glen Sjoblom Deputy Director

    Office of Legacy Management (LM)

    Washington, Df: 20545 ,J.LlN 2 0 19% Mr. Glen Sjoblom Deputy Director Division of Industrial and Medical Nuclear Safety Office of Nuclear Materials Safety and Safeguards U. S. Nuclear Regulatory Commission r " Washington, D.C. 20555 Dear Mr. Sjoblom: As a part of its Formerly Utilized Sites Remedial Action Program (FUSRAP), the U. S. Department of Energy (DOE) is trying to identify all sites and facilities where radioactive materials were handled, processed or used in support of Manhattan

  14. ORISE: Message from the Director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Message from the Director The Oak Ridge Institute for Science and Education (ORISE) supports the U.S. Department of Energy (DOE) and other federal agencies in strengthening the nation's research and development enterprise and advancing science education initiatives. Through strategic partnerships with UT-Battelle/Oak Ridge National Laboratory, other federal agencies, academe and industry, ORISE is bringing leadership to the critical needs in science and education. ORISE's foundation is built

  15. Principal Associate Director - Weapons Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weapons Programs As Principal Associate Director for the Weapons Program, Robert Webster leads the programs to assure the safety, security, and effectiveness of the systems in the nation's nuclear stockpile. Contact Operator Los Alamos National Laboratory (505) 667-5061 Under his leadership, the LANL Weapons Program integrates planning and execution of the stockpile stewardship program, a critical mission of the Laboratory. Robert Webster Bob Webster Under the leadership of Principal Associate

  16. Director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a more diverse and inclusive community within the lab. In addition to his Berkeley Lab duties, Alivisatos holds appointments with UC Berkeley as the Samsung Distinguished Chair...

  17. ORGANIZATIONAL CHART - CYCLOTRON INSTITUTE VII-11 DIRECTOR Yennello

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 DIRECTOR Yennello SEE Line Proj. Manager H. Clark Brinkley Chen Chubaryan Horvat Hyman Roeder Tabacaru Graduate Students Research Associates Research Scientists Research Group Leaders Administration/ Accounting Jeske Computer Systems Hagel Burch Student Workers Senior Accelerator Physicist May Accelerator Physicists Kim H. Clark Roeder Tabacaru Operations Chief Abegglen Building Maint. Adams Mynar Electrical Shop/Accelerator Tech. Bailey Carmona Cowden Eisenmann Foxworth Gathings LaPoint Law

  18. ORGANIZATIONAL CHART - CYCLOTRON INSTITUTE VII-12 DIRECTOR Tribble

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 DIRECTOR Tribble SEE Line Proj. Manager H. Clark Brinkley Chubaryan Horvat Hyman Roeder Tabacaru Graduate Students Research Associates Research Scientists Research Group Leaders Administration/ Accounting Jeske Computer Systems Hagel Burch Student Workers Senior Accelerator Physicist May Accelerator Physicists Kim H. Clark Roeder Tabacaru Operations Chief Abegglen Building Maint. Adams Kingsbury Mynar Piolet Electrical Shop/Accelerator Tech. Bailey Cowden Eisenmann Gathings LaPoint Law Morgan

  19. Tribal Leader Forum Kathy Ahsing Director, Planning and Development

    Energy Savers [EERE]

    of the Army (Installations, Energy & Environment) Tribal Leader Forum Kathy Ahsing Director, Planning and Development 31 May 2013 Assistant Secretary of the Army (Installations, Energy & Environment) * Today's military installations are playing an ever increasing role in energy security. - Installations are also playing an increased role in disaster and other community relief efforts Army Installations' Changing Roles * Installations are increasingly susceptible to a fragile electrical

  20. Coal: America's energy future. Volume I

    SciTech Connect (OSTI)

    2006-03-15

    Secretary of Energy Samuel W. Bodman requested the National Coal Council in April 2005 a report identifying the challenges and opportunities of more fully exploring the USA's domestic coal resources to meet the nations' future energy needs. This resultant report addresses the Secretary's request in the context of the President's focus, with eight findings and recommendations that would use technology to leverage the USA's extensive coal assets and reduce dependence on imported energy. Volume I outlines these findings and recommendations. Volume II provides technical data and case histories to support the findings and recommendations. Chapter headings of Volume I are: Coal-to-Liquids to Produce 2.6 MMbbl/d; Coal-to-Natural Gas to Produce 4.0 Tcf Per Year; Coal-to-Clean Electricity; Coal to Produce Ethanol; Coal-to-Hydrogen; Enhanced Oil and Gas (Coalbed Methane); Recovery as Carbon Management Strategies; Delineate U.S. Coal Reserves and Transportation Constraints as Part of an Effort to Maximize U.S. Coal Production; and Penn State Study, 'Economic Benefits of Coal Conversion Investments'.

  1. Coal Transportation Rate Sensitivity Analysis

    Reports and Publications (EIA)

    2005-01-01

    On December 21, 2004, the Surface Transportation Board (STB) requested that the Energy Information Administration (EIA) analyze the impact of changes in coal transportation rates on projected levels of electric power sector energy use and emissions. Specifically, the STB requested an analysis of changes in national and regional coal consumption and emissions resulting from adjustments in railroad transportation rates for Wyoming's Powder River Basin (PRB) coal using the National Energy Modeling System (NEMS). However, because NEMS operates at a relatively aggregate regional level and does not represent the costs of transporting coal over specific rail lines, this analysis reports on the impacts of interregional changes in transportation rates from those used in the Annual Energy Outlook 2005 (AEO2005) reference case.

  2. Joint Statement from Los Alamos Director Michael Anastasio, Lawrence Livermore Director George

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tri-Lab Directors' statement on the nuclear posture review April 9, 2010 Joint Statement from Los Alamos Director Michael Anastasio, Lawrence Livermore Director George Miller, and Sandia Director Tom Hunter Los Alamos, New Mexico, April 9, 2010-The directors of the three Department of Energy, National Nuclear Security Administration Laboratories-Dr. George Miller from Lawrence Livermore National Laboratory, Dr. Michael Anastasio from Los Alamos National Laboratory, and Dr. Tom Hunter from Sandia

  3. Keystone coal industry manual

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The 1994 Keystone Coal Industry Manual is presented. Keystone has served as the one industry reference authority for the many diverse organizations concerned with the supply and utilization of coal in the USA and Canada. Through the continuing efforts of coal producers, buyers, users, sellers, and equipment designers and manufacturers, the coal industry supplies an abundant and economical fuel that is indispensable in meeting the expanding energy needs of North America. The manual is divided into the following sections: coal sales companies, coal export, transportation of coal, consumer directories, coal associations and groups, consulting and financial firms, buyers guide, industry statistics and ownership, coal preparation, coal mine directory, and coal seams.

  4. By Coal Origin State

    Gasoline and Diesel Fuel Update (EIA)

    Annual Coal Distribution Report 2010 U.S. Energy Information Administration | Annual Coal Distribution Report 2010 Alabama ...

  5. Docket No. EO-05-01: Letter from Kevin Kolevar, Director Office of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Delivery and Energy Reliability, to Mr. Robert Driscoll, CEO Mirant Mid-Atlantic, LLC | Department of Energy from Kevin Kolevar, Director Office of Electricity Delivery and Energy Reliability, to Mr. Robert Driscoll, CEO Mirant Mid-Atlantic, LLC Docket No. EO-05-01: Letter from Kevin Kolevar, Director Office of Electricity Delivery and Energy Reliability, to Mr. Robert Driscoll, CEO Mirant Mid-Atlantic, LLC Docket No. EO-05-01: On December 20, 2005, the Secretary of Energy issued

  6. Mr. Glen Sjoblom Deputy Director

    Office of Legacy Management (LM)

    J-UN 2 0 1590 Mr. Glen Sjoblom Deputy Director Di.vision of Industrial and Medical Nuclear Safety Office of Nuclear Materials Safety and Safeguards. U. S. Nuclear Regulatory C&iitii'&&; Washington, D.C. 20555 Dear Mr. Sjoblom: As a part of its Formerly Utilized Sites Remedial Action Program (FUSRAP), the U. S. Department of Energy (DOE) is trying to identify all sites and facilities where radioactive materials were handled, processed or used in support of Manhattan Engineer. District

  7. Virginia coal industry: a study of the infrastructure

    SciTech Connect (OSTI)

    Hibbard, W.R. Jr.; Chisholm, R.H.; Valdes, R.M.

    1985-01-01

    A study of the Virginia coal industry concludes that since coal quality from Virginia, West Virginia, and Kentucky is similar, then delivered cost is the key to steam coal sales to Virginia electric utilities. While the future looks good for the industry, coal from eastern Kentucky and West Virginia was delivered at a lower cost, which put Virginia coal at a disadvantage. Increased Virginia coal sales require the close cooperation of coal suppliers, transporters, and users. Negotiators directly representing the governor might be able to help bring this about. The report concludes with several recommendations, including the expansion of the Norfolk Southern railroad system, the requirement that state installations use state coal, consultation services to small operators, and the publication and dissemination of information to coal users. 3 figures, 26 tables.

  8. Novel Fuel Cells for Coal Based Systems

    SciTech Connect (OSTI)

    Thomas Tao

    2011-12-31

    The goal of this project was to acquire experimental data required to assess the feasibility of a Direct Coal power plant based upon an Electrochemical Looping (ECL) of Liquid Tin Anode Solid Oxide Fuel Cell (LTA-SOFC). The objective of Phase 1 was to experimentally characterize the interaction between the tin anode, coal fuel and cell component electrolyte, the fate of coal contaminants in a molten tin reactor (via chemistry) and their impact upon the YSZ electrolyte (via electrochemistry). The results of this work will provided the basis for further study in Phase 2. The objective of Phase 2 was to extend the study of coal impurities impact on fuel cell components other than electrolyte, more specifically to the anode current collector which is made of an electrically conducting ceramic jacket and broad based coal tin reduction. This work provided a basic proof-of-concept feasibility demonstration of the direct coal concept.

  9. Comparing Statewide Economic Impacts of New Generation from Wind, Coal, and Natural Gas in Arizona, Colorado, and Michigan

    SciTech Connect (OSTI)

    Tegen, S.

    2006-05-01

    Report comparing the impacts to states from equivalent new electrical generation from wind, natural gas, and coal.

  10. 1983 annual outlook for US coal

    SciTech Connect (OSTI)

    Paull, M.K.

    1983-11-01

    This report highlights projections and discusses them in relation to coal's future domestic uses; the report also examines factors affecting coal's future growth. Coal was the primary source of energy in the United States from the mid-1800's until after World War II. After that war, coal lost most of its markets to oil and natural gas. In the 1960's, coal development was also hampered by environmental and mine safety concerns, and by the emergence of nuclear power. The 1973-74 oil embargo, however, demonstrated that the United States could no longer depend on imported oil to fuel its energy growth. Through 1990, coal is projected to meet an increasing share of total US energy demand. The projections for the 1985 to 1990 time period show an increased growth in coal consumption, particularly in the electric utility sector where new coal-fired power plants are coming on line. The projected growth in coal production, however, is subject to a series of potential constraints and/or obstacles that must be overcome. These potential constraints and obstacles are described after the history of coal supply and demand is reviewed and future projections are discussed.

  11. Bellows Joins NREL Staff as Associate Director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bellows Joins NREL Staff as Associate Director For more information contact: e:mail: Public Affairs Golden, Colo., April 21, 1997 -- Jerry L. Bellows recently joined the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) as Associate Director. Bellows previously served as Area Manager at DOE's Rocky Flats Plant, NREL, and Brookhaven and Los Alamos National Laboratories. He also was Director of DOE's Office of Contract Reform in the Office of the Deputy Secretary in

  12. Keith named Community Programs Director for Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kathy Keith Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:May 2016 all issues All Issues » submit Keith named Community Programs Director for Lab Valuable addition to community partnerships September 1, 2015 Kathy Keith. Kathy Keith. Contact Community Programs Director Kathy Keith Email Editor Ute Haker Email Kathy Keith has been selected as Los Alamos National Laboratory's new director for its Community Programs Office within the

  13. Portsmouth Decommissioning and Decontamination Project Director's Final

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Findings and Order | Department of Energy Decommissioning and Decontamination Project Director's Final Findings and Order Portsmouth Decommissioning and Decontamination Project Director's Final Findings and Order Portsmouth Decommissioning and Decontamination (D&D) Project Director's Final Findings and Order defines the steps for identifying a range of technical alternatives for the D&D and waste disposition components of the project, and reaching formal decisions on how best to

  14. Fermilab Today | Director's Corner Archive | 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fermilab Director's Corner Archive Subscribe | Contact Fermilab Today | Archive | Classifieds Search GO Every Tuesday, a new Fermilab Director's Corner appears in Fermilab Today, Fermilab's daily email publication for employees, users and subscribers. Fermilab Director's Corner Archive - 2015 Nov. 19, 2015 A new era for Fermilab international relations You may have heard LBNF/DUNE described as "the first truly international megascience project hosted by DOE in the United States." And

  15. Department of Homeland Security's Science & Technology Directorate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homeland Security's Science & Technology Directorate Announces New Cybersecurity Risk ... Five of those technologies - Quantum Secured Communication, Hyperion, NeMS, PathScan and ...

  16. Designation of Environmental Management Federal Project Director...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Management Federal Project Director for Brookhaven National Laboratory by sattler DesignationofEMFedProjDir-BNL-SattlerEM.pdf -- PDF Document, 240 KB ID: NA Type:...

  17. Designation of Environmental Management Federal Project Director...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Management Federal Project Director for Separations Process Research Unit by feinberg DesignationofEMFedProjDir-SeparationsProcessResearchUnit-FeinbergEM.pdf -- PDF...

  18. Principal Associate Director - Operations and Business

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Los Alamos National Laboratory. Leasure oversees directorates of Business Innovation Services; Environment, Safety and Health; Nuclear and High Hazard Operations; and...

  19. CBFO_QA_Director_News_Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy's (DOE) Carlsbad Field Office (CBFO) has announced the selection of Mike Brown as the Director of the Office of Quality Assurance (QA). Brown's responsibilities...

  20. Keith named Community Programs Director for Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Corporation, a nonprofit organization established to help build a diverse and sustainable economy in northern New Mexico. Previously, as Public Works, LLC's New Mexico Director...

  1. Contacts: Alex King, Director, Critical Materials Institute,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute researchers named Most Influential Scientific Minds of 2014 Contacts: Alex King, Director, Critical Materials Institute, (515) 296-4505 Laura Millsaps, Public Affairs,...

  2. Fermilab Today | Director's Corner Archive | 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for management and performance, and Melanie Kenderdine, executive director for energy policy and systems analysis. During our meeting, Secretary Moniz elaborated on several of...

  3. Associate Directorate for Environmental Programs Update July...

    Office of Environmental Management (EM)

    July 30, 2014 Associate Directorate for Environmental Programs Update July 30, 2014 Topics: LANL Nitrate Salts Waste Chromium groundwater Remediation Storm Water Field Work PDF...

  4. Message from Hugh Montgomery: Assistant Director | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with resource management and to support the Deputy Director for Science & Technology with strategic planning efforts. Allison will continue to treat her role as Deputy Project...

  5. Associate Directorate for Environmental Programs Update January...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Associate Directorate for Environmental Programs Update January 28, 2015 Topics: Update on Nitrate Salts Chromium Remediation Project MDA L Soil Vapor Extraction PDF icon ADEP ...

  6. NPS Director's Order | Open Energy Information

    Open Energy Info (EERE)

    NPS Director's Order Author NPS Recipient NPS Published Publisher Not Provided, 02232010 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet...

  7. Sudip Dosanjh Named New NERSC Director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 2008. She announced her intention to step down earlier this year to focus on her duties as Associate Laboratory Director for Computing Sciences, which comprises NERSC, the...

  8. Principal Associate Director - Science, Technology, and Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science, Technology, and Engineering As Principal Associate Director for Science, Technology, and Engineering, Alan Bishop leads programs to ensure a world-class science and...

  9. Los Alamos director echoes cyber concerns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    only becoming more serious. May 21, 2013 Los Alamos National Laboratory Director Charlie McMillan (right), with, from left, Anthony Cugini of the National Energy Technology...

  10. Electric sales and revenue 1994

    SciTech Connect (OSTI)

    1995-11-01

    The Electric Sales and Revenue is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Information is provided on electricity sales, associated revenue, average revenue per kilowatthour sold, and number of consumers throughout the United States. The data provided in the Electric Sales and Revenue are presented at the national, Census division, State, and electric utility levels. The information is based on annual data reported by electric utilities for the calendar year ending December 31, 1994.

  11. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  12. Valley Electric Association- Net Metering

    Broader source: Energy.gov [DOE]

    The Board of Directors for Valley Electric Association (VEA) approved net metering in April 2008. The rules apply to systems up to 30 kW, though owners of larger systems may be able to negotiate...

  13. Coal industry annual 1997

    SciTech Connect (OSTI)

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  14. Coal Industry Annual 1995

    SciTech Connect (OSTI)

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  15. Coal industry annual 1996

    SciTech Connect (OSTI)

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  16. Energy Policy Act transportation rate study: Interim report on coal transportation

    SciTech Connect (OSTI)

    1995-10-01

    The primary purpose of this report is to examine changes in domestic coal distribution and railroad coal transportation rates since enactment of the Clean Air Act Amendments of 1990 (CAAA90). From 1988 through 1993, the demand for low-sulfur coal increased, as a the 1995 deadline for compliance with Phase 1 of CAAA90 approached. The shift toward low-sulfur coal came sooner than had been generally expected because many electric utilities switched early from high-sulfur coal to ``compliance`` (very low-sulfur) coal. They did so to accumulate emissions allowances that could be used to meet the stricter Phase 2 requirements. Thus, the demand for compliance coal increased the most. The report describes coal distribution and sulfur content, railroad coal transportation and transportation rates, and electric utility contract coal transportation trends from 1979 to 1993 including national trends, regional comparisons, distribution patterns and regional profiles. 14 figs., 76 tabs.

  17. Microbial solubilization of coal

    DOE Patents [OSTI]

    Strandberg, G.W.; Lewis, S.N.

    1988-01-21

    The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

  18. Reducing the moisture content of clean coals

    SciTech Connect (OSTI)

    Kehoe, D. )

    1992-12-01

    Coal moisture content can profoundly effect the cost of burning coal in utility boilers. Because of the large effect of coal moisture, the Empire State Electric Energy Research Corporation (ESEERCO) contracted with the Electric Power Research Institute to investigate advanced coal dewatering methods at its Coal Quality Development Center. This report contains the test result on the high-G solid-bowl centrifuge, the second of four devices to be tested. The high-G solid-bowl centrifuge removes water for coal by spinning the coal/water mixture rapidly in a rotating bowl. This causes the coal to cling to the sides of the bowl where it can be removed, leaving the water behind. Testing was performed at the CQDC to evaluate the effect of four operating variables (G-ratio, feed solids concentration, dry solids feed rate, and differential RPM) on the performance of the high-G solid-bowl centrifuge. Two centrifuges of different bowl diameter were tested to establish the effect of scale-up of centrifuge performance. Testing of the two centrifuges occurred from 1985 through 1987. CQDC engineers performed 32 tests on the smaller of the two centrifuges, and 47 tests on the larger. Equations that predict the performance of the two centrifuges for solids recovery, moisture content of the produced coal, and motor torque were obtained. The equations predict the observed data well. Traditional techniques of establishing the performance of centrifuge of different scale did not work well with the two centrifuges, probably because of the large range of G-ratios used in the testing. Cost of operating a commercial size bank of centrifuges is approximately $1.72 per ton of clean coal. This compares well with thermal drying, which costs $1.82 per ton of clean coal.

  19. EIA -Quarterly Coal Distribution

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. domestic coal distribution by coal origin, coal destination, mode of transportation ... YearQuarters By origin State By destination State Report Data File Report Data File 2009 ...

  20. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination State ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal

  1. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Origin State ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal

  2. Coal liquefaction and hydrogenation

    DOE Patents [OSTI]

    Schindler, Harvey D.; Chen, James M.

    1985-01-01

    Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

  3. Coal industry annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  4. Annual Energy Outlook 2016 2nd Coal Working Group

    U.S. Energy Information Administration (EIA) Indexed Site

    2 nd Coal Working Group Coal and Uranium Analysis Team February 9, 2016| Washington, D.C. WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES. DO NOT QUOTE OR CITE AS AEO2016 MODELING ASSUMPTIONS AND INPUTS ARE SUBJECT TO CHANGE. Key results for the AEO2016 Reference case 2 * Coal-fired generation, production, and capacity are all lower in the preliminary AEO2016 Reference case - Coal's share of total electricity generation falls from 38% in 2014 to 18% by 2040, compared to 33% in AEO2015 - Coal

  5. ELECTROKINETIC DENSIFICATION OF COAL FINES IN WASTE PONDS

    SciTech Connect (OSTI)

    E. James Davis

    1999-12-18

    The objective of this research was to demonstrate that electrokinetics can be used to remove colloidal coal and mineral particles from coal-washing ponds and lakes without the addition of chemical additives such as salts and polymeric flocculants. The specific objectives were: Design and develop a scaleable electrophoresis apparatus to clarify suspensions of colloidal coal and clay particles; Demonstrate the separation process using polluted waste water from the coal-washing facilities at the coal-fired power plants in Centralia, WA; Develop a mathematical model of the process to predict the rate of clarification and the suspension electrical properties needed for scale up.

  6. Coal and Coal-Biomass to Liquids

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Coal-Biomass to Liquids Turning coal into liquid fuels like gasoline, diesel and jet fuel, with biomass to reduce carbon dioxide emissions, is the main goal of the Coal and Coal-Biomass to Liquids program. The program also aims to reduce the cost of these low-emission fuels, and will take advantage of carbon capture and sequestration technologies to further reduce greenhouse gas emissions. Other Coal and Coal-Biomass to Liquids (C&CBTL) Program Activities: The C&CBTL Program

  7. AEO2016 Electricity Working Group

    U.S. Energy Information Administration (EIA) Indexed Site

    Office of Electricity, Coal, Nuclear, and Renewables Analysis December 8, 2015 | Washington, DC AEO2016 Electricity Working Group WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE What to look for: Electricity sector in AEO2016 * Inclusion of EPA final Clean Power Plan in Reference Case * Updated cost estimates for new generating technologies * Major data update on existing coal plant status: MATS- compliant technology or retirement

  8. QER - Comment of Electric Power Research Institute 1 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    I am Barbara Tyran, Director of Washington & State Relations, at the Electric Power ... all potential benefits and requires a modern grid characterized by connectivity, ...

  9. Coal-Producing Region

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . Coal Production by State (thousand short tons) Year to Date Coal-Producing Region and State October - December 2015 July - September 2015 October - December 2014 2015 2014 ...

  10. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  11. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 4th Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  12. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  13. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 3rd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  14. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  15. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  16. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 4th Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  17. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  18. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 3rd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  19. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  20. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  1. Coal Distribution Database, 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Distribution of U.S. Coal by Origin State, Consumer, Destination and Method of Transportation, 2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables...

  2. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  3. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  4. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  5. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  6. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  7. Annual Coal Distribution Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Coal Distribution Report Release Date: April 16, 2015 | Next Release Date: March 2016 | full report | RevisionCorrection Revision to the Annual Coal Distribution Report ...

  8. Clean Coal Program Research Activities

    SciTech Connect (OSTI)

    Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

    2009-03-31

    Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

  9. Meet CMI Director Alex King | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director Alex King CMI Director Alex King CMI Director Alex King was born and raised in London. He attended the University of Sheffield as an undergraduate and earned his doctorate...

  10. Coal liquefaction

    DOE Patents [OSTI]

    Schindler, Harvey D.

    1985-01-01

    In a two-stage liquefaction wherein coal, hydrogen and liquefaction solvent are contacted in a first thermal liquefaction zone, followed by recovery of an essentially ash free liquid and a pumpable stream of insoluble material, which includes 850.degree. F.+ liquid, with the essentially ash free liquid then being further upgraded in a second liquefaction zone, the liquefaction solvent for the first stage includes the pumpable stream of insoluble material from the first liquefaction stage, and 850.degree. F.+ liquid from the second liquefaction stage.

  11. Through its Clean Coal Research Program, FE

    Energy Savers [EERE]

    its inception as part of DOE in 1977, FE's R&D mission has continued to evolve to reflect the nation's key energy supply, security and environmental needs. Coal represents 93 percent of total U.S. fossil fuel reserves and is the largest single source (45 percent) of electricity generation, both currently and projected for the foreseeable future. It also is among the most carbon- intensive energy resources. Continuing the legacy of previous successes in the Clean Coal Technology Development

  12. Energy Information Administration quarterly coal report, October--December 1992

    SciTech Connect (OSTI)

    Not Available

    1993-05-21

    The United States produced just over 1 billion short tons of coal in 1992, 0.4 percent more than in 1991. Most of the 4-million-short-ton increase in coal production occurred west of the Mississippi River, where a record level of 408 million short tons of coal was produced. The amount of coal received by domestic consumers in 1992 totaled 887 million short tons. This was 7 million short tons more than in 1991, primarily due to increased coal demand from electric utilities. The average price of delivered coal to each sector declined by about 2 percent. Coal consumption in 1992 was 893 million short tons, only 1 percent higher than in 1991, due primarily to a 1-percent increase in consumption at electric utility plants. Consumer coal stocks at the end of 1992 were 163 million short tons, a decrease of 3 percent from the level at the end of 1991, and the lowest year-end level since 1989. US coal exports fell 6 percent from the 1991 level to 103 million short tons in 1992. Less coal was exported to markets in Europe, Asia, and South America, but coal exports to Canada increased 4 million short tons.

  13. Current Trends in Policy - What's new? - Berta Schreiber, Director...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Current Trends in Policy - What's new? - Berta Schreiber, Director, Office of Policy, OAPM Current Trends in Policy - What's new? - Berta Schreiber, Director, Office of Policy, ...

  14. Motion of Robert G. Burnley, Director the Commonwealth of Virginia...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Robert G. Burnley, Director the Commonwealth of Virginia Department of Environmental ... Motion of Robert G. Burnley, Director the Commonwealth of Virginia Department of ...

  15. GTO Director Doug Hollett Delivers Keynote at the Nation's Largest...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GTO Director Doug Hollett Delivers Keynote at the Nation's Largest Industry Gathering, September 29, 2014 GTO Director Doug Hollett Delivers Keynote at the Nation's Largest...

  16. Department of Energy Names Director for Office of Indian Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Names Director for Office of Indian Energy Policy and Makes Available 2 Million for Clean Energy Projects on Tribal Lands Department of Energy Names Director...

  17. Project Management Update - Paul Bosco, Director, Office of Acquisitio...

    Office of Environmental Management (EM)

    Update - Paul Bosco, Director, Office of Acquisition & Project Mgt Project Management Update - Paul Bosco, Director, Office of Acquisition & Project Mgt 2014 DOE Project Management ...

  18. Statement from Ward Sproat on Yucca Mountain, Director of the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ward Sproat on Yucca Mountain, Director of the Office of Civilian Radioactive Waste Management Statement from Ward Sproat on Yucca Mountain, Director of the Office of Civilian ...

  19. Secretary Comments on the Selection of the Next Executive Director...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comments on the Selection of the Next Executive Director of the International Energy Agency Secretary Comments on the Selection of the Next Executive Director of the International ...

  20. New director of Jefferson Lab named (Daily Press) | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    https:www.jlab.orgnewsarticlesnew-director-jefferson-lab-named-daily-press New director of Jefferson Lab named Hugh Montgomery Hugh Montgomery has been named president of...

  1. Director Biography | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Director Biography Human Resources and Administration (HRA) HRA Home About Director Biography Organization Chart .pdf file (26KB) Jobs Human Resources Administration SC...

  2. Supervisory, Intelligence Research Specialist, GS-132-14 (Director...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supervisory, Intelligence Research Specialist, GS-132-14 (Director - Intelligence Watch Officer) Supervisory, Intelligence Research Specialist, GS-132-14 (Director - Intelligence...

  3. Office Director, Department of Energy, Sophia, Bulgaria | National...

    National Nuclear Security Administration (NNSA)

    Director, Department of Energy, Sophia, Bulgaria | National Nuclear Security ... Office Director, Department of Energy, Sophia, Bulgaria Riaz Awan Riaz Awan Role: Office ...

  4. AMO Director Mark Johnson Moderates Panel at American Energy...

    Office of Environmental Management (EM)

    Director Mark Johnson Moderates Panel at American Energy & Manufacturing Competitiveness (AEMC) Northeast Regional Summit AMO Director Mark Johnson Moderates Panel at American ...

  5. US Energy Secretary Samuel Bodman and Russian Atomic Energy Director...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Atomic Energy Director Alexander Rumyantsev Discuss Bratislava Agreement US Energy Secretary Samuel Bodman and Russian Atomic Energy Director Alexander Rumyantsev Discuss ...

  6. Statement of Patricia A. Hoffman, Deputy Director of Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A. Hoffman, Deputy Director of Research and Development and Acting Chief Operating ... Statement of Patricia A. Hoffman, Deputy Director of Research and Development and Acting ...

  7. Mike Lansing and Chris Cantwell named new associate directors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    associate director for Safeguards and Security and Cantwell is associate director for Environment, Safety, Health & Quality. February 26, 2009 Los Alamos National Laboratory...

  8. Letter Clarifying the Position of the Director of the Virginia...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy ("DOE") docket, Robert G. Burnley, Director of the Virginia ... More Documents & Publications Motion of Robert G. Burnley, Director the Commonwealth of ...

  9. Portsmouth Integration Director's Final Findings and Order

    Broader source: Energy.gov [DOE]

    Portsmouth Integration Director's Final Findings and Order purpose is to: integrate the on-site work required for specific units to avoid duplication of effort, and efficiently perform sitewide...

  10. NERSC Seeks New Director - Job Position Posted

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Computing Sciences at Berkeley Lab in September 2010. In order to focus more on strategic planning at the lab, she has opened a search for a new NERSC Division Director....

  11. Deb Covey, Associate Director for Sponsored Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gov Deb Covey, Associate Director for Sponsored Research 311 TASF Ames, IA, 50011 covey@ameslab.gov 515-294-1048 Ames Laboratory, a U.S. Department of Energy national laboratory...

  12. Schneider Electric Director Initiates Strategy to Recruit IAC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... IAC graduates have participated in a unique training program designed to provide them with real-world engineering experience in the field of industrial energy efficiency. The IAC ...

  13. Certified Federal Project Directors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Career Development (PMCDP) » Certified Federal Project Directors Certified Federal Project Directors May 4, 2016 PDF icon List of Certified FPDs Key Resources PMCDP EVMS PARS IIe FPD Resource Center PM Newsletter Forms and Templates Important Career Development Resources PMCDP Curriculum Learning Map PMCDP Training Schedule PMCDP Certification and Equivalency Guidelines Project Management Earned Value Management Career Development (PMCDP) FPD Eligibility Training Schedule FPD

  14. Director's Discretionary (DD) Program | Argonne Leadership Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility Science at ALCF Allocation Programs INCITE Program ALCC Program Director's Discretionary (DD) Program ALCF Data Science Program Early Science Program INCITE 2016 Projects ALCC 2015 Projects ESP Projects View All Projects Publications ALCF Tech Reports Industry Collaborations Director's Discretionary (DD) Program The ALCF's DD program provides "start up" awards to researchers working toward an INCITE or ALCC allocation to help them achieve computational readiness. Projects

  15. Director's colloquium March 18 large hadron collider

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director's colloquium large hadron collider Director's colloquium March 18 large hadron collider Lyndon Evans of CERN will talk about the most complex scientific instrument ever built-the Large Hadron Collider (LHC). March 10, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los

  16. Human Resource Directors (HRD) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management » Human Resource Directors (HRD) Human Resource Directors (HRD) Name Organization Phone Number E-Mail Brian Carter Bonneville Power Administration (BPA) (503) 230-4527 becarter@bpa.gov Jeffrey Williams Environmental Management/Consolidated Business Center (EM) (513) 744-0987 jeffrey.williams@emcbc.doe.gov Connie Nottingham Richland Operations Office (EM) (509) 373-6288 connie.nottingham@rl.doe.gov Lee Moody Savannah River Operations (EM) Lee.moody@srs.gov Christine Jenkins National

  17. Annual Coal Distribution

    Reports and Publications (EIA)

    2015-01-01

    The Annual Coal Distribution Report (ACDR) provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing state. All data for the report year are final and this report supersedes all data in the quarterly distribution reports.

  18. Coal production 1988

    SciTech Connect (OSTI)

    Not Available

    1989-11-22

    Coal Production 1988 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. This report also includes data for the demonstrated reserve base of coal in the United States on January 1, 1989. 5 figs., 45 tabs.

  19. INL Director Discusses the Future for Nuclear Energy in the United States

    ScienceCinema (OSTI)

    Grossenbacher, John

    2013-05-28

    Idaho National Laboratory's Director John Grossenbacher explains that the United States should develop its energy policies based on an assessment of the current events at Japan's Fukushima nuclear reactors and the costs and benefits of providing electricity through various energy sources. For more information about INL's nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  20. Computation Directorate 2007 Annual Report

    SciTech Connect (OSTI)

    Henson, V E; Guse, J A

    2008-03-06

    If there is a single word that both characterized 2007 and dominated the thoughts and actions of many Laboratory employees throughout the year, it is transition. Transition refers to the major shift that took place on October 1, when the University of California relinquished management responsibility for Lawrence Livermore National Laboratory (LLNL), and Lawrence Livermore National Security, LLC (LLNS), became the new Laboratory management contractor for the Department of Energy's (DOE's) National Nuclear Security Administration (NNSA). In the 55 years under the University of California, LLNL amassed an extraordinary record of significant accomplishments, clever inventions, and momentous contributions in the service of protecting the nation. This legacy provides the new organization with a built-in history, a tradition of excellence, and a solid set of core competencies from which to build the future. I am proud to note that in the nearly seven years I have had the privilege of leading the Computation Directorate, our talented and dedicated staff has made far-reaching contributions to the legacy and tradition we passed on to LLNS. Our place among the world's leaders in high-performance computing, algorithmic research and development, applications, and information technology (IT) services and support is solid. I am especially gratified to report that through all the transition turmoil, and it has been considerable, the Computation Directorate continues to produce remarkable achievements. Our most important asset--the talented, skilled, and creative people who work in Computation--has continued a long-standing Laboratory tradition of delivering cutting-edge science even in the face of adversity. The scope of those achievements is breathtaking, and in 2007, our accomplishments span an amazing range of topics. From making an important contribution to a Nobel Prize-winning effort to creating tools that can detect malicious codes embedded in commercial software; from expanding BlueGene/L, the world's most powerful computer, by 60% and using it to capture the most prestigious prize in the field of computing, to helping create an automated control system for the National Ignition Facility (NIF) that monitors and adjusts more than 60,000 control and diagnostic points; from creating a microarray probe that rapidly detects virulent high-threat organisms, natural or bioterrorist in origin, to replacing large numbers of physical computer servers with small numbers of virtual servers, reducing operating expense by 60%, the people in Computation have been at the center of weighty projects whose impacts are felt across the Laboratory and the DOE community. The accomplishments I just mentioned, and another two dozen or so, make up the stories contained in this report. While they form an exceptionally diverse set of projects and topics, it is what they have in common that excites me. They share the characteristic of being central, often crucial, to the mission-driven business of the Laboratory. Computational science has become fundamental to nearly every aspect of the Laboratory's approach to science and even to the conduct of administration. It is difficult to consider how we would proceed without computing, which occurs at all scales, from handheld and desktop computing to the systems controlling the instruments and mechanisms in the laboratories to the massively parallel supercomputers. The reasons for the dramatic increase in the importance of computing are manifest. Practical, fiscal, or political realities make the traditional approach to science, the cycle of theoretical analysis leading to experimental testing, leading to adjustment of theory, and so on, impossible, impractical, or forbidden. How, for example, can we understand the intricate relationship between human activity and weather and climate? We cannot test our hypotheses by experiment, which would require controlled use of the entire earth over centuries. It is only through extremely intricate, detailed computational simulation that we can test our theories, and simulating weather and climate over the entire globe requires the most massive high-performance computers that exist. Such extreme problems are found in numerous laboratory missions, including astrophysics, weapons programs, materials science, and earth science.

  1. Clean coal technologies: Research, development, and demonstration program plan

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The US Department of Energy, Office of Fossil Energy, has structured an integrated program for research, development, and demonstration of clean coal technologies that will enable the nation to use its plentiful domestic coal resources while meeting environmental quality requirements. The program provides the basis for making coal a low-cost, environmentally sound energy choice for electric power generation and fuels production. These programs are briefly described.

  2. The Black Mesa coal/water slurry pipeline system

    SciTech Connect (OSTI)

    Brolick, H.J.

    1994-12-31

    The Black Mesa Pipeline is a 273 mile (439 km) long, 18-inch (457 mm) coal/water slurry pipeline, originating on the Black Mesa in the Northeastern part of Arizona, USA. The system delivers coal from the Peabody Coal Company`s Black Mesa open pit mine to the Mohave Generating Station which is a 1580 mw steam powered electric generating plant located in Laughlin, Nevada.

  3. Construction Begins on First-of-its-Kind Advanced Clean Coal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Construction Begins on First-of-its-Kind Advanced Clean Coal Electric Generating Facility ... Integrated Gasification (TRIGTM) technology," said David Ratcliffe, Southern ...

  4. Coal data: A reference

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

  5. STEO November 2012 - coal supplies

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal exports are expected to decline in 2013, primarily because of continuing economic weakness in Europe, lower international coal prices, and higher coal production in Asia. ...

  6. Economic assessment of coal-burning locomotives: Topical report

    SciTech Connect (OSTI)

    Not Available

    1986-02-01

    The General Electric Company embarked upon a study to evaluate various alternatives for the design and manufacture a coal fired locomotive considering various prime movers, but retaining the electric drive transmission. The initial study was supported by the Burlington-Northern and Norfolk-Southern railroads, and included the following alternatives: coal fired diesel locomotive; direct fired gas turbine locomotives; direct fired gas turbine locomotive with steam injection; raw coal gasifier gas turbine locomotive; and raw coal fluid bed steam turbine locomotive. All alternatives use the electric drive transmission and were selected for final evaluation. The first three would use a coal water slurry as a fuel, which must be produced by new processing plants. Therefore, use of a slurry would require a significant plant capital investment. The last two would use classified run-of-the-mine (ROM) coal with much less capital expenditure. Coal fueling stations would be required but are significantly lower in capital cost than a coal slurry plant. For any coal fired locomotive to be commercially viable, it must pass the following criteria: be technically feasible and environmentally acceptable; meet railroads' financial expectations; and offer an attractive return to the locomotive manufacturer. These three criteria are reviewed in the report.

  7. Director's Discretionary Research and Development Program, Annual Report FY 2007

    Broader source: Energy.gov [DOE]

    Director's Discretionary Research and Development Program, Annual Report FY 2007 May 2007 Final Draft.

  8. Coal and Coal-Biomass to Liquids FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal and Coal-Biomass to Liquids FAQs faq-header-big.jpg BASICS Q: How are gasoline and diesel fuel made from coal? A: Gasoline and diesel fuels can be produced from coal in two ...

  9. Director Biography | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home » Director Biography Director of the Office of Science Director Home Director Biography Organization Chart .pdf file (149KB) Presentations and Testimony History Budget Contact Information Director of the Office of Science U.S. Department of Energy SC-1/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-8305 F: (202) 586-4120 E: Email Us Director Biography Print Text Size: A A A FeedbackShare Page Dr. Cherry Murray Dr. Cherry Murray Dr. Cherry Murray Director of

  10. Coal production 1985

    SciTech Connect (OSTI)

    Not Available

    1986-11-07

    Coal Production 1985 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, reserves, and stocks to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. All data presented in this report, except the total production table presented in the Highlights section, and the demonstrated reserve base data presented in Appendix A, were obtained from form EIA-7A, ''Coal Production Report,'' from companies owning mining operations that produced, processed, or prepared 10,000 or more short tons of coal in 1985. The data cover 4105 of the 5477 US coal mining operations active in 1985. These mining operations accounted for 99.4% of total US coal production and represented 74.9% of all US coal mining operations in 1985. This report also includes data for the demonstrated reserve vase of coal in the US on January 1, 1985.

  11. 2011 Computation Directorate Annual Report

    SciTech Connect (OSTI)

    Crawford, D L

    2012-04-11

    From its founding in 1952 until today, Lawrence Livermore National Laboratory (LLNL) has made significant strategic investments to develop high performance computing (HPC) and its application to national security and basic science. Now, 60 years later, the Computation Directorate and its myriad resources and capabilities have become a key enabler for LLNL programs and an integral part of the effort to support our nation's nuclear deterrent and, more broadly, national security. In addition, the technological innovation HPC makes possible is seen as vital to the nation's economic vitality. LLNL, along with other national laboratories, is working to make supercomputing capabilities and expertise available to industry to boost the nation's global competitiveness. LLNL is on the brink of an exciting milestone with the 2012 deployment of Sequoia, the National Nuclear Security Administration's (NNSA's) 20-petaFLOP/s resource that will apply uncertainty quantification to weapons science. Sequoia will bring LLNL's total computing power to more than 23 petaFLOP/s-all brought to bear on basic science and national security needs. The computing systems at LLNL provide game-changing capabilities. Sequoia and other next-generation platforms will enable predictive simulation in the coming decade and leverage industry trends, such as massively parallel and multicore processors, to run petascale applications. Efficient petascale computing necessitates refining accuracy in materials property data, improving models for known physical processes, identifying and then modeling for missing physics, quantifying uncertainty, and enhancing the performance of complex models and algorithms in macroscale simulation codes. Nearly 15 years ago, NNSA's Accelerated Strategic Computing Initiative (ASCI), now called the Advanced Simulation and Computing (ASC) Program, was the critical element needed to shift from test-based confidence to science-based confidence. Specifically, ASCI/ASC accelerated the development of simulation capabilities necessary to ensure confidence in the nuclear stockpile-far exceeding what might have been achieved in the absence of a focused initiative. While stockpile stewardship research pushed LLNL scientists to develop new computer codes, better simulation methods, and improved visualization technologies, this work also stimulated the exploration of HPC applications beyond the standard sponsor base. As LLNL advances to a petascale platform and pursues exascale computing (1,000 times faster than Sequoia), ASC will be paramount to achieving predictive simulation and uncertainty quantification. Predictive simulation and quantifying the uncertainty of numerical predictions where little-to-no data exists demands exascale computing and represents an expanding area of scientific research important not only to nuclear weapons, but to nuclear attribution, nuclear reactor design, and understanding global climate issues, among other fields. Aside from these lofty goals and challenges, computing at LLNL is anything but 'business as usual.' International competition in supercomputing is nothing new, but the HPC community is now operating in an expanded, more aggressive climate of global competitiveness. More countries understand how science and technology research and development are inextricably linked to economic prosperity, and they are aggressively pursuing ways to integrate HPC technologies into their native industrial and consumer products. In the interest of the nation's economic security and the science and technology that underpins it, LLNL is expanding its portfolio and forging new collaborations. We must ensure that HPC remains an asymmetric engine of innovation for the Laboratory and for the U.S. and, in doing so, protect our research and development dynamism and the prosperity it makes possible. One untapped area of opportunity LLNL is pursuing is to help U.S. industry understand how supercomputing can benefit their business. Industrial investment in HPC applications has historically been limited by the prohibitive cost of entry, the inaccessibility of software to run the powerful systems, and the years it takes to grow the expertise to develop codes and run them in an optimal way. LLNL is helping industry better compete in the global market place by providing access to some of the world's most powerful computing systems, the tools to run them, and the experts who are adept at using them. Our scientists are collaborating side by side with industrial partners to develop solutions to some of industry's toughest problems. The goal of the Livermore Valley Open Campus High Performance Computing Innovation Center is to allow American industry the opportunity to harness the power of supercomputing by leveraging the scientific and computational expertise at LLNL in order to gain a competitive advantage in the global economy.

  12. NATIONAL HARBOR, Md.,May 21, 2013-Los Alamos National Laboratory Director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    director echoes cyber concerns May 21, 2013 Securing the grid will be key for energy security going forward NATIONAL HARBOR, Md.,May 21, 2013-Los Alamos National Laboratory Director Charlie McMillan told a gathering of energy executives today that securing the electrical grid is a major concern now and it's only becoming more serious. "If you look back at the last year, there were several hundred attacks on critical infrastructure," McMillan said, addressing attendees at the Deloitte

  13. Comprehensive Report to Congress Clean Coal Technology Program: Clean power from integrated coal/ore reduction

    SciTech Connect (OSTI)

    1996-10-01

    This report describes a clean coal program in which an iron making technology is paired with combined cycle power generation to produce 3300 tons per day of hot metal and 195 MWe of electricity. The COREX technology consists of a metal-pyrolyzer connected to a reduction shaft, in which the reducing gas comes directly from coal pyrolysis. The offgas is utilized to fuel a combined cycle power plant.

  14. NREL Director Richard Truly Announces Retirement Plans - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL NREL Director Richard Truly Announces Retirement Plans June 8, 2004 Photo of Richard Truly, Director Golden, Colo. - Vice Admiral Richard H. Truly, director of the Department of Energy's (DOE) National Renewable Energy Laboratory (NREL), today announced that he plans to retire in early November 2004 after more than seven years as NREL's director. Truly became the seventh director of the 27-year-old national laboratory in May 1997. He also serves as executive vice president of Midwest

  15. Christoph Leeman becomes Jefferson Lab's first Deputy Director | Jefferson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Leeman becomes Jefferson Lab's first Deputy Director Christoph Leeman becomes Jefferson Lab's first Deputy Director August 31, 2000 Christoph W. Leemann is Jefferson Lab's first Deputy Director. Lab Director Hermann Grunder recently announced Leemann's appointment to the new position at the Department of Energy's Thomas Jefferson National Accelerator Facility. As Deputy Director, Leemann will oversee the day-to-day operations of Jefferson Lab, located in Newport News, Va. His priorities

  16. Domestic Coal Distribution 2009 Q1 by Origin State: Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    Q1 by Origin State: Alabama (1000 Short Tons) 1 58 Domestic Coal Distribution 2009 Q1 by Origin State: Alabama (1000 Short Tons) Destination State Transportation Mode Electricity...

  17. Domestic Coal Distribution 2009 Q2 by Origin State: Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    Q2 by Origin State: Alabama (1000 Short Tons) 1 58 Domestic Coal Distribution 2009 Q2 by Origin State: Alabama (1000 Short Tons) Destination State Transportation Mode Electricity...

  18. 2,"Four Corners","Coal","Arizona Public Service Co",1540

    U.S. Energy Information Administration (EIA) Indexed Site

    gas","Southwestern Public Service Co",466 6,"Rio Grande","Natural gas","El Paso Electric Co",324.2 7,"Escalante","Coal","Tri-State G & T Assn, Inc",247 8,"Afton ...

  19. 1,"Gerald Gentleman","Coal","Nebraska Public Power District"...

    U.S. Energy Information Administration (EIA) Indexed Site

    Public Power District",318.4 8,"Whelan Energy Center","Coal","City of Hastings - (NE)",309 9,"Rokeby","Natural gas","Lincoln Electric System",258 10,"Beatrice","Natural ...

  20. Upgraded Coal Interest Group

    SciTech Connect (OSTI)

    Evan Hughes

    2009-01-08

    The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

  1. Coal feed lock

    DOE Patents [OSTI]

    Pinkel, I. Irving

    1978-01-01

    A coal feed lock is provided for dispensing coal to a high pressure gas producer with nominal loss of high pressure gas. The coal feed lock comprises a rotor member with a diametral bore therethrough. A hydraulically activated piston is slidably mounted in the bore. With the feed lock in a charging position, coal is delivered to the bore and then the rotor member is rotated to a discharging position so as to communicate with the gas producer. The piston pushes the coal into the gas producer. The rotor member is then rotated to the charging position to receive the next load of coal.

  2. Assessment of Long-Term Research Needs for Coal-Liquefaction Technologies

    SciTech Connect (OSTI)

    Penner, S.S.

    1980-03-01

    The Fossil Energy Research Working Group (FERWG), at the request of J.M. Deutch (Under Secretary of DOE), E. Frieman (Director, Office of Energy Research) and G. Fumich, Jr. (Assistant Secretary for Fossil Fuels), has studied and reviewed currently funded coal-liquefaction technologies. These studies were performed in order to provide an independent assessment of critical research areas that affect the long-term development of coal-liquefaction technologies. This report summarizes the findings and research recommendations of FERWG.

  3. U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Coal Stocks, 2008 - 2014 (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Table 37. U.S. Coal Stocks, 2008 - 2014 (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Coal Consumers Last Day of Quarter Electric Power Sector 1 Coke Plants Other Industrial 2 Commercial and Institutional Users Total Coal Producers and Distributors Total 2008 March 31 146,497 1,462 4,818 448 153,225 34,876

  4. Electric Resistance Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Home Heating Systems » Electric Resistance Heating Electric Resistance Heating Baseboard heaters are one type of electric resistance heaters. | Photo courtesy of ©iStockphoto/drewhadley Baseboard heaters are one type of electric resistance heaters. | Photo courtesy of ©iStockphoto/drewhadley Electric resistance heating is 100% energy efficient in the sense that all the incoming electric energy is converted to heat. However, most electricity is produced from coal, gas, or

  5. The Economic Impact of Coal Mining in New Mexico

    SciTech Connect (OSTI)

    Peach, James; Starbuck, C.

    2009-06-01

    The economic impact of coal mining in New Mexico is examined in this report. The analysis is based on economic multipliers derived from an input-output model of the New Mexico economy. The direct, indirect, and induced impacts of coal mining in New Mexico are presented in terms of output, value added, employment, and labor income for calendar year 2007. Tax, rental, and royalty income to the State of New Mexico are also presented. Historical coal production, reserves, and price data are also presented and discussed. The impacts of coal-fired electricity generation will be examined in a separate report.

  6. Ringleader: Ashley White, Director of Communications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ashley White, Director of Communications Print After many years as a researcher followed by a few in government and policy, Ashley White sees her new position as ALS Director of Communications as a perfect blend of it all. "I'm thrilled to be back in a research environment, since I started out my career as a researcher and loved being in the lab," she says. "When I walk around the ALS and see all the tin foil and the beamline equipment, it feels like home." After completing

  7. Pelletization of fine coals

    SciTech Connect (OSTI)

    Sastry, K.V.S.

    1991-09-01

    The present research project attempts to provide a basis to determine the pelletizability of fine coals, to ascertain the role of additives and binders and to establish a basis for binder selection. Currently, there are no established techniques for determining the quality of coal pellets. Our research is intended to develop a series of tests on coal pellets to measure their storage characteristics, transportability, ease of gasification and rate of combustion. Information developed from this research should be valuable for making knowledgeable decisions for on-time plant design, occasional binder selection and frequent process control during the pelletization of coal fines. During the last quarter, we continued the batch pelletization studies on Upper Freeport coal. The results as presented in that last quarterly report (April 1991) indicated that the surface conditions on the coal particle influenced the pelletizing growth rates. For example, a fresh (run of mine) sample of coal will display different pelletizing growth kinetics than a weathered sample of the same coal. Since coal is a heterogeneous material, the oxidized product of coal is equally variable. We found it to be logistically difficult to consistently produce large quantities of artificially oxidized coal for experimental purposes and as such we have used a naturally weathered coal. We have plans to oxidize coals under controlled oxidizing conditions and be able to establish their pelletizing behavior. The next phase of experiments were directed to study the effect of surface modification, introduced during the coal cleaning steps, on pelletizing kinetics. Accordingly, we initiated studies with two additives commonly used during the flotation of coal: dextrin (coal depressant) and dodecane (coal collector).

  8. International perspectives on coal preparation

    SciTech Connect (OSTI)

    1997-12-31

    The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.

  9. Regional trends in the take-up of clean coal technologies

    SciTech Connect (OSTI)

    Wootten, J.M.

    1997-12-31

    Using surveys of the electricity industry taken in major OECD coal producing/coal consuming regions of North America, Europe, Southern Africa, and Asia/Pacific, this paper reports on the attitudes of power plant operators and developers toward clean coal technologies, the barriers to their use and the policies and measures that might be implemented, if a country or region desired to encourage greater use of clean coal technologies.

  10. Evaluation of technology modifications required to apply clean coal technologies in Russian utilities. Final report

    SciTech Connect (OSTI)

    1995-12-01

    The report describes the following: overview of the Russian power industry; electric power equipment of Russia; power industry development forecast for Russia; clean coal technology demonstration program of the US Department of Energy; reduction of coal TPS (thermal power station) environmental impacts in Russia; and base options of advanced coal thermal power plants. Terms of the application of clean coal technology at Russian TPS are discussed in the Conclusions.

  11. Coal gasification. (Latest citations from the EI compendex*plus database). Published Search

    SciTech Connect (OSTI)

    1998-03-01

    The bibliography contains citations concerning the development and assessment of coal gasification technology. Combined-cycle gas turbine power plants are reviewed. References also discuss dry-feed gasification, gas turbine interface, coal gasification pilot plants, underground coal gasification, gasification with nuclear heat, and molten bath processes. Clean-coal based electric power generation and environmental issues are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  12. Coal Distribution Database, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    4Q 2009 April 2010 Quarterly Coal Distribution Table Format and Data Sources 4Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal...

  13. Coal Distribution Database, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    3Q 2009 February 2010 Quarterly Coal Distribution Table Format and Data Sources 3Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal...

  14. "Annual Coal Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual Coal Report Data Released: January 20, 2015 Data for: 2013 Re-Release Date: April 23, 2015 (CORRECTION) Annual Coal Report 2013 CorrectionUpdate April 23, 2015 The Annual ...

  15. Microbial solubilization of coal

    DOE Patents [OSTI]

    Strandberg, Gerald W.; Lewis, Susan N.

    1990-01-01

    This invention deals with the solubilization of coal using species of Streptomyces. Also disclosed is an extracellular component from a species of Streptomyces, said component being able to solubilize coal.

  16. Indonesian coal mining

    SciTech Connect (OSTI)

    2008-11-15

    The article examines the opportunities and challenges facing the Indonesian coal mining industry and how the coal producers, government and wider Indonesian society are working to overcome them. 2 figs., 1 tab.

  17. Chemicals from coal

    SciTech Connect (OSTI)

    Harold A. Wittcoff; Bryan G. Reuben; Jeffrey S. Plotkin

    2004-12-01

    This chapter contains sections titled: Chemicals from Coke Oven Distillate; The Fischer-Tropsch Reaction; Coal Hydrogenation; Substitute Natural Gas (SNG); Synthesis Gas Technology; Calcium Carbide; Coal and the Environment; and Notes and References

  18. Coal Production 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-29

    Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

  19. Beluga Coal Gasification - ISER

    SciTech Connect (OSTI)

    Steve Colt

    2008-12-31

    ISER was requested to conduct an economic analysis of a possible 'Cook Inlet Syngas Pipeline'. The economic analysis was incorporated as section 7.4 of the larger report titled: 'Beluga Coal Gasification Feasibility Study, DOE/NETL-2006/1248, Phase 2 Final Report, October 2006, for Subtask 41817.333.01.01'. The pipeline would carry CO{sub 2} and N{sub 2}-H{sub 2} from a synthetic gas plant on the western side of Cook Inlet to Agrium's facility. The economic analysis determined that the net present value of the total capital and operating lifecycle costs for the pipeline ranges from $318 to $588 million. The greatest contributor to this spread is the cost of electricity, which ranges from $0.05 to $0.10/kWh in this analysis. The financial analysis shows that the delivery cost of gas may range from $0.33 to $0.55/Mcf in the first year depending primarily on the price for electricity.

  20. DOE's Coal Research and Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 13, 2011 - 2:14pm Addthis Statement of Mr. Scott Klara, Deputy Laboratory Director, National Energy Technology Laboratory before the Subcommittee on Energy and Environment, Committee on Science, Space and Technology, U.S. House of Representatives. Thank you Chairman Harris and members of the Subcommittee; I appreciate the opportunity to discuss the Department of Energy's (DOE) coal research & development activities. Interagency Task Force on Carbon Capture and Storage Before I

  1. NETL: Coal Gasification Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gasification Systems Coal Gasification is a process that can turn coal into clean power, chemicals, hydrogen and transportation fuels, and can be used to capture the carbon from the coal for storage or for enhanced oil recovery. To better understand the basic concepts behind Gasification, watch this short video: What is Gasification? The Gasification Systems Program is developing advanced technologies to reduce the cost and increase the efficiency of producing coal syngas. Click on the Graphic

  2. Method for fluorinating coal

    DOE Patents [OSTI]

    Huston, John L.; Scott, Robert G.; Studier, Martin H.

    1978-01-01

    Coal is fluorinated by contact with fluorine gas at low pressure. After pial fluorination, when the reaction rate has slowed, the pressure is slowly increased until fluorination is complete, forming a solid fluorinated coal of approximate composition CF.sub.1.55 H.sub.0.15. The fluorinated coal and a solid distillate resulting from vacuum pyrolysis of the fluorinated coal are useful as an internal standard for mass spectrometric unit mass assignments from about 100 to over 1500.

  3. Coal gasification apparatus

    DOE Patents [OSTI]

    Nagy, Charles K.

    1982-01-01

    Coal hydrogenation vessel has hydrogen heating passages extending vertically through its wall and opening into its interior.

  4. Generating power with drained coal mine methane

    SciTech Connect (OSTI)

    2005-09-01

    The article describes the three technologies most commonly used for generating electricity from coal mine methane: internal combustion engines, gas turbines, and microturbines. The most critical characteristics and features of these technologies, such as efficiency, output and size are highlighted. 5 refs.

  5. Director Leaving the National Energy Technology Laboratory

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy today announced that Carl O. Bauer is retiring from federal service and leaving the National Energy Technology Laboratory effective February 28, 2010, following a distinguished four-year tenure as the laboratory's director, completing an impressive federal civilian and military career.

  6. Flash hydrogenation of coal

    DOE Patents [OSTI]

    Manowitz, Bernard; Steinberg, Meyer; Sheehan, Thomas V.; Winsche, Warren E.; Raseman, Chad J.

    1976-01-01

    A process for the hydrogenation of coal comprising the contacting of powdered coal with hydrogen in a rotating fluidized bed reactor. A rotating fluidized bed reactor suitable for use in this process is also disclosed. The coal residence time in the reactor is limited to less than 5 seconds while the hydrogen contact time is not in excess of 0.2 seconds.

  7. Coal production 1989

    SciTech Connect (OSTI)

    Not Available

    1990-11-29

    Coal Production 1989 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. 7 figs., 43 tabs.

  8. List of Geothermal Electric Incentives | Open Energy Information

    Open Energy Info (EERE)

    Coal with CCS Concentrating Solar Power Energy Storage Fuel Cells Geothermal Electric Natural Gas Nuclear Tidal Energy Wave Energy Wind energy BiomassBiogas Hydroelectric...

  9. Low-sulfur coal usage alters transportation strategies

    SciTech Connect (OSTI)

    Stein, H.

    1995-07-01

    As electricity production has grown, so has the amount of coal burned by US utilities. In order to comply with the 1990 Clean Air Act Amendments (CAAA), many utilities have changed from high-sulfur coal to lower-sulfur coal to reduce sulfur dioxide emissions. The primary mode of transporting coal to utilities remains the railroad, and coal represents the largest freight tonnage shipped - two out of every five tons. Since coal is so important to the railroads, it is logical that as utilities have changed their coal-buying strategies, the railroads` strategies have also changed. The increased demand for Western coal has caused rail lines some capacity problems which they are attempting to meet head-on by buying new railcars and locomotives and expanding track capacities. The new railcars typically have aluminum bodies to reduce empty weight, enabling them to carry larger loads of coal. Train locomotives are also undergoing upgrade changes. Most new locomotives have as motors to drive the wheels which deliver more motive power (traction) to the wheel trucks. In fact the motors are up to 30% more efficient at getting the traction to the trucks. Trackage is also being expanded to alleviate serious congestion on the tracks when moving Western coal.

  10. Electric sales and revenue 1997

    SciTech Connect (OSTI)

    1998-10-01

    The Electric Sales and Revenue is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Information is provided on electricity sales, associated revenue, average revenue per kilowatthour sold, and number of consumers throughout the US. The data provided in the Electric Sales and Revenue are presented at the national, Census division, State, and electric utility levels. The information is based on annual data reported by electric utilities for the calendar year ending December 31, 1997. 16 figs., 17 tabs.

  11. Coal recovery process

    DOE Patents [OSTI]

    Good, Robert J.; Badgujar, Mohan

    1992-01-01

    A method for the beneficiation of coal by selective agglomeration and the beneficiated coal product thereof is disclosed wherein coal, comprising impurities, is comminuted to a particle size sufficient to allow impurities contained therein to disperse in water, an aqueous slurry is formed with the comminuted coal particles, treated with a compound, such as a polysaccharide and/or disaccharide, to increase the relative hydrophilicity of hydrophilic components, and thereafter the slurry is treated with sufficient liquid agglomerant to form a coagulum comprising reduced impurity coal.

  12. Coal Data: A reference

    SciTech Connect (OSTI)

    Not Available

    1991-11-26

    The purpose of Coal Data: A Reference is to provide basic information on the mining and use of coal, an important source of energy in the United States. The report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces new terms. Topics covered are US coal deposits, resources and reserves, mining, production, employment and productivity, health and safety, preparation, transportation, supply and stocks, use, coal, the environment, and more. (VC)

  13. TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division

    Office of Environmental Management (EM)

    20 DATE: January 13, 2012 TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Procurement and Assistance Management SUBJECT: Acquisition Guide Chapter 3.3 - Compliance with U.S. Export Control Laws, Regulations, and Policies SUMMARY: The subject guide chapter provides introductory information on compliance with applicable U.S. export control laws, regulations and policies when exporting. The guidance in this Flash will be

  14. TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division

    Office of Environmental Management (EM)

    16 DATE: December 22, 2011 TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Procurement and Assistance Management SUBJECT: Acquisition Career Management Handbook Change - Revised Contracting Officer's Representative Certification (COR) SUMMARY: A recent review of the January 2009 issue of the Department of Energy (DOE) Acquisition Career Management Program (ACMP) Handbook identified many areas that require an update. Although

  15. TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division

    Office of Environmental Management (EM)

    POLICY FLASH 2013-38 DATE: March 18, 2013 TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT: Revised Merit Review Guide for Financial Assistance SUMMARY: Attached is the revised Merit Review Guide for Financial Assistance. Revisions include reformatting and updating of the information presented in the Guide and Attachments. This Flash will be available online at the following website:

  16. TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division

    Office of Environmental Management (EM)

    4-17 DATE: February 12, 2014 TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT: Revised Acquisition Letter 2013-11- Non-Management and Operating (Non-M&O) Contractor Business Systems Clauses for Section H - Earned Value Management Clause SUMMARY: The attached Acquisition Letter (AL) 2013-11 (originally released in Policy Flash 2013-71 on August 5, 2013) revises one Section H Clause

  17. TO: Procurement Directors FROM: Director, Contract and Financial Assistance Policy Division

    Office of Environmental Management (EM)

    POLICY FLASH 2012-43 DATE: May 14, 2012 TO: Procurement Directors FROM: Director, Contract and Financial Assistance Policy Division Office of Policy Office of Procurement and Assistance Management SUBJECT: Acquisition Planning: Revised DOE Acquisition Guide Chapter 7.1 SUMMARY: Acquisition Guide Chapter 7.1 is revised to remind the planner when planning for an interagency acquisition to perform a determination of best procurement approach, business case analysis and/or Economy Act

  18. TO: Procurement Directors FROM: Director, Contract and Financial Assistance Policy Division

    Office of Environmental Management (EM)

    3 DATE: February 27, 2013 TO: Procurement Directors FROM: Director, Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT: DOE O 206.2 Identity, Credential, and Access Management (ICAM) SUMMARY: The Department issued a Contractor Requirements Document (CRD) for the subject Directive on February 19, 2013. Under the Department's Directives Program (DOE Order 251.1C), Heads of Field Elements are generally responsible for determining

  19. TO: Procurement Directors FROM: Director, Contract and Financial Assistance Policy Division

    Office of Environmental Management (EM)

    POLICY FLASH 2013-58 DATE: June 5, 2013 TO: Procurement Directors FROM: Director, Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT: Revised Guide for Financial Assistance SUMMARY: Attached is a revised Guide for Financial Assistance. The Guide has been updated to reflect changes to web sites, organization names, systems, and DOE policies and practices since the guide was last issued. The revision date has been inserted in the

  20. Wabash River Coal Gasification Repowering Project

    SciTech Connect (OSTI)

    Amick, P.; Mann, G.J.; Cook, J.J.; Fisackerly, R.; Spears, R.C.

    1992-01-01

    The Destec gasification process features an oxygen-blown, two stage entrained flow gasifier. PSI will procure coal for the Project consistent with the design specification ranges of Destec's coal gasification facility. Destec's plant will be designed to accept coal with a maximum sulfur content of 5.9% (dry basis) and a minimum energy content of 13,5000 BTU/pound (moisture and ash free basis). PSI and Destec will test at least two other coals for significant periods during the demonstration period. In the Destec process, coal is ground with water to form a slurry. It is then pumped into a gasification vessel where oxygen is added to form a hot raw gas through partial combustion. Most of the noncarbon material in the coal melts and flows out the bottom of the vessel forming slag -- a black, glassy, non-leaching, sand-like material. Particulates, sulfur and other impurities are removed from the gas before combustion to make it acceptable fuel for the gas turbine. The synthetic fuel gas (syngas) is piped to a General Electric MS 7001F high temperature combustion turbine generator. A heat recovery steam generator recovers gas turbine exhaust heat to produce high pressure steam. This steam and the steam generated in the gasification process supply an existing steam turbine-generator. The plant will be designed to outperform air emission standards established by the Clean Air Act Amendments for the year 2000.

  1. Wabash River Coal Gasification Repowering Project

    SciTech Connect (OSTI)

    Amick, P.; Mann, G.J.; Cook, J.J.; Fisackerly, R.; Spears, R.C.

    1992-11-01

    The Destec gasification process features an oxygen-blown, two stage entrained flow gasifier. PSI will procure coal for the Project consistent with the design specification ranges of Destec`s coal gasification facility. Destec`s plant will be designed to accept coal with a maximum sulfur content of 5.9% (dry basis) and a minimum energy content of 13,5000 BTU/pound (moisture and ash free basis). PSI and Destec will test at least two other coals for significant periods during the demonstration period. In the Destec process, coal is ground with water to form a slurry. It is then pumped into a gasification vessel where oxygen is added to form a hot raw gas through partial combustion. Most of the noncarbon material in the coal melts and flows out the bottom of the vessel forming slag -- a black, glassy, non-leaching, sand-like material. Particulates, sulfur and other impurities are removed from the gas before combustion to make it acceptable fuel for the gas turbine. The synthetic fuel gas (syngas) is piped to a General Electric MS 7001F high temperature combustion turbine generator. A heat recovery steam generator recovers gas turbine exhaust heat to produce high pressure steam. This steam and the steam generated in the gasification process supply an existing steam turbine-generator. The plant will be designed to outperform air emission standards established by the Clean Air Act Amendments for the year 2000.

  2. Microsoft Word - CBFO Names Randy Unger Director of Quality Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CBFO Names Randy Unger Director of Quality Assurance CARLSBAD, N.M., June 14, 2011 -Randy Unger has been named Director of Quality Assurance (QA) for the U.S. Department of...

  3. Mary Hockaday, Cheryl Cabbil named new associate directors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazard Operations. "Mary is a 30-year veteran of the Lab and currently serves in a joint role as the deputy associate director for the Weapons Physics directorate as well as...

  4. Murray confirmed as Office of Science Director | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Murray confirmed as Office of Science Director Dr. Cherry Murray was confirmed by the Senate on Thursday, December 10, 2015 as the Director of the Department of Energy's Office of...

  5. ZERO EMISSION COAL POWER, A NEW CONCEPT

    SciTech Connect (OSTI)

    H. -J. ZIOCK; K. S. LACKNER; D. P. HARRISON

    2001-04-01

    The Zero Emission Coal Alliance (ZECA) is developing an integrated zero emission process that generates clean energy carriers (electricity or hydrogen) from coal. The process exothermically gasifies coal using hydrogen to produce a methane rich intermediate state. The methane is subsequently reformed using water and a CaO based sorbent. The sorbent supplies the energy needed to drive the reforming reaction and simultaneously removes the generated CO{sub 2} by producing CaCO{sub 3}. The resulting hydrogen product stream is split, approximately 1/2 going to gasify the next unit of coal, and the other half being the product. This product stream could then be split a second time, part being cleaned up with a high temperature hydrogen separation membrane to produce pure hydrogen, and the remainder used to generate electricity via a solid oxide fuel cell (SOFC). The inevitable high temperature waste heat produced by the SOFC would in turn be used to regenerate the CaO by calcining the CaCO{sub 3} product of the reforming stage thereby generating a pure stream of CO{sub 2}. The CO{sub 2} will be dealt with a mineral sequestration process discussed in other papers presented at this conference. The SOFC has the added advantage of doubling as an oxygen separation membrane, thereby keeping its exhaust stream, which is predominantly steam, free of any air. This exhaust stream is largely recycled back to the reforming stage to generate more hydrogen, with a slipstream being extracted and condensed. The slipstream carries with it the other initial contaminants present in the starting coal. Overall the process is effectively closed loop with zero gaseous emissions to the atmosphere. The process also achieves very high conversion efficiency from coal energy to electrical energy ({approximately} 70%) and naturally generates a pure stream of CO{sub 2} ready for disposal via the mineral sequestration process.

  6. Process for hydrogenating coal and coal solvents

    DOE Patents [OSTI]

    Tarrer, Arthur R.; Shridharani, Ketan G.

    1983-01-01

    A novel process is described for the hydrogenation of coal by the hydrogenation of a solvent for the coal in which the hydrogenation of the coal solvent is conducted in the presence of a solvent hydrogenation catalyst of increased activity, wherein the hydrogenation catalyst is produced by reacting ferric oxide with hydrogen sulfide at a temperature range of 260.degree. C. to 315.degree. C. in an inert atmosphere to produce an iron sulfide hydrogenation catalyst for the solvent. Optimally, the reaction temperature is 275.degree. C. Alternately, the reaction can be conducted in a hydrogen atmosphere at 350.degree. C.

  7. WABASH RIVER COAL GASIFICATION REPOWERING PROJECT

    SciTech Connect (OSTI)

    Unknown

    2000-09-01

    The close of 1999 marked the completion of the Demonstration Period of the Wabash River Coal Gasification Repowering Project. This Final Report summarizes the engineering and construction phases and details the learning experiences from the first four years of commercial operation that made up the Demonstration Period under Department of Energy (DOE) Cooperative Agreement DE-FC21-92MC29310. This 262 MWe project is a joint venture of Global Energy Inc. (Global acquired Destec Energy's gasification assets from Dynegy in 1999) and PSI Energy, a part of Cinergy Corp. The Joint Venture was formed to participate in the Department of Energy's Clean Coal Technology (CCT) program and to demonstrate coal gasification repowering of an existing generating unit impacted by the Clean Air Act Amendments. The participants jointly developed, separately designed, constructed, own, and are now operating an integrated coal gasification combined-cycle power plant, using Global Energy's E-Gas{trademark} technology (E-Gas{trademark} is the name given to the former Destec technology developed by Dow, Destec, and Dynegy). The E-Gas{trademark} process is integrated with a new General Electric 7FA combustion turbine generator and a heat recovery steam generator in the repowering of a 1950's-vintage Westinghouse steam turbine generator using some pre-existing coal handling facilities, interconnections, and other auxiliaries. The gasification facility utilizes local high sulfur coals (up to 5.9% sulfur) and produces synthetic gas (syngas), sulfur and slag by-products. The Project has the distinction of being the largest single train coal gasification combined-cycle plant in the Western Hemisphere and is the cleanest coal-fired plant of any type in the world. The Project was the first of the CCT integrated gasification combined-cycle (IGCC) projects to achieve commercial operation.

  8. Montgomery to Step Down as Jefferson Lab Director | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Montgomery to Step Down as Jefferson Lab Director External Link: http://www.jsallc.org/news/JSAIF20160122.pdf

  9. NERSC Staff Honored with Director's Awards for Exceptional Achievement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Staff Honored with Director's Awards for Exceptional Achievement NERSC Staff Honored with Director's Awards for Exceptional Achievement September 14, 2015 Jon Bashor, jbashor@lbl.gov, 510-486-5849 Directors-Awards.jpg The award recipeients: (Top row, clockwise) Deborah Agarwal (CRD), Eli Dart (ESnet), Brent Draney (NERSC), Lynne Rippe (NERSC) and James Sethian (CRD). Five employees in the Computing Sciences organization are recipients of this year's Director's Awards for Exceptional Achievement,

  10. Hugh Montgomery Named JLab's New Director | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hugh Montgomery Named JLab's New Director Hugh Montgomery Named JLab's New Director Washington, D.C., April 3, 2008 - Hugh E. Montgomery, a highly regarded nuclear physicist with an extensive research portfolio and broad international experience, today was named director of the Department of Energy's Thomas Jefferson National Accelerator Facility. Montgomery's appointment as the lab's third director was announced by Jefferson Science Associates, LLC, which manages and operates Jefferson Lab for

  11. Hugh Montgomery Named JLab's New Director | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hugh Montgomery Named JLab's New Director Hugh Montgomery Named JLab's New Director Washington, D.C., April 3, 2008 - Hugh E. Montgomery, a highly regarded nuclear physicist with an extensive research portfolio and broad international experience, today was named director of the Department of Energy's Thomas Jefferson National Accelerator Facility. Montgomery's appointment as the lab's third director was announced by Jefferson Science Associates, LLC, which manages and operates Jefferson Lab for

  12. Jefferson Lab Selects Italian Physicist As Deputy Associate Director for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Physics | Jefferson Lab Selects Italian Physicist As Deputy Associate Director for Nuclear Physics 0Jefferson Lab Selects Italian Physicist As Deputy Associate Director for Nuclear Physics Cynthia Keppel Patrizia Rossi has been named deputy associate director for nuclear physics at Jefferson Lab. NEWPORT NEWS, Feb. 8, 2012 - Patrizia Rossi, a well-respected physicist from Italy with extensive experience in experimental physics, has been named deputy associate director for nuclear

  13. 2015 Safeguards and Security Directors Conference - July 14 - 16, 2015 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Safeguards and Security Directors Conference - July 14 - 16, 2015 2015 Safeguards and Security Directors Conference - July 14 - 16, 2015 April 20, 2015 - 1:20pm Addthis The 2015 Safeguards and Security Directors Conference will bring together both Federal and Contractor senior security directors and managers from across the Department of Energy and other invited government agencies. This event will address many of the significant policy updates, reorganization, and

  14. NREL Director Arvizu Elected to National Academy of Engineering - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Director Arvizu Elected to National Academy of Engineering February 6, 2014 Photo of NREL Director Dan Arvizu NREL Director Dan Arvizu Dan Arvizu, director of the Energy Department's National Renewable Energy Laboratory (NREL), has been elected to membership in the National Academy of Engineering. Election to the National Academy of Engineering is among the highest professional distinctions accorded to an engineer. Academy membership honors those who have made outstanding

  15. NREL Names Director for National Center for Photovoltaics - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL NREL Names Director for National Center for Photovoltaics Ryne Raffaelle to join NREL August 31, 2009 July 30, 2009 Photo of Dr. Ryne P. Raffaelle Dr. Ryne P. Raffaelle has been named director of the National Center for Photovoltaics at NREL. Dr. Ryne P. Raffaelle has been named director of the National Center for Photovoltaics at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL). Raffaelle most recently has been Academic Director for the Golisano

  16. Christoph W. Leemann Named Jefferson Lab Director | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    W. Leemann Named Jefferson Lab Director Christoph W. Leemann Named Jefferson Lab Director November 16, 2001 The Southeastern Universities Research Association (SURA) has selected internationally recognized particle-accelerator physicist Christoph W. Leemann as director of the Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab). Leemann has been serving for the past year as interim director of the Newport News, Virginia nuclear physics laboratory, a world center

  17. Deputy Director, Chief Operating Officer | Princeton Plasma Physics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directors, Department Heads and other designated personnel. She is responsible for continuous assessment and improvement of safety, project management, engineering,...

  18. Larry Cardman new Associate Director of Physics | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Larry Cardman new Associate Director of Physics Dr. Lawrence S. Cardman New Associate Director Physics Division Newport News, Virginia - Dr. Larry Cardman, former deputy associate director of physics at the Thomas Jefferson National Accelerator Facility (Jefferson Lab), has assumed the role of Associate Director of Physics. He replaces Dr. John Domingo who stepped down following the completion and equipping of the three large and complex experimental halls at the laboratory. To date, six

  19. Los Alamos National Laboratory names Jeffrey Mousseau Associate Director of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Programs Associate Director Of Environmental Programs Los Alamos National Laboratory names Jeffrey Mousseau Associate Director of Environmental Programs Mousseau currently works for the Lab's transuranic waste disposal program. September 18, 2012 Jeffrey Mousseau has been hired as the new associate director for Environmental Programs. Jeffrey Mousseau has been hired as the new associate director for Environmental Programs. Contact Patti Jones Communications Office (505)

  20. Los Alamos National Laboratory names Jeffrey Mousseau Associate Director of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Programs Associate Director Of Environmental Programs Los Alamos National Laboratory names Jeffrey Mousseau Associate Director of Environmental Programs Mousseau currently works for the Lab's transuranic waste disposal program. September 18, 2012 Jeffrey Mousseau has been hired as the new associate director for Environmental Programs. Jeffrey Mousseau has been hired as the new associate director for Environmental Programs. Contact Communications Office (505) 667-7000 "Jeff

  1. Los Alamos National Laboratory names Jeffrey Mousseau Associate Director of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Programs Associate Director of Environmental Programs Los Alamos National Laboratory names Jeffrey Mousseau Associate Director of Environmental Programs Mousseau currently works for the Lab's transuranic waste disposal program. September 18, 2012 Jeffrey Mousseau has been hired as the new associate director for Environmental Programs. Jeffrey Mousseau has been hired as the new associate director for Environmental Programs. Contact Colleen Curran Communications Office (505)

  2. CNS names Guess Director of Nuclear Safety Oversight | Y-12 National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CNS names Guess Director of ... CNS names Guess Director of Nuclear Safety Oversight Posted: ... Guess' most recent position was as Power Ascension Test Director in the ...

  3. MEMORANDUM FOR HUMAN RESOLIRCES DIRECTORS FROM:

    Energy Savers [EERE]

    April 27,2010 MEMORANDUM FOR HUMAN RESOLIRCES DIRECTORS FROM: s r x j ) bi Le OFFICE HE CHIEF HUMAN CAPITAL OFFICER SUBJECT: GUIDANCE MEMORANDUM #8: DOE FAIR LABOR STANDARDS ACT (FLSA) EXEMPT O R NON-EXEMPT STATUS DETERMINATION This memorandum provides guidance on determining an employee's FLSA status within the Department. The Department of Labor (DOL) issued the final revision of the Fair Labor Standards Act (FLSA), August 23, 2004, governing overtime eligibility for "white-collar"

  4. TO: Procurement Directors Heads of Contracting Activities

    Energy Savers [EERE]

    3 DATE: February 04, 2016 TO: Procurement Directors Heads of Contracting Activities FROM: Acting Chief Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition Management SUBJECT: New Policy Flash Distribution Process SUMMARY: This office is automating the policy flash (PF) distribution process by using a listserv. As of February 18, 2016, the listserv will send PF notifications without attachments. PFs will no longer be sent via the email distribution list. PFs

  5. TO: Procurement Directors Heads of Contracting Activities

    Energy Savers [EERE]

    7 DATE: March 16, 2016 TO: Procurement Directors Heads of Contracting Activities FROM: Acting Chief Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition Management SUBJECT: Acquisition Letters Remaining in Effect SUMMARY: Acquisition letter 2016-04 has been issued. It lists ALs currently in effect and discontinued ALs, along with the reason why the AL is no longer in effect. This flash will be available online at the following website:

  6. TO: Procurement Directors Heads of Contracting Activities

    Energy Savers [EERE]

    1 DATE: January 15, 2016 TO: Procurement Directors Heads of Contracting Activities FROM: Chief Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition Management SUBJECT: Streamlining DOE's Oversight of Compensation and Benefits SUMMARY: The purpose of Acquisition Letter (AL) 2016-01 is to provide guidance regarding required actions to move from DOE traditional transactional approach for approving certain costs relating to compensation and benefits, to a risk

  7. TO: Procurement Directors Heads of Contracting Activities

    Energy Savers [EERE]

    2 DATE: February 2, 2016 TO: Procurement Directors Heads of Contracting Activities FROM: Chief Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition Management SUBJECT: Clarifying Guidance for Audits of "For-Profit" Financial Assistance Awards SUMMARY: The purpose of this policy flash is to provide clarifying guidance relating to certain provisions set forth in DOE Regulation 2 CFR 910.515. The clarifying guidance is as follows: * DOE Regulation 2 CFR

  8. TO: Procurement Directors Heads of Contracting Activities

    Energy Savers [EERE]

    6 DATE: March 15, 2016 TO: Procurement Directors Heads of Contracting Activities FROM: Acting Chief Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition Management SUBJECT: Clarifying Guidance for Audits of "For-Profit" Financial Assistance Awards SUMMARY: The purpose of this policy flash is to provide clarifying guidance relating to the requirement of rendering an opinion on the Schedule of Expenditures as set forth in DOE Regulation 2 CFR 910.514.

  9. TO: Procurement Directors/Contracting Officers

    Energy Savers [EERE]

    POLICY FLASH 2016-14 DATE: February 17, 2016 TO: Procurement Directors/Contracting Officers ~- ~ ~ \N \ .___.; FROM: Acting Chief Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition Management SUBJECT: Acquisition Letter 2016-02/Financial Acquisition Letter 2016-01 Congressional Notifications and Quarterly Reporting to the Appropriations Committees in Accordance with the Energy and Water Development and Related Agencies Appropriations Act, 2016, Division D,

  10. Mr. Carl Schafer Director of Environmental Policy

    Office of Legacy Management (LM)

    45 UY 2 9 1987 Mr. Carl Schafer Director of Environmental Policy Office of the Deputy Assistant Secretary of Defense for Installations Pentagon Washington, D.C. 20301 Dear Mr. Schafer: As you know, the Department of Energy (DOE) is implementing, a program to identify sites that may be radiologically contaminated as a result of.DOE predecessor operations and to correct any problems associated with this contamination if there is DOE authority to do so. Reviews of historical materials from the

  11. Director, health Physics Office Columbia University

    Office of Legacy Management (LM)

    f. 3 -J Mr. Philip tori0 Director, health Physics Office Columbia University 289 Engineering Terrace 520 West 120th Street New York, New York 10027 NY.3 "I A\, 4 f- ' :""5 . . ;. ,_ i._ ' L, Dear Mr. Lorio: The Department of Energy (DOE), as part of its Formerly Utilized Sites Remedial Action Program (FUSRAP), has reviewed information on Columbia University facilities to determine whether they contain residual radioactivity traceable to activities conducted on behalf of the

  12. Combined compressed air storage-low BTU coal gasification power plant

    DOE Patents [OSTI]

    Kartsounes, George T.; Sather, Norman F.

    1979-01-01

    An electrical generating power plant includes a Compressed Air Energy Storage System (CAES) fueled with low BTU coal gas generated in a continuously operating high pressure coal gasifier system. This system is used in coordination with a continuously operating main power generating plant to store excess power generated during off-peak hours from the power generating plant, and to return the stored energy as peak power to the power generating plant when needed. The excess coal gas which is produced by the coal gasifier during off-peak hours is stored in a coal gas reservoir. During peak hours the stored coal gas is combined with the output of the coal gasifier to fuel the gas turbines and ultimately supply electrical power to the base power plant.

  13. Deadline for NREL Director's Fellowships Approaching - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deadline for NREL Director's Fellowships Approaching August 20, 2013 The September 30 application deadline for scientists and engineers interested in participating in the Energy Department's National Renewable Energy Laboratory (NREL) Director's Fellowships program is quickly approaching. NREL Director's Fellowships are designed to attract the next generation of exceptionally qualified scientists and engineers with outstanding talent and credentials in renewable energy research and related

  14. Blackout: coal, climate and the last energy crisis

    SciTech Connect (OSTI)

    Heinberg, R. [Post Carbon Institute in California, CA (United States)

    2009-07-15

    Coal fuels more than 30 per cent of UK electricity production, and about 50 per cent in the US, providing a significant portion of total energy output. China and India's recent ferocious economic growth has been based almost entirely on coal-generated electricity. Coal currently looks like a solution to many of our fast-growing energy problems. However, while coal advocates are urging us full steam ahead, the increasing reliance on this dirtiest of all fossil fuels has crucial implications for energy policy, pollution levels, the global climate, world economy and geopolitics. Drawbacks to a coal-based energy strategy include: Scarcity - new studies suggest that the peak of world coal production may actually be less than two decades away; Cost - the quality of produced coal is declining, while the expense of transportation is rising, leading to spiralling costs and increasing shortages; and, Climate impacts - our ability to deal with the historic challenge of climate change may hinge on reducing coal consumption in future years.

  15. Microbial solubilization of coals

    SciTech Connect (OSTI)

    Campbell, J.A.; Fredrickson, J.K.; Stewart, D.L.; Thomas, B.L.; McCulloch, M.; Wilson, B.W.; Bean, R.M.

    1988-11-01

    Microbial solubilization of coal may serve as a first step in a process to convert low-rank coals or coal-derived products to other fuels or products. For solubilization of coal to be an economically viable technology, a mechanistic understanding of the process is essential. Leonardite, a highly oxidized, low-rank coal, has been solubilized by the intact microorganism, cell-free filtrate, and cell-free enzyme of /ital Coriolus versicolor/. A spectrophotometric conversion assay was developed to quantify the amount of biosolubilized coal. In addition, a bituminous coal, Illinois No. 6, was solubilized by a species of /ital Penicillium/, but only after the coal had been preoxidized in air. Model compounds containing coal-related functionalities have been incubated with the leonardite-degrading fungus, its cell-free filtrate, and purified enzyme. The amount of degradation was determined by gas chromatography and the degradation products were identified by gas chromatography/mass spectrometry. We have also separated the cell-free filtrate of /ital C. versicolor/ into a <10,000 MW and >10,000 MW fraction by ultrafiltration techniques. Most of the coal biosolubilization activity is contained in the <10,000 MW fraction while the model compound degradation occurs in the >10,000 MW fraction. The >10,000 MW fraction appears to contain an enzyme with laccase-like activity. 10 refs., 8 figs., 5 tabs.

  16. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Electricity Consumption and Expenditures, 2003" ,"All Buildings* Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  17. Illinois SB 1987: the Clean Coal Portfolio Standard Law

    SciTech Connect (OSTI)

    2009-01-15

    On January 12, 2009, Governor Rod Blagojevich signed SB 1987, the Clean Coal Portfolio Standard Law. The legislation establishes emission standards for new coal-fueled power plants power plants that use coal as their primary feedstock. From 2009-2015, new coal-fueled power plants must capture and store 50 percent of the carbon emissions that the facility would otherwise emit; from 2016-2017, 70 percent must be captured and stored; and after 2017, 90 percent must be captured and stored. SB 1987 also establishes a goal of having 25 percent of electricity used in the state to come from cost-effective coal-fueled power plants that capture and store carbon emissions by 2025. Illinois is the first state to establish a goal for producing electricity from coal-fueled power plants with carbon capture and storage (CCS). To support the commercial development of CCS technology, the legislation guarantees purchase agreements for the first Illinois coal facility with CCS technology, the Taylorville Energy Center (TEC); Illinois utilities are required to purchase at least 5 percent of their electricity supply from the TEC, provided that customer rates experience only modest increases. The TEC is expected to be completed in 2014 with the ability to capture and store at least 50 percent of its carbon emissions.

  18. ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",...

    U.S. Energy Information Administration (EIA) Indexed Site

    Utility(c)","Fuel Oil","Fuel","Fuel Oil","Fuel Oil","Gas","Gas","Highway Usage)","Hydrogen","Kerosene","Black Liquor","NGL(d)","Total","Utility(b)","Local Utility(c)","Total","...

  19. Trace elements in coal by glow discharge mass spectrometry

    SciTech Connect (OSTI)

    Jacobs, M.L.; Wilson, C.R.; Pestovich, J. Jr.

    1995-08-01

    A need and a demand exist for determining trace elements in coal and coal related by-products, especially those elements which may potentially be a health hazard. The provisions of the 1990 clean air act require that the EPA evaluate the emissions of electric utilities for trace elements and other potentially hazardous organic compounds. The coal fired electric utility industry supplies roughly 60% of the total generating capacity of 2,882,525 million kilowatt hours (nearly 3 trillion kilowatt hours) generated in the U.S. This is accomplished by 414 power plants scattered across the country that burned 813,508,000 short tons of coal in 1993. The relative volatility of some inorganic constituents in coal makes them more prone to be emitted to the atmosphere following combustion. The production of analytical data for trace elements is known to be a difficult task in coal and by-products of coal combustion (fly ash, bottom ash, gas streams, etc.), in terms of both sample collection and analytical determinations. There are several common analytical methods available to the analyst to determine trace elements in coal and coal by-products. In general analytical germs, the material to be analyzed can be totally solubilized (or extracted), or the elements analytes can be determined in the material as a solid. A relatively new elemental technique, Glow Discharge Mass Spectrometry (GDMS) can be used with solids as well. This new analytical technique had never before been applied directly to coal. The radio frequency-glow discharge quadropole mass spectrometer was used to analyze coal directly for the first time ever by rf-GDMS. The rf-GDMS technique is described.

  20. Beluga coal gasification feasibility study

    SciTech Connect (OSTI)

    Robert Chaney; Lawrence Van Bibber

    2006-07-15

    The objective of the study was to determine the economic feasibility of developing and siting a coal-based integrated gasification combined-cycle (IGCC) plant in the Cook Inlet region of Alaska for the co-production of electric power and marketable by-products. The by-products, which may include synthesis gas, Fischer-Tropsch (F-T) liquids, fertilizers such as ammonia and urea, alcohols, hydrogen, nitrogen and carbon dioxide, would be manufactured for local use or for sale in domestic and foreign markets. This report for Phase 1 summarizes the investigation of an IGCC system for a specific industrial setting on the Cook Inlet, the Agrium U.S. Inc. ('Agrium') fertilizer plant in Nikiski, Alaska. Faced with an increase in natural gas price and a decrease in supply, the Agrium is investigating alternatives to gas as feed stock for their plant. This study considered all aspects of the installation and infrastructure, including: coal supply and cost, coal transport costs, delivery routes, feedstock production for fertilizer manufacture, plant steam and power, carbon dioxide (CO{sub 2}) uses, markets for possible additional products, and environmental permit requirements. The Cook Inlet-specific Phase 1 results, reported here, provided insight and information that led to the conclusion that the second study should be for an F-T plant sited at the Usibelli Coal Mine near Healy, Alaska. This Phase 1 case study is for a very specific IGCC system tailored to fit the chemical and energy needs of the fertilizer manufacturing plant. It demonstrates the flexibility of IGCC for a variety of fuel feedstocks depending on plant location and fuel availability, as well as the available variety of gas separation, gas cleanup, and power and steam generation technologies to fit specific site needs. 18 figs., 37 tabs., 6 apps.

  1. Advanced Coal Wind Hybrid: Economic Analysis

    SciTech Connect (OSTI)

    Phadke, Amol; Goldman, Charles; Larson, Doug; Carr, Tom; Rath, Larry; Balash, Peter; Yih-Huei, Wan

    2008-11-28

    Growing concern over climate change is prompting new thinking about the technologies used to generate electricity. In the future, it is possible that new government policies on greenhouse gas emissions may favor electric generation technology options that release zero or low levels of carbon emissions. The Western U.S. has abundant wind and coal resources. In a world with carbon constraints, the future of coal for new electrical generation is likely to depend on the development and successful application of new clean coal technologies with near zero carbon emissions. This scoping study explores the economic and technical feasibility of combining wind farms with advanced coal generation facilities and operating them as a single generation complex in the Western US. The key questions examined are whether an advanced coal-wind hybrid (ACWH) facility provides sufficient advantages through improvements to the utilization of transmission lines and the capability to firm up variable wind generation for delivery to load centers to compete effectively with other supply-side alternatives in terms of project economics and emissions footprint. The study was conducted by an Analysis Team that consists of staff from the Lawrence Berkeley National Laboratory (LBNL), National Energy Technology Laboratory (NETL), National Renewable Energy Laboratory (NREL), and Western Interstate Energy Board (WIEB). We conducted a screening level analysis of the economic competitiveness and technical feasibility of ACWH generation options located in Wyoming that would supply electricity to load centers in California, Arizona or Nevada. Figure ES-1 is a simple stylized representation of the configuration of the ACWH options. The ACWH consists of a 3,000 MW coal gasification combined cycle power plant equipped with carbon capture and sequestration (G+CC+CCS plant), a fuel production or syngas storage facility, and a 1,500 MW wind plant. The ACWH project is connected to load centers by a 3,000 MW transmission line. In the G+CC+CCS plant, coal is gasified into syngas and CO{sub 2} (which is captured). The syngas is burned in the combined cycle plant to produce electricity. The ACWH facility is operated in such a way that the transmission line is always utilized at its full capacity by backing down the combined cycle (CC) power generation units to accommodate wind generation. Operating the ACWH facility in this manner results in a constant power delivery of 3,000 MW to the load centers, in effect firming-up the wind generation at the project site.

  2. Electric sales and revenue 1991

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    The Electric Sales and Revenue is prepared by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. This publication provides information about sales of electricity, its associated revenue, and the average revenue per kilowatthour sold to residential, commercial, industrial, and other consumers throughout the United States. Previous publications presented data on typical electric bills at specified consumption levels as well as sales, revenue, and average revenue. The sales of electricity, associated revenue, and average revenue per kilowatthour provided in this report are presented at the national, Census division, State, and electric utility levels.

  3. Doug Hollett, Director Geothermal Technologies Office Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power Technologies Office Researches, tests, ... more flexible and diverse electric system more than ... technologies Rotary steering Zonal Isolation Smart ...

  4. Pulverized coal fuel injector

    DOE Patents [OSTI]

    Rini, Michael J.; Towle, David P.

    1992-01-01

    A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO.sub.2 formation.

  5. Integrated coal liquefaction process

    DOE Patents [OSTI]

    Effron, Edward

    1978-01-01

    In a process for the liquefaction of coal in which coal liquids containing phenols and other oxygenated compounds are produced during the liquefaction step and later hydrogenated, oxygenated compounds are removed from at least part of the coal liquids in the naphtha and gas oil boiling range prior to the hydrogenation step and employed as a feed stream for the manufacture of a synthesis gas or for other purposes.

  6. WCI Case for Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal The role of as an energy source The role of coal as an energy source Key Messages * Energy demand has grown strongly and will continue to increase, particularly in developing countries where energy is needed for economic growth and poverty alleviation. * All energy sources will be needed to satisfy that demand by providing a diverse and balanced supply mix. * Coal is vital for global energy security. It is abundantly available, affordable, reliable and easy and safe to transport. * In an

  7. Wheeling coal: an antitrust alternative to ICC rate making

    SciTech Connect (OSTI)

    Brand, W.E.; Leckie, D.A.

    1984-08-30

    Parallels are drawn between the position of an electric utility requested to transmit electric power for the benefit of third-party buyers and sellers with whom the utility may be connected but who lack a direct connection themselves, and the position of a railroad which forms the sole land-transportation link between a producer-seller of coal and its electric-utility customer purchasing coal for use as a primary fuel in power generation. The authors suggest that the federal courts can remedy any unreasonable refusal to grant trackage rights for the transport of coal by the seller or purchaser in much the same way that they have remedied refusals to wheel electric power between a third-party seller and third-party purchaser. 56 references.

  8. Annual Coal Distribution Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Distribution of U.S. Coal by Destination State, Consumer, Destination and Method of Transportation, 2001 (Thousand Short Tons) DESTINATION: Alabama State of Origin by...

  9. Coal Distribution Database, 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is...

  10. Rail Coal Transportation Rates

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Recurring Reserves Stocks All reports Browse by Tag Alphabetical Frequency Tag Cloud Data For: 2001 Next Release Date: October 2003 U. S. Coal-Producing Districts...

  11. Rail Coal Transportation Rates

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Previous Data Years Year: 2013 2011 2010 2008 2002 Go Background and Methodology The data ... The initial report on coal transportation rates covered the years 2001 through 2008, ...

  12. Coal liquefaction quenching process

    DOE Patents [OSTI]

    Thorogood, Robert M.; Yeh, Chung-Liang; Donath, Ernest E.

    1983-01-01

    There is described an improved coal liquefaction quenching process which prevents the formation of coke with a minimum reduction of thermal efficiency of the coal liquefaction process. In the process, the rapid cooling of the liquid/solid products of the coal liquefaction reaction is performed without the cooling of the associated vapor stream to thereby prevent formation of coke and the occurrence of retrograde reactions. The rapid cooling is achieved by recycling a subcooled portion of the liquid/solid mixture to the lower section of a phase separator that separates the vapor from the liquid/solid products leaving the coal reactor.

  13. Coal Distribution Database, 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    TF RailroadVesselShip Fuel It is also noted that Destination State code of "X Export" indicates movements to foreign destinations. 1 68 Domestic Coal Distribution...

  14. Coal Market Module

    Gasoline and Diesel Fuel Update (EIA)

    The use of coals with sub- optimal characteristics carries with it penalties in operating efficiency, maintenance cost, and system reliability. Such penalties range from the...

  15. British coal privatization procedures

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The form in which British Coal is to be privatized has finally been announced. Offers are to be invited for the operating underground and opencast mines which will be grouped into five regionally based companies. Additionally, offers will be invited for a number of collieries which are currently under care and maintenance. The five Regional Coal Companies to be formed are Central North, which will comprise the assets in the Yorkshire and Durham coalfields, including the five collieries in the Selby Complex; Central South, which will contain the assets located in the Nottinghamshire, Leicestershire, Derbyshire, and Warwickshire coalfields; North East, which has four opencast sites, Scotland, which has nine operating open-cast sites and a single underground mine, Longannet; and South Wales with its nine operating opencast sites. Tower colliery, the last underground mine in South Wales, was finally put on care and maintenance on April 20, 1994. Details of the five Regional Coal Companies are given. A new public sector body, the Coal Authority will be set up to which all British Coal's title to unworked coal and coal mines will be transferred. All the relevant property rights and liabilities of British Coal will be transferred into the Regional Coal Companies prior to their sun.

  16. Balancing coal pipes

    SciTech Connect (OSTI)

    Earley, D.; Kirkenir, B.

    2009-11-15

    Balancing coal flow to the burners to optimise combustion by using real-time measurement systems (such as microwave mass measurement) is discussed. 3 figs.

  17. Weekly Coal Production Estimation Methodology

    U.S. Energy Information Administration (EIA) Indexed Site

    Weekly Coal Production Estimation Methodology Step 1 (Estimate total amount of weekly U.S. coal production) U.S. coal production for the current week is estimated using a ratio ...

  18. Florida CFB demo plant yields low emissions on variety of coals

    SciTech Connect (OSTI)

    2005-07-01

    The US Department of Energy (DOE) has reported results of tests conducted at Jacksonville Electric Authority (JEA)'s Northside power plant using mid-to-low-sulfur coal, which indicate the facility is one of the cleanest burning coal-fired power plants in the world. A part of DOE's Clean Coal Technology Demonstration Program, the JEA project is a repowering demonstration of the operating and environmental performance of Foster Wheeler's utility-scale circulating fluidized bed combustion (CFB) technology on a range of high-sulfur coals and blends of coal and high-sulfur petroleum coke. The 300 MW demonstration unit has a non-demonstration 300 MW twin unit.

  19. Less electricity use this summer slightly offset by higher power...

    U.S. Energy Information Administration (EIA) Indexed Site

    8% in their summer electricity bills. EIA forecasts that more electricity will be generated this year by natural gas, solar energy, and wind and less from coal-fired power plants.

  20. " Electricity Sales/Transfers Out",96,4

    U.S. Energy Information Administration (EIA) Indexed Site

    "RSE Column Factor:",1 "Coal ",2105,4 "Natural Gas",6835,3 "Net Electricity",2656,2 " Purchased Electricity",2689,1 " Transfers In",53,4 " Generation from Noncombustible",," " ...

  1. "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel...

    U.S. Energy Information Administration (EIA) Indexed Site

    "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net Demand","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural ...

  2. "End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,,"Distillate" ,,,"Fuel Oil",,,"Coal" ,"Net Demand","Residual","and",,"LPG and","(excluding Coal" "End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural ...

  3. Development of a Coal Quality Expert

    SciTech Connect (OSTI)

    1998-06-20

    ABB Power Plant Laboratories Combustion Engineering, Inc., (ABB CE) and CQ Inc. completed a broad, comprehensive program to demonstrate the economic and environmental benefits of using higher quality U.S. coals for electrical power generation and developed state-of-the-art user-friendly software--Coal Quality Expert (CQE)-to reliably predict/estimate these benefits in a consistent manner. The program was an essential extension and integration of R and D projects performed in the past under U.S. DOE and EPRI sponsorship and it expanded the available database of coal quality and power plant performance information. This software will permit utilities to purchase the lowest cost clean coals tailored to their specific requirements. Based on common interest and mutual benefit, the subject program was cosponsored by the U.S. DOE, EPRI, and eight U.S. coal-burning utilities. In addition to cosponsoring this program, EPN contributed its background research, data, and computer models, and managed some other supporting contracts under the terms of a project agreement established between CQ Inc. and EPRI. The essential work of the proposed project was performed under separate contracts to CQ Inc. by Electric Power Technologies (El?'T), Black and Veatch (B and V), ABB Combustion Engineering, Babcock and Wilcox (B and W), and Decision Focus, Inc. Although a significant quantity of the coals tied in the United States are now cleaned to some degree before firing, for many of these coals the residual sulfur content requires users to install expensive sulfur removal systems and the residual ash causes boilers to operate inefficiently and to require frequent maintenance. Disposal of the large quantities of slag and ash at utility plant sites can also be problematic and expensive. Improved and advanced coal cleaning processes can reduce the sulfur content of many coals to levels conforming to environmental standards without requiring post-combustion desulfurization systems. Also, some coals may be beneficiated or blended to a quality level where significantly less costly desulfurization systems are needed. Coal cleaning processes may also be used to remove the precursors of other troublesome emissions that can be identified now or in the future. An added benefit of coal cleaning and blending is the reduction in concentrations of mineral impurities in the fuel leading to improved performance and operation of the'' boiler in which it is fired. The ash removed during the pre-combustion cleaning process can be more easily and safely disposed of at the mine than at the utility plant after combustion. EPRI's Coal Quality Impact Model (CQIM) has shown that improved fuel quality can result in savings in unit capital and operating costs. This project produced new and improved software to select coal types and specifications resulting in the best quality and lowest cost fuel to meet specific environmental requirements.

  4. MEMORANDUM FOR HUMAN RESOURCES DIRECTORS FROM: SUBJECT: ~~k.__--- SARAH J. B LLA, DIRECTOR

    Energy Savers [EERE]

    2, 2011 MEMORANDUM FOR HUMAN RESOURCES DIRECTORS FROM: SUBJECT: ~~k.__--- SARAH J. B LLA, DIRECTOR OFFICE OF AN CAPITAL MANAGEMENT POLICY GUIDANCE MEMORANDUM #21 FAMILY MEMBERS The Department of Energy has maintained a broad definition for a family member to include "any individual related by blood or affinity whose close association with the employee is the equivalent of a family relationship". This is part of the definition for a family member that is located on page 7 of the DOE

  5. Earth System Modeling -- Director`s initiative. LDRD Program final report

    SciTech Connect (OSTI)

    MacCracken, M.; Penner, J. [Lawrence Livermore National Lab., CA (United States). Atmospheric Science Div.

    1996-06-01

    The objective of the Earth System Modeling Director`s Initiative is to develop and test a framework for interactively coupling subsystem models that represent the physical, chemical, and biological processes which determine the state of the atmosphere, ocean, land surface and vegetation. Most studies of the potential for human perturbations of the climate system made previously have treated only limited components of the Earth system. The purpose of this project was to demonstrate the capability of coupling all relevant components in a flexible framework that will permit a wide variety of tests to be conducted to assure realistic interactions. A representation of the Earth system is shown and its important interactions.

  6. Co-Director Anna Llobet LANSCE Co-Director Heinz Nakotte NMSU

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director Anna Llobet LANSCE Co-Director Heinz Nakotte NMSU 11 th LANSCE School on Neutron Scattering Materials at the Mesoscale February 18 - 27, 2015 n e u t r o n s c h o o l . l a n l . g o v n e u t r o n s c h o o l @ l a n l . g o v Registration is free. | All local expenses covered. | Travel may be supported. Space is limited to 30 students. | Minorities are encouraged to apply. The School is primarily intended for graduate students & post-docs in chemistry, geosciences, materials

  7. TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division

    Office of Environmental Management (EM)

    2 DATE: February 27, 2013 TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT: Fiscal Year 2013 Small Business Contracting Goals SUMMARY: DOE has received the following revised small business contracting goals for FY13: FY13 Goals Prime Sub Small Business 7.0% 52.0% SDB 5.0% 5.0% WOSB 5.0% 5.0% SDVOSB 3.0% 3.0% HUBZone 3.0% 3.0% This Flash will be available online at the following

  8. New coal technology to flourish at Kentucky plant

    SciTech Connect (OSTI)

    Blankinship, S.

    2007-08-15

    Within four years a 76 MW (net) advanced supercritical coal unit, TC2, will go into service at the Trimble County power plant on the Ohio River near Louiseville, KY, USA. The unit is designed to burn a blend of eastern bituminous and western sub-bituminous Powder River Basin coals. TC2 is one of four US power plants to receive a $125 m tax credit under the 2005 EPACT Qualifying Advanced Coal Program for high efficiency and low emission generating units. Trimble County is owned and operated by E.ON US subsidiaries Kentucky Utilities and Louiseville Gas & Electric. It was originally designed to accommodate four 500 MW coal-fired units fired by bituminous coal from the Illinois Basin. 1 photo.

  9. Cooperative research program in coal liquefaction

    SciTech Connect (OSTI)

    Huffman, G.P.

    1991-01-01

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  10. Clean coal technologies market potential

    SciTech Connect (OSTI)

    Drazga, B.

    2007-01-30

    Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

  11. Coal resources of Kyrgyzstan

    SciTech Connect (OSTI)

    Landis, E.R.; Bostick, N.H.; Gluskoter, H.J.; Johnson, E.A.; Harrison, C.D.; Huber, D.W.

    1995-12-31

    The rugged, mountainous country of Kyrgyzstan contains about one-half of the known coal resources of central Asia (a geographic and economic region that also includes Uzbekistan, Tadjikistan and Turkmenistan). Coal of Jurassic age is present in eight regions in Kyrgyzstan in at least 64 different named localities. Significant coal occurrences of about the same age are present in the central Asian countries of Kazakhstan, China, and Russia. Separation of the coal-bearing rocks into individual deposits results more than earth movements before and during formation of the present-day mountains and basins of the country than from deposition in separate basins.Separation was further abetted by deep erosion and removal of the coal-bearing rocks from many areas, followed by covering of the remaining coal-bearing rocks by sands and gravels of Cenozoic age. The total resources of coal in Kyrgyzstan have been reported as about 30 billion tons. In some of the reported localities, the coal resources are known and adequately explored. In other parts of the republic, the coal resources are inadequately understood or largely unexplored. The resource and reserve inventory of Kyrgyzstan is at best incomplete; for some purposes, such as short-term local and long-range national planning, it may be inadequate. Less than 8% of the total estimated resources are categorized as recoverable reserves, and the amount that is economically recoverable is unknown. The coal is largely of subbituminous and high-volatile C bituminous rank, most has low and medium ash and sulfur contents, and coals of higher rank (some with coking qualities) are present in one region. It is recommended that appropriate analyses and tests be made during planning for utilization.

  12. Coal production, 1987

    SciTech Connect (OSTI)

    Not Available

    1988-12-05

    Coal Production 1987 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. The data presented in this report were collected and published by the Energy Information Administration (EIA), to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (P.L. 93-275) as amended. The 1987 coal production and related data presented in this report were obtained from Form EIA-7A, ''Coal Production Report,'' from companies owning mining operations that produced, processed, or prepared 10,000 or more short tons of coal in 1987. This survey originated at the Bureau of Mines, US Department of the Interior. In 1977, the responsibility for taking the survey was transferred to the EIA under the Department of Energy Organization Act (P.L. 95-91). The data cover 3667 of the 4770 US coal mining operations active in 1987. These mining operations accounted for over 99 percent of total US coal production and represented 77 percent of all US coal mining operations in 1987. This issue is the 12th annual report published by EIA and continues the series formerly included as a chapter in the Minerals Yearbook published by the Bureau of Mines. This report also includes data for the demonstrated reserve base of coal in the United States on January 1, 1988. This is the eighth annual summary on minable coal, pursuant to Section 801 of Public Law 95-620. 18 figs., 105 tabs.

  13. Coal waste materials applications in Europe

    SciTech Connect (OSTI)

    Niel, E.M.M.G.

    1997-12-31

    European countries have built up a tradition of coal burning activities. It is a well known fact that in the past twenty five years economic and technological growth was accompanied by more awareness for the protection of the environment. Therefore, increasing attention was paid to emission of hazardous gases, dust disposal and the proper reuse of coal residues. Both government and industry were searching for reasonable solutions to fight the rising environmental threats. It is noticed that the utilization situation in the different European countries varies considerably due to different historical, geographic and economic conditions. Nevertheless about 45% of the nearly 60 million tonnes of coal combustion by-products produced in European power plants are utilized, mainly in construction, civil engineering and the mining industry. In all European countries where electric energy is provided by coal fired power plants three parties are involved: (1) the power plants, as producers and owners of the coal fly ashes; (2) the consumers, which use the ashes in building products and construction; and (3) the government, mainly in watching over environmental and health aspects. This paper describes the use of fly ash in cements and concretes in European countries and the regulations on the use of fly ash.

  14. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas Electricity Profile 2014 Table 1. 2014 Summary statistics (Arkansas) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 14,754 30 Electric utilities 11,526 23 IPP & CHP 3,227 29 Net generation (megawatthours) 61,592,137 24 Electric utilities 48,752,895 18 IPP & CHP 12,839,241 28 Emissions Sulfur dioxide (short tons) 89,528 15 Nitrogen oxide (short tons) 47,048 20 Carbon dioxide (thousand metric tons) 37,289 23 Sulfur dioxide (lbs/MWh) 2.9 9 Nitrogen oxide

  15. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia Electricity Profile 2014 Table 1. 2014 Summary statistics (West Virginia) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 16,276 25 Electric utilities 11,981 21 IPP & CHP 4,295 21 Net generation (megawatthours) 81,059,577 19 Electric utilities 63,331,833 15 IPP & CHP 17,727,743 17 Emissions Sulfur Dioxide (short tons) 102,406 12 Nitrogen Oxide (short tons) 72,995 11 Carbon Dioxide (thousand metric tons) 73,606 9 Sulfur Dioxide (lbs/MWh) 2.5 14

  16. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin Electricity Profile 2014 Table 1. 2014 Summary statistics (Wisconsin) Item Value Rank Primary Energy Source Coal Net summer capacity (megawatts) 17,166 23 Electric utilities 14,377 18 IPP & CHP 2,788 32 Net generation (megawatthours) 61,064,796 25 Electric utilities 47,301,782 20 IPP & CHP 13,763,014 26 Emissions Sulfur Dioxide (short tons) 81,239 17 Nitrogen Oxide (short tons) 39,597 27 Carbon Dioxide (thousand metric tons) 43,750 19 Sulfur Dioxide (lbs/MWh) 2.7 12 Nitrogen

  17. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming Electricity Profile 2014 Table 1. 2014 Summary statistics (Wyoming) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,458 37 Electric utilities 7,233 32 IPP & CHP 1,225 43 Net generation (megawatthours) 49,696,183 32 Electric utilities 45,068,982 23 IPP & CHP 4,627,201 41 Emissions Sulfur Dioxide (short tons) 45,704 24 Nitrogen Oxide (short tons) 49,638 18 Carbon Dioxide (thousand metric tons) 47,337 17 Sulfur Dioxide (lbs/MWh) 1.8 22 Nitrogen Oxide

  18. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Arizona Electricity Profile 2014 Table 1. 2014 Summary statistics (Arizona) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 28,249 13 Electric utilities 21,311 11 IPP & CHP 6,938 17 Net generation (megawatthours) 112,257,187 13 Electric utilities 94,847,135 8 IPP & CHP 17,410,053 19 Emissions Sulfur dioxide (short tons) 22,597 32 Nitrogen oxide (short tons) 56,726 17 Carbon dioxide (thousand metric tons) 53,684 16 Sulfur dioxide (lbs/MWh) 0.4 41 Nitrogen oxide

  19. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Colorado Electricity Profile 2014 Table 1. 2014 Summary statistics (Colorado) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 14,933 29 Electric utilities 10,204 28 IPP & CHP 4,729 18 Net generation (megawatthours) 53,847,386 30 Electric utilities 43,239,615 26 IPP & CHP 10,607,771 30 Emissions Sulfur dioxide (short tons) 28,453 30 Nitrogen oxide (short tons) 44,349 24 Carbon dioxide (thousand metric tons) 38,474 22 Sulfur dioxide (lbs/MWh) 1.1 32 Nitrogen

  20. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Georgia Electricity Profile 2014 Table 1. 2014 Summary statistics (Georgia) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 38,250 7 Electric utilities 28,873 3 IPP & CHP 9,377 10 Net generation (megawatthours) 125,837,224 10 Electric utilities 109,523,336 4 IPP & CHP 16,313,888 20 Emissions Sulfur dioxide (short tons) 105,998 11 Nitrogen oxide (short tons) 58,144 14 Carbon dioxide (thousand metric tons) 62,516 12 Sulfur dioxide (lbs/MWh) 1.7 24 Nitrogen oxide

  1. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Indiana Electricity Profile 2014 Table 1. 2014 Summary statistics (Indiana) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 27,499 14 Electric utilities 23,319 7 IPP & CHP 4,180 23 Net generation (megawatthours) 115,395,392 12 Electric utilities 100,983,285 6 IPP & CHP 14,412,107 22 Emissions Sulfur dioxide (short tons) 332,396 3 Nitrogen oxide (short tons) 133,412 3 Carbon dioxide (thousand metric tons) 103,391 3 Sulfur dioxide (lbs/MWh) 5.8 1 Nitrogen oxide

  2. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Iowa Electricity Profile 2014 Table 1. 2014 Summary statistics (Iowa) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 16,507 24 Electric utilities 12,655 20 IPP & CHP 3,852 25 Net generation (megawatthours) 56,853,282 28 Electric utilities 43,021,954 27 IPP & CHP 13,831,328 25 Emissions Sulfur dioxide (short tons) 74,422 19 Nitrogen oxide (short tons) 41,793 25 Carbon dioxide (thousand metric tons) 39,312 21 Sulfur dioxide (lbs/MWh) 2.6 13 Nitrogen oxide

  3. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Kansas Electricity Profile 2014 Table 1. 2014 Summary statistics (Kansas) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 14,227 31 Electric utilities 11,468 24 IPP & CHP 2,759 33 Net generation (megawatthours) 49,728,363 31 Electric utilities 39,669,629 29 IPP & CHP 10,058,734 31 Emissions Sulfur dioxide (short tons) 31,550 29 Nitrogen oxide (short tons) 29,014 29 Carbon dioxide (thousand metric tons) 31,794 29 Sulfur dioxide (lbs/MWh) 1.3 29 Nitrogen oxide

  4. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Kentucky Electricity Profile 2014 Table 1. 2014 Summary statistics (Kentucky) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 20,878 21 Electric utilities 19,473 15 IPP & CHP 1,405 40 Net generation (megawatthours) 90,896,435 17 Electric utilities 90,133,403 10 IPP & CHP 763,032 49 Emissions Sulfur dioxide (short tons) 204,873 5 Nitrogen oxide (short tons) 89,253 7 Carbon dioxide (thousand metric tons) 85,795 7 Sulfur dioxide (lbs/MWh) 4.5 3 Nitrogen oxide

  5. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Maryland Electricity Profile 2014 Table 1. 2014 Summary statistics (Maryland) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 12,264 33 Electric utilities 85 47 IPP & CHP 12,179 8 Net generation (megawatthours) 37,833,652 35 Electric utilities 20,260 47 IPP & CHP 37,813,392 9 Emissions Sulfur dioxide (short tons) 41,370 26 Nitrogen oxide (short tons) 20,626 35 Carbon dioxide (thousand metric tons) 20,414 34 Sulfur dioxide (lbs/MWh) 2.2 18 Nitrogen oxide

  6. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Michigan Electricity Profile 2014 Table 1. 2014 Summary statistics (Michigan) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 30,435 12 Electric utilities 22,260 9 IPP & CHP 8,175 14 Net generation (megawatthours) 106,816,991 14 Electric utilities 84,075,322 12 IPP & CHP 22,741,669 13 Emissions Sulfur dioxide (short tons) 173,521 7 Nitrogen oxide (short tons) 77,950 9 Carbon dioxide (thousand metric tons) 64,062 11 Sulfur dioxide (lbs/MWh) 3.2 7 Nitrogen oxide

  7. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Minnesota Electricity Profile 2014 Table 1. 2014 Summary statistics (Minnesota) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 15,621 28 Electric utilities 11,557 22 IPP & CHP 4,064 24 Net generation (megawatthours) 56,998,330 27 Electric utilities 45,963,271 22 IPP & CHP 11,035,059 29 Emissions Sulfur dioxide (short tons) 39,272 27 Nitrogen oxide (short tons) 38,373 28 Carbon dioxide (thousand metric tons) 32,399 28 Sulfur dioxide (lbs/MWh) 1.4 27 Nitrogen

  8. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Missouri Electricity Profile 2014 Table 1. 2014 Summary statistics (Missouri) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 21,790 19 Electric utilities 20,538 13 IPP & CHP 1,252 42 Net generation (megawatthours) 87,834,468 18 Electric utilities 85,271,253 11 IPP & CHP 2,563,215 46 Emissions Sulfur dioxide (short tons) 149,842 9 Nitrogen oxide (short tons) 77,749 10 Carbon dioxide (thousand metric tons) 75,735 8 Sulfur dioxide (lbs/MWh) 3.4 6 Nitrogen oxide

  9. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Montana Electricity Profile 2014 Table 1. 2014 Summary statistics (Montana) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 6,330 41 Electric utilities 3,209 38 IPP & CHP 3,121 30 Net generation (megawatthours) 30,257,616 41 Electric utilities 12,329,411 35 IPP & CHP 17,928,205 16 Emissions Sulfur dioxide (short tons) 14,426 34 Nitrogen oxide (short tons) 20,538 36 Carbon dioxide (thousand metric tons) 17,678 36 Sulfur dioxide (lbs/MWh) 1.0 34 Nitrogen oxide

  10. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Nebraska Electricity Profile 2014 Table 1. 2014 Summary statistics (Nebraska) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,732 36 Electric utilities 7,913 30 IPP & CHP 819 46 Net generation (megawatthours) 39,431,291 34 Electric utilities 36,560,960 30 IPP & CHP 2,870,331 45 Emissions Sulfur dioxide (short tons) 63,994 22 Nitrogen oxide (short tons) 27,045 30 Carbon dioxide (thousand metric tons) 26,348 31 Sulfur dioxide (lbs/MWh) 3.2 8 Nitrogen oxide

  11. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Mexico Electricity Profile 2014 Table 1. 2014 Summary statistics (New Mexico) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 8,072 39 Electric utilities 6,094 33 IPP & CHP 1,978 37 Net generation (megawatthours) 32,306,210 39 Electric utilities 26,422,867 34 IPP & CHP 5,883,343 38 Emissions Sulfur dioxide (short tons) 12,064 37 Nitrogen oxide (short tons) 46,192 22 Carbon dioxide (thousand metric tons) 24,712 32 Sulfur dioxide (lbs/MWh) 0.7 37 Nitrogen

  12. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Carolina Electricity Profile 2013 Table 1. 2013 Summary statistics (North Carolina) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 30,048 12 Electric utilities 26,706 6 IPP & CHP 3,342 29 Net generation (megawatthours) 125,936,293 9 Electric utilities 116,317,050 2 IPP & CHP 9,619,243 31 Emissions Sulfur dioxide (short tons) 71,293 20 Nitrogen oxide (short tons) 62,397 12 Carbon dioxide (thousand metric tons) 56,940 14 Sulfur dioxide (lbs/MWh) 1.1 32 Nitrogen

  13. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Dakota Electricity Profile 2013 Table 1. 2013 Summary statistics (North Dakota) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 6,566 40 Electric utilities 5,292 34 IPP & CHP 1,274 41 Net generation (megawatthours) 35,021,673 39 Electric utilities 31,044,374 32 IPP & CHP 3,977,299 42 Emissions Sulfur dioxide (short tons) 56,854 23 Nitrogen oxide (short tons) 48,454 22 Carbon dioxide (thousand metric tons) 30,274 28 Sulfur dioxide (lbs/MWh) 3.2 11 Nitrogen oxide

  14. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Ohio Electricity Profile 2014 Table 1. 2014 Summary statistics (Ohio) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 31,507 9 Electric utilities 11,134 26 IPP & CHP 20,372 6 Net generation (megawatthours) 134,476,405 8 Electric utilities 43,290,512 25 IPP & CHP 91,185,893 7 Emissions Sulfur dioxide (short tons) 355,108 1 Nitrogen oxide (short tons) 105,688 4 Carbon dioxide (thousand metrictons) 98,650 5 Sulfur dioxide (lbs/MWh) 5.3 2 Nitrogen oxide (lbs/MWh)

  15. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Pennsylvania Electricity Profile 2014 Table 1. 2014 Summary statistics (Pennsylvania) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 42,723 5 Electric utilities 39 48 IPP & CHP 42,685 3 Net generation (megawatthours) 221,058,365 3 Electric utilities 90,994 44 IPP & CHP 220,967,371 2 Emissions Sulfur dioxide (short tons) 297,598 4 Nitrogen oxide (short tons) 141,486 2 Carbon dioxide (thousand metric tons) 101,361 4 Sulfur dioxide (lbs/MWh) 2.7 11 Nitrogen oxide

  16. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Tennessee Electricity Profile 2014 Table 1. 2014 Summary statistics (Tennessee) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 20,998 20 Electric utilities 20,490 14 IPP & CHP 508 47 Net generation (megawatthours) 79,506,886 20 Electric utilities 76,986,629 13 IPP & CHP 2,520,257 47 Emissions Sulfur dioxide (short tons) 89,357 16 Nitrogen oxide (short tons) 23,913 33 Carbon dioxide (thousand metric tons) 41,405 20 Sulfur dioxide (lbs/MWh) 2.2 16 Nitrogen oxide

  17. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    United States Electricity Profile 2014 Table 1. 2014 Summary statistics (United States) Item Value Primary energy source Coal Net summer capacity (megawatts) 1,068,422 Electric utilities 616,632 IPP & CHP 451,791 Net generation (megawatthours) 4,093,606,005 Electric utilities 2,382,473,495 IPP & CHP 1,711,132,510 Emissions Sulfur Dioxide (short tons) 3,842,005 Nitrogen Oxide (short tons) 2,400,375 Carbon Dioxide (thousand metric tons) 2,160,342 Sulfur Dioxide (lbs/MWh) 1.9 Nitrogen Oxide

  18. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    West Virginia Electricity Profile 2014 Table 1. 2014 Summary statistics (West Virginia) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 16,276 25 Electric utilities 11,981 21 IPP & CHP 4,295 21 Net generation (megawatthours) 81,059,577 19 Electric utilities 63,331,833 15 IPP & CHP 17,727,743 17 Emissions Sulfur Dioxide (short tons) 102,406 12 Nitrogen Oxide (short tons) 72,995 11 Carbon Dioxide (thousand metric tons) 73,606 9 Sulfur Dioxide (lbs/MWh) 2.5 14

  19. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Wisconsin Electricity Profile 2014 Table 1. 2014 Summary statistics (Wisconsin) Item Value Rank Primary Energy Source Coal Net summer capacity (megawatts) 17,166 23 Electric utilities 14,377 18 IPP & CHP 2,788 32 Net generation (megawatthours) 61,064,796 25 Electric utilities 47,301,782 20 IPP & CHP 13,763,014 26 Emissions Sulfur Dioxide (short tons) 81,239 17 Nitrogen Oxide (short tons) 39,597 27 Carbon Dioxide (thousand metric tons) 43,750 19 Sulfur Dioxide (lbs/MWh) 2.7 12 Nitrogen

  20. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Wyoming Electricity Profile 2014 Table 1. 2014 Summary statistics (Wyoming) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,458 37 Electric utilities 7,233 32 IPP & CHP 1,225 43 Net generation (megawatthours) 49,696,183 32 Electric utilities 45,068,982 23 IPP & CHP 4,627,201 41 Emissions Sulfur Dioxide (short tons) 45,704 24 Nitrogen Oxide (short tons) 49,638 18 Carbon Dioxide (thousand metric tons) 47,337 17 Sulfur Dioxide (lbs/MWh) 1.8 22 Nitrogen Oxide