National Library of Energy BETA

Sample records for director coal electric

  1. Deputy Director, Office of Electric Reliability | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reliability Deputy Director, Office of Electric Reliability Submitted by admin on Sat, 2016-01-16 00:16 Job Summary Organization Name Department Of Energy Agency SubElement...

  2. Schneider Electric Director Initiates Strategy to Recruit IAC Graduates |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Industrial Assessment Centers (IACs) » Schneider Electric Director Initiates Strategy to Recruit IAC Graduates Schneider Electric Director Initiates Strategy to Recruit IAC Graduates <em>Courtesy of Kelly Guiberteau</em> Courtesy of Kelly Guiberteau Schneider Electric operates six R&D facilities; six distribution centers; 40 manufacturing facilities; and several hundred sales, service, and business centers across the United States.<br

  3. Fact #844: October 27, 2014 Electricity Generated from Coal has...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown Fact 844: October 27, 2014 Electricity Generated from Coal has Declined while ...

  4. Director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director Director Deputy Director Leadership Team Advisory Board Directorate Staff Org Chart ⇒ Navigate Section Director Deputy Director Leadership Team Advisory Board Directorate Staff Org Chart Berkeley Lab Director Michael Witherell Michael Witherell is a leading physicist with a highly distinguished career in teaching, research and managing complex organizations. He has received numerous honors and recognitions for his scientific contributions and achievements. Witherell is the former

  5. ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...Subbituminous",,"Coal","Petroleum","Electricity","from ... ,,"Total United States" 311,"Food",4,26,0,6,0,6,... 324110," Petroleum Refineries",3,79,0,25,0,25,0,0,0,4...

  6. Fact #844: October 27, 2014 Electricity Generated from Coal has...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generated from Coal has Declined while Generation from Natural Gas has Grown - Dataset Fact 844: October 27, 2014 Electricity Generated from Coal has Declined while ...

  7. Coal based electric generation comparative technologies report

    SciTech Connect (OSTI)

    Not Available

    1989-10-26

    Ohio Clean Fuels, Inc., (OCF) has licensed technology that involves Co-Processing (Co-Pro) poor grade (high sulfur) coal and residual oil feedstocks to produce clean liquid fuels on a commercial scale. Stone Webster is requested to perform a comparative technologies report for grassroot plants utilizing coal as a base fuel. In the case of Co-Processing technology the plant considered is the nth plant in a series of applications. This report presents the results of an economic comparison of this technology with other power generation technologies that use coal. Technologies evaluated were:Co-Processing integrated with simple cycle combustion turbine generators, (CSC); Co-Processing integrated with combined cycle combustion turbine generators, (CCC); pulverized coal-fired boiler with flue gas desulfurization and steam turbine generator, (PC) and Circulating fluidized bed boiler and steam turbine generator, (CFB). Conceptual designs were developed. Designs were based on approximately equivalent net electrical output for each technology. A base case of 310 MWe net for each technology was established. Sensitivity analyses at other net electrical output sizes varying from 220 MWe's to 1770 MWe's were also performed. 4 figs., 9 tabs.

  8. Levelized Costs for Nuclear, Gas and Coal for Electricity, under...

    Office of Scientific and Technical Information (OSTI)

    Conference: Levelized Costs for Nuclear, Gas and Coal for Electricity, under the Mexican Scenario Citation Details In-Document Search Title: Levelized Costs for Nuclear, Gas and ...

  9. South Korean energy outlook: Coal and electricity focus

    SciTech Connect (OSTI)

    Young, E.M.; Johnson, C.J.; Li, B.

    1995-03-01

    This paper concisely outlines the capacity for Korea to generate electricity by using coal. Resources (native and imported) as well as facilities are reviewed.

  10. Electricity from coal and utilization of coal combustion by-products

    SciTech Connect (OSTI)

    Demirbas, A.

    2008-07-01

    Most electricity in the world is conventionally generated using coal, oil, natural gas, nuclear energy, or hydropower. Due to environmental concerns, there is a growing interest in alternative energy sources for heat and electricity production. The major by-products obtained from coal combustion are fly ash, bottom ash, boiler slag, and flue gas desulfurization (FGD) materials. The solid wastes produced in coal-fired power plants create problems for both power-generating industries and environmentalists. The coal fly ash and bottom ash samples may be used as cementitious materials.

  11. Clean coal technologies in electric power generation: a brief overview

    SciTech Connect (OSTI)

    Janos Beer; Karen Obenshain

    2006-07-15

    The paper talks about the future clean coal technologies in electric power generation, including pulverized coal (e.g., advanced supercritical and ultra-supercritical cycles and fluidized-bed combustion), integrated gasification combined cycle (IGCC), and CO{sub 2} capture technologies. 6 refs., 2 tabs.

  12. 1,"Elm Road Generating Station","Coal","Wisconsin Electric Power...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Elm Road Generating Station","Coal","Wisconsin Electric Power Co",1268 2,"Point Beach ...

  13. Coal

    Broader source: Energy.gov [DOE]

    Coal is the largest domestically produced source of energy in America and is used to generate a significant amount of our nation’s electricity.

  14. Coal Fleet Aging Meeting

    U.S. Energy Information Administration (EIA) Indexed Site

    7, 2016 MEMORANDUM TO: Dr. Ian Mead Assistant Administrator for Energy Analysis Jim Diefenderfer Director, Office of Electricity, Coal, Nuclear, and Renewables Analysis FROM: Coal and Uranium Analysis Team SUBJECT: Notes from the Coal Fleet Aging Meeting held on June 14, 2016 Attendees (36) *Indicates attendance via WebEx. 2 Framing the question This adjunct meeting of the AEO Coal Working Group (CWG) was held as a follow up to the previous Future Operating and Maintenance Considerations for the

  15. Big drop in coal-fired electricity generation during first half...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Big drop in coal-fired electricity generation during first half of 2016 The amount of U.S. electricity generated by coal continues to decline in 2016, as power plant operators turn ...

  16. Secured electrical supply at least cost: Coal, gas, nuclear, hydro

    SciTech Connect (OSTI)

    Gavor, J.; Stary, O.; Vasicek, J.

    1995-12-01

    Electric power sector in East Central European countries finds in a difficult period. In the situation of demand stagnation, enormous investments must be realized in a very short time. Today`s decisions in the development strategy will influence the long term future of the industry. The optimal structure of the sources is one of the most important problem to be solved. Paper describes the current structure of the sources in electric power sector in the Czech Republic. The importance of coal, oil and gas, nuclear and hydro in electric power generation is compared. Taking into account the different position in the load coverage, economy of individual sources is evaluated and basic results of discounted cash flow calculations are presented. Information on specific investment programs and projects are included and further trends are estimated.

  17. The Market for Coal Based Electric Power Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Market for New Coal Power Plant Technology 0 50 100 150 200 250 300 350 400 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 Coal-Fired Plant Capacity (GW) EIA Projected Coal ...

  18. Director Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director Videos Director Deputy Director Leadership Team Advisory Board Directorate Staff Org Chart Navigate Section Director Deputy Director Leadership Team Advisory Board...

  19. Fact #844: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown

    Office of Energy Efficiency and Renewable Energy (EERE)

    From 2002 to 2012, most states have reduced their reliance on coal for electricity generation. The figure below shows the percent change in electricity generated by coal and natural gas for each...

  20. Utility to Purchase Electricity from Innovative DOE-Supported Clean Coal Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    An innovative clean coal technology project in Texas will supply electricity to the largest municipally owned utility in the United States under a recently signed Power Purchase Agreement, the U.S. Department of Energy announced today.

  1. Construction Begins on First-of-its-Kind Advanced Clean Coal Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generating Facility | Department of Energy Construction Begins on First-of-its-Kind Advanced Clean Coal Electric Generating Facility Construction Begins on First-of-its-Kind Advanced Clean Coal Electric Generating Facility September 10, 2007 - 3:16pm Addthis ORLANDO, Fla. - Officials representing the U.S. Department of Energy (DOE), Southern Company, KBR Inc. and the Orlando Utilities Commission (OUC) today broke ground to begin construction of an advanced 285-megawatt integrated

  2. NREL: Energy Analysis - Coal-Fired Electricity Generation Results...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gasification combine cycle (IGCC), fluidized bed (FB), and supercritical pulverized coal-combustion technologies), NREL developed and applied a systematic approach to review life ...

  3. AEO 2015 Electricity, Coal, Nuclear and Renewables Preliminary...

    Gasoline and Diesel Fuel Update (EIA)

    arrangements for coal plants upon expiration - ... - Retire Intermountain plant in 2025 * California ... power sector natural gas-fired generation is lower in ...

  4. Should we transport coal, gas, or electricity: cost, efficiency, and environmental implications

    SciTech Connect (OSTI)

    Joule A. Bergerson; Lester B. Lave

    2005-08-15

    The authors examine the life cycle costs, environmental discharges, and deaths of moving coal via rail, coal to synthetic natural gas via pipeline, and electricity via wire from the Powder River Basin (PRB) in Wyoming to Texas. Which method has least social cost depends on how much additional investment in rail line, transmission, or pipeline infrastructure is required, as well as how much and how far energy is transported. If the existing rail lines have unused capacity, coal by rail is the cheapest method (up to 200 miles of additional track could be added). If no infrastructure exists, greater distances and larger amounts of energy favor coal by rail and gasified coal by pipeline over electricity transmission. For 1,000 miles and 9 gigawatts of power, a gas pipeline is cheapest, has less environmental discharges, uses less land, and is least obtrusive. 28 refs., 4 figs., 3 tabs.

  5. Rail Coal Transportation Rates to the Electric Power Sector

    Gasoline and Diesel Fuel Update (EIA)

    modes, the Coal Waybill Data is based only on rail shipments. Due to the different nature of the data sources, users should exercise caution when attempting to combine the two...

  6. Statement of Patricia Hoffman, Acting Assistant Director for Electricity Delivery and Energy Reliability, before the Committee on Energy and Natural Resources U.S. Senate, April 22, 2009.

    Broader source: Energy.gov [DOE]

    Statement of Patricia Hoffman, Acting Assistant Director for Electricity Delivery and Energy Reliability, before the Senate Committee on Energy and Natural Resources, April 22, 2009 regarding S....

  7. 1,"Coal Creek","Coal","Great River Energy",1144.5 2,"Antelope Valley","Coal","Basin Electric Power Coop",900

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Coal Creek","Coal","Great River Energy",1144.5 2,"Antelope Valley","Coal","Basin Electric Power Coop",900 3,"Milton R Young","Coal","Minnkota Power Coop, Inc",684 4,"Leland Olds","Coal","Basin Electric Power Coop",667

  8. Fact #844: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown – Dataset

    Office of Energy Efficiency and Renewable Energy (EERE)

    Excel file with dataset for Fact #844: Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown

  9. Fermilab | Directorate |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Director Profile photo Joseph Lykken Deputy Director Profile photo Timothy Meyer Chief Operating Officer Profile photo Christopher Mossey Deputy Director for LBNF...

  10. Table 11b. Coal Prices to Electric Generating Plants, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Coal Prices to Electric Generating Plants, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars per million Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO

  11. Electricity and technical progress: The bituminous coal mining industry, mechanization to automation

    SciTech Connect (OSTI)

    Devine, W.D. Jr.

    1987-07-01

    Development and use of electric mobile machinery facilitated the mechanization of underground bituminous coal mining and has played a lesser but important role in the growth of surface mining. Electricity has been central to the rise of mechanically integrated mining, both underground (after 1950) and on the surface (recently). Increasing labor productivity in coal mining and decreasing total energy use per ton of coal mined are associated with penetration of new electric technology through at least 1967. Productivity declined and energy intensity increased during the 1970s due in part to government regulations. Recent productivity gains stem partly from new technology that permits automation of certain mining operations. On most big electric excavating machines, a pair of large alternating current (ac) motors operate continuously at full speed. These drive direct current (dc) generators that energize dc motors, each matched to the desired power and speed range of a particular machine function. Direct-current motors provide high torque at low speeds, thus reducing the amount of gearing required; each crawler is independently propelled forward or backward by its own variable-speed dc motors. The principal advantages of electric power are that mechanical power-transmission systems - shafts, gears, etc. - are eliminated or greatly simplified. Reliability is higher, lifetime is longer, and maintenance is much simpler with electric power than with diesel power, and the spare parts inventory is considerably smaller. 100 refs., 11 figs., 12 tabs.

  12. 2,"Laramie River Station","Coal","Basin Electric Power Coop",1710

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Jim Bridger","Coal","PacifiCorp",2111 2,"Laramie River Station","Coal","Basin Electric Power Coop",1710 3,"Dave Johnston","Coal","PacifiCorp",760 4,"Naughton","Coal","PacifiCorp",687 5,"Dry Fork Station","Coal","Basin

  13. AEO2014 Coal Working Group Meeting I Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    July 22, 2013 MEMORANDUM TO: John Conti Assistant Administrator for Energy Analysis Alan Beamon Director, Office of Electricity, Coal, Nuclear, and Renewables Analysis FROM: Coal and Uranium Analysis Team SUBJECT: AEO2014 Coal Working Group Meeting I Summary Attendees (41) Name Affiliation Greg Adams (Moderator) US DOE: EIA Vlad Dorjets Bob Eynon Karen Freedman Tyler Hodge Paul Holtberg Elias Johnson Ayaka Jones Diane Kearney Mike Leff Mike Mellish Carrie Milton Nick Paduano Margaret Cook US

  14. 5,"New Madrid","Coal","Associated Electric Coop, Inc",1154 6,"Thomas Hill","Coal","Associated Electric Coop, Inc",1133

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Labadie","Coal","Union Electric Co - (MO)",2371 2,"Iatan","Coal","Kansas City Power & Light Co",1594.4 3,"Callaway","Nuclear","Union Electric Co - (MO)",1193 4,"Rush Island","Coal","Union Electric Co - (MO)",1182 5,"New

  15. Statement of Patricia A. Hoffman, Deputy Director R&D, Office of Electricity Delivery & Energy Reliability Department of Energy before the Committee on Science and Technology Energy and Environment Subcommittee U.S. House of Representatives, October 3, 20

    Broader source: Energy.gov [DOE]

    Statement of Patricia A. Hoffman, Deputy Director R&D, Office of Electricity Delivery & Energy Reliability Department of Energy before the Committee on Science and Technology, Energy and...

  16. Statement of Patricia Hoffman, Deputy Director R&D, Office of Electricity Delivery & Energy Reliability, Department of Energy before the Committee on Science and Technology Energy and Environment Subcommittee U.S. House of Representatives October 3, 2007

    Broader source: Energy.gov [DOE]

    Statement of Patricia Hoffman, Deputy Director R&D, Office of Electricity Delivery & Energy Reliability, Department of Energy before the Committee on Science and Technology, Energy and...

  17. Fermilab | Directorate | Fermilab Former Directors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Former Directors Dr. Robert Wilson Dr. Robert Wilson Director 1967-1978 Dr. Leon Lederman Dr. Leon Lederman Director 1978-1989 Dr. John Peoples, Jr. Dr. John Peoples, Jr. Director ...

  18. Coal Study Guide for Elementary School

    Office of Energy Efficiency and Renewable Energy (EERE)

    Focuses on the basics of coal, history of coal use, conversion of coal into electricity, and climate change concerns.

  19. Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G. A.; O'Donoughue, P.; Vorum, M.

    2012-04-01

    This systematic review and harmonization of life cycle assessments (LCAs) of utility-scale coal-fired electricity generation systems focuses on reducing variability and clarifying central tendencies in estimates of life cycle greenhouse gas (GHG) emissions. Screening 270 references for quality LCA methods, transparency, and completeness yielded 53 that reported 164 estimates of life cycle GHG emissions. These estimates for subcritical pulverized, integrated gasification combined cycle, fluidized bed, and supercritical pulverized coal combustion technologies vary from 675 to 1,689 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh) (interquartile range [IQR]= 890-1,130 g CO{sub 2}-eq/kWh; median = 1,001) leading to confusion over reasonable estimates of life cycle GHG emissions from coal-fired electricity generation. By adjusting published estimates to common gross system boundaries and consistent values for key operational input parameters (most importantly, combustion carbon dioxide emission factor [CEF]), the meta-analytical process called harmonization clarifies the existing literature in ways useful for decision makers and analysts by significantly reducing the variability of estimates ({approx}53% in IQR magnitude) while maintaining a nearly constant central tendency ({approx}2.2% in median). Life cycle GHG emissions of a specific power plant depend on many factors and can differ from the generic estimates generated by the harmonization approach, but the tightness of distribution of harmonized estimates across several key coal combustion technologies implies, for some purposes, first-order estimates of life cycle GHG emissions could be based on knowledge of the technology type, coal mine emissions, thermal efficiency, and CEF alone without requiring full LCAs. Areas where new research is necessary to ensure accuracy are also discussed.

  20. Statement of Patricia Hoffman, Acting Assistant Director for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    22, 2009. Statement of Patricia Hoffman, Acting Assistant Director for Electricity ... 22, 2009. Statement of Patricia Hoffman, Acting Assistant Director for Electricity ...

  1. Nitrogen oxides emission control options for coal-fired electric utility boilers

    SciTech Connect (OSTI)

    Ravi K. Srivastava; Robert E. Hall; Sikander Khan; Kevin Culligan; Bruce W. Lani

    2005-09-01

    Recent regulations have required reductions in emissions of nitrogen oxides (NOx) from electric utility boilers. To comply with these regulatory requirements, it is increasingly important to implement state-of-the-art NOx control technologies on coal-fired utility boilers. This paper reviews NOx control options for these boilers. It discusses the established commercial primary and secondary control technologies and examines what is being done to use them more effectively. Furthermore, the paper discusses recent developments in NOx controls. The popular primary control technologies in use in the United States are low-NOx burners and overfire air. Data reflect that average NOx reductions for specific primary controls have ranged from 35% to 63% from 1995 emissions levels. The secondary NOx control technologies applied on U.S. coal-fired utility boilers include reburning, selective noncatalytic reduction (SNCR), and selective catalytic reduction (SCR). Thirty-six U.S. coal-fired utility boilers have installed SNCR, and reported NOx reductions achieved at these applications ranged from 15% to 66%. Recently, SCR has been installed at 150 U.S. coal-fired utility boilers. Data on the performance of 20 SCR systems operating in the United States with low-NOx emissions reflect that in 2003, these units achieved NOx emission rates between 0.04 and 0.07 lb/106 Btu. 106 refs., 6 figs., 6 tabs.

  2. Executive Director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Executive Director Dave Lyons, Executive Director, leads institutional initiatives and provides oversight for numerous Laboratory organizations. Contact Operator Los Alamos National Laboratory (505) 667-5061 David C. Lyons Dave Lyons, Executive Director David C. Lyons became Los Alamos National Laboratory Executive Director in April 2016. He leads institutional initiatives and provides oversight for several Laboratory organizations, including Chief Financial Officer Chief Information Officer

  3. Health and environmental effects of coal-fired electric power plants

    SciTech Connect (OSTI)

    Morris, S.C.; Hamilton, L.D.

    1984-05-01

    This paper describes health and environmental impacts of coal-fired electric power plants. Effects on man, agriculture, and natural ecosystems are considered. These effects may result from direct impacts or exposures via air, water, and food chains. The paper is organized by geographical extent of effect. Occupational health impacts and local environmental effects such as noise and solid waste leachate are treated first. Then, regional effects of air pollution, including acid rain, are analyzed. Finally, potential global impacts are examined. Occupational health concerns considered include exposure to noise, dust, asbestos, mercury, and combustion products, and resulting injury and disease. Local effects considered include noise; air and water emissions of coal storage piles, solid waste operations, and cooling systems. Air pollution, once an acute local problem, is now a regional concern. Acute and chronic direct health effects are considered. Special attention is given to potential effects of radionuclides in coal and of acid rain. Finally, potential global impacts associated with carbon dioxide emissions are considered. 88 references, 9 tables.

  4. Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation

    SciTech Connect (OSTI)

    Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews

    2007-09-15

    The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. 38 refs., 3 figs., 2 tabs.

  5. Statement of Patricia A. Hoffman, Deputy Director of Research and Development and Acting Chief Operating Officer, Office of Electricity Delivery & Energy Reliability, Department of Energy before the Committee on Energy and Natural Resources United States

    Broader source: Energy.gov [DOE]

    Statement of Patricia A. Hoffman, Deputy Director of R&D and Acting Chief Operating Officer, Office of Electricity Delivery & Energy Reliability, Department of Energy, before the Senate...

  6. Hydrogen and electricity from coal with carbon dioxide separation using chemical looping reactors

    SciTech Connect (OSTI)

    Xiang Wenguo; Chen Yingying

    2007-08-15

    Concern about global climate change has led to research on low CO{sub 2} emission in the process of the energy conversion of fossil fuel. One of the solutions is the conversion of fossil fuel into carbon-free energy carriers, hydrogen, and electricity with CO{sub 2} capture and storage. In this paper, the main purpose is to investigate the thermodynamics performance of converting coal to a hydrogen and electricity system with chemical-looping reactors and to explore the influences of operating parameters on the system performance. Using FeO/Fe{sub 3}O{sub 4} as an oxygen carrier, we propose a carbon-free coproduction system of hydrogen and electricity with chemical-looping reactors. The performance of the new system is simulated using ASPEN PLUS software tool. The influences of the chemical-looping reactor's temperature, steam conversion rate, and O{sub 2}/coal quality ratio on the system performance, and the exergy performance are discussed. The results show that a high-purity of H{sub 2} (99.9%) is reached and that CO{sub 2} can be separated. The system efficiency is 57.85% assuming steam reactor at 815 C and the steam conversion rate 37%. The system efficiency is affected by the steam conversion rate, rising from 53.17 to 58.33% with the increase of the steam conversion rate from 28 to 41%. The exergy efficiency is 54.25% and the losses are mainly in the process of gasification and HRSG. 14 refs., 12 figs., 3 tabs.

  7. Planning India's long-term energy shipment infrastructures for electricity and coal

    SciTech Connect (OSTI)

    Brian H. Bowen; Devendra Canchi; Vishal Agarwal Lalit; Paul V. Precke; F.T. Sparrow; Marty W. Irwin

    2010-01-15

    The Purdue Long-Term Electricity Trading and Capacity Expansion Planning Model simultaneously optimizes both the expansion of transmission and generation capacity. Most commercial electricity system planning software is limited to only transmission planning. An application of the model to India's national power grid, for 2008-2028, indicates substantial transmission expansion is the cost-effective means of meeting the needs of the nation's growing economy. An electricity demand growth rate of 4% over the 20-year planning horizon requires more than a 50% increase in the Government's forecasted transmission capacity expansion, and 8% demand growth requires more than a six-fold increase in the planned transmission capacity expansion. The model minimizes the long-term expansion costs (operational and capital) for the nation's five existing regional power grids and suggests the need for large increases in load-carrying capability between them. Changes in coal policy affect both the location of new thermal power plants and the optimal pattern inter-regional transmission expansions. 15 refs., 10 figs., 7 tabs.

  8. Table 11a. Coal Prices to Electric Generating Plants, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Coal Prices to Electric Generating Plants, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars per million Btu in ""dollar year"" specific to each AEO)" ,"AEO $ Year",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",1992,1.4699,1.4799,1.53,1.57,1.58,1.57,1.61,1.63,1.68,1.69,1.7,1.72,1.7,1.76,1.79,1.81,1.88,1.92 "AEO

  9. Table 11a. Coal Prices to Electric Generating Plants, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Coal Prices to Electric Generating Plants, Projected vs. Actual Projected Price in Constant Dollars (constant dollars per million Btu in "dollar year" specific to each AEO) AEO $ Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1992 1.47 1.48 1.53 1.57 1.58 1.57 1.61 1.63 1.68 1.69 1.70 1.72 1.70 1.76 1.79 1.81 1.88 1.92 AEO 1995 1993 1.39 1.39 1.38 1.40 1.40 1.39 1.39 1.42 1.41 1.43 1.44 1.45 1.46 1.46 1.46 1.47

  10. Methodology for comparing the health effects of electricity generation from uranium and coal fuels

    SciTech Connect (OSTI)

    Rhyne, W.R.; El-Bassioni, A.A.

    1981-12-08

    A methodology was developed for comparing the health risks of electricity generation from uranium and coal fuels. The health effects attributable to the construction, operation, and decommissioning of each facility in the two fuel cycle were considered. The methodology is based on defining (1) requirement variables for the materials, energy, etc., (2) effluent variables associated with the requirement variables as well as with the fuel cycle facility operation, and (3) health impact variables for effluents and accidents. The materials, energy, etc., required for construction, operation, and decommissioning of each fuel cycle facility are defined as primary variables. The materials, energy, etc., needed to produce the primary variable are defined as secondary requirement variables. Each requirement variable (primary, secondary, etc.) has associated effluent variables and health impact variables. A diverging chain or tree is formed for each primary variable. Fortunately, most elements reoccur frequently to reduce the level of analysis complexity. 6 references, 11 figures, 6 tables.

  11. Director's Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director's Office Director's Office Print Roger Falcone Director, Advanced Light Source, Ernest Orlando Lawrence Berkeley National Laboratory and Professor of Physics, University of California, Berkeley. Roger Falcone Web page at the University of California, Berkeley Advanced Light Source Lawrence Berkeley National Laboratory 1 Cyclotron Road, MS 80R0114 Berkeley, CA 94720 USA Tel. (510) 486-6692 Fax (510) 486-4960 Email: This e-mail address is being protected from spambots. You need JavaScript

  12. Director's Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University of California, Berkeley physics professor and veteran ALS user, succeeded Janos Kirz as ALS Division Director on September 1, 2006. Falcone received his undergraduate...

  13. Laboratory Directors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Directors Laboratory Directors A gallery of Laboratory leadership, 1943 to the present. Laboratory historian Alan B. Carr Email Laboratory directors Charles McMillan (2011-present) Michael R. Anastasio (2006-2011) Robert Kuckuck (2005-2006) G. Peter Nanos (2003-2005) John C. Browne (1997-2003) Siegfried S. Hecker (1985-1997) Donald M. Kerr (1979-1985) Harold M. Agnew (1970-1979) Norris Bradbury (1945-1970) J. Robert Oppenheimer (1943-1945) Laboratory Directors Harold M. Agnew

  14. Nuclear economics 2000: Deterministic and probabilistic projections of nuclear and coal electric power generation costs for the year 2000

    SciTech Connect (OSTI)

    Williams, K.A.; Delene, J.G.; Fuller, L.C.; Bowers, H.I.

    1987-06-01

    The total busbar electric generating costs were estimated for locations in ten regions of the United States for base-load nuclear and coal-fired power plants with a startup date of January 2000. For the Midwest region a complete data set that specifies each parameter used to obtain the comparative results is supplied. When based on the reference set of input variables, the comparison of power generation costs is found to favor nuclear in most regions of the country. Nuclear power is most favored in the northeast and western regions where coal must be transported over long distances; however, coal-fired generation is most competitive in the north central region where large reserves of cheaply mineable coal exist. In several regions small changes in the reference variables could cause either option to be preferred. The reference data set reflects the better of recent electric utility construction cost experience (BE) for nuclear plants. This study assumes as its reference case a stable regulatory environment and improved planning and construction practices, resulting in nuclear plants typically built at the present BE costs. Today's BE nuclear-plant capital investment cost model is then being used as a surrogate for projected costs for the next generation of light-water reactor plants. An alternative analysis based on today's median experience (ME) nuclear-plant construction cost experience is also included. In this case, coal is favored in all ten regions, implying that typical nuclear capital investment costs must improve for nuclear to be competitive.

  15. Fermilab | Directorate | Fermilab Directorate Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fermilab Directorate Documents Red-Bulleted Items are Restricted to Fermilab Green-Bulleted Items are Unrestricted Final Report of Injury Reduction Plan 2006 Contract No. ...

  16. Implications of Low Electricity Demand Growth

    U.S. Energy Information Administration (EIA) Indexed Site

    2014 EIA Energy Conference July 14, 2014 | Washington, DC Jim Diefenderfer, Director, Office of Electricity, Coal, Nuclear, & Renewables Analysis U.S. Energy Information Administration Implications of low electricity demand growth Growth in electricity use slows, but still increases by 29% from 2012 to 2040 -2% 0% 2% 4% 6% 8% 10% 12% 14% 1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 percent growth (3-year compounded annual growth rate) Source: EIA, Annual Energy Outlook 2014 Reference

  17. Laboratory Director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Director Laboratory Director Charles F. McMillan has demonstrated success at balancing mission performance with security and safety. Contact Operator Los Alamos National Laboratory (505) 667-5061 McMillan has nearly 30 years of scientific and management experience in weapons science and stockpile certification, hands-on experience in both experimental physics and computational science, and demonstrated success at balancing mission performance with security and safety. Charles F.

  18. Table 11b. Coal Prices to Electric Generating Plants, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Coal Prices to Electric Generating Plants, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars per million Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1.50 1.55 1.64 1.73 1.78 1.82 1.92 2.01 2.13 2.22 2.30 2.41 2.46 2.64 2.78 2.90 3.12 3.30 AEO 1995 1.42 1.46 1.49 1.55 1.59 1.62 1.67 1.76 1.80 1.89 1.97 2.05 2.13 2.21 2.28 2.38 2.50 AEO 1996 1.35 1.35 1.37 1.39 1.42 1.46 1.50 1.56 1.62 1.67 1.75

  19. NETL: Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal In response to concerns of climate change, the United States is contemplating a complete and rapid transformation of the way it both produces and consumes energy to significantly reduce its carbon emissions. The integrated Coal Program focuses on retaining the benefits of continuing to use coal to produce electric power. This strategy can help us depend less on foreign sources of energy, respond to the world's growing climate concerns, and compete economically. It also will ensure that our

  20. FE Clean Coal News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity from Innovative DOE-Supported Clean Coal Project An innovative clean coal technology project in Texas will supply electricity to the largest municipally owned...

  1. EIA - Weekly U.S. Coal Production

    Gasoline and Diesel Fuel Update (EIA)

    Stocks Imports, exports & distribution Coal-fired electric power plants Transportation costs to electric power sector International All coal data reports Analysis & Projections ...

  2. Annual Coal Distribution Report - Energy Information Administration

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Stocks Imports, exports & distribution Coal-fired electric power plants Transportation costs to electric power sector International All coal data reports Analysis & Projections ...

  3. Los Alamos director echoes cyber concerns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos director echoes cyber concerns Los Alamos director echoes cyber concerns Director Charlie McMillan told a gathering of energy executives that securing the electrical grid is a major concern now and it's only becoming more serious. May 21, 2013 Los Alamos National Laboratory Director Charlie McMillan (right), with, from left, Anthony Cugini of the National Energy Technology Laboratory, Thom Mason of Oak Ridge National Laboratory, and Tomas Diaz de la Rubia of Deloitte Consulting LLP.

  4. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    C. Jean Bustard; Kenneth E. Baldrey; Richard Schlager

    2000-04-01

    The U.S. Department of Energy and ADA Environmental Solutions has begun a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the flyash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. Preliminary testing has identified a class of common deliquescent salts that effectively control flyash resistivity on a variety of coals. A method to evaluate cohesive properties of flyash in the laboratory has been selected and construction of an electrostatic tensiometer test fixture is underway. Preliminary selection of a variety of chemicals that will be screened for effect on flyash cohesion has been completed.

  5. AEO 2014 Renewable Electricity Working Group Meeting Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    DATE: September 30, 2013 MEMORANDUM FOR: John Conti Assistant Administrator for Energy Analysis Office of Energy Analysis Alan Beamon Office Director Office of Electricity, Coal, Nuclear, and Renewables Analysis FROM: Renewable Electricity Analysis Team SUBJECT: AEO 2014 Renewable Electricity Working Group Meeting Summary ATTENDEES: In person John Conti Alan Beamon Bob Eynon Chris Namovicz Danielle Lowenthal-Savy Erin Boedecker Gwen Bredehoeft Jim Diefenderfer Marie Rinkoski Spangler Michael

  6. Summary of AEO2015 Renewable Electricity Working Group Meeting

    U.S. Energy Information Administration (EIA) Indexed Site

    August 13, 2014 MEMORANDUM FOR: John Conti Assistant Administrator for Energy Analysis Jim Diefenderfer Office Director Office of Electricity, Coal, Nuclear, and Renewables Analysis Paul Holtberg Team Leader Analysis Integration Team FROM: Renewable Electricity Analysis Team SUBJECT: Summary of AEO2015 Renewable Electricity Working Group Meeting held on July 24, 2014 Presenters: Chris Namovicz, Gwen Bredehoeft Topics included AEO2014 model and data updates, a summary of AEO2014 model results,

  7. Summary of AEO2015 Renewable Electricity Working Group Meeting

    U.S. Energy Information Administration (EIA) Indexed Site

    WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE February 29, 2016 MEMORANDUM FOR: John Conti Assistant Administrator for Energy Analysis Jim Diefenderfer Office Director Office of Electricity, Coal, Nuclear, and Renewables Analysis Paul Holtberg Team Leader Analysis Integration Team FROM: Renewable Electricity Analysis Team SUBJECT: Summary of AEO2015 Renewable Electricity Working Group Meeting held on February 9, 2016 Presenter: Chris

  8. Summary of AEO2016 Electricity Working Group Meeting

    U.S. Energy Information Administration (EIA) Indexed Site

    WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE February 10, 2016 MEMORANDUM FOR: John Conti Assistant Administrator for Energy Analysis Jim Diefenderfer Office Director Office of Electricity, Coal, Nuclear, and Renewables Analysis Paul Holtberg Team Leader Analysis Integration Team FROM: Chris Namovicz Acting Team Leader for Electricity Analysis Team SUBJECT: Summary of AEO2016 Electricity Working Group Meeting held on February 10, 2016

  9. Summary of First AEO2014 Electricity Working Group Meeting

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2013 MEMORANDUM FOR: John Conti Assistant Administrator for Energy Analysis Alan Beamon Office Director Office of Electricity, Coal, Nuclear, and Renewables Analysis Paul Holtberg Team Leader Analysis Integration Team FROM: Electricity Analysis Team SUBJECT: Summary of First AEO 2014 Electricity Working Group Meeting held on July 24, 2013 ATTENDEES: Diefenderfer, Jim Aniti, Lori Milton, Carrie Jones, Jeff Martin, Laura Bredehoeft, Gwendolyn Eynon, Bob Leff, Mike Mellish, Mike Kearney, Diane

  10. Summary of Second AEO 2014 Electricity Working Group Meeting

    U.S. Energy Information Administration (EIA) Indexed Site

    7, 2013 MEMORANDUM FOR: John Conti Assistant Administrator for Energy Analysis Alan Beamon Office Director Office of Electricity, Coal, Nuclear, and Renewables Analysis Paul Holtberg Team Leader Analysis Integration Team FROM: Electricity Analysis Team SUBJECT: Summary of Second AEO 2014 Electricity Working Group Meeting held on September 25, 2013 ATTENDEES: Adams, Greg (EIA OEA) Aniti, Lori (EIA OEA) Bredehoeft, Gwendolyn (EIA OEA) Crozat, Matthew P. (US DOE: Office of Nuclear Energy)

  11. coal contacts | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    coal contacts Strategic Center for Coal Director: Sean Plasynski 412-386-4867 Senior Management & Technical Advisor: Gregory Kawalkin 412-386-6135 Senior Management & Technical Advisor: Dan Driscoll 304-285-4717 Program Analyst: Kathleen Wolf 412-386-4693 Supervisory Administrative Specialist: Ken Mechling 412-386-7249 Office of Coal and Power Research and Development Director: John Wimer 304-285-4124 Deputy Director: Robert Romanosky 304-285-4721 Technology Manager, Fuel Cells: Shailesh

  12. TO: Procurement Directors FROM: Director, Policy Division

    Broader source: Energy.gov (indexed) [DOE]

    4 DATE: April 7, 2011 TO: Procurement Directors FROM: Director, Policy Division Office of Procurement and Assistance Policy Office of Procurement and Assistance Management SUBJECT:...

  13. TO: Procurement Directors FROM: Director, Policy Division

    Energy Savers [EERE]

    POLICY FLASH 2011-56 DATE: March 16, 2011 TO: Procurement Directors FROM: Director, Policy Division Office of Procurement and Assistance Policy Office of Procurement and Assistance...

  14. To: Procurement Directors From: Director Contract...

    Broader source: Energy.gov (indexed) [DOE]

    Date: March 2, 2012 To: Procurement Directors From: Director Contract and Financial Assistance Policy Division Office of Policy Office of Procurement and Assistance Management...

  15. Summary of AEO2016 Electricity Working Group Meeting held on December 8, 2015

    U.S. Energy Information Administration (EIA) Indexed Site

    January7, 2016 MEMORANDUM FOR: John Conti Assistant Administrator for Energy Analysis Jim Diefenderfer Director, Office of Electricity, Coal, Nuclear, and Renewables Analysis Paul Holtberg Team Leader Analysis Integration Team Office of Integrated and International Energy Analysis FROM: Chris Namovicz Team Leader for Electricity Analysis (acting) And Thad Huetteman, Electricity Analysis Team SUBJECT: Summary of AEO2016 Electricity Working Group Meeting held on December 8, 2015 Presenters: Chris

  16. EIA projections of coal supply and demand

    SciTech Connect (OSTI)

    Klein, D.E.

    1989-10-23

    Contents of this report include: EIA projections of coal supply and demand which covers forecasted coal supply and transportation, forecasted coal demand by consuming sector, and forecasted coal demand by the electric utility sector; and policy discussion.

  17. Coal Combustion Products

    Office of Energy Efficiency and Renewable Energy (EERE)

    Coal combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the largest segment of U.S. electricity generation (45 percent in 2010), finding a sustainable solution for CCPs is an important environmental challenge.

  18. JV Task 126 - Mercury Control Technologies for Electric Utilities Burning Bituminous Coal

    SciTech Connect (OSTI)

    Jason Laumb; John Kay; Michael Jones; Brandon Pavlish; Nicholas Lentz; Donald McCollor; Kevin Galbreath

    2009-03-29

    The EERC developed an applied research consortium project to test cost-effective mercury (Hg) control technologies for utilities burning bituminous coals. The project goal was to test innovative Hg control technologies that have the potential to reduce Hg emissions from bituminous coal-fired power plants by {ge}90% at costs of one-half to three-quarters of current estimates for activated carbon injection (ACI). Hg control technology evaluations were performed using the EERC's combustion test facility (CTF). The CTF was fired on pulverized bituminous coals at 550,000 Btu/hr (580 MJ/hr). The CTF was configured with the following air pollution control devices (APCDs): selective catalytic reduction (SCR) unit, electrostatic precipitator (ESP), and wet flue gas desulfurization system (WFDS). The Hg control technologies investigated as part of this project included ACI (three Norit Americas, Inc., and eleven Envergex sorbents), elemental mercury (Hg{sup 0}) oxidation catalysts (i.e., the noble metals in Hitachi Zosen, Cormetech, and Hitachi SCR catalysts), sorbent enhancement additives (SEAs) (a proprietary EERC additive, trona, and limestone), and blending with a Powder River Basin (PRB) subbituminous coal. These Hg control technologies were evaluated separately, and many were also tested in combination.

  19. Review of the Coal and Electric Sections in the Monthly Energy Review and an Overall Review of Office of Energy Data Operations Publications

    SciTech Connect (OSTI)

    Not Available

    1981-04-01

    This Review of the Coal and Electric Sections of the Monthly Energy Review and an Overall Review of OEDO Publications is comprised of two sections. The first, Review of Coal and Electric Power Data in the Monthly Energy Review consists of a detailed analysis of content and data presentation issues. The major findings of this section are summarized below: the coal and electric power data in the Monthly Energy Review (MER) represent the major functions of the respective industries; coal data by rank are inconsistently presented in the MER; coal value or coal cost and quality data are not adequately represented in the MER; the presentation of two or more units of measurement on the same table in MER may invite incorrect comparisons unless properly separated (e.g., - double line separation); to improve the timeliness of the data in the MER, the increased use of estimated, preliminary, and/or projected data should be considered; and the table and graphic formats used in the MER present the data clearly and concisely. The second section of the report, An Overall Review of OEDO Publications, contains the results of an analysis of data presentation in forty-six coal, gas, electric, oil and consolidated publications. A summary of our findings and recommendations is listed below: where practical, a scope of publication section and executive summary should be included in OEDO publications; table formats, including titles and endnotes should be uniform; more detailed guidelines for titling should be established by the Energy Information Administration (EIA); and a more detailed set of standards for footnotes, notes and source notes should be established by EIA.

  20. Co-production of electricity and alternate fuels from coal. Final report, August 1995

    SciTech Connect (OSTI)

    1995-12-31

    The Calderon process and its process development unit, PDU, were originally conceived to produce two useful products from a bituminous coal: a desulfurized medium BTU gas containing primarily CO, H{sub 2}, CH{sub 4}, CO{sub 2}, and H{sub 2}O; and a desulfurized low BTU gas containing these same constituents plus N{sub 2} from the air used to provide heat for the process through the combustion of a portion of the fuel. The process was viewed as a means for providing both a synthesis gas for liquid fuel production (perhaps CH{sub 3}OH, alternatively CH{sub 4} or NH{sub 3}) and a pressurized, low BTU fuel gas, for gas turbine based power generation. The Calderon coal process comprises three principle sections which perform the following functions: coal pyrolysis in a continuous, steady flow unit based on coke oven technology; air blown, slagging, coke gasification in a moving bed unit based on a blast furnace technology; and a novel, lime pebble based, product gas processing in which a variety of functions are accomplished including the cracking of hydrocarbons and the removal of sulfur, H{sub 2}S, and of particulates from both the medium and low BTU gases. The product gas processing unit, based on multiple moving beds, has also been conceived to regenerate the lime pebbles and recover sulfur as elemental S.

  1. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    Kenneth E. Baldrey

    2002-05-01

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, performance testing of flue gas conditioning was underway at the PacifiCorp Jim Bridger Power Plant. The product tested, ADA-43, was a combination resistivity modifier with cohesivity polymers. This represents the first long-term full-scale testing of this class of products. Modifications to the flue gas conditioning system at Jim Bridger, including development of alternate injection lances, was also undertaken to improve chemical spray distribution and to avoid spray deposition to duct interior surfaces. Also in this quarter, a firm commitment was received for another long-term test of the cohesivity additives. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Ammonia conditioning is employed here on one unit, but there is interest in liquid cohesivity additives as a safer alternative.

  2. EIS-0105: Conversion to Coal, Baltimore Gas & Electric Company, Brandon Shores Generating Station Units 1 and 2, Anne Arundel County, Maryland

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy’s Economic Regulatory Administration Office of Fuels Program, Coal and Electricity Division prepared this statement to assess the potential environmental and socioeconomic impacts associated with prohibiting the use of petroleum products as a primary energy source for Units 1 and 2 of the Brandon Shores Generating Station, located in Anne Arundel County, Maryland.

  3. Table 6. Electric power delivered fuel Prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.69,2.8,3.02,2.89,2.82,2.68,2.71,2.06,2.11,1.79,1.52,1.47,1.42,1.41,1.41,1.48,1.57,1.54,1.54,1.56,1.67,1.76,1.73,1.81,1.84 "Average heat value (Btu per

  4. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.37,2.35,2.22,1.93,1.73,1.69,1.74,1.6,1.47,1.46,1.23,1.2,0.84,0.87,1.42,1.46,1.47,1.64,1.5,1.61,1.6,1.7,1.65,1.6,1.61 "Average heat value (Btu per

  5. Table 6. Electric power delivered fuel Prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",0,0,0,1.73,1.48,1.41,2.03," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "

  6. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.1,2.07,2.08,1.98,1.8,1.81,1.74,1.59,1.44,1.41,1.3,1.27,1.26,1.25,1.24,1.33,1.33,1.42,1.44,1.39,1.37,1.35,1.37,1.41,1.43 "Average heat value (Btu per

  7. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.34,3.39,3.35,3.14,3.05,2.87,2.83,2.58,2.02,2,1.88,1.73,1.8," "," "," "," "," "," "," "," "," "," "," "," " "Average heat value (Btu per

  8. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.93,1.91,1.84,1.74,1.59,1.6,1.47,1.26,1.28,1.06,0.97,0.97,0.95,0.92,0.93,0.98,0.99,1.01,1.03,1.05,1.06,1.09,1.09,1.09,1.06 "Average heat value (Btu per

  9. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.23,3.2,3.94,4.04,3.55,3.34,3.52,2.86,3.08,2.81,2.2,1.9,1.78,2.17,1.52,1.59,1.56,1.57,1.59,1.62,1.62,1.69,1.73,1.78,1.81 "Average heat value (Btu per

  10. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)"," "," "," "," "," "," "," "," "," "," "," "," "," "," ",1.44," "," "," "," ","

  11. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.36,3.47,3.55,3.59,3.47,3.39,2.97,2.56,2.56,2.31,1.92,1.76,1.76,1.72,1.57,1.59,1.65,1.73,1.74,1.79,1.78,1.77,1.82,1.86,1.85 "Average heat value (Btu per

  12. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.13,3.2,3.49,3.76,3.9,3.62,3.07,2.61,2.4,2.18,1.8,1.72,1.68,1.66,1.54,1.55,1.55,1.59,1.58,1.67,1.69,1.78,1.8,1.8,1.79 "Average heat value (Btu per

  13. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.91,3.91,3.78,3.37,2.79,2.97,3.58,3.09,2.81,1.75,1.88,2.96,3.03," "," "," "," "," "," "," "," "," "," "," "," " "Average heat value (Btu per

  14. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",0,0,0,2.71,2.95,2.55,2.51," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "

  15. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.99,1.9,1.94,1.76,1.7,1.65,1.58,1.34,1.26,1.19,1.15,1.16,1.19,1.19,1.15,1.44,1.56,1.55,1.63,1.63,1.61,1.7,1.74,1.71,1.75 "Average heat value (Btu per

  16. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.53,2.5,2.56,2.46,2.14,2.02,1.93,1.61,1.52,1.4,1.21,1.2,1.17,1.14,1.08,1.11,1.12,1.16,1.19,1.25,1.27,1.27,1.31,1.34,1.36 "Average heat value (Btu per

  17. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.73,1.77,1.54,1.52,1.42,1.34,1.27,1.08,1.05,0.98,0.93,0.89,0.89,0.81,0.82,0.82,0.88,0.94,0.94,0.99,0.99,1.01,1.1,1.1,1.12 "Average heat value (Btu per

  18. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.79,1.77,1.83,1.75,1.51,1.43,1.41,1.23,1.19,1.12,1.03,1.01,0.98,1.05,0.98,0.95,0.98,1.02,0.99,1.02,1.02,1.02,1.18,1.23,1.24 "Average heat value (Btu per

  19. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.34,2.36,2.42,2.34,2.26,2.17,2.14,1.75,1.7,1.52,1.37,1.23,1.19,1.1,1.02,1.06,1.06,1.05,1.06,1.11,1.16,1.17,1.16,1.18,1.19 "Average heat value (Btu per

  20. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.46,2.56,2.49,2.39,2.16,2.04,2.1,1.85,1.66,1.51,1.38,1.34,1.27,1.31,1.32,1.4,1.43,1.48,1.51,1.55,1.54,1.58,1.53,1.65,1.7 "Average heat value (Btu per

  1. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",5.41,5.09,7,6.09,6.19,5.06,3.67,3.19,3.27,2.66,2.62,2.37,2.41," "," "," "," "," "," "," "," "," "," "," "," " "Average heat value (Btu per

  2. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.62,2.68,2.79,2.68,2.12,2.07,1.97,1.72,1.68,1.58,1.39,1.34,1.32,1.27,1.3,1.31,1.33,1.37,1.4,1.45,1.51,1.53,1.56,1.59,1.6 "Average heat value (Btu per

  3. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.98,2.03,1.99,1.93,1.74,1.64,1.69,1.5,1.22,1.13,1.07,1.08,1.06,1.02,1.11,1.1,1.07,1.09,1.07,1.14,1.14,1.13,1.19,1.26,1.25 "Average heat value (Btu per

  4. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.03,3.24,3.52,3.45,2.89,3.01,3.01,2.71,2.31,2.1,1.69,1.54,1.59,1.63,1.52,1.55,1.54,1.55,1.51,1.53,1.57,1.64,1.6,1.67,1.65 "Average heat value (Btu per

  5. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2,1.9,1.85,1.73,1.59,1.53,1.51,1.33,1.11,1.01,0.93,0.92,0.9,0.96,0.92,0.93,0.92,0.93,0.95,0.98,1.1,1.24,1.34,1.34,1.35 "Average heat value (Btu per

  6. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.42,1.57,1.38,1.33,1.11,1.07,1.02,0.93,0.85,0.71,0.64,0.62,0.61,0.95,0.92,0.73,0.67,0.68,0.71,0.67,0.69,0.69,0.71,0.67,0.67 "Average heat value (Btu per

  7. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.4,1.42,1.55,1.51,1.42,1.33,0.9,0.88,0.8,0.71,0.66,0.6,0.58,0.57,0.56,0.55,0.59,0.59,0.72,0.75,0.77,0.75,0.75,0.75,0.75 "Average heat value (Btu per

  8. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",4.27,4.21,4.07,3.55,3.8,3.66,3.53,2.9,2.56,2.44,2.02,1.7,1.8,1.67,1.48,1.52,1.61,1.63,1.61,1.59,1.52,1.61,1.69,1.74,1.78 "Average heat value (Btu per

  9. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.95,3.87,4.05,4.18,4.16,4.01,3.33,2.89,2.73,2.18,2.05,1.8,1.87,2.27,1.39,1.45,1.59,1.76,1.75,1.78,1.82,1.77,1.73,1.78,1.8 "Average heat value (Btu per

  10. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.78,2.31,2.18,2.05,2.06,1.9,1.99,1.79,1.56,1.51,1.48,1.43,1.53,1.47,1.38,1.33,1.31,1.34,1.43,1.42,1.41,1.37,1.32,1.38,1.32 "Average heat value (Btu per

  11. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.09,3.13,3.26,3.32,3.05,2.73,2.57,2.41,2.4,2.13,1.76,1.59,1.55,1.42,1.49,1.45,1.43,1.42,1.43,1.41,1.45,1.5,1.49,1.59,1.61 "Average heat value (Btu per

  12. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.59,3.8,3.77,3.63,3.52,3.59,3.26,2.74,2.69,2.4,2,1.78,1.76,1.59,1.43,1.44,1.44,1.43,1.48,1.63,1.68,1.7,1.73,1.78,1.78 "Average heat value (Btu per

  13. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.53,1.55,1.49,1.34,1.26,1.14,1.1,0.98,0.88,0.82,0.77,0.74,0.74,0.74,0.72,0.73,0.76,0.78,0.74,0.73,0.7,0.71,0.72,0.71,0.69 "Average heat value (Btu per

  14. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.32,2.28,2.48,2.48,2.24,2.39,2.05,1.71,1.7,1.54,1.33,1.21,1.23,1.31,1.46,1.36,1.36,1.32,1.34,1.42,1.44,1.41,1.44,1.48,1.52 "Average heat value (Btu per

  15. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.99,2.03,2,1.82,1.72,1.65,1.35,1.19,1.12,1.04,1.04,0.99,0.96,0.91,0.94,0.91,0.91,0.92,0.98,0.99,1.02,1.24,1.23,1.32,1.4 "Average heat value (Btu per

  16. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.49,1.96,1.89,1.79,1.67,1.76,1.45,1.38,1.3,1.28,1.18,1.25,1.33,1.11,1.07,1.08,1.09,1.14,1.07,1.06,1.07,1.12,1.1,1.08,1.08 "Average heat value (Btu per

  17. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.52,2.48,2.43,2.56,2.41,2.3,2.1,1.75,1.72,1.59,1.37,1.22,1.25,1.21,1.15,1.3,1.35,1.36,1.38,1.36,1.43,1.44,1.48,1.55,1.52 "Average heat value (Btu per

  18. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.48," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," ","

  19. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.64,3.76,3.98,3.85,3.71,3.66,2.89,2.34,2.33,2.17,1.91,1.62,1.59,1.57,1.39,1.42,1.45,1.45,1.47,1.51,1.56,1.57,1.53,1.63,1.72 "Average heat value (Btu per

  20. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.09,2,2.19,2.09,1.95,1.76,1.74,1.56,1.51,1.42,1.39,1.34,1.3,1.03,0.99,0.94,0.93,0.92,0.94,1.03,1.08,1.1,1.13,1.13,1.15 "Average heat value (Btu per

  1. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.53,2.49,2.72,2.88,2.69,2.57,2.28,1.94,1.73,1.57,1.36,1.26,1.22,1.22,1.11,1.13,1.12,1.12,1.15,1.15,1.26,1.26,1.27,1.25,1.34 "Average heat value (Btu per

  2. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.99,1.97,1.88,1.87,1.84,1.68,1.62,1.49,1.39,1.29,1.31,1.25,1.26,1.33,1.23,1.2,1.24,1.26,1.29,1.34,1.35,1.44,1.49,1.5,1.45 "Average heat value (Btu per

  3. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.11,2.05,1.94,1.78,1.7,1.55,1.39,1.36,1.25,1.14,1.13,1.04,0.98,1.12,1.01,1.03,1.15,1.11,1.07,1.09,1.14,1.19,1.21,1.19,1.17 "Average heat value (Btu per

  4. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)"," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," ","

  5. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.37,3.35,3.67,3.52,3.28,3.08,2.77,2.49,2.45,2.33,1.95,1.67,1.69,1.59,1.33,1.34,1.38,1.39,1.42,1.45,1.45,1.47,1.47,1.52,1.55 "Average heat value (Btu per

  6. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.4,2.49,2.55,2.47,2.39,2.54,2.22,1.73,1.67,1.53,1.35,1.25,1.21,1.25,1.2,1.18,1.22,1.24,1.25,1.27,1.39,1.42,1.47,1.52,1.47 "Average heat value (Btu per

  7. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.35,2.37,2.42,2.56,2.18,2.06,1.98,1.7,1.5,1.29,1.18,1.12,1.12,1.05,1.02,1.02,1.07,1.09,1.06,1.14,1.21,1.21,1.33,1.36,1.36 "Average heat value (Btu per

  8. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.57,1.51,1.43,1.54,1.32,1.2,1.17,1.05,1,0.95,0.87,0.82,0.79,0.77,0.78,0.76,0.79,0.81,0.82,0.82,0.8,0.8,0.76,0.83,0.84 "Average heat value (Btu per

  9. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.37,2.34,2.38,2.39,2.27,2.21,2.07,1.77,1.69,1.54,1.36,1.28,1.25,1.23,1.2,1.22,1.25,1.27,1.29,1.32,1.36,1.39,1.41,1.45,1.45 "Average heat value (Btu per

  10. Weekly Coal Production by State

    U.S. Energy Information Administration (EIA) Indexed Site

    Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights ... Stocks Imports, exports & distribution Coal-fired electric power plants Transportation ...

  11. Coal | Open Energy Information

    Open Energy Info (EERE)

    Assuming no additional constraints on CO2 emissions, coal remains the largest source of electricity generation in the AEO2011 Reference case because of continued reliance on...

  12. By Coal Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    California (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total...

  13. George Crabtree, Director | JCESR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    George Crabtree, Director On March 24, 2015 In leadership George Crabtree George Crabtree, an Argonne National Laboratory Distinguished Fellow, is the Director of the Joint...

  14. Deputy-Director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Berkeley Lab Deputy Director Horst Simon horst-simon Horst Simon is an internationally recognized expert in computer science and applied mathematics and the Deputy Director of ...

  15. Energy, Environmental, and Economic Analyses of Design Concepts for the Co-Production of Fuels and Chemicals with Electricity via Co-Gasification of Coal and Biomass

    SciTech Connect (OSTI)

    Eric Larson; Robert Williams; Thomas Kreutz; Ilkka Hannula; Andrea Lanzini; Guangjian Liu

    2012-03-11

    The overall objective of this project was to quantify the energy, environmental, and economic performance of industrial facilities that would coproduce electricity and transportation fuels or chemicals from a mixture of coal and biomass via co-gasification in a single pressurized, oxygen-blown, entrained-flow gasifier, with capture and storage of CO{sub 2} (CCS). The work sought to identify plant designs with promising (Nth plant) economics, superior environmental footprints, and the potential to be deployed at scale as a means for simultaneously achieving enhanced energy security and deep reductions in U.S. GHG emissions in the coming decades. Designs included systems using primarily already-commercialized component technologies, which may have the potential for near-term deployment at scale, as well as systems incorporating some advanced technologies at various stages of R&D. All of the coproduction designs have the common attribute of producing some electricity and also of capturing CO{sub 2} for storage. For each of the co-product pairs detailed process mass and energy simulations (using Aspen Plus software) were developed for a set of alternative process configurations, on the basis of which lifecycle greenhouse gas emissions, Nth plant economic performance, and other characteristics were evaluated for each configuration. In developing each set of process configurations, focused attention was given to understanding the influence of biomass input fraction and electricity output fraction. Self-consistent evaluations were also carried out for gasification-based reference systems producing only electricity from coal, including integrated gasification combined cycle (IGCC) and integrated gasification solid-oxide fuel cell (IGFC) systems. The reason biomass is considered as a co-feed with coal in cases when gasoline or olefins are co-produced with electricity is to help reduce lifecycle greenhouse gas (GHG) emissions for these systems. Storing biomass-derived CO

  16. Coal - U.S. Energy Information Administration (EIA)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Stocks Imports, exports & distribution Coal-fired electric power plants Transportation costs to electric power sector International All coal data reports Analysis & Projections ...

  17. Co-production of decarbonized synfuels and electricity from coal + biomass with CO{sub 2} capture and storage: an Illinois case study

    SciTech Connect (OSTI)

    Eric D. Larson; Giulia Fiorese; Guangjian Liu; Robert H. Williams; Thomas G. Kreutz; Stefano Consonni

    2010-07-01

    Energy, carbon, and economic performances are estimated for facilities co-producing Fischer-Tropsch Liquid (FTL) fuels and electricity from a co-feed of biomass and coal in Illinois, with capture and storage of by-product CO{sub 2}. The estimates include detailed modeling of supply systems for corn stover or mixed prairie grasses (MPG) and of feedstock conversion facilities. Biomass feedstock costs in Illinois (delivered at a rate of one million tonnes per year, dry basis) are $ 3.8/GJ{sub HHV} for corn stover and $ 7.2/GJ{sub HHV} for MPG. Under a strong carbon mitigation policy, the economics of co-producing low-carbon fuels and electricity from a co-feed of biomass and coal in Illinois are promising. An extrapolation to the United States of the results for Illinois suggests that nationally significant amounts of low-carbon fuels and electricity could be produced this way.

  18. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.67,3.77,4.35,3.7,3.75,3.58,3.15,2.95,2.67,2.46,2.38,2.41,2.45," "," ",1.69,1.81,1.9,1.91,1.88,1.77,1.7,1.95,2.17,2.13 "Average heat value (Btu per pound)",9205,9205,9205,9373,10706,11038,10215,10286,10056,10139,10423,10565,11439,"

  19. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.95,3.39,3.57,3.65,3.41,3.01,3.66,2.12,2.27,1.92,1.74,1.63,1.63," ",1.33,1.38,1.46,1.5,1.49,1.5,1.55,1.6,1.59,1.63,1.65 "Average heat value (Btu per pound)",12449,12336,12359,12245,12288,12510,12361,12501,12504,12638,12653,12708,12799,"

  20. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.19,3.4,3.12,3.68,3.18,3.38,2.94,2.78,2.78,2.94,1.97,1.75,1.92," ",1.75,1.73,1.68,1.7,1.69,1.68,1.68,1.68,1.69,1.72,1.73 "Average heat value (Btu per pound)",11603,11746,12130,11794,11985,11735,11517,11595,11546,11728,11793,12200,12482,"

  1. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.15,2.15,2.29,2.25,2.27,2.16,2.17,1.73,1.54,1.33,1.43,1.4,1.46," ",1.69,1.56,1.49,1.63,1.57,1.44,1.36,1.36,1.37,1.55,1.58 "Average heat value (Btu per pound)",8492,8517,8477,8413,8391,8403,8366,9211,8532,8131,8151,8052,8014,"

  2. Methodology and a preliminary data base for examining the health risks of electricity generation from uranium and coal fuels

    SciTech Connect (OSTI)

    El-Bassioni, A.A.

    1980-08-01

    An analytical model was developed to assess and examine the health effects associated with the production of electricity from uranium and coal fuels. The model is based on a systematic methodology that is both simple and easy to check, and provides details about the various components of health risk. A preliminary set of data that is needed to calculate the health risks was gathered, normalized to the model facilities, and presented in a concise manner. Additional data will become available as a result of other evaluations of both fuel cycles, and they should be included in the data base. An iterative approach involving only a few steps is recommended for validating the model. After each validation step, the model is improved in the areas where new information or increased interest justifies such upgrading. Sensitivity analysis is proposed as the best method of using the model to its full potential. Detailed quantification of the risks associated with the two fuel cycles is not presented in this report. The evaluation of risks from producing electricity by these two methods can be completed only after several steps that address difficult social and technical questions. Preliminary quantitative assessment showed that several factors not considered in detail in previous studies are potentially important. 255 refs., 21 figs., 179 tabs.

  3. Supplement to a review of the coal and electric sections in the Monthly Energy Review and an Overall Review of Office of Energy Data Operations Publications

    SciTech Connect (OSTI)

    Not Available

    1981-04-01

    This mock-up of the electric utilities section of the Monthly Energy Review (MER) is a supplement to MAXIMA's report, Review of the Coal and Electric Sections in the Monthly Energy Review and an Overall Review of Energy Data Operations Publications. The purpose of the mock-up is to illustrate some of the options discussed in the previous report and, where necessary, to elaborate on some of the issues previously raised. The mock-up is presented first and is followed by text that discusses changes made to the original MER. For comparison purposes, the electric utilities section in the March 1981 MER has been included in Appendix A.

  4. Coal combustion products (CCPs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coal combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the largest segment of U.S. electricity generation (45 percent in 2010), finding a sustainable solution for CCPs is an important environmental challenge. When properly managed, CCPs offer society environmental and economic benefits without harm to public health and safety. Research supported by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE) has made an

  5. Fermilab | Directorate | Director Profiles | Nigel Lockyer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as director of Fermi National Accelerator Laboratory, Americas premier laboratory for particle physics research, on September 3, 2013. An experimental particle physicist,...

  6. ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components"

    U.S. Energy Information Administration (EIA) Indexed Site

    Relative Standard Errors for Table 7.1;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" " "," ",,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues",,,," " " "," ","

  7. Director's Fellowships | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director's Fellowships Director's Fellowships are granted to outstanding scientists and engineers who show potential for being leaders in their fields. Director's Fellows make...

  8. Jefferson Lab Directorate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directorate Privacy and Security Notice Skip over navigation Search the JLab Site Search Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Jefferson Lab Navigation Home Search News Insight print version Org Charts Directorate Accelerator COO CFO CIO CSO CTO ESH&Q FEL IT Physics Mission of the Directorate The Jefferson Lab Directorate is responsible for supporting the

  9. NEMS Modeling of Coal Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    NEMS Modeling of Coal Plants Office of Electricity, Coal, Nuclear, and Renewable Analysis Laura Martin June 14, 2016 Washington, DC 2 EMM Structure EFD ECP EFP ELD Laura Martin Washington, DC, June 14, 2016 Electricity Load and Demand Submodule Liquid Fuels Market Module Model inputs for coal plants 3 * Existing coal plants - plant specific inputs - Fixed and variable operating and maintenance costs, annual capital additions - Retrofit costs (capital and O&M) - FGD, DSI, SCR, SNCR, CCS, FF -

  10. U.S. Coal Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Glossary › FAQS › Overview Data Coal Data Browser (interactive query tool with charting and mapping) Summary Prices Reserves Consumption Production Stocks Imports, exports & distribution Coal-fired electric power plants Transportation costs to electric power sector International All coal data reports Analysis & Projections Major Topics Most popular Consumption Environment Imports & exports Industry characteristics Prices Production Projections Recurring Reserves Stocks All

  11. Method of generating electricity using an endothermic coal gasifier and MHD generator

    DOE Patents [OSTI]

    Marchant, David D.; Lytle, John M.

    1982-01-01

    A system and method of generating electrical power wherein a mixture of carbonaceous material and water is heated to initiate and sustain the endothermic reaction of carbon and water thereby providing a gasified stream containing carbon monoxide, hydrogen and nitrogen and waste streams of hydrogen sulfide and ash. The gasified stream and an ionizing seed material and pressurized air from a preheater go to a burner for producing ionized combustion gases having a temperature of about 5000.degree. to about 6000.degree. F. which are accelerated to a velocity of about 1000 meters per second and passed through an MHD generator to generate DC power and thereafter through a diffuser to reduce the velocity. The gases from the diffuser go to an afterburner and from there in heat exchange relationship with the gasifier to provide heat to sustain the endothermic reaction of carbon and water and with the preheater to preheat the air prior to combustion with the gasified stream. Energy from the afterburner can also be used to energize other parts of the system.

  12. Directors - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Associate Directors Prof. Rachel S. Goldman CSTEC Associate Director Professor, Materials Science and Engineering, Electrical Engineeering and Computer Science, Physics Prof. Ctirad Uher CSTEC Associate Director C. Wilbur Peters Collegiate Professor of Physics Prof. Rachel S. Goldman Dr. Rachel Goldman is a professor of MSE who holds joint appointments in Physics and in Electrical Engineering & Computer Science. Goldman started her academic career at UM in 1997 as the Dow Corning Assistant

  13. TO: Procurement Directors FROM: Director, Policy Division

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 DATE: March 21, 2011 TO: Procurement Directors FROM: Director, Policy Division Office of Procurement and Assistance Policy Office of Procurement and Assistance Management SUBJECT: SBA Final Rule affecting the 8(a) Business Development Program SUMMARY: On February 11, 2011, the Small Business Administration (SBA) issued the attached final rule revising the regulations governing the 8(a) Business Development program, small business size regulations, and Small Disadvantaged Business (SDB) status

  14. TO: Procurement Directors FROM: Director, Policy Division

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    POLICY FLASH 2011-55 DATE: March 14, 2011 TO: Procurement Directors FROM: Director, Policy Division Office of Procurement and Assistance Policy Office of Procurement and Assistance Management SUBJECT: Acquisition Guide 19.1 SUMMARY: Minor administrative changes were made to Acquisition Guide Chapter 19.1 as follows: 1) the title and associated link were changed to read: "Summary of Small Business Administration and Department of Energy Partnership Agreement," and 2) effective date in

  15. TO: Procurement Directors FROM: Director, Policy Division

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    63 DATE: April 7, 2011 TO: Procurement Directors FROM: Director, Policy Division Office of Procurement and Assistance Policy Office of Procurement and Assistance Management SUBJECT: Updated Reporting Requirement Checklists and Research Performance Progress Report (RPPR) SUMMARY: Policy Flash 2011-46, transmitted updated copies of the Reporting Requirements Checklist to add coverage for For-Profit audits. This Flash transmits additional updates to the checklists to clarify the submission

  16. TO: Procurement Directors FROM: Director, Policy Division

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    POLICY FLASH 2011-64 DATE: April 7, 2011 TO: Procurement Directors FROM: Director, Policy Division Office of Procurement and Assistance Policy Office of Procurement and Assistance Management SUBJECT: Publication of Federal Acquisition Circular 2005-51 SUMMARY: Attached for your information is a summary of Federal Acquisition Circular 2005-51 which makes two changes to the Federal Acquisition Regulation involving the small business program and a modification of Standard Form 26. This Flash and

  17. TO: Procurement Directors FROM: Director, Policy Division

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    85 DATE: June 23, 2011 TO: Procurement Directors FROM: Director, Policy Division Office of Procurement and Assistance Policy Office of Procurement and Assistance Management SUBJECT: U.S. Department of Energy - Guide to Financial Assistance - Audit Requirements for For-Profit Organizations SUMMARY: Policy Flash 2011-46, which was issued in association with the Office of Risk Management, provided the final audit guidance documents to assist for-profit recipients in complying with 10 CFR 600.316.

  18. TO: Procurement Directors FROM: Director, Policy Division

    Office of Environmental Management (EM)

    3-33 DATE: February 27, 2013 TO: Procurement Directors FROM: Director, Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT: DOE O 206.2 Identity, Credential, and Access Management (ICAM) SUMMARY: The Department issued a Contractor Requirements Document (CRD) for the subject Directive on February 19, 2013. Under the Department's Directives Program (DOE Order 251.1C), Heads of Field Elements are generally responsible for

  19. TO: Procurement Directors FROM: Director, Policy Division

    Office of Environmental Management (EM)

    2 DATE: February 11, 2011 TO: Procurement Directors FROM: Director, Policy Division Office of Procurement and Assistance Policy Office of Procurement and Assistance Management SUBJECT: Department of Energy Acquisition Regulation (DEAR) Final Rule for Subchapters A, B, and C SUMMARY: Department of Energy Acquisition Regulation (DEAR) Final Rule for Subchapters A, B, and C was published February 11, 2011, in the Federal Register 76 FR 7685. The changes are effective March 14, 2011. This Flash will

  20. TO: Procurement Directors FROM: Director, Policy Division

    Office of Environmental Management (EM)

    POLICY FLASH 2011-40 DATE: February 9, 2011 TO: Procurement Directors FROM: Director, Policy Division Office of Procurement and Assistance Policy Office of Procurement and Assistance Management SUBJECT: Issue a New Department of Energy Acquisition Guide Chapter 6.5 Competition Advocate Responsibilities and Revise Pages in Chapters 6.1 and 7.1. SUMMARY: Attached is a new chapter of the DOE Acquisition Guide entitled Competition Advocate Responsibilities. It provides a comprehensive overview of

  1. Electricity Monthly Update

    Gasoline and Diesel Fuel Update (EIA)

    cheap price of natural gas reduced coals share of electricity production. Days of Burn Days of burn Coal capacity The average number of days of burn held at electric power...

  2. Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies. Commercial power plant tests blend of refuse-derived fuel and coal to generate electricity

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    MSW can be converted to energy in two ways. One involves the direct burning of MSW to produce steam and electricity. The second converts MSW into refuse-derived fuel (RDF) by reducing the size of the MSW and separating metals, glass, and other inorganic materials. RDF can be densified or mixed with binders to form fuel pellets. As part of a program sponsored by DOE`s Office of Industrial Technologies, the National Renewable Energy Laboratory participated in a cooperative research and development agreement to examine combustion of binder-enhanced, densified refuse-derived fuel (b-d RDF) pellets with coal. Pelletized b-d RDF has been burned in coal combustors, but only in quantities of less than 3% in large utility systems. The DOE project involved the use of b-d RDF in quantities up to 20%. A major goal was to quantify the pollutants released during combustion and measure combustion performance.

  3. Annual Coal Distribution Report - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    & distribution Coal-fired electric power plants Transportation costs to electric power ... domestic distribution, while industrial plants excluding coke received 4.8%, coke plants ...

  4. Fermilab | Directorate | Assurance Council

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assurance Council The purpose of the Assurance Council is to identify and communicate risk and serve as a mechanism to provide reasonable assurance to the laboratory director that...

  5. Weapons Program Associate Directors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    integration we have achieved between the various components of the program," said Bret Knapp, Principal Associate Director for Weapons Programs. "They have both done an...

  6. STEO November 2012 - coal supplies

    U.S. Energy Information Administration (EIA) Indexed Site

    Despite drop in domestic coal production, U.S. coal exports to reach record high in 2012. While U.S. coal production is down 7 percent this year due in part to utilities switching to low-priced natural gas to generate electricity, American coal is still finding plenty of buyers in overseas markets. U.S. coal exports are expected to hit a record 125 million tons in 2012, the U.S. Energy Information Administration says in its new monthly short-term energy outlook. Coal exports are expected to

  7. The shell coal gasification process

    SciTech Connect (OSTI)

    Koenders, L.O.M.; Zuideveld, P.O.

    1995-12-01

    Future Integrated Coal Gasification Combined Cycle (ICGCC) power plants will have superior environmental performance and efficiency. The Shell Coal Gasification Process (SCGP) is a clean coal technology, which can convert a wide range of coals into clean syngas for high efficiency electricity generation in an ICGCC plant. SCGP flexibility has been demonstrated for high-rank bituminous coals to low rank lignites and petroleum coke, and the process is well suited for combined cycle power generation, resulting in efficiencies of 42 to 46% (LHV), depending on choice of coal and gas turbine efficiency. In the Netherlands, a 250 MWe coal gasification combined cycle plant based on Shell technology has been built by Demkolec, a development partnership of the Dutch Electricity Generating Board (N.V. Sep). The construction of the unit was completed end 1993 and is now followed by start-up and a 3 year demonstration period, after that the plant will be part of the Dutch electricity generating system.

  8. Upgrading coal plant damper drives

    SciTech Connect (OSTI)

    Hood, N.R.; Simmons, K.

    2009-11-15

    The replacement of damper drives on two coal-fired units at the James H. Miller Jr. electric generating plant by Intelligent Contrac electric rotary actuators is discussed. 2 figs.

  9. TO: Procurement Directors FROM: Director Contract and Financial...

    Energy Savers [EERE]

    10 DATE: November 26 , 2013 TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management...

  10. TO: Procurement Directors FROM: Director Contract and Financial...

    Broader source: Energy.gov (indexed) [DOE]

    DATE: November 26 , 2013 TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management...

  11. Fermilab Project Oversight Model Director Associate Lab Director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director Associate Lab Director Division Head Office of Integrated Planning & Performance Management Project Support Services Projects 150 - 750 M NOvA Mu2e Projects > 750 M...

  12. TO: Procurement Directors FROM: Director Contract and Financial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 DATE: February 26, 2014 TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management...

  13. TO: Procurement Directors/Contracting Officers FROM: Director

    Broader source: Energy.gov (indexed) [DOE]

    October 30 , 2013 TO: Procurement DirectorsContracting Officers FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project...

  14. TO: Procurement Directors/Contracting Officers FROM: Director

    Broader source: Energy.gov (indexed) [DOE]

    January 15, 2014 TO: Procurement DirectorsContracting Officers FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project...

  15. TO: Procurement Directors FROM: Director Contract and Financial...

    Office of Environmental Management (EM)

    2 DATE: March 18, 2014 TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management...

  16. TO: Procurement Directors FROM: Director, Contract and Financial...

    Broader source: Energy.gov (indexed) [DOE]

    58 DATE: June 5, 2013 TO: Procurement Directors FROM: Director, Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management...

  17. TO: Procurement Directors FROM: Director, Contract and Financial...

    Broader source: Energy.gov (indexed) [DOE]

    18, 2012 TO: Procurement Directors FROM: Director, Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT:...

  18. TO: Procurement Directors/Contracting Officers FROM: Director

    Broader source: Energy.gov (indexed) [DOE]

    6, 2014 TO: Procurement DirectorsContracting Officers FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project...

  19. TO: Procurement Directors FROM: Director, Contracts and Financial...

    Broader source: Energy.gov (indexed) [DOE]

    April 10, 2012 TO: Procurement Directors FROM: Director, Contracts and Financial Assistance Policy Division Office of Policy Office of Procurement and Assistance Management...

  20. TO: Procurement Directors/Contracting Officers FROM: Director

    Broader source: Energy.gov (indexed) [DOE]

    November 21, 2012 TO: Procurement DirectorsContracting Officers FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project...

  1. TO: Procurement Directors FROM: Director Contract and Financial...

    Broader source: Energy.gov (indexed) [DOE]

    2, 2012 TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT: Executive...

  2. TO: Procurement Directors/Contracting Officers FROM: Director

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    28 DATE: May 7, 2014 TO: Procurement DirectorsContracting Officers FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and...

  3. TO: Procurement Directors FROM: Director Contract and Financial...

    Broader source: Energy.gov (indexed) [DOE]

    November 07, 2012 TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT:...

  4. TO: Procurement Directors/Contracting Officers FROM: Director

    Broader source: Energy.gov (indexed) [DOE]

    DATE: May 8, 2012 TO: Procurement DirectorsContracting Officers FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Procurement and...

  5. TO: Procurement Directors FROM: Director, Contract and Financial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 DATE: October 21, 2014 TO: Procurement Directors FROM: Director, Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management...

  6. TO: Procurement Directors/Contracting Officers FROM: Director

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 DATE: March 6, 2015 TO: Procurement DirectorsContracting Officers FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Procurement and...

  7. TO: Procurement Directors FROM: Director, Contract and Financial...

    Broader source: Energy.gov (indexed) [DOE]

    DATE: November 13, 2012 TO: Procurement Directors FROM: Director, Contract and Financial Assistance Policy Division Office of Acquisition and Project Management SUBJECT: Hurricane...

  8. TO: Procurement Directors FROM: Director, Contract and Financial...

    Broader source: Energy.gov (indexed) [DOE]

    May 14, 2012 TO: Procurement Directors FROM: Director, Contract and Financial Assistance Policy Division Office of Policy Office of Procurement and Assistance Management SUBJECT:...

  9. TO: Procurement Directors FROM: Director Contract and Financial...

    Broader source: Energy.gov (indexed) [DOE]

    2, 2012 TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT: Class...

  10. TO: Procurement Directors FROM: Director Contracts and Financial...

    Broader source: Energy.gov (indexed) [DOE]

    June 21, 2012 TO: Procurement Directors FROM: Director Contracts and Financial Assistance Policy Division Office of Acquisition and Project Management SUBJECT: Department of Energy...

  11. TO: Procurement Directors FROM: Director Contract and Financial...

    Broader source: Energy.gov (indexed) [DOE]

    December 7, 2013 TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT:...

  12. TO: Procurement Directors FROM: Director Contract and Financial...

    Broader source: Energy.gov (indexed) [DOE]

    , 2013 TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT: Updated...

  13. TO: Procurement Directors FROM: Director, Contract and Financial...

    Broader source: Energy.gov (indexed) [DOE]

    May 23, 2012 TO: Procurement Directors FROM: Director, Contract and Financial Assistance Policy Division Office of Policy Office of Procurement and Assistance Management SUBJECT:...

  14. TO: Procurement Directors FROM: Director Contracts and Financial...

    Broader source: Energy.gov (indexed) [DOE]

    07, 2012 TO: Procurement Directors FROM: Director Contracts and Financial Assistance Policy Division Office of Policy Office of Procurement and Assistance Management SUBJECT:...

  15. TO: Procurement Directors/Contracting Officers FROM: Director

    Broader source: Energy.gov (indexed) [DOE]

    May 14, 2012 TO: Procurement DirectorsContracting Officers FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Procurement and Assistance...

  16. TO: Procurement Directors FROM: Director, Contract and Financial...

    Broader source: Energy.gov (indexed) [DOE]

    DATE: May 14 , 2012 TO: Procurement Directors FROM: Director, Contract and Financial Assistance Policy Division Office of Procurement and Assistance Management SUBJECT:...

  17. TO: Procurement Directors/Contracting Officers FROM: Director

    Broader source: Energy.gov (indexed) [DOE]

    1, 2014 TO: Procurement DirectorsContracting Officers FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project...

  18. TO: Procurement Directors FROM: Director, Contracts and Financial...

    Broader source: Energy.gov (indexed) [DOE]

    April 04, 2012 TO: Procurement Directors FROM: Director, Contracts and Financial Assistance Policy Division Office of Policy Office of Procurement and Assistance Management...

  19. TO: Procurement Directors FROM: Director, Contract and Financial...

    Broader source: Energy.gov (indexed) [DOE]

    DATE: June 7, 2012 TO: Procurement Directors FROM: Director, Contract and Financial Assistance Policy Division Office of Policy Office of Procurement and Assistance Management...

  20. TO: Procurement Directors FROM: Director Contract and Financial...

    Broader source: Energy.gov (indexed) [DOE]

    Directors FROM: Director Contract and Financial Assistance Policy Division Office of ... Guide Chapter 5.1 and Guide to Financial Assistance Chapter 2, Section 2.6.1 ...

  1. Economics of coal fines utilization

    SciTech Connect (OSTI)

    Hathi, V.; McHale, E.; Ramezan, M.; Winslow, J.

    1995-12-31

    In the twentieth century, coal has become the major fuel for electric power generation in the U.S. and most of the nonpetroleum-producing countries of the world. In 1998, the world coal-fired capacity for electric power generation was about 815 GW, consuming large quantities of coals of all ranks. Today, coal provides a third of the world`s energy requirements. In fact, coal use for power generation has grown steadily since the oil embargo in 1973 and has seen an even faster rate of growth in recent years. It has been reported that the global demand for new coal will increase by more than 1500 million tons by the year 2000. However, this increased production of coal has its drawbacks, including the concomitant production of coal waste. Reported estimates indicate that billions of tons of coal waste have already been disposed of in waste impoundments throughout the U.S. Further, in the U.S. today, about 20-25 % of each ton of mined coal is discarded by preparation plants as gob and plant tailings. It appears that the most economical near-term approach to coal waste recovery is to utilize the waste coal fines currently discarded with the refuse stream, rather than attempt to recover coal from waste impoundments that require careful prior evaluation and site preparation. A hypothetical circuit was designed to examine the economics of recovery and utilization of waste coal fines. The circuit recovers products from 100 tons per hour (tph) of coal waste feed recovering 70 tph of fine coal that can be used in coal-fired boilers. The present analysis indicates that the coal waste recovery is feasible and economical. In addition, significant environmental benefits can be expected.

  2. Chemicals, fuels and electricity from coal. A proposed tri-generation concept for utilization of CO{sub 2} from power plants

    SciTech Connect (OSTI)

    Song, C.

    1999-07-01

    A tri-generation concept is proposed for the 21st century for making liquid fuels and chemicals along with electricity using CO{sub 2} from flue gases of coal-based electric power plants. The CO{sub 2} from flue gas in the power plant can be converted with CH{sub 4} (natural gas) to form synthesis gas (CO and H{sub 2} mixture) using the waste heat in the power plant. The H{sub 2}O and O{sub 2} in the flue gas will be used as co-reactants and need not be separated from the flue gas. The hot synthesis gas can be used as feedstock for fuel cells for electricity generation (such as MCFC and SOFC). The hot synthesis gas can also be used for gas turbines to generate electricity. The synthesis gas at moderate temperature can be converted into chemicals and fuels, e.g., methanol and mixed alcohols for chemical and fuel uses, dimethylether (DME) and mixed ethers for diesel fuel, dimethyl carbonate and acetic acid for chemicals. The fuels thus produced may be used either for conventional IC engines or in fuel cell-driven vehicles. This concept could also be applied, in principle, for natural gas-based power plants and IGCC power plants.

  3. Director, Division of Investigations

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission is looking for an experienced, highly skilled executive to serve as Director of the Division of Investigations (DOI) in the Office of Enforcement (OE). The...

  4. Coal sector profile

    SciTech Connect (OSTI)

    Not Available

    1990-06-05

    Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

  5. Clean coal

    SciTech Connect (OSTI)

    Liang-Shih Fan; Fanxing Li

    2006-07-15

    The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

  6. Role of coal in the world and Asia

    SciTech Connect (OSTI)

    Johnson, C.J.; Li, B.

    1994-10-01

    This paper examines the changing role of coal in the world and in Asia. Particular attention is given to the rapidly growing demand for coal in electricity generation, the importance of China as a producer and consumer of coal, and the growing environmental challenge to coal. Attention is given to the increasing importance of low sulfur coal and Clean Coal Technologies in reducing the environmental impacts of coal burning.

  7. Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power from Western Coals-Phase I

    SciTech Connect (OSTI)

    Raymond Hobbs

    2007-05-31

    The Advanced Hydrogasification Process (AHP)--conversion of coal to methane--is being developed through NETL with a DOE Grant and has successfully completed its first phase of development. The results so far are encouraging and have led to commitment by DOE/NETL to begin a second phase--bench scale reactor vessel testing, expanded engineering analysis and economic perspective review. During the next decade new means of generating electricity, and other forms of energy, will be introduced. The members of the AHP Team envision a need for expanded sources of natural gas or substitutes for natural gas, to fuel power generating plants. The initial work the team has completed on a process to use hydrogen to convert coal to methane (pipeline ready gas) shows promising potential. The Team has intentionally slanted its efforts toward the needs of US electric utilities, particularly on fuels that can be used near urban centers where the greatest need for new electric generation is found. The process, as it has evolved, would produce methane from coal by adding hydrogen. The process appears to be efficient using western coals for conversion to a highly sought after fuel with significantly reduced CO{sub 2} emissions. Utilities have a natural interest in the preservation of their industry, which will require a dramatic reduction in stack emissions and an increase in sustainable technologies. Utilities tend to rank long-term stable supplies of fuel higher than most industries and are willing to trade some ratio of cost for stability. The need for sustainability, stability and environmentally compatible production are key drivers in the formation and progression of the AHP development. In Phase II, the team will add a focus on water conservation to determine how the basic gasification process can be best integrated with all the plant components to minimize water consumption during SNG production. The process allows for several CO{sub 2} reduction options including consumption of

  8. Quarterly Coal Report - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Glossary › FAQS › Overview Data Coal Data Browser (interactive query tool with charting and mapping) Summary Prices Reserves Consumption Production Stocks Imports, exports & distribution Coal-fired electric power plants Transportation costs to electric power sector International All coal data reports Analysis & Projections Major Topics Most popular Consumption Environment Imports & exports Industry characteristics Prices Production Projections Recurring Reserves Stocks All

  9. Electricity Monthly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Electric Power Sector Coal Stocks: February 2014 Stocks Extreme cold throughout the winter continued in February, leading to a 13.4 million ton decline in coal inventories from...

  10. Proximate analysis of coal

    SciTech Connect (OSTI)

    Donahue, C.J.; Rais, E.A.

    2009-02-15

    This lab experiment illustrates the use of thermogravimetric analysis (TGA) to perform proximate analysis on a series of coal samples of different rank. Peat and coke are also examined. A total of four exercises are described. These are dry exercises as students interpret previously recorded scans. The weight percent moisture, volatile matter, fixed carbon, and ash content are determined for each sample and comparisons are made. Proximate analysis is performed on a coal sample from a local electric utility. From the weight percent sulfur found in the coal (determined by a separate procedure the Eschka method) and the ash content, students calculate the quantity of sulfur dioxide emissions and ash produced annually by a large coal-fired electric power plant.

  11. Statement of Patricia Hoffman, Deputy Director R&D, Office of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hoffman, Deputy Director R&D, Office of Electricity Delivery & Energy Reliability, Department of Energy before the Committee on Science and Technology Energy and Environment ...

  12. Statement of Patricia A. Hoffman, Deputy Director R&D, Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A. Hoffman, Deputy Director R&D, Office of Electricity Delivery & Energy Reliability Department of Energy before the Committee on Science and Technology Energy and Environment ...

  13. Coal Markets

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Glossary FAQS Overview Data Coal Data Browser (interactive query tool with charting and mapping) Summary Prices Reserves Consumption Production Stocks Imports, exports ...

  14. Underground gasification of coal

    DOE Patents [OSTI]

    Pasini, III, Joseph; Overbey, Jr., William K.; Komar, Charles A.

    1976-01-20

    There is disclosed a method for the gasification of coal in situ which comprises drilling at least one well or borehole from the earth's surface so that the well or borehole enters the coalbed or seam horizontally and intersects the coalbed in a direction normal to its major natural fracture system, initiating burning of the coal with the introduction of a combustion-supporting gas such as air to convert the coal in situ to a heating gas of relatively high calorific value and recovering the gas. In a further embodiment the recovered gas may be used to drive one or more generators for the production of electricity.

  15. Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power from Western Coals

    SciTech Connect (OSTI)

    Sun, Xiaolei; Rink, Nancy

    2011-04-30

    This report presents the results of the research and development conducted on an Advanced Hydrogasification Process (AHP) conceived and developed by Arizona Public Service Company (APS) under U.S. Department of Energy (DOE) contract: DE-FC26-06NT42759 for Substitute Natural Gas (SNG) production from western coal. A double-wall (i.e., a hydrogasification contained within a pressure shell) down-flow hydrogasification reactor was designed, engineered, constructed, commissioned and operated by APS, Phoenix, AZ. The reactor is ASME-certified under Section VIII with a rating of 1150 pounds per square inch gage (psig) maximum allowable working pressure at 1950 degrees Fahrenheit ({degrees}F). The reaction zone had a 1.75 inch inner diameter and 13 feet length. The initial testing of a sub-bituminous coal demonstrated ~ 50% carbon conversion and ~10% methane yield in the product gas under 1625{degrees}F, 1000 psig pressure, with a 11 seconds (s) residence time, and 0.4 hydrogen-to-coal mass ratio. Liquid by-products mainly contained Benzene, Toluene, Xylene (BTX) and tar. Char collected from the bottom of the reactor had 9000-British thermal units per pound (Btu/lb) heating value. A three-dimensional (3D) computational fluid dynamic model simulation of the hydrodynamics around the reactor head was utilized to design the nozzles for injecting the hydrogen into the gasifier to optimize gas-solid mixing to achieve improved carbon conversion. The report also presents the evaluation of using algae for carbon dioxide (CO{sub 2}) management and biofuel production. Nannochloropsis, Selenastrum and Scenedesmus were determined to be the best algae strains for the project purpose and were studied in an outdoor system which included a 6-meter (6M) radius cultivator with a total surface area of 113 square meters (m{sup 2}) and a total culture volume between 10,000 to 15,000 liters (L); a CO{sub 2} on-demand feeding system; an on-line data collection system for temperature, p

  16. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems

    SciTech Connect (OSTI)

    Sadowski, R.S.; Brown, M.J.; Harriz, J.T.; Ostrowski, E.

    1991-01-01

    The cost estimate provided for the DOE sponsored study of Air Blown Coal Gasification was developed from vendor quotes obtained directly for the equipment needed in the 50 MW, 100 MW, and 200 MW sized plants and from quotes from other jobs that have been referenced to apply to the particular cycle. Quotes were generally obtained for the 100 MW cycle and a scale up/down factor was used to generate the cost estimates for the 200 MW and 50 MW cycles, respectively. Information from GTPro (property of Thermoflow, Inc.) was used to estimate the cost of the 200 MW and 50 MW gas turbine, HRSG, and steam turbines. To available the use of GTPro's estimated values for this equipment, a comparison was made between the quotes obtained for the 100 MW cycle (ABB GT 11N combustion turbine and a HSRG) against the estimated values by GTPro.

  17. New NERSC Director Sudip Dosanjh

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Director Sudip Dosanjh New NERSC Director Sudip Dosanjh October 5, 2012 by Francesca Verdier New NERSC Director Sudip Dosanjh started October 4. He extends his greetings to all NERSC users and is looking forward to meeting you at the NUG teleconferences, requirements workshops, and other scientific meetings. See https://www.nersc.gov/news-publications/news/nersc-center-news/2012/sandia-s-sudip-dosanjh-named-new-nersc-director/ Subscribe via RSS Subscribe Browse by Date August 2016 June

  18. Beam director design report

    SciTech Connect (OSTI)

    Younger, F.C.

    1986-08-01

    A design and fabrication effort for a beam director is documented. The conceptual design provides for the beam to pass first through a bending and focusing system (or ''achromat''), through a second achromat, through an air-to-vacuum interface (the ''beam window''), and finally through the vernier steering system. Following an initial concept study for a beam director, a prototype permanent magnet 30/sup 0/ beam-bending achromat and prototype vernier steering magnet were designed and built. In volume II, copies are included of the funding instruments, requests for quotations, purchase orders, a complete set of as-built drawings, magnetic measurement reports, the concept design report, and the final report on the design and fabrication project. (LEW)

  19. EIA's Energy in Brief: What is the role of coal in the United...

    Gasoline and Diesel Fuel Update (EIA)

    Power Monthly Quarterly Coal Report Monthly Energy ... data, voluntary report- ing, electric power plant emissions. ... while coal-fired generation has generally declined. ...

  20. EGS Directorate Organization Chart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global Security Todd E. Combs (Interim) Associate Lab Director Divisions Global Security Sciences (GSS) Keith S. Bradley (Interim) Energy Systems (ES) Donald G. Hillebrand Nuclear Engineering (NE) Jordi Roglans-Ribas Strategic Program Planning and Development National and Global Security Keith S. Bradley Water Seth W. Snyder Centers, Institutes, and Program O ces Risk and Infrastructure Science Center (GSS) David K. Brannegan Center for Transportation Research (ES) Ann M. Schlenker Center for

  1. TO: Procurement Directors

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    40 DATE: September 3, 2014 TO: Procurement Directors FROM: Office of Procurement and Assistance Policy, Office of Acquisition and Project Management SUBJECT: Implementation of DOE Order 580.1A, Department of Energy Personal Property Management SUMMARY: On March 30, 2012 The Department of Energy (DOE) published DOE Order 580.1A, DOE Property Management Program) as part of a deregulation initiative to replace obsolete parts to the DOE Property Management Regulation (DOE-PMR) codified at 41 CFR

  2. The 1986-93 Clean Coal Technology Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1986-93 Clean Coal Technology Program The 1986-93 Clean Coal Technology Program Begun in 1986, the Clean Coal Technology Program was the most ambitious government-industry initiative ever undertaken to develop environmental solutions for the Nation's abundant coal resources. "The U.S. Clean Coal Technology Demonstration Program is the envy of the world." Robert W. Smock Editorial Director, Power Engineering The program's goal: to demonstrate the best, most innovative technology

  3. National Coal Quality Inventory (NACQI)

    SciTech Connect (OSTI)

    Robert Finkelman

    2005-09-30

    The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale, and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.

  4. Delineating coal market regions

    SciTech Connect (OSTI)

    Solomon, B.D.; Pyrdol, J.J.

    1986-04-01

    This study addresses the delineation of US coal market regions and their evolution since the 1973 Arab oil embargo. Dichotomizing into compliance (low sulfur) and high sulfur coal deliveries, market regions are generated for 1973, 1977, and 1983. Focus is restricted to steam coal shipments to electric utilities, which currently account for over 80% of the total domestic market. A two-stage method is used. First, cluster analyses are performed on the origin-destination shipments data to generate baseline regions. This is followed by multiple regression analyses on CIF delivered price data for 1983. Sensitivity analysis on the configuration of the regions is also conducted, and some thoughts on the behavior of coal markets conclude the paper. 37 references, 6 figures, 2 tables.

  5. Coal Transportation Issues (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Most of the coal delivered to U.S. consumers is transported by railroads, which accounted for 64% of total domestic coal shipments in 2004. Trucks transported approximately 12% of the coal consumed in the United States in 2004, mainly in short hauls from mines in the East to nearby coal-fired electricity and industrial plants. A number of minemouth power plants in the West also use trucks to haul coal from adjacent mining operations. Other significant modes of coal transportation in 2004 included conveyor belt and slurry pipeline (12%) and water transport on inland waterways, the Great Lakes, and tidewater areas (9%).

  6. Letter from the Wind Program Director | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Director Letter from the Wind Program Director September 18, 2015 - 10:30am Addthis It's an exciting time for the U.S. offshore wind industry. After more than 15 years of laying the groundwork, the United States has finally hit a crucial milestone: in July, Deepwater Wind began offshore construction on what will be the nation's first offshore wind project. The 30-megawatt (MW) Block Island Wind Farm promises to significantly lower electricity prices for the residents of Block Island, provide

  7. Application of Pulsed Electrical Fields for Advanced Cooling and Water Recovery in Coal-Fired Power Plant

    SciTech Connect (OSTI)

    Young Cho; Alexander Fridman

    2009-04-02

    The overall objective of the present work was to develop technologies to reduce freshwater consumption in a cooling tower of coal-based power plant so that one could significantly reduce the need of make-up water. The specific goal was to develop a scale prevention technology based an integrated system of physical water treatment (PWT) and a novel filtration method so that one could reduce the need for the water blowdown, which accounts approximately 30% of water loss in a cooling tower. The present study investigated if a pulsed spark discharge in water could be used to remove deposits from the filter membrane. The test setup included a circulating water loop and a pulsed power system. The present experiments used artificially hardened water with hardness of 1,000 mg/L of CaCO{sub 3} made from a mixture of calcium chloride (CaCl{sub 2}) and sodium carbonate (Na{sub 2}CO{sub 3}) in order to produce calcium carbonate deposits on the filter membrane. Spark discharge in water was found to produce strong shockwaves in water, and the efficiency of the spark discharge in cleaning filter surface was evaluated by measuring the pressure drop across the filter over time. Results showed that the pressure drop could be reduced to the value corresponding to the initial clean state and after that the filter could be maintained at the initial state almost indefinitely, confirming the validity of the present concept of pulsed spark discharge in water to clean dirty filter. The present study also investigated the effect of a plasma-assisted self-cleaning filter on the performance of physical water treatment (PWT) solenoid coil for the mitigation of mineral fouling in a concentric counterflow heat exchanger. The self-cleaning filter utilized shockwaves produced by pulse-spark discharges in water to continuously remove scale deposits from the surface of the filter, thus keeping the pressure drop across the filter at a relatively low value. Artificial hard water was used in the

  8. Portsmouth Decommissioning and Decontamination Project Director...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decommissioning and Decontamination Project Director's Final Findings and Order Portsmouth Decommissioning and Decontamination Project Director's Final Findings and Order...

  9. Computing and Computational Sciences Directorate - Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home About Us Contacts Jeff Nichols Associate Laboratory Director Computing and Computational Sciences Becky Verastegui Directorate Operations Manager Computing and...

  10. Electricity Monthly Update

    Gasoline and Diesel Fuel Update (EIA)

    Electric Power Sector Coal Stocks: June 2016 Stocks In June, U.S. coal stockpiles decreased to 185 million tons, down 5.2% from the previous month. As a whole, U.S. coal stockpiles are still at relatively high levels due to the mild winter experienced earlier in the year and also becaue coal continues to lose market share to natural gas in most regions of the country. Days of burn Days of burn by coal rank Capacity by days of burn The average number of days of burn held at electric power plants

  11. PRB Coal Users' Group grapples with supply chain challenges

    SciTech Connect (OSTI)

    Pettier, R.

    2007-06-15

    An account is given of issues addressed at the Powder River Basin Coal Users' Group annual meeting, held in conjunction with the Electric Power 2007 conference. Transportation, buying equipment for switching plants burn PRB coal, finding and fighting fires in a coal silo, and coal handling were amongst the topics discussed. 1 fig., 4 photos.

  12. Coal pump

    DOE Patents [OSTI]

    Bonin, John H.; Meyer, John W.; Daniel, Jr., Arnold D.

    1983-01-01

    A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

  13. U.S. coal outlook in Asia

    SciTech Connect (OSTI)

    Johnson, C.J.

    1997-02-01

    Coal exports from the US to Asia are declining over time as a result of (1) increased competition from coal suppliers within the Asia-Pacific region, (2) changing steel making technologies, (3) decreased emphasis on security of coal supplies, and (4) deregulation of the energy industry--particularly electric utilities. There are no major changes on the horizon that are likely to alter the role of the US as a modest coal supplier to the Asia-Pacific region. The downward trend in US coal exports to Asia is expected to continue over the 1997--2010 period. But economic and policy changes underway in Asia are likely to result in periodic coal shortages, lasting a few months to a year, and short term increased export opportunities for US coal. US coal exports to Asia are projected to fluctuate within the following ranges over the 2000--2010 period: 10--17 million tons in total exports, 6--12 million tons in thermal coal exports, and 4--9 million tons in coking coal exports. The most important role for US coal, from the perspective of Asian coal importing countries, is to ensure a major alternative source of coal supplies that can be turned to in the event of unforeseen disruptions in coal supplies from the Asia-Pacific region or South Africa. However, the willingness of consumers to pay a premium to ensure US export capacity is declining, with increased emphasis on obtaining the lowest cost coal supplies.

  14. Alexander H. King, Director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alexander H. King, Director 134 Wilhelm Hall The Ames Laboratory Ames, IA 50011-3020 alexking@ameslab.gov (515) 296-4500 The Critical Materials Institute, an Energy Innovation Hub created by the U.S. Department of Energy, has a big problem to solve - what would we do without rare earths? Rare earths are a big part of our modern world. They are in clean energy technologies like wind turbines and solar cells, and in many things we use every day - cars, cell phones, computers and televisions. We

  15. From the Director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Answering questions Los Alamos scientists are answering basic questions about the way ... and materials that do special things like conduct electricity without resistance. ...

  16. Summary of coal export project

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    Through the international coal project and related activities, SSEB has called attention to the problems and potential of the US coal industry. The program has provided an excellent format for frank discussions on the problems facing US coal exports. Every effort must be made to promote coal and its role in the southern economy. Coal is enjoying its best years in the domestic market. While the export market is holding its own, there is increased competition in the world market from Australia, Columbia, China and, to a lesser extent, Russia. This is coming at a time when the US has enacted legislation and plans are underway to deepen ports. In addition there is concern that increased US coal and electricity imports are having a negative impact on coal production. These limiting factors suggest the US will remain the swing supplier of coal on the world market in the near future. This presents a challenge to the US coal and related industry to maintain the present market and seek new markets as well as devote research to new ways to use coal more cleanly and efficiently.

  17. TO: Procurement Directors FROM: Director, Contract and Financial...

    Energy Savers [EERE]

    FROM: Director, Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT: Electronic Products Environmental...

  18. TO: Procurement Directors FROM: Director, Contract and Financial...

    Broader source: Energy.gov (indexed) [DOE]

    FROM: Director, Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT: ENERGY STAR and Electronic Products...

  19. TO: Procurement Directors FROM: Director, Contract and Financial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FROM: Director, Contract and Financial Assistance Policy Division Office of Acquisition and Project Management SUBJECT: Implementation of Indian Energy Preference Provision ...

  20. Coal Markets

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Markets | Archive Coal Markets Weekly production Dollars per short ton Dollars per mmbtu Average weekly coal commodity spot prices dollars per short ton Week ending Week ago change Central Appalachia 12,500 Btu, 1.2 SO2 Northern Appalachia 13,000 Btu, < 3.0 SO2 Illinois Basin 11,800 Btu, 5.0 SO2 Powder River Basin 8,800 Btu, 0.8 SO2 Uinta Basin 11,700 Btu, 0.8 SO2 Source: With permission, SNL Energy Note: Coal prices shown reflect those of relatively high-Btu coal selected in each region

  1. Electric Power Generation Systems | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Power Generation Systems Coal gasification-based power plants Coal combustion-based power plants Natural gas-fueled power plants Turbines Fuel cells Existing power plants...

  2. EIA - Coal Distribution

    Gasoline and Diesel Fuel Update (EIA)

    Annual Coal Distribution Report > Annual Coal Distribution Archives Annual Coal Distribution Archive Release Date: February 17, 2011 Next Release Date: December 2011 Domestic coal ...

  3. Director's commitment to diversity recognized

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director's commitment to diversity recognized Director's commitment to diversity recognized Profiles in Diversity Journal is recognizing Director Michael Anastasio for his commitment to workplace diversity. March 11, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos

  4. About SRNL - From the Director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2/01/2014 SEARCH SRNL GO From the Director Operational Excellence Leadership Directorates Our History Visiting SRNL SRNL Home About SRNL From the Director Dr. Terry Michalske Owner of Multiple Patents: * Micromachine friction test apparatus * Chemical treatment for silica- containing glass surfaces (four patents issued) * Method for forming hermetic coatings for optical fibers * Method for chemical surface modification of fumed silica particles * Glass ceramic toughened with tetragonal zirconia

  5. Laboratory names new deputy director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    names new deputy director Laboratory names new deputy director Isaac "Ike" Richardson has been selected to be the new deputy director, effective February 1, 2009. November 25, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of

  6. Principal Associate Director - Capital Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    As Principal Associate Director for Capital Projects (interim), Larry Simmons is responsible for institutional large-project construction and management and environmental cleanup ...

  7. Director's Postdoctoral Fellowship | Careers | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The NREL Director's Fellowship attracts the next generation of exceptionally qualified scientists and engineers with outstanding talent and credentials in renewable energy research ...

  8. Principal Associate Director - Weapons Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weapons Programs As Principal Associate Director for the Weapons Program, Robert Webster leads the programs to assure the safety, security, and effectiveness of the systems in the...

  9. Weapons Program Associate Directors named

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    integration we have achieved between the various components of the program," said Bret Knapp, Principal Associate Director for Weapons Programs. "They have both done an...

  10. Jim Groth Director

    National Nuclear Security Administration (NNSA)

    ... 2000 the largest consumer of water was the production of thermo-electric power. Furthermore, water quality is affected by water use at power plants because of the effects of the ...