Powered by Deep Web Technologies
Note: This page contains sample records for the topic "director coal electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Schneider Electric Director Initiates Strategy to Recruit IAC...  

NLE Websites -- All DOE Office Websites (Extended Search)

Schneider Electric Director Initiates Strategy to Recruit IAC Graduates Carl Castellow realized that his industrial consulting team at Schneider Electric could benefit from adding...

2

Statement of Patricia Hoffman, Acting Assistant Director for Electricity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hoffman, Acting Assistant Director for Hoffman, Acting Assistant Director for Electricity Delivery and Energy Reliability, before the Committee on Energy and Natural Resources U.S. Senate, April 22, 2009. Statement of Patricia Hoffman, Acting Assistant Director for Electricity Delivery and Energy Reliability, before the Committee on Energy and Natural Resources U.S. Senate, April 22, 2009. Statement of Patricia Hoffman, Acting Assistant Director for Electricity Delivery and Energy Reliability, before the Committee on Energy and Natural Resources U.S. Senate, April 22, 2009. S. 548, which seeks to amend the Public Utilities Regulatory Policy Act of 1978 to establish a Federal energy efficiency resource standard for retail electricity and natural gas distributors, and for other purposes. Statement of Patricia Hoffman, Acting Assistant Director for Electricity

3

"1. Pleasant Prairie","Coal","Wisconsin Electric Power Co",1190  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin" "1. Pleasant Prairie","Coal","Wisconsin Electric Power Co",1190 "2. South Oak Creek","Coal","Wisconsin Electric Power Co",1135 "3. Columbia","Coal","Wisconsin Power &...

4

Coal-fired electric generators continue to dominate electric ...  

U.S. Energy Information Administration (EIA)

More than 60% of electricity in the central region of the United States comes from coal-fired electric generators, down from 80% in the early part of ...

5

Consumption of Coal for Electricity Generation by State by Sector...  

Open Energy Info (EERE)

Coal for Electricity Generation by State by Sector, January 2011 and 2010 This dataset contains state by state comparisons of coal for electricity generation in the United States....

6

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network (OSTI)

coal- electric power plant Coal blending Nitrogen controlblending chemical methods resource requirements cost STEAM-ELECTRIC COAL- FIRED POWER PLANT

Ferrell, G.C.

2010-01-01T23:59:59.000Z

7

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network (OSTI)

Electric Generation Technology Conventional Coal-Fired PowerPlants Advanced Coal-Electric Plants OperatingCharacteristics for Conventional Coal- Fired Power

Ferrell, G.C.

2010-01-01T23:59:59.000Z

8

Coal based electric generation comparative technologies report  

Science Conference Proceedings (OSTI)

Ohio Clean Fuels, Inc., (OCF) has licensed technology that involves Co-Processing (Co-Pro) poor grade (high sulfur) coal and residual oil feedstocks to produce clean liquid fuels on a commercial scale. Stone Webster is requested to perform a comparative technologies report for grassroot plants utilizing coal as a base fuel. In the case of Co-Processing technology the plant considered is the nth plant in a series of applications. This report presents the results of an economic comparison of this technology with other power generation technologies that use coal. Technologies evaluated were:Co-Processing integrated with simple cycle combustion turbine generators, (CSC); Co-Processing integrated with combined cycle combustion turbine generators, (CCC); pulverized coal-fired boiler with flue gas desulfurization and steam turbine generator, (PC) and Circulating fluidized bed boiler and steam turbine generator, (CFB). Conceptual designs were developed. Designs were based on approximately equivalent net electrical output for each technology. A base case of 310 MWe net for each technology was established. Sensitivity analyses at other net electrical output sizes varying from 220 MWe's to 1770 MWe's were also performed. 4 figs., 9 tabs.

Not Available

1989-10-26T23:59:59.000Z

9

Coal stockpiles at electric power plants were above average ...  

U.S. Energy Information Administration (EIA)

Increased competition between fuels as well as a warm winter 2011-12 led to lower consumption of coal and, thus, higher coal stockpiles at electric power plants in ...

10

NREL: Energy Analysis - Coal-Fired Electricity Generation Results...  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal-Fired Electricity Generation Results - Life Cycle Assessment Harmonization Over the last 30 years, researchers have conducted hundreds of life cycle assessments of...

11

Coal likely to remain most prevalent fuel for electricity ...  

U.S. Energy Information Administration (EIA)

Coal is currently the dominant fuel for electricity generation and is likely to remain so, even if additional environmental control regulations ...

12

South Korean energy outlook: Coal and electricity focus  

Science Conference Proceedings (OSTI)

This paper concisely outlines the capacity for Korea to generate electricity by using coal. Resources (native and imported) as well as facilities are reviewed.

Young, E.M. [ed.; Johnson, C.J.; Li, B.

1995-03-01T23:59:59.000Z

13

Present coal potential of Turkey and coal usage in electricity generation  

SciTech Connect

Total coal reserve (hard coal + lignite) in the world is 984 billion tons. While hard coal constitutes 52% of the total reserve, lignite constitutes 48% of it. Turkey has only 0.1% of world hard coal reserve and 1.5% of world lignite reserves. Turkey has 9th order in lignite reserve, 8th order in lignite production, and 12th order in total coal (hard coal and lignite) consumption. While hard coal production meets only 13% of its consumption, lignite production meets lignite consumption in Turkey. Sixty-five percent of produced hard coal and 78% of produced lignite are used for electricity generation. Lignites are generally used for electricity generation due to their low quality. As of 2003, total installed capacity of Turkey was 35,587 MW, 19% (6,774 MW) of which is produced from coal-based thermal power plants. Recently, use of natural gas in electricity generation has increased. While the share of coal in electricity generation was about 50% for 1986, it is replaced by natural gas today.

Yilmaz, A.O. [Karadeniz Technical University, Trabzon (Turkey). Mining Engineering Department

2009-07-01T23:59:59.000Z

14

Electricity from coal and utilization of coal combustion by-products  

Science Conference Proceedings (OSTI)

Most electricity in the world is conventionally generated using coal, oil, natural gas, nuclear energy, or hydropower. Due to environmental concerns, there is a growing interest in alternative energy sources for heat and electricity production. The major by-products obtained from coal combustion are fly ash, bottom ash, boiler slag, and flue gas desulfurization (FGD) materials. The solid wastes produced in coal-fired power plants create problems for both power-generating industries and environmentalists. The coal fly ash and bottom ash samples may be used as cementitious materials.

Demirbas, A. [Sila Science, Trabzon (Turkey)

2008-07-01T23:59:59.000Z

15

Energy Efficiency and Electricity Technologies Program T. J. King, Jr., Director  

E-Print Network (OSTI)

Energy Efficiency and Electricity Technologies Program T. J. King, Jr., Director Renewables Smart. Jackson · Commercial Integration ­ N. Durfee FEMP J. S. Kelley · ESPC ­ J. A. Shonder Industrial. Hughes · Enhanced Geothermal ­ T. J. King Electricity Delivery Research and Development Infrastructure

16

Coal Transportation Rates to the Electric Power Sector  

Gasoline and Diesel Fuel Update (EIA)

Coal reports Coal reports Coal Transportation Rates to the Electric Power Sector With Data through 2010 | Release Date: November 16, 2012 | Next Release Date: December 2013 | Correction Previous editions Year: 2011 2004 Go Figure 1. Deliveries from major coal basins to electric power plants by rail, 2010 Background In this latest release of Coal Transportation Rates to the Electric Power Sector, the U.S. Energy Information Administration (EIA) significantly expands upon prior versions of this report with the incorporation of new EIA survey data. Figure 1. Percent of total U.S. rail shipments represented in data figure data Previously, EIA relied solely on data from the U.S. Surface Transportation Board (STB), specifically their confidential Carload Waybill Sample. While valuable, due to the statistical nature of the Waybill data,

17

Table 11b. Coal Prices to Electric Generating Plants, Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

b. Coal Prices to Electric Generating Plants, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars per million Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001...

18

Rail Coal Transportation Rates to the Electric Power Sector  

Gasoline and Diesel Fuel Update (EIA)

Analysis & Projections Analysis & Projections ‹ See all Coal Reports Rail Coal Transportation Rates to the Electric Power Sector Release Date: June 16, 2011 | Next Release Date: July 2012 | full report Introduction The U.S. Energy Information Administration (EIA) is releasing a series of estimated data based on the confidential, carload waybill sample obtained from the U.S. Surface Transportation Board (Carload Waybill Sample). These estimated data represent a continuation of EIA's data and analysis products related to coal rail transportation. These estimated data also address a need expressed by EIA's customers for more detailed coal transportation rate data. Having accurate coal rail transportation rate data is important to understanding the price of electricity for two main reasons. First,

19

Tracking new coal-fired power plants: coal's resurgence in electric power generation  

Science Conference Proceedings (OSTI)

This information package is intended to provide an overview of 'Coal's resurgence in electric power generation' by examining proposed new coal-fired power plants that are under consideration in the USA. The results contained in this package are derived from information that is available from various tracking organizations and news groups. Although comprehensive, this information is not intended to represent every possible plant under consideration but is intended to illustrate the large potential that exists for new coal-fired power plants. It should be noted that many of the proposed plants are likely not to be built. For example, out of a total portfolio (gas, coal, etc.) of 500 GW of newly planned power plant capacity announced in 2001, 91 GW have been already been scrapped or delayed. 25 refs.

NONE

2007-05-01T23:59:59.000Z

20

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network (OSTI)

Aspects of Converting Steam Generators Back to Coal Firing,Conditions on Steam-Electric Generator Emissions," McKnight,

Ferrell, G.C.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "director coal electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

A Bayesian Learning Model in the Agent-based Bilateral Negotiation between the Coal Producers and Electric Power Generators  

Science Conference Proceedings (OSTI)

The reform of Chinas coal sector has changed the traditional relationship of the coal producers and electric power generators, and now most of the coal the coal producers sell to the generators is transacted through electric coal bilateral contracts, ... Keywords: Electric price, Agent, Bayesian Learning

Mingwen Zhang; Zhongfu Tan; Jianbao Zhao; Li Li

2008-12-01T23:59:59.000Z

22

Mercury Control Technologies for Electric Utilities Burning Lignite Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury control technologies for Mercury control technologies for electric utilities Burning lignite coal Background In partnership with a number of key stakeholders, the U.S. Department of Energy's Office of Fossil Energy (DOE/FE), through its National Energy Technology Laboratory (NETL), has been carrying out a comprehensive research program since the mid-1990s focused on the development of advanced, cost-effective mercury (Hg) control technologies for coal-fired power plants. Mercury is a poisonous metal found in coal, which can be harmful and even toxic when absorbed from the environment and concentrated in animal tissues. Mercury is present as an unwanted by-product of combustion in power plant flue gases, and is found in varying percentages in three basic chemical forms(known as speciation): particulate-bound mercury, oxidized

23

International Coal Prices for Electricity Generation - EIA  

Gasoline and Diesel Fuel Update (EIA)

Electricity Generation for Selected Countries1 Electricity Generation for Selected Countries1 U.S. Dollars per Metric Ton2 Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 Australia NA NA NA NA NA NA NA NA NA Austria 45.70 52.67 64.47 81.28 87.52 92.75 96.24 122.10 120.10 Belgium 37.72 34.48 35.94 72.46 80.35 63.24 75.54 130.54 NA Canada 18.52 19.17 21.03 20.32 24.50 26.29 NA NA NA China NA NA NA NA NA NA NA NA NA Chinese Taipei (Taiwan) 31.29 31.43 31.18 47.75 57.70 54.68 70.17 118.49 NA Czech Republic3 8.05 8.52 C C C C C C C Denmark NA NA NA NA NA NA NA NA NA Finland 46.66 44.02 48.28 67.00 72.06 74.27 83.72 142.90 NA France 45.28 42.89 42.45 63.55 74.90 72.90 83.90 136.10 NA Germany 51.86 45.70 50.02 70.00 79.74 77.95 90.26 152.60 NA

24

Manipulation of Electrical Conductivity in Bituminous Coal by CNT ...  

Science Conference Proceedings (OSTI)

In this work, the conductivity of Bituminous coal samples found from Khalaspir coal mine is studied. This coal mine is located in the northern part of Bangladesh.

25

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network (OSTI)

Conversion of Coal to Electric Power--A Dollar and CentsR. C. Carr, Electric Power Research Institute, Palo Alto,Clean Fuels Today," Electric Power Research Institute,

Ferrell, G.C.

2010-01-01T23:59:59.000Z

26

Coal gasification for the coproduction of electricity and fertilizer  

SciTech Connect

TVA is proposing to develop and commercially demonstrate the coproduction of electricity and fertilizer (urea) using integrated gasification/combined cycle (IGCC) technology. The coal-based coproduction demonstration project will show that the coproduction process can economically and environmentally enhance the production of both electric power and urea. As conceptualized, the proposed coproduction demonstration project facility would be designed for a nominal electrical capacity of about 250 megawatts (MW), Table I. During normal operation, the facility would produce about 150 MW of base-load electrical power and 1,000 tons per day of urea. Sulfur from the coal would be recovered as elemental sulfur. During peak power demand, the fertilizer capacity could be reduced or bypassed and the full 250 MW could be made available. This scheme would allow continuous operation of the gasifier at 100% of its rated capacity which would reduce the annual revenue requirements for power generation by permitting the production of fertilizer. As TVA's vision of this proposal matures (i.e., as consideration is given to alternative schemes, as TVA reviews its power demands, and as more detailed engineering estimates are developed), the nature and scope of cyclic-operation may be altered.

Kelly, D.A.; Nichols, D.E.; Faucett, H.L.

1992-01-01T23:59:59.000Z

27

Coal gasification for the coproduction of electricity and fertilizer  

SciTech Connect

TVA is proposing to develop and commercially demonstrate the coproduction of electricity and fertilizer (urea) using integrated gasification/combined cycle (IGCC) technology. The coal-based coproduction demonstration project will show that the coproduction process can economically and environmentally enhance the production of both electric power and urea. As conceptualized, the proposed coproduction demonstration project facility would be designed for a nominal electrical capacity of about 250 megawatts (MW), Table I. During normal operation, the facility would produce about 150 MW of base-load electrical power and 1,000 tons per day of urea. Sulfur from the coal would be recovered as elemental sulfur. During peak power demand, the fertilizer capacity could be reduced or bypassed and the full 250 MW could be made available. This scheme would allow continuous operation of the gasifier at 100% of its rated capacity which would reduce the annual revenue requirements for power generation by permitting the production of fertilizer. As TVA`s vision of this proposal matures (i.e., as consideration is given to alternative schemes, as TVA reviews its power demands, and as more detailed engineering estimates are developed), the nature and scope of cyclic-operation may be altered.

Kelly, D.A.; Nichols, D.E.; Faucett, H.L.

1992-12-01T23:59:59.000Z

28

Energy Landscapes: Coal Canals, Oil Pipelines, Electricity Transmission Wires in the Mid-Atlantic, 1820-1930.  

E-Print Network (OSTI)

??Coal canals, oil pipelines, and electricity transmission wires transformed the built environment of the American mid-Atlantic region between 1820 and 1930. By transporting coal, oil, (more)

Jones, Christopher F.

2009-01-01T23:59:59.000Z

29

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network (OSTI)

NO x (63). ~ Control and Power Plant Thermal Efficiency.ELECTRIC COAL- FIRED POWER PLANT thermal efficiency (heatthe overall thermal efficiency of the power plant. Fuel-Gas

Ferrell, G.C.

2010-01-01T23:59:59.000Z

30

Co-Production of Pure Hydrogen and Electricity from Coal Syngas ...  

Science Conference Proceedings (OSTI)

Presentation Title, Co-Production of Pure Hydrogen and Electricity from Coal Syngas via the Steam-Iron Process Using Promoted Iron-Based Catalysts Sub-

31

U.S. coal stockpile levels at electric power plants approach five ...  

U.S. Energy Information Administration (EIA)

Total coal stockpile levels at U.S. electric power plants were 139 million tons in August 2011the lowest total level for August since 2006.

32

Efficiency and Environmental Impacts of Electricity Restructuring on Coal-fired Power Plants  

E-Print Network (OSTI)

and states in the Northeast was high electricity prices, reflecting high historical average costs from efficiency, cost of coal purchases, and utilization among coal-fired power plants using a panel data set from recent years allows us to examine longer term impacts of restructuring; (2) the focus on coal-fired power

33

Coal Energy Conversion with Aquifer-Based Carbon Sequestration: An Approach to Electric Power Generation with  

E-Print Network (OSTI)

Coal Energy Conversion with Aquifer-Based Carbon Sequestration: An Approach to Electric Power an impermeable seal to prevent it from escaping the aquifer. The proposed alternative technology processes coal carbon and non-mineral coal combustion products in the process. This stream is denser than the aquifer

Nur, Amos

34

The Impact of the Clean Air Act Amendments of 1990 on Electric Utilities and Coal Mines: Evidence from the Stock Market  

E-Print Network (OSTI)

a. ELECTRICITY Frequency b. COAL MINING Frequency Table 1:1 Companies not integrated into coal industry Single CAR1 Companies integrated into coal industry Separate CARs for

Kahn, Shulamit; Knittel, Christopher R.

2003-01-01T23:59:59.000Z

35

Operations Directorate (OPS Directorate)  

NLE Websites -- All DOE Office Websites (Extended Search)

Operations Directorate (OPS Directorate) Operations Directorate (OPS Directorate) Purpose A group chartered by the Associate Laboratory Director for the Advanced Photon Source that includes the responsible Division Directors and other appropriate APS operations personnel. The Operations Directorate collectively coordinates operating decisions that affect the facility as a whole and establishes both long- and short-term schedules, including scheduled maintenance and facility improvement periods. The Operations Directorate is the APS forum in which decisions regarding operations are discussed: These include, but are not limited to: Safety issues related to operations Operational Schedule Global operating parameters within the defined and approved operational and safety envelopes, such as energy, maximum circulating beam

36

"1. Labadie","Coal","Union Electric Co",2407 "2. Iatan","Coal","Kansas City Power & Light Co",1555  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri" Missouri" "1. Labadie","Coal","Union Electric Co",2407 "2. Iatan","Coal","Kansas City Power & Light Co",1555 "3. Rush Island","Coal","Union Electric Co",1204 "4. Callaway","Nuclear","Union Electric Co",1190 "5. New Madrid","Coal","Associated Electric Coop, Inc",1160 "6. Thomas Hill","Coal","Associated Electric Coop, Inc",1125 "7. Sioux","Coal","Union Electric Co",986 "8. Hawthorn","Coal","Kansas City Power & Light Co",979 "9. Meramec","Coal","Union Electric Co",951 "10. Aries Power Project","Gas","Dogwood Energy LLC",614

37

Energy utilization and environmental control technologies in the coal-electric cycle  

SciTech Connect

This report presents an overview and assessment of the currently commercial and possible future technologies in the United States that are a part of the coal-electric cycle. From coal production to residual emissions control at the power plant stack, this report includes a brief history, current status and future assessment of each technology. It also includes a discussion, helpful for policy making decisions, of the process operation, environmental emission characteristics, market constraints and detailed cost estimates for each of these technologies, with primary emphasis on coal preparation, coal-electric generation and emissions control systems.

Ferrell, G.C.

1977-10-01T23:59:59.000Z

38

"1. Coal Creek","Coal","Great River Energy",1133 "2. Antelope Valley","Coal","Basin Electric Power Coop",900  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota" Dakota" "1. Coal Creek","Coal","Great River Energy",1133 "2. Antelope Valley","Coal","Basin Electric Power Coop",900 "3. Milton R Young","Coal","Minnkota Power Coop, Inc",697 "4. Leland Olds","Coal","Basin Electric Power Coop",670 "5. Garrison","Hydroelectric","USCE-Missouri River District",508 "6. Coyote","Coal","Otter Tail Power Co",427 "7. Stanton","Coal","Great River Energy",202 "8. Tatanka Wind Power LLC","Other Renewables","Acciona Wind Energy USA LLC",180 "9. Langdon Wind LLC","Other Renewables","FPL Energy Langdon Wind LLC",159

39

Integrating Coal Gasification into a Rotary Kiln Electric Furnace Plant  

Science Conference Proceedings (OSTI)

Coal gasification is a potential alternative to conventional coal or natural gas- fired power plants ... Fundamentals of Spark-Plasma Sintering: Net-Shaping and Size Effects ... Investigation on a Microwave High-Temperature Air Heat Exchanger.

40

Coal....  

U.S. Energy Information Administration (EIA)

DOE EIA WEEKLY COAL ... Coal Prices and Earnings (updated April 28, 2004) Spot coal prices in the East rose steadily since Labor Day 2003, with rapid escalations ...

Note: This page contains sample records for the topic "director coal electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Coal....  

U.S. Energy Information Administration (EIA)

DOE EIA WEEKLY COAL ... Coal Prices and Earnings (updated September 26) The average spot prices for reported coal purchases rose once again ...

42

Demonstration Development Project: Assessment of Pressurized Oxy-Coal Technology for Steam-Electric Power Plants  

Science Conference Proceedings (OSTI)

The use of pressurized oxy-combustion technology to support steamelectric power production has been proposed by several organizations as a potential low-cost way to enable a dramatic reduction in CO2 emissions from coal-fired power plants. The pressurized oxy-coal technology realizes most of the benefits of atmospheric pressure oxy-coal technology and offers the prospect of additional efficiency and cost benefits. The technology is, however, in the early stages of development.

2010-12-17T23:59:59.000Z

43

Co-Production of Substitute Natural Gas/Electricity Via Catalytic Coal Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 Co-ProduCtion of SubStitute natural GaS / eleCtriCity via CatalytiC Coal GaSifiCation Description The United States has vast reserves of low-cost coal, estimated to be sufficient for the next 250 years. Gasification-based technology, such as Integrated Gasification Combined Cycle (IGCC), is the only environmentally friendly technology that provides the flexibility to co-produce hydrogen, substitute natural gas (SNG), premium hydrocarbon liquids including transportation fuels, and electric power in desired combinations from coal and other carbonaceous feedstocks. Rising costs and limited domestic supply of crude oil and natural gas provide a strong incentive for the development of coal gasification-based co-production processes. This project addresses the co-production of SNG and electricity from coal via gasification

44

Coal....  

U.S. Energy Information Administration (EIA)

Coal Prices and Earnings (updated August 12) According to Platts Coal Outlooks Weekly Price Survey (August 11), the ...

45

Coal....  

U.S. Energy Information Administration (EIA)

Coal Prices and Earnings (updated September 2) The average spot prices for coal traded last week were relatively ...

46

Energy and environmental advantages of cogeneration with nuclear and coal electrical utilities  

Science Conference Proceedings (OSTI)

The use of electrical-utility cogeneration from nuclear energy and coal is examined for improving regional energy-resource utilization efficiency and environmental performance. A case study is presented for a large and diverse hypothetical region which ... Keywords: coal, cogeneration, combined heat and power, efficiency, emissions, nuclear energy

Marc A. Rosen

2009-02-01T23:59:59.000Z

47

Market-Based Valuation of Coal Generation and Coal R&D in the U.S. Electric Sector  

Science Conference Proceedings (OSTI)

The payoff from accelerated research and development (R&D) in coal generation technology could be enormous, over $300-$1,300 billion. The prime beneficiary is the power-consuming public. This conclusion is supported by a comprehensive quantitative analysis of the U.S. electric sector. Cosponsored by LCG Consulting, this study provides a large-scale financial, technical, and operational analysis of the electric sector, applying techniques of modern business analysis at an unprecedented scale.

2002-04-24T23:59:59.000Z

48

Utility to Purchase Electricity from Innovative DOE-Supported Clean Coal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility to Purchase Electricity from Innovative DOE-Supported Clean Utility to Purchase Electricity from Innovative DOE-Supported Clean Coal Project Utility to Purchase Electricity from Innovative DOE-Supported Clean Coal Project January 17, 2012 - 12:00pm Addthis Washington, DC - An innovative clean coal technology project in Texas will supply electricity to the largest municipally owned utility in the United States under a recently signed Power Purchase Agreement, the U.S. Department of Energy (DOE) announced today. Under the agreement - the first U.S. purchase by a utility of low-carbon power from a commercial-scale, coal-based power plant with carbon capture - CPS Energy of San Antonio will purchase approximately 200 megawatts (MW) of power from the Texas Clean Energy Project (TCEP), located just west of Midland-Odessa.

49

Electricity generation from coal and natural gas both increased ...  

U.S. Energy Information Administration (EIA)

Historically, the average fuel cost of operating a combined-cycle natural gas generator exceeded that for a coal-fired generator. Until 2010, ...

50

Electricity generation from coal and natural gas both increased ...  

U.S. Energy Information Administration (EIA)

Coal generation shares declined in some regions ... the share of natural gas-fired power generation is most influenced by the availability of hydroelectric power, ...

51

Should we transport coal, gas, or electricity: cost, efficiency, and environmental implications  

Science Conference Proceedings (OSTI)

The authors examine the life cycle costs, environmental discharges, and deaths of moving coal via rail, coal to synthetic natural gas via pipeline, and electricity via wire from the Powder River Basin (PRB) in Wyoming to Texas. Which method has least social cost depends on how much additional investment in rail line, transmission, or pipeline infrastructure is required, as well as how much and how far energy is transported. If the existing rail lines have unused capacity, coal by rail is the cheapest method (up to 200 miles of additional track could be added). If no infrastructure exists, greater distances and larger amounts of energy favor coal by rail and gasified coal by pipeline over electricity transmission. For 1,000 miles and 9 gigawatts of power, a gas pipeline is cheapest, has less environmental discharges, uses less land, and is least obtrusive. 28 refs., 4 figs., 3 tabs.

Joule A. Bergerson; Lester B. Lave [Carnegie Mellon University, Pittsburgh, PA (US)

2005-08-15T23:59:59.000Z

52

Coal....  

U.S. Energy Information Administration (EIA)

DOE EIA WEEKLY COAL ... Coal Prices and Earnings (updated July 7, 2004) In the trading week ended July 2, the average spot coal prices tracked by EIA were mixed.

53

Viewgraph from the Director  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Viewgraph from the Director Art Rosenfeld standing in front of a black board. Few benefits are provided by electric power plants, coal mines, oil pipelines, and other energy supply systems aside from the energy they produce. Technologies to improve energy end-use efficiency, however, offer numerous non-energy benefits. One class of such benefits accrues at the national level-improved competitiveness, energy security, net job creation, environmental protection-while another relates to consumer decision-making. From a consumer perspective, it is often the non-energy benefits that motivate (or can be used to promote) decisions to adopt energy-efficient technologies. A striking example is the rapid penetration of microwave ovens into the housing stock. While energy savings from microwave ovens can

54

Potential growth of nuclear and coal electricity generation in the US  

SciTech Connect

Electricity demand should continue to grow at about the same rate as GNP, creating a need for large amounts of new generating capacity over the next fifty years. Only coal and nuclear at this time have the abundant domestic resources and assured technology to meet this need. However, large increase in both coal and nuclear usage will require solutions to many of the problems that now deter their increased usage. For coal, the problems center around the safety and environmental impacts of increased coal mining and coal combustion. For nuclear, the problems center around reactor safety, radioactive waste disposal, financial risk, and nuclear materials safeguards. This report assesses the impacts associated with a range of projected growth rates in electricity demand over the next 50 years. The resource requirements and waste generation resulting from pursuing the coal and nuclear fuel options to meet the projected growth rates are estimated. The fuel requirements and waste generation for coal plants are orders of magnitude greater than for nuclear. Improvements in technology and waste management practices must be pursued to mitigate environmental and safety concerns about electricity generation from both options. 34 refs., 18 figs., 14 tabs.

Bloomster, C.H.; Merrill, E.T.

1989-08-01T23:59:59.000Z

55

The Impact of the Clean Air Act Amendments of 1990 on Electric Utilities and Coal Mines: Evidence from the Stock Market  

E-Print Network (OSTI)

companies in the electricity industry, thus controlling forhad on the entire electricity industry. However, resultswell. These two industrieselectricity generation and coal

Kahn, Shulamit; Knittel, Christopher R.

2003-01-01T23:59:59.000Z

56

Coal regains some electric generation market share from natural ...  

U.S. Energy Information Administration (EIA)

... a combination of higher prices for natural gas and increased demand for electricity during the summer months led electric systems across much of the country to ...

57

Construction Begins on First-of-its-Kind Advanced Clean Coal Electric  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Construction Begins on First-of-its-Kind Advanced Clean Coal Construction Begins on First-of-its-Kind Advanced Clean Coal Electric Generating Facility Construction Begins on First-of-its-Kind Advanced Clean Coal Electric Generating Facility September 10, 2007 - 3:16pm Addthis ORLANDO, Fla. - Officials representing the U.S. Department of Energy (DOE), Southern Company, KBR Inc. and the Orlando Utilities Commission (OUC) today broke ground to begin construction of an advanced 285-megawatt integrated gasification combined cycle (IGCC) facility near Orlando, Fla. The new generating station will be among the cleanest, most efficient coal-fueled power plants in the world. Southern Company will operate the facility through its Southern Power subsidiary, which builds, owns, and manages the company's competitive generation assets. It will be located at OUC's Stanton Energy Center in

58

Cost Analysis of Proposed National Regulation of Coal Combustion Residuals from the Electric Generating Industry  

Science Conference Proceedings (OSTI)

This analysis quantifies the potential cost to the coal-fired electric generation industry from EPA's proposed rule on the disposal of coal combustion residuals. It includes an assessment of the incremental compliance costs of the Subtitle C proposed regulatory option. Costs for this analysis were developed at the individual generating unit and plant level and aggregated to develop a national industry cost estimate. The analytical model used to estimate the costs utilizes a Monte Carlo framework to accou...

2010-11-17T23:59:59.000Z

59

Sampling and Analytical Plan Guidance for Water Characterization of Coal-Fired Steam Electric Utility Facilities  

Science Conference Proceedings (OSTI)

The US EPA recently announced its intentions to conduct a two-year study to determine whether the Steam Electric Categorical Effluent Guidelines should be revised. This report provides sampling plan guidance designed to assist the EPA in developing a sampling program and site-specific sampling plans to characterize a coal-fired facility's wastewater, to include some sampling processes used by EPRI in past coal-fired wastewater characterization studies, and to assist EPA in ensuring data quality during it...

2007-06-21T23:59:59.000Z

60

Water effects of the use of western coal for electrical production  

SciTech Connect

Water may be a constraint on the expanded development of coal resources in the semi-arid western United States. Water allocation in the West has been determined by the appropriative rights doctrine which allows perpetual use of water sources by those who first claim it for beneficial purposes. This has had the effect of placing a dominative interest in water allocation in one economic sector: agriculture. New water sources are available to coal producers but political and economic problems must be overcome. Water is required by every phase of coal development. Mines use water for dust control and land reclamation. Coal slurry pipelines would use water as a transport medium. Steam electric power plants use water for cooling, cleaning, and in the boiler. Coal gasification plants would use water for cooling, cleaning, and as a material input. In addition to these direct uses of water by coal development, the people who build and operate the development demand water for domestic and recreational purposes. The quantity of water required for a given element of a coal development is site specific and dependent on many factors. The available literature cites a range of estimates of the amount of water required for each type of development. The width of this range seems related to the stage of development of the particular technology. Estimates of water requirements for various schemes to provide an average electrical load of 9 GWe to a load center 1000 miles from western mines are shown in Table 5.

Rogers, E.A.

1980-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "director coal electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A Review of Coal Mine Methane Recovery for Electric Utilities  

Science Conference Proceedings (OSTI)

Recovery of methane from coal mines might be a cost-effective offset method for some utilities looking for ways to reduce or offset their greenhouse gas emissions. This report provides an evaluation of potential recovery amounts and costs for U.S. mines along with a discussion of technical and legal issues.

1997-01-12T23:59:59.000Z

62

Historical Costs of Coal-Fired Electricity and Implications for the Future  

E-Print Network (OSTI)

We study the costs of coal-fired electricity in the United States between 1882 and 2006 by decomposing it in terms of the price of coal, transportation costs, energy density, thermal efficiency, plant construction cost, interest rate, and capacity factor. The dominant determinants of costs at present are the price of coal and plant construction cost. The price of coal appears to fluctuate more or less randomly while the construction cost follows long-term trends, decreasing from 1902 - 1970, increasing from 1970 - 1990, and leveling off or decreasing a little since then. This leads us to forecast that even without carbon capture and storage, and even under an optimistic scenario in which construction costs resume their previously decreasing trending behavior, the cost of coal-based electricity will drop for a while but eventually be determined by the price of coal, which varies stochastically but shows no long term decreasing trends. Our analysis emphasizes the importance of using long time series and compari...

McNerney, James; Farmer, J Doyne

2010-01-01T23:59:59.000Z

63

Coal stockpiles at electric power plants were above average ...  

U.S. Energy Information Administration (EIA)

... decline during summer and winter as power plants burn through stocks to meet peak electricity demand for heating and cooling, ... overall heating load in ...

64

Coal stockpiles at electric power plants were above average ...  

U.S. Energy Information Administration (EIA)

Alternative Fuels. Includes ... decline during summer and winter as power plants burn through stocks to meet peak electricity demand for heating and cooling, ...

65

The Market for Coal Based Electric Power Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE's initiative to effectively remove environmental concerns associated with the use of fossil fuels for producing electricity and transportation fuels through better technology....

66

Worker noise exposures from diesel and electric surface coal mining machinery  

Science Conference Proceedings (OSTI)

comparative study of noise produced from diesel and electric mining machinery in an opencast coal mine was made. It was found that the diesel machines produced higher environmental noise than the electric machines. The projected and measured operator's noise dose for 8-hour also showed that the diesel machines produced higher noise than the electric machines. The recorded sound levels and the noise dose for different machines and the crusher house were compared with the regulatory limits. With electric drill machines, drilling in hard rock produced higher noise levels than drilling in soft rock. This can be used to characterize the rock for blast designs.

Roy, S.; Adhikari, G.R.

2007-09-15T23:59:59.000Z

67

Cloud-Active Nuclei from Coal-Fired Electric Power Plants and Their Interactions with Clouds  

Science Conference Proceedings (OSTI)

The concentrations of cloud condensation nuclei (CCN) in the plumes from coal-fired electric power plants are generally about 2 to 5 times greater than in the ambient air unaffected by the plumes. However, if the ambient air is very clean, the ...

Peter V. Hobbs; Jeffrey L. Stith; Lawrence F. Radke

1980-04-01T23:59:59.000Z

68

Coal Combustion Products | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Combustion Products Coal Combustion Products Coal combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the...

69

EIA Energy Kids - Coal  

U.S. Energy Information Administration (EIA)

Sometimes, coal-fired electric power plants are built near coal mines to lower ... industries and businesses with their own power plants use coal to generate ...

70

Quarterly Coal Report October-December 2000  

Gasoline and Diesel Fuel Update (EIA)

4Q) 4Q) Distribution Category UC-950 Quarterly Coal Report October-December 2000 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts This publication was prepared by Paulette Young under the direction of Betsy O'Brien, Director, Coal, Electric and Renewables Division, Office of Coal, Nuclear, Electric and Alternate Fuels. Questions addressing the Appendix A, U.S. Coal Imports section

71

Executive Director  

NLE Websites -- All DOE Office Websites (Extended Search)

Executive Director Executive Director Rich Marquez, Executive Director, leads institutional initiatives and provides oversight for the Laboratory's organizations for Ethics and Audits, Prime Contract, Chief Financial Officer, Chief Information Officer, Ombuds, and Communications and Government Affairs. Contact Operator Los Alamos National Laboratory (505) 667-5061 Marquez has received a number of significant awards and recognitions, including the Presidential Rank Award for Meritorious Service. Rich Marquez Executive Director Rich Marquez, Executive Director Richard A. (Rich) Marquez currently serves Los Alamos National Laboratory as executive director reporting to the Laboratory director. Marquez leads institutional initiatives and provides oversight for several Laboratory organizations, including

72

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network (OSTI)

coal production capacities and coal prices. Coal Productionalso be affected by higher coal prices. II "Current Factors$/year Change in Clean Coal Price, $/ton (FOB Plant) Cost of

Ferrell, G.C.

2010-01-01T23:59:59.000Z

73

Carbon dioxide capture technology for the coal-powered electricity industry : a systematic prioritization of research needs  

E-Print Network (OSTI)

Coal is widely relied upon as a fuel for electric power generation, and pressure is increasing to limit emissions of the CO2 produced during its combustion because of concerns over climate change. In order to continue the ...

Esber, George Salem, III

2006-01-01T23:59:59.000Z

74

Cost of New Integrated Gasification Combined Cycle (IGCC) Coal Electricity Generation...................... 17  

E-Print Network (OSTI)

Abstract: Future demand for electricity can be met with a range of technologies, with fuels including coal, nuclear, natural gas, biomass and other renewables, as well as with energy efficiency and demand management approaches. Choices among options will depend on factors including capital cost, fuel cost, market and regulatory uncertainty, greenhouse gas emissions, and other environmental impacts. This paper estimates the costs of new electricity generation. The approach taken here is to provide a transparent and verifiable analysis based mainly on recent data provided

Seth Borin; Todd Levin; Valerie M. Thomas; Seth Borin; Todd Levin; Valerie M. Thomas

2010-01-01T23:59:59.000Z

75

Evaluation of electricity generation from underground coal fires and waste banks  

Science Conference Proceedings (OSTI)

A temperature response factors model of vertical thermal energy extraction boreholes is presented to evaluate electricity generation from underground coal fires and waste banks. Sensitivity and life-cycle cost analyses are conducted to assess the impact of system parameters on the production of 1 MW of electrical power using a theoretical binary-cycle power plant. Sensitivity analyses indicate that the average underground temperature has the greatest impact on the exiting fluid temperatures from the ground followed by fluid flow rate and ground thermal conductivity. System simulations show that a binary-cycle power plant may be economically feasible at ground temperatures as low as 190 {sup o}C.

Chiasson, A.D.; Yavuzturk, C.; Walrath, D.E. [Oregon Institute of Technology, Klamath Falls, OR (United States)

2007-06-15T23:59:59.000Z

76

Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization  

Science Conference Proceedings (OSTI)

This systematic review and harmonization of life cycle assessments (LCAs) of utility-scale coal-fired electricity generation systems focuses on reducing variability and clarifying central tendencies in estimates of life cycle greenhouse gas (GHG) emissions. Screening 270 references for quality LCA methods, transparency, and completeness yielded 53 that reported 164 estimates of life cycle GHG emissions. These estimates for subcritical pulverized, integrated gasification combined cycle, fluidized bed, and supercritical pulverized coal combustion technologies vary from 675 to 1,689 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh) (interquartile range [IQR]= 890-1,130 g CO{sub 2}-eq/kWh; median = 1,001) leading to confusion over reasonable estimates of life cycle GHG emissions from coal-fired electricity generation. By adjusting published estimates to common gross system boundaries and consistent values for key operational input parameters (most importantly, combustion carbon dioxide emission factor [CEF]), the meta-analytical process called harmonization clarifies the existing literature in ways useful for decision makers and analysts by significantly reducing the variability of estimates ({approx}53% in IQR magnitude) while maintaining a nearly constant central tendency ({approx}2.2% in median). Life cycle GHG emissions of a specific power plant depend on many factors and can differ from the generic estimates generated by the harmonization approach, but the tightness of distribution of harmonized estimates across several key coal combustion technologies implies, for some purposes, first-order estimates of life cycle GHG emissions could be based on knowledge of the technology type, coal mine emissions, thermal efficiency, and CEF alone without requiring full LCAs. Areas where new research is necessary to ensure accuracy are also discussed.

Whitaker, M.; Heath, G. A.; O'Donoughue, P.; Vorum, M.

2012-04-01T23:59:59.000Z

77

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network (OSTI)

application (coal gasification, coal combustion followed byversions of advanced gasification processes show promise ofFixed-Bed Low-Btu Coal Gasification Systems for Retrofitting

Ferrell, G.C.

2010-01-01T23:59:59.000Z

78

Quarterly Coal Report: July-September 2001  

Gasoline and Diesel Fuel Update (EIA)

3Q) 3Q) Distribution Category UC-950 Quarterly Coal Report July - September 2001 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization. Energy Information Administration/Quarterly Coal Report July - September 2001 ii Contacts This publication was prepared by Paulette Young under the direction of Betsy O'Brien, Director, Coal, Nuclear, and Renewables Fuels Division, Office of Coal, Nuclear, Electric and Alternate Fuels within the Energy Information Administration, U.S.

79

Abstract-Coal and hydro will be the main sources of electric energy in Chile for the near future, given that natural gas  

E-Print Network (OSTI)

Abstract- Coal and hydro will be the main sources of electric energy in Chile for the near future and the environmental dilemma faced by the country, where both coal and hydro produce some kind of impact. The role

Rudnick, Hugh

80

Clean Coal Power Initiative Round 3  

NLE Websites -- All DOE Office Websites (Extended Search)

J. Stiegel Director, Major Projects Division Office of Major Demonstrations 2 DOE's Coal RD&D Investment Strategy Commercial Readiness RESEARCH & DEVELOPMENT Core Coal and...

Note: This page contains sample records for the topic "director coal electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network (OSTI)

Quality Coke Through Coal Blending," Yu, A. T. , Coal Age,November 1, 1975, p. 42. "Coal Blending as a Means to Meetcommunication. "Coal-Blending Seminar," EPRI Journal,

Ferrell, G.C.

2010-01-01T23:59:59.000Z

82

Coal Combustion Products | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combustion Products Coal Combustion Products Coal combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the...

83

Fermilab | Directorate |  

NLE Websites -- All DOE Office Websites (Extended Search)

thumb thumb thumb thumb thumb thumb thumb thumb thumb thumb thumb thumb thumb thumb thumb photo Nigel Lockyer Laboratory Director Profile photo Victoria A. White Chief Operating Officer Profile photo Stuart Henderson Associate Laboratory Director for Accelerators Profile photo Greg Bock Associate Laboratory Director for Particle Physics Profile photo Randy Ortgiesen Associate Laboratory Director for Operations Support Profile photo Martha Michels Director for ESH&Q and Head of the ESH&Q Section Profile photo Cynthia Conger Chief Financial Officer Profile photo Carl Strawbridge Interim Head, Integrated Planning & Performance Management Profile photo Jim Strait LBNE Project Manager Profile photo Robert Kephart IARC Director/ SRF Program Manager View Profile Profile photo Stephen Geer Head, Program Planning Office

84

Deputy Director  

NLE Websites -- All DOE Office Websites (Extended Search)

Deputy Director Deputy Director Laboratory Deputy Director Elizabeth Sellers has nearly 30 years of management experience leading the integration and improvement of large, complex, and technically diverse environments. Contact Operator Los Alamos National Laboratory (505) 667-5061 Sellers comes to the Laboratory with nearly 30 years of management experience working for the U.S. Department of Energy and private industry, leading the integration and improvement of large, complex, and technically diverse environments. Elizabeth Sellers Laboratory Deputy Director Deputy Director Elizabeth Sellers Elizabeth (Beth) Sellers joined Los Alamos National Laboratory as deputy director on December 5, 2011. Sellers comes to the Laboratory with nearly 30 years of management experience working for the U.S. Department of Energy and private industry,

85

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

commercial (point sources) Coal Oil Other Area sourcesSource Stationary fuel combugtion Electric utilities Coal Oil

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

86

CO sub 2 emissions from coal-fired and solar electric power plants  

DOE Green Energy (OSTI)

This report presents estimates of the lifetime carbon dioxide emissions from coal-fired, photovoltaic, and solar thermal electric power plants in the United States. These CO{sub 2} estimates are based on a net energy analysis derived from both operational systems and detailed design studies. It appears that energy conservation measures and shifting from fossil to renewable energy sources have significant long-term potential to reduce carbon dioxide production caused by energy generation and thus mitigate global warming. The implications of these results for a national energy policy are discussed. 40 refs., 8 figs., 23 tabs.

Keith, F.; Norton, P.; Brown, D.

1990-05-01T23:59:59.000Z

87

Subbituminous and bituminous coal dominate U.S. coal ...  

U.S. Energy Information Administration (EIA)

While almost all coal consumed in the United States is used to generate electricity (90% in 2010), coal is not entirely homogeneous. Coal is ...

88

Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation  

SciTech Connect

The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. 38 refs., 3 figs., 2 tabs.

Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews [Carnegie Mellon University, Pittsburgh, PA (United States). Civil and Environmental Engineering Department

2007-09-15T23:59:59.000Z

89

Table 11a. Coal Prices to Electric Generating Plants, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

a. Coal Prices to Electric Generating Plants, Projected vs. Actual a. Coal Prices to Electric Generating Plants, Projected vs. Actual Projected Price in Constant Dollars (constant dollars per million Btu in "dollar year" specific to each AEO) AEO Dollar Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 1992 1.47 1.48 1.53 1.57 1.58 1.57 1.61 1.63 1.68 1.69 1.70 1.72 1.70 1.76 1.79 1.81 1.88 1.92 AEO 1995 1993 1.39 1.39 1.38 1.40 1.40 1.39 1.39 1.42 1.41 1.43 1.44 1.45 1.46 1.46 1.46 1.47 1.50 AEO 1996 1994 1.32 1.29 1.28 1.27 1.26 1.26 1.25 1.27 1.27 1.27 1.28 1.27 1.28 1.27 1.28 1.26 1.28

90

Table 11b. Coal Prices to Electric Generating Plants, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

b. Coal Prices to Electric Generating Plants, Projected vs. Actual" b. Coal Prices to Electric Generating Plants, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars per million Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",1.502753725,1.549729719,1.64272351,1.727259934,1.784039735,1.822135762,1.923203642,2.00781457,2.134768212,2.217425497,2.303725166,2.407715232,2.46134106,2.637086093,2.775389073,2.902293046,3.120364238,3.298013245 "AEO 1995",,1.4212343,1.462640338,1.488780998,1.545300242,1.585877053,1.619428341,1.668671498,1.7584219,1.803937198,1.890547504,1.968695652,2.048913043,2.134750403,2.205281804,2.281690821,2.375434783,2.504830918 "AEO 1996",,,1.346101641,1.350594221,1.369020126,1.391737646,1.421340737,1.458772082,1.496497523,1.561369914,1.619940033,1.674758358,1.749420803,1.800709877,1.871110564,1.924495246,2.006850327,2.048938234,2.156821499

91

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network (OSTI)

modification in coal-fired plants may still have boilerless efficient than coal-fired plants. This reflects thedata for an 800 MW coal-fired plant, with and without S02

Ferrell, G.C.

2010-01-01T23:59:59.000Z

92

Director's Office  

NLE Websites -- All DOE Office Websites (Extended Search)

Director's Office Director's Office Director's Office Print Roger Falcone Director, Advanced Light Source, Ernest Orlando Lawrence Berkeley National Laboratory and Professor of Physics, University of California, Berkeley. Roger Falcone Web page at the University of California, Berkeley Advanced Light Source Lawrence Berkeley National Laboratory 1 Cyclotron Road, MS 80R0114 Berkeley, CA 94720 USA Tel. (510) 486-6692 Fax (510) 486-4960 Email: This e-mail address is being protected from spambots. You need JavaScript enabled to view it Roger Falcone, University of California, Berkeley physics professor and veteran ALS user, succeeded Janos Kirz as ALS Division Director on September 1, 2006. Dr. Falcone received his undergraduate degree in physics from Princeton University in 1974. He earned an M.S. and Ph.D. in

93

Coal's share of total U.S. electricity generation falls below 40% ...  

U.S. Energy Information Administration (EIA)

Natural gas combined-cycle units operate at higher efficiency than do older, coal-fired units, which increases the competitiveness of natural gas relative to coal.

94

NETL: Coal & Power Systems - Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

412-386-6140 Office of Coal and Power Research and Development Office Director: Jared Ciferno 412-386-5862 Deputy Director: Robert Romanosky 304-285-4721 Technology Manager, Fuel...

95

Advanced design nuclear power plants: Competitive, economical electricity. An analysis of the cost of electricity from coal, gas and nuclear power plants  

SciTech Connect

This report presents an updated analysis of the projected cost of electricity from new baseload power plants beginning operation around the year 2000. Included in the study are: (1) advanced-design, standardized nuclear power plants; (2) low emissions coal-fired power plants; (3) gasified coal-fired power plants; and (4) natural gas-fired power plants. This analysis shows that electricity from advanced-design, standardized nuclear power plants will be economically competitive with all other baseload electric generating system alternatives. This does not mean that any one source of electric power is always preferable to another. Rather, what this analysis indicates is that, as utilities and others begin planning for future baseload power plants, advanced-design nuclear plants should be considered an economically viable option to be included in their detailed studies of alternatives. Even with aggressive and successful conservation, efficiency and demand-side management programs, some new baseload electric supply will be needed during the 1990s and into the future. The baseload generating plants required in the 1990s are currently being designed and constructed. For those required shortly after 2000, the planning and alternatives assessment process must start now. It takes up to ten years to plan, design, license and construct a new coal-fired or nuclear fueled baseload electric generating plant and about six years for a natural gas-fired plant. This study indicates that for 600-megawatt blocks of capacity, advanced-design nuclear plants could supply electricity at an average of 4.5 cents per kilowatt-hour versus 4.8 cents per kilowatt-hour for an advanced pulverized-coal plant, 5.0 cents per kilowatt-hour for a gasified-coal combined cycle plant, and 4.3 cents per kilowatt-hour for a gas-fired combined cycle combustion turbine plant.

1992-06-01T23:59:59.000Z

96

Rethinking the scale of coal-fired electric generation: technological and institutional considerations  

SciTech Connect

This paper examines the economic and social implications of an electric-utility system based on medium-scale (50 to 200 MWe) coal-fired plants dispersed near load centers. The historical trend in US electric generation has been a sustained effort to capture the economies of large scale. Technical and institutional conditions within the industry, as well as the historical perception of universal electrification as a desirable social goal, have brought about this trend. Large fossil and nuclear plants, often representing joint ventures of several utilities, dominate the plans of utilities over the next 20 years. Despite these trends, this review was unable to conclude that clear advantages must inherently accrue to either small- or large-scale electrical generation. Transportation and construction do offer demonstrable economies of scale, but the other terms in the cost equation (such as reliability and transmission) are sufficiently uncertain or site-specific to prevent firm conclusions concerning the effect of scale. Biases believed to exist in the regulatory process would dilute the utilities' perception of any advantages accruing to small generators; rate-of-return regulation favors overcapitalization as embodied in the construction of large plants and extensive transmission networks. It is not clear that the current regulatory structure is capable of weighing the institutional values of accountability and local control against dollar savings generally supposed to accrue to large plants. The Midwest and East North Central states may be singularly fit for a decentralized, medium-scale system for historical, geographical, and institutional reasons, as well as for their location near the coal fields.

Gilmer, R.W.; Meunier, R.E.; Whittle, C.E.

1978-04-01T23:59:59.000Z

97

Hydrogen and electricity from coal with carbon dioxide separation using chemical looping reactors  

SciTech Connect

Concern about global climate change has led to research on low CO{sub 2} emission in the process of the energy conversion of fossil fuel. One of the solutions is the conversion of fossil fuel into carbon-free energy carriers, hydrogen, and electricity with CO{sub 2} capture and storage. In this paper, the main purpose is to investigate the thermodynamics performance of converting coal to a hydrogen and electricity system with chemical-looping reactors and to explore the influences of operating parameters on the system performance. Using FeO/Fe{sub 3}O{sub 4} as an oxygen carrier, we propose a carbon-free coproduction system of hydrogen and electricity with chemical-looping reactors. The performance of the new system is simulated using ASPEN PLUS software tool. The influences of the chemical-looping reactor's temperature, steam conversion rate, and O{sub 2}/coal quality ratio on the system performance, and the exergy performance are discussed. The results show that a high-purity of H{sub 2} (99.9%) is reached and that CO{sub 2} can be separated. The system efficiency is 57.85% assuming steam reactor at 815 C and the steam conversion rate 37%. The system efficiency is affected by the steam conversion rate, rising from 53.17 to 58.33% with the increase of the steam conversion rate from 28 to 41%. The exergy efficiency is 54.25% and the losses are mainly in the process of gasification and HRSG. 14 refs., 12 figs., 3 tabs.

Xiang Wenguo; Chen Yingying [Southeast University, Nanjing (China). Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education

2007-08-15T23:59:59.000Z

98

Annual Coal Report 2001  

U.S. Energy Information Administration (EIA)

DOE/EIA-0584 (2001) Annual Coal Report 2001 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy

99

Planning India's long-term energy shipment infrastructures for electricity and coal  

Science Conference Proceedings (OSTI)

The Purdue Long-Term Electricity Trading and Capacity Expansion Planning Model simultaneously optimizes both the expansion of transmission and generation capacity. Most commercial electricity system planning software is limited to only transmission planning. An application of the model to India's national power grid, for 2008-2028, indicates substantial transmission expansion is the cost-effective means of meeting the needs of the nation's growing economy. An electricity demand growth rate of 4% over the 20-year planning horizon requires more than a 50% increase in the Government's forecasted transmission capacity expansion, and 8% demand growth requires more than a six-fold increase in the planned transmission capacity expansion. The model minimizes the long-term expansion costs (operational and capital) for the nation's five existing regional power grids and suggests the need for large increases in load-carrying capability between them. Changes in coal policy affect both the location of new thermal power plants and the optimal pattern inter-regional transmission expansions. 15 refs., 10 figs., 7 tabs.

Brian H. Bowen; Devendra Canchi; Vishal Agarwal Lalit; Paul V. Precke; F.T. Sparrow; Marty W. Irwin [Purdue University, West Lafayette, IN (United States). Energy Center at Discovery Park

2010-01-15T23:59:59.000Z

100

Levelized Costs for Nuclear, Gas and Coal for Electricity, under the Mexican Scenario  

SciTech Connect

In the case of new nuclear power stations, it is necessary to pay special attention to the financial strategy that will be applied, time of construction, investment cost, and the discount and return rate. The levelized cost quantifies the unitary cost of the electricity (the kWh) generated during the lifetime of the nuclear power plant; and allows the immediate comparison with the cost of other alternative technologies. The present paper shows levelized cost for different nuclear technologies and it provides comparison among them as well as with gas and coal electricity plants. For the calculations we applied our own methodology to evaluate the levelized cost considering investment, fuel and operation and maintenance costs, making assumptions for the Mexican market, and taking into account the gas prices projections. The study also shows comparisons using different discount rates (5% and 10%), and some comparisons between our results and an OECD 1998 study. The results are i n good agreement and shows that nuclear option is cost competitive in Mexico on the basis of levelized costs.

Palacios, J.C.; Alonso, G.; Ramirez, R.; Gomez, A.; Ortiz, J.; Longoria, L.C.

2004-10-06T23:59:59.000Z

Note: This page contains sample records for the topic "director coal electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Director's Office | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Member of Technical Staff, Hewlett-Packard Co., 1978-1982. Professor (Research), Electrical Engineering, Photon Science, 1982-present. Assistant Director, SSRL, 1982-2005....

102

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network (OSTI)

eliminates coal handling and pulverizing at the power plant.Plant - Without Coki ng ($1969) Component Capita 1 Cost 6,04xl0 6 $75.11xl0 6 Coal Handlingcoal and helps decrease transportation and handling costs. Moisture in coal also affects the heat rate at the power plant.

Ferrell, G.C.

2010-01-01T23:59:59.000Z

103

Producing Fuel and Electricity from Coal with Low Carbon Dioxide Emissions  

E-Print Network (OSTI)

-carbongaseousfuel from coal. Synthesisgas from a coal gasifier is shifted to a gas mixture consistingmainly of H2 and CO2 with the coal gasifier, the shift reactor and the CO2 recovery units. CO2 recovery and storage will increase in a number of sub- processeswhich will be describedstepby step.Figures given here arevalid for a gasifier

104

Table F17: Coal Consumption Estimates and Imports and Exports ...  

U.S. Energy Information Administration (EIA)

Table F17: Coal Consumption Estimates and Imports and Exports of Coal Coke, 2011 State Coal Coal Coke Residential a Commercial Industrial Electric ...

105

Table 12. Coal Prices to Electric Generating Plants, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Coal Prices to Electric Generating Plants, Projected vs. Actual Coal Prices to Electric Generating Plants, Projected vs. Actual (nominal dollars per million Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 2.03 2.17 2.33 2.52 2.73 2.99 AEO 1983 1.99 2.10 2.24 2.39 2.57 2.76 4.29 AEO 1984 1.90 2.01 2.13 2.28 2.44 2.61 3.79 AEO 1985 1.68 1.76 1.86 1.95 2.05 2.19 2.32 2.49 2.66 2.83 3.03 AEO 1986 1.61 1.68 1.75 1.83 1.93 2.05 2.19 2.35 2.54 2.73 2.92 3.10 3.31 3.49 3.68 AEO 1987 1.52 1.55 1.65 1.75 1.84 1.96 2.11 2.27 2.44 3.55 AEO 1989* 1.50 1.51 1.68 1.77 1.88 2.00 2.13 2.26 2.40 2.55 2.70 2.86 3.00 AEO 1990 1.46 1.53 2.07 2.76 3.7 AEO 1991 1.51 1.58 1.66 1.77 1.88 1.96 2.06 2.16 2.28 2.41 2.57 2.70 2.85 3.04 3.26 3.46 3.65 3.87 4.08 4.33 AEO 1992 1.54 1.61 1.66 1.75 1.85 1.97 2.03 2.14 2.26 2.44 2.55 2.69 2.83 3.00 3.20 3.40 3.58 3.78 4.01 AEO 1993 1.92 1.54 1.61 1.70

106

LLNL Director Search  

NLE Websites -- All DOE Office Websites (Extended Search)

Integration Directorate Lawrence Livermore National Laboratory John Edwards Associate NIF Director for ICF & HED NIF & Photon Science Directorate Lawrence Livermore National...

107

Economic Analysis of the Environmental Effects of the Coal-Fired Electric Generator at Boardman, Oregon. Final Report.  

SciTech Connect

This study is one of several commissioned by the Bonneville Power Administration (BPA) to estimate the economic value of the environmental costs and benefits of different electricity-generating resources. In it we described and quantify the environmental costs and benefits of coal-fired generators, using the plant in Boardman, Oregon, as the basis for our estimations. The Boardman plant uses pulverized coal to produce steam for generating electricity. It is nominally rated at 550 megawatts. This study assumes a 70% load factor and an annual production of 3373 x 10/sup 6/ kWh. Cooling water comes from a 1400-acre cooling pond; coal comes from Wyoming in 100-car unit-trains every two days. The estimated service life of the plant is 40 years. We developed a socioeconomic-environmental model to assess the final physical impacts of each of the initial impacts resulting from the fuel cycle. The analysis of environmental effects comprises four steps: (1) identify all the potential environmental impacts stemming from the entire fuel cycle associated with the plant; (2) determine which effects warrant detailed economic analysis; (3) complete the economic analysis for the effects selected in step 2; and (4) estimate the extent to which the results of the case study apply to other potential plants using the coal-fuel cycle. 102 references, 5 figures, 10 tables.

United States. Bonneville Power Administration.

1983-12-29T23:59:59.000Z

108

Assessment of a Novel Direct Coal Conversion - Fuel Cell Technology for Electric Utility Markets  

Science Conference Proceedings (OSTI)

EPRI's Technology Road Map identified a key technical challenge is "maintaining and strengthening a robust generation portfolio". Using our abundant coal resources in the most efficient way and in a way that limits CO2 emissions is among the toughest challenges facing the power industry. There are few new options or new technologies in the R&D pipeline that address this issue. Coal options available and being considered include: combustion systems such as pulverized coal (PC) and super critical systems w...

2006-12-11T23:59:59.000Z

109

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network (OSTI)

Solidification and Storage Power Generation Cooling WaterApril, 1976 p. 440. "Power Generation - Clean Fuels Today,"1975, ORNL-4995. "Clean Power Generation from Coal," Rand D

Ferrell, G.C.

2010-01-01T23:59:59.000Z

110

Most coal-fired electric capacity was built before 1980 - Today in ...  

U.S. Energy Information Administration (EIA)

Sales, revenue and prices, power plants, fuel use, stocks, generation, ... Some older coal-fired generators were retrofitted with various environmental controls ...

111

Nuclear economics 2000: Deterministic and probabilistic projections of nuclear and coal electric power generation costs for the year 2000  

SciTech Connect

The total busbar electric generating costs were estimated for locations in ten regions of the United States for base-load nuclear and coal-fired power plants with a startup date of January 2000. For the Midwest region a complete data set that specifies each parameter used to obtain the comparative results is supplied. When based on the reference set of input variables, the comparison of power generation costs is found to favor nuclear in most regions of the country. Nuclear power is most favored in the northeast and western regions where coal must be transported over long distances; however, coal-fired generation is most competitive in the north central region where large reserves of cheaply mineable coal exist. In several regions small changes in the reference variables could cause either option to be preferred. The reference data set reflects the better of recent electric utility construction cost experience (BE) for nuclear plants. This study assumes as its reference case a stable regulatory environment and improved planning and construction practices, resulting in nuclear plants typically built at the present BE costs. Today's BE nuclear-plant capital investment cost model is then being used as a surrogate for projected costs for the next generation of light-water reactor plants. An alternative analysis based on today's median experience (ME) nuclear-plant construction cost experience is also included. In this case, coal is favored in all ten regions, implying that typical nuclear capital investment costs must improve for nuclear to be competitive.

Williams, K.A.; Delene, J.G.; Fuller, L.C.; Bowers, H.I.

1987-06-01T23:59:59.000Z

112

Marginal cost of electricity 1980-1995: an approximation based on the cost of new coal and nuclear generating plants  

SciTech Connect

This report presents estimates of the costs of new coal and nuclear base-load generating capacity which is either currently under construction or planned by utilities to meet their load-growth expectations during the period from 1980 to 1995. These capacity cost estimates are used in conjunction with announced plant capacities and commercial-operation dates to develop state-level estimates of busbar costs of electricity. From these projected busbar costs, aggregated estimates of electricity costs at the retail level are developed for DOE Regions. The introductory chapter explains the rationale for using the cost of electricity from base-load plants to approximate the marginal cost of electricity. The next major section of the report outlines the methodology and major assumptions used. This is followed by a detailed description of the empirical analysis, including the equations used for each of the cost components. The fourth section presents the resultant marginal cost estimates.

Nieves, L.A.; Patton, W.P.; Harrer, B.J.; Emery, J.C.

1980-07-01T23:59:59.000Z

113

A portfolio approach to energy governance : state management of China's coal and electric power supply industries  

E-Print Network (OSTI)

This study addresses the extent to which China's central state devolved ownership and investment levels in its energy sector to other actors during the modern reform period (1978- 2008). The project focused on China's coal ...

Cunningham, Edward A., IV (Edward Albert)

2009-01-01T23:59:59.000Z

114

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network (OSTI)

simultaneous NOx-SO x reduction with coal derived reductfor Catalytic NO x and NOx-SO x Reduction Schemes on 800 MwRe6uctfon Process 2 NOx-SO x Reduction Sulfide Process 3 New

Ferrell, G.C.

2010-01-01T23:59:59.000Z

115

,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 7.2;" 2 Relative Standard Errors for Table 7.2;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" " "," ",,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues",,,," " " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related","All"

116

,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components"  

U.S. Energy Information Administration (EIA) Indexed Site

Relative Standard Errors for Table 7.1;" Relative Standard Errors for Table 7.1;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" " "," ",,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues",,,," " " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related","All"

117

paper CO2 Regulations and Electricity Prices: Cost Estimates for Coal-Fired Power Plants. We thank  

E-Print Network (OSTI)

For fossil fuel power plants to be built in the future, carbon capture and storage (CCS) technologies offer the potential for significant reductions in CO2 emissions. We examine the break-even value for CCS adoptions, that is, the critical value in the charge for CO2 emissions that would justify investment in CCS capabilities. Our analysis takes explicitly into account that the supply of electricity at the wholesale level (generation) is organized competitively in some U.S. jurisdictions, while in others a regulated utility provides integrated generation and distribution services. For either market structure, we find that emissions charges in the range of $25-$30 per tonne of CO2 would be the break-even value for adopting CCS capabilities at new coal-fired power plants. The corresponding break-even values for natural gas plants are substantially higher, near $60 per tonne. Our break-even estimates serve as a basis for projecting the change in electricity prices once carbon emissions become costly. CCS capabilities effectively put an upper bound on the rise in electricity prices. We estimate this bound to be near 30 % at the retail level for both coal and natural gas plants. In contrast to the competitive power supply scenario, however, these price increases materialize only gradually for a regulated utility. The delay in price adjustments reflects that for regulated

Stefan Reichelstein; Erica Plambeck

2009-01-01T23:59:59.000Z

118

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network (OSTI)

the costs have on the price of coal delivered by railroadsindicate that the price of coal delivered by railroads ismake up the delivered price of coal that electric plants are

McCollum, David L

2007-01-01T23:59:59.000Z

119

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables Introduction The Coal Distribution Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing State. This Final 2009 Coal Distribution Report - Annual, supersedes the data contained in the four Quarterly Coal Distribution Reports previously issued for 2009. This report relies on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. In addition, the report

120

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network (OSTI)

Annual Heat Rates for Baseload Steam-Electric Units TypicalAnnual Heat Rates for Baseload Steam- Electric Units. * Btuare calculated for both baseload operation (65% capacity

Ferrell, G.C.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "director coal electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Illinois Coal Revival Program (Illinois)  

Energy.gov (U.S. Department of Energy (DOE))

The Illinois Coal Revival Program is a grants program providing partial funding to assist with the development of new, coal-fueled electric generation capacity and coal gasification or IGCC units...

122

EIA projections of coal supply and demand  

SciTech Connect

Contents of this report include: EIA projections of coal supply and demand which covers forecasted coal supply and transportation, forecasted coal demand by consuming sector, and forecasted coal demand by the electric utility sector; and policy discussion.

Klein, D.E.

1989-10-23T23:59:59.000Z

123

Executive Director  

E-Print Network (OSTI)

Dear Dr. Boulton, As you may know, Workforce is the first of the six priorities listed in APHLs current (2010-2013) and previous (2006-2009) Strategic Plans. A crucial strength of our Associations ongoing Workforce Development Program is multi-component workforce research. Over the past two years access to support provided by the University of Michigans Center of Excellence for Public Health Workforce Studies has greatly accelerated this research program. We are most grateful to the Center and you personally for undertaking the initial characterization of the public health, environmental, and agricultural laboratory (PHEAL) workforce, an undertaking that has provided an excellent assessment and a solid base on which to build future PHEAL workforce research and products needed to expand the PHEAL workforce pipeline. Thank you for forwarding the final draft of the National Laboratory Capacity Assessment. This collaborative initiative has resulted in a summary document rich with information that has provided an exceptional profile of our public health, environmental, and agricultural laboratories. On behalf of the Workforce Development Committee and the APHL Board of Directors, we extend our appreciation for a truly productive and effective collaboration. Lastly, we hope that

Matthew L. Boulton; Scott J. Becker; Jack Deboy Drph

2012-01-01T23:59:59.000Z

124

Updated Hazardous Air Pollutants (HAPs) Emissions Estimates and Inhalation Human Health Risk Assessment for U.S. Coal-Fired Electric Generating Units  

Science Conference Proceedings (OSTI)

Since the mid-1990s, there has been no comprehensive evaluation of hazardous air pollutants (HAPs) emissions from U.S. coal-fired electric power plants and the risks associated with those emissions. With the exception of mercury, none of the HAPs-classified chemicals has been fundamentally reassessed for more than 15 years. The set of EPRI studies reported on here provides a fundamental reevaluation of potential HAPs emissions from coal-fired power plants based on current data concerning coals burned, co...

2009-12-28T23:59:59.000Z

125

darpa director appointed  

Science Conference Proceedings (OSTI)

08/12 - DARPA DIRECTOR APPOINTED. Regina E. Dugan has been appointed Director of the Defense Advanced Research Projects Agency (DARPA). It is the...

126

LLNL Director Search  

NLE Websites -- All DOE Office Websites (Extended Search)

News "Search process for Lawrence Livermore director, LLNS president gets under way," LLNS news release, Nov. 25, 2013. "Parney Albright steps down as Laboratory director, Bret...

127

Independent directors in China.  

E-Print Network (OSTI)

??This thesis examines the development of the independent director system in China. The newly introduced independent director system is viewed as a revolutionary change to (more)

Ma, Lijun

2009-01-01T23:59:59.000Z

128

LLNL Director Search  

NLE Websites -- All DOE Office Websites (Extended Search)

LLNL DIRECTOR SEARCH Home Lawrence Livermore National Laboratory LLNL DIRECTOR SEARCH Position Description About LLNL News Questions and Answers THE PROCESS Nomination and...

129

Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power From Western Coals  

NLE Websites -- All DOE Office Websites (Extended Search)

Daniel C. Cicero Daniel C. Cicero Hydrogen & Syngas Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4826 daniel.cicero@netl.doe.gov Gary J. stiegel Gasification Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4499 gary.stiegel@netl.doe.gov Elaine Everitt Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4491 elaine.everitt@netl.doe.gov 4/2009 Hydrogen & Syngas Technologies Gasification Technologies Development of a HyDrogasification process for co-proDuction of substitute natural gas (sng) anD electric power from western coals Description In the next two decades, electric utilities serving the Western United States must install

130

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions have begun a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the flyash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During the second reporting quarter for this project, design and development is continuing on an electrostatic tensiometer to measure cohesion of flyash layers. A dedicated test fixture to automate flyash electrical resistivity testing is also underway. Ancillary instrumentation to control gas humidification within these test fixtures is also under construction.

Kenneth E. Baldrey

2000-09-01T23:59:59.000Z

131

Coal Study Guide for Elementary School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Study Guide for Elementary School Coal Study Guide for Elementary School Focuses on the basics of coal, history of coal use, conversion of coal into electricity, and climate...

132

Carnegie Mellon Electricity Industry Center  

E-Print Network (OSTI)

, Electric Power Research Institute Les Silverman, Director, McKinsey & Company Steve Specker, President

133

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

8 PM)" 8 PM)" "Alaska" "Fuel, Quality",1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-",203,141,148 " Average heat value (Btu per pound)","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-",8698,8520,8278 " Average sulfur Content (percent)","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-",0.33,0.5,0.71

134

JV Task 126 - Mercury Control Technologies for Electric Utilities Burning Bituminous Coal  

SciTech Connect

The EERC developed an applied research consortium project to test cost-effective mercury (Hg) control technologies for utilities burning bituminous coals. The project goal was to test innovative Hg control technologies that have the potential to reduce Hg emissions from bituminous coal-fired power plants by {ge}90% at costs of one-half to three-quarters of current estimates for activated carbon injection (ACI). Hg control technology evaluations were performed using the EERC's combustion test facility (CTF). The CTF was fired on pulverized bituminous coals at 550,000 Btu/hr (580 MJ/hr). The CTF was configured with the following air pollution control devices (APCDs): selective catalytic reduction (SCR) unit, electrostatic precipitator (ESP), and wet flue gas desulfurization system (WFDS). The Hg control technologies investigated as part of this project included ACI (three Norit Americas, Inc., and eleven Envergex sorbents), elemental mercury (Hg{sup 0}) oxidation catalysts (i.e., the noble metals in Hitachi Zosen, Cormetech, and Hitachi SCR catalysts), sorbent enhancement additives (SEAs) (a proprietary EERC additive, trona, and limestone), and blending with a Powder River Basin (PRB) subbituminous coal. These Hg control technologies were evaluated separately, and many were also tested in combination.

Jason Laumb; John Kay; Michael Jones; Brandon Pavlish; Nicholas Lentz; Donald McCollor; Kevin Galbreath

2009-03-29T23:59:59.000Z

135

The ICF, Inc. coal and electric utilities model : an analysis and evaluation  

E-Print Network (OSTI)

v.1. The Electric Power Research Institute (EPRI) is sponsoring a series of evaluations of important energy policy and electric utility industry models by the MIT Energy Model Analysis Program (EMAP). The subject of this ...

Wood, David O.

1981-01-01T23:59:59.000Z

136

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network (OSTI)

Fluidized-Bed Steam-Electric Steam-Electric Combined-CycleCombined-Cycle Current (1974) Future Future a Source:steam plants. The combined-cycle versions of advanced

Ferrell, G.C.

2010-01-01T23:59:59.000Z

137

Electrical blasting practice at some coal mines in State of Washington  

SciTech Connect

The explosives used, blasting practice, lighting shots in gassy mines, and advantages of electrical blasting are described.

Ash, S.H.

1930-01-01T23:59:59.000Z

138

Review of the Coal and Electric Sections in the Monthly Energy Review and an Overall Review of Office of Energy Data Operations Publications  

Science Conference Proceedings (OSTI)

This Review of the Coal and Electric Sections of the Monthly Energy Review and an Overall Review of OEDO Publications is comprised of two sections. The first, Review of Coal and Electric Power Data in the Monthly Energy Review consists of a detailed analysis of content and data presentation issues. The major findings of this section are summarized below: the coal and electric power data in the Monthly Energy Review (MER) represent the major functions of the respective industries; coal data by rank are inconsistently presented in the MER; coal value or coal cost and quality data are not adequately represented in the MER; the presentation of two or more units of measurement on the same table in MER may invite incorrect comparisons unless properly separated (e.g., - double line separation); to improve the timeliness of the data in the MER, the increased use of estimated, preliminary, and/or projected data should be considered; and the table and graphic formats used in the MER present the data clearly and concisely. The second section of the report, An Overall Review of OEDO Publications, contains the results of an analysis of data presentation in forty-six coal, gas, electric, oil and consolidated publications. A summary of our findings and recommendations is listed below: where practical, a scope of publication section and executive summary should be included in OEDO publications; table formats, including titles and endnotes should be uniform; more detailed guidelines for titling should be established by the Energy Information Administration (EIA); and a more detailed set of standards for footnotes, notes and source notes should be established by EIA.

Not Available

1981-04-01T23:59:59.000Z

139

O A Section 2. Coal - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Section 2. Coal Coal Consumption Physical Units Coal in the United States is mostly consumed by the electric power sector. Data are collected by the ...

140

Los Alamos director echoes cyber concerns  

NLE Websites -- All DOE Office Websites (Extended Search)

Los Alamos director echoes cyber concerns Los Alamos director echoes cyber concerns Los Alamos director echoes cyber concerns Director Charlie McMillan told a gathering of energy executives that securing the electrical grid is a major concern now and it's only becoming more serious. May 21, 2013 Los Alamos National Laboratory Director Charlie McMillan (right), with, from left, Anthony Cugini of the National Energy Technology Laboratory, Thom Mason of Oak Ridge National Laboratory, and Tomas Diaz de la Rubia of Deloitte Consulting LLP. Los Alamos National Laboratory Director Charlie McMillan (right), with, from left, Anthony Cugini of the National Energy Technology Laboratory, Thom Mason of Oak Ridge National Laboratory, and Tomas Diaz de la Rubia of Deloitte Consulting LLP. Contact Fred deSousa

Note: This page contains sample records for the topic "director coal electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Energy, Environmental, and Economic Analyses of Design Concepts for the Co-Production of Fuels and Chemicals with Electricity via Co-Gasification of Coal and Biomass  

DOE Green Energy (OSTI)

All of the coproduction designs have the common attribute of producing some electricity and also of capturing CO{sub 2} for storage. For each of the co-product pairs detailed process mass and energy simulations (using Aspen Plus software) were developed for a set of alternative process configurations, on the basis of which lifecycle greenhouse gas emissions, Nth plant economic performance, and other characteristics were evaluated for each configuration. In developing each set of process configurations, focused attention was given to understanding the influence of biomass input fraction and electricity output fraction. Self-consistent evaluations were also carried out for gasification-based reference systems producing only electricity from coal, including integrated gasification combined cycle (IGCC) and integrated gasification solid-oxide fuel cell (IGFC) systems. The reason biomass is considered as a co-feed with coal in cases when gasoline or olefins are co-produced with electricity is to help reduce lifecycle greenhouse gas (GHG) emissions for these systems. Storing biomass-derived CO{sub 2} underground represents negative CO{sub 2} emissions if the biomass is grown sustainably (i.e., if one ton of new biomass growth replaces each ton consumed), and this offsets positive CO{sub 2} emissions associated with the coal used in these systems. Different coal:biomass input ratios will produce different net lifecycle greenhouse gas (GHG) emissions for these systems, which is the reason that attention in our analysis was given to the impact of the biomass input fraction. In the case of systems that produce only products with no carbon content, namely electricity, ammonia and hydrogen, only coal was considered as a feedstock because it is possible in theory to essentially fully decarbonize such products by capturing all of the coal-derived CO{sub 2} during the production process.

Eric Larson; Robert Williams; Thomas Kreutz; Ilkka Hannula; Andrea Lanzini; Guangjian Liu

2012-03-11T23:59:59.000Z

142

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

1 PM)" 1 PM)" "Maine" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)","-","-","-","-","-","-","-","-","-","-",241,237,262,266,327,319,367,506,619 " Average heat value (Btu per pound)","-","-","-","-","-","-","-","-","-","-",13138,13124,12854,12823,12784,13171,12979,12779,13011 " Average sulfur Content (percent)","-","-","-","-","-","-","-","-","-","-",0.71,0.69,0.77,0.78,0.7,0.65,0.72,0.82,0.72

143

Zero emission coal: a future source of clean electric power and hydrogen  

DOE Green Energy (OSTI)

The pairing of two novel technologies may permit coal energy to satisfy a dramatically increasing world energy demand for the next few hundred years. This can be done while virtually eliminating not only airborne SO{sub x}, NO{sub x}, mercury and particulate emissions, but also the main greenhouse gas, carbon dioxide (CO{sub 2}). The Zero Emission Coal Alliance, a collaboration of approximately 20 international industrial and government entities is investigating these concepts with the objective of completing the first pilot plant within 5 years. Paradoxically, climate change was not the overriding consideration that drove the development of these inventions. The more important consideration was that, if world carbon use continues to accelerate at rates even close to those in the last century, carbon from fossil fuels will overwhelm the natural CO{sub 2} sinks. In this view, the 'Kyoto' objectives are almost meaningless and misdirect enormous resources - both human and financial. If a world population of 10 billion reaches a standard of living comaprable, on the average, to that of the US in 2000 (with similar carbon use), then world yearly CO{sub 2} emissions will be ten times their current level. Carbon (in the form of coal) is our most important energy resource. The Challenge is to find sustainable ways of using it.

Ziock, H. J. (Hans-Joachim)

2001-01-01T23:59:59.000Z

144

Co-production of electricity and alternate fuels from coal. Final report, August 1995  

DOE Green Energy (OSTI)

The Calderon process and its process development unit, PDU, were originally conceived to produce two useful products from a bituminous coal: a desulfurized medium BTU gas containing primarily CO, H{sub 2}, CH{sub 4}, CO{sub 2}, and H{sub 2}O; and a desulfurized low BTU gas containing these same constituents plus N{sub 2} from the air used to provide heat for the process through the combustion of a portion of the fuel. The process was viewed as a means for providing both a synthesis gas for liquid fuel production (perhaps CH{sub 3}OH, alternatively CH{sub 4} or NH{sub 3}) and a pressurized, low BTU fuel gas, for gas turbine based power generation. The Calderon coal process comprises three principle sections which perform the following functions: coal pyrolysis in a continuous, steady flow unit based on coke oven technology; air blown, slagging, coke gasification in a moving bed unit based on a blast furnace technology; and a novel, lime pebble based, product gas processing in which a variety of functions are accomplished including the cracking of hydrocarbons and the removal of sulfur, H{sub 2}S, and of particulates from both the medium and low BTU gases. The product gas processing unit, based on multiple moving beds, has also been conceived to regenerate the lime pebbles and recover sulfur as elemental S.

NONE

1995-12-31T23:59:59.000Z

145

Historical Costs of Coal-Fired Electricity and Implications for the Future James McNerney,a,b  

E-Print Network (OSTI)

density, thermal efficiency, plant construction cost, interest rate, and capacity factor. The dominant of the price of coal, coal transportation cost, coal energy density, thermal effi- ciency, plant construction in the United States, going back to the earliest coal-fired power plant in 1882 through 2006, rather than cross

146

Noise emissions from new electric options: Coal conversion and on?site generation  

Science Conference Proceedings (OSTI)

Two alternatives being considered for reducing the use of imported petroleum are the reconversion of oil?fired electric power plants

Allan M. Teplitzky

1981-01-01T23:59:59.000Z

147

202-328-5000 www.rff.orgThe Health Effects of Coal Electricity Generation in India  

E-Print Network (OSTI)

To help inform pollution control policies in the Indian electricity sector we estimate the health damages associated with particulate matter, sulfur dioxide (SO2), and nitrogen oxides (NOx) from individual coal-fired power plants. We calculate the damages per ton of pollutant for each of 89 plants and compute total damages in 2008, by pollutant, for 63 plants. We estimate health damages by combining data on power plant emissions of particulate matter, SO2 and NOx with reduced-form intake fraction models that link emissions to changes in population-weighted ambient concentrations of fine particles. Concentration-response functions for fine particles from Pope et al. (2002) are used to estimate premature cardiopulmonary deaths associated with air emissions for persons 30 and older. Our results suggest that 75 percent of premature deaths are associated with fine particles that result from SO2 emissions. After characterizing the distribution of premature mortality across plants we calculate the health benefits and cost-per-life saved of the flue-gas desulfurization unit installed at the Dahanu power plant in Maharashtra and the health benefits of coal washing at the Rihand power plant in Uttar Pradesh.

Shama Gamkhar; Kabir Malik; Alex Limonov; Ian Partridge

2012-01-01T23:59:59.000Z

148

Associate Director  

E-Print Network (OSTI)

funding provided by participating member commissions of the National Association of Regulatory Utility Commissioners (NARUC). The views and opinions of the authors do not necessarily state or reflect the views, opinions, or policies of the NRRI, the NARUC, or their contributors. EXECUTIVE SUMMARY In late 1989 two reports on incentive regulation were prepared by the Federal Energy Regulatory Commission (FER C). Prepared under the auspices of the Office of Economic Policy, one report supports giving natural gas pipelines more flexibility in pricing their services and in levels of profitability, while the other supports the same approach for natural gas pipelines and wholesale electric suppliers. Thus far, FERC has used the reports for discussion purposes only and is not expected to rely on them in the foreseeable future to initiate a notice of proposed rulemaking or in any other formal way. The significance of the reports lies in their thorough and analytical overview of different incentive systems. Such incentive systems likely will be proposed before state public utility commissions over the next several years. Assessing the

Kenneth W. Costello; Sung-bong Cho

1991-01-01T23:59:59.000Z

149

Summary of Testimony of Larry Dickerman, Director or Distribution...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Testimony of Larry Dickerman, Director or Distribution Engineering Services, American Electric Power before the House Energy and Commerce Committee March 20th 2007 Summary of...

150

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, progress was made in obtaining an industry partner for a long-term demonstration and in technology transfer activities. Engineering and equipment procurement activities related to the long-term demonstration were also completed.

Kenneth E. Baldrey

2001-10-01T23:59:59.000Z

151

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

1 PM)" 1 PM)" "Hawaii" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)","-","-","-","-","-","-","-","-","-","-","-","-",303,296,188,175,281,309,358,297,279 " Average heat value (Btu per pound)","-","-","-","-","-","-","-","-","-","-","-","-",11536,11422,11097,10975,10943,10871,10669,10640,10562 " Average sulfur Content (percent)","-","-","-","-","-","-","-","-","-","-","-","-",0.32,0.44,0.49,0.55,0.51,0.47,0.66,0.65,0.62

152

Rail Coal Transportation Rates  

U.S. Energy Information Administration (EIA)

figure data Figure 7 shows the percent change in average real rates for those state-to-state ... Estimated transportation rates for coal delivered to electric ...

153

Energy, Environmental, and Economic Analyses of Design Concepts for the Co-Production of Fuels and Chemicals with Electricity via Co-Gasification of Coal and Biomass  

Science Conference Proceedings (OSTI)

The overall objective of this project was to quantify the energy, environmental, and economic performance of industrial facilities that would coproduce electricity and transportation fuels or chemicals from a mixture of coal and biomass via co-gasification in a single pressurized, oxygen-blown, entrained-flow gasifier, with capture and storage of CO{sub 2} (CCS). The work sought to identify plant designs with promising (Nth plant) economics, superior environmental footprints, and the potential to be deployed at scale as a means for simultaneously achieving enhanced energy security and deep reductions in U.S. GHG emissions in the coming decades. Designs included systems using primarily already-commercialized component technologies, which may have the potential for near-term deployment at scale, as well as systems incorporating some advanced technologies at various stages of R&D. All of the coproduction designs have the common attribute of producing some electricity and also of capturing CO{sub 2} for storage. For each of the co-product pairs detailed process mass and energy simulations (using Aspen Plus software) were developed for a set of alternative process configurations, on the basis of which lifecycle greenhouse gas emissions, Nth plant economic performance, and other characteristics were evaluated for each configuration. In developing each set of process configurations, focused attention was given to understanding the influence of biomass input fraction and electricity output fraction. Self-consistent evaluations were also carried out for gasification-based reference systems producing only electricity from coal, including integrated gasification combined cycle (IGCC) and integrated gasification solid-oxide fuel cell (IGFC) systems. The reason biomass is considered as a co-feed with coal in cases when gasoline or olefins are co-produced with electricity is to help reduce lifecycle greenhouse gas (GHG) emissions for these systems. Storing biomass-derived CO{sub 2} underground represents negative CO{sub 2} emissions if the biomass is grown sustainably (i.e., if one ton of new biomass growth replaces each ton consumed), and this offsets positive CO{sub 2} emissions associated with the coal used in these systems. Different coal:biomass input ratios will produce different net lifecycle greenhouse gas (GHG) emissions for these systems, which is the reason that attention in our analysis was given to the impact of the biomass input fraction. In the case of systems that produce only products with no carbon content, namely electricity, ammonia and hydrogen, only coal was considered as a feedstock because it is possible in theory to essentially fully decarbonize such products by capturing all of the coal-derived CO{sub 2} during the production process.

Eric Larson; Robert Williams; Thomas Kreutz; Ilkka Hannula; Andrea Lanzini; Guangjian Liu

2012-03-11T23:59:59.000Z

154

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

6 PM)" 6 PM)" "South Dakota" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",115,113,113,110,108,103,94,92,93,94,99,103,130,134,139,142,151,156,174,176,195 " Average heat value (Btu per pound)",6096,6025,6034,6057,6049,6972,9034,8687,8728,8630,8464,8540,8550,8560,8523,8711,8534,8530,8391,8386,8327 " Average sulfur Content (percent)",0.9,0.87,0.92,0.9,0.91,0.87,0.52,0.63,0.72,0.6,0.31,0.33,0.37,0.33,0.34,0.31,0.32,0.3,0.31,0.31,0.33 "Petroleum (cents per million Btu)1",565,488,"-",467,"-","-",598,"-","-","-","-","-","-",804,822,1245,1546,"-",1985,1248,1808

155

Co-production of decarbonized synfuels and electricity from coal + biomass with CO{sub 2} capture and storage: an Illinois case study  

Science Conference Proceedings (OSTI)

Energy, carbon, and economic performances are estimated for facilities co-producing Fischer-Tropsch Liquid (FTL) fuels and electricity from a co-feed of biomass and coal in Illinois, with capture and storage of by-product CO{sub 2}. The estimates include detailed modeling of supply systems for corn stover or mixed prairie grasses (MPG) and of feedstock conversion facilities. Biomass feedstock costs in Illinois (delivered at a rate of one million tonnes per year, dry basis) are $ 3.8/GJ{sub HHV} for corn stover and $ 7.2/GJ{sub HHV} for MPG. Under a strong carbon mitigation policy, the economics of co-producing low-carbon fuels and electricity from a co-feed of biomass and coal in Illinois are promising. An extrapolation to the United States of the results for Illinois suggests that nationally significant amounts of low-carbon fuels and electricity could be produced this way.

Eric D. Larson; Giulia Fiorese; Guangjian Liu; Robert H. Williams; Thomas G. Kreutz; Stefano Consonni

2010-07-01T23:59:59.000Z

156

Coal Severance Tax (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Severance Tax (Montana) Coal Severance Tax (Montana) Eligibility Utility Commercial Investor-Owned Utility Industrial MunicipalPublic Utility Rural Electric Cooperative...

157

Estimating carbon dioxide emissions factors for the California electric power sector  

E-Print Network (OSTI)

utilities in 1999. Coal prices are from the Coal Quarterlyaverage price to electric utilities of coal by sulfur

Marnay, Chris; Fisher, Diane; Murtishaw, Scott; Phadke, Amol; Price, Lynn; Sathaye, Jayant

2002-01-01T23:59:59.000Z

158

Methodology and a preliminary data base for examining the health risks of electricity generation from uranium and coal fuels  

SciTech Connect

An analytical model was developed to assess and examine the health effects associated with the production of electricity from uranium and coal fuels. The model is based on a systematic methodology that is both simple and easy to check, and provides details about the various components of health risk. A preliminary set of data that is needed to calculate the health risks was gathered, normalized to the model facilities, and presented in a concise manner. Additional data will become available as a result of other evaluations of both fuel cycles, and they should be included in the data base. An iterative approach involving only a few steps is recommended for validating the model. After each validation step, the model is improved in the areas where new information or increased interest justifies such upgrading. Sensitivity analysis is proposed as the best method of using the model to its full potential. Detailed quantification of the risks associated with the two fuel cycles is not presented in this report. The evaluation of risks from producing electricity by these two methods can be completed only after several steps that address difficult social and technical questions. Preliminary quantitative assessment showed that several factors not considered in detail in previous studies are potentially important. 255 refs., 21 figs., 179 tabs.

El-Bassioni, A.A.

1980-08-01T23:59:59.000Z

159

Fermilab | Directorate | Director Profiles | Steve Geer  

NLE Websites -- All DOE Office Websites (Extended Search)

Steve Geer Steve Geer Head, Program Planning Office I am currently Head of the Program Planning Office within the Fermilab Directorate, which coordinates the experimental physics program carried out at the Laboratory. The office provides a link between ongoing and planned experiments and the Directorate, by: Acting as liaison between experimenters and laboratory staff regarding beam conditions during accelerator operation. Establishing priorities between accelerator studies and experiments and among experiments, in consultation with the Director, and resolving conflicting requests from experiments. Coordinating Division and Section reviews of draft Memoranda of Understanding for approved experiments. Coordinating updates to the "Procedures for Researchers" which

160

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

6 PM)" 6 PM)" "Alabama" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",184,181,173,176,167,156,154,154,157,148,141,141,142,147,152,179,211,206,271,268,282 " Average heat value (Btu per pound)",12094,12107,12061,12092,12088,11861,11794,11584,11519,10963,10951,10990,10828,10977,10878,10950,10879,10644,10659,10507,10633 " Average sulfur Content (percent)",1.51,1.4,1.43,1.33,1.3,1.2,1.24,1.13,1.13,1.02,0.91,0.92,0.94,0.95,0.84,0.97,0.94,0.88,0.89,0.92,0.99 "Petroleum (cents per million Btu)1",507,512,460,425,402,376,446,405,288,326,652,552,509,560,754,1148,1327,1107,1672,1249,1589 " Average heat value (Btu per gallon)",130098,137126,137164,137671,137864,138276,139383,139645,139510,139140,137395,144286,140588,141395,142757,141012,140469,143452,140050,137243,137733

Note: This page contains sample records for the topic "director coal electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

1 PM)" 1 PM)" "Nebraska" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",75,75,75,75,77,75,72,59,59,55,56,57,58,60,66,71,80,88,90,133,142 " Average heat value (Btu per pound)",8561,8542,8553,8561,8571,8594,8599,8595,8584,8498,8632,8585,8654,8673,8574,8570,8514,8511,8496,8544,8547 " Average sulfur Content (percent)",0.35,0.35,0.37,0.35,0.35,0.33,0.34,0.32,0.27,0.3,0.3,0.31,0.3,0.29,0.32,0.31,0.3,0.31,0.31,0.31,0.28 "Petroleum (cents per million Btu)1",703,457,465,248,402,224,511,450,333,432,649,656,555,457,712,1343,1534,1669,1772,1056,1711 " Average heat value (Btu per gallon)",138043,137600,137586,107945,137640,103081,137621,137567,132550,137671,137750,138571,138043,138040,136976,138119,138124,138007,139452,140500,137895

162

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

8 PM)" 8 PM)" "Louisiana" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",170,165,153,158,154,155,151,148,143,140,132,131,127,134,138,151,166,185,210,204,216 " Average heat value (Btu per pound)",8194,8223,8122,8092,8136,8110,8171,8102,8097,8149,7933,8030,8095,8023,8146,8136,8205,8246,8183,8201,8114 " Average sulfur Content (percent)",0.49,0.49,0.5,0.52,0.51,0.58,0.57,0.64,0.56,0.58,0.63,0.74,0.52,0.5,0.51,0.54,0.49,0.39,0.41,0.39,0.39 "Petroleum (cents per million Btu)1",371,413,388,223,269,348,327,302,222,204,459,519,63,247,286,427,300,196,425,195,296 " Average heat value (Btu per gallon)",144962,143214,141950,152148,147869,141543,147221,153519,153400,154469,149843,145238,140393,145807,147379,147057,142607,139310,140002,136969,136986

163

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

7 PM)" 7 PM)" "North Carolina" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",178,178,173,170,168,163,148,143,144,144,143,159,176,178,200,240,269,274,326,359,352 " Average heat value (Btu per pound)",12544,12506,12456,12465,12416,12461,12422,12368,12398,12450,12448,12380,12422,12423,12345,12309,12268,12374,12243,12333,12270 " Average sulfur Content (percent)",0.96,0.94,0.92,0.96,0.95,0.86,0.89,0.9,0.89,0.85,0.82,0.86,0.85,0.87,0.86,0.88,0.91,1.01,1.01,1.04,1.01 "Petroleum (cents per million Btu)1",512,473,441,405,384,382,468,428,311,398,616,584,467,623,715,997,1356,1042,1513,1014,1433 " Average heat value (Btu per gallon)",138229,138317,138450,138610,138238,138148,138298,138264,138167,138169,138360,145952,144098,140848,141338,142869,139114,146617,146483,146243,144814

164

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

9 PM)" 9 PM)" "Wisconsin" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",136,136,133,121,121,114,106,109,107,102,102,105,112,112,118,129,150,170,198,206,218 " Average heat value (Btu per pound)",9642,9643,9725,9490,9565,9351,9222,9375,9299,9115,9165,9500,9089,9006,9030,9088,8975,8967,9025,8920,8964 " Average sulfur Content (percent)",0.81,0.81,0.71,0.49,0.51,0.46,0.46,0.5,0.46,0.39,0.35,0.37,0.41,0.38,0.39,0.38,0.36,0.36,0.37,0.38,0.4 "Petroleum (cents per million Btu)1",526,312,310,153,221,177,193,180,83,81,88,146,111,108,109,150,203,204,356,222,240 " Average heat value (Btu per gallon)",139200,113495,110433,92736,103860,95883,91924,90760,75079,73869,74440,139048,133712,134343,135093,135238,134333,134845,136126,134033,131245

165

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

8 PM)" 8 PM)" "Indiana" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",136,134,131,127,127,125,119,116,112,111,108,114,117,120,121,140,152,161,193,202,214 " Average heat value (Btu per pound)",10562,10569,10628,10539,10535,10338,10357,10461,10517,10620,10604,10540,10593,10550,10601,10756,10638,10588,10486,10470,10498 " Average sulfur Content (percent)",2.06,1.98,1.88,1.78,1.76,1.57,1.59,1.61,1.63,1.58,1.51,1.43,1.48,1.5,1.53,1.72,1.61,1.74,1.71,1.73,1.76 "Petroleum (cents per million Btu)1",191,297,218,365,390,298,198,150,184,170,245,220,208,311,330,803,1394,1337,2002,1002,1571 " Average heat value (Btu per gallon)",89740,105529,96317,126976,137426,115914,90057,81174,100264,90095,90071,149762,142836,138660,135267,139405,139621,140607,139538,139436,139390

166

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

1 PM)" 1 PM)" "Texas" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",145,150,149,144,135,134,129,126,124,120,123,133,126,125,131,129,139,149,162,168,184 " Average heat value (Btu per pound)",7291,7225,7234,7284,7346,7346,7440,7423,7509,7506,7548,7635,7677,7605,7641,7611,7665,7681,7759,7787,7705 " Average sulfur Content (percent)",0.74,0.75,0.76,0.75,0.73,0.77,0.71,0.75,0.71,0.65,0.65,0.67,0.68,0.78,0.77,0.74,0.67,0.6,0.56,0.61,0.61 "Petroleum (cents per million Btu)1",517,471,399,179,211,283,473,342,113,96,617,556,200,423,171,248,267,240,312,213,423 " Average heat value (Btu per gallon)",141838,139760,140129,112764,120681,117555,138383,114810,99067,80493,135419,141905,140340,139979,137700,137955,137876,136814,136638,136569,135686

167

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

6 PM)" 6 PM)" "Missouri" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",135,134,134,124,110,98,95,93,92,93,92,96,90,92,93,101,111,133,151,153,159 " Average heat value (Btu per pound)",10400,10298,10321,9860,9718,9216,9063,8994,8938,8948,8913,8940,8875,8865,8838,8854,8808,8825,8837,8802,8801 " Average sulfur Content (percent)",2.01,1.84,1.8,1.02,1.03,0.57,0.58,0.47,0.37,0.34,0.3,0.36,0.36,0.37,0.38,0.37,0.36,0.38,0.38,0.38,0.36 "Petroleum (cents per million Btu)1",280,230,210,113,101,110,183,292,118,88,263,134,118,348,279,1236,1457,1713,1829,1022,1607 " Average heat value (Btu per gallon)",107890,131371,136233,83795,79640,79069,95638,123143,89640,76829,94214,136667,136381,137769,139288,137693,137188,137476,137340,137948,137655

168

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

0 PM)" 0 PM)" "Iowa" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",112,110,110,101,99,99,94,94,88,82,82,81,89,89,93,98,105,108,127,134,142 " Average heat value (Btu per pound)",8892,8890,8867,8660,8783,8678,8658,8662,8636,8581,8626,9000,8648,8705,8665,8668,8612,8619,8605,8657,8585 " Average sulfur Content (percent)",0.7,0.67,0.67,0.52,0.57,0.49,0.45,0.45,0.44,0.4,0.35,0.37,0.39,0.43,0.44,0.42,0.44,0.41,0.41,0.42,0.37 "Petroleum (cents per million Btu)1",518,355,158,127,144,96,117,141,141,399,643,617,579,635,459,1077,474,603,1023,1038,878 " Average heat value (Btu per gallon)",137943,123305,84117,83079,86795,77324,78400,83517,88176,139340,138731,139524,139667,139171,137162,139200,134952,135219,133214,136726,133860

169

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

1 PM)" 1 PM)" "Virginia" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",155,152,147,147,145,145,142,139,138,134,133,159,169,167,195,233,245,249,277,308,328 " Average heat value (Btu per pound)",12714,12768,12830,12817,12778,12743,12597,12554,12603,12702,12814,12730,12845,12826,12713,12650,12592,12531,12492,12501,12476 " Average sulfur Content (percent)",0.96,1,1.03,1,0.99,1.03,0.99,1.01,0.97,1.3,0.98,1.02,1.16,0.97,0.94,1,1.04,0.94,0.92,1,1.02 "Petroleum (cents per million Btu)1",384,223,247,213,216,251,290,282,204,230,424,357,380,499,497,761,875,922,1380,978,1315 " Average heat value (Btu per gallon)",146360,146626,148881,150319,149743,146179,146988,148219,150157,150660,151002,148810,149779,149367,150757,149019,150090,148238,147390,145531,145626

170

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

1 PM)" 1 PM)" "Minnesota" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",125,126,119,113,114,114,107,109,107,110,111,102,106,108,107,113,122,150,169,164,174 " Average heat value (Btu per pound)",8788,8802,8838,8844,8821,8828,8914,8895,8883,8883,8929,8930,8860,8895,8914,8909,8911,8853,8902,8878,8812 " Average sulfur Content (percent)",0.51,0.48,0.45,0.44,0.46,0.47,0.45,0.45,0.44,0.44,0.43,0.47,0.45,0.46,0.44,0.44,0.44,0.45,0.46,0.46,0.43 "Petroleum (cents per million Btu)1",93,88,83,80,85,85,90,78,74,76,54,65,60,85,110,157,152,444,941,1210,1568 " Average heat value (Btu per gallon)",73719,72052,72467,71631,73031,73310,74050,72267,72781,71055,72531,132857,131267,133093,134967,133848,134976,132929,136357,139955,140595

171

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

4 PM)" 4 PM)" "Washington" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",158,155,137,136,136,144,157,163,149,156,169,146,140,143,133,154,173,217,216,227 " Average heat value (Btu per pound)",8135,8014,8189,8125,8400,8267,7936,8043,8215,8224,8310,8014,8052,8151,8131,8532,9211,8366,8403,8391 " Average sulfur Content (percent)",0.7,0.66,0.66,0.71,0.65,0.69,0.71,0.62,0.59,0.75,0.73,1.01,1,0.93,0.75,0.69,0.34,0.32,0.33,0.34 "Petroleum (cents per million Btu)1",511,573,466,469,472,485,509,499,405,479,664,241,325,412,562,1629,663,1229,965,1383 " Average heat value (Btu per gallon)",140948,140176,139924,139936,139933,139952,139931,139943,139907,140000,140000,137098,145438,139331,137340,142807,138598,139040,139905,130674

172

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

7 PM)" 7 PM)" "West Virginia" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",147,152,147,142,139,127,125,124,122,118,120,125,121,125,135,153,167,173,222,254,239 " Average heat value (Btu per pound)",12452,12505,12524,12489,12468,12418,12378,12398,12305,12361,12281,12085,12103,12166,12061,11976,11967,12046,11897,11959,12034 " Average sulfur Content (percent)",1.89,1.92,2.05,1.94,1.87,1.98,1.93,1.95,1.86,1.84,1.42,1.19,1.71,1.69,1.75,1.78,1.79,2.04,2,2.13,2.4 "Petroleum (cents per million Btu)1",572,537,484,462,442,439,529,464,371,463,721,666,543,725,785,959,901,1063,2146,1434,1738 " Average heat value (Btu per gallon)",139293,139090,139486,139229,139324,138988,138655,138883,139186,139100,139324,137143,122840,140526,140943,141667,143471,143817,135557,137855,138536

173

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

32 PM)" 32 PM)" "Wyoming" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",84,83,76,80,80,82,82,81,79,76,78,77,79,82,87,95,100,105,117,120,132 " Average heat value (Btu per pound)",8811,8756,8840,8779,8766,8738,8716,8787,8794,8784,8803,8880,8759,8826,8826,8814,8708,8684,8769,8791,8806 " Average sulfur Content (percent)",0.54,0.51,0.52,0.51,0.52,0.5,0.52,0.54,0.53,0.51,0.5,0.48,0.49,0.49,0.48,0.49,0.51,0.49,0.51,0.51,0.53 "Petroleum (cents per million Btu)1",527,494,479,473,444,445,546,517,406,476,724,707,553,714,950,1317,1628,1772,2146,1369,1736 " Average heat value (Btu per gallon)",138848,139167,139150,139060,138986,139281,139171,138821,139138,139102,139219,146905,139448,139593,139338,139638,139333,139448,139926,139824,139238

174

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

3 PM)" 3 PM)" "Delaware" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",181,178,173,169,162,162,159,157,156,159,152,217,178,190,220,281,308,286,352,334,355 " Average heat value (Btu per pound)",13035,13053,13064,13027,12954,13085,13020,13062,12962,12935,12995,11495,12858,12803,12530,12222,12401,12524,12452,12567,12550 " Average sulfur Content (percent)",0.97,0.96,1.03,0.94,0.92,1,1.01,0.99,0.98,0.97,1.01,0.67,0.91,0.9,0.83,0.67,0.74,0.73,0.74,0.8,0.77 "Petroleum (cents per million Btu)1",278,238,242,230,259,261,321,278,215,244,446,380,406,576,611,863,1351,1304,1811,1120,1624 " Average heat value (Btu per gallon)",151269,151483,150760,151286,149733,152012,151900,151464,150957,150998,150486,148095,148964,147895,146312,147248,139117,144114,143781,137938,136498

175

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

9 PM)" 9 PM)" "New Jersey" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",180,178,173,177,182,178,175,176,159,145,139,227,187,180,205,218,273,289,333,401,416 " Average heat value (Btu per pound)",13429,13402,13465,13397,13341,13282,12993,13084,13113,13150,13153,13000,13137,13056,12868,12644,12770,11890,12073,11491,11758 " Average sulfur Content (percent)",1.16,1.27,1.29,1.29,1.29,1.21,1.36,1.24,1.13,1.14,1.13,1.57,1.23,1.11,1.58,1.14,1.17,0.88,1.03,0.9,1.05 "Petroleum (cents per million Btu)1",360,302,303,268,290,286,359,299,242,288,484,454,468,604,602,985,970,1147,1547,1011,1495 " Average heat value (Btu per gallon)",148298,148469,148864,149283,148376,149310,147321,148488,148655,149295,149557,141667,143162,139250,135095,134802,141505,136271,138217,136595,139952

176

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

4 PM)" 4 PM)" "New York" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",161,159,149,150,145,141,143,142,143,145,149,142,155,159,176,213,240,241,257,273,305 " Average heat value (Btu per pound)",12846,12923,12978,12914,12959,13051,13013,13105,13052,13034,13117,13025,13019,12545,12063,11832,11584,11382,11248,11187,10982 " Average sulfur Content (percent)",1.84,1.77,1.65,1.55,1.71,1.79,1.8,1.8,1.75,1.67,1.12,1.97,1.78,1.8,1.66,1.4,1.36,1.37,1.43,1.29,1.31 "Petroleum (cents per million Btu)1",360,272,264,257,251,263,319,284,203,237,431,350,366,493,486,731,800,799,1390,811,1144 " Average heat value (Btu per gallon)",150036,150812,150898,151012,149567,148624,149671,150326,150740,150569,151162,149286,149371,149998,149024,148914,150136,151036,148410,146824,144319

177

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

2 PM)" 2 PM)" "New Mexico" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",132,138,132,137,141,142,143,134,131,133,138,147,153,143,148,151,156,179,199,190,206 " Average heat value (Btu per pound)",9117,9092,9013,8991,9043,9033,9116,9069,9082,9132,9206,9250,9444,9164,9225,9173,9282,9198,9173,9226,8963 " Average sulfur Content (percent)",0.79,0.8,0.81,0.81,0.82,0.8,0.8,0.81,0.8,0.8,0.8,0.72,0.73,0.73,0.72,0.79,0.76,0.77,0.75,0.77,0.75 "Petroleum (cents per million Btu)1",525,535,516,506,465,490,587,575,439,502,758,631,614,754,956,1293,1695,1879,2353,1526,1942 " Average heat value (Btu per gallon)",138098,136000,135676,136000,136000,136000,136000,136000,136000,136000,136000,139524,136000,136048,136007,136252,136024,136026,134186,134086,134219

178

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

6 PM)" 6 PM)" "Kentucky" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",119,118,116,117,116,111,106,105,106,106,102,110,119,123,137,152,170,175,214,217,226 " Average heat value (Btu per pound)",11558,11552,11620,11697,11683,11625,11536,11571,11579,11582,11604,11425,11464,11498,11550,11620,11568,11661,11534,11472,11460 " Average sulfur Content (percent)",2.59,2.53,2.44,2.39,2.34,2.42,2.47,2.5,2.37,2.27,2.29,2.15,2.16,2.12,2.09,2.21,2.23,2.22,2.33,2.54,2.58 "Petroleum (cents per million Btu)1",575,505,479,204,153,318,310,361,278,275,559,567,465,227,127,117,127,127,203,168,217 " Average heat value (Btu per gallon)",138943,138998,138993,90574,87876,118024,105736,116976,115748,110888,125371,139286,137640,132664,131967,132710,132305,134155,134110,134810,135140

179

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

4 PM)" 4 PM)" "United States" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",145,145,141,139,136,132,129,127,125,122,120,123,125,128,136,154,169,177,207,221,227 " Average heat value (Btu per pound)",10465,10378,10395,10315,10338,10248,10263,10275,10241,10163,10115,10200,10168,10137,10074,10107,10063,10028,9947,9902,9843 " Average sulfur Content (percent)",1.35,1.3,1.29,1.18,1.17,1.08,1.1,1.11,1.06,1.01,0.93,0.89,0.94,0.97,0.97,0.98,0.97,0.96,0.97,1.01,1.04 "Petroleum (cents per million Btu)1",335,253,251,237,242,257,303,273,202,236,418,369,334,433,429,644,623,717,1087,702,954 " Average heat value (Btu per gallon)",149536,150093,150293,149983,149324,149371,149367,149838,149736,149407,149857,147857,147902,147086,147286,146481,143883,144545,142205,141321,140598

180

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

3 PM)" 3 PM)" "Kansas" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",124,123,118,102,102,102,99,102,98,95,98,105,98,101,103,112,119,123,141,143,151 " Average heat value (Btu per pound)",8948,8998,8900,8654,8708,8730,8827,8766,8696,8628,8672,8700,8571,8619,8626,8569,8607,8582,8545,8526,8569 " Average sulfur Content (percent)",0.58,0.59,0.49,0.43,0.49,0.43,0.49,0.48,0.45,0.43,0.42,0.43,0.44,0.48,0.44,0.44,0.45,0.41,0.39,0.4,0.38 "Petroleum (cents per million Btu)1",540,432,438,402,397,212,412,282,266,319,400,336,273,362,407,556,485,340,711,428,569 " Average heat value (Btu per gallon)",138176,138367,139117,138633,138890,104067,141940,154117,144688,147607,154871,154286,157186,156948,156855,155174,144821,137017,136552,137645,137600

Note: This page contains sample records for the topic "director coal electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

5 PM)" 5 PM)" "Illinois" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",175,171,174,170,161,163,163,155,156,144,115,119,119,116,115,119,126,134,158,165,170 " Average heat value (Btu per pound)",10789,10721,10666,10362,10181,9970,9878,9781,9700,9560,9690,9555,9253,9176,9120,9015,8937,8962,8892,8876,8896 " Average sulfur Content (percent)",2.07,2,1.91,1.63,1.46,1.14,1.16,1.17,1.1,1.03,1.11,1.1,0.7,0.66,0.65,0.62,0.53,0.52,0.5,0.48,0.5 "Petroleum (cents per million Btu)1",395,309,304,297,280,232,298,309,234,291,324,579,524,540,464,1286,1465,1744,2432,1505,1765 " Average heat value (Btu per gallon)",148831,149029,149843,148693,148945,124129,128245,126779,130829,130367,96874,153333,140345,147876,143595,137405,141102,137319,137310,137181,137507

182

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

4 PM)" 4 PM)" "Mississippi" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",165,167,160,164,157,153,151,155,154,155,152,163,159,154,169,210,231,271,301,301,289 " Average heat value (Btu per pound)",12543,12555,12507,12338,11312,11221,11023,10486,10569,11062,11549,11670,9723,9235,9087,8993,8961,9290,9276,8541,8519 " Average sulfur Content (percent)",1.64,1.56,1.69,1.41,1.02,1.04,0.93,0.68,0.75,0.74,0.85,0.7,0.63,0.59,0.57,0.57,0.6,0.59,0.55,0.53,0.69 "Petroleum (cents per million Btu)1",243,216,200,176,164,374,224,269,199,154,333,377,428,412,465,651,830,763,1042,1193,1076 " Average heat value (Btu per gallon)",151229,151257,152595,153436,152705,139507,154381,156867,157169,157967,155569,154524,145986,155336,155638,155064,155619,154738,149826,142902,151357

183

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

6 PM)" 6 PM)" "New Hampshire" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",178,174,169,161,152,159,161,163,161,152,148,167,180,170,202,244,256,290,353,366,380 " Average heat value (Btu per pound)",13303,13247,13260,13179,13032,13111,13146,13054,13133,13133,13114,13050,13245,13262,13199,13087,13196,13109,12886,12849,12922 " Average sulfur Content (percent)",1.81,1.43,1.61,1.62,1.52,1.38,1.56,1.42,1.4,1.35,1.34,1.34,1.17,1.09,1.16,1.32,1.29,1.51,1.2,1.44,1.44 "Petroleum (cents per million Btu)1",227,180,186,184,200,233,254,264,187,214,345,337,371,374,406,595,782,914,1069,717,1345 " Average heat value (Btu per gallon)",154329,156712,156757,154129,153464,154402,154517,152621,151850,153221,153740,151190,152400,152724,152883,154024,155071,152450,152379,151240,146800

184

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

9 PM)" 9 PM)" "Montana" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",67,67,71,69,69,67,71,68,67,73,92,95,61,62,64,71,85,93,102,107,111 " Average heat value (Btu per pound)",8564,8522,8576,8496,8500,8520,8439,8426,8433,8435,6618,8380,8482,8515,8504,8447,8428,8426,8347,8409,8375 " Average sulfur Content (percent)",0.63,0.65,0.66,0.65,0.66,0.68,0.68,0.72,0.72,0.73,0.52,0.53,0.64,0.62,0.63,0.66,0.66,0.61,0.69,0.67,0.69 "Petroleum (cents per million Btu)1",543,472,509,526,463,491,565,529,466,491,"-","-",219,746,948,1274,173,90,135,83,73 " Average heat value (Btu per gallon)",141000,141000,141000,141000,141000,141000,141000,141000,141000,140100,"-","-",137148,136574,137064,126095,130833,137343,136819,139021,138571

185

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

50 PM)" 50 PM)" "Georgia" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",179,180,180,178,169,167,158,159,155,155,154,166,168,172,180,218,240,261,307,362,390 " Average heat value (Btu per pound)",11893,11936,12039,12148,11774,11576,11581,11755,11750,11740,11559,11730,11686,11668,11024,11058,10994,10983,10947,10933,10891 " Average sulfur Content (percent)",1.63,1.63,1.68,1.37,1.05,0.81,0.83,0.84,0.85,0.8,0.76,0.81,0.79,0.82,0.78,0.81,0.82,0.78,0.78,0.76,0.78 "Petroleum (cents per million Btu)1",486,474,434,347,396,378,431,421,328,390,691,668,549,268,289,433,356,537,838,552,667 " Average heat value (Btu per gallon)",139812,138000,140514,142390,138483,139631,140676,140471,138495,138495,138498,145714,138348,134648,136533,141855,135864,141493,138081,138371,137129

186

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

0 PM)" 0 PM)" "Arizona" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",143,141,137,135,137,139,144,142,133,133,124,125,126,127,130,141,144,159,174,181,180 " Average heat value (Btu per pound)",10482,10356,10303,10271,10281,10274,10232,10159,10186,10257,10229,10145,10232,10081,10211,10088,10011,9946,9828,9712,9685 " Average sulfur Content (percent)",0.49,0.51,0.51,0.49,0.51,0.53,0.55,0.54,0.55,0.55,0.56,0.58,0.6,0.64,0.57,0.57,0.57,0.57,0.59,0.65,0.66 "Petroleum (cents per million Btu)1",446,499,467,511,428,510,539,532,429,480,860,706,654,767,859,1403,1625,1671,2102,1300,1807 " Average heat value (Btu per gallon)",142831,139662,140379,140533,142148,139933,142293,140336,138850,138690,138607,143333,139567,139550,133595,140912,139114,140914,138424,135340,135993

187

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

0 PM)" 0 PM)" "Pennsylvania" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",152,155,148,144,143,136,138,136,135,130,115,121,125,122,137,159,172,175,210,230,241 " Average heat value (Btu per pound)",12241,12302,12399,12443,12368,12315,12321,12279,12323,12552,12670,11240,12111,11733,11615,11741,11459,11400,11079,10940,11063 " Average sulfur Content (percent)",2.16,2.14,2.12,2.07,2.11,2.12,2.09,2.13,2.19,2.15,2.26,2.12,1.95,1.95,2,1.94,2.09,2.08,2.09,2.21,2.39 "Petroleum (cents per million Btu)1",322,247,236,236,249,224,289,225,184,186,292,373,464,467,451,746,762,916,1181,762,1484 " Average heat value (Btu per gallon)",140462,137574,132824,141621,141245,128574,132045,126590,121550,112919,125114,146429,145976,144660,144343,146174,139310,139290,138850,138731,139112

188

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

47 PM)" 47 PM)" "Florida" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",185,186,182,177,178,179,174,173,165,159,157,172,176,176,192,231,256,256,297,339,347 " Average heat value (Btu per pound)",12364,12351,12370,12332,12293,12296,12193,12122,12144,12299,12330,12105,12263,12281,12249,12227,12142,12116,11929,11957,12024 " Average sulfur Content (percent)",1.73,1.73,1.68,1.57,1.6,1.47,1.55,1.59,1.55,1.53,1.59,1.54,1.55,1.44,1.44,1.38,1.37,1.35,1.38,1.45,1.67 "Petroleum (cents per million Btu)1",302,225,242,220,226,247,278,254,193,236,409,339,324,389,392,581,568,712,1003,727,856 " Average heat value (Btu per gallon)",151010,151217,151471,151660,151248,150633,148417,143486,143812,147529,147162,150000,149657,148431,148183,147510,146124,147276,146433,144745,143138

189

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

4 PM)" 4 PM)" "Nevada" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",149,141,146,147,143,131,137,139,130,129,126,126,134,142,136,154,173,188,220,222,244 " Average heat value (Btu per pound)",11122,11121,11051,11012,11291,11075,11140,11169,11199,11257,11211,11210,11284,11120,11118,11176,11495,11151,10664,10505,10626 " Average sulfur Content (percent)",0.53,0.5,0.49,0.49,0.49,0.48,0.49,0.5,0.47,0.46,0.47,0.51,0.53,0.5,0.54,0.53,0.54,0.46,0.44,0.42,0.47 "Petroleum (cents per million Btu)1",314,393,331,358,329,337,552,508,380,453,722,585,600,601,473,990,1270,"-",2360,1382,1751 " Average heat value (Btu per gallon)",148233,147538,147779,148545,148195,146667,136898,138760,138845,139110,139110,151667,139110,138548,149914,141760,140610,"-",138938,138386,138452

190

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

2 PM)" 2 PM)" "Ohio" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",152,148,144,141,144,142,134,132,136,136,146,131,123,121,133,154,170,171,205,239,224 " Average heat value (Btu per pound)",11882,11945,11983,12049,12052,12122,12056,11891,11913,11918,11823,11550,12143,12160,12098,12097,11525,11495,11444,11768,11563 " Average sulfur Content (percent)",2.44,2.63,2.57,2.39,2.34,1.89,2.08,2.01,2.01,1.98,1.92,2.07,1.98,2.14,2.25,2.16,1.68,1.7,1.96,2.2,2.28 "Petroleum (cents per million Btu)1",459,381,233,187,197,349,347,426,202,348,635,601,532,731,777,1291,1224,1619,591,488,760 " Average heat value (Btu per gallon)",142917,131114,93026,81274,82224,128733,105121,135936,105736,128624,133586,142143,125426,137810,137986,138193,138150,138026,134567,136305,136052

191

Weights and Measures State Directors  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. State Director's List. Alaska. Dan K. Breeden, Director. AK Division of Measurement Standards/CVE. ...

2010-10-05T23:59:59.000Z

192

Electric Power Annual  

Annual Energy Outlook 2012 (EIA)

4. Weighted Average Cost of Fossil Fuels for the Electric Power Industry, 2002 through 2011 Coal Petroleum Natural Gas Total Fossil Bituminous Subbituminous Lignite All Coal Ranks...

193

Electric Power Annual  

U.S. Energy Information Administration (EIA) Indexed Site

F. Coal: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2001 - 2011 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities...

194

MS_Coal_Studyguide.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COAL-OUR MOST ABUNDANT FUEL COAL-OUR MOST ABUNDANT FUEL America has more coal than any other fossil fuel resource. Th e United States also has more coal reserves than any other single country in the world. In fact, 1/4 of all the known coal in the world is in the United States. Th e United States has more energy in coal that can be mined than the rest of the world has in oil that can be pumped from the ground. Currently, coal is mined in 25 of the 50 states. Coal is used primarily in the United States to generate electricity. In fact, it is burned in power plants to produce nearly half of the electricity we use. A stove uses about half a ton of coal a year. A water heater uses about two tons of coal a year. And a refrigerator, that's another half-ton a year. Even though you

195

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

at RHIC or the AGS should be submitted to the Associate Laboratory Director for Nuclear and Particle Physics, presently Steve Vigdor, Bldg. 510F, Brookhaven National...

196

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

NSAC Meeting, Bethesda, Maryland: 3-5 April 2005 US Nuclear Science web site (link to meeting) Brookhaven Presentations: Director's Remarks: Praveen Chaudhari Overview: Sam Aronson...

197

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear & Particle Physics Directorate Nuclear and Particle Physics (NPP) at BNL comprises the Collider-Accelerator Department (including the NASA Space Radiation Laboratory,...

198

c. content director  

Science Conference Proceedings (OSTI)

Seeking approval and/or informing the Board of content development and ... Present oral and written reports to the Board of Directors on the status of those.

199

f. program director  

Science Conference Proceedings (OSTI)

Committee, one year in advance of assuming office. ... The Program Director holds office for three ... Has successful experience in managing a budget.

200

LLNL Director Search  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Committee Search Committee for the selection of a director for Lawrence Livermore National Laboratory November 2013 * Additional members are under consideration. Norman...

Note: This page contains sample records for the topic "director coal electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

STEO December 2012 - coal demand  

U.S. Energy Information Administration (EIA) Indexed Site

coal demand seen below 1 billion tons in 2012 for fourth year in a row Coal consumption by U.S. power plants to generate electricity is expected to fall below 1 billion tons in...

202

Fermilab | Directorate | Director Profiles | Nigel Lockyer  

NLE Websites -- All DOE Office Websites (Extended Search)

Nigel Lockyer Nigel Lockyer Laboratory Director Nigel Lockyer began his tenure as director of Fermi National Accelerator Laboratory, America’s premier laboratory for particle physics research, on September 3, 2013. An experimental particle physicist, Lockyer was most recently director of TRIUMF, Canada’s national laboratory for particle and nuclear physics. He was also a professor of physics and astronomy at the University of British Columbia. Under his leadership, TRIUMF formulated a vision for ascending the world stage in nuclear physics using rare-isotope beams to address some of the most fundamental questions in science. Lockyer expanded the laboratory’s operations by 25 percent, earning a reputation as a national leader and team-builder. He also developed a strong working partnership among

203

Fermilab | Directorate | Director Profiles | Martha Michels  

NLE Websites -- All DOE Office Websites (Extended Search)

Martha Michels Martha Michels Director for ESH&Q and Head of the ESH&Q Section As the Director for ESH&Q and Head of the ESH&Q Section, Michels is responsible for the management and direction of Fermi National Accelerator Laboratory’s environment, safety and health programs. She ensures that ESH&Q is integrated into all activities within the line organizations in an effective and efficient manner. Michels assists the Directorate in assessing the resource needs and priorities of the Laboratory concerning ESH&Q. She represents the lab on ESH&Q issues with the Department of Energy, government and non-government agencies and other national laboratories. Michels owns the ESH&Q Management System, which establishes and maintains ESH&Q policies and procedures. She assesses line organizations for

204

MEMORANDUM FOR FEDERAL PROCUREMENT DIRECTORS FROM: DIRECTOR  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2009 2009 MEMORANDUM FOR FEDERAL PROCUREMENT DIRECTORS FROM: DIRECTOR OFFICE OF PROCUREMENT AND ASSISTANCE MANAGEMENT SUBJECT: Changes to the Balanced Scorecard Program The Balanced Scorecard (BSC) performance management methodology has played a significant role in helping the Office of Procurement and Assistance Management assess the performance of the Department's Federal procurement offices and the purchasing organizations of its major site and facility contractors. This methodology provides the conceptual framework for creating, communicating, collecting and arraying performance objectives, measures, targets, and initiatives. Over the years, we have used the BSC assessment results to identify and monitor desired organizational changes, to expose problem areas needing management attention, to

205

TO: Procurement Directors FROM: Director, Policy Division  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 DATE: April 14, 2011 TO: Procurement Directors FROM: Director, Policy Division Office of Procurement and Assistance Policy Office of Procurement and Assistance Management SUBJECT: DOE 2011 Continuity of Operations (COOP) Awareness Briefing Available to Contractors SUMMARY: For each contract requiring or involving responsibility for work or operations at DOE/NNSA sites or facilities that support or perform essential functions/activities that directly support National Essential Functions (NEF), Mission Essential Functions (MEF), Primary Mission Essential Functions (PMEF), or Essential Supporting Activities (ESA) the Contractor Requirements Document (CRD) DOE Order 150.1, Continuity Programs, sets forth the contractor responsibility for a Continuity of

206

Director`s series on proliferation  

SciTech Connect

The Director`s Series on Proliferation is an occasional publication of essays on the topics of nuclear, chemical, biological, and missile proliferation. The seven papers presented in this issue cover the following topics: Should the Treaty on the Nonproliferation of Nuclear Weapons (NPT) be amended?; NPT extension - Legal and procedural issues; An Indonesian view of NPT review conference issues; The treaty of Tlatelolco and the NPT - Tools for peace and development; Perspectives on cut-off, weapons dismantlement, and security assurances; Belarus and NPT challenges; A perspective on the chemical weapons convention - Lessons learned from the preparatory commission.

Bailey, K.C.; Price, M.E. [eds.

1994-12-27T23:59:59.000Z

207

The Impact of the Clean Air Act Amendments of 1990 on Electric Utilities and Coal Mines: Evidence from the Stock Market  

E-Print Network (OSTI)

In contrast, stock prices of coal mining companiesstudied. depress stock prices of several Eastern coal miningIn contrast, stock prices of practically all 12 coal mining

Kahn, Shulamit; Knittel, Christopher R.

2003-01-01T23:59:59.000Z

208

Method of generating electricity using an endothermic coal gasifier and MHD generator  

DOE Patents (OSTI)

A system and method of generating electrical power wherein a mixture of carbonaceous material and water is heated to initiate and sustain the endothermic reaction of carbon and water thereby providing a gasified stream containing carbon monoxide, hydrogen and nitrogen and waste streams of hydrogen sulfide and ash. The gasified stream and an ionizing seed material and pressurized air from a preheater go to a burner for producing ionized combustion gases having a temperature of about 5000.degree. to about 6000.degree. F. which are accelerated to a velocity of about 1000 meters per second and passed through an MHD generator to generate DC power and thereafter through a diffuser to reduce the velocity. The gases from the diffuser go to an afterburner and from there in heat exchange relationship with the gasifier to provide heat to sustain the endothermic reaction of carbon and water and with the preheater to preheat the air prior to combustion with the gasified stream. Energy from the afterburner can also be used to energize other parts of the system.

Marchant, David D. (Richland, WA); Lytle, John M. (Richland, WA)

1982-01-01T23:59:59.000Z

209

STEO November 2012 - coal supplies  

U.S. Energy Information Administration (EIA) Indexed Site

Despite drop in domestic coal production, U.S. coal exports to reach Despite drop in domestic coal production, U.S. coal exports to reach record high in 2012. While U.S. coal production is down 7 percent this year due in part to utilities switching to low-priced natural gas to generate electricity, American coal is still finding plenty of buyers in overseas markets. U.S. coal exports are expected to hit a record 125 million tons in 2012, the U.S. Energy Information Administration says in its new monthly short-term energy outlook. Coal exports are expected to decline in 2013, primarily because of continuing economic weakness in Europe, lower international coal prices, and higher coal production in Asia. However, U.S. coal exports next year are still expected to top 100 million tons for the third year in a row

210

What is the role of coal in the United States? | U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Recent coal articles; Fuel Competition in Power Generation; Quarterly Coal Report; Energy Explained: Coal; Energy Explained: Electricity in the United States;

211

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Coal Stocks: January 2012 Electric Power Sector Coal Stocks: January 2012 Stocks Above normal temperatures in January have allowed electric utilities to significantly replinish stockpiles of coal. The upswing in coal stockpiles corresponds to decreasing consumption of coal at electric generators seen in the resource use section across all regions of the country. Days of Burn Days of burn Coal capacity The average number of days of burn held at electric power plants is a forward looking estimate of coal supply given a power plant's current stockpile and past consumption patterns. Along with coal stockpiles at electric power plants, the supply of coal significantly increased in January of 2012. Total bituminous coal days of burn increased 10 percent from January 2011 to 87, while subbituminous supply increased nearly 10

212

Electric Power Monthly - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Table 4.6.A. Receipts of Coal Delivered for Electricity Generation by State . Table 4.6.B. Receipts of Coal Delivered for Electricity Generation by ...

213

TO: Procurement Directors FROM: Director, Contracts and Financial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Directors FROM: Director, Contracts and Financial Assistance Policy Division Office of Policy Office of Procurement and Assistance Management SUBJECT: DOE O 580.1A...

214

China's Coal: Demand, Constraints, and Externalities  

E-Print Network (OSTI)

Historical and Hypothetical Efficiency of China's Coal-Fired Electricity Generation, 1990-2025 Gross Heat Rate (

Aden, Nathaniel

2010-01-01T23:59:59.000Z

215

Prospects of Oxy-Coal Steam-Electric Power Plants Achieving "Minor Source" Status for Air Emissions Permitting  

Science Conference Proceedings (OSTI)

Oxy-coal power plants have been proposed for capturing carbon dioxide (CO2) from coal combustion in a relatively concentrated form for storage in geological formations. The particular processes employed for oxy-combustion have the positive side effect of reducing emissions to very low levels. This report assesses the extent to which oxy-coal power plants might meet near-zero emissions proposed by several organizations and qualify as a minor source for the purposes of air emissions permitting. The rep...

2009-12-28T23:59:59.000Z

216

2013 Director's New Year Address  

NLE Websites -- All DOE Office Websites (Extended Search)

Director's New Year Address 2013 Director's New Year Address Print Looking Forward and Celebrating 20 Years in 2013 falocne We recently sat down with ALS Director Roger Falcone to...

217

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

4Q 2009 4Q 2009 April 2010 Quarterly Coal Distribution Table Format and Data Sources 4Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by transportation mode. The data sources beginning with the 2008 Coal Distribution Report

218

Coal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Coal Coal Coal Coal is the largest domestically produced source of energy in America and is used to generate a significant chunk of our nation's electricity. The Energy Department is working to develop technologies that make coal cleaner, so we can ensure it plays a part in our clean energy future. The Department is also investing in development of carbon capture, utilization and storage (CCUS) technologies, also referred to as carbon capture, utilization and sequestration. Featured Energy Secretary Moniz Visits Clean Coal Facility in Mississippi On Friday, Nov. 8, 2013, Secretary Moniz and international energy officials toured Kemper, the nation's largest carbon capture and storage facility, in Liberty, Mississippi. A small Mississippi town is making history with the largest carbon capture

219

Rail Coal Transportation Rates  

Gasoline and Diesel Fuel Update (EIA)

Trends, 2001 - 2010 Trends, 2001 - 2010 Transportation infrastructure overview In 2010, railroads transported over 70 percent of coal delivered to electric power plants which are generally concentrated east of the Mississippi River and in Texas. The U.S. railroad market is dominated by four major rail companies that account for 99 percent of U.S. coal rail shipments by volume. Deliveries from major coal basins to power plants by mode Rail Barge Truck Figure 2. Deliveries from major coal basins to power plants by rail, 2010 figure data Figure 3. Deliveries from major coal basins to power plants by barge, 2010 figure data Figure 4. Deliveries from major coal basins to power plants by truck, 2010 figure data The Powder River Basin of Wyoming and Montana, where coal is extracted in

220

Biosciences Division Seeking New Director  

NLE Websites -- All DOE Office Websites (Extended Search)

Director Search DOE Logo Search BIO ... Search Argonne Home > BIO home > Biosciences Division Seeking New Director BIO Home Page About BIO News Releases Research Publications...

Note: This page contains sample records for the topic "director coal electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Directorate Organization | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNL Neutron Sciences Directorate The Neutron Sciences Directorate (NScD) manages and operates the Spallation Neutron Source and the High Flux Isotope Reactor, two of the world's...

222

PNNL: About PNNL - Director's Message  

NLE Websites -- All DOE Office Websites (Extended Search)

Director Michael Kluse, Laboratory Director At Pacific Northwest National Laboratory (PNNL), we are transforming the world through courageous scientific discovery and innovation....

223

Fermilab | Fermilab Director Search | Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Feature photo Fermilab Director Search In October 2012, the Board of Directors of the Fermi Research Alliance, LLC appointed a committee to conduct an international search for the...

224

Summary of Testimony of Larry Dickerman, Director or Distribution  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summary of Testimony of Larry Dickerman, Director or Distribution Summary of Testimony of Larry Dickerman, Director or Distribution Engineering Services, American Electric Power before the House Energy and Commerce Committee March 20th 2007 Summary of Testimony of Larry Dickerman, Director or Distribution Engineering Services, American Electric Power before the House Energy and Commerce Committee March 20th 2007 Summary of Testimony of Larry Dickerman, Director or Distribution Engineering Services, American Electric Power before the House Energy and Commerce Committee March 20th 2007. American Electric Power (AEP) is one of the nation's largest electricity generators with over 5 million retail consumers in 11 states. AEP is the leader among US utilities for deployment of large-scale battery-based energy storage. AEP supports the adoption of

225

TO: Procurement Directors FROM: Director, Policy Division  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

POLICY FLASH 2011-56 POLICY FLASH 2011-56 DATE: March 16, 2011 TO: Procurement Directors FROM: Director, Policy Division Office of Procurement and Assistance Policy Office of Procurement and Assistance Management SUBJECT: Publication of Federal Acquisition Circular 2005-50 SUMMARY: Attached for your information is a summary of Federal Acquisition Circular 2005-50 which makes miscellaneous changes to the Federal Acquisition Regulation. We are reviewing Item II for possible changes we may need to make in DOE Acquisition Guide Chapter 38. This Flash and its attachment will be available online within a day, at the following website: http://www.management.energy.gov/policy_guidance/policy_flashes.htm. Federal Acquisition Circulars may be found, in both their Federal Register notice form

226

TO: Procurement Directors FROM: Director, Policy Division  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

83 83 DATE: June 15, 2011 TO: Procurement Directors FROM: Director, Policy Division Office of Procurement and Assistance Policy Office of Procurement and Assistance Management SUBJECT: Acquisition Guide Chapter 8.4 - Federal Supply Schedules SUMMARY: Acquisition Guide Chapters 8.4 - Federal Supply Schedules is revised to provide guidance on how to issue a request for quotation and receive quotes when using e-Buy. STRIPES is DOE's repository for all acquisition and financial assistance actions. As such, all requests for quotation (RFQ) should be issued and quotes received through STRIPES/FedConnect and not e-Buy. In lieu of uploading the RFQ to e-Buy, contracting officers will post a file that instructs FSS holders to go to www.FedConnect.net to locate the

227

Fermilab | Directorate | Director Profiles | Robert Kephart  

NLE Websites -- All DOE Office Websites (Extended Search)

Robert Kephart Robert Kephart IARC Director/SRF Program Manager As the Director of the Illinois Accelerator Research Center (IARC) at Fermilab my goal is to bridge the gap between breakthroughs in accelerator science and technology and solutions for society. IARC will allow our university and laboratory partners to leverage Fermilab's extensive accelerator infrastructure and expertise, resulting in new accelerator-based products and businesses in the United States. I proposed and lead a construction project funded by the U.S. Department of Energy and the State of Illinois to build a new complex valued at $70 million to support the IARC mission on the Fermilab campus. I manage the superconducting radio frequency (SRF) technology program, a $30 million-a-year research and development effort that supports a proposed new

228

TO: Procurement Directors FROM: Director, Policy Division  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

40 40 DATE: February 9, 2011 TO: Procurement Directors FROM: Director, Policy Division Office of Procurement and Assistance Policy Office of Procurement and Assistance Management SUBJECT: Issue a New Department of Energy Acquisition Guide Chapter 6.5 Competition Advocate Responsibilities and Revise Pages in Chapters 6.1 and 7.1. SUMMARY: Attached is a new chapter of the DOE Acquisition Guide entitled Competition Advocate Responsibilities. It provides a comprehensive overview of the topic. The new chapter necessitates page changes to Chapters 6.1 and 7.1. Chapter 6.1 has been revised to advise the contracting officer that for actions less than $650,000, the contracting officer is highly encouraged to have the Contracting Activity Competition Advocate review

229

TO: Procurement Directors FROM: Director, Policy Division  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 DATE: April 7, 2011 TO: Procurement Directors FROM: Director, Policy Division Office of Procurement and Assistance Policy Office of Procurement and Assistance Management SUBJECT: Publication of Federal Acquisition Circular 2005-51 SUMMARY: Attached for your information is a summary of Federal Acquisition Circular 2005-51 which makes two changes to the Federal Acquisition Regulation involving the small business program and a modification of Standard Form 26. This Flash and its attachment will be available online within a day, at the following website: http://www.management.energy.gov/policy_guidance/policy_flashes.htm. Federal Acquisition Circulars may be found, in both their Federal Register notice form and in loose leaf form at: https://www.acquisition.gov/far/.

230

TO: Procurement Directors FROM: Director, Policy Division  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 DATE: May 18, 2011 TO: Procurement Directors FROM: Director, Policy Division Office of Procurement and Assistance Policy Office of Procurement and Assistance Management SUBJECT: Acquisition Guide Chapter 8.4 - Federal Supply Schedules and Chapter 16.5 - Multiple-award Contracts and Governmentwide Acquisition Contracts Including Delivery Orders and Task Orders SUMMARY: Acquisition Guide Chapters 8.4 - Federal Supply Schedules and 16.5 - Multiple- Award Contracts and Governmentwide Acquisition Contracts Including Delivery Orders and Task Orders replace Chapter 38.1 Strategic Acquisition Transactions. The new chapters include revisions from Federal Acquisition Circular (FAC) 2005-50 to Federal Acquisition Regulation (FAR) Subparts 8.4 and 16.5.

231

Central Appalachian Coal Futures Overview  

U.S. Energy Information Administration (EIA)

Central Appalachian Coal Futures Overview In 1996, the New York Mercantile Exchange (NYMEX) began providing companies in the electric power industry with secure and ...

232

From the Director  

NLE Websites -- All DOE Office Websites (Extended Search)

From the Director From the Director From the Director LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Communications & Government Affairs (505) 667-7000 Our people are highly trained, creative, and innovative. They have one-of-a-kind facilities to accomplish work that very few people in the world can do. We have a vibrant student and postdoctoral program because they are the talent who will solve the problems our predecessors only dreamed of. Director's message Charles McMillan Los Alamos National Laboratory has played a role in some of the most transformational discoveries of the 20th and 21st centuries.

233

Thomas Reddinger Director, Steam  

E-Print Network (OSTI)

(Distribution) Deborah Moorhead Office Coordinator III Martin Bower Steam Plant Operator Richard Redfield SteamThomas Reddinger Director, Steam Operations Steven Richards Assistant Manager of Maintenance Plant Operator Bohdan Sawa Steam Plant Operator Robert Tedesco Steam Plant Operator James Bradley

Raina, Ramesh

234

LLNL Director Search  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Process As agreed among the LLNS partners, the University of California is responsible for leading the search for the next LLNL Director. UC-appointed Chairman of the LLNS...

235

Executive Director for Operations UPDATE OF ISSUES RELATED TO NUCLEAR POWER REACTOR FINANCIAL QUALIFICATIONS IN RESPONSE TO RESTRUCTURING OF THE ELECTRIC UTILITY INDUSTRY  

E-Print Network (OSTI)

To provide the Commission with an update of electric utility deregulation and restructuring issues regarding the financial qualifications of power reactor licensees to operate their facilities safely. BACKGROUND: On October 24, 1997, the staff sent to the Commission SECY-97-253, "Policy Options for Nuclear Power Reactor Financial Qualifications in Response to Restructuring of the Electric Utility Industry. " In that paper, the staff discussed three options for the Commission's consideration regarding possible approaches that the NRC could use in assessing the financial qualifications of power reactor licensees to operate their plants safely. (The impact of deregulation and restructuring on decommissioning funding assurance is being addressed in a separate rulemaking, which was published in the Federal Register on September 10, 1997. A final rule is scheduled to be sent to the Commission by June 30, 1998.) In response to SECY-97-253, the Commission issued a staff requirements memorandum on January 15, 1998, and directed the staff to maintain the existing financial qualifications framework as discussed in Option 2 of SECY-97-253 and to "develop a coherent, efficient plan that would allow timely confirmation of the status of licensees (i.e., whether they meet the definition of 'electric utility')as deregulation actions are finalized by States. " In response, on April 16, 1998, the

L. Joseph Callan /s; Robert S. Wood

1998-01-01T23:59:59.000Z

236

Clean Coal Technology (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

A public utility may not use clean coal technology at a new or existing electric generating facility without first applying for and obtaining from the Utility Regulatory Commission a certificate...

237

Quarterly Coal Distribution Report 4th Quarter 2011  

U.S. Energy Information Administration (EIA)

Coal receipts as provided in the Quarterly Coal Distribution Report for the Electricity Generation sector are less than the total quantities reported ...

238

Coal - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Most of the electricity in the United States is produced using steam ... This report provides detailed U.S. domestic coal distribution data by coal ...

239

Construction Begins on First-of-its-Kind Advanced Clean Coal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Construction Begins on First-of-its-Kind Advanced Clean Coal Electric Generating Facility Construction Begins on First-of-its-Kind Advanced Clean Coal Electric Generating Facility...

240

Handbook of coal analysis  

SciTech Connect

The Handbook deals with the various aspects of coal analysis and provides a detailed explanation of the necessary standard tests and procedures that are applicable to coal in order to help define usage and behavior relative to environmental issues. It provides details of the meaning of various test results and how they might be applied to predict coal behavior during use. Emphasis is on ASTM standards and test methods but ISO and BSI standards methods are included. Chapter headings are: Coal analysis; Sampling and sample preparation; Proximate analysis; Ultimate analysis; Mineral matter; Physical and electrical properties; Thermal properties; Mechanical properties; Spectroscopic properties; Solvent properties; and Glossary.

James G. Speight

2005-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "director coal electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

INVESTIGATION INTO THE EFFECTS OF TRACE COAL SYN GAS SPECIES ON THE PERFORMANCE OF SOLID OXIDE FUEL CELL ANODES.  

E-Print Network (OSTI)

??Coal is the United States most widely used fossil fuel for the production of electric power. Coals availability and cost dictates that it will be (more)

Trembly, Jason P.

2007-01-01T23:59:59.000Z

242

Assessment of Research Needs for Coal Utilization  

SciTech Connect

The Coal Combustion and Applications Working Group (CCAWG), at the request of J.W. Mares (Assistant Secretary for Fossil Energy) and A.W. Trivelpiece (Director, Office of Energy Research), has reviewed and evaluated the U.S. programs on coal combustion and utilization. The important topical areas of coal gasification and coal liquefaction have been deliberately excluded because R and D needs for these technologies were reviewed previously by the DOE Fossil Energy Research Working Group. The CCAWG studies were performed in order to provide an independent assessment of research areas that affect prospects for augmented coal utilization. In this report, we summarize the findings and research recommendations of CCAWG.

Penner, S.S.

1983-08-01T23:59:59.000Z

243

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

Origin State, Origin State, Consumer, Destination and Method of Transportation 3Q 2009 February 2010 Quarterly Coal Distribution Table Format and Data Sources 3Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by

244

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

1Q) 1Q) Distribution Category UC-950 Quarterly Coal Report January-March 1999 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts This publication was prepared by Paulette Young under the direction of B.D. Hong, Leader, Coal Infor- mation Team, Office of Coal, Nuclear, Electric and Alternate Fuels. Questions addressing the Appendix A, U.S. Coal Imports section should be directed

245

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

Destination State, Destination State, Consumer, Destination and Method of Transportation 3Q 2009 February 2010 Quarterly Coal Distribution Table Format and Data Sources 3Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by

246

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

2Q) 2Q) Distribution Category UC-950 Quarterly Coal Report April-June 1999 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts This publication was prepared by Paulette Young under the direction of B.D. Hong, Leader, Coal Infor- mation Team, Office of Coal, Nuclear, Electric and Alternate Fuels. Questions addressing the Appendix A, U.S. Coal Imports section should be directed to Paulette Young at (202) 426-1150, email

247

Coal combustion products (CCPs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

combustion products (CCPs) combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the largest segment of U.S. electricity generation (45 percent in 2010), finding a sustainable solution for CCPs is an important environmental challenge. When properly managed, CCPs offer society environmental and economic benefits without harm to public health and safety. Research supported by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE) has made an important contribution in this regard. Fossil Energy Research Benefits Coal Combustion Products Fossil Energy Research Benefits

248

Upgrading coal plant damper drives  

Science Conference Proceedings (OSTI)

The replacement of damper drives on two coal-fired units at the James H. Miller Jr. electric generating plant by Intelligent Contrac electric rotary actuators is discussed. 2 figs.

Hood, N.R.; Simmons, K. [Alamaba Power (United States)

2009-11-15T23:59:59.000Z

249

EIA - State Electricity Profiles - Energy Information Administration  

U.S. Energy Information Administration (EIA)

... wind, geothermal, biomass and ... Quarterly Coal Report Monthly Energy Review Residential Energy ... on Missouri's Electricity ...

250

Statement of Patricia Hoffman, Deputy Director R&D, Office of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hoffman, Deputy Director R&D, Office of Electricity Delivery & Energy Reliability, Department of Energy before the Committee on Science and Technology Energy and Environment...

251

Statement of Patricia A. Hoffman, Deputy Director R&D, Office...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A. Hoffman, Deputy Director R&D, Office of Electricity Delivery & Energy Reliability Department of Energy before the Committee on Science and Technology Energy and Environment...

252

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 December 2008 2007 Changes in Coal Distribution Table Format and Data Sources The changes in the coal distribution data sources made in 2006 are carried over to the 2007 tables. As in 2006, EIA used data from the EIA-3 survey to distribute synfuel to the electric generation sector on a state level, aggregated with all of the other coal (such as bituminous, subbituminous, and lignite coal) sent to electric generating plants. EIA supplemented the EIA-3 data with previously collected information to determine the mode of transportation from the synfuel plant to the electric generating consumer, which was not reported on the EIA-3A survey form. Although not contained in the EIA-6A master file, this information has been documented in an ancillary spreadsheet in the EIA

253

Fermilab | Directorate | Director Profiles | Carl Strawbridge  

NLE Websites -- All DOE Office Websites (Extended Search)

Carl Strawbridge Carl Strawbridge Interim Head, Integrated Planning & Performance Management I head the Office of Integrated Planning & Performance Management (IPPM), which supports the sectors and the Directorate. The office of IPPM provides systems and management processes for institutional planning and performance assessment and evaluation, as well as leading multi-year, forward-looking planning and integration of institutional plans, programs, projects, operations and budgets. In addition the office of IPPM develops, implements and maintains integrated laboratory systems and management processes for strategic planning and goal setting, project and program oversight, enterprise risk management and performance planning and oversight. I received my B.S. degree from the US Naval Academy and Masters Degrees

254

Fermilab | Directorate | Director Profiles | Jim Strait  

NLE Websites -- All DOE Office Websites (Extended Search)

Jim Strait Jim Strait LBNE Project Manager As the LBNE Project Manager, I have the overall responsibility and authority to execute the LBNE Project, and to meet the approved scientific, cost and schedule goals of the project. In this role, I lead and direct the development of the technical, cost and schedule baseline for the project and the construction of the project defined by the approved baseline. I also prepare for and establish management systems, consistent with DOE and Fermilab Project Management orders and structures, to ensure that the project is successfully executed. I also represent the Project in interactions with the LBNE collaboration, Fermilab management, management of other participating national laboratories, and the Department of Energy. As the LBNE project manager, I report to the laboratory director. I head

255

Co-combustion of refuse derived fuel and coal in a cyclone furnace at the Baltimore Gas and Electric Company, C. P. Crane Station  

DOE Green Energy (OSTI)

A co-combustion demonstration burn of coal and fluff refuse-derived fuel (RDF) was conducted by Teledyne National and Baltimore Gas and Electric Company. This utility has two B and W cyclone furnaces capable of generating 400 MW. The facility is under a prohibition order to convert from No. 6 oil to coal; as a result, it was desirable to demonstrate that RDF, which has a low sulfur content, can be burned in combination with coals containing up to 2% sulfur, thus reducing overall sulfur emissions without deleterious effects. Each furnace consists of four cyclones capable of generating 1,360,000 pounds per hour steam. The tertiary air inlet of one of the cyclones was modified with an adapter to permit fluff RDF to be pneumatically blown into the cyclone. At the same time, coal was fed into the cyclone furnace through the normal coal feeding duct, where it entered the burning chamber tangentially and mixed with the RDF during the burning process. Secondary shredded fluff RDF was prepared by the Baltimore County Resource Recovery Facility. The RDF was discharged into a receiving station consisting of a belt conveyor discharging into a lump breaker, which in turn, fed the RDF into a pneumatic line through an air-lock feeder. A total of 2316 tons were burned at an average rate of 5.6 tons per hour. The average heat replacement by RDF for the cyclone was 25%, based on Btu input for a period of forty days. The range of RDF burned was from 3 to 10 tons per hour, or 7 to 63% heat replacement. The average analysis of the RDF (39 samples) for moisture, ash, heat (HHV) and sulfur content were 18.9%, 13.4%, 6296 Btu/lb and 0.26% respectively. RDF used in the test was secondary shredded through 1-1/2 inch grates producing the particle size distribution of from 2 inches to .187 inches. Findings to date after inspection of the boiler and superheater indicate satisfactory results with no deleterious effects from the RDF.

Not Available

1982-03-01T23:59:59.000Z

256

Coal News and Markets - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Coal News and Markets Coal News and Markets Release Date: December 16, 2013 | Next Release Date: December 24, 2013 "Coal News and Markets Report" summarizes spot coal prices by coal commodity regions (i.e., Central Appalachia (CAPP), Northern Appalachia (NAPP), Illinois Basin (ILB), Powder River Basin (PRB), and Uinta Basin (UIB)) in the United States. The report includes data on average weekly coal commodity spot prices, total monthly coal production, eastern monthly coal production, electric power sector coal stocks, and average cost of metallurgical coal at coke plants and export docks. The historical data for coal commodity spot market prices are proprietary and not available for public release. Average weekly coal commodity spot prices (dollars per short ton)

257

Principal Associate Director - Global Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Principal Associate Director - Global Security Principal Associate Director - Global Security As Principal Associate Director for Global Security, Wallace leads Laboratory programs with special focus on developing and applying the scientific and engineering capabilities to address complex national and global security threats. Contact Operator Los Alamos National Laboratory (505 667-5061 Wallace's expertise is forensic seismology, a highly specialized discipline focusing on detection and quantification of nuclear tests. Terry C. Wallace, Jr. Principal Associate Director for Global Security Terry C. Wallace, Jr., Principal Associate Director for Global Security As Principal Associate Director for Global Security, Wallace leads Laboratory programs with a focus on applying scientific and engineering capabilities

258

Statement of Patricia A. Hoffman, Deputy Director of Research and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A. Hoffman, Deputy Director of Research and A. Hoffman, Deputy Director of Research and Development and Acting Chief Operating Officer, Office of Electricity Delivery & Energy Reliability, Department of Energy before the Committee on Energy and Natural Resources United States Statement of Patricia A. Hoffman, Deputy Director of Research and Development and Acting Chief Operating Officer, Office of Electricity Delivery & Energy Reliability, Department of Energy before the Committee on Energy and Natural Resources United States Statement of Patricia A. Hoffman, Deputy Director of R&D and Acting Chief Operating Officer. Office of Electricity Delivery & Energy Reliability, Department of Energy. Committee on Energy and Natural Resources, United States Senate, November 6, 2007 on the nation's domestic energy sector

259

Thomas Reddinger Director, Steam  

E-Print Network (OSTI)

Supervisor (Distribution) Deborah Moorhead Office Coordinator III Martin Bower Steam Plant Operator RichardThomas Reddinger Director, Steam Operations Steven Richards Assistant Manager of Maintenance Redfield Steam Plant Operator SU Steam Station/Chilled Water Plant Bohdan Sawa Steam Plant Operator Robert

McConnell, Terry

260

Environment, Safety & Health Directorate Assistant Laboratory Director (ALD)  

E-Print Network (OSTI)

Environment, Safety & Health Directorate Assistant Laboratory Director (ALD) Environmental Division (4) Matrixed from Safety & Health Services Division (5) Matrixed from Procurement & Property Procurement Support (5) D&D Manager Work Control Manager Safety & Health Manager (4) Facility Configuration

Homes, Christopher C.

Note: This page contains sample records for the topic "director coal electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Coal sector profile  

SciTech Connect

Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

1990-06-05T23:59:59.000Z

262

The Paradox of Regulatory Development in China: The Case of the Electricity Industry  

E-Print Network (OSTI)

industry and suggest electricity tariff rates to the Stateof the ?coal-electricity tariff automatic mechanism? (designed the coal-electricity tariff automatic mechanism in

Tsai, Chung-min

2010-01-01T23:59:59.000Z

263

Assessing Strategies for Fuel and Electricity Production in a California Hydrogen Economy  

E-Print Network (OSTI)

production of hydrogen, electricity and CO 2 from coal withproduction of hydrogen, electricity, and CO 2 from coal withDecarbonized hydrogen and electricity from natural gas.

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

264

U.S. Electric Utility Demand-Side Management 1994  

U.S. Energy Information Administration (EIA)

Preface. The U.S. Electric Utility Demand-Side Management report is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Elec-

265

Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power from Western Coals-Phase I  

DOE Green Energy (OSTI)

The Advanced Hydrogasification Process (AHP)--conversion of coal to methane--is being developed through NETL with a DOE Grant and has successfully completed its first phase of development. The results so far are encouraging and have led to commitment by DOE/NETL to begin a second phase--bench scale reactor vessel testing, expanded engineering analysis and economic perspective review. During the next decade new means of generating electricity, and other forms of energy, will be introduced. The members of the AHP Team envision a need for expanded sources of natural gas or substitutes for natural gas, to fuel power generating plants. The initial work the team has completed on a process to use hydrogen to convert coal to methane (pipeline ready gas) shows promising potential. The Team has intentionally slanted its efforts toward the needs of US electric utilities, particularly on fuels that can be used near urban centers where the greatest need for new electric generation is found. The process, as it has evolved, would produce methane from coal by adding hydrogen. The process appears to be efficient using western coals for conversion to a highly sought after fuel with significantly reduced CO{sub 2} emissions. Utilities have a natural interest in the preservation of their industry, which will require a dramatic reduction in stack emissions and an increase in sustainable technologies. Utilities tend to rank long-term stable supplies of fuel higher than most industries and are willing to trade some ratio of cost for stability. The need for sustainability, stability and environmentally compatible production are key drivers in the formation and progression of the AHP development. In Phase II, the team will add a focus on water conservation to determine how the basic gasification process can be best integrated with all the plant components to minimize water consumption during SNG production. The process allows for several CO{sub 2} reduction options including consumption of the CO{sub 2} in the original process as converted to methane. The process could under another option avoid emissions following the conversion to SNG through an adjunct algae conversion process. The algae would then be converted to fuels or other products. An additional application of the algae process at the end use natural gas fired plant could further reduce emissions. The APS team fully recognizes the competition facing the process from natural gas and imported liquid natural gas. While we expect those resources to set the price for methane in the near-term, the team's work to date indicates that the AHP process can be commercially competitive, with the added benefit of assuring long-term energy supplies from North American resources. Conversion of coal to a more readily transportable fuel that can be employed near load centers with an overall reduction of greenhouses gases is edging closer to reality.

Raymond Hobbs

2007-05-31T23:59:59.000Z

266

About Berkeley Lab: Laboratory Director, Associate Laboratory...  

NLE Websites -- All DOE Office Websites (Extended Search)

2009, replacing former laboratory Director Steve Chu, who was sworn in as U.S. Energy Secretary. Before becoming interim director, Alivisatos was the deputy director of Berkeley...

267

ORNL Neutron Sciences Directorate Executive Office  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Sciences Directorate Executive Office Kelly Beierschmitt ORNL Associate Laboratory Director for Neutron Sciences Kelly Beierschmitt. The Neutron Sciences Directorate (NScD)...

268

Role of coal in the world and Asia  

SciTech Connect

This paper examines the changing role of coal in the world and in Asia. Particular attention is given to the rapidly growing demand for coal in electricity generation, the importance of China as a producer and consumer of coal, and the growing environmental challenge to coal. Attention is given to the increasing importance of low sulfur coal and Clean Coal Technologies in reducing the environmental impacts of coal burning.

Johnson, C.J.; Li, B.

1994-10-01T23:59:59.000Z

269

Quarterly Coal Report, April-June 1998  

Annual Energy Outlook 2012 (EIA)

2Q) Distribution Category UC-950 Quarterly Coal Report April-June 1998 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of...

270

Quarterly Coal Report, April-June 1997  

Gasoline and Diesel Fuel Update (EIA)

2Q) Distribution Category UC-950 Quarterly Coal Report April-June 1997 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of...

271

Clean Coal Incentive Tax Credit (Kentucky)  

Energy.gov (U.S. Department of Energy (DOE))

Clean Coal Incentive Tax Credit provides for a property tax credit for new clean coal facilities constructed at a cost exceeding $150 million and used for the purposes of generating electricity....

272

Global and Regional Solutions Directorate  

E-Print Network (OSTI)

at Pacific NW National Lab (PNNL) ­ Founding Director Joint Global Change Research Institute (PNNL/UMd) ­ ALD (PNNL) ­ Environmental and Health Sciences Directorate; Emerging Technologies ­ Chief Scientist ­ Atmospheric Radiation Measurement Program ­ Director ­ PNNL Global Studies Program ­ Other (PNNL): Center

Homes, Christopher C.

273

Cost and Performance Comparison Baseline for Fossil Energy Plants, Volume 3 Executive Summary: Low Rank Coal and Natural Gas to Electricity  

NLE Websites -- All DOE Office Websites (Extended Search)

Baseline Baseline for Fossil Energy Plants Volume 3 Executive Summary: Low Rank Coal and Natural Gas to Electricity September 2011 DOE/NETL-2010/1399 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring

274

Beam director design report  

Science Conference Proceedings (OSTI)

A design and fabrication effort for a beam director is documented. The conceptual design provides for the beam to pass first through a bending and focusing system (or ''achromat''), through a second achromat, through an air-to-vacuum interface (the ''beam window''), and finally through the vernier steering system. Following an initial concept study for a beam director, a prototype permanent magnet 30/sup 0/ beam-bending achromat and prototype vernier steering magnet were designed and built. In volume II, copies are included of the funding instruments, requests for quotations, purchase orders, a complete set of as-built drawings, magnetic measurement reports, the concept design report, and the final report on the design and fabrication project. (LEW)

Younger, F.C.

1986-08-01T23:59:59.000Z

275

By Coal Origin State  

Gasoline and Diesel Fuel Update (EIA)

Annual Coal Distribution Report 2010 Annual Coal Distribution Report 2010 U.S. Energy Information Administration | Annual Coal Distribution Report 2010 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 2010 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 7,906 821 1,242 - 9,969 Alabama Railroad 3,604 49 285 - 3,938 Alabama River 3,979 - - - 3,979 Alabama Truck 322 773 957 - 2,051 Florida Total - - 15 - 15 Florida Railroad - - 11 - 11 Florida Truck - - 3 - 3 Georgia Total 196 - 15 - 211 Georgia Railroad 189 - 1 - 190 Georgia Truck

276

By Coal Destination State  

Gasoline and Diesel Fuel Update (EIA)

Annual Coal Distribution Report 2010 Annual Coal Distribution Report 2010 U.S. Energy Information Administration | Annual Coal Distribution Report 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 7,906 821 1,242 - 9,969 Alabama Railroad 3,604 49 285 - 3,938 Alabama River 3,979 - - - 3,979 Alabama Truck 322 773 957 - 2,051 Colorado Total 2,113 - - - 2,113 Colorado Railroad 2,113 - - - 2,113 Illinois Total 336 - - - 336 Illinois River 336 - - - 336 Indiana Total 1,076

277

Proximate analysis of coal  

Science Conference Proceedings (OSTI)

This lab experiment illustrates the use of thermogravimetric analysis (TGA) to perform proximate analysis on a series of coal samples of different rank. Peat and coke are also examined. A total of four exercises are described. These are dry exercises as students interpret previously recorded scans. The weight percent moisture, volatile matter, fixed carbon, and ash content are determined for each sample and comparisons are made. Proximate analysis is performed on a coal sample from a local electric utility. From the weight percent sulfur found in the coal (determined by a separate procedure the Eschka method) and the ash content, students calculate the quantity of sulfur dioxide emissions and ash produced annually by a large coal-fired electric power plant.

Donahue, C.J.; Rais, E.A. [University of Michigan, Dearborn, MI (USA)

2009-02-15T23:59:59.000Z

278

Dr. Anthony (Tony) Peurrung Associate Laboratory Director  

E-Print Network (OSTI)

, the Intelligence Community and the National nuclear Security Administration. Dr. Peurrung has contributedDr. Anthony (Tony) Peurrung Associate Laboratory Director National Security Directorate In his current position as Associate Laboratory Director of the National Security Directorate, Dr. Tony Peurrung

279

Director testifies before Senate subcommittee  

NLE Websites -- All DOE Office Websites (Extended Search)

Director testifies before Senate subcommittee Director testifies before Senate subcommittee Community Connections: Our link to Northern New Mexico Communities Latest Issue:Dec. 2013 - Jan. 2014 All Issues » submit Director testifies before Senate subcommittee Future Laboratory budgets under consideration. June 1, 2013 Director Charlie McMillan during his remarks Director Charlie McMillan during his remarks Contact Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Lab Director Charlie McMillan and the directors of Sandia and Lawrence Livermore national laboratories recently spoke before the U.S. Senate Subcommittee on Strategic Forces, Committee on Armed Services. The purpose of the hearing was to to receive testimony on NNSA management of its national security laboratories and to review the budget request for Fiscal

280

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 914 12 66 - 992 Alabama River 949 - - - 949 Alabama Truck 78 189 237 - 504 Alabama Total 1,941 201 303 - 2,445 Colorado Railroad 575 - - - 575 Illinois River 99 - - - 99 Indiana River 241 - - - 241 Kentucky Railroad 827 - 12 - 839 Kentucky (East) Railroad 76 - - - 76 Kentucky (West) Railroad

Note: This page contains sample records for the topic "director coal electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 839 11 83 - 933 Alabama River 1,347 - - - 1,347 Alabama Truck 118 216 236 - 571 Alabama Total 2,304 227 320 - 2,850 Colorado Railroad 514 - - - 514 Illinois River 99 - - - 99 Indiana River 172 - - - 172 Kentucky Railroad 635 - 11 - 647 Kentucky (East) Railroad 45 - - - 45 Kentucky (West)

282

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 944 16 77 - 1,037 Alabama River 781 - - - 781 Alabama Truck 77 224 220 - 521 Alabama Total 1,802 240 298 - 2,340 Colorado Railroad 385 - - - 385 Illinois River 15 - - - 15 Indiana Railroad 1 - - - 1 Indiana River 350 - - - 350 Indiana Total 351 - - - 351 Kentucky Railroad 682 - 2 - 685 Kentucky (East)

283

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 907 10 59 - 975 Alabama River 903 - - - 903 Alabama Truck 150 144 253 - 546 Alabama Total 1,960 153 311 - 2,424 Colorado Railroad 640 - - - 640 Illinois River 123 - - - 123 Indiana River 312 - - - 312 Kentucky Railroad 622 - 36 - 658 Kentucky (East) Railroad 96 - 36 - 132 Kentucky (West)

284

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,896 182 327 - 2,405 Alabama Railroad 1,192 2 74 - 1,268 Alabama River 655 - - - 655 Alabama Truck 50 180 253 - 482 Colorado Total 468 - - - 468 Colorado Railroad 468 - - - 468 Illinois Total 90 - 26 - 116 Illinois River 90 - 26 - 116 Indiana Total 181 - - - 181 Indiana River 181 -

285

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2012 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,407 184 231 - 1,822 Alabama Railroad 801 9 49 - 859 Alabama River 519 - - - 519 Alabama Truck 87 175 182 - 444 Colorado Total 82 - - - 82 Colorado Railroad 82 - - - 82 Illinois Total 149 - 14 - 163 Illinois Railroad 44 - - - 44 Illinois River 105 - 14 - 119 Indiana Total 99 - - - 99

286

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

3Q) 3Q) Quarterly Coal Report July - September 2008 December 2008 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

287

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

2Q) 2Q) Quarterly Coal Report April - June 2008 September 2008 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

288

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

8/04Q) 8/04Q) Quarterly Coal Report October - December 2008 March 2009 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

289

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 1,040 18 80 - 1,138 Alabama River 668 - - - 668 Alabama Truck 52 164 223 - 438 Alabama Total 1,760 181 303 - 2,244 Colorado Railroad 600 - - - 600 Illinois River 203 - 13 - 217 Indiana River 180 - - - 180 Kentucky Railroad 465 - 10 - 475 Kentucky (West) Railroad 465 - 10 - 475 Utah Railroad 18 - - -

290

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,486 155 328 - 1,970 Alabama Railroad 1,020 - 75 - 1,095 Alabama River 417 - - - 417 Alabama Truck 49 155 253 - 458 Colorado Total 195 - - - 195 Colorado Railroad 195 - - - 195 Illinois Total 127 - 18 - 145 Illinois Railroad 20 - - - 20 Illinois River 107 - 18 - 125 Indiana Total

291

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2012 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,407 184 231 - 1,822 Alabama Railroad 801 9 49 - 859 Alabama River 519 - - - 519 Alabama Truck 87 175 182 - 444 Georgia Total s - s - s Georgia Truck s - s - s Indiana Total - 98 - - 98 Indiana Railroad - 98 - - 98 Kentucky Total - - 12 - 12 Kentucky Truck - - 12 - 12 Ohio Total - 30 - - 30 Ohio

292

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,942 160 335 - 2,437 Alabama Railroad 1,149 - 57 - 1,206 Alabama River 741 - - - 741 Alabama Truck 52 160 278 - 490 Colorado Total 621 2 - - 623 Colorado Railroad 621 2 - - 623 Illinois Total 113 - 11 - 123 Illinois River 113 - 11 - 123 Indiana Total 265 - - - 265 Indiana Railroad

293

Underground gasification of coal  

DOE Patents (OSTI)

There is disclosed a method for the gasification of coal in situ which comprises drilling at least one well or borehole from the earth's surface so that the well or borehole enters the coalbed or seam horizontally and intersects the coalbed in a direction normal to its major natural fracture system, initiating burning of the coal with the introduction of a combustion-supporting gas such as air to convert the coal in situ to a heating gas of relatively high calorific value and recovering the gas. In a further embodiment the recovered gas may be used to drive one or more generators for the production of electricity.

Pasini, III, Joseph (Morgantown, WV); Overbey, Jr., William K. (Morgantown, WV); Komar, Charles A. (Uniontown, PA)

1976-01-20T23:59:59.000Z

294

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

1Q) 1Q) Quarterly Coal Report January - March 2008 July 2008 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

295

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

2Q) 2Q) Quarterly Coal Report April - June 2009 September 2009 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

296

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

7/01Q) 7/01Q) Quarterly Coal Report January - March 2007 June 2007 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

297

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2010 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 914 12 66 - 992 Alabama River 949 - - - 949 Alabama Truck 78 189 237 - 504 Alabama Total 1,941 201 303 - 2,445 Georgia Railroad 23 - - - 23 Georgia Truck s - - - s Georgia Total 23 - - - 23 Indiana Railroad - 115 - - 115 Indiana Truck - 71 - - 71 Indiana Total - 186 - - 186 Tennessee Railroad - - 1 - 1 Tennessee Truck

298

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2011 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,896 182 327 - 2,405 Alabama Railroad 1,192 2 74 - 1,268 Alabama River 655 - - - 655 Alabama Truck 50 180 253 - 482 Georgia Total s - - - s Georgia Truck s - - - s Indiana Total - 72 - - 72 Indiana Railroad - 72 - - 72 Tennessee Total - - 7 - 7 Tennessee Truck - - 7 - 7 Origin State Total 1,896

299

Director for Engineering  

E-Print Network (OSTI)

Electrical Systems Design Fire Alarm Systems Audio/Video Systems Energy Analysis Power & Light Analysis Cordero Manager for Architectural Services Jeff Sutherland, AIA Manager for Electrical Engineering David Contract Management Construction Inspection HVAC Design Plumbing Design Fire Suppression System Energy

Zhang, Yuanlin

300

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Coal Stocks: February 2012 Electric Power Sector Coal Stocks: February 2012 Stocks The unseasonably warm temperatures that the continental United States experienced throughout the winter, coupled with low natural gas prices, caused coal stocks at power plants to increase throughout the winter of 2011 - 2012. During this period, coal stocks usually see a seasonal decline due to the added need for electricity generation from coal plants for spacing heating load. However, it was the sixth straight month that coal stocks increased from the previous month, with this trend likely to continue as the country enters into spring. Days of Burn Days of burn Coal capacity The average number of days of burn held at electric power plants is a forward looking estimate of coal supply given a power plant's current

Note: This page contains sample records for the topic "director coal electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Electric  

U.S. Energy Information Administration (EIA)

Average Retail Price of Electricity to ... Period Residential Commercial Industrial ... or usage falling within specified limits by rate ...

302

Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems  

SciTech Connect

CRS Sirrine (CRSS) is evaluating a novel IGCC process in which gases exiting the gasifier are burned in a gas turbine combustion system. The turbine exhaust gas is used to generate additional power in a conventional steam generator. This results in a significant increase in efficiency. However, the IGCC process requires development of novel approaches to control SO{sub 2} and NO{sub x} emissions and alkali vapors which can damage downstream turbine components. Ammonia is produced from the reaction of coal-bound nitrogen with steam in the reducing zone of any fixed bed coal gasifier. This ammonia can be partially oxidized to NO{sub x} when the product gas is oxidized in a gas turbine combustor. Alkali metals vaporize in the high-temperature combustion zone of the gasifier and laser condense on the surface of small char or ash particles or on cooled metal surfaces. It these alkali-coated materials reach the gas turbine combustor, the alkali will revaporize condense on turbine blades and cause rapid high temperature corrosion. Efficiency reduction will result. PSI Technology Company (PSIT) was contracted by CRSS to evaluate and recommend solutions for NO{sub x} emissions and for alkali metals deposition. Various methods for NO{sub x} emission control and the potential process and economic impacts were evaluated. This included estimates of process performance, heat and mass balances around the combustion and heat transfer units and a preliminary economic evaluation. The potential for alkali metal vaporization and condensation at various points in the system was also estimated. Several control processes and evaluated, including an order of magnitude cost for the control process.

1990-07-01T23:59:59.000Z

303

Rail Coal Transportation Rates  

U.S. Energy Information Administration (EIA) Indexed Site

reports reports Coal Transportation Rates to the Electric Power Sector With Data through 2010 | Release Date: November 16, 2012 | Next Release Date: December 2013 | Correction Previous editions Year: 2011 2004 Go Figure 1. Deliveries from major coal basins to electric power plants by rail, 2010 Background In this latest release of Coal Transportation Rates to the Electric Power Sector, the U.S. Energy Information Administration (EIA) significantly expands upon prior versions of this report with the incorporation of new EIA survey data. Figure 1. Percent of total U.S. rail shipments represented in data figure data Previously, EIA relied solely on data from the U.S. Surface Transportation Board (STB), specifically their confidential Carload Waybill Sample. While valuable, due to the statistical nature of the Waybill data,

304

coal | OpenEI  

Open Energy Info (EERE)

coal coal Dataset Summary Description This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. Source National Renewable Energy Laboratory Date Released August 28th, 2012 (2 years ago) Date Updated Unknown Keywords coal consumption csp factors geothermal PV renewable energy technologies Water wind withdrawal Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Operational water consumption and withdrawal factors for electricity generating technologies (xlsx, 32.3 KiB)

305

EIA - AEO2010 - Coal projections  

Gasoline and Diesel Fuel Update (EIA)

Coal Projections Coal Projections Annual Energy Outlook 2010 with Projections to 2035 Coal Projections Figure 88. Coal production by region, 1970-2035 Click to enlarge » Figure source and data excel logo Figure 89. U.S. coal production in six cases, 2008, 2020, and 2035 Click to enlarge » Figure source and data excel logo Figure 90. Average annual minemouth coal prices by region, 1990-2035 Click to enlarge » Figure source and data excel logo Figure 91. Average annual delivered coal prices in four cases, 1990-2035 Click to enlarge » Figure source and data excel logo Figure 92. Change in U.S. coal consumption by end use in two cases, 2008-2035 Click to enlarge » Figure source and data excel logo Coal production increases at a slower rate than in the past In the AEO2010 Reference case, increasing coal use for electricity generation, along with the startup of several CTL plants, leads to growth in coal production averaging 0.2 percent per year from 2008 to 2035. This is significantly less than the 0.9-percent average growth rate for U.S. coal production from 1980 to 2008.

306

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Coal Stocks: September 2011 Electric Power Sector Coal Stocks: September 2011 Stocks Electric power sector coal stocks continued to replenish after the summer burn in October, though stockpile levels remain well below 2010 levels. All coal stockpile levels declined from October 2010, with bituminous coal stockpile levels 12 percent lower than the same month of 2010. Days of Burn Days of burn Coal capacity The average number of days of burn held at electric power plants is a forward looking estimate of coal supply given a power plant's current stockpile and past consumption patterns. The average number of days of burn held on hand at electric power plants was generally flat in October 2011 compared to September of this year. The summer of 2011 saw significant declines in total U.S. stockpile levels, which were replenished in the

307

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Coal Stocks: November 2011 Electric Power Sector Coal Stocks: November 2011 Stocks As discussed in this month's feature story, electric power sector coal stocks continued to replenish after the summer burn in November, though stockpile levels remain below 2010 and 2009 levels. All coal stockpile levels declined from November 2010, with bituminous coal stockpile levels 9 percent lower than the same month of 2010. Days of Burn Days of burn Coal capacity The average number of days of burn held at electric power plants is a forward looking estimate of coal supply given a power plantâ€(tm)s current stockpile and past consumption patterns. The average number of days of burn held on hand at electric power plants dropped slightly from last month and remained below levels seen in November of 2010 or 2009. While

308

Bringing Electric Cars to Market  

E-Print Network (OSTI)

controlled natural gas electric-power plants or zero-emit-electric power plants fired with oil, natural gas, and coal.

Sperling, Daniel

1995-01-01T23:59:59.000Z

309

NERSC Director Kathy Yelick named Associate Lab Director for...  

NLE Websites -- All DOE Office Websites (Extended Search)

for Computing Sciences. Yelick has been the director of the National Energy Research Scientific Computing Center (NERSC) since 2008, a position she will continue to hold. "I am...

310

Light Sources Directorate Strategic Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Sources Directorate Light Sources Directorate Strategic Plan December 2009 Light Sources Directorate Strategic Plan December 2009 ii | Vision and Mission Light Sources Directorate Strategic Plan The VISION of the Light Sources Directorate is: to be a provider of choice for world-class photon science and facilities that deliver outstanding scientific productivity and impact, and to be recognized as a leader in developing innovative techniques and ap- plications of photon science Our MISSION is defined by the set of activities that are required to realize this vision: to advance scientific knowledge and to solve critical problems through the design, construction, operation, and use of premier photon science facilities | Table of Contents Light Sources Directorate Strategic Plan

311

Principal Associate Director - Capital Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Principal Associate Director - Capital Projects Principal Associate Director - Capital Projects As Principal Associate Director for Capital Projects, Henry is responsible for institutional large-project construction and management and environmental cleanup functions. Contact Operator Los Alamos National Laboratory (505) 667-5061 Before coming to the Lab in 2011, he served as manager of the $3.2 billion project to safely destroy the stockpile of deadly mustard chemical agent at the Pueblo Chemical Depot in Colorado. Paul Henry Principal Associate Director for Capital Projects Paul Henry, Principal Associate Director for Capital Projects As Principal Associate Director for Capital Projects, Henry is responsible for institutional large-project construction and management and environmental cleanup functions.

312

Quarterly Coal Distribution Report - Energy Information ...  

U.S. Energy Information Administration (EIA)

The Quarterly Coal Distribution Report ... Electric Utilities and Independent Power Producers received approximately 92.2 percent of the total distrib ...

313

Quarterly Coal Distribution Report January ? March 2013  

Annual Energy Outlook 2012 (EIA)

EIA's various monthly, quarterly, and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to...

314

Coal - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

The amount of U.S. railroad ... Coal-fired electric generators continue to dominate electric supply in the central ... 1000 Independence Avenue, SW, W ...

315

Table 6.3 Coal Stocks by Sector  

U.S. Energy Information Administration (EIA)

c The electric power sector comprises electricity-only and combined-heat-and-power (CHP) ... System. See Note 4, "Coal ... the 50 states and the Distr ...

316

Principal Associate Director - Weapons Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Weapons Programs As Principal Associate Director for the Weapons Program, Knapp leads the programs to assure the safety, security, and effectiveness of the systems in the nation's...

317

Electricity  

Energy.gov (U.S. Department of Energy (DOE))

Electricity is an essential part of modern life. The Energy Department is working to create technology solutions that will reduce our energy use and save Americans money.

318

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Coal Stocks: October 2013 Electric Power Sector Coal Stocks: October 2013 Stocks In October 2013, total coal stocks increased 0.8 percent from the previous month. This follows the normal seasonal pattern for this time of year as the country begins to build up coal stocks to be consumed during the winter months. Compared to last October, coal stocks decreased 17.7 percent. This occurred because coal stocks in October 2012 were at an extremely high level. Days of Burn Days of burn Coal capacity The average number of days of burn held at electric power plants is a forward looking estimate of coal supply given a power plant's current stockpile and past consumption patterns. The total bituminous supply decreased from 85 days the previous month to 78 days in October 2013, while the total subbituminous supply decreased from 63 days in September 2013 to

319

Federal Project Directors in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

appropriate front-end plan- appropriate front-end plan- ning process would help DOE to identify the mission need for the project and aid in iden- tification and evaluation of alternative approaches and assessment of the cost and risks of each. This should lead to a well-defined set of re- quirements and scope of work that form the basis for effec- tive design. Front-end plan- ning in the DOE project man- agement system includes plan- ning procedures from project conception through approval of the performance baseline (CD-2). The Office of Engineering and Construction Management has developed two guides to assist Federal Project Directors in measuring progress toward achieving technology and pro- ject definition maturity during front-end planning prior to CD -2. DOE G 413.3-4, Technol-

320

TO: FROM: Procurement Directors  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

POLICY FLASH 2010-28 POLICY FLASH 2010-28 '/ 7- DATE: March 4,20 10 TO: FROM: Procurement Directors Office of Procurement and Assistance Policy, MA-6 1 Office of Procurement and Assistance Management SUBJECT: Temporary Waiver of Mandatory Use of the Strategic Integrated Procurement Enterprise System (STRIPES) for Certain Purchase Card Transactions SUMMARY: Several issues have been identified relating to the use of STRIPES for the processing of transactions at or below the micro-purchase threshold of $3,000 using the Government-wide purchase card. These issues relate strictly to the efficient processing of such transactions and not to the ability of STRIPES to properly and accurately process these actions. Based on the above, the mandatory use of STRIPES for individual purchase card transactions

Note: This page contains sample records for the topic "director coal electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

TO: FROM: Procurement Directors  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

b b POLICY FLASH 2010-42 . DATE: April 8,20 10 TO: FROM: Procurement Directors Office of Procurement and Assistance Policy, MA-6 1 Office of Procurement and Assistance Management SUBJECT: Use of New Strategically Sourced Blanket Purchase Agreement for Domestic Delivery Services with United Parcel Service SUMMARY: The Department of Energy (DOE) is participating as an authorized user of the second generation General Services Administration (GSA) Blanket Purchase Agreement (BPA) GS-33F-BQV08 for Express and Ground Domestic Delivery Services (DDS2) in the continental United States, Alaska, Hawaii, and Puerto Rico. DDS2 is a full service Federal Strategic Sourcing Initiative (FSSI) solution providing agencies with a range of delivery options as well as

322

Procurement Directors DATE: TO:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

18 18 1 POLICY FLASH 2008-1 8 January 29,2008 Procurement Directors DATE: TO: FROM: Office of Procurement and Assistance Policy, MA-6 1 Ofice of Procurement and Assistance Management SUBJECT: Federal Acquisition Circular 2008-18 SUMMARY: The General Services Administration has issued Federal Acquisition Circular 2005-23. This Circular can be found at page 732 14 of the December 26,2007 Federal Register. The Circular covers three subjects for which interim or final rules have been issued amending the Federal Acquisition Regulation. A description of each revision is contained in the attachment. None of these necessitates a revision of the DEAR. One of the revisions dealing with the Electronic Product Environmental Assessment Tool (EPEAT) replaces

323

W. E. Mott, Director,  

Office of Legacy Management (LM)

Department of Energy Department of Energy F&k i?z;;Operations dak Ridge, Tennessee 37830 W. E. Mott, Director, It is concluded that the potential for uranium contamination, even during the contract period, was small and that subsequent disposition of laboratory, furnishings and equipment further reduced that potential to the point where, it is felt, the need for further onsite investigation is not indicated. Hence, it is recommended that the reassessment of the site at 818 Perry Street, Richmond, Virginia, be terminated with this report. ti?LbL~ W. T. Thornton Environmental Protection Branch 0SE:WTT Safety & Environmental Control Division c d v76-2 Bo 7W -rwG 1 - ---_ -- -- Er-fl ,T - .,- L 4-------c 1 / 7, pi ' I ./7 * ---:;N-... __ P 2 (' - , . . dq/ ' j'

324

National Coal Quality Inventory (NACQI)  

Science Conference Proceedings (OSTI)

The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale, and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.

Robert Finkelman

2005-09-30T23:59:59.000Z

325

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Coal Stocks: March 2012 Electric Power Sector Coal Stocks: March 2012 Stocks The seasonal winter drawdown of coal stocks was totally negated during the winter months this year due to low natural gas prices and unseasonably warm temperatures throughout the continental United States. In fact, March 2012 was the seventh straight month that coal stockpiles at power plants increased from the previous month. The largest driver of increasing stockpiles has been declining consumption of coal due to unseasonably warm weather and declining natural gas prices. Because much of the coal supplied to electric generators is purchased through long-term contracts, increasing coal stockpiles have proven difficult for electric power plant operators to handle. Some operators have inventories so high that they are refusing

326

NREL: News - NREL Names Santiago Grijalva Director for Power Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

013 013 NREL Names Santiago Grijalva Director for Power Systems Engineering July 1, 2013 Today, the Energy Department's National Renewable Energy Laboratory (NREL) announced a key hire to lead its Power Systems Engineering Center. Santiago Grijalva comes to NREL with both industry and academic experience, most recently from the Georgia Institute of Technology, where he held the position of Georgia Power Distinguished Professor and Strategic Energy Institute Associate Director for Electricity. As part of the Energy Systems Integration team at NREL, Dr. Grijalva will provide leadership to develop the strategic direction of the Power Systems Engineering Center, enhance technical capabilities and steward core competencies that advance electric power technologies. He will also lead

327

Coal Transportation Issues (released in AEO2007)  

Reports and Publications (EIA)

Most of the coal delivered to U.S. consumers is transported by railroads, which accounted for 64 percent of total domestic coal shipments in 2004. Trucks transported approximately 12 percent of the coal consumed in the United States in 2004, mainly in short hauls from mines in the East to nearby coal-fired electricity and industrial plants. A number of minemouth power plants in the West also use trucks to haul coal from adjacent mining operations. Other significant modes of coal transportation in 2004 included conveyor belt and slurry pipeline (12 percent) and water transport on inland waterways, the Great Lakes, and tidewater areas (9 percent).

Information Center

2007-02-22T23:59:59.000Z

328

COAL PRODUCTION ISSUES TO BE STUDIED The National Commission on Energy Policy has recently commenced a  

E-Print Network (OSTI)

COAL PRODUCTION ISSUES TO BE STUDIED The National Commission on Energy Policy has recently commenced a study on the challenges for expanded coal production in the United States, according to Sasha Mackler, Research Director of the Commission. Given its relative abundance in the United States, coal

329

Electric Power Annual  

U.S. Energy Information Administration (EIA) Indexed Site

1. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Total (All Sectors) by State, 2011 Bituminous Subbituminous Lignite Census Division and State Receipts...

330

Electric Power Annual  

U.S. Energy Information Administration (EIA) Indexed Site

5. Receipts, Average Cost, and Quality of Fossil Fuels: Electric Utilities, 2002 - 2011 Coal Petroleum Liquids Receipts Average Cost Receipts Average Cost Period (Billion Btu)...

331

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal 101 Lesson 1: Cleaning Up Coal Clean Coal COAL is our most abundant fossil fuel. The United States has more coal than the rest of the world has oil. There is still...

332

Coal pump  

DOE Patents (OSTI)

A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

Bonin, John H. (Sunnyvale, CA); Meyer, John W. (Palo Alto, CA); Daniel, Jr., Arnold D. (Alameda County, CA)

1983-01-01T23:59:59.000Z

333

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Coal Stocks: December 2011 Electric Power Sector Coal Stocks: December 2011 Stocks Temperate weather throughout the fall has allowed electric power sector coal stocks to replenish from the summer burn. All coal stockpile levels were essentially flat when compared to December 2010 and were a mostly up year-to-date. Days of Burn Days of burn Coal capacity The average number of days of burn held at electric power plants is a forward looking estimate of coal supply given a power plantâ€(tm)s current stockpile and past consumption patterns. The average number of days of burn held on hand at electric power plants was essentially flat compared to last month and remained below levels seen in December of 2010 or 2009. While stockpile levels have recovered from summer lows, the increasing

334

EIA - Annual Energy Outlook 2008 - Coal Production  

Gasoline and Diesel Fuel Update (EIA)

Coal Production Coal Production Annual Energy Outlook 2008 with Projections to 2030 Coal Production Figure 93. Coal production by region, 1970-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 94. U.S. coal production, 2006, 2015, and 2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Western Coal Production Continues To Increase Through 2030 In the AEO2008 reference case, increasing coal use for electricity generation at existing plants and construction of a few new coal-fired plants lead to annual production increases that average 0.3 percent per year from 2006 to 2015, when total production is 24.5 quadrillion Btu. In the absence of restrictions on CO2 emissions, the growth in coal production

335

EIA - Annual Energy Outlook 2009 - Coal Production  

Gasoline and Diesel Fuel Update (EIA)

Coal Production Coal Production Annual Energy Outlook 2009 with Projections to 2030 Coal Production Figure 78. Coal production by region, 1970-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 79. U.S. coal production in four cases, 2007, 2015, and 2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 80. Average minemouth coal prices by regionCoal production by region, 1970-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Total Coal Production Increases at a Slower Rate Than in the Past In the AEO2009 reference case, increasing coal use for electricity generation at both new and existing plants and the startup of several CTL

336

NYMEX Coal Futures - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

NYMEX Coal Futures Near-Month Contract Final Settlement Price 2013 NYMEX Coal Futures Near-Month Contract Final Settlement Price 2013 Data as of: December 13, 2013 | Release Date: December 16, 2013 | Next Release Date: December 30, 2013 U.S. coal exports, chiefly Central Appalachian bituminous, make up a significant percentage of the world export market and are a relevant factor in world coal prices. Because coal is a bulk commodity, transportation is an important aspect of its price and availability. In response to dramatic changes in both electric and coal industry practices, the New York Mercantile Exchange (NYMEX) after conferring with coal producers and consumers, sought and received regulatory approval to offer coal futures and options contracts. On July 12, 2001, NYMEX began trading Central Appalachian Coal futures under the QL symbol.

337

U.S. coal outlook in Asia  

SciTech Connect

Coal exports from the US to Asia are declining over time as a result of (1) increased competition from coal suppliers within the Asia-Pacific region, (2) changing steel making technologies, (3) decreased emphasis on security of coal supplies, and (4) deregulation of the energy industry--particularly electric utilities. There are no major changes on the horizon that are likely to alter the role of the US as a modest coal supplier to the Asia-Pacific region. The downward trend in US coal exports to Asia is expected to continue over the 1997--2010 period. But economic and policy changes underway in Asia are likely to result in periodic coal shortages, lasting a few months to a year, and short term increased export opportunities for US coal. US coal exports to Asia are projected to fluctuate within the following ranges over the 2000--2010 period: 10--17 million tons in total exports, 6--12 million tons in thermal coal exports, and 4--9 million tons in coking coal exports. The most important role for US coal, from the perspective of Asian coal importing countries, is to ensure a major alternative source of coal supplies that can be turned to in the event of unforeseen disruptions in coal supplies from the Asia-Pacific region or South Africa. However, the willingness of consumers to pay a premium to ensure US export capacity is declining, with increased emphasis on obtaining the lowest cost coal supplies.

Johnson, C.J.

1997-02-01T23:59:59.000Z

338

Effects of Coal Quality on Power Plant Performance and Costs, Volume 4: Review of Coal Science Fundamentals  

Science Conference Proceedings (OSTI)

The costs of generating electricity in a coal-fired power plant depend not only on the delivered cost of coal but on how coal quality affects plant performance. Utilities need to account for both these factors to decide which coals provide the most power at the lowest cost.

1986-03-04T23:59:59.000Z

339

Fermilab | Directorate | Program Planning Office  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Planning Office Program Planning Office Steve Geer, Head The Program Planning Office within the Fermilab Directorate coordinates the experimental physics program carried out at the Laboratory. The office provides a link between ongoing and planned experiments and the Directorate, by: Acting as liaison between experimenters and laboratory staff regarding beam conditions during accelerator operation. Establishing priorities between accelerator studies and experiments and among experiments, in consultation with the Director, and resolving conflicting requests from experiments. Coordinating Division and Section reviews of draft Memoranda of Understanding for approved experiments. Coordinating updates to the "Procedures for Researchers" which provides a guide for researchers using Fermilab facilities.

340

EIA - Coal Distribution  

U.S. Energy Information Administration (EIA) Indexed Site

Annual Coal Distribution Report > Annual Coal Distribution Archives Annual Coal Distribution Archive Release Date: February 17, 2011 Next Release Date: December 2011 Domestic coal...

Note: This page contains sample records for the topic "director coal electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Director's colloquium March 18 large hadron collider  

NLE Websites -- All DOE Office Websites (Extended Search)

Director's colloquium large hadron collider Director's colloquium March 18 large hadron collider Lyndon Evans of CERN will talk about the most complex scientific instrument ever...

342

ESH&Q Directorate Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Training & Qualifications Other BNL Site Index Can't View PDFs? Environment, Safety and Health Directorate George A. Goode Assistant Laboratory Director ES&H Organizational Chart...

343

TMS Board of Directors: James W. Sears  

Science Conference Proceedings (OSTI)

TMS Director/Chair, Materials Processing & Manufacturing Division. James W. Sears is director of Additive Manufacturing at the South Dakota School of Mines...

344

Organization: Principal Associate Directorate for Global Security...  

NLE Websites -- All DOE Office Websites (Extended Search)

Principal Associate Director Terry Wallace Associate Director Threat Identification and Response Scott Gibbs Phone: 1-505-667-1663 Fax: 1-505-665-8974 Organization PADGS...

345

Fermilab | Fermilab Director Search | Process and Charge  

NLE Websites -- All DOE Office Websites (Extended Search)

Process and Charge Charge to the Director Search Committee Fermi National Accelerator Laboratory The Fermi Research Alliance, LLC Board of Directors charges the Committee to engage...

346

TMS Board of Directors: James W. Sears  

Science Conference Proceedings (OSTI)

James W. Sears is director of Additive Manufacturing at the South Dakota School of Mines & Technology and executive director of the Quad Cities Manufacturing...

347

Canada Week: Canada is a declining market for U.S. coal ...  

U.S. Energy Information Administration (EIA)

Exports of U.S. coal to Canada have declined in recent years as Canada has reduced its coal-fired electric generation. U.S. coal exports to Canada totaled 3.2 million ...

348

ELECTRIC  

Office of Legacy Management (LM)

ELECTRIC cdrtrokArJclaeT 3 I+ &i, y I &OF I*- j< t j,fci..- ir )(yiT E-li, ( -,v? Cl -p4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson...

349

Solar Energy Status and Perspectives Peter Ahm, Director  

E-Print Network (OSTI)

Solar Energy ­ Status and Perspectives Peter Ahm, Director PA Energy A/S (Ltd.) Snovdrupvej 16, DK-8340 Malling Phone: +45 86 93 33 33; Fax: +45 86 93 36 05; e-mail: ahm@paenergy.dk Abstract Solar energy in terms of thermal Solar Hot Water systems and electricity producing Photovoltaics contribute

350

Director's commitment to diversity recognized  

NLE Websites -- All DOE Office Websites (Extended Search)

Director's commitment to diversity recognized Director's commitment to diversity recognized Director's commitment to diversity recognized Profiles in Diversity Journal is recognizing Director Michael Anastasio for his commitment to workplace diversity. March 11, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Communications Office

351

Directorate Contacts | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Directorate E-mail Phone Fax Business Services branhams@ornl.gov 865.241.7614 865.241.7595 Communications keimdm@ornl.gov 865.576.9122 865.574.0595 Computing...

352

NETL: News Release - Abraham Announces Projects to Bolster Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Supply With New Technologies for Nation's Coal-Fired Power Plants Power Plant Improvement Initiative" is Precursor To President's Clean Coal Technology Program...

353

ELECTRIC  

Office of Legacy Management (LM)

ELECTRIC ELECTRIC cdrtrokArJclaeT 3 I+ &i, y$ \I &OF I*- j< t j,fci..- ir )(yiT !E-li, ( \-,v? Cl -p/4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson General ?!!mager Atomic Qxzgy Commission 1901 Constitution Avenue Kashington, D. C. Dear Sir: In the course of OUT nuclenr research we are planning to study the enc:ri;y threshold anti cross section for fission. For thib program we require a s<>piAroted sample of metallic Uranium 258 of high purity. A quantity of at lezst 5 grams would probably be sufficient for our purpose, and this was included in our 3@icntion for license to the Atonic Energy Coskqission.. This license has been approved, 2nd rre would Llp!Jreciate informztion as to how to ?r*oceed to obtain thit: m2teria.l.

354

Coal - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Coal-fired plants projected to continue as the largest source of U.S. electricity generation ... and average cost of metallurgical coal at coke plants and export docks.

355

Annual Coal Report - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Annual Coal Report Annual Coal Report Release Date: December 12, 2013 | Next Release Date: November 2014 | full report Previous Annual Coal / Coal Industry Annual Reports historical data (PDF): 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 before 2001 Industry Annual 2000 1999 1998 1997 1996 1995 1994 Go The Annual Coal Report (ACR) provides annual data on U.S. coal production, number of mines, productive capacity, recoverable reserves, employment, productivity, consumption, stocks, and prices. All data for 2012 and prior years are final. Highlights for 2012: U.S. coal production decreased 7.2 percent from 2011, driven by lower electric power sector demand, to roughly 1.02 billion short tons. Productive capacity of U.S. coal mines decreased 3.5 percent to 1.28

356

Definition: Bituminous coal | Open Energy Information  

Open Energy Info (EERE)

Bituminous coal Bituminous coal Jump to: navigation, search Dictionary.png Bituminous coal A dense coal, usually black, sometimes dark brown, often with well-defined bands of bright and dull material, used primarily as fuel in steam-electric power generation, with substantial quantities also used for heat and power applications in manufacturing and to make coke; contains 45-86% carbon.[1][2] View on Wikipedia Wikipedia Definition Bituminous coal or black coal is a relatively soft coal containing a tarlike substance called bitumen. It is of higher quality than lignite coal but of poorer quality than anthracite. Formation is usually the result of high pressure being exerted on lignite. Its composition can be black and sometimes dark brown; often there are well-defined bands of bright and dull

357

Weights and Measures State Directors AC  

Science Conference Proceedings (OSTI)

State Directors AC. Alaska. Mailing Address, Contact Information. Alaska Division of Measurement Standards/CVE 11900 ...

2013-05-03T23:59:59.000Z

358

Integration of Advanced Emissions Controls to Produce Next-Generation Circulating Fluid Bed Coal Generating Unit (withdrawn prior to award)  

NLE Websites -- All DOE Office Websites (Extended Search)

contacts contacts Brad tomer Director Office of Major Demonstrations National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4692 brad.tomer@netl.doe.gov PaRtIcIPant Colorado Springs Utilities Colorado Springs, CO aDDItIonaL tEaM MEMBERs Foster Wheeler Power Group, Inc. Clinton, NJ IntegratIon of advanced emIssIons controls to Produce next-generatIon cIrculatIng fluId Bed coal generatIng unIt (wIthdrawn PrIor to award) Project Description Colorado Springs Utilities (Springs Utilities) and Foster Wheeler are planning a joint demonstration of an advanced coal-fired electric power plant using advanced, low-cost emission control systems to produce exceedingly low emissions. Multi- layered emission controls will be

359

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2010 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 3rd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 839 11 83 - 933 Alabama River 1,347 - - - 1,347 Alabama Truck 118 216 236 - 571 Alabama Total 2,304 227 320 - 2,850 Georgia Railroad 9 - - - 9 Georgia Truck 7 - 5 - 12 Georgia Total 16 - 5 - 21 Indiana Railroad - 126 - - 126 Tennessee Truck - - 1 - 1 Origin State Total 2,320 353 325 - 2,998 Railroad 848 137 83 - 1,068

360

COAL & POWER SYSTEMS  

NLE Websites -- All DOE Office Websites (Extended Search)

COAL & POWER SYSTEMS COAL & POWER SYSTEMS STRATEGIC & MULTI-YEAR PROGRAM PLANS U.S. DEPARTMENT OF ENERGY * OFFICE OF FOSSIL ENERGY GREENER, SOONER... THROUGH TECHNOLOGY INTRODUCTION .......... i-1 STRATEGIC PLAN ........ 1-1 PROGRAM PLANS Vision 21 .......................... 2-1 Central Power Systems ...... 3-1 Distributed Generation ..... 4-1 Fuels ................................ 5-1 Carbon Sequestration ....... 6-1 Advanced Research ........... 7-1 TABLE OF CONTENTS STRATEGIC & MULTI-YEAR PROGRAM PLANS STRENGTH THROUGH SCIENCE... A "GREENER, SOONER" PHILOSOPHY Coal, natural gas, and oil fuel about 70 percent of the electricity generated in the United States. As promising as renewable and other alternative fuels are, it will be several decades before they can make significant energy contributions to the Nation's

Note: This page contains sample records for the topic "director coal electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2010 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 4th Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 944 16 77 - 1,037 Alabama River 781 - - - 781 Alabama Truck 77 224 220 - 521 Alabama Total 1,802 240 298 - 2,340 Florida Railroad - - 11 - 11 Georgia Railroad 52 - - - 52 Georgia Truck s - 5 - 5 Georgia Total 52 - 5 - 57 Indiana Railroad - 65 - - 65 Origin State Total 1,855 304 313 - 2,472 Railroad 996 81 89 - 1,165

362

Catalytic Coal Gasification Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalytic Coal Gasification Process Catalytic Coal Gasification Process for the Production of Methane-Rich Syngas Opportunity Research is active on the patent pending technology, titled "Production of Methane-Rich Syngas from Fuels Using Multi-functional Catalyst/Capture Agent." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Overview Reducing pollution emitted by coal and waste power plants in an economically viable manner and building power plants that co-generate fuels and chemicals during times of low electricity demand are pressing goals for the energy industry. One way to achieve these goals in an economically viable manner is through the use of a catalytic gasifier that

363

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2010 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 907 10 59 - 975 Alabama River 903 - - - 903 Alabama Truck 150 144 253 - 546 Alabama Total 1,960 153 311 - 2,424 Florida Truck - - 3 - 3 Georgia Railroad 105 - 1 - 106 Georgia Truck s - 4 - 4 Georgia Total 105 - 5 - 110 Indiana Railroad - 106 - - 106 Tennessee Railroad - - 1 - 1 Origin State Total 2,065 259 321 - 2,644

364

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2011 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 3rd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,942 160 335 - 2,437 Alabama Railroad 1,149 - 57 - 1,206 Alabama River 741 - - - 741 Alabama Truck 52 160 278 - 490 Georgia Total s - 3 - 3 Georgia Truck s - 3 - 3 Ohio Total - 3 - - 3 Ohio River - 3 - - 3 Origin State Total 1,942 163 338 - 2,443 Railroad 1,149 - 57 - 1,206 River 741 3 - - 745 Truck 52 160

365

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2011 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 1,040 18 80 - 1,138 Alabama River 668 - - - 668 Alabama Truck 52 164 223 - 438 Alabama Total 1,760 181 303 - 2,244 Georgia Truck s - 2 - 2 Indiana Railroad - 148 - - 148 Ohio Railroad - 25 - - 25 Ohio River - 18 - - 18 Ohio Total - 43 - - 43 Origin State Total 1,760 373 305 - 2,438 Railroad 1,040 191 80 - 1,311 River

366

Decommissioning Handbook for Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

This handbook lays out the steps necessary to fully decommission a coal-fired power plant. The handbook includes ways to handle permitting, environmental cleanup, site dismantlement, and site remediation, and discusses overall decommissioning costs. It is based on three actual case studies of coal plants recently decommissioned: the Arkwright coal-fired plant of Georgia Power, the Watts Bar coal-fired plant of TVA, and the Port Washington coal-fired plant of Wisconsin Electric Power.

2004-11-04T23:59:59.000Z

367

Electric Power Monthly December 2009 Data issue  

U.S. Energy Information Administration (EIA)

DOE/EIA-0226 (2009/12) Electric Power Monthly December 2009 With Data for September 2009 Energy Information Administration Office of Coal, Nuclear, Electric and ...

368

EIA - State Electricity Profiles - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, Natural Gas, 1990 Through 2010: Table 7. Electric Power Industry Emissions Estimates, 1990 ...

369

EIA - State Electricity Profiles - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010: Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, ...

370

Electric Power Annual 2011 - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Fossil Fuel Stocks for Electricity Generation; Table 6.1. Stocks of coal, petroleum liquids, and petroleum coke: Electric power sector: XLS: Table 6.2.

371

EIA - Electricity Data - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Table 2.5.A. Consumption of Coal for Electricity Generation by State, by Sector, July 2013 and July 2012 (Thousand Tons) Electric Power Sector ; Census Division

372

EIA - Electricity Data - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Table 4.6.A. Receipts of Coal Delivered for Electricity Generation by State, September 2013 and 2012 (Thousand Tons) Electric Power Sector ; Census ...

373

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Cleanest Coal Technology Clean Coal 101 Lesson 5: The Cleanest Coal Technology-A Real Gas Don't think of coal as a solid black rock. Think of it as a mass of atoms. Most of the...

374

U.S. Coal Supply and Demand: 2001 Review  

Gasoline and Diesel Fuel Update (EIA)

U.S. Coal Supply and Demand: 2001 Review U.S. Coal Supply and Demand: 2001 Review 1 U.S. Coal Supply and Demand: 2001 Review (Revised 5/6/2002) 1 by Fred Freme U.S. Energy Information Administration 1 This article has been revised, deleting 17.6 millions short tons of coal consumed by the manufacturers of synthetic coal from the consumption of coal by "other industrial plants." This change was made because the synthetic coal those plants produced was primarily consumed in the electric sector and reported as coal, resulting in an overstating of total coal consumption. Overview With the dawning of a new century came the beginning of a new era in the coal industry. Instead of the traditional prac- tice of only buying and selling produced coal in the United

375

Coal_Studyguide.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study Guide: WHAT IS COAL? Coal looks like a shiny black rock. Coal has lots of energy in it. When it is burned, coal makes heat and light energy. Th e cave men used coal for...

376

TO: Procurement Directors/Contracting Officers FROM: Director  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 DATE: October 30 , 2013 TO: Procurement Directors/Contracting Officers FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT: Continuing Appropriations Act, 2014 -- Congressional Notification of Pending Contract or Financial Assistance Actions in excess of $1 Million under the Continuing Resolution SUMMARY: Section 101(a)(6) of the Continuing Appropriations Resolution Act, 2014, Pub. L No. 113-46, makes appropriations available through January 15, 2014 for continuing projects or activities that were conducted under Consolidated and Further Continuing Appropriations Act, 2013, Pub. L. No.113-6, under the same authority and conditions. Therefore, the Section 311

377

TO: Procurement Directors/Contracting Officers FROM: Director  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 DATE: January15, 2014 TO: Procurement Directors/Contracting Officers FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT: Determination of Benchmark Compensation Amount for Certain Executives and Employees (Update) SUMMARY: The purpose of this Flash is to update Policy Flash 2014-12 issued on December 28, 2013 to reflect the current Executive Compensation Cap pursuant to the Bipartisan Budget Act of 2013 (H.J.Res. 59) which was signed into law on December 26, 2013. The provision in Section 702 - "Limitation on allowable government contractor compensation costs"- limits how much a contractor could charge the federal government for an

378

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Coal Stocks: August 2011 Coal Stocks: August 2011 Stocks Coal stocks continued the usual summer decline as utilities burned into their summer stockpile in August. Sigificant declines from August 2010 were seen in total coal stockpiles, driven by a 14 percent drop in bituminous coal stockpiles as well as a 10 percent drop in subbituminous coal stockpiles. Lignite stockpiles declined by 6 percent over the same time period. Days of burn The average number of days of burn held at electric power plants is a forward looking estimate of coal supply given a power plant's current stockpile and past consumption patterns. The average number of days of burn held on hand at electric power plants increased slightly in August 2011 compared to previous months. This was largely driven by increases in

379

Environmental data energy technology characterizations: coal  

SciTech Connect

This document describes the activities leading to the conversion of coal to electricity. Specifically, the activities consist of coal mining and beneficiation, coal transport, electric power generation, and power transmission. To enhance the usefulness of the material presented, resource requirements, energy products, and residuals for each activity area are normalized in terms of 10/sup 12/ Btus of energy produced. Thus, the total effect of producing electricity from coal can be determined by combining the residuals associated with the appropriate activity areas. Emissions from the coal cycle are highly dependent upon the type of coal consumed as well as the control technology assigned to the activity area. Each area is assumed to be equipped with currently available control technologies that meet environmental regulations. The conventional boiler, for example, has an electrostatic precipitator and a flue gas desulfurization scrubber. While this results in the removal of most of the particulate matter and sulfur dioxide in the flue gas stream, it creates other new environmental residuals -- solid waste, sludge, and ash. There are many different types of mined coal. For informational purposes, two types from two major producing regions, the East and the West, are characterized here. The eastern coal is typical of the Northern Appalachian coal district with a high sulfur and heat content. The western coal, from the Powder River Basin, has much less sulfur, but also has a substantially lower heating value.

Not Available

1980-04-01T23:59:59.000Z

380

All fired-up about coal : technology & policy recommendations for the 2030 United Kingdom energy strategy  

E-Print Network (OSTI)

Given United Kingdom (UK) carbon dioxide emissions policies that direct attention at the electricity segment, the focus is on the largest electricity polluter, coal, and the immediately pressing issue of UK coal policy. ...

Donnelly, Kathy A. (Kathy Ann)

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "director coal electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Tom Rogers Director, Industrial Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

Tom Rogers, rogerstc@ornl.gov 865-241-2149 Tom Rogers, rogerstc@ornl.gov 865-241-2149 Tom Rogers Director, Industrial Partnerships and Economic Development Tom Rogers was named Director of Industrial Partnerships and Economic Development at the Oak Ridge National Laboratory in June, 2008. His responsibilities include directing engagements with industrial partners, forging new ORNL entrepreneurial support efforts, and leading a number of strategic initiatives such as the Carbon Fiber Composites Cluster and development of the Oak Ridge Science and Technology Park. Prior to joining ORNL, Tom was the founding President and CEO of Technology 2020, a national award-winning public-private partnership focused on a building a robust regional entrepreneurial support system. Tom has also served as the Executive Director of the Tennessee Technology

382

Multiproject baselines for evaluation of electric power projects  

E-Print Network (OSTI)

the coal and natural gas power plants. The coal plant coulda new natural gas plant and imported hydroelectric power (natural gas power project may claim that it offsets electricity from a coal power plant

2003-01-01T23:59:59.000Z

383

Clean Coal Technology and the Clean Coal Power Initiative | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Coal Technology and the Clean Coal Power Initiative Clean Coal Technology and the Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy...

384

Capitalizing on coal  

SciTech Connect

The Energy Information Administration (EIA) predicts that the equivalent of 44 baseload coal fired power plants will be needed to keep pace with US electricity demand by 2025. Potential builders are looking for greater certainty on a number of energy, environmental and regulatory issues before they invest. The work of the Edison Electric Institute (EEI) in advocating solutions to create this certainty is reported in this article. It is asking Congress to put transmission assets on a par with other major assets and reduce their depreciable lives from 20 to 15 years, and calling for repeal legislation that limits investment in the regulated energy industry. EEI is advocating federal environmental legislation similar to the Clean Skies Act that would lower emissions faster, with greater certainty, and with greater cost savings. EEI is encouraging FERC to work with states to increase certainty of builders recovering their investment in coal plants. 2 photos.

McMahon, F. [Edison Electric Institute (United States). Alliance of Energy Suppliers

2005-08-01T23:59:59.000Z

385

Memorandum To: Board of Directors  

E-Print Network (OSTI)

to respond instantaneously to supply requests. Regulating capability can be provided by online natural gas ........................................................................................................................................ 8 Natural Gas typically are fired by coal, nuclear, natural gas, geothermal, or biomass fuels. Some #12; Capabilities

386

Clean coal technologies in Asia  

Science Conference Proceedings (OSTI)

Asia`s growing need for cleaner coal technology will likely translate into increased opportunities for independent developers and equipment suppliers. Coal is projected to play a central role in meeting Asia`s rapidly growing electric power demand. In order to minimize the negative effects of coal comsumption, the application of clean coal technologies (CCTs) will be increasingly important for the viability of coal-fired plants developed by independent power producers. The environmental impact of coal consumption has created a growing market for clean coal technologies in Asia. A study commissioned by the US DOE estimates the market for new and retrofit installation of coal facilities in Asia to be between $410 billion and $560 billion between 1993 and 2010. Actual expenditures for CCTs during the same period are likely to be much less, but still significant. Cost continues to be a factor limiting the more wide spread application of these technologies. In most cases, the application of CCTs leads to a 15 percent to 20 percent increase in capital costs and 10 to 20 percent in operating costs.

Evans, P.

1995-04-01T23:59:59.000Z

387

Coal: Energy for the future  

SciTech Connect

This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

1995-05-01T23:59:59.000Z

388

Zero emission coal  

DOE Green Energy (OSTI)

We discuss a novel, emission-free process for producing hydrogen or electricity from coal. Even though we focus on coal, the basic design is compatible with any carbonaceous fuel. The process uses cyclical carbonation of calcium oxide to promote the production of hydrogen from carbon and water. The carbonation of the calcium oxide removes carbon dioxide from the reaction products and provides the additional energy necessary to complete hydrogen production without additional combustion of carbon. The calcination of the resulting calcium carbonate is accomplished using the high temperature waste heat from solid oxide fuel cells (SOFC), which generate electricity from hydrogen fuel. Converting waste heat back to useful chemical energy allows the process to achieve very high conversion efficiency from fuel energy to electrical energy. As the process is essentially closed-loop, the process is able to achieve zero emissions if the concentrated exhaust stream of CO{sub 2} is sequestered. Carbon dioxide disposal is accomplished by the production of magnesium carbonate from ultramafic rock. The end products of the sequestration process are stable naturally occurring minerals. Sufficient rich ultramafic deposits exist to easily handle all the world's coal.

Ziock, H.; Lackner, K.

2000-08-01T23:59:59.000Z

389

Table 8.11c Electric Net Summer Capacity: Electric Power Sector by ...  

U.S. Energy Information Administration (EIA)

(Breakout of Table 8.11b; Kilowatts) Year: Fossil Fuels: Nuclear Electric Power: Hydro-electric Pumped Storage: Renewable Energy: Other 8: Total: Coal 1: Petroleum 2 ...

390

Modeling the resolution of inexpensive, novel non-seismic geophysical monitoring tools to monitor CO2 injection into coal beds  

E-Print Network (OSTI)

of CO 2 enhanced coal bed methane (CBM) production. TheNIST Re Rx S Tx Coal Bed Methane Carbon dioxide ElectricCoal Beds as a part of the report on Stored CO 2 and Methane

Gasperikova, E.

2010-01-01T23:59:59.000Z

391

A GIS-based Assessment of Coal-based Hydrogen Infrastructure Deployment in the State of Ohio  

E-Print Network (OSTI)

electricity and CO 2 from coal with commercially readyHong B, Slatick E. Carbon dioxide emission factors for coal.EIA Quarterly Coal Report JanuaryApril 1994:18. 1994. DOE/

Johnson, Nils; Yang, Christopher; Ogden, J

2009-01-01T23:59:59.000Z

392

World coal outlook to the year 2000  

SciTech Connect

The 1983 edition of the World Coal Outlook to the Year 2000 examines the worldwide impact of lower oil prices and lower economic activity on the demand, production, and international trade in coal. The report includes detailed regional forecasts of coal demand by end-use application. Regions include the US, Canada, Western Europe, Japan, Other Asia, Latin America, Africa, Australia/New Zealand, Communist Europe, and Communist Asia. In addition, regional coal production forecasts are provided with a detailed analysis of regional coal trade patterns. In all instances, the changes relative to Chase's previous forecasts are shown. Because of the current situation in the oil market, the report includes an analysis of the competitive position of coal relative to oil in the generation of electricity, and in industrial steam applications. The report concludes with an examination of the impact of an oil price collapse on the international markets for coal.

1983-01-01T23:59:59.000Z

393

Materials challenges in advanced coal conversion technologies  

SciTech Connect

Coal is a critical component in the international energy portfolio, used extensively for electricity generation. Coal is also readily converted to liquid fuels and/or hydrogen for the transportation industry. However, energy extracted from coal comes at a large environmental price: coal combustion can produce large quantities of ash and CO{sub 2}, as well as other pollutants. Advanced technologies can increase the efficiencies and decrease the emissions associated with burning coal and provide an opportunity for CO{sub 2} capture and sequestration. However, these advanced technologies increase the severity of plant operating conditions and thus require improved materials that can stand up to the harsh operating environments. The materials challenges offered by advanced coal conversion technologies must be solved in order to make burning coal an economically and environmentally sound choice for producing energy.

Powem, C.A.; Morreale, B.D. [National Energy Technology Laboratory, Albany, OR (United States)

2008-04-15T23:59:59.000Z

394

Quarterly Coal Report January-March 1996  

Gasoline and Diesel Fuel Update (EIA)

1Q) 1Q) Distribution Category UC-950 Quarterly Coal Report January-March 1996 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts This publication was prepared by Paulette Young under the direction of Noel C. Balthasar, Chief, Coal Data Branch, Coal and Electric Data and Renewables Division, Office of Coal, Nuclear, Electric and Alter- nate Fuels. Specific information about

395

Annual Energy Outlook with Projections to 2025-Market Trends - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal Index (click to jump links) Coal Production and Prices Coal Mining Labor Productivity Coal Consumption Coal Production and Prices Emissions Caps Lead to More Use of Low-Sulfur Coal From Western Mines Continued improvements in mine productivity (which have averaged 5.9 percent per year since 1980) are projected to cause falling real minemouth prices throughout the forecast relative to historical levels. Higher electricity demand and lower prices, in turn, are projected to yield increasing coal demand, but the demand is subject to the overall sulfur emissions cap in the Clean Air Act Amendments of 1990, which encourages progressively greater reliance on the lowest sulfur coals (from Wyoming, Montana, Colorado, and Utah). Figure 106. Coal production by region, 1970-2025 (million short tons). Having problems, call our National Energy Information Center at 202-586-8800 for help.

396

Coal industry annual 1994  

SciTech Connect

This report presents data on coal consumption, distribution, coal stocks, quality, prices, coal production information, and emissions for a wide audience.

NONE

1995-10-01T23:59:59.000Z

397

NETL: CCPI - Demonstration of a Coal-Based Transport Gasifier...  

NLE Websites -- All DOE Office Websites (Extended Search)

Initiative (CCPI) - Round 2 Advanced Electric Power Generation - Integrated Gasification Combined Cycle Demonstration of a Coal-Based Transport Gasifier (Active) Project Brief...

398

Rail Coal Transportation Rates - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

In this latest release of Coal Transportation Rates to the Electric ... This report covers railroad transportation rates from 2001-2010 and barge and truck ...

399

U.S. Energy Information Administration | Annual Coal Distribution...  

Annual Energy Outlook 2012 (EIA)

because of independent rounding. Sources: Electric Power Sector: Form EIA-923, "Power Plant Operations Report;" Coke Plants: Form EIA-5, "Quarterly Coal Consumption and...

400

Coal - Energy Explained, Your Guide To Understanding Energy ...  

U.S. Energy Information Administration (EIA)

Solar Thermal Power Plants; Solar Thermal Collectors; ... Lignite is mainly burned at power plants to generate electricity. Also on Energy Explained. Use of Coal;

Note: This page contains sample records for the topic "director coal electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

U.S. Energy Information Administration | Annual Coal Distribution...  

Gasoline and Diesel Fuel Update (EIA)

State, 2012 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke)...

402

U.S. Energy Information Administration | Annual Coal Distribution...  

U.S. Energy Information Administration (EIA) Indexed Site

by Origin State, 2012 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke)...

403

U.S. Energy Information Administration | Quarterly Coal Distribution...  

U.S. Energy Information Administration (EIA) Indexed Site

3rd Quarter 2013 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke)...

404

Rail traffic reflects more oil production, less coal-fired ...  

U.S. Energy Information Administration (EIA)

The record increase in U.S. crude oil production during 2012 and the significant decline in coal use for domestic electricity generation were reflected in the ...

405

Coal in transition 1980--2000 demand considerations  

DOE Green Energy (OSTI)

The usefulness of the Brookhaven model, TESOM, lies in its exploration of the demand side of the energy system. Sectors where coal may be substituted for other energy forms are identified, and attractive technologies are highlighted. The results of the runs accord well with intuitive expectations. The increasing prices of oil and natural gas usually imply that (a) coal synthetics become increasingly attractive technologies, except in the High Demand and CRUNCH Cases (b) nuclear and hydro-electric generation are preferred technologies, (c) coal steam electric, even with expensive scrubbers, becomes more attractive than oil or gas steam electric by year 1990, (d) fluidized bed combustion for electricity generation is cost effective (with relatively small environmental impacts) when compared to oil, gas and coal steam electric. FBC process steam exhibits similar behavior. In the High Demand and CRUNCH scenarios, technologies such as solar electric, which are usually not chosen on the basis of cost, enter the solution because meeting demands has become extremely difficult. As the allowed coal expansion rate becomes a limiting factor, coal synthetics manufacturing becomes an unattractive alternative. This is due both to the need for coal electric generation to meet high electricity demand levels, and to the inefficiencies in the manufacturing process. Due to preferred allocation of coal to electricity generation or synthetics, direct coal use is reduced, although this is normally a preferred option.

Kydes, A S; Cherniavsky, E A

1977-12-01T23:59:59.000Z

406

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round...  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Advanced Electric Power Generation - Advanced Combustion Systems Healy Clean Coal Project - Project Brief PDF-226KB Alaska Industrial Development and Export Authority, Healy,...

407

Projected retirements of coal-fired power plants - Today in ...  

U.S. Energy Information Administration (EIA)

Current trends in the electric power market put many coal-fired generators in the United States at risk for retirement. In the Annual Energy Outlook ...

408

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round...  

NLE Websites -- All DOE Office Websites (Extended Search)

Control Technologies - Combined SO2 NOx Control Technologies Milliken Clean Coal Technology Demonstration Project - Project Brief PDF-342KB New York State Electric &...

409

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round...  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Environmental Control Technologies - NOx Control Technologies Micronized Coal Reburning Demonstration for NOx Control - Project Brief PDF-245KB New York State Electric & Gas...

410

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round...  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Advanced Electric Power Generation - Advanced Combustion Systems Clean Coal Diesel Demonstration Project - Project Brief PDF-57KB Arthur D. Little, Inc., Fairbanks, AK PROGRAM...

411

Coal - U.S. Energy Information Administration (EIA) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights ... Electric power sector consumption of coal by census region, 2010

412

Los Alamos Lab: NSO: Hot Spot: Director's Papers, Reviews  

NLE Websites -- All DOE Office Websites (Extended Search)

National Security Office. The Hot Spot page lists recently published Director's papers, book reviews, etc. Director's Paper: Safeguards at 40, LANL Director Michael Anastasio (pdf)...

413

Coal mining technology, economics and policy 1986  

SciTech Connect

This book presents the papers given at a conference on coal mining and coal preparation. Topics considered at the conference included fluidized-bed combustion, thermal drying, communications, environmental controls, ground subsidence with longwall mining, electric utilities, mine emergency planning, surface mining, dragline failures, rail transport, underground face operations, and remote seam mapping.

Not Available

1986-01-01T23:59:59.000Z

414

Weights and Measures State Directors M  

Science Conference Proceedings (OSTI)

State Directors M. Maine. Mailing Address, Contact Information. Maine Quality Assurance & Regulations 28 State House Station Augusta, ME 04333. ...

2013-08-26T23:59:59.000Z

415

Weights and Measures State Directors W - Z  

Science Conference Proceedings (OSTI)

State Directors W - Z. Washington. Mailing Address, Contact Information. WA Department of Agriculture PO Box 42560 Olympia, WA 98504. ...

2012-11-29T23:59:59.000Z

416

Office of the Director -- Chief of Staff  

Science Conference Proceedings (OSTI)

... Director in administering the policies, programs, and ... and ramifications of policy and program ... INTERNATIONAL AND ACADEMIC AFFAIRS OFFICE ...

2012-02-08T23:59:59.000Z

417

Weights and Measures State Directors IL  

Science Conference Proceedings (OSTI)

State Directors IL. Idaho. Mailing Address, Contact Information. ISDA Bureau of Weights & Measures PO Box 790 Boise, ID 83701. ...

2013-05-07T23:59:59.000Z

418

Naval Nuclear Propulsion Program Directorate, Washington ...  

Science Conference Proceedings (OSTI)

Naval Nuclear Propulsion Program Directorate, Washington, DC. NVLAP Lab Code: 100565-10. Address and Contact Information: Naval Reactors ...

2013-07-26T23:59:59.000Z

419

Naval Nuclear Propulsion Program Directorate, Washington ...  

Science Conference Proceedings (OSTI)

Naval Nuclear Propulsion Program Directorate, Washington, DC. NVLAP Lab Code: 100565-0. Address and Contact Information: ...

2013-08-23T23:59:59.000Z

420

Naval Nuclear Propulsion Program Directorate, Washington ...  

Science Conference Proceedings (OSTI)

Naval Nuclear Propulsion Program Directorate, Washington, DC. NVLAP Lab Code: 100565-2. Address and Contact Information: Point Loma, Bldg. ...

2013-08-23T23:59:59.000Z

Note: This page contains sample records for the topic "director coal electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Lab Director's Diversity & Inclusion Message | Argonne National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Diversity Message from the Lab Director Diversity & Inclusion Advisory Council Workforce Pipeline Mentoring Leadership Development Policies & Practices Business Diversity Outreach...

422

Coal: America's energy future. Volume I  

SciTech Connect

Secretary of Energy Samuel W. Bodman requested the National Coal Council in April 2005 a report identifying the challenges and opportunities of more fully exploring the USA's domestic coal resources to meet the nations' future energy needs. This resultant report addresses the Secretary's request in the context of the President's focus, with eight findings and recommendations that would use technology to leverage the USA's extensive coal assets and reduce dependence on imported energy. Volume I outlines these findings and recommendations. Volume II provides technical data and case histories to support the findings and recommendations. Chapter headings of Volume I are: Coal-to-Liquids to Produce 2.6 MMbbl/d; Coal-to-Natural Gas to Produce 4.0 Tcf Per Year; Coal-to-Clean Electricity; Coal to Produce Ethanol; Coal-to-Hydrogen; Enhanced Oil and Gas (Coalbed Methane); Recovery as Carbon Management Strategies; Delineate U.S. Coal Reserves and Transportation Constraints as Part of an Effort to Maximize U.S. Coal Production; and Penn State Study, 'Economic Benefits of Coal Conversion Investments'.

NONE

2006-03-15T23:59:59.000Z

423

Analysis of photographic records of coal pyrolysis  

SciTech Connect

Bituminous coals upon heating undergo melting and pyrolytic decomposition with significant parts of the coal forming an unstable liquid that can escape from the coal by evaporation. The transient liquid within the pyrolyzing coal causes softening or plastic behavior that can influence the chemistry and physics of the process. Bubbles of volatiles can swell the softened coal mass in turn affecting the combustion behavior of the coal particles. The swelling behavior of individual coal particles has to be taken into account both as the layout as well as for the operation of pyrolysis, coking and performance of coal-fired boilers. Increased heating rates generally increase the amount of swelling although it is also known that in some cases, even highly swelling coals can be transformed into char with no swelling if they are heated slowly enough. The swelling characteristics of individual coal particles have been investigated by a number of workers employing various heating systems ranging from drop tube and shock tube furnaces, flow rate reactors and electrical heating coils. Different methods have also been employed to determine the swelling factors. The following sections summarize some of the published literature on the subject and outline the direction in which the method of analysis will be further extended in the study of the swelling characteristics of hvA bituminous coal particles that have been pyrolyzed with a laser beam.

Dodoo, J.N.D.

1991-10-01T23:59:59.000Z

424

A GIS-based Assessment of Coal-based Hydrogen Infrastructure Deployment in the State of Ohio  

E-Print Network (OSTI)

6 Coal price (2005$) $1.29/MMBTU 93.8 kg CO 2 /MMBTU coal COsales $0.05/kWh price (2005$) Coal type Illinois no.coal-to- electricity ef?ciency is 37%, carbon capture is 91%, and the electricity price

Johnson, Nils; Yang, Christopher; Ogden, J

2009-01-01T23:59:59.000Z

425

Analysis and scaling of a two-stage fluidized bed for drying of fine coal particles using Shannon entropy, thermodynamic exergy and statistical methods.  

E-Print Network (OSTI)

??Liquid water (moisture) in coal causes a number of economic and environmental issues for the mining and electrical power generation industries. Coal preparation plants utilize (more)

Rowan, Steven Lee.

2010-01-01T23:59:59.000Z

426

Comparative Environmental Impacts of Electric Bikes in China  

E-Print Network (OSTI)

for generation. In China, the energy mix is 75% coal, 15%Chinas electricity is generated by coal power plants, the actual energy mixenergy mix on the emission rates of electric bikes. Generally, provinces in south- ern China

Cherry, Christopher R.; Weinert, Jonathan X.; Yang, Xinmiao

2009-01-01T23:59:59.000Z

427

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Knocking the NOx Out of Coal Clean Coal 101 Lesson 3: Knocking the NOx Out of Coal How NOx Forms NOx Formation Air is mostly nitrogen molecules (green in the above diagram) and...

428

Coal and bituminous reserves  

SciTech Connect

Chapter 5 of this book contains sections entitled: other coal processes; underground processing of coal; and other important energy sources.

NONE

2008-02-15T23:59:59.000Z

429

Daniel Sperling Professor and Director  

E-Print Network (OSTI)

and wasteful for everyone · 30 years ago ­ Synfuels (oil shale, coal) · 22 years ago ­ Methanol (and CNG) · 18 Produced WEO required Cumulative 2030 Arctic Deep Water Super Deep EOR Heavy oil Bitumen Oil Shale Other Already Produced WEO required Cumulative 2030 Arctic Deep Water Super Deep EOR Heavy oil Bitumen Oil Shale

California at Davis, University of

430

Domestic Distribution of U.S. Coal by Destination State,  

U.S. Energy Information Administration (EIA) Indexed Site

2008 2008 Final May 2010 2008 Changes in Coal Distribution Table Format and Data Sources Introduction The Coal Distribution Report - Annual provides detailed information on domestic coal distribution by origin State, destination State, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-exporting State. This Final 2008 Coal Distribution Report - Annual, supersedes the Preliminary 2008 Coal Distribution Report - Annual. This report relies on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. In addition, the report contains actual annual data instead of imputed data for smaller electric generation plants that are excluded from the

431

Vice President for Student Affairs Executive Director, CSU Health Network  

E-Print Network (OSTI)

Director of Medical Services Pharmacy Dental Services Laboratory Services Women's Clinic Assistant Director Behavioral Health Director of Specialty Counseling Services Drugs, Alcohol, & You (DAY) Programs i Behavioral Health Director of Business Services Accounting Student Health Insurance Human Resources Manager

432

EIA - Distribution of U.S. Coal by Destination  

U.S. Energy Information Administration (EIA) Indexed Site

Destination Destination Glossary Home > Coal> Distribution of U.S. Coal by Destination Distribution of U.S. Coal by Destination Release Date: January 2006 Next Release Date: 2006 Distribution of U.S Coal by Destination Domestic Distribution of U.S. Coal by Destination State, Consumer, Destination and Method of Transportation, 2004 (Thousand Short Tons) DESTINATION: ALASKA State of Origin by Method of Transportation Electricity Generation Coke Plants Industrial Plants (Except Coke) Residential and Commercial Total Alaska 460 - - 497 957 Railroad 256 - - 497 753 Truck 204 - - * 204 State Total 460 - - 497 957 Railroad 256 - - 497 753 Truck 204 - - * 204 EIA - Distribution of U.S. Coal by Destination

433

Adv. Coal Tech. Action Team Progress Report Note: While this Progress Report should be as brief as possible, please write it with  

E-Print Network (OSTI)

Adv. Coal Tech. Action Team Progress Report Note: While this Progress Report should be as brief acronyms after fully spelling out what they stand for. Date: 7.3.2008 Name of Action Team: Advanced Coal, Director, OPAR/OAR Current Team Members: Environmental Problem: Reducing the environmental impacts of coal

434

Director  

E-Print Network (OSTI)

All data are provisional. The HIV/AIDS Surveillance Supplemental Report is not copyrighted and may be used and copied without permission. Citation of the source is, however, appreciated.

unknown authors

2007-01-01T23:59:59.000Z

435

Annual Energy Outlook 2006 with Projections to 2030 - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal Annual Energy Outlook 2006 with Projections to 2030 Market Share of Western Coal Continues To Increase U.S. coal production has remained near 1,100 million tons annually since 1996. In the AEO2006 reference case, increasing coal use for electricity generation at existing plants and construction of a few new coal-fired plants lead to annual production increases that average 1.1 percent per year from 2004 to 2015, when total production is 1,272 million tons. The growth in coal production is even stronger thereafter, averaging 2.0 percent per year from 2015 to 2030, as substantial amounts of new coal-fired generating capacity are added, and several CTL plants are brought on line. Figure 97. Coal production by region, 1970-2030 (million short tons). Need help, contact the National Energy Information Center at 202-586-8800 for help.

436

Quarterly Coal Report, October-December 1997  

Gasoline and Diesel Fuel Update (EIA)

4Q) 4Q) Distribution Category UC-950 Quarterly Coal Report October-December 1997 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts This publication was prepared by Paulette Young under the direction of Mary K. Paull, Project Leader, Coal Data Branch, Coal and Electric Data and Renewables Division, Office of Coal, Nuclear, Elec- tric and Alternate Fuels. Questions addressing the

437

Quarterly Coal Report October-December 1996  

Gasoline and Diesel Fuel Update (EIA)

4Q) 4Q) Distribution Category UC-950 Quarterly Coal Report October-December 1996 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts This publication was prepared by Paulette Young under the direction of Mary K. Paull, Acting Chief, Coal Data Branch, Coal and Electric Data and Renewables Division, Office of Coal, Nuclear, Elec- tric and Alternate Fuels. Specific information about

438

Quarterly Coal Report, January-March 1998  

Gasoline and Diesel Fuel Update (EIA)

1Q) 1Q) Distribution Category UC-950 Quarterly Coal Report January-March 1998 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts This publication was prepared by Paulette Young under the direction of Mary K. Paull, Project Leader, Coal Data Branch, Coal and Electric Data and Renewables Division, Office of Coal, Nuclear, Elec- tric and Alternate Fuels. Questions addressing the

439

Quarterly Coal Report, January-March 1997  

Gasoline and Diesel Fuel Update (EIA)

1Q) 1Q) Distribution Category UC-950 Quarterly Coal Report January-March 1997 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts This publication was prepared by Paulette Young under the direction of Mary K. Paull, Acting Chief, Coal Data Branch, Coal and Electric Data and Renewables Division, Office of Coal, Nuclear, Elec- tric and Alternate Fuels. Questions addressing the

440

Quarterly Coal Report, July-September 1997  

Gasoline and Diesel Fuel Update (EIA)

3Q) 3Q) Distribution Category UC-950 Quarterly Coal Report July-September 1997 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts This publication was prepared by Paulette Young under the direction of Mary K. Paull, Project Leader, Coal Data Branch, Coal and Electric Data and Renewables Division, Office of Coal, Nuclear, Elec- tric and Alternate Fuels. Questions addressing the

Note: This page contains sample records for the topic "director coal electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Novel Fuel Cells for Coal Based Systems  

DOE Green Energy (OSTI)

The goal of this project was to acquire experimental data required to assess the feasibility of a Direct Coal power plant based upon an Electrochemical Looping (ECL) of Liquid Tin Anode Solid Oxide Fuel Cell (LTA-SOFC). The objective of Phase 1 was to experimentally characterize the interaction between the tin anode, coal fuel and cell component electrolyte, the fate of coal contaminants in a molten tin reactor (via chemistry) and their impact upon the YSZ electrolyte (via electrochemistry). The results of this work will provided the basis for further study in Phase 2. The objective of Phase 2 was to extend the study of coal impurities impact on fuel cell components other than electrolyte, more specifically to the anode current collector which is made of an electrically conducting ceramic jacket and broad based coal tin reduction. This work provided a basic proof-of-concept feasibility demonstration of the direct coal concept.

Thomas Tao

2011-12-31T23:59:59.000Z

442

"1. Paradise","Coal","Tennessee Valley Authority",2201 "2. Ghent","Coal","Kentucky Utilities Co",1918  

U.S. Energy Information Administration (EIA) Indexed Site

Kentucky" Kentucky" "1. Paradise","Coal","Tennessee Valley Authority",2201 "2. Ghent","Coal","Kentucky Utilities Co",1918 "3. E W Brown","Coal","Kentucky Utilities Co",1546 "4. Mill Creek","Coal","Louisville Gas & Electric Co",1472 "5. Trimble County","Coal","Louisville Gas & Electric Co",1471 "6. H L Spurlock","Coal","East Kentucky Power Coop, Inc",1346 "7. Shawnee","Coal","Tennessee Valley Authority",1330 "8. Big Sandy","Coal","Kentucky Power Co",1060 "9. Riverside Generating LLC","Gas","Riverside Generating Co LLC",825

443

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

Pollutants Associated With Coal Combustion. E.P.A.Control Guidelines for Coal-Derived Pollutants .Forms of Sulfur in Coal . . . . Coal Desulfurization

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

444

Coal gasification  

Science Conference Proceedings (OSTI)

A standard series of two staged gas generators (GG) has been developed in the United States for producing gas with a combustion heat from 4,700 to 7,600 kilojoules per cubic meter from coal (U). The diameter of the gas generators is from 1.4 to 3.65 meters and the thermal capacity based on purified cold gas is from 12.5 to 89 million kilojoules per hour. Certain standard sized gas generators have undergone experimental industrial tests which showed that it is most expedient to feed the coal into the gas generators pneumatically. This reduces the dimensions of the charging device, makes it possible to use more common grades of structural steels and reduces the cost of the gas. A double valve reliably prevents ejections of the gasification product and promotes the best distribution of the coal in the gas generator. The gas generators may successfully operate on high moisture (up to 36 percent) brown coal. Blasting with oxygen enriched to 38 percent made it possible to produce a gas with a combustion heat of 9,350 kilojoules per cubic meter. This supports a combustion temperature of 1,700C.

Rainey, D.L.

1983-01-01T23:59:59.000Z

445

California's Summer 2004 Electricity Supply and Demand Outlook  

E-Print Network (OSTI)

transmission or system-wide electricity failures will occur; and, · No significant gaming (manipulationCALIFORNIA ENERGY COMMISSION California's Summer 2004 Electricity Supply and Demand Outlook Ashuckian, Manager Electricity Analysis Office Terrence O'Brien, Deputy Director Systems Assessment

446

Fuel Use in Electricity Generation - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Fuel Use in Electricity Generation ... Cost of coal and natural gas delivered to electric power plants in the Mid-Atlantic and Southeast, Jan 2007- April 2012 . 2

447

EIA - State Electricity Profiles - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010: Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, ...

448

EIA - State Electricity Profiles - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, Natural Gas, 1990 Through 2010: Table 7. Electric Power Industry Emissions ...

449

Electric Power Monthly January 2012 - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Electric Power Monthly January 2012 ... Table 4.16. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Independent Power Producers

450

Electricity | U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Most of the electricity in the United States is produced using steam turbines. Coal is the most common fuel for generating electricity in the United States.

451

Valley Electric Association- Net Metering  

Energy.gov (U.S. Department of Energy (DOE))

The Board of Directors for Valley Electric Association (VEA) approved net metering in April 2008. The rules apply to systems up to 30 kW, though owners of larger systems may be able to negotiate...

452

University Coal Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation Clean Coal Crosscutting Research University Coal Research University Coal Research Clean Coal Turbines Gasification Fuel Cells Hydrogen from Coal Coal...

453

O A L Section 2. Coal  

U.S. Energy Information Administration (EIA)

Section 2. Coal Coal prices are developed for the following three categories: coking coal; steam coal (all noncoking coal); and coal coke imports and exports.

454

The coal-wind connection  

Science Conference Proceedings (OSTI)

The USA now has more than 10,000 MW of wind capacity and more wind farms are expected to be built. However transmissions constraints are great, especially in the Northwest and upper Midwest, where abundant wind resources span sparsely populated regions. These areas also hold major deposits of coal. Partnerships are being developed to share transmission to accommodate both new wind and new coal-fired capacity. Wyoming may well be the epicentre of the issue. Another idea, in wind-prone Texas, is to further integrate wind with baseload fossil power resources by creation of competitive renewable energy zones (CREZs). New transmission corridors will be set up linking the renewable energy zones to power markets in ERCOT, the Electric Reliability Council of Texas. There are problems of co-developing coal and wind capacity with common transmission. If coal gasification technology emerges on a commercial scale there would be a good opportunity for integrated gasification combined cycle which can cycle to firm up variable wind generation. Several coal companies in Wyoming are considering gasifying coal and putting it into the pipeline. 2 photos.

Blankinship, S.

2007-01-15T23:59:59.000Z

455

"1. John E Amos","Coal","Appalachian Power Co",2900 "2. Harrison Power Station","Coal","Allegheny Energy Supply Co LLC",1954  

U.S. Energy Information Administration (EIA) Indexed Site

West Virginia" West Virginia" "1. John E Amos","Coal","Appalachian Power Co",2900 "2. Harrison Power Station","Coal","Allegheny Energy Supply Co LLC",1954 "3. Mt Storm","Coal","Virginia Electric & Power Co",1571 "4. Mitchell","Coal","Ohio Power Co",1560 "5. Mountaineer","Coal","Appalachian Power Co",1310 "6. Pleasants Power Station","Coal","Allegheny Energy Supply Co LLC",1288 "7. Fort Martin Power Station","Coal","Monongahela Power Co",1107 "8. Philip Sporn","Coal","Appalachian Power Co",1020 "9. Kammer","Coal","Ohio Power Co",600

456

Principal Associate Director - Science, Technology, and Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Principal Associate Director - Science, Technology, and Engineering Principal Associate Director - Science, Technology, and Engineering Bishop oversees directorates of Chemistry, Life, and Earth Sciences; Engineering and Engineering Sciences; Experimental Physical Sciences; Information Technology; and Theory, Simulation, and Computation. Contact Operator Los Alamos National Laboratory (505 667-5061 Bishop is a Fellow of the American Physical Society, the Institute of Physics, and the American Association for the Advancement of Science; a recipient of the Department of Energy's E.O. Lawrence Award; a Humboldt Senior Fellow; and a LANL Fellow. Alan R. Bishop Principal Associate Director for Science, Technology, and Engineering Alan R. Bishop, Acting Principal Associate Director for Science, Technology and Engineering As Principal Associate Director for Science, Technology, and Engineering,

457

Photon Sciences Directorate at Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Directorate at Directorate at Brookhaven National Laboratory 2010 ANNUAL REPORT DISCOVERY 2010 AnnuAl RepoRt Photon Sciences Directorate at Brookhaven National Laboratory Photon Sciences Directorate at Brookhaven National Laboratory 2010 ANNUAL REPORT Kendra Snyder Editor Laura Mgrdichian Science Writer Mona S. Rowe Science Writer Tiffany Bowman Graphic Designer Office of Science the photon Sciences Directorate at Brookhaven national laboratory operates the national Synchrotron light Source (nSlS) and is constructing the national Synchrotron light Source II (nSlS-II). nSlS and nSlS-II are offi ce of Science user Facilities supported by the u.S. Department of energy offi ce of Science. 2010 AnnuAl RepoRt Photon Sciences Directorate at Brookhaven National Laboratory Disclaimer

458

Coal waste seen as valuable resource Published: March. 29, 2011 at 8:09 PM  

E-Print Network (OSTI)

Coal waste seen as valuable resource Published: March. 29, 2011 at 8:09 PM ANAHEIM, Calif., March 29 (UPI) -- Fly ash, a byproduct of coal-burning electric power plants, could save billions. More than 450 coal-burning electric power plants in the United States produce about 130 million tons

Belogay, Eugene A.

459

Clean Coal Power Initiative Round 3  

NLE Websites -- All DOE Office Websites (Extended Search)

CARBON STORAGE PROGRAM INFRASTRUCTURE ANNUAL REVIEW MEETING, November 15-17, 2011 CARBON STORAGE PROGRAM INFRASTRUCTURE ANNUAL REVIEW MEETING, November 15-17, 2011 Carbon Storage in DOE/NETL Major Demonstrations Gary J. Stiegel Director, Major Projects Division Office of Major Demonstrations 2 DOE's Coal RD&D Investment Strategy Commercial Readiness RESEARCH & DEVELOPMENT Core Coal and Power Systems R&D DOE - FE - NETL TECHNOLOGY DEMONSTRATION Clean Coal Power Initiative Stimulus Activities DOE - FE - NETL FINANCIAL INCENTIVES Tax Credits Loan Guarantees DOE - LGO - IRS TECHNOLOGIES & BEST PRACTICES < 10% increase COE with CCS (pre-combustion) < 35% increase COE with CCS (post- and oxy-combustion) < $400/kW fuel cell systems (2002 $) > 50% plant efficiency, up to 60% with fuel cells > 90% CO

460

Electric sales and revenue 1994  

Science Conference Proceedings (OSTI)

The Electric Sales and Revenue is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Information is provided on electricity sales, associated revenue, average revenue per kilowatthour sold, and number of consumers throughout the United States. The data provided in the Electric Sales and Revenue are presented at the national, Census division, State, and electric utility levels. The information is based on annual data reported by electric utilities for the calendar year ending December 31, 1994.

NONE

1995-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "director coal electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Electric vehicles  

SciTech Connect

Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

Not Available

1990-03-01T23:59:59.000Z

462

Weights and Measures State Directors T - V  

Science Conference Proceedings (OSTI)

... Joe Benavides, Director for Consumer Product Protection Phone: (512) 463-5706 Fax: (888) 215-5386. Utah. Mailing Address, Contact Information. ...

2013-03-05T23:59:59.000Z

463

TMS Board of Directors: Srinivas Chada  

Science Conference Proceedings (OSTI)

He currently serves on the board of directors for The Minerals, Metals, and Materials Society (TMS) as the Chair of the Electronic, Magnetic, and Photonic...

464

NREL: Director's Page - Interviews and Articles  

NLE Websites -- All DOE Office Websites (Extended Search)

of Let's Talk interviews NREL Director Dr. Dan Arvizu about NREL's role in American energy policy and the challenges facing renewable energy development. Dr. Arvizu also...

465

Chemical Sciences Division: Introduction: Director's Statement  

NLE Websites -- All DOE Office Websites (Extended Search)

Division Overview Under Construction Ali Belkacem Chemical Sciences Division Director Chemical Sciences Division Research Affiliations Our four core programs-Chemical Physics; The...

466

Mr. Carl Schafer Director of Environmental Policy  

Office of Legacy Management (LM)

k-& +gj --%- Washington, DC 20545 Mr. Carl Schafer Director of Environmental Policy Office of the Deputy Assistant Secretary of Defense for Installations Pentagon Washington, D.C....

467

Business Operations Directorate, Brookhaven National Laboratory...  

NLE Websites -- All DOE Office Websites (Extended Search)

BNL People Site Details Directorate Homepage Contact Us Divisions & Offices Budget Office Fiscal Services Division Other Information BNL Site Index Can't View PDFs? Business...

468

SLAC National Accelerator Laboratory - Accelerator Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

physics. Today, the Accelerator Directorate operates and maintains SLAC's existing accelerators to provide the highest possible level of performance. Accelerator employees improve...

469

Milton Appointed as ANL LCLS Project Director  

NLE Websites -- All DOE Office Websites (Extended Search)

side of the project has been ably overseen by Efim Gluskin, Director of the Experimental Facilities Division. However, as the project ramps up, it is essential that LCLS...

470

LLNL, LANL, Sandia directors visit Russian laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

LLNL Go Home > News > News Center > Around the Lab > 073012russian 07272012 LLNL, LANL, Sandia directors visit Russian laboratories Lauren Y Devore, LLNL, (925) 422-0855,...

471

About the Deputy Director: Short Scientific Biography  

NLE Websites -- All DOE Office Websites (Extended Search)

Horst Simon is an internationally recognized expert in computer science and applied mathematics and the Deputy Director of Lawrence Berkeley National Laboratory (Berkeley Lab)....

472

Continuing disposal of coal ash  

Science Conference Proceedings (OSTI)

The large volume of power-plant coal ash produced and stricter Federal water pollution controls are making ash disposal increasingly difficult for utilities. The protection of surface and ground water quality required in the Resource conservation and Recovery Act of 1976 (RCRA) and the Federal Water Pollution Control Act's Clean Water Act (CWA) amendments of 1977 have raised the cost of disposal to a level where an acceptable method must be found. The Electric Power Research Institute's Coal Ash Disposal Manual (EPRI-FM--1257) describes-ash chemistry, disposal site selection, site monitoring and reclamation, and other information of interest to utilities that are making cost estimates and procedure evaluations. (DCK)

Lihach, N.; Golden, D.

1980-03-01T23:59:59.000Z

473

Docket No. EO-05-01: Letter from Kevin Kolevar, Director Office of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

from Kevin Kolevar, Director Office of from Kevin Kolevar, Director Office of Electricity Delivery and Energy Reliability, to Mr. Robert Driscoll, CEO Mirant Mid-Atlantic, LLC Docket No. EO-05-01: Letter from Kevin Kolevar, Director Office of Electricity Delivery and Energy Reliability, to Mr. Robert Driscoll, CEO Mirant Mid-Atlantic, LLC Docket No. EO-05-01: On December 20, 2005, the Secretary of Energy issued DOE Order No. 202-05-3, pursuant to section 202(c) of the Federal Power Act, 16 U.S.c. § 824a(c), ordering the operation of the Potomac River Generating Station (the Plant) owned by Mirant Potomac River, LLC (Mirant). DOE has determined that the operation of the Plant under Option A pursuant to DOE's January 4, 2006 instructions does not provide an adequate level of electric reliability to the Central D.C. area under current circumstances. Operation

474

Coal industry annual 1997  

Science Conference Proceedings (OSTI)

Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

NONE

1998-12-01T23:59:59.000Z

475

DOE's Coal Research and Development | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Research and Development Coal Research and Development DOE's Coal Research and Development October 13, 2011 - 2:14pm Addthis Statement of Mr. Scott Klara, Deputy Laboratory Director, National Energy Technology Laboratory before the Subcommittee on Energy and Environment, Committee on Science, Space and Technology, U.S. House of Representatives. Thank you Chairman Harris and members of the Subcommittee; I appreciate the opportunity to discuss the Department of Energy's (DOE) coal research & development activities. Interagency Task Force on Carbon Capture and Storage Before I discuss the Department's Clean Coal Research Program, I will briefly review the conclusions from the Interagency Task Force on Carbon Capture & Storage (CCS). In August 2010, the final report from the Task

476

Coal industry annual 1996  

Science Conference Proceedings (OSTI)

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

NONE

1997-11-01T23:59:59.000Z

477

Coal Industry Annual 1995  

SciTech Connect

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

1996-10-01T23:59:59.000Z

478

Clean Coal Incentive Tax Credit (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Coal Incentive Tax Credit (Kentucky) Clean Coal Incentive Tax Credit (Kentucky) Clean Coal Incentive Tax Credit (Kentucky) < Back Eligibility Developer Investor-Owned Utility Municipal/Public Utility Utility Program Info State Kentucky Program Type Property Tax Incentive Provider Kentucky Cabinet for Economic Development Clean Coal Incentive Tax Credit provides for a property tax credit for new clean coal facilities constructed at a cost exceeding $150 million and used for the purposes of generating electricity. Before the credit is given, the Environmental and Public Protection Cabinet must certify that a facility is reducing emissions of pollutants released during electric generation through the use of clean coal equipment and technologies. The amount of the allowable credit is $2 per ton of eligible coal purchased that is used to

479

Microbial solubilization of coal  

DOE Patents (OSTI)

The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

Strandberg, G.W.; Lewis, S.N.

1988-01-21T23:59:59.000Z

480

Reducing the moisture content of clean coals  

SciTech Connect

Coal moisture content can profoundly effect the cost of burning coal in utility boilers. Because of the large effect of coal moisture, the Empire State Electric Energy Research Corporation (ESEERCO) contracted with the Electric Power Research Institute to investigate advanced coal dewatering methods at its Coal Quality Development Center. This report contains the test result on the high-G solid-bowl centrifuge, the second of four devices to be tested. The high-G solid-bowl centrifuge removes water for coal by spinning the coal/water mixture rapidly in a rotating bowl. This causes the coal to cling to the sides of the bowl where it can be removed, leaving the water behind. Testing was performed at the CQDC to evaluate the effect of four operating variables (G-ratio, feed solids concentration, dry solids feed rate, and differential RPM) on the performance of the high-G solid-bowl centrifuge. Two centrifuges of different bowl diameter were tested to establish the effect of scale-up of centrifuge performance. Testing of the two centrifuges occurred from 1985 through 1987. CQDC engineers performed 32 tests on the smaller of the two centrifuges, and 47 tests on the larger. Equations that predict the performance of the two centrifuges for solids recovery, moisture content of the produced coal, and motor torque were obtained. The equations predict the observed data well. Traditional techniques of establishing the performance of centrifuge of different scale did not work well with the two centrifuges, probably because of the large range of G-ratios used in the testing. Cost of operating a commercial size bank of centrifuges is approximately $1.72 per ton of clean coal. This compares well with thermal drying, which costs $1.82 per ton of clean coal.

Kehoe, D. (CQ, Inc., Homer City, PA (United States))

1992-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "director coal electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Energy Policy Act transportation rate study: Interim report on coal transportation  

SciTech Connect

The primary purpose of this report is to examine changes in domestic coal distribution and railroad coal transportation rates since enactment of the Clean Air Act Amendments of 1990 (CAAA90). From 1988 through 1993, the demand for low-sulfur coal increased, as a the 1995 deadline for compliance with Phase 1 of CAAA90 approached. The shift toward low-sulfur coal came sooner than had been generally expected because many electric utilities switched early from high-sulfur coal to ``compliance`` (very low-sulfur) coal. They did so to accumulate emissions allowances that could be used to meet the stricter Phase 2 requirements. Thus, the demand for compliance coal increased the most. The report describes coal distribution and sulfur content, railroad coal transportation and transportation rates, and electric utility contract coal transportation trends from 1979 to 1993 including national trends, regional comparisons, distribution patterns and regional profiles. 14 figs., 76 tabs.

NONE

1995-10-01T23:59:59.000Z

482

A Viewgraph from the Director  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 A Viewgraph from the Director ...no one foresaw that the new cores would reveal a climatic flickering of great frequency and magnitude... Art Rosenfeld Global Warming Warning: Don't Fool with the Climate I am pleased to be able to bring you this column for the premier issue of our newsletter because it's an opportunity to present the Center's current favorite viewgraph. I hope that readers who decide the information presented here is useful will pass it along to others. Everything we develop at the Center, from hardware to policy, is aimed at saving energy and money through investments that will pay for themselves in a short time. In a rational market, these ideas sell themselves. But we now know that even before the 1973 oil embargo, when the payback time for

483

Mr. Glen Sjoblom Deputy Director  

Office of Legacy Management (LM)

Washington, Df: 20545 Washington, Df: 20545 ,J.LlN 2 0 19% Mr. Glen Sjoblom Deputy Director Division of Industrial and Medical Nuclear Safety Office of Nuclear Materials Safety and Safeguards U. S. Nuclear Regulatory Commission r " Washington, D.C. 20555 Dear Mr. Sjoblom: As a part of its Formerly Utilized Sites Remedial Action Program (FUSRAP), the U. S. Department of Energy (DOE) is trying to identify all sites and facilities where radioactive materials were handled, processed or used in support of Manhattan Engineer District (MED) and Atomic Energy Commission (AEC) activities from 1942 through the mid-1960's. The authority to conduct remedial action under FUSRAP, derived from the Atomic Energy Act of 1954, as amendedi is limited to those sites operated prior to the

484

A Viewgraph from the Director  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 A Viewgraph from the Director Art Rosenfeld standing in front of a black board. Art Rosenfeld The Implementation Age: Don't Forget R&D The energy-efficiency community welcomes the federal government's renewed emphasis on implementing new technologies to save energy, money, and the environment. A product of this new direction is the Climate Change Action Plan, which aims to cap U.S. carbon dioxide emissions at 1990 levels by the year 2000. Building energy efficiency will play a major role in the plan in the form of strategies like: Increased government-industry-utility collaboration to produce ''market pull'' programs designed to boost sales of new technologies. Emphasis on retrofitting public buildings for energy efficiency, getting government to practice what it preaches.

485

Mr. Glen Sjoblom Deputy Director  

Office of Legacy Management (LM)

J-UN 2 0 1590 J-UN 2 0 1590 Mr. Glen Sjoblom Deputy Director Di.vision of Industrial and Medical Nuclear Safety Office of Nuclear Materials Safety and Safeguards. U. S. Nuclear Regulatory C&iitii'&&; Washington, D.C. 20555 Dear Mr. Sjoblom: As a part of its Formerly Utilized Sites Remedial Action Program (FUSRAP), the U. S. Department of Energy (DOE) is trying to identify all sites and facilities where radioactive materials were handled, processed or used in support of Manhattan Engineer. District (MED) and Atomic Energy Commission (AEC) activities from 1942 through the mid-1960's. ,The authority to conduct remed,ial action under FUSRAP, derived from the Atomic Energy Act of 1954, as amended, is limited,to those sites operated prior to the establishment of AEC licensing requirements and at sites that were

486

Evaluation of sorbents for the cleanup of coal-derived synthesis gas at elevated temperatures  

E-Print Network (OSTI)

Integrated Gasification Combined Cycle (IGCC) with carbon dioxide capture is a promising technology to produce electricity from coal at a higher efficiency than with traditional subcritical pulverized coal (PC) power plants. ...

Couling, David Joseph

2012-01-01T23:59:59.000Z

487

The Prospects for Coal-To-Liquid Conversion: A General Equilibrium Analysis  

E-Print Network (OSTI)

We investigate the economics of coal-to-liquid (CTL) conversion, a polygeneration technology that produces liquid fuels, chemicals, and electricity by coal gasification and Fischer-Tropsch process. CTL is more expensive ...

Chen, Y.-H. Henry

488

Coal Transportation Rate Sensitivity Analysis  

Reports and Publications (EIA)

On December 21, 2004, the Surface Transportation Board (STB) requested that the Energy Information Administration (EIA) analyze the impact of changes in coal transportation rates on projected levels of electric power sector energy use and emissions.Specifically, the STB requested an analysis of changes in national and regional coalconsumption and emissions resulting from adjustments in railroad transportation rates for Wyoming's Powder River Basin (PRB) coal using the National Energy Modeling System(NEMS). However, because NEMS operates at a relatively aggregate regional level and does not represent the costs of transporting coal over specific rail lines, this analysis reports on the impacts of interregional changes in transportation rates from those used in the Annual Energy Outlook 2005 (AEO2005) reference case.

John Conti

2005-04-01T23:59:59.000Z

489

Coal liquefaction and hydrogenation  

DOE Patents (OSTI)

Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

Schindler, Harvey D. (Fair Lawn, NJ); Chen, James M. (Edison, NJ)

1985-01-01T23:59:59.000Z

490

Coal industry annual 1993  

Science Conference Proceedings (OSTI)

Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

Not Available

1994-12-06T23:59:59.000Z

491

Survey of the State-of-the-Art of Coal Handling During Freezing Weather  

Science Conference Proceedings (OSTI)

This report presents a state-of-the-art review of coal-handling procedures and programs used by electric utilities, coal mines, and coal transfer stations during periods of freezing weather. The use of freeze-conditioning agents to reduce coal-handling problems is discussed, as well as the relative efficacy of various nonchemical techniques. Guidelines for handling frozen coal that reflect typical problems and solutions are given.

1981-04-04T23:59:59.000Z

492

Assistant Director Office of the Treasurer  

E-Print Network (OSTI)

Director Bob Barto Sr. Inspector Doug McGinnis Sr. Inspector George Levinthal Project Manager Jeff Enge Sr. Inspector Mark Peppers Project Manager Peter Ryan Sr. Inspector Rick Whitehead Sr. Inspector Tom Haas Sr. Inspector Ray Aronson Associate Director Daniel Belding Project Manager Anne-Marie Nething Analyst 1 Dan

Indiana University

493

Demographic Directorate 2012 Summer Internship Program  

E-Print Network (OSTI)

. This opportunity is a paid, ten-week program starting June 2012. The program offers interns an opportunity to work. The program consists of a combination of work within a particular branch, a series of training seminarsDemographic Directorate 2012 Summer Internship Program The Demographic Directorate of the United

Peterson, Blake R.

494

EIA - Electricity Data - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Table 4.16. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Independent Power Producers by State, November 2013 Bituminous ...

495

EIA - State Electricity Profiles - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA ... Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, Natural Gas, 1990 Through 2010: Table 7.

496

Electric Utility Demand-Side Management 1997  

U.S. Energy Information Administration (EIA)

DOE/EIA-0589(97) Distribution Category UC-950 U.S. Electric Utility Demand-Side Management 1997 December 1998 Energy Information Administration Office of Coal ...

497

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

Science Conference Proceedings (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2003-01-20T23:59:59.000Z

498

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

Science Conference Proceedings (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2002-07-15T23:59:59.000Z

499

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

Science Conference Proceedings (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2002-10-15T23:59:59.000Z

500

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), and up to 5500 psi with emphasis upon 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally-acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national perspective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan

2002-04-15T23:59:59.000Z