Sample records for direction uni-directional simulated

  1. Variable mode bi-directional and uni-directional computer communication system

    DOE Patents [OSTI]

    Cornett, Frank N.; Jenkins, Philip N.; Bowman, Terrance L.; Placek, Joseph M.; Thorson, Gregory M.

    2004-12-14T23:59:59.000Z

    A variable communication systems comprising a plurality of transceivers and a control circuit connected to the transceivers to configure the transceivers to operate in a bi-directional mode and a uni-directional mode at different times using different transfer methods to transfer data.

  2. Parameter assignment for improved connectivity and security in randomly deployed wireless sensor networks via hybrid omni/uni-directional antennas

    E-Print Network [OSTI]

    Shankar, Sonu

    2009-05-15T23:59:59.000Z

    ,omni-directional antennas have been used for communication in wireless sensor net-works. In this thesis, a hybrid communication model is presented where-in, nodes ina network are capable of both omni-directional and uni-directional communication.The eect of such a model...

  3. Approximate Uni-directional Benders Decomposition

    E-Print Network [OSTI]

    C N Burt, N Lipovetzky, A R Pearce, P J Stuckey

    2014-12-01T23:59:59.000Z

    with balancing problems in an electricity network (Piacen- tini et al. 2013) .... uct k that are picked up from market m, and ym be 1 if mar- ket m is visited (and 0 ...

  4. Optimization Online - Approximate Uni-directional Benders ...

    E-Print Network [OSTI]

    Christina N Burt

    2014-11-30T23:59:59.000Z

    Nov 30, 2014 ... Thus, we aim at finding good quality feasible solutions in the first iteration. ... Category 1: Applications -- OR and Management Sciences.

  5. Forward-Only Uni-Directional Routing Jorge A. Cobb

    E-Print Network [OSTI]

    Cobb, Jorge Arturo

    , such as limits on battery life, memory, and computing power. Battery life is critical, since nodes are typically battery operated, and have a short battery life. To maximimize battery life, an efficient utilization has a set of network conditions under which it is the best. In this paper, we focus on the proactive

  6. 38 CHAPTER 1. ASSEMBLY MANUAL BiDirectional Motor

    E-Print Network [OSTI]

    38 CHAPTER 1. ASSEMBLY MANUAL Bi­Directional Motor and Infrared Beacon Uni­Directional Motor, LED, Incandescent Lamp Sensor, Polarized Sensor, Non­polarized Figure 1.26: Standard Connector Plug Configurations

  7. Advanced trajectory simulation of directional wellbores

    SciTech Connect (OSTI)

    Neubert, M. [Technical Univ. Braunschweig (Germany); Heisig, G. [Baker Hughes INTEQ GmbH, Celle (Germany)

    1997-07-01T23:59:59.000Z

    A comprehensive mathematical model has been developed to simulate drilling of directional wells with a steerable assembly based on an adjustable stabilizer. The model is comprised of (1) a new rock/bit interaction model for PDC bits, (2) a model of the bottom hole assembly with the adjustable stabilizer and (3) a control algorithm that determines the stabilizer adjustment in order to follow a pre-planned path. The resulting equations are highly nonlinear and can only be solved numerically. This paper describes the model components and presents application results covering BHA design considerations, the influence of the distance between bit and directional sensor, and the comparison of various control algorithms.

  8. Direct numerical simulation of turbulent reacting flows

    SciTech Connect (OSTI)

    Chen, J.H. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01T23:59:59.000Z

    The development of turbulent combustion models that reflect some of the most important characteristics of turbulent reacting flows requires knowledge about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between the turbulence and the chemistry is so strong in certain regimes that is is very difficult to isolate the role played by one individual phenomenon. Direct numerical simulation (DNS) is an extremely useful tool to study in detail the turbulence-chemistry interactions in certain well defined regimes. Globally, non-premixed flames are controlled by two limiting cases: the fast chemistry limit, where the turbulent fluctuations. In between these two limits, finite-rate chemical effects are important and the turbulence interacts strongly with the chemical processes. This regime is important because industrial burners operate in regimes in which, locally the flame undergoes extinction, or is at least in some nonequilibrium condition. Furthermore, these nonequilibrium conditions strongly influence the production of pollutants. To quantify the finite-rate chemistry effect, direct numerical simulations are performed to study the interaction between an initially laminar non-premixed flame and a three-dimensional field of homogeneous isotropic decaying turbulence. Emphasis is placed on the dynamics of extinction and on transient effects on the fine scale mixing process. Differential molecular diffusion among species is also examined with this approach, both for nonreacting and reacting situations. To address the problem of large-scale mixing and to examine the effects of mean shear, efforts are underway to perform large eddy simulations of round three-dimensional jets.

  9. ASTROPHYSICAL FLUID DYNAMICS VIA DIRECT STATISTICAL SIMULATION

    SciTech Connect (OSTI)

    Tobias, S. M. [Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT (United Kingdom); Dagon, K.; Marston, J. B., E-mail: smt@maths.leeds.ac.uk [Department of Physics, Brown University, Providence, RI 02912-1843 (United States)

    2011-02-01T23:59:59.000Z

    In this paper, we introduce the concept of direct statistical simulation for astrophysical flows. This technique may be appropriate for problems in astrophysical fluids where the instantaneous dynamics of the flows are of secondary importance to their statistical properties. We give examples of such problems including mixing and transport in planets, stars, and disks. The method is described for a general set of evolution equations, before we consider the specific case of a spectral method optimized for problems on a spherical surface. The method is illustrated for the simplest non-trivial example of hydrodynamics and magnetohydrodynamics on a rotating spherical surface. We then discuss possible extensions of the method both in terms of computational methods and the range of astrophysical problems that are of interest.

  10. Direct numerical simulations of convective heat transfer

    SciTech Connect (OSTI)

    Pointel, G.; Acharya, S.; Sharma, C. [Louisiana State Univ., Baton Rouge, LA (United States). Mechanical Engineering Dept.

    1996-11-01T23:59:59.000Z

    This paper deals with the development of a direct numerical simulation (DNS) code for solving the incompressible Navier-Stokes equation using higher order finite difference schemes. The time dependent Navier Stokes equation has been discretized using semi-implicit second order time splitting scheme, which requires the solution of pressure Poisson equation. For this purpose a Galerkin Fourier transform in the spanwise direction and a matrix diagonalization technique is used. The convection terms are formulated in non-conservative form on a collocated grid. A fifth order upwind biased scheme is used for this purpose. Diffusion terms are differenced using a sixth order central difference scheme. The algorithm is implemented on the MasPar MP-1, a Single Instruction Multiple Data computer where efficient data parallelization is used to get DNS results. The code has been used to get results for smooth channel flow at Re{sub {tau}} = 180. Results are now being obtained for the energy equation and for flow in a periodic ribbed channel.

  11. Direct Numerical Simulation of the Flow in a Pebble Bed

    E-Print Network [OSTI]

    Ward, Paul

    2014-06-24T23:59:59.000Z

    bed reactors: dust generation and scaling, proceedings of ICAPP 2012, Chicago, June 24–28, 2012 [3] A. Shams, F. Roelofs, EMJ. Komen, E. Baglietto, 2013. “Quasi-direct numerical simulation of a pebble bed configuration. Part I: Flow (velocity...

  12. A goal directed simulation method using fuzzy cognitive mapping

    E-Print Network [OSTI]

    Deines, Erich Vernon

    1996-01-01T23:59:59.000Z

    A goal directed simulation method using fuzzy cognitive mapping (FCM-GDS) is partially developed. The FCM-GDS system can be used for the analysis and experimental design associated with traditional manufacturing studies. The FCM-GDS system...

  13. Closed-loop guided directional drilling: Fundamentals, concepts and simulations

    SciTech Connect (OSTI)

    Heisig, G.; Oppelt, J. [Baker Hughes INTEQ GmbH, Celle (Germany); Neubert, M. [Technical Univ. Braunschweig (Germany); Donati, F. [Agip S.p.A., Milan (Italy)

    1996-09-01T23:59:59.000Z

    This paper introduces the fundamentals of directional drilling with a closed-loop control. In the discussion of different signal flow concepts a surface controlled system is identified as the original approach to automatic directional drilling. The success of the directional drilling operation depends on the proper layout of the controller in the control loop. A control method is introduced which anticipates direction changes on the planned path. The algorithm is tested by applying computer simulation techniques. The simulator is based on a mathematical model of a directional drilling system with an adjustable stabilizer. Coupling this model with a rock/bit interaction model yields a non-linear differential equation system for the drilling trajectory. The equations can be solved numerically. The simulation results prove the importance of anticipation in the control algorithm.

  14. A fast direct numerical simulation method for characterising hydraulic roughness

    E-Print Network [OSTI]

    Chung, Daniel; MacDonald, Michael; Hutchins, Nicholas; Ooi, Andrew

    2015-01-01T23:59:59.000Z

    We describe a fast direct numerical simulation (DNS) method that promises to directly characterise the hydraulic roughness of any given rough surface, from the hydraulically smooth to the fully rough regime. The method circumvents the unfavourable computational cost associated with simulating high-Reynolds-number flows by employing minimal-span channels (Jimenez & Moin 1991). Proof-of-concept simulations demonstrate that flows in minimal-span channels are sufficient for capturing the downward velocity shift, that is, the Hama roughness function, predicted by flows in full-span channels. We consider two sets of simulations, first with modelled roughness imposed by body forces, and second with explicit roughness described by roughness-conforming grids. Owing to the minimal cost, we are able to conduct DNSs with increasing roughness Reynolds numbers while maintaining a fixed blockage ratio, as is typical in full-scale applications. The present method promises a practical, fast and accurate tool for character...

  15. Direct Numerical Simulations and Modeling of Jets in Crossflow

    E-Print Network [OSTI]

    Mahesh, Krishnan

    Direct Numerical Simulations and Modeling of Jets in Crossflow A THESIS SUBMITTED TO THE FACULTY. i #12;To my parents and my grandparents, and to Ramnath ii #12;Abstract Jets in crossflow are used to study the different aspects of round jets in a crossflow. The first problem studies

  16. Control of Jets in Crossflow using Direct Numerical Simulations

    E-Print Network [OSTI]

    Mahesh, Krishnan

    Control of Jets in Crossflow using Direct Numerical Simulations A THESIS SUBMITTED TO THE FACULTY in crossflow by axial pulsing. Our main idea is that pulsing generates vortex rings; the effect of pulsing on jets in crossflow can therefore be explained by studying the behavior of vortex rings in crossflow

  17. Direct numerical simulation of pattern formation in subaqueous sediment

    E-Print Network [OSTI]

    Kidanemariam, Aman G

    2014-01-01T23:59:59.000Z

    We present results of direct numerical simulation of incompressible fluid flow over a thick bed of mobile, spherically-shaped particles. The algorithm is based upon the immersed boundary technique for fluid-solid coupling and uses a soft-sphere model for the solid-solid contact. Two parameter points in the laminar flow regime are chosen, leading to the emergence of sediment patterns classified as `small dunes', while one case under turbulent flow conditions leads to `vortex dunes' with significant flow separation on the lee side. Wavelength, amplitude and propagation speed of the patterns extracted from the spanwise-averaged fluid-bed interface are found to be consistent with available experimental data. The particle transport rates are well represented by available empirical models for flow over a plane sediment bed in both the laminar and the turbulent regimes.

  18. DIPOLE COLLAPSE AND DYNAMO WAVES IN GLOBAL DIRECT NUMERICAL SIMULATIONS

    SciTech Connect (OSTI)

    Schrinner, Martin; Dormy, Emmanuel [MAG (ENS/IPGP), LRA, Ecole Normale Superieure, 24 Rue Lhomond, 75252 Paris Cedex 05 (France); Petitdemange, Ludovic, E-mail: martin@schrinner.eu [Previously at Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, 69117 Heidelberg, Germany. (Germany)

    2012-06-20T23:59:59.000Z

    Magnetic fields of low-mass stars and planets are thought to originate from self-excited dynamo action in their convective interiors. Observations reveal a variety of field topologies ranging from large-scale, axial dipoles to more structured magnetic fields. In this article, we investigate more than 70 three-dimensional, self-consistent dynamo models in the Boussinesq approximation obtained by direct numerical simulations. The control parameters, the aspect ratio, and the mechanical boundary conditions have been varied to build up this sample of models. Both strongly dipolar and multipolar models have been obtained. We show that these dynamo regimes in general can be distinguished by the ratio of a typical convective length scale to the Rossby radius. Models with a predominantly dipolar magnetic field were obtained, if the convective length scale is at least an order of magnitude larger than the Rossby radius. Moreover, we highlight the role of the strong shear associated with the geostrophic zonal flow for models with stress-free boundary conditions. In this case the above transition disappears and is replaced by a region of bistability for which dipolar and multipolar dynamos coexist. We interpret our results in terms of dynamo eigenmodes using the so-called test-field method. We can thus show that models in the dipolar regime are characterized by an isolated 'single mode'. Competing overtones become significant as the boundary to multipolar dynamos is approached. We discuss how these findings relate to previous models and to observations.

  19. Effect of fluctuating wind direction on cross natural ventilation in buildings from large eddy simulation

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    simulation Yi Jiang and Qingyan Chen* Building Technology Program Massachusetts Institute of Technology 77 direction on cross natural ventilation in building from large eddy simulation," Building and Environment, 37 in many industrial applications. To simulate natural ventilation in buildings, however, RANS modeling has

  20. New Phytol. (1985) 99, 407^16 DIRECT FOLIAR EFFECTS OF SIMULATED

    E-Print Network [OSTI]

    Neufeld, Howard S.

    New Phytol. (1985) 99, 407^16 DIRECT FOLIAR EFFECTS OF SIMULATED ACID RAIN IL LEAF SURFACE to damage from simulated acid rain. The species examined differed in the type and extent of epicuticular wax different among species, and is highly correlated with previous reports of damage from simulated acid rain

  1. The Development of A Human Systems Simulation Laboratory: Strategic Direction

    SciTech Connect (OSTI)

    Jacques Hugo; Katya le Blanc; David Gertman

    2012-07-01T23:59:59.000Z

    The Human System Simulation Laboratory (HSSL) at the Idaho National Laboratory is one of few facilities of its kind that allows human factors researchers to evaluate various aspects of human performance and human system interaction for proposed reactor designs and upgrades. A basic system architecture, physical configuration and simulation capability were established to enable human factors researchers to support multiple, simultaneous simulations and also different power plant technologies. Although still evolving in terms of its technical and functional architecture, the HSSL is already proving its worth in supporting current and future nuclear industry needs for light water reactor sustainability and small modular reactors. The evolution of the HSSL is focused on continual physical and functional refinement to make it a fully equipped, reconfigurable facility where advanced research, testing and validation studies can be conducted on a wider range of reactor technologies. This requires the implementation of additional plant models to produce empirical research data on human performance with emerging human-system interaction technologies. Additional beneficiaries of this information include system designers and HRA practitioners. To ensure that results of control room crew studies will be generalizable to the existing and evolving fleet of US reactors, future expansion of the HSSL may also include other SMR plant models, plant-specific simulators and a generic plant model aligned to the current generation of pressurized water reactors (PWRs) and future advanced reactor designs. Collaboration with industry partners is also proving to be a vital component of the facility as this helps to establish a formal basis for current and future human performance experiments to support nuclear industry objectives. A long-range Program Plan has been developed for the HSSL to ensure that the facility will support not only the Department of Energy’s Light Water Reactor Sustainability Program, but also to provide human factors guidance for all future developments of the nuclear industry.

  2. Simulations of Direct Ion Acceleration with Beating Electrostatic Waves

    E-Print Network [OSTI]

    Choueiri, Edgar

    . Gardineer, IV , Benjamin Jorns , and Edgar Y. Choueiri Electric Propulsion and Plasma Dynamics Laboratory Wave Thruster (BWT) ­ an electrodeless electric propulsion concept based on direct ion acceleration. The ultimate goal is for this acceleration mechanism to form the basis of a new plasma propulsion system called

  3. A Detailed Multi-Zone Thermodynamic Simulation For Direct-Injection Diesel Engine Combustion

    E-Print Network [OSTI]

    Xue, Xingyu 1985-

    2012-11-15T23:59:59.000Z

    A detailed multi-zone thermodynamic simulation has been developed for the direct-injection (DI) diesel engine combustion process. For the purpose of predicting heterogeneous type combustion systems, the model explores the formation of pre...

  4. A Detailed Multi-Zone Thermodynamic Simulation For Direct-Injection Diesel Engine Combustion 

    E-Print Network [OSTI]

    Xue, Xingyu 1985-

    2012-11-15T23:59:59.000Z

    A detailed multi-zone thermodynamic simulation has been developed for the direct-injection (DI) diesel engine combustion process. For the purpose of predicting heterogeneous type combustion systems, the model explores the formation of pre...

  5. DIRECT NUMERICAL SIMULATION OF COMPRESSIBLE TRANSITION: AN OVERVIEW M.Y. Hussaini and G. Erlebacher

    E-Print Network [OSTI]

    Erlebacher, Gordon

    DIRECT NUMERICAL SIMULATION OF COMPRESSIBLE TRANSITION: AN OVERVIEW M.Y. Hussaini and G. Erlebacher in the field of compressible transition. As a result, new computational tools have made their appearance. Recently however, research at Langley has begun to focus on the simulation of compressible transition

  6. Three-Dimensional Simulations of Liquid Feed Direct Methanol Wenpeng Liu*,a

    E-Print Network [OSTI]

    Three-Dimensional Simulations of Liquid Feed Direct Methanol Fuel Cells Wenpeng Liu*,a and Chao that performance and design of a liquid feed direct methanol fuel cell DMFC is controlled not only by electrochemical kinetics and methanol crossover but also by water transport and by their complex interactions

  7. MSWiM Demo Abstract: Direct Code Execution: Increase Simulation Realism using Unmodified Real

    E-Print Network [OSTI]

    Turletti, Thierry

    : information-centric networking over mobile ad hoc network using the PARC CCNx code, and a seamless handoffMSWiM Demo Abstract: Direct Code Execution: Increase Simulation Realism using Unmodified Real of Tokyo, Japan INRIA, France Abstract We propose to demonstrate Direct Code Execution (DCE)1 , a ns-3

  8. DYNAMIC SIMULATION OF MONO-TUBE CAVITY RECEIVERS FOR DIRECT STEAM GENERATION

    E-Print Network [OSTI]

    for intended deployment in large arrays of dishes, with steam directed to a central large steam turbine powerDYNAMIC SIMULATION OF MONO-TUBE CAVITY RECEIVERS FOR DIRECT STEAM GENERATION José Zapata 1 , John dish has been in operation since 2010 with a mono-tube steam cavity receiver, the SG4 system

  9. Direct N-body Simulations of Rubble Pile Collisions

    E-Print Network [OSTI]

    Z. M. Leinhardt; D. C. Richardson; T. Quinn

    1999-08-19T23:59:59.000Z

    There is increasing evidence that many km-sized bodies in the Solar System are piles of rubble bound together by gravity. We present results from a project to map the parameter space of collisions between km-sized spherical rubble piles. The results will assist in parameterization of collision outcomes for Solar System formation models and give insight into fragmentation scaling laws. We use a direct numerical method to evolve the positions and velocities of the rubble pile particles under the constraints of gravity and physical collisions. We test the dependence of the collision outcomes on impact parameter and speed, impactor spin, mass ratio, and coefficient of restitution. Speeds are kept low (piles. In the cases we tested, less than 2% of the system mass ends up orbiting the remnant. Initial spin can reduce or enhance collision outcomes, depending on the relative orientation of the spin and orbital angular momenta. We derive a relationship between impact speed and angle for critical dispersal of mass in the system. We find that our rubble piles are relatively easy to disperse, even at low impact speed, suggesting that greater dissipation is required if rubble piles are the true progenitors of protoplanets.

  10. Development of directional capabilities to an ultradeep water dynamic kill simulator and simulations runs

    E-Print Network [OSTI]

    Meier, Hector Ulysses

    2005-11-01T23:59:59.000Z

    . Unfortunately with greater challenges there are greater risks of losing control and blowing out a well. A dynamic kill simulator was developed in late 2004 to model initial conditions of a blowout in ultradeep water and to calculate the minimum kill rate...

  11. Massively-Parallel Direct Numerical Simulation of Gas Turbine Endwall Film-Cooling Conjugate Heat Transfer

    E-Print Network [OSTI]

    Meador, Charles Michael

    2011-02-22T23:59:59.000Z

    MASSIVELY-PARALLEL DIRECT NUMERICAL SIMULATION OF GAS TURBINE ENDWALL FILM-COOLING CONJUGATE HEAT TRANSFER A Thesis by CHARLES MICHAEL MEADOR Submitted to the O ce of Graduate Studies of Texas A&M University in partial ful llment of the requirements... for the degree of MASTER OF SCIENCE December 2010 Major Subject: Mechanical Engineering MASSIVELY-PARALLEL DIRECT NUMERICAL SIMULATION OF GAS TURBINE ENDWALL FILM-COOLING CONJUGATE HEAT TRANSFER A Thesis by CHARLES MICHAEL MEADOR Submitted to the O ce of Graduate...

  12. Direct Monte Carlo simulation of chemical reaction systems: Internal energy transfer and an energy-dependent unimolecular reaction

    E-Print Network [OSTI]

    Anderson, James B.

    Direct Monte Carlo simulation of chemical reaction systems: Internal energy transfer and an energy a direct Monte Carlo simulation of an energy-dependent t&molecular reaction system of the type A+ B simulation of a unimo- lecular reaction with an energy-dependent rate constant k3 and with explicit treatment

  13. New Phytol. (1985) 99, 389^H)5 389 DIRECT FOLIAR EFFECTS OF SIMULATED

    E-Print Network [OSTI]

    Neufeld, Howard S.

    New Phytol. (1985) 99, 389^H)5 389 DIRECT FOLIAR EFFECTS OF SIMULATED ACID RAIN I. DAMAGE, GROWTH acid rain (pH 5-6, 40, 30 and 2 0) were observed for seedlings of four deciduous tree species native have contributed to the observed reductions in growth. Key words: Acid rain, gas exchange

  14. Large Eddy Simulation of Supersonic Combustion using Direct Quadrature Method of Moments

    E-Print Network [OSTI]

    Raman, Venkat

    . Supersonic combustion involves the interaction of complex gas-phase chemical reactions in a compressible flowLarge Eddy Simulation of Supersonic Combustion using Direct Quadrature Method of Moments Pratik modeling problem. In supersonic combustion, typical closures based on conserved scalar approaches cannot

  15. Direct numerical simulation of an iron rain in the magma ocean

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    investigate the conversion of gravitational energy into viscous heating and the thermal equilibration betweenDirect numerical simulation of an iron rain in the magma ocean H. Ichikawa,1,2 S. Labrosse,1 and K of metal in a magma ocean. The model, using a fully Lagrangian approach called the moving particle semi

  16. Direct numerical simulation of turbulent heat transfer in annuli: effect of heat flux ratio.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Direct numerical simulation of turbulent heat transfer in annuli: effect of heat flux ratio. M-la-Vall´ee cedex 2, France (Dated: October 23, 2008) Abstract Fully developed turbulent flow and heat transfer square (rms) of temperature fluctuations, turbulent heat fluxes, heat transfer, ...). To validate

  17. Direct Numerical Simulations of the Kraichnan Model: Scaling Exponents and Fusion Rules

    E-Print Network [OSTI]

    Adrienne L. Fairhall; Barak Galanti; Victor S. L'vov; Itamar Procaccia

    1997-07-01T23:59:59.000Z

    We present results from direct numerical simulations of the Kraichnan model for passive scalar advection by a rapidly-varying random scaling velocity field for intermediate values of the velocity scaling exponent. These results are compared with the scaling exponents predicted for this model by Kraichnan. Further, we test the recently proposed fusion rules which govern the scaling properties of multi-point correlations, and present results on the linearity of the conditional statistics of the Laplacian operator on the scalar field.

  18. Acceleration of heavy and light particles in turbulence: comparison between experiments and direct numerical simulations

    E-Print Network [OSTI]

    R. Volk; E. Calzavarini; G. Verhille; D. Lohse; N. Mordant; J. -F. Pinton; F. Toschi

    2007-10-17T23:59:59.000Z

    We compare experimental data and numerical simulations for the dynamics of inertial particles with finite density in turbulence. In the experiment, bubbles and solid particles are optically tracked in a turbulent flow of water using an Extended Laser Doppler Velocimetry technique. The probability density functions (PDF) of particle accelerations and their auto-correlation in time are computed. Numerical results are obtained from a direct numerical simulation in which a suspension of passive pointwise particles is tracked, with the same finite density and the same response time as in the experiment. We observe a good agreement for both the variance of acceleration and the autocorrelation timescale of the dynamics; small discrepancies on the shape of the acceleration PDF are observed. We discuss the effects induced by the finite size of the particles, not taken into account in the present numerical simulations.

  19. Computer simulations for direct conversion of the HF electromagnetic wave into the upper hybrid wave in ionospheric heating experiments

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Computer simulations for direct conversion of the HF electromagnetic wave into the upper hybrid emissions (SEE). A direct conversion process is proposed as an excitation mech- anism of the upper hybrid, 1996) The electrostatic waves at the UH resonance were assumed to be excited via ``direct conversion

  20. Directions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directions Where We Are Directions The Bradbury Science Museum is located at 1350 Central Avenue Los Alamos, NM 87544 Los Alamos (elevation 7,355 feet) is perched high atop the...

  1. Simulation of direct plasma injection for laser ion beam acceleration with a radio frequency quadrupole

    SciTech Connect (OSTI)

    Jin, Q. Y.; Li, Zh. M.; Liu, W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, H. Y., E-mail: zhaohy@impcas.ac.cn; Zhang, J. J.; Sha, Sh.; Zhang, Zh. L.; Zhang, X. Zh.; Sun, L. T.; Zhao, H. W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2014-07-15T23:59:59.000Z

    The direct plasma injection scheme (DPIS) has been being studied at Institute of Modern Physics since several years ago. A C{sup 6+} beam with peak current of 13 mA, energy of 593 keV/u has been successfully achieved after acceleration with DPIS method. To understand the process of DPIS, some simulations have been done as follows. First, with the total current intensity and the relative yields of different charge states for carbon ions measured at the different distance from the target, the absolute current intensities and time-dependences for different charge states are scaled to the exit of the laser ion source in the DPIS. Then with these derived values as the input parameters, the extraction of carbon beam from the laser ion source to the radio frequency quadrupole with DPIS is simulated, which is well agreed with the experiment results.

  2. Statistically Steady Turbulence in Soap Films: Direct Numerical Simulations with Ekman Friction

    E-Print Network [OSTI]

    Prasad Perlekar; Rahul Pandit

    2008-11-09T23:59:59.000Z

    We present a detailed direct numerical simulation (DNS) designed to investigate the combined effects of walls and Ekman friction on turbulence in forced soap films. We concentrate on the forward-cascade regime and show how to extract the isotropic parts of velocity and vorticity structure functions and thence the ratios of multiscaling exponents. We find that velocity structure functions display simple scaling whereas their vorticity counterparts show multiscaling; and the probability distribution function of the Weiss parameter $\\Lambda$, which distinguishes between regions with centers and saddles, is in quantitative agreement with experiments.

  3. Field simulation of axisymmetric plasma screw pinches by alternating-direction-implicit methods

    SciTech Connect (OSTI)

    Lambert, M.A.

    1996-06-01T23:59:59.000Z

    An axisymmetric plasma screw pinch is an axisymmetric column of ionized gaseous plasma radially confined by forces from axial and azimuthal currents driven in the plasma and its surroundings. This dissertation is a contribution to detailed, high resolution computer simulation of dynamic plasma screw pinches in 2-d {ital rz}-coordinates. The simulation algorithm combines electron fluid and particle-in-cell (PIC) ion models to represent the plasma in a hybrid fashion. The plasma is assumed to be quasineutral; along with the Darwin approximation to the Maxwell equations, this implies application of Ampere`s law without displacement current. Electron inertia is assumed negligible so that advective terms in the electron momentum equation are ignored. Electrons and ions have separate scalar temperatures, and a scalar plasma electrical resistivity is assumed. Altemating-direction-implicit (ADI) methods are used to advance the electron fluid drift velocity and the magnetic fields in the simulation. The ADI methods allow time steps larger than allowed by explicit methods. Spatial regions where vacuum field equations have validity are determined by a cutoff density that invokes the quasineutral vacuum Maxwell equations (Darwin approximation). In this dissertation, the algorithm was first checked against ideal MM stability theory, and agreement was nicely demonstrated. However, such agreement is not a new contribution to the research field. Contributions to the research field include new treatments of the fields in vacuum regions of the pinch simulation. The new treatments predict a level of magnetohydrodynamic turbulence near the bulk plasma surface that is higher than predicted by other methods.

  4. Gaussian variational ansatz in the problem of anomalous sea waves: Comparison with direct numerical simulations

    E-Print Network [OSTI]

    Ruban, V P

    2015-01-01T23:59:59.000Z

    The nonlinear dynamics of an obliquely oriented wave packet at sea surface is studied both analytically and numerically for various initial parameters of the packet, in connection with the problem of oceanic rogue waves. In the framework of Gaussian variational ansatz applied to the corresponding (1+2D) hyperbolic nonlinear Schr\\"odinger equation, a simplified Lagrangian system of differential equations is derived, which determines the evolution of coefficients of the real and imaginary quadratic forms appearing in the Gaussian. This model provides a semi-quantitative description for the process of nonlinear spatio-temporal focusing, which is one of the most probable mechanisms of rogue wave formation in random wave fields. The system is integrated in quadratures, which fact allows us to understand qualitative differences between the linear and nonlinear regimes of the focusing of wave packet. Comparison of the Gaussian model predictions with results of direct numerical simulation of fully nonlinear long-cres...

  5. GPU accelerated flow solver for direct numerical simulation of turbulent flows

    SciTech Connect (OSTI)

    Salvadore, Francesco [CASPUR – via dei Tizii 6/b, 00185 Rome (Italy)] [CASPUR – via dei Tizii 6/b, 00185 Rome (Italy); Bernardini, Matteo, E-mail: matteo.bernardini@uniroma1.it [Department of Mechanical and Aerospace Engineering, University of Rome ‘La Sapienza’ – via Eudossiana 18, 00184 Rome (Italy)] [Department of Mechanical and Aerospace Engineering, University of Rome ‘La Sapienza’ – via Eudossiana 18, 00184 Rome (Italy); Botti, Michela [CASPUR – via dei Tizii 6/b, 00185 Rome (Italy)] [CASPUR – via dei Tizii 6/b, 00185 Rome (Italy)

    2013-02-15T23:59:59.000Z

    Graphical processing units (GPUs), characterized by significant computing performance, are nowadays very appealing for the solution of computationally demanding tasks in a wide variety of scientific applications. However, to run on GPUs, existing codes need to be ported and optimized, a procedure which is not yet standardized and may require non trivial efforts, even to high-performance computing specialists. In the present paper we accurately describe the porting to CUDA (Compute Unified Device Architecture) of a finite-difference compressible Navier–Stokes solver, suitable for direct numerical simulation (DNS) of turbulent flows. Porting and validation processes are illustrated in detail, with emphasis on computational strategies and techniques that can be applied to overcome typical bottlenecks arising from the porting of common computational fluid dynamics solvers. We demonstrate that a careful optimization work is crucial to get the highest performance from GPU accelerators. The results show that the overall speedup of one NVIDIA Tesla S2070 GPU is approximately 22 compared with one AMD Opteron 2352 Barcelona chip and 11 compared with one Intel Xeon X5650 Westmere core. The potential of GPU devices in the simulation of unsteady three-dimensional turbulent flows is proved by performing a DNS of a spatially evolving compressible mixing layer.

  6. A Review of Direct Numerical Simulations of Astrophysical Detonations and Their Implications

    SciTech Connect (OSTI)

    Parete-Koon, Suzanne T [ORNL; Messer, Bronson [ORNL; Smith, Chris R [ORNL; Papatheodore, Thomas L [ORNL

    2013-01-01T23:59:59.000Z

    Multi-dimensional direct numerical simulations (DNS) of astrophysical detonations in degenerate matter have revealed that the nuclear burning is typically characterized by cellular structure caused by transverse instabilities in the detonation front. Type Ia supernova modelers often use one- dimensional DNS of detonations as inputs or constraints for their whole star simulations. While these one-dimensional studies are useful tools, the true nature of the detonation is multi-dimensional. The multi-dimensional structure of the burning influences the speed, stability, and the composition of the detonation and its burning products, and therefore, could have an impact on the spectra of Type Ia supernovae. Considerable effort has been expended modeling Type Ia supernovae at densities above 1 107 g cm 3 where the complexities of turbulent burning dominate the flame propagation. However, most full star models turn the nuclear burning schemes off when the density falls below 1 107 g cm 3 and distributed burning begins. The deflagration to detonation transition (DDT) is believed to occur at just these densities and consequently they are the densities important for studying the properties of the subsequent detonation. This work will review the status of DNS studies of detonations and their possible implications for Type Ia supernova models. It will cover the development of Detonation theory from the first simple Chapman-Jouguet (CJ) detonation models to the current models based on the time-dependent, compressible, reactive flow Euler equations of fluid dynamics.

  7. Direct

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: Potential ApplicationYu,EnergyDimitriDirac ChargeDiracDirect

  8. Test particle simulation of direct laser acceleration in a density-modulated plasma waveguide

    SciTech Connect (OSTI)

    Lin, M.-W.; Jovanovic, I. [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2012-11-15T23:59:59.000Z

    Direct laser acceleration (DLA) of electrons by the use of the intense axial electric field of an ultrafast radially polarized laser pulse is a promising technique for future compact accelerators. Density-modulated plasma waveguides can be implemented for guiding the propagation of the laser pulse to extend the acceleration distance and for the quasi-phase-matching between the accelerated electrons and the laser pulse. A test particle model is developed to study the optimal axial density modulation structure of plasma waveguides for laser pulses to efficiently accelerate co-propagating electrons. A simple analytical approach is also presented, which can be used to estimate the energy gain in DLA. The analytical model is validated by the test particle simulation. The effect of injection phase and acceleration of electrons injected at various radial positions are studied. The results indicate that a positively chirped density modulation of the waveguide structure is required to accelerate electron with low initial energies, and can be effectively optimized. A wider tolerance on the injection phase and radial distance from the waveguide axis exists for electrons injected with a higher initial energy.

  9. A stabilized finite element method using equal-order interpolation velocity-pressure elements for the simulation of directional

    E-Print Network [OSTI]

    Zabaras, Nicholas J.

    for the simulation of directional solidification of binary alloys Nicholas Zabaras and Lei Wan Materials Process Design and Control Laboratory Sibley School of Mechanical and Aerospace Engineering 188 Frank H. T the thermosolutal convection and macrosegregation dur- ing the solidification of dendritic alloys. The single set

  10. Direct numerical simulations of type Ia supernovae flames I: The landau-darrieus instability

    E-Print Network [OSTI]

    Bell, J.B.; Day, M.S.; Rendleman, C.A.; Woosley, S.E.; Zingale, M.

    2003-01-01T23:59:59.000Z

    Simulations of Type Ia Supernovae Flames I: The Landau-Subject headings: supernovae: general — white dwarfs —could occur in Type Ia supernovae (Niemeyer & Woosley 1997),

  11. Direct numerical simulations of type Ia supernovae flames II: The rayleigh-taylor instability

    E-Print Network [OSTI]

    Bell, J.B.; Day, M.S.; Rendleman, C.A.; Woosley, S.E.; Zingale, M.

    2004-01-01T23:59:59.000Z

    Weaver, T. A. 1994, in Supernovae, Les Houches, Session LIV,Simulations of Type Ia Supernovae Flames II: The Rayleigh-Subject headings: supernovae: general — white dwarfs —

  12. Simulation-based Performance Analysis and Tuning for a Two-level Directly Connected System

    SciTech Connect (OSTI)

    Totoni, E; Bhatele, A; Bohm, E J; Jain, N; Mendes, C L; Mokos, R M; Zheng, G; Kale, L V

    2011-09-19T23:59:59.000Z

    Hardware and software co-design is becoming increasingly important due to complexities in supercomputing architectures. Simulating applications before there is access to the real hardware can assist machine architects in making better design decisions that can optimize application performance. At the same time, the application and runtime can be optimized and tuned beforehand. BigSim is a simulation-based performance prediction framework designed for these purposes. It can be used to perform packet-level network simulations of parallel applications using existing parallel machines. In this paper, we demonstrate the utility of BigSim in analyzing and optimizing parallel application performance for future systems based on the PERCS network. We present simulation studies using benchmarks and real applications expected to run on future supercomputers. Future petascale systems will have more than 100,000 cores, and we present simulations at that scale.

  13. ESRDC ship notional baseline Medium Voltage Direct Current (MVDC) architecture thermal simulation and visualization

    E-Print Network [OSTI]

    Chryssostomidis, Chryssostomos

    2011-01-01T23:59:59.000Z

    This work presents a fast visualization and thermal simulation tool developed as part of the Electric Ship Research and Development Consortium (ESRDC) funded by the Office of Naval Research (ONR) that is capable of providing ...

  14. An analysis of superhydrophobic turbulent drag reduction mechanisms using direct numerical simulation

    E-Print Network [OSTI]

    Rothstein, Jonathan

    An analysis of superhydrophobic turbulent drag reduction mechanisms using direct numerical October 2009; accepted 22 April 2010; published online 11 June 2010 Superhydrophobic surfaces combine the drag reducing performance of superhydrophobic surfaces in turbulent channel flow. Slip velocities, wall

  15. Low frequency, electrodynamic simulation of kinetic plasmas with the DArwin Direct Implicit Particle-In-Cell (DADIPIC) method

    SciTech Connect (OSTI)

    Gibbons, M.R.

    1995-06-01T23:59:59.000Z

    This dissertation describes a new algorithm for simulating low frequency, kinetic phenomena in plasmas. DArwin Direct Implicit Particle-in-Cell (DADIPIC), as its name implies, is a combination of the Darwin and direct implicit methods. One of the difficulties in simulating plasmas lies in the enormous disparity between the fundamental scale lengths of a plasma and the scale lengths of the phenomena of interest. The objective is to create models which can ignore the fundamental constraints without eliminating relevant plasma properties. Over the past twenty years several PIC methods have been investigated for overcoming the constraints on explicit electrodynamic PIC. These models eliminate selected high frequency plasma phenomena while retaining kinetic phenomena at low frequency. This dissertation shows that the combination of Darwin and Direct Implicit allows them to operate better than they have been shown to operate in the past. Through the Darwin method the hyperbolic Maxwell`s equations are reformulated into a set of elliptic equations. Propagating light waves do not exist in the formulation so the Courant constraint on the time step is eliminated. The Direct Implicit method is applied only to the electrostatic field with the result that electrostatic plasma oscillations do not have to be resolved for stability. With the elimination of these constraints spatial and temporal discretization can be much larger than that possible with explicit, electrodynamic PIC. The code functions in a two dimensional Cartesian region and has been implemented with all components of the particle velocities, the E-field, and the B-field. Internal structures, conductors or dielectrics, may be placed in the simulation region, can be set at desired potentials, and driven with specified currents.

  16. Solar Energy 74 (2003) 157173 Comparison between ray-tracing simulations and bi-directional

    E-Print Network [OSTI]

    Solar Energy 74 (2003) 157­173 Comparison between ray-tracing simulations and bi-Louis Scartezzini a Solar Energy and Building Physics Laboratory LESO-PB, Swiss Federal Institute of Technology EPFL Cyclotron Road, MS 2-300, Berkeley, CA 94720-8134, USA Abstract Evaluation of solar heat gain and daylight

  17. Observation of early shell-dopant mix in OMEGA direct-drive implosions and comparisons with radiation-hydrodynamic simulations

    SciTech Connect (OSTI)

    Baumgaertel, J. A.; Bradley, P. A.; Hsu, S. C.; Cobble, J. A.; Hakel, P.; Tregillis, I. L.; Krasheninnikova, N. S.; Murphy, T. J.; Schmitt, M. J.; Shah, R. C.; Obrey, K. D.; Batha, S. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Johns, H.; Joshi, T.; Mayes, D.; Mancini, R. C.; Nagayama, T. [Physics Department, University of Nevada, Reno, Nevada 89557 (United States)

    2014-05-15T23:59:59.000Z

    Temporally, spatially, and spectrally resolved x-ray image data from direct-drive implosions on OMEGA were interpreted with the aid of radiation-hydrodynamic simulations. Neither clean calculations nor those using a turbulent mix model can explain fully the observed migration of shell-dopant material (titanium) into the core. Shell-dopant migration was observed via time-dependent, spatially integrated spectra, and spatially and spectrally resolved x-ray images of capsule implosions and resultant dopant emissions. The titanium emission was centrally peaked in narrowband x-ray images. In post-processed clean simulations, the peak titanium emission forms in a ring in self-emission images as the capsule implodes. Post-processed simulations with mix reproduce trends in time-dependent, spatially integrated spectra, as well having centrally peaked Ti emission in synthetic multiple monochromatic imager. However, mix simulations still do not transport Ti to the core as is observed in the experiment. This suggests that phenomena in addition to the turbulent mix must be responsible for the transport of Ti. Simple diffusion estimates are unable to explain the early Ti mix into the core. Mechanisms suggested for further study are capsule surface roughness, illumination non-uniformity, and shock entrainment.

  18. Three-Dimensional Simulations of Bi-Directed Magnetohydrodynamic Jets Interacting with Cluster Environments

    E-Print Network [OSTI]

    O'Neill, S M

    2010-01-01T23:59:59.000Z

    We report on a series of three-dimensional magnetohydrodynamic simulations of active galactic nucleus (AGN) jet propagation in realistic models of magnetized galaxy clusters. We are primarily interested in the details of energy transfer between jets and the intracluster medium (ICM) to help clarify what role such flows could have in the reheating of cluster cores. Our simulated jets feature a range of intermittency behaviors, including intermittent jets that periodically switch on and off and one model jet that shuts down completely, naturally creating a relic plume. The ICM into which these jets propagate incorporates tangled magnetic field geometries and density substructure designed to mimic some likely features of real galaxy clusters. We find that our jets are characteristically at least 60% efficient at transferring thermal energy to the ICM. Irreversible heat energy is not uniformly distributed, however, instead residing preferentially in regions very near the jet/cocoon boundaries. While intermittency...

  19. Direct Numerical Simulation of Autoignition in a Jet in a Cross-Flow |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: PotentialFederal FinancialDirect Kinetic Measurements

  20. Study of Particle Rotation Effect in Gas-Solid Flows using Direct Numerical Simulation with a Lattice Boltzmann Method

    SciTech Connect (OSTI)

    Kwon, Kyung; Fan, Liang-Shih; Zhou, Qiang; Yang, Hui

    2014-09-30T23:59:59.000Z

    A new and efficient direct numerical method with second-order convergence accuracy was developed for fully resolved simulations of incompressible viscous flows laden with rigid particles. The method combines the state-of-the-art immersed boundary method (IBM), the multi-direct forcing method, and the lattice Boltzmann method (LBM). First, the multi-direct forcing method is adopted in the improved IBM to better approximate the no-slip/no-penetration (ns/np) condition on the surface of particles. Second, a slight retraction of the Lagrangian grid from the surface towards the interior of particles with a fraction of the Eulerian grid spacing helps increase the convergence accuracy of the method. An over-relaxation technique in the procedure of multi-direct forcing method and the classical fourth order Runge-Kutta scheme in the coupled fluid-particle interaction were applied. The use of the classical fourth order Runge-Kutta scheme helps the overall IB-LBM achieve the second order accuracy and provides more accurate predictions of the translational and rotational motion of particles. The preexistent code with the first-order convergence rate is updated so that the updated new code can resolve the translational and rotational motion of particles with the second-order convergence rate. The updated code has been validated with several benchmark applications. The efficiency of IBM and thus the efficiency of IB-LBM were improved by reducing the number of the Lagragian markers on particles by using a new formula for the number of Lagrangian markers on particle surfaces. The immersed boundary-lattice Boltzmann method (IBLBM) has been shown to predict correctly the angular velocity of a particle. Prior to examining drag force exerted on a cluster of particles, the updated IB-LBM code along with the new formula for the number of Lagrangian markers has been further validated by solving several theoretical problems. Moreover, the unsteadiness of the drag force is examined when a fluid is accelerated from rest by a constant average pressure gradient toward a steady Stokes flow. The simulation results agree well with the theories for the short- and long-time behavior of the drag force. Flows through non-rotational and rotational spheres in simple cubic arrays and random arrays are simulated over the entire range of packing fractions, and both low and moderate particle Reynolds numbers to compare the simulated results with the literature results and develop a new drag force formula, a new lift force formula, and a new torque formula. Random arrays of solid particles in fluids are generated with Monte Carlo procedure and Zinchenko's method to avoid crystallization of solid particles over high solid volume fractions. A new drag force formula was developed with extensive simulated results to be closely applicable to real processes over the entire range of packing fractions and both low and moderate particle Reynolds numbers. The simulation results indicate that the drag force is barely affected by rotational Reynolds numbers. Drag force is basically unchanged as the angle of the rotating axis varies.

  1. Interpretation of time-of-flight distributions for neutral particles under pulsed laser evaporation using direct Monte Carlo simulation

    SciTech Connect (OSTI)

    Morozov, Alexey A., E-mail: morozov@itp.nsc.ru [Institute of Thermophysics SB RAS, 1 Lavrentyev Ave., 630090 Novosibirsk (Russian Federation)

    2013-12-21T23:59:59.000Z

    A theoretical study of the time-of-flight (TOF) distributions under pulsed laser evaporation in vacuum has been performed. A database of TOF distributions has been calculated by the direct simulation Monte Carlo (DSMC) method. It is shown that describing experimental TOF signals through the use of the calculated TOF database combined with a simple analysis of evaporation allows determining the irradiated surface temperature and the rate of evaporation. Analysis of experimental TOF distributions under laser ablation of niobium, copper, and graphite has been performed, with the evaluated surface temperature being well agreed with results of the thermal model calculations. General empirical dependences are proposed, which allow indentifying the regime of the laser induced thermal ablation from the TOF distributions for neutral particles without invoking the DSMC-calculated database.

  2. Direct first-principles simulation of a high-performance electron emitter: Lithium-oxide-coated diamond surface

    SciTech Connect (OSTI)

    Miyamoto, Yoshiyuki, E-mail: yoshi-miyamoto@aist.go.jp; Miyazaki, Takehide [Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Takeuchi, Daisuke; Yamasaki, Satoshi [Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); JST, ALCA, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan)

    2014-09-28T23:59:59.000Z

    We examined the field emission properties of lithium(Li)/oxygen(O)-co-terminated diamond (001) surface [C(001)-LiO] through real-time electron dynamics simulation under an applied field. The current emitted from this surface was found to be more than four-fold that emitted by an H-terminated (001) surface, the latter being a typical negative electron affinity system. This high performance is attributed to the Li layer, which bends the potential wall of O-induced electron pockets down in the direction of vacuum, thus facilitating electron emission. Detailed analysis of the emitted electrons and the profile of the self-consistent potential elucidated that the role of O atoms changes from an electron barrier on OH-terminated diamond surfaces to an outlet for electron emission on C(001)-LiO.

  3. Finite-rate chemistry and transient effects in Direct Numerical Simulations of turbulent non-premixed flames

    SciTech Connect (OSTI)

    Mahalingam, S. [Colorado Univ., Boulder, CO (United States). Dept. of Mechanical Engineering; Chen, J.H. [Sandia National Labs., Livermore, CA (United States); Vervisch, L. [Institut de Mecanique des Fluides, Numeriques (France)

    1994-01-01T23:59:59.000Z

    Three-dimensional Direct Numerical Simulations (DNS) of turbulent non-premixed flames including finite-rate chemistry and heat release effects were performed. Two chemical reaction models were considered: (1) a single-step global reaction model in which the heat release and activation energy parameters are chosen to model methane-air combustion, and (2) a two-step reaction model to simulate radical production and consumption and to compare against the single-step model. The model problem consists of the interaction between an initially unstrained laminar diffusion flame and a three-dimensional field of homogeneous turbulence. Conditions ranging from fast chemistry to the pure mixing limit were studied by varying a global Damkoehler number. Results suggest that turbulence-induced mixing acting along the stoichiometric line leads to a strong modification of the inner structure of the turbulent flame compared with a laminar strained flame, resulting in intermediate species concentrations well above the laminar prediction. This result is consistent with experimental observations. Comparison of the response of the turbulent flame structure due to changes in the scalar dissipation rate with a steady strained laminar flame reveals that unsteady strain rates experienced by the turbulent flame may be responsible for the observed high concentrations of reaction intermediates.

  4. Simulations of the Nuclear Recoil Head-Tail Signature in Gases Relevant to Directional Dark Matter Searches

    E-Print Network [OSTI]

    P. Majewski; D. Muna; D. P. Snowden-Ifft; N. J. C. Spooner

    2009-02-25T23:59:59.000Z

    We present the first detailed simulations of the head-tail effect relevant to directional Dark Matter searches. Investigations of the location of the majority of the ionization charge as being either at the beginning half (tail) or at the end half (head) of the nuclear recoil track were performed for carbon and sulphur recoils in 40 Torr negative ion carbon disulfide and for fluorine recoils in 100 Torr carbon tetrafluoride. The SRIM simulation program was used, together with a purpose-written Monte Carlo generator, to model production of ionizing pairs, diffusion and basic readout geometries relevant to potential real detector scenarios, such as under development for the DRIFT experiment. The results clearly indicate the existence of a head-tail track asymmetry but with a magnitude critically influenced by two competing factors: the nature of the stopping power and details of the range straggling. The former tends to result in the tail being greater than the head and the latter the reverse.

  5. Thermally Simulated 32kW Direct-Drive Gas-Cooled Reactor: Design, Assembly, and Test

    SciTech Connect (OSTI)

    Godfroy, Thomas J.; Bragg-Sitton, Shannon M. [NASA Marshall Space Flight Center, TD40, Huntsville, Alabama, 35812 (United States); University of Michgan, Dept. of Nuclear Engineering and Radiological Sciences, Ann Arbor MI 48109 (United States); Kapernick, Richard J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2004-02-04T23:59:59.000Z

    One of the power systems under consideration for nuclear electric propulsion is a direct-drive gas-cooled reactor coupled to a Brayton cycle. In this system, power is transferred from the reactor to the Brayton system via a circulated closed loop gas. To allow early utilization, system designs must be relatively simple, easy to fabricate, and easy to test using non-nuclear heaters to closely mimic heat from fission. This combination of attributes will allow pre-prototypic systems to be designed, fabricated, and tested quickly and affordably. The ability to build and test units is key to the success of a nuclear program, especially if an early flight is desired. The ability to perform very realistic non-nuclear testing increases the success probability of the system. In addition, the technologies required by a concept will substantially impact the cost, time, and resources required to develop a successful space reactor power system. This paper describes design features, assembly, and test matrix for the testing of a thermally simulated 32kW direct-drive gas-cooled reactor in the Early Flight Fission - Test Facility (EFF-TF) at Marshall Space Flight Center. The reactor design and test matrix are provided by Los Alamos National Laboratories.

  6. An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation

    SciTech Connect (OSTI)

    Rafa, S. Molins; Trebotich, D.; Steefel, C. I.; Shen, C.

    2012-02-01T23:59:59.000Z

    The scale-dependence of geochemical reaction rates hinders their use in continuum scale models intended for the interpretation and prediction of chemical fate and transport in subsurface environments such as those considered for geologic sequestration of CO{sub 2}. Processes that take place at the pore scale, especially those involving mass transport limitations to reactive surfaces, may contribute to the discrepancy commonly observed between laboratory-determined and continuum-scale or field rates. Here, the dependence of mineral dissolution rates on the pore structure of the porous media is investigated by means of pore scale modeling of flow and multicomponent reactive transport. The pore scale model is comprised of high performance simulation tools and algorithms for incompressible flow and conservative transport combined with a general-purpose multicomponent geochemical reaction code. The model performs direct numerical simulation of reactive transport based on an operator-splitting approach to coupling transport and reactions. The approach is validated with a Poiseuille flow single-pore experiment and verified with an equivalent 1D continuum-scale model of a capillary tube packed with calcite spheres. Using the case of calcite dissolution as an example, the high resolution model is used to demonstrate that non-uniformity in the flow field at the pore scale has the effect of decreasing the overall reactivity of the system, even when systems with identical reactive surface area are considered. The effect becomes more pronounced as the heterogeneity of the reactive grain packing increases, particularly where the flow slows sufficiently such that the solution approaches equilibrium locally and the average rate becomes transport-limited.

  7. Editorial, Workshop on New Directions for Advanced Computer Simulations and Experiments in Fusion-Related Plasma-Surface Interactions

    SciTech Connect (OSTI)

    Hogan, John T [ORNL; Krstic, Predrag S [ORNL; Meyer, Fred W [ORNL

    2006-01-01T23:59:59.000Z

    Because plasma-boundary physics encompasses some of the most important unresolved issues for both the International Thermonuclear Experimental Reactor (ITER) project and future fusion power reactors, there is a strong interest in the fusion community for better understanding and characterization of plasma-wall interactions. Chemical and physical sputtering cause the erosion of the limiters/divertor plates and vacuum vessel walls (made of C, Be and W, for example) and degrade fusion performance by diluting the fusion fuel and excessively cooling the core, while carbon redeposition could produce long-term in-vessel tritium retention, degrading the superior thermo-mechanical properties of the carbon materials. Mixed plasma-facing materials are proposed, requiring optimization for different power and particle flux characteristics. Knowledge of material properties as well as characteristics of the plasma-material interaction are prerequisites for such optimizations. Computational power will soon reach hundreds of teraflops, so that theoretical and plasma science expertise can be matched with new experimental capabilities in order to mount a strong response to these challenges. To begin to address such questions, a Workshop on New Directions for Advanced Computer Simulations and Experiments in Fusion-Related Plasma-Surface Interactions for Fusion (PSIF) was held at the Oak Ridge National Laboratory from 21 to 23 March, 2005. The purpose of the workshop was to bring together researchers in fusion related plasma-wall interactions in order to address these topics and to identify the most needed and promising directions for study, to exchange opinions on the present depth of knowledge of surface properties for the main fusion-related materials, e.g., C, Be and W, especially for sputtering, reflection, and deuterium (tritium) retention properties. The goal was to suggest the most important next steps needed for such basic computational and experimental work to be facilitated by researchers in fusion, material, and physical sciences. Representatives from many fusion research laboratories attended, and 25 talks were given, the majority of them making up the content of these Workshop proceedings. The presentations of all talks and further information on the Workshop are available at http://www-cfadc.phy.ornl.gov/psif/home.html. The workshop talks dealt with identification of needs from the perspective of integrated fusion simulation and ITER design, recent developments and perspectives on computation of plasma-facing surface properties using the current and expected new generation of computation capability, and with the status of dedicated laboratory experiments which characterize the underlying processes of PSIF. The Workshop summary and conclusions are being published in Nuclear Fusion 45 (2005).

  8. Analysis of turbulent transport and mixing in transitional Rayleigh/Taylor unstable flow using direct numerical simulation data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schilling, Oleg; Mueschke, Nicholas J.

    2010-01-01T23:59:59.000Z

    Data from a 1152X760X1280 direct numerical simulation (DNS) of a transitional Rayleigh-Taylor mixing layer modeled after a small Atwood number water channel experiment is used to comprehensively investigate the structure of mean and turbulent transport and mixing. The simulation had physical parameters and initial conditions approximating those in the experiment. The budgets of the mean vertical momentum, heavy-fluid mass fraction, turbulent kinetic energy, turbulent kinetic energy dissipation rate, heavy-fluid mass fraction variance, and heavy-fluid mass fraction variance dissipation rate equations are constructed using Reynolds averaging applied to the DNS data. The relative importance of mean and turbulent production, turbulent dissipationmore »and destruction, and turbulent transport are investigated as a function of Reynolds number and across the mixing layer to provide insight into the flow dynamics not presently available from experiments. The analysis of the budgets supports the assumption for small Atwood number, Rayleigh/Taylor driven flows that the principal transport mechanisms are buoyancy production, turbulent production, turbulent dissipation, and turbulent diffusion (shear and mean field production are negligible). As the Reynolds number increases, the turbulent production in the turbulent kinetic energy dissipation rate equation becomes the dominant production term, while the buoyancy production plateaus. Distinctions between momentum and scalar transport are also noted, where the turbulent kinetic energy and its dissipation rate both grow in time and are peaked near the center plane of the mixing layer, while the heavy-fluid mass fraction variance and its dissipation rate initially grow and then begin to decrease as mixing progresses and reduces density fluctuations. All terms in the transport equations generally grow or decay, with no qualitative change in their profile, except for the pressure flux contribution to the total turbulent kinetic energy flux, which changes sign early in time (a countergradient effect). The production-to-dissipation ratios corresponding to the turbulent kinetic energy and heavy-fluid mass fraction variance are large and vary strongly at small evolution times, decrease with time, and nearly asymptote as the flow enters a self-similar regime. The late-time turbulent kinetic energy production-to-dissipation ratio is larger than observed in shear-driven turbulent flows. The order of magnitude estimates of the terms in the transport equations are shown to be consistent with the DNS at late-time, and also confirms both the dominant terms and their evolutionary behavior. These results are useful for identifying the dynamically important terms requiring closure, and assessing the accuracy of the predictions of Reynolds-averaged Navier-Stokes and large-eddy simulation models of turbulent transport and mixing in transitional Rayleigh-Taylor instability-generated flow.« less

  9. Analysis of turbulent transport and mixing in transitional Rayleigh/Taylor unstable flow using direct numerical simulation data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schilling, Oleg [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Mueschke, Nicholas J. [Texas A and M Univ., College Station, TX (United States)

    2010-01-01T23:59:59.000Z

    Data from a 1152X760X1280 direct numerical simulation (DNS) of a transitional Rayleigh-Taylor mixing layer modeled after a small Atwood number water channel experiment is used to comprehensively investigate the structure of mean and turbulent transport and mixing. The simulation had physical parameters and initial conditions approximating those in the experiment. The budgets of the mean vertical momentum, heavy-fluid mass fraction, turbulent kinetic energy, turbulent kinetic energy dissipation rate, heavy-fluid mass fraction variance, and heavy-fluid mass fraction variance dissipation rate equations are constructed using Reynolds averaging applied to the DNS data. The relative importance of mean and turbulent production, turbulent dissipation and destruction, and turbulent transport are investigated as a function of Reynolds number and across the mixing layer to provide insight into the flow dynamics not presently available from experiments. The analysis of the budgets supports the assumption for small Atwood number, Rayleigh/Taylor driven flows that the principal transport mechanisms are buoyancy production, turbulent production, turbulent dissipation, and turbulent diffusion (shear and mean field production are negligible). As the Reynolds number increases, the turbulent production in the turbulent kinetic energy dissipation rate equation becomes the dominant production term, while the buoyancy production plateaus. Distinctions between momentum and scalar transport are also noted, where the turbulent kinetic energy and its dissipation rate both grow in time and are peaked near the center plane of the mixing layer, while the heavy-fluid mass fraction variance and its dissipation rate initially grow and then begin to decrease as mixing progresses and reduces density fluctuations. All terms in the transport equations generally grow or decay, with no qualitative change in their profile, except for the pressure flux contribution to the total turbulent kinetic energy flux, which changes sign early in time (a countergradient effect). The production-to-dissipation ratios corresponding to the turbulent kinetic energy and heavy-fluid mass fraction variance are large and vary strongly at small evolution times, decrease with time, and nearly asymptote as the flow enters a self-similar regime. The late-time turbulent kinetic energy production-to-dissipation ratio is larger than observed in shear-driven turbulent flows. The order of magnitude estimates of the terms in the transport equations are shown to be consistent with the DNS at late-time, and also confirms both the dominant terms and their evolutionary behavior. These results are useful for identifying the dynamically important terms requiring closure, and assessing the accuracy of the predictions of Reynolds-averaged Navier-Stokes and large-eddy simulation models of turbulent transport and mixing in transitional Rayleigh-Taylor instability-generated flow.

  10. The effect of flame structure on soot formation and transport in turbulent nonpremixed flames using direct numerical simulation

    SciTech Connect (OSTI)

    Lignell, David O. [Department of Chemical Engineering, University of Utah, Salt Lake City, UT 84098 (United States); Reacting Flow Research Department, Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551 (United States); Chen, Jacqueline H. [Reacting Flow Research Department, Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551 (United States); Smith, Philip J. [Department of Chemical Engineering, University of Utah, Salt Lake City, UT 84098 (United States); Lu, Tianfeng; Law, Chung K. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08540 (United States)

    2007-10-15T23:59:59.000Z

    Direct numerical simulations of a two-dimensional, nonpremixed, sooting ethylene flame are performed to examine the effects of soot-flame interactions and transport in an unsteady configuration. A 15-step, 19-species (with 10 quasi-steady species) chemical mechanism was used for gas chemistry, with a two-moment, four-step, semiempirical soot model. Flame curvature is shown to result in flames that move, relative to the fluid, either toward or away from rich soot formation regions, resulting in soot being essentially convected into or away from the flame. This relative motion of flame and soot results in a wide spread of soot in the mixture fraction coordinate. In regions where the center of curvature of the flame is in the fuel stream, the flame motion is toward the fuel and soot is located near the flame at high temperature and hence has higher reaction rates and radiative heat fluxes. Soot-flame breakthrough is also observed in these regions. Fluid convection and flame displacement velocity relative to fluid convection are of similar magnitudes while thermophoretic diffusion is 5-10 times lower. These results emphasize the importance of both unsteady and multidimensional effects on soot formation and transport in turbulent flames. (author)

  11. Determination of the Operating Envelope for a Direct Fired Fuel Cell Turbine Hybrid Using Hardware Based Simulation

    SciTech Connect (OSTI)

    David Tucker; Eric Liese; Randall Gemmen

    2009-02-10T23:59:59.000Z

    The operating range of a direct fired solid oxide fuel cell gas turbine (SOFC/GT) hybrid with bypass control of cathode airflow was determined using a hardware-based simulation facility designed and built by the U.S. Department of Energy, National Energy Technology Laboratory (NETL). Three methods of cathode airflow management using bypass valves in a hybrid power system were evaluated over the maximum range of operation. The cathode air flow was varied independently over the full range of operation of each bypass valve. Each operating point was taken at a steady state condition and was matched to the thermal, pressure and flow output of a corresponding fuel cell operation condition. Turbine electric load was also varied so that the maximum range of fuel cell operation could be studied, and a preliminary operating map could be made. Results are presented to show operating envelopes in terms of cathode air flow, fuel cell and turbine load, and compressor surge margin to be substantial.

  12. ABWR start-up test analysis using BWR core simulator with three-dimensional direct response matrix method

    SciTech Connect (OSTI)

    Mitsuyasu, T.; Ishii, K.; Hino, T.; Aoyama, M. [Hitachi, Ltd., Hitachi Research Laboratory, 2-1 Omika-cho 7-chome, Hitachi-shi Ibaraki-ken, 319-1221 (Japan)

    2012-07-01T23:59:59.000Z

    The ABWR start-up test analysis has been done with the BWR core simulator using the three--dimensional direct response matrix (3D-DRM) method. The Monte Carlo code VMONT made the sub-response matrices for the 3D-DRM method. Each boundary surface was subdivided by 4 x 4 for transverse segments, by 4 for angular segments and by 4 for axial zones in a node. For the calculation speedup, the 3D-DRM code used the divided sub-response matrices data set. The code used the MPI and OpenMP for the parallelized method. The median value is set as the average critical eigenvalues. The changes from the maximum value to the minimum value are 0.34 %{Delta}k with the spectral history method and 0.40 %{Delta}k without it, and the respective standard deviations were 0.12 % and 0.14 %. Using the spectral history method decreased the variation by 0.06 %{Delta}k. The root mean square differences of the axial power distribution were about 6 % between the analysis results and the plant data. Using the currents which converged in the previous exposure step reduced the number of iterations when the CR pattern changed only slightly. The averaged calculation time for each exposure step was about 5 hours on 12 PC Linux cluster servers with Core 2 Quad 3 GHz. (authors)

  13. Process Simulation and Control Optimization of a Blast Furnace Using Classical Thermodynamics Combined to a Direct Search

    E-Print Network [OSTI]

    Martin, Alain

    consisting mainly of N2, CO, CO2, H2, and H2O. This is a consequence of the reduction of the iron ore volume methods, data-mining models, heat and mass balance models, and classical thermodynamic simulations-tune the simulation of the blast furnace. Optimal operating conditions and predicted output stream properties

  14. Investigation of Rayleigh-Taylor turbulence and mixing using direct numerical simulation with experimentally-measured initial conditions. I. Comparison to experimental data

    SciTech Connect (OSTI)

    Mueschke, N; Schilling, O

    2008-07-23T23:59:59.000Z

    A 1152 x 760 x 1280 direct numerical simulation (DNS) using initial conditions, geometry, and physical parameters chosen to approximate those of a transitional, small Atwood number Rayleigh-Taylor mixing experiment [Mueschke, Andrews and Schilling, J. Fluid Mech. 567, 27 (2006)] is presented. The density and velocity fluctuations measured just off of the splitter plate in this buoyantly unstable water channel experiment were parameterized to provide physically-realistic, anisotropic initial conditions for the DNS. The methodology for parameterizing the measured data and numerically implementing the resulting perturbation spectra in the simulation is discussed in detail. The DNS model of the experiment is then validated by comparing quantities from the simulation to experimental measurements. In particular, large-scale quantities (such as the bubble front penetration hb and the mixing layer growth parameter {alpha}{sub b}), higher-order statistics (such as velocity variances and the molecular mixing parameter {theta}), and vertical velocity and density variance spectra from the DNS are shown to be in favorable agreement with the experimental data. Differences between the quantities obtained from the DNS and from experimental measurements are related to limitations in the dynamic range of scales resolved in the simulation and other idealizations of the simulation model. This work demonstrates that a parameterization of experimentally-measured initial conditions can yield simulation data that quantitatively agrees well with experimentally-measured low- and higher-order statistics in a Rayleigh-Taylor mixing layer. This study also provides resolution and initial conditions implementation requirements needed to simulate a physical Rayleigh-Taylor mixing experiment. In Part II [Mueschke and Schilling, Phys. Fluids (2008)], other quantities not measured in the experiment are obtained from the DNS and discussed, such as the integral- and Taylor-scale Reynolds numbers, Reynolds stress anisotropy and two-dimensional density and velocity variance spectra, hypothetical chemical product formation measures, other local and global mixing parameters, and the statistical composition of mixed fluid.

  15. Energy Savings in Direct Evaporative Cooling: real application in the Madrid metro and simulated application for offices in Sydney 

    E-Print Network [OSTI]

    Simonetti, R.

    2010-01-01T23:59:59.000Z

    Water evaporates spontaneously in contact with the air, absorbing around 680 W/(kg/h of evaporated water) from the air (1,053 BTU/lb.). Direct Evaporative Cooling (DEC) exploits this simple physical phenomenon to achieve ...

  16. 43rd AIAA Aerospace Sciences Meeting and Exhibit, Jan 1013, Reno, Nevada Direct numerical simulation of turbulent jets in crossflow

    E-Print Network [OSTI]

    Mahesh, Krishnan

    simulation of turbulent jets in crossflow Suman Muppidi and Krishnan Mahesh University of Minnesota crossflow. The velocity ratio of the jet to that of the crossflow is 5.7 and the Reynolds number based agreement. I. Introduction A jet in crossflow is defined as the flow field where a jet of fluid enters

  17. Process Design, Simulation and Integration of Dimethyl Ether (DME) Production from Shale Gas by Direct and Indirect Methods

    E-Print Network [OSTI]

    Karagoz, Secgin

    2014-08-11T23:59:59.000Z

    are methanol synthesis and dehydration of the methanol to DME. Another way to produce DME is the direct synthesis of DME from syngas. In order to use DME as a fuel alternative, it must be produced at low cost in large quantities. The purpose of this study...

  18. Performance consequences of alternating directional control-response compatibility: Evidence from a coal mine shuttle car simulator

    SciTech Connect (OSTI)

    Zupanc, C.M.; Burgess-Limerick, R.J.; Wallis, G. [University of Queensland, St Lucia, Qld. (Australia)

    2007-08-15T23:59:59.000Z

    This experiment examines the performance of 48 novice participants in a virtual analogy of an underground coal mine shuttle car. Participants were randomly assigned to a compatible condition, an incompatible condition, an alternating condition in which compatibility alternated within and between hands, or an alternating condition in which compatibility alternated between hands. Participants made fewer steering direction errors and made correct steering responses more quickly in the compatible condition. Error rate decreased over time in the incompatible condition. A compatibility effect for both errors and reaction time was also found when the control-response relationship alternated; however, performance improvements over time were not consistent. Isolating compatibility to a hand resulted in reduced error rate and faster reaction time than when compatibility alternated within and between hands. Thus consequences of alternating control-response relationships are higher error rates and slower responses, at least in the early stages of learning. This research highlights the importance of ensuring consistently compatible human-machine directional control-response relationships.

  19. Icarus: A 2D direct simulation Monte Carlo (DSMC) code for parallel computers. User`s manual - V.3.0

    SciTech Connect (OSTI)

    Bartel, T.; Plimpton, S.; Johannes, J.; Payne, J.

    1996-10-01T23:59:59.000Z

    Icarus is a 2D Direct Simulation Monte Carlo (DSMC) code which has been optimized for the parallel computing environment. The code is based on the DSMC method of Bird and models from free-molecular to continuum flowfields in either cartesian (x, y) or axisymmetric (z, r) coordinates. Computational particles, representing a given number of molecules or atoms, are tracked as they have collisions with other particles or surfaces. Multiple species, internal energy modes (rotation and vibration), chemistry, and ion transport are modelled. A new trace species methodology for collisions and chemistry is used to obtain statistics for small species concentrations. Gas phase chemistry is modelled using steric factors derived from Arrhenius reaction rates. Surface chemistry is modelled with surface reaction probabilities. The electron number density is either a fixed external generated field or determined using a local charge neutrality assumption. Ion chemistry is modelled with electron impact chemistry rates and charge exchange reactions. Coulomb collision cross-sections are used instead of Variable Hard Sphere values for ion-ion interactions. The electrostatic fields can either be externally input or internally generated using a Langmuir-Tonks model. The Icarus software package includes the grid generation, parallel processor decomposition, postprocessing, and restart software. The commercial graphics package, Tecplot, is used for graphics display. The majority of the software packages are written in standard Fortran.

  20. The Impacts of Indirect Soil Moisture Assimilation and Direct Surface Temperature and Humidity Assimilation on a Mesoscale Model Simulation of an Indian

    E-Print Network [OSTI]

    Niyogi, Dev

    Assimilation on a Mesoscale Model Simulation of an Indian Monsoon Depression VINODKUMAR AND A. CHANDRASEKAR-generation Pennsylvania State University­NCAR Mesoscale Model (MM5) simulation utilized the humidity and temperature

  1. Directives Tools

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    Useful links and resources for Directives Writers, Directives Point of Contact (DPCs), Subject Matter Experts (SMEs), and Draft Directive Reviewers.

  2. Sandia National Laboratories: combustion simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    combustion simulation Direct Measurement of Key Molecule Will Increase Accuracy of Combustion Models On March 3, 2015, in Computational Modeling & Simulation, CRF, Energy,...

  3. Art Directable Tornadoes

    E-Print Network [OSTI]

    Dwivedi, Ravindra

    2011-08-08T23:59:59.000Z

    of the Twisters? [Bond 1996], ?Tornado? [Nosseck 1996] and ?Hancock? [Berg 2008]. 5 (a) (b) Figure 4: Simulated tornadoes in "The Day After Tomorrow". (a) Twin tornadoes [Emmerich 2004]. (b) Tornado with a huge funnel [Emmerich 2004...]. The film "The Day after Tomorrow" [Emmerich 2004], had a variety of tornadoes with different shapes and sizes and the shots required a lot of art direct-ability to make it visually appealing and believable (Figure 4). In 2009, an animated movie ?Cloudy...

  4. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01T23:59:59.000Z

    simulation tool for hydrogen fuel cell vehicles, Journal ofeconomies of the direct hydrogen fuel cell vehicle withoutMaximizing Direct-Hydrogen Pem Fuel Cell Vehicle Efficiency-

  5. Is the Calcite-Water Interface Understood? Direct Comparisons...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Is the Calcite-Water Interface Understood? Direct Comparisons of Molecular Dynamics Simulations with Specular X-ray Reflectivity Is the Calcite-Water Interface Understood? Direct...

  6. Directives System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-01-30T23:59:59.000Z

    The Department of Energy (DOE) Directives System is the means by which DOE policies, requirements, and responsibilities are developed and communicated throughout the Department. Directives are used to inform, direct, and guide employees in the performance of their jobs, and to enable employees to work effectively within the Department and with agencies, contractors, and the public. Cancels: DOE O 251.1, DOE M 251.1-1

  7. Directives Help

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    All DOE directives are available through this site. While it may seem overwhelming, given the number of documents, we have provided a number of ways in which you may get to the information you need.

  8. Simulations Data Simulation Type

    E-Print Network [OSTI]

    Wang, Xiaorui "Ray"

    to request different simulations data. The flow chart above demonstrates the different steps and options@ornl.gov) Autotune Drupal 7 CMS Current building energy models (BEMs), using EnergyPlus or other simulations, are unreliable because they have to constantly be calibrated to match actual energy usage data. Currently

  9. Future Directions for Magnetic Sensors

    E-Print Network [OSTI]

    and Engineering Laboratory Magnetic tunnel junction (MTJ) sensors are rapidly becoming the technology of choiceFuture Directions for Magnetic Sensors: HYBRIDMATERIALS Our goal is to develop the scientific expertise needed to allow modeling and simulation to become the driving force in improving magnetic sensors

  10. Promoting Self Directed Learning 1 Running head: PROMOTING SELF DIRECTED LEARNING

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    as incompatible. This is due to the origins of both types of learning environments which, when consideredPromoting Self Directed Learning 1 Running head: PROMOTING SELF DIRECTED LEARNING Promoting Self Directed Learning in Simulation Based Discovery Learning Environments through Intelligent Support Koen

  11. Anti-Synchronization in Multiple Time Delay Power Systems

    E-Print Network [OSTI]

    E. M. Shahverdiev

    2010-08-23T23:59:59.000Z

    We investigate chaos antisynchronization between two uni-directionally coupled multiple time delay power systems.The results are of certain importance to prevent power black-out in the entire power grid.

  12. Improved Solvers for Advanced Engine Combustion Simulation

    Broader source: Energy.gov (indexed) [DOE]

    Volvo; multi-zone cycle simulation, OpenFOAM model development Bosch; High Performance Computing of HCCISI transition Delphi; direct injection GE Research; new...

  13. Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01T23:59:59.000Z

    operating conditions. Direct Hydrogen Fuel Cell System Modelconditions for a direct hydrogen fuel cell system Table 1simulation tool for hydrogen fuel cell vehicles, Journal of

  14. GROUNDWATER REMEDIATION DESIGN USING SIMULATED

    E-Print Network [OSTI]

    Mays, Larry W.

    CHAPTER 8 GROUNDWATER REMEDIATION DESIGN USING SIMULATED ANNEALING Richard L. Skaggs Pacific? There has been an emergence in the use of combinatorial methods such as simulated annealing in groundwater for groundwater management applications. The algorithm incor- porates "directional search" and "memory

  15. Departmental Directives Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-08-16T23:59:59.000Z

    The Order is the primary directive for administering the Department's directives Program. Cancels: DOE O 251.1A

  16. Multiple direction vibration fixture

    DOE Patents [OSTI]

    Cericola, Fred (Albuquerque, NM); Doggett, James W. (Albuquerque, NM); Ernest, Terry L. (Albuquerque, NM); Priddy, Tommy G. (Rockville, MD)

    1991-01-01T23:59:59.000Z

    An apparatus for simulating a rocket launch environment on a test item undergoing centrifuge testing by subjecting the item simultaneously or separately to vibration along an axis of centripetal force and along an axis perpendicular to the centripetal force axis. The apparatus includes a shaker motor supported by centrifuge arms and a right angle fixture pivotally connected to one of the shaker motor mounts. When the shaker motor vibrates along the centripetal force axis, the vibrations are imparted to a first side of the right angle fixture. The vibrations are transmitted 90 degrees around the pivot and are directed to a second side of the right angle fixture which imparts vibrations perpendicular to the centripetal force axis. The test item is in contact with a third side of the right angle fixture and receives both centripetal-force-axis vibrations and perpendicular axis vibrations simultaneously. A test item can be attached to the third side near the flexible coupling or near the air bag to obtain vibrations along the centripetal force axis or transverse to the centripetal force axis.

  17. Directions and Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directions & Maps Plan Your Visit Visit About the Museum Museum Hours Directions & Maps When to Visit Arrange for a Visit Around Los Alamos Contact Us invisible utility element...

  18. Direct photon production from viscous QGP

    E-Print Network [OSTI]

    Chaudhuri, A K

    2011-01-01T23:59:59.000Z

    We simulate direct photon production in evolution of viscous QGP medium. Photons from Compton and annihilation processes are considered. Viscous effect on photon production is very strong and reliable simulation is possible only in a limited $p_T$ range. For minimally viscous fluid $\\eta/s$=0.08), direct photons can be reliably computed only up to $p_T \\leq$ 1.3 GeV. With reduced viscosity ($\\eta/s$=0.04), the limit increases to $p_T \\leq $2GeV.

  19. MESOSCALE SIMULATIONS OF POWDER COMPACTION

    SciTech Connect (OSTI)

    Lomov, Ilya; Fujino, Don; Antoun, Tarabay; Liu, Benjamin [Lawrence Livermore National Laboratory, P. O. Box 808, Livermore CA 94551 (United States)

    2009-12-28T23:59:59.000Z

    Mesoscale 3D simulations of shock compaction of metal and ceramic powders have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating a well-characterized shock compaction experiment of a porous ductile metal. Simulation results using the Steinberg material model and handbook values for solid 2024 aluminum showed good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not as well studied as metals, so a simple material model for solid ceramic (tungsten carbide) has been calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powders have been performed and showed good agreement with experimental data. The numerical shock wave profile has same character and thickness as that measured experimentally using VISAR. The numerical results show reshock states above the single-shock Hugoniot line as observed in experiments. We found that for good quantitative agreement with experiments 3D simulations are essential.

  20. Direct/Indirect Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    This chapter provides recommended categories for direct and indirect elements developed by the Committee for Cost Methods Development (CCMD) and describes various estimating techniques for direct and indirect costs.

  1. Direct Loan Program (Connecticut)

    Broader source: Energy.gov [DOE]

    The Connecticut Development Authority’s Direct Loan Program provides direct senior and subordinated loans and mezzanine investments to companies creating or maintaining jobs. Up to $20,000 per job...

  2. Directives System Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-01-30T23:59:59.000Z

    This Manual provides detailed requirements to supplement DOE O 251.1A, Directives System, dated 1-30-98.

  3. Enabling immersive simulation.

    SciTech Connect (OSTI)

    McCoy, Josh (University of California Santa Cruz, Santa Cruz, CA); Mateas, Michael (University of California Santa Cruz, Santa Cruz, CA); Hart, Derek H.; Whetzel, Jonathan; Basilico, Justin Derrick; Glickman, Matthew R.; Abbott, Robert G.

    2009-02-01T23:59:59.000Z

    The object of the 'Enabling Immersive Simulation for Complex Systems Analysis and Training' LDRD has been to research, design, and engineer a capability to develop simulations which (1) provide a rich, immersive interface for participation by real humans (exploiting existing high-performance game-engine technology wherever possible), and (2) can leverage Sandia's substantial investment in high-fidelity physical and cognitive models implemented in the Umbra simulation framework. We report here on these efforts. First, we describe the integration of Sandia's Umbra modular simulation framework with the open-source Delta3D game engine. Next, we report on Umbra's integration with Sandia's Cognitive Foundry, specifically to provide for learning behaviors for 'virtual teammates' directly from observed human behavior. Finally, we describe the integration of Delta3D with the ABL behavior engine, and report on research into establishing the theoretical framework that will be required to make use of tools like ABL to scale up to increasingly rich and realistic virtual characters.

  4. SciTech Connect: Direct Modeling of Scintillator Thickness for...

    Office of Scientific and Technical Information (OSTI)

    and a direct way of doing this is using Monte Carlo-based radiation transport codes. Such simulations can be expensive in terms of computational time, and the codes are...

  5. Directives Templates - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both theDirectives Review

  6. Simulating Billion-Task Parallel Programs

    SciTech Connect (OSTI)

    Perumalla, Kalyan S [ORNL] [ORNL; Park, Alfred J [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    In simulating large parallel systems, bottom-up approaches exercise detailed hardware models with effects from simplified software models or traces, whereas top-down approaches evaluate the timing and functionality of detailed software models over coarse hardware models. Here, we focus on the top-down approach and significantly advance the scale of the simulated parallel programs. Via the direct execution technique combined with parallel discrete event simulation, we stretch the limits of the top-down approach by simulating message passing interface (MPI) programs with millions of tasks. Using a timing-validated benchmark application, a proof-of-concept scaling level is achieved to over 0.22 billion virtual MPI processes on 216,000 cores of a Cray XT5 supercomputer, representing one of the largest direct execution simulations to date, combined with a multiplexing ratio of 1024 simulated tasks per real task.

  7. THE BLIND SIMULATION PROBLEM and REGENERATIVE PROCESSES

    E-Print Network [OSTI]

    Bucklew, James Antonio

    Processes 1 #12; 1 Introduction 1.1 Simulation and importance sampling Large and/or nonlinear stochastic on the order of 10 \\Gamma6 are quite common in stochastic systems. It is clear that a direct simulation(Z i ): The ratio p(\\Delta)=q(\\Delta) will be called the weight function of the importance sam

  8. Temporally propagated optical pulses, and what they reveal about dispersion handling

    E-Print Network [OSTI]

    Kinsler, Paul

    2015-01-01T23:59:59.000Z

    I derive a temporally propagated uni-directional optical pulse equation valid in the few cycle limit. Temporal propagation is advantageous because it naturally preserves causality, unlike the competing spatially propagated models. The approach generates exact coupled bi-directional equations, which can be efficiently approximated down to a uni-directional form in cases where an optical pulse changes little over one optical cycle. It also also allows a direct term-to-term comparison of an exact bi-directional theory with an approximate uni-directional theory. Notably, temporal propagation handles dispersion in a different way, and this difference serves to highlight existing approximations inherent in spatially propagated treatments of dispersion. Accordingly, I emphasise the need for future work in clarifying the limitations of the dispersion conversion required by these types of approaches; since the only alternative in the few cycle limit may be to resort to the much more computationally intensive full Maxw...

  9. Directional intraoperative probe

    DOE Patents [OSTI]

    Majewski, Stanislaw; Popov, Vladimir; Loutts, Georgii

    2003-11-04T23:59:59.000Z

    An introperative surgical probe incorporating both a fiber optic imaging system and multi-element beta/gamma radiation directional indicating system is described.

  10. Departmental Directives Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-10-16T23:59:59.000Z

    To establish directives as the primary means to set, communicate, and institutionalize policies, requirements, responsibilities, and procedures for Departmental elements and contractors.

  11. Directives System Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-16T23:59:59.000Z

    This Manual provides detailed requirements to supplement DOE O 251.1, which establishes requirements for the development, coordination, and sunset review of DOE directives.

  12. Cancellation of Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-26T23:59:59.000Z

    Effective immediately the following Department of Energy directive is canceled. DOE M 452.2-2, Nuclear Explosive Safety Evaluation Processes, dated 04-14-2009.

  13. DIRECT SIMULATION OF SPATIALLY EVOLVING COMPRESSIBLE TURBULENT BOUNDARY LAYERS

    E-Print Network [OSTI]

    Erlebacher, Gordon

    of the cold wall condition used in Ref. 6, and, other differences. The computational method used in this study compressible flows because of the interest in designing high speed vehicles and the associated propulsion on temperature. Under the adiabatic conditions of the experiment, the temperature increases as the wall

  14. Direct numerical simulation of turbulent Taylor–Couette flow

    E-Print Network [OSTI]

    2007-08-23T23:59:59.000Z

    The hot-wire anemometry measurements by Smith &. Townsend (1982) and Townsend (1984) for a radius ratio 0.667 suggested that for. Taylor numbers below ...

  15. Direct Numerical Simulation of Unsteady Decelerating Flows Yongmann M. Chung

    E-Print Network [OSTI]

    Chung, Yongmann M.

    . In contrast, v' and w' do not decrease immediately and show a little delayed response after the pressu

  16. Direct Numerical Simulations and Robust Predictions of Cloud...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wall. The yellow is a visualization of the pressure peak in the center of the bubble cloud. Credit: Computational Science and Engineering Laboratory, ETH Zurich, Switzerland...

  17. Direct Numerical Simulations and Robust Predictions of Cloud Cavitation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDiesel pricesDiesel28,Collapse | Argonne

  18. Multi-Phase Flow: Direct Numerical Simulation Igor Bolotnov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA /Ml'.SolarUS Dept ofActing Chiefof Inks and

  19. Departmental Directives System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1983-04-07T23:59:59.000Z

    The order establishes the directives system to be used for publishing permanent and temporary directives issued by DOE Headquarters and addressed to Headquarters and/or field elements. Chg 1 dated 3-14-85. Cancels DOE 1321.1A.

  20. Directives - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both the Fermilab box

  1. Directives Quarterly Updates - DOE Directives, Delegations, and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both the

  2. Directives Tools - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: PotentialFederalDirections Basic Energy SciencesDirections


  3. Ris9-R-609(EN) Simulation ofa PWR Power Plant

    E-Print Network [OSTI]

    Ris9-R-609(EN) Simulation ofa PWR Power Plant for Process Control and Diagnosis Finn Ravnsbjerg Nielsen Risø National Laboratory, Roskilde, Denmark December 1991 #12;Simulation of a PWR Power Plant *^R a compute simulation of a simplified pressurized nuclear power plant model directed towards process control

  4. Energy Distribution of Nanoflares in Three-Dimensional Simulations of

    E-Print Network [OSTI]

    Ng, Chung-Sang

    Energy Distribution of Nanoflares in Three-Dimensional Simulations of Coronal Heating Chung-Sang Ng-dimensional direct simulations due to obvious numerical difficulties. We will present energy distributions and other;3D Simulation of Parker's model · Magnetic energy limited by disruptions. ==0.000625(64x64x16) =0

  5. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2003-05-22T23:59:59.000Z

    Project activities were focused on the design and construction the sub-scale hybrid Direct Fuel Cell/turbine (DFC/T{reg_sign}) power plant and modification of a Capstone Simple Cycle Model 330 microturbine. The power plant design work included preparation of system flow sheet and performing computer simulations based on conservation of mass and energy. The results of the simulation analyses were utilized to prepare data sheets and specifications for balance-of-plant equipment. Process flow diagram (PFD) and piping and instrumentation diagrams (P&ID) were also completed. The steady state simulation results were used to develop design information for modifying the control functions, and for sizing the heat exchangers required for recuperating the waste heat from the power plant. Line and valve sizes for the interconnecting pipes between the microturbine and the heat recuperators were also identified.

  6. Direct Discharge Permit (Vermont)

    Broader source: Energy.gov [DOE]

    A direct discharge permit is required if a project involves the discharge of pollutants to state waters. For generation purposes, this involves the withdrawal of surface water for cooling purposes...

  7. Peptide partitioning properties from direct insertion studies

    SciTech Connect (OSTI)

    Ulmschneider, Martin [University of Oxford; Smith, Jeremy C [ORNL; Ulmschneider, Jakob [University of Heidelberg

    2010-06-01T23:59:59.000Z

    Partitioning properties of polypeptides are at the heart of biological membrane phenomena and their precise quantification is vital for ab-initio structure prediction and the accurate simulation of membrane protein folding and function. Recently the cellular translocon machinery has been employed to determine membrane insertion propensities and transfer energetics for a series of polyleucine segments embedded in a carrier sequence. We show here that the insertion propensity, pathway, and transfer energetics into synthetic POPC bilayers can be fully described by direct atomistic peptide partitioning simulations. The insertion probability as a function of peptide length follows two-state Boltzmann statistics, in agreement with the experiments. The simulations expose a systematic offset between translocon-mediated and direct insertion free energies. Compared to the experiment the insertion threshold is shifted toward shorter peptides by 2 leucine residues. The simulations reveal many hitherto unknown atomic-resolution details about the partitioning process and promise to provide a powerful tool for urgently needed calibration of lipid parameters to match experimentally observed peptide transfer energies.

  8. Refrigerant directly cooled capacitors

    DOE Patents [OSTI]

    Hsu, John S. (Oak Ridge, TN); Seiber, Larry E. (Oak Ridge, TN); Marlino, Laura D. (Oak Ridge, TN); Ayers, Curtis W. (Kingston, TN)

    2007-09-11T23:59:59.000Z

    The invention is a direct contact refrigerant cooling system using a refrigerant floating loop having a refrigerant and refrigeration devices. The cooling system has at least one hermetic container disposed in the refrigerant floating loop. The hermetic container has at least one electronic component selected from the group consisting of capacitors, power electronic switches and gating signal module. The refrigerant is in direct contact with the electronic component.

  9. Understanding Manufacturing Systems with a Learning Historian for UserDirected Experimentation

    E-Print Network [OSTI]

    Golbeck, Jennifer

    a wide variety of important problems in manufacturing and other complex systems. In addition, simulation1 Understanding Manufacturing Systems with a Learning Historian for User­Directed Experimentation to improve user­directed experimentation with discrete event simulation models of manufacturing systems

  10. Understanding Manufacturing Systems with a Learning Historian for User-Directed Experimentation

    E-Print Network [OSTI]

    Golbeck, Jennifer

    a wide variety of important problems in manufacturing and other complex systems. In addition, simulation1 Understanding Manufacturing Systems with a Learning Historian for User-Directed Experimentation to improve user-directed experimentation with discrete event simulation models of manufacturing systems

  11. Directional spherical multipole wavelets

    SciTech Connect (OSTI)

    Hayn, Michael; Holschneider, Matthias [Institute for Mathematics, University Potsdam, Am Neuen Palais 10, 144 69 Potsdam (Germany)

    2009-07-15T23:59:59.000Z

    We construct a family of admissible analysis reconstruction pairs of wavelet families on the sphere. The construction is an extension of the isotropic Poisson wavelets. Similar to those, the directional wavelets allow a finite expansion in terms of off-center multipoles. Unlike the isotropic case, the directional wavelets are not a tight frame. However, at small scales, they almost behave like a tight frame. We give an explicit formula for the pseudodifferential operator given by the combination analysis-synthesis with respect to these wavelets. The Euclidean limit is shown to exist and an explicit formula is given. This allows us to quantify the asymptotic angular resolution of the wavelets.

  12. Directed Relativistic Blast Wave

    E-Print Network [OSTI]

    Andrei Gruzinov

    2007-04-23T23:59:59.000Z

    A spherically symmetrical ultra-relativistic blast wave is not an attractor of a generic asymmetric explosion. Spherical symmetry is reached only by the time the blast wave slows down to non-relativistic velocities, when the Sedov-Taylor-von Neumann attractor solution sets in. We show however, that a directed relativistic explosion, with the explosion momentum close to the explosion energy, produces a blast wave with a universal intermediate asymptotic -- a selfsimilar directed ultra-relativistic blast wave. This universality might be of interest for the astrophysics of gamma-ray burst afterglows.

  13. A restructurable logic simulator

    E-Print Network [OSTI]

    Ledford, Gordon Lee

    1985-01-01T23:59:59.000Z

    , notably logic simulators. This paper reviews the event-driven simulation algorithm used by most software- based simulators and a handful of the existing special-purpose hardware-based logic simulation accelerators. A new hardware-based accelerator... architecture is then presented, that of the restructurab)e logic simulator. This accelerator is based on a, memory-like module. referred to as the restructurable logic simulation accelerator, that essentially "stores" a portion of the network to be simulated...

  14. High-Performance Beam Simulator for the LANSCE Linac

    SciTech Connect (OSTI)

    Pang, Xiaoying [Los Alamos National Laboratory; Rybarcyk, Lawrence J. [Los Alamos National Laboratory; Baily, Scott A. [Los Alamos National Laboratory

    2012-05-14T23:59:59.000Z

    A high performance multiparticle tracking simulator is currently under development at Los Alamos. The heart of the simulator is based upon the beam dynamics simulation algorithms of the PARMILA code, but implemented in C++ on Graphics Processing Unit (GPU) hardware using NVIDIA's CUDA platform. Linac operating set points are provided to the simulator via the EPICS control system so that changes of the real time linac parameters are tracked and the simulation results updated automatically. This simulator will provide valuable insight into the beam dynamics along a linac in pseudo real-time, especially where direct measurements of the beam properties do not exist. Details regarding the approach, benefits and performance are presented.

  15. Plasma Simulation Program

    SciTech Connect (OSTI)

    Greenwald, Martin

    2011-10-04T23:59:59.000Z

    Many others in the fusion energy and advanced scientific computing communities participated in the development of this plan. The core planning team is grateful for their important contributions. This summary is meant as a quick overview the Fusion Simulation Program's (FSP's) purpose and intentions. There are several additional documents referenced within this one and all are supplemental or flow down from this Program Plan. The overall science goal of the DOE Office of Fusion Energy Sciences (FES) Fusion Simulation Program (FSP) is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in International Thermonuclear Experimental Reactor (ITER) research and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. [1]. Initial FSP research will focus on two critical Integrated Science Application (ISA) areas: ISA1, the plasma edge; and ISA2, whole device modeling (WDM) including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a critical impediment to successful operation of machines like ITER. If disruptions prove unable to be avoided, their associated dynamics and effects will be addressed in the next phase of the FSP.

  16. Directional gamma detector

    DOE Patents [OSTI]

    LeVert, Francis E. (Downers Grove, Knoxville, TN); Cox, Samson A. (Downers Grove, IL)

    1981-01-01T23:59:59.000Z

    An improved directional gamma radiation detector has a collector sandwiched etween two layers of insulation of varying thicknesses. The collector and insulation layers are contained within an evacuated casing, or emitter, which releases electrons upon exposure to gamma radiation. Delayed electrons and electrons entering the collector at oblique angles are attenuated as they pass through the insulation layers on route to the collector.

  17. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-02-24T23:59:59.000Z

    This Notice extends the following directives until 2/16/04: DOE N 205.2, Foreign National Access to DOE Cyber Systems, and DOE N 205.3, Password Generation, Protection, and Use, dated 11/23/99-7/1/00.

  18. Directed Diffusion Fabio Silva

    E-Print Network [OSTI]

    Heidemann, John

    nodes can cache, or transform data, and may direct interests based on previously cached data (Section 3 University of Southern California Los Angeles, CA, USA 90089 ¶ Computer Science Department University of California, Los Angeles Los Angeles, CA, USA 90095 {fabio,johnh,govindan,estrin}@isi.edu February 10, 2004 1

  19. Turnitin Moodle Direct Integration

    E-Print Network [OSTI]

    de Lijser, Peter

    Turnitin Moodle® Direct Integration Instructor User Manual Turnitin Moodle Integration Manual: 1. Turnitin Moodle Integration Manual: 2 Contents Instructor User Manual 1 Creating a Turnitin Assignment 3 Accessing GradeMark® 15 Glossary 16 #12;Instructor User Manual Turnitin Moodle Integration Manual: 3

  20. Direct from CDC's Environmental

    E-Print Network [OSTI]

    Direct from CDC's Environmental Health Services Branch CAPT Daniel M. Harper, M.P.H. A Diverse Environmental Public Health Workforce to Meet the Diverse Environmental Health Challenges on environmental health and to build part nerships in the profession. In pursuit of these goals, we will feature

  1. Direct from CDC's Environmental

    E-Print Network [OSTI]

    Direct from CDC's Environmental Health Services Branch CAPT John Sarisky, R.S., M.P.H. Developing Environmental Public Health Leadership Editor's note: NEHA strives to provide up to of these goals, we will feature a column from the Environmental Health Services Branch (EHSB) of the Centers

  2. Direct from CDC's Environmental

    E-Print Network [OSTI]

    Direct from CDC's Environmental Health Services Branch Daneen Farrow Collier, M.S.P.H. Editor's note: NEHA strives to pro vide up-to-date and relevant informa tion on environmental health the Environmental Health Services Branch (EHSB) of the Centers for Disease Control and Pre vention (CDC) in every

  3. Direct from CDC's Environmental

    E-Print Network [OSTI]

    Direct from CDC's Environmental Health Services Branch Brian Hubbard, M.P.H. Editor the Environmental Health Services Branch (EHSB) of the Centers for Disease Con trol and Prevention (CDC) in every environmental health programs and professionals to antici pate, identify, and respond to adverse envi ronmental

  4. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-02-12T23:59:59.000Z

    The following directives are extended until 8-12-04. DOE N 205.2, Foreign National Access to DOE Cyber Systems, dated 11/1/99. DOE N 205.3, Password Generation, Protection, and Use, dated 11/23/99.

  5. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-08-12T23:59:59.000Z

    The following directives are extended until 8-12-05: DOE N 205.2, Foreign National Access to DOE Cyber Security Systems, dated 11-1-99 and DOE N 205.3, Password Generation, Protection, and Use, dated 11-23-99. No cancellations.

  6. Mesoscale Simulations of Power Compaction

    SciTech Connect (OSTI)

    Lomov, I; Fujino, D; Antoun, T; Liu, B

    2009-08-06T23:59:59.000Z

    Mesoscale 3D simulations of metal and ceramic powder compaction in shock waves have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating shock compaction of porous well-characterized ductile metal using Steinberg material model. Results of the simulations with handbook values for parameters of solid 2024 aluminum have good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not so well studied as metals, so material model for ceramic (tungsten carbide) has been fitted to shock compression experiments of non-porous samples and further calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powder have been performed and showed good agreement with experimental data. Numerical shock wave profile has same character and thickness as measured with VISAR. Numerical results show reshock states above the single-shock Hugoniot line also observed in experiments. They found that to receive good quantitative agreement with experiment it is essential to perform 3D simulations.

  7. Radiation in molecular dynamic simulations

    SciTech Connect (OSTI)

    Glosli, J; Graziani, F; More, R; Murillo, M; Streitz, F; Surh, M

    2008-10-13T23:59:59.000Z

    Hot dense radiative (HDR) plasmas common to Inertial Confinement Fusion (ICF) and stellar interiors have high temperature (a few hundred eV to tens of keV), high density (tens to hundreds of g/cc) and high pressure (hundreds of Megabars to thousands of Gigabars). Typically, such plasmas undergo collisional, radiative, atomic and possibly thermonuclear processes. In order to describe HDR plasmas, computational physicists in ICF and astrophysics use atomic-scale microphysical models implemented in various simulation codes. Experimental validation of the models used to describe HDR plasmas are difficult to perform. Direct Numerical Simulation (DNS) of the many-body interactions of plasmas is a promising approach to model validation but, previous work either relies on the collisionless approximation or ignores radiation. We present a new numerical simulation technique to address a currently unsolved problem: the extension of molecular dynamics to collisional plasmas including emission and absorption of radiation. The new technique passes a key test: it relaxes to a blackbody spectrum for a plasma in local thermodynamic equilibrium. This new tool also provides a method for assessing the accuracy of energy and momentum exchange models in hot dense plasmas. As an example, we simulate the evolution of non-equilibrium electron, ion, and radiation temperatures for a hydrogen plasma using the new molecular dynamics simulation capability.

  8. Future directions for QCD

    SciTech Connect (OSTI)

    Bjorken, J.D.

    1996-10-01T23:59:59.000Z

    New directions for exploring QCD at future high-energy colliders are sketched. These include jets within jets. BFKL dynamics, soft and hard diffraction, searches for disoriented chiral condensate, and doing a better job on minimum bias physics. The new experimental opportunities include electron-ion collisions at HERA, a new collider detector at the C0 region of the TeVatron, and the FELIX initiative at the LHC.

  9. Direct hydrocarbon fuel cells

    DOE Patents [OSTI]

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04T23:59:59.000Z

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  10. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2006-10-10T23:59:59.000Z

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  11. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-07-11T23:59:59.000Z

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  12. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett Lee; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-09-19T23:59:59.000Z

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  13. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2007-02-27T23:59:59.000Z

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  14. Directional drilling sub

    SciTech Connect (OSTI)

    Benoit, L.F.

    1980-09-02T23:59:59.000Z

    A directional drilling ''sub'' provides a shifting end portion which allows the sub to be rotated from a first in-line axially straight orientation with the drill string to a second angled or ''bent'' position which second position is normally associated with conventional bent ''subs'' which are permanently structured in the bent position. The device shifts from the first (In-line) position to the second (Bent) position upon the application of torsional force thereto which torsional force can be applied, for example, by the actuation of a ''turbodrill'' (Normally attached thereto in operation). The device can be manufactured or machined to provide varying angles to the sub in its bent position to satisfy differing directional drilling situations. The axially aligned first position allows easy entry of the drill string, sub , and turbodrill into the well hole, while the second bend position is used to commence directional drilling. The sub will return gradually to its original axially aligned position when the device is withdrawn from the wellhole, as such position is the path of minimum resistance for the withdrawing drill string and torsion is not present to hold the sub in the bent position.

  15. An Annotated Bibliography of High-Voltage Direct-Current Transmission and Flexible AC Transmission (FACTS) Devices, 1991-1993.

    SciTech Connect (OSTI)

    Litzenberger, Wayne; Lava, Val

    1994-08-01T23:59:59.000Z

    References are contained for HVDC systems, converter stations and components, overhead transmission lines, cable transmission, system design and operations, simulation of high voltage direct current systems, high-voltage direct current installations, and flexible AC transmission system (FACTS).

  16. Analysis of Cold Air Distribution System in an Office Building by the Numerical Simulation Method

    E-Print Network [OSTI]

    Jian, Y.; Li, D.; Xu, H.; Ma, X.

    2006-01-01T23:59:59.000Z

    Numerical simulation is carried out in this paper to calculate indoor air patterns, which include angles of inlet direction and induced ratios in a typical official room. According to the simulation results, the indoor air distribution and indoor...

  17. MOLECULAR DYNAMICS SIMULATION OF HETEROGENEOUS NUCLEATION OF LIQUID DROPLET ON SOLID SURFACE

    E-Print Network [OSTI]

    Maruyama, Shigeo

    such as the quantum dot generation. We have simulated the equilibrium liquid droplet on the solid surface simulation on the bubble nucleation process on the solid surface [2]. In the meantime, direct molecular

  18. Vehicle Modeling and Simulation

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Modeling and Simulation Vehicle Modeling and Simulation Matthew Thornton National Renewable Energy Laboratory matthewthornton@nrel.gov phone: 303.275.4273 Principal...

  19. Directional emission of stadium-shaped micro-lasers

    E-Print Network [OSTI]

    M. Lebental; J. -S. Lauret; J. Zyss; C. Schmit; E. Bogomolny

    2006-09-01T23:59:59.000Z

    The far-field emission of two dimensional (2D) stadium-shaped dielectric cavities is investigated. Micro-lasers with such shape present a highly directional emission. We provide experimental evidence of the dependance of the emission directionality on the shape of the stadium, in good agreement with ray numerical simulations. We develop a simple geometrical optics model which permits to explain analytically main observed features. Wave numerical calculations confirm the results.

  20. DSRP, direct sulfur production

    SciTech Connect (OSTI)

    McMichael, W.J.; Agarwal, S.K.; Jang, B.L.; Howe, G.B. [Research Triangle Institute, Research Triangle Park, NC (United States); Chen, D.H.; Hopper, J.R. [Lamar Univ., Beaumont, TX (United States)

    1993-06-01T23:59:59.000Z

    The objective of this work is to demonstrate on a bench-scale the Direct Sulfur Recovery Process (DSRP) for up to 99 percent or higher recovery of sulfur (as elemental sulfur) from regeneration off-gases and coal-gas produced in integrated gasification combined cycle (IGCC) power generating systems. Fundamental kinetic and thermodynamic studies will also be conducted to enable development of a model to predict DSRP performance in large-scale reactors and to shed light on the mechanism of DSRP reactions. The ultimate goal of the project is to advance the DSRP technology to the point where industry is willing to support its further development.

  1. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-03-18T23:59:59.000Z

    The following directives are extended until 3-18-06: DOE N 205.8, Cyber Security Requirements for Wireless Devices and Information Systems, dated 2-11-04; DOE N 205.9, Certification and Accreditation Process for Information Systems Including National Security Systems, dated 02-19-04; DOE N 205.10, Cyber Security Requirements for Risk Management, dated 02-19-04; DOE N 205.11, Security Requirements for Remote Access to DOE and Applicable Contractor Information Technology Systems, dated 2-19-04. DOE N 205.12, Clearing, Sanitizing, and Destroying Information System Storage Media, Memory Devices, and Other Related Hardware, dated 2-19-04.

  2. Direct Federal Financial

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear21CompanySFoot)YearD e s cDirect

  3. Directions & Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDiesel pricesDiesel28,CollapseDirections &

  4. Directives Points of Contact

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both the Fermilab

  5. Directives Quarterly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both the Fermilab Management's

  6. Directives Quarterly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both the Fermilab

  7. Directives Quarterly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both the

  8. Directives Quarterly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both the

  9. Directives Quarterly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both the

  10. Directives Quarterly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both the

  11. Directions_Crossroads_Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: PotentialFederalDirections Basic Energy SciencesDirections


  12. Interferometric direction finding with a metamaterial detector

    SciTech Connect (OSTI)

    Venkatesh, Suresh; Schurig, David, E-mail: david.schurig@utah.edu [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States)] [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Shrekenhamer, David; Padilla, Willie [Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467 (United States)] [Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467 (United States); Xu, Wangren; Sonkusale, Sameer [Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155 (United States)] [Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155 (United States)

    2013-12-16T23:59:59.000Z

    We present measurements and analysis demonstrating useful direction finding of sources in the S band (2–4?GHz) using a metamaterial detector. An augmented metamaterial absorber that supports magnitude and phase measurement of the incident electric field, within each unit cell, is described. The metamaterial is implemented in a commercial printed circuit board process with off-board back-end electronics. We also discuss on-board back-end implementation strategies. Direction finding performance is analyzed for the fabricated metamaterial detector using simulated data and the standard algorithm, MUtiple SIgnal Classification. The performance of this complete system is characterized by its angular resolution as a function of radiation density at the detector. Sources with power outputs typical of mobile communication devices can be resolved at kilometer distances with sub-degree resolution and high frame rates.

  13. Remote direct memory access

    DOE Patents [OSTI]

    Archer, Charles J.; Blocksome, Michael A.

    2012-12-11T23:59:59.000Z

    Methods, parallel computers, and computer program products are disclosed for remote direct memory access. Embodiments include transmitting, from an origin DMA engine on an origin compute node to a plurality target DMA engines on target compute nodes, a request to send message, the request to send message specifying a data to be transferred from the origin DMA engine to data storage on each target compute node; receiving, by each target DMA engine on each target compute node, the request to send message; preparing, by each target DMA engine, to store data according to the data storage reference and the data length, including assigning a base storage address for the data storage reference; sending, by one or more of the target DMA engines, an acknowledgment message acknowledging that all the target DMA engines are prepared to receive a data transmission from the origin DMA engine; receiving, by the origin DMA engine, the acknowledgement message from the one or more of the target DMA engines; and transferring, by the origin DMA engine, data to data storage on each of the target compute nodes according to the data storage reference using a single direct put operation.

  14. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mccomiskey, Allison

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  15. Web Interface Call Simulator

    E-Print Network [OSTI]

    Ernst, Damien

    Web Interface Call Simulator Stage Description Web Interface for VoIP Call Simulator Net) Version 1.0 ­ 3/09/2012 Page 1 of 6 #12;Web Interface Call Simulator Version 1.0 ­ 3/09/2012 Page 2 of 6 #12;Web Interface Call Simulator Document Control Version Date Notes 1.0 25/8/2012 Reviewed

  16. Numerical Simulation Study on Transpired Solar Air Collector

    E-Print Network [OSTI]

    Wang, C.; Guan, Z.; Zhao, X.; Wang, D.

    2006-01-01T23:59:59.000Z

    The unglazed transpired solar air collector is now a well-recognized solar air heater for heating outside air directly. In this article, researchers introduced numerical simulation tools into the solar air collector research area, analyzed...

  17. Numerical Simulation Study on Transpired Solar Air Collector 

    E-Print Network [OSTI]

    Wang, C.; Guan, Z.; Zhao, X.; Wang, D.

    2006-01-01T23:59:59.000Z

    The unglazed transpired solar air collector is now a well-recognized solar air heater for heating outside air directly. In this article, researchers introduced numerical simulation tools into the solar air collector research area, analyzed...

  18. Implementing Feedback Control on a Novel Proximity Operations Simulation Platform

    E-Print Network [OSTI]

    Aures-Cavalieri, Kurt Dale

    2012-07-16T23:59:59.000Z

    Recently, The Land, Air and Space Robotics (LASR) Laboratory has demonstrated a state-of-the-art proximity operations test bed that will revolutionize the concept of portable space systems simulation. The Holonomic Omni-directional Motion Emulation...

  19. Particle Tracking and Simulation on the .NET Framework

    E-Print Network [OSTI]

    Nishimura, Hiroshi; Scarvie, Tom

    2006-01-01T23:59:59.000Z

    can use IronPython[10] to access .NET assemblies directly atTRACKING AND SIMULATION ON THE .NET FRAMEWORK * H. Nishimurathe effectiveness of the .NET framework by converting a C++

  20. Grid adaptation for multiscale plasma simulations

    E-Print Network [OSTI]

    Ito, Atsushi

    Grid adaptation for multiscale plasma simulations Gian Luca Delzanno Los Alamos National Laboratory In collaboration with L. Chacon and J.M. Finn #12;delzanno@lanl.gov Outline · Introduction and motivation · Grid tests · New directions · Conclusions #12;delzanno@lanl.gov Outline · Introduction and motivation · Grid

  1. Site directed recombination

    DOE Patents [OSTI]

    Jurka, Jerzy W. (Los Altos, CA)

    1997-01-01T23:59:59.000Z

    Enhanced homologous recombination is obtained by employing a consensus sequence which has been found to be associated with integration of repeat sequences, such as Alu and ID. The consensus sequence or sequence having a single transition mutation determines one site of a double break which allows for high efficiency of integration at the site. By introducing single or double stranded DNA having the consensus sequence flanking region joined to a sequence of interest, one can reproducibly direct integration of the sequence of interest at one or a limited number of sites. In this way, specific sites can be identified and homologous recombination achieved at the site by employing a second flanking sequence associated with a sequence proximal to the 3'-nick.

  2. Conclusions and Policy Directions,

    SciTech Connect (OSTI)

    Wilbanks, Thomas J [ORNL; Romero-Lankao, Paty [National Center for Atmospheric Research (NCAR); Gnatz, P [National Center for Atmospheric Research (NCAR)

    2011-01-01T23:59:59.000Z

    This chapter briefly revisits the constraints and opportunities of mitigation and adaptation, and highlights and the multiple linkages, synergies and trade-offs between mitigation, adaptation and urban development. The chapter then presents future policy directions, focusing on local, national and international principles and policies for supporting and enhancing urban responses to climate change. In summary, policy directions for linking climate change responses with urban development offer abundant opportunities; but they call for new philosophies about how to think about the future and how to connect different roles of different levels of government and different parts of the urban community. In many cases, this implies changes in how urban areas operate - fostering closer coordination between local governments and local economic institutions, and building new connections between central power structures and parts of the population who have often been kept outside of the circle of consultation and discourse. The difficulties involved in changing deeply set patterns of interaction and decision-making in urban areas should not be underestimated. Because it is so difficult, successful experiences need to be identified, described and widely publicized as models for others. However, where this challenge is met, it is likely not only to increase opportunities and reduce threats to urban development in profoundly important ways, but to make the urban area a more effective socio-political entity, in general - a better city in how it works day to day and how it solves a myriad of problems as they emerge - far beyond climate change connections alone. It is in this sense that climate change responses can be catalysts for socially inclusive, economically productive and environmentally friendly urban development, helping to pioneer new patterns of stakeholder communication and participation.

  3. Adaptive quantum computation in changing environments using projective simulation

    E-Print Network [OSTI]

    M. Tiersch; E. J. Ganahl; H. J. Briegel

    2014-07-06T23:59:59.000Z

    In a setting of measurement-based quantum computation, we explore how an intelligent agent with a projective simulator can adapt measurement directions to an external stray field of unknown magnitude in a fixed direction. We assess the agent's learning behavior in static and time-varying fields and explore composition strategies in the projective simulator to improve the agent's performance. We demonstrate the applicability by correcting for stray fields in a measurement-based algorithm for Grover's search.

  4. Generation and analysis of multi-directional waves 

    E-Print Network [OSTI]

    Liagre, Pierre-Yves Francois Bernard

    1999-01-01T23:59:59.000Z

    distribution technique through computer simulated wave data and found it to be accurate. Later, Hasle and Stansberg 5 (1984) applied this method for the determination of the directional spectrum in a laboratory basin by means of 12 gauges. 1.1.2 Parametric...

  5. Non Nuclear NTR Environmental Simulator

    SciTech Connect (OSTI)

    Emrich, William J. Jr. [NASA Marshall Space Flight Center, M.S. XD21, Huntsville, Alabama 35812 (United States)

    2006-01-20T23:59:59.000Z

    Nuclear Thermal Rockets or NTR's have been suggested as a propulsion system option for vehicles traveling to the moon or Mars. These engines are capable of providing high thrust at specific impulses at least twice that of today's best chemical engines. The performance constraints on these engines are mainly the result of temperature limitations on the fuel coupled with a limited ability to withstand chemical attack by the hot hydrogen propellant. To operate at maximum efficiency, fuel forms are desired which can withstand the extremely hot, hostile environment characteristic of NTR operation for at least several hours. The simulation of such an environment would require an experimental device which could simultaneously approximate the power, flow, and temperature conditions which a nuclear fuel element (or partial element) would encounter during NTR operation. Such a simulation would allow detailed studies of the fuel behavior and hydrogen flow characteristics under reactor like conditions to be performed. The goal of these simulations would be directed toward expanding the performance envelope of NTR engines over that which was demonstrated during the Rover and NERVA nuclear rocket programs of the 1970's. Current planning calls for such a simulator to be constructed at the Marshall Space Flight Center over the coming year, and it is anticipated that it will be used in the future to evaluate a wide variety of fuel element designs and the materials of which they are constructed. This present work addresses the initial experimental objectives of the NTR simulator with regard to reproducing the fuel degradation patterns previously observed during the NERVA testing.

  6. FY 2011 Third Quarter Report Estimate of Historical Aerosol Direct and Indirect Effects

    SciTech Connect (OSTI)

    Koch, D

    2011-06-22T23:59:59.000Z

    The global and annual mean aerosol direct and indirect effects estimated from Community Earth System Model (CESM) simulations are -0.06 W m-2 and -1.39 W m-2, respectively.

  7. Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry: Spray Simulations

    SciTech Connect (OSTI)

    Rutland, Christopher J.

    2009-04-26T23:59:59.000Z

    The Terascale High-Fidelity Simulations of Turbulent Combustion (TSTC) project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of the approach is direct numerical simulation (DNS) featuring the highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. Under this component of the TSTC program the simulation code named S3D, developed and shared with coworkers at Sandia National Laboratories, has been enhanced with new numerical algorithms and physical models to provide predictive capabilities for turbulent liquid fuel spray dynamics. Major accomplishments include improved fundamental understanding of mixing and auto-ignition in multi-phase turbulent reactant mixtures and turbulent fuel injection spray jets.

  8. Simulation Server Project 25

    E-Print Network [OSTI]

    1 Simulation Server for Project 25: Inter-RF Subsystem Interface (ISSI) September 30, 2011 Simulation Server v1.0.0 #12;2 1. Executive Overview..................................................................................................................... 5 3.1. Starting the Server

  9. Evaluating uncertainty in stochastic simulation models

    SciTech Connect (OSTI)

    McKay, M.D.

    1998-02-01T23:59:59.000Z

    This paper discusses fundamental concepts of uncertainty analysis relevant to both stochastic simulation models and deterministic models. A stochastic simulation model, called a simulation model, is a stochastic mathematical model that incorporates random numbers in the calculation of the model prediction. Queuing models are familiar simulation models in which random numbers are used for sampling interarrival and service times. Another example of simulation models is found in probabilistic risk assessments where atmospheric dispersion submodels are used to calculate movement of material. For these models, randomness comes not from the sampling of times but from the sampling of weather conditions, which are described by a frequency distribution of atmospheric variables like wind speed and direction as a function of height above ground. A common characteristic of simulation models is that single predictions, based on one interarrival time or one weather condition, for example, are not nearly as informative as the probability distribution of possible predictions induced by sampling the simulation variables like time and weather condition. The language of model analysis is often general and vague, with terms having mostly intuitive meaning. The definition and motivations for some of the commonly used terms and phrases offered in this paper lead to an analysis procedure based on prediction variance. In the following mathematical abstraction the authors present a setting for model analysis, relate practical objectives to mathematical terms, and show how two reasonable premises lead to a viable analysis strategy.

  10. LATEX TikZposter Simulation of two-phase flow for

    E-Print Network [OSTI]

    Ábrahám, Erika

    below). Sunlight Fresnel Solar collector · Absorber tube (two-phase flow) · Secondary reflector · SolarLATEX TikZposter Simulation of two-phase flow for direct steam-generating solar thermal power Aachen University Simulation of two-phase flow for direct steam-generating solar thermal power plants

  11. Software interoperability for energy simulation

    E-Print Network [OSTI]

    Hitchcock, Robert J.

    2002-01-01T23:59:59.000Z

    Tools,” in Building Energy Simulation User News, Vol. 22,Interoperability for Energy Simulation Robert J. Hitchcock,Interoperability for Energy Simulation Robert J. Hitchcock,

  12. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-30T23:59:59.000Z

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation

  13. Direct cooled power electronics substrate

    DOE Patents [OSTI]

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W. (Kingston, TN) [Kingston, TN; Lowe, Kirk T. (Knoxville, TN) [Knoxville, TN

    2010-09-14T23:59:59.000Z

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  14. Policy Procedure Administrative Directive Title: _____________________________________

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Policy ­ Procedure ­ Administrative Directive Title: _____________________________________ Policy-President _____________ See also: Related Policies, Procedures and Agreements: Relevant Legislation and Regulations: ____________________________________________________________________________ Background and Purpose: ____________________________________________________________________________ Policy

  15. Reduced Basis Method for Nanodevices Simulation

    SciTech Connect (OSTI)

    Pau, George Shu Heng

    2008-05-23T23:59:59.000Z

    Ballistic transport simulation in nanodevices, which involves self-consistently solving a coupled Schrodinger-Poisson system of equations, is usually computationally intensive. Here, we propose coupling the reduced basis method with the subband decomposition method to improve the overall efficiency of the simulation. By exploiting a posteriori error estimation procedure and greedy sampling algorithm, we are able to design an algorithm where the computational cost is reduced significantly. In addition, the computational cost only grows marginally with the number of grid points in the confined direction.

  16. Manufacturing Defects Common to Composite Wind Turbine Blades: Effects of Defects

    E-Print Network [OSTI]

    uni-directional wind turbine fiber-reinforced composite material with an epoxy resin were utilized of wind turbine blades have essentially dictated the use of low cost fiberglass composite materials. Even1 Manufacturing Defects Common to Composite Wind Turbine Blades: Effects of Defects Jared W. Nelson

  17. A Path Planning Method Using Cubic Spiral with Curvature Constraint

    E-Print Network [OSTI]

    Chen, Sheng-Wei

    . The generated path is constituted by both cubic spirals and straight lines, and has continuous and bounded it for the reason of practical use. Mobile robots with forward and backward driving abilities and only uni-direction driving ability are both considered. This method is flexible and is eligible to incorporate with other

  18. Scientific Discovery Learning with Computer Simulations Scientific Discovery Learning with Computer

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Scientific Discovery Learning with Computer Simulations 1 Scientific Discovery Learning with Computer Simulations 2 Abstract Scientific discovery learning is a highly self-directed and constructivistic form of learning. A computer simulation is a type of computer-based environment that is very

  19. A method to bridge the gap between affordance formalisation and visual simulation in virtual environment

    E-Print Network [OSTI]

    Frénod, Emmanuel

    of the emergence of interaction between a human or animal agent and some relevant patterns of sensorial informationA method to bridge the gap between affordance formalisation and visual simulation in virtual to a concrete simulation of the model within a Virtual Environment. This simulation makes the direct observation

  20. A Scalable Parallel Monte Carlo Method for Free Energy Simulations of Molecular Systems

    E-Print Network [OSTI]

    Chan, Derek Y C

    A Scalable Parallel Monte Carlo Method for Free Energy Simulations of Molecular Systems MALEK O for problems where the energy dominates the entropy. An example is parallel tempering, in which simulations the free energy of the system as a direct output of the simulation. Traditional Metropolis MC samples phase

  1. Modeling direct interband tunneling. II. Lower-dimensional structures

    SciTech Connect (OSTI)

    Pan, Andrew, E-mail: pandrew@ucla.edu [Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, California 90095 (United States); Chui, Chi On [Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, California 90095 (United States); California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095 (United States)

    2014-08-07T23:59:59.000Z

    We investigate the applicability of the two-band Hamiltonian and the widely used Kane analytical formula to interband tunneling along unconfined directions in nanostructures. Through comparisons with k·p and tight-binding calculations and quantum transport simulations, we find that the primary correction is the change in effective band gap. For both constant fields and realistic tunnel field-effect transistors, dimensionally consistent band gap scaling of the Kane formula allows analytical and numerical device simulations to approximate non-equilibrium Green's function current characteristics without arbitrary fitting. This allows efficient first-order calibration of semiclassical models for interband tunneling in nanodevices.

  2. Direct Modeling of Material Deposit and Identification of Energy Transfer in Gas Metal Arc Welding

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Direct Modeling of Material Deposit and Identification of Energy Transfer in Gas Metal Arc Welding sources for finite element simulation of gas metal arc welding (GMAW). Design for the modeling of metal deposition results in a direct calculation of the formation of the weld bead, without any

  3. Carbon Nanotubes Potentialities in Directional Dark Matter Searches

    E-Print Network [OSTI]

    L. M. Capparelli; G. Cavoto; D. Mazzilli; A. D. Polosa

    2014-12-28T23:59:59.000Z

    We propose a new solution to the problem of dark matter directional detection based on large parallel arrays of carbon nanotubes. The phenomenon of ion channeling in single wall nanotubes is simulated to calculate the expected number of recoiling carbon ions, due to the hypothetical scattering with dark matter particles, subsequently being driven along their longitudinal extension. As shown by explicit calculation, the relative orientation of the carbon nanotube array with respect to the direction of motion of the Sun has an appreciable effect on the channeling probability of the struck ion and this provides the required detector anisotropic response.

  4. Simulating Fluids Exhibiting Microstructure

    E-Print Network [OSTI]

    Title: Simulating Fluids Exhibiting Microstructure Speaker: Noel J. Walkington, ... fluids containing elastic particles, and polymer fluids, all exhibit non-trivial ...

  5. Whole Building Energy Simulation

    Broader source: Energy.gov [DOE]

    Whole building energy simulation, also referred to as energy modeling, can and should be incorporated early during project planning to provide energy impact feedback for which design considerations...

  6. Stochastic ratcheting of two dimensional colloids : Directed current and dynamical transitions

    E-Print Network [OSTI]

    Dipanjan Chakraborty; Debasish Chaudhuri

    2014-07-09T23:59:59.000Z

    We present results of molecular dynamics simulations for two-dimensional repulsively interacting colloids driven by an one dimensional asymmetric and commensurate ratchet potential, switching on and off stochastically. The resultant time- and space-averaged directed current exhibits resonance with change in ratcheting frequency. The resonance frequency itself varies non-monotonically with density. We use scaling arguments to derive analytic expression for the directed current which reproduces these features. Our simulations reveal re-entrant dynamical transitions between solid and modulated liquid phases as a function of ratcheting frequency, associated with the variation of directed current.

  7. Direct/Indirect Costs - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (CCMD) and describes various estimating techniques for direct and indirect costs. g4301-1chp7.pdf -- PDF Document, 41 KB Writer: John Makepeace Subjects: ID: DOE G 430.1-1 Chp 7...

  8. Droplet structure interactions in direct containment heating

    SciTech Connect (OSTI)

    Baker, L. Jr.; Pilch, M.; Tarbell, W.W.

    1988-01-01T23:59:59.000Z

    Direct containment heating (DCH) in light water reactors can occur during severe accidents that involve the meltout of the bottom of the reactor vessel while the vessel is at high pressure. The ejected core debris can heat and pressurize the atmosphere and challenge the integrity of containment. The results of recent large-scale direct containment heating tests in the Surtsey facility at the Sandia National Laboratories have demonstrated the importance of the interactions of core debris with structure. In the DCH-2, -3, and -4 tests, > 50% of the simulated core debris injected into the large vessel was found frozen to the ceiling or sidewalls. This finding led to questions concerning the detailed physics of debris/structure interactions. It was expected that vigorous splashing assisted by gravity would have limited the quantity of frozen debris to much smaller amounts. Accordingly, a search of the technical literature was undertaken in the areas of liquid drop interactions with surfaces and with other liquid drops to provide the bases for modeling. The available information was reviewed for applicability to the DCH process. The results of the search and review led to a correlation for the splashing process and a preliminary explanation of the DCH test results in the form of illustrative models.

  9. Topological Constraints in Directed Polymer Melts

    E-Print Network [OSTI]

    Serna, Pablo; Nahum, Adam

    2015-01-01T23:59:59.000Z

    Polymers in a melt may be subject to topological constraints, as in the example of unlinked polymer rings. How to do statistical mechanics in the presence of such constraints remains a fundamental open problem. We study the effect of topological constraints on a melt of directed polymers using simulations of a simple quasi-2D model. We find that fixing the global topology of the melt to be trivial changes the polymer conformations drastically. Polymers of length $L$ wander in the transverse direction only by a distance of order $(\\ln L)^\\zeta$ with $\\zeta \\simeq 1.5$. This is strongly suppressed in comparison with the Brownian scaling $L^{1/2}$ which holds in the absence of the topological constraint. It is also much less than the prediction $L^{1/4}$ of a mean-field-like `array of obstacles' model: thus we rule out such a model in the present setting. Dynamics are also strongly affected by the constraints, and a tagged monomer in an infinite system performs logarithmically slow subdiffusion. To cast light on...

  10. Directions - HPMC Occupational Health Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: PotentialFederal FinancialDirectDirect-WriteDirections About

  11. Dynamic procedure for filtered gyrokinetic simulations

    SciTech Connect (OSTI)

    Morel, P.; Banon Navarro, A.; Albrecht-Marc, M.; Carati, D. [Statistical and Plasma Physics Laboratory, Universite Libre de Bruxelles, Bruxelles 1050 (Belgium); Merz, F.; Goerler, T.; Jenko, F. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany)

    2012-01-15T23:59:59.000Z

    Large eddy simulations (LES) of gyrokinetic plasma turbulence are investigated as interesting candidates to decrease the computational cost. A dynamic procedure is implemented in the gene code, allowing for dynamic optimization of the free parameters of the LES models (setting the amplitudes of dissipative terms). Employing such LES methods, one recovers the free energy and heat flux spectra obtained from highly resolved direct numerical simulations. Systematic comparisons are performed for different values of the temperature gradient and magnetic shear, parameters which are of prime importance in ion temperature gradient driven turbulence. Moreover, the degree of anisotropy of the problem, which can vary with parameters, can be adapted dynamically by the method that shows gyrokinetic large eddy simulation to be a serious candidate to reduce numerical cost of gyrokinetic solvers.

  12. Metropolitan Road Traffic Simulation on FPGAs.

    SciTech Connect (OSTI)

    Tripp J. L. (Justin L.); Mortveit, H. S. (Henning S.); Hansson, A. A. (Anders A.); Gokhale, M. (Maya)

    2005-01-01T23:59:59.000Z

    This work demonstrates that road traffic simulation of entire metropolitan areas is possible with reconfigurable supercomputing that combines 64-bit microprocessors and FPGAs in a high bandwidth, low latency interconnect. Previously, traffic simulation on FPGAs was limited to very short road segments or required a very large number of FPGAs. Our data streaming approach overcomes scaling issues associated with direct implementations and still allows for high-level parallelism by dividing the data sets between hardware and software across the reconfigurable supercomputer. Using one FPGA on the Cray XD1 supercomputer, we are able to achieve a 34.4 x speed up over the AMD microprocessor. System integration issues must be optimized to exploit this speedup in the overall simulation.

  13. Migration and Directional Change of Interstitial Clusters in ?-Fe: Searching for Transition States by the Dimer Method

    SciTech Connect (OSTI)

    Gao, Fei; Heinisch, Howard L.; Kurtz, Richard J.; Osetsky, Yuri N.; Hoagland, Richard G.

    2005-02-01T23:59:59.000Z

    The interstitial clusters produced by cascades in metals have very high mobility and exhibit thermally activated, one-dimensional glide along the crowdion direction, as revealed by molecular dynamics (MD) simulations. Only small interstitial clusters (<4) are observed to change their glide direction during the period of MD simulations ({approx} 10 ns), but the directional change for larger clusters is inaccessible to MD due to the limited time-scale. In order to overcome the ''time barrier'' in MD simulations, the dimer method is employed to search for possible transition states of interstitials and small interstitial clusters in alpha-Fe. The method uses only the first derivatives of the potential energy to find saddle points without knowledge of the final state of the transition. The possible transition states are studied as a function of interstitial cluster size, and the lowest energy barriers correspond to defect migration along (111) directions, as seen in MD simulations. Small clusters change their direction by a (110) fragment mechanism involving rotation of each crowdion into and out of the (110) dumbbell configuration, whereas the directional change for larger clusters is a two-step process consisting of translation along a <100> direction and rotation into an equivalent (111) direction. The mechanism of changing direction for a tri-interstitial cluster is also investigated using MD simulations.

  14. Offshoring and Directed Technical Change

    E-Print Network [OSTI]

    Acemoglu, Daron

    2012-11-24T23:59:59.000Z

    To study the short-run and long-run implications on wage inequality, we introduce directed technical change into a Ricardian model of offshoring. A unique final good is produced by combining a skilled and an unskilled ...

  15. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08T23:59:59.000Z

    To establish the Department's, including the NNSA's, requirements for laboratory-directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Cancels DOE O 413.2. Canceled by DOE O 413.2B.

  16. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-19T23:59:59.000Z

    The Order establishes DOE requirements and responsibilities for laboratory directed research and development while providing laboratory directors with broad flexibility for program implementation. Cancels DOE O 413.2A. Admin Chg 1, 1-31-11.

  17. Directional impedance of geared transmissions

    E-Print Network [OSTI]

    Wang, Albert Duan

    2012-01-01T23:59:59.000Z

    The purpose of this research is to develop a design tool for geared actuation systems that experience bidirectional exchange of energy with the environment. Despite the asymmetry of efficiency depending on the direction ...

  18. Regional 166 Direct Loan (Ohio)

    Broader source: Energy.gov [DOE]

    The Ohio Development Services Agency's (ODSA) Regional 166 Direct Loan provides low-interest loans to businesses creating new jobs or preserving existing employment opportunities in the State of Ohio.

  19. Project Profile: Direct Supercritical Carbon Dioxide Receiver...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct Supercritical Carbon Dioxide Receiver Development Project Profile: Direct Supercritical Carbon Dioxide Receiver Development National Renewable Energy Laboratory logo The...

  20. Gaseous Hydrogen Delivery Breakout - Strategic Directions for...

    Broader source: Energy.gov (indexed) [DOE]

    Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop...

  1. Radiation detector spectrum simulator

    DOE Patents [OSTI]

    Wolf, M.A.; Crowell, J.M.

    1985-04-09T23:59:59.000Z

    A small battery operated nuclear spectrum simulator having a noise source generates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith to generate several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  2. Quantum direct communication with authentication

    SciTech Connect (OSTI)

    Lee, Hwayean [Center for Information Security Technologies (CIST) and Graduate School of Information Security (GSIS), Korea University, Anam Dong, Sungbuk Gu, Seoul (Korea, Republic of); Institut fuer Experimentalphysik, Universitaet Wien (Austria); Lim, Jongin [Center for Information Security Technologies (CIST) and Graduate School of Information Security (GSIS), Korea University, Anam Dong, Sungbuk Gu, Seoul (Korea, Republic of); Yang, HyungJin [Center for Information Security Technologies (CIST) and Graduate School of Information Security (GSIS), Korea University, Anam Dong, Sungbuk Gu, Seoul (Korea, Republic of); Department of Physics, Korea University, Chochiwon, Choongnam (Korea, Republic of)

    2006-04-15T23:59:59.000Z

    We propose two quantum direct communication (QDC) protocols with user authentication. Users can identify each other by checking the correlation of Greenberger-Horne-Zeilinger (GHZ) states. Alice can directly send a secret message to Bob without any previously shared secret using the remaining GHZ states after authentication. Our second QDC protocol can be used even though there is no quantum link between Alice and Bob. The security of the transmitted message is guaranteed by properties of entanglement of GHZ states.

  3. Directions

    E-Print Network [OSTI]

    Apr 13, 2013 ... Another Option is to fly to Chicago O'Hare International Airport (ORD), and then either rent a car and drive (about 2 to 2.5 hours) to Purdue, ...

  4. Results from the DCH-1 (Direct Containment Heating) experiment. [Pressurized melt ejection and direct containment heating

    SciTech Connect (OSTI)

    Tarbell, W.W.; Brockmann, J.E.; Pilch, M.; Ross, J.E.; Oliver, M.S.; Lucero, D.A.; Kerley, T.E.; Arellano, F.E.; Gomez, R.D.

    1987-05-01T23:59:59.000Z

    The DCH-1 (Direct Containment Heating) test was the first experiment performed in the Surtsey Direct Heating Test Facility. The test involved 20 kg of molten core debris simulant ejected into a 1:10 scale model of the Zion reactor cavity. The melt was produced by a metallothermic reaction of iron oxide and aluminum powders to yield molten iron and alumina. The cavity model was placed so that the emerging debris propagated directly upwards along the vertical centerline of the chamber. Results from the experiment showed that the molten material was ejected from the caviity as a cloud of particles and aerosol. The dispersed debris caused a rapid pressurization of the 103-m/sup 3/ chamber atmosphere. Peak pressure from the six transducers ranged from 0.09 to 0.13 MPa (13.4 to 19.4 psig) above the initial value in the chamber. Posttest debris collection yielded 11.6 kg of material outside the cavity, of which approximately 1.6 kg was attributed to the uptake of oxygen by the iron particles. Mechanical sieving of the recovered debris showed a lognormal size distribution with a mass mean size of 0.55 mm. Aerosol measurements indicated a subsantial portion (2 to 16%) of the ejected mass was in the size range less than 10 m aerodynamic equivalent diameter.

  5. Galaxies that Shine: radiation-hydrodynamical simulations of disk galaxies

    E-Print Network [OSTI]

    Rosdahl, Joakim; Teyssier, Romain; Agertz, Oscar

    2015-01-01T23:59:59.000Z

    Radiation feedback is typically implemented using subgrid recipes in hydrodynamical simulations of galaxies. Very little work has so far been performed using radiation-hydrodynamics (RHD), and there is no consensus on the importance of radiation feedback in galaxy evolution. We present RHD simulations of isolated galaxy disks of different masses with a resolution of 18 pc. Besides accounting for supernova feedback, our simulations are the first galaxy-scale simulations to include RHD treatments of photo-ionisation heating and radiation pressure, from both direct optical/UV radiation and multi-scattered, re-processed infrared (IR) radiation. Photo-heating smooths and thickens the disks and suppresses star formation about as much as the inclusion of ("thermal dump") supernova feedback does. These effects decrease with galaxy mass and are mainly due to the prevention of the formation of dense clouds, as opposed to their destruction. Radiation pressure, whether from direct or IR radiation, has little effect, but ...

  6. Nuclear power plant simulation facility evaluation methodology: handbook. Volume 1

    SciTech Connect (OSTI)

    Laughery, K.R. Jr.; Carter, R.J.; Haas, P.M.

    1986-01-01T23:59:59.000Z

    This report is Volume 1 of a two-part document which describes a project conducted to develop a methodology to evaluate the acceptability of nuclear power plant (NPP) simulation facilities for use in the simulator-based portion of NRC's operator licensing examination. The proposed methodology is to be utilized during two phases of the simulation facility life-cycle, initial simulator acceptance and recurrent analysis. The first phase is aimed at ensuring that the simulator provides an accurate representation of the reference NPP. There are two components of initial simulator evaluation: fidelity assessment and a direct determination of the simulation facility's adequacy for operator testing. The second phase is aimed at ensuring that the simulation facility continues to accurately represent the reference plant throughout the life of the simulator. Recurrent evaluation is comprised of three components: monitoring reference plant changes, monitoring the simulator's hardware, and examining the data from actual plant transients as they occur. Volume 1 is a set of guidelines which details the steps involved in the two life-cycle phases, presents an overview of the methodology and data collection requirements, and addresses the formation of the evaluation team and the preparation of the evaluation plan. 29 figs.

  7. Directives Review Board - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both theDirectives Review Board

  8. Lagrangian Simulation of Combustion

    SciTech Connect (OSTI)

    Ahmed F. Ghoniem

    2008-05-01T23:59:59.000Z

    A Lagrangian approach for the simulation of reactive flows has been developed during the course of this project, and has been applied to a number of significant and challenging problems including the transverse jet simulations. An efficient strategy for parallel domain decomposition has also been developed to enable the implementation of the approach on massively parallel architecture. Since 2005, we focused our efforts on the development of a semi-Lagrangian treatment of diffusion, and fast and accurate Lagrangian simulation tools for multiphysics problems including combustion.

  9. Communication Simulations for Power System Applications

    SciTech Connect (OSTI)

    Fuller, Jason C.; Ciraci, Selim; Daily, Jeffrey A.; Fisher, Andrew R.; Hauer, Matthew L.

    2013-05-29T23:59:59.000Z

    New smart grid technologies and concepts, such as dynamic pricing, demand response, dynamic state estimation, and wide area monitoring, protection, and control, are expected to require considerable communication resources. As the cost of retrofit can be high, future power grids will require the integration of high-speed, secure connections with legacy communication systems, while still providing adequate system control and security. While considerable work has been performed to create co-simulators for the power domain with load models and market operations, limited work has been performed in integrating communications directly into a power domain solver. The simulation of communication and power systems will become more important as the two systems become more inter-related. This paper will discuss ongoing work at Pacific Northwest National Laboratory to create a flexible, high-speed power and communication system co-simulator for smart grid applications. The framework for the software will be described, including architecture considerations for modular, high performance computing and large-scale scalability (serialization, load balancing, partitioning, cross-platform support, etc.). The current simulator supports the ns-3 (telecommunications) and GridLAB-D (distribution systems) simulators. Ongoing and future work will be described, including planned future expansions for a traditional transmission solver. A test case using the co-simulator, utilizing a transactive demand response system created for the Olympic Peninsula and AEP gridSMART demonstrations, requiring two-way communication between distributed and centralized market devices, will be used to demonstrate the value and intended purpose of the co-simulation environment.

  10. Overview of Simulation Strategies for

    E-Print Network [OSTI]

    Rudnyi, Evgenii B.

    topography simulations; Multi-scale simulation (atomistic-continuum); fast coupling of equipment-topography-electrical-reliability modeling Front-end process modeling Integrated modeling of equipment and materials Lithography simulation

  11. Direct estimation of decoherence rates

    E-Print Network [OSTI]

    Vladimír Bužek; Peter Rapcan; Jochen Rau; Mario Ziman

    2012-07-30T23:59:59.000Z

    The decoherence rate is a nonlinear channel parameter that describes quantitatively the decay of the off-diagonal elements of a density operator in the decoherence basis. We address the question of how to experimentally access such a nonlinear parameter directly without the need of complete process tomography. In particular, we design a simple experiment working with two copies of the channel, in which the registered mean value of a two-valued measurement directly determines the value of the average decoherence rate. No prior knowledge of the decoherence basis is required.

  12. Simulating the Quantum Magnet

    E-Print Network [OSTI]

    Friedenauer, Axel; Glückert, Jan Tibor; Porras, Diego; Schätz, Tobias

    2008-01-01T23:59:59.000Z

    To gain deeper insight into the dynamics of complex quantum systems we need a quantum leap in computer simulations. We can not translate quantum behaviour arising with superposition states or entanglement efficiently into the classical language of conventional computers. The final solution to this problem is a universal quantum computer [1], suggested in 1982 and envisioned to become functional within the next decade(s); a shortcut was proposed via simulating the quantum behaviour of interest in a different quantum system, where all parameters and interactions can be controlled and the outcome detected sufficiently well. Here we study the feasibility of a quantum simulator based on trapped ions [2]. We experimentally simulate the adiabatic evolution of the smallest non-trivial spin system from the paramagnetic into the (anti-)ferromagnetic order with a quantum magnetisation for two spins of 98%, controlling and manipulating all relevant parameters of the Hamiltonian independently via electromagnetic fields. W...

  13. Theory Modeling and Simulation

    SciTech Connect (OSTI)

    Shlachter, Jack [Los Alamos National Laboratory

    2012-08-23T23:59:59.000Z

    Los Alamos has a long history in theory, modeling and simulation. We focus on multidisciplinary teams that tackle complex problems. Theory, modeling and simulation are tools to solve problems just like an NMR spectrometer, a gas chromatograph or an electron microscope. Problems should be used to define the theoretical tools needed and not the other way around. Best results occur when theory and experiments are working together in a team.

  14. Scalable, efficient epidemiological simulation

    SciTech Connect (OSTI)

    Eubank, S. G. (Stephen G.)

    2001-01-01T23:59:59.000Z

    We describe the design and implementation of a system for simulating the spread of disease among individuals in a large urban population over the course of several weeks, In contrast to traditional approaches, we do not assume uniform mixing among large sub-populations or split the population into spatial or demographic subpopulations determined a priori. Instead, we rely on empirical estimates of the social network, or contact patterns, that are produced by TRANSIMS, a large-scale simulation of transportation systems.

  15. Xyce parallel electronic simulator.

    SciTech Connect (OSTI)

    Keiter, Eric Richard; Mei, Ting; Russo, Thomas V.; Rankin, Eric Lamont; Schiek, Richard Louis; Thornquist, Heidi K.; Fixel, Deborah A.; Coffey, Todd Stirling; Pawlowski, Roger Patrick; Santarelli, Keith R.

    2010-05-01T23:59:59.000Z

    This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users' Guide. The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users' Guide.

  16. Sampled simulation for multithreaded processors

    E-Print Network [OSTI]

    Van Biesbrouck, Michael

    2007-01-01T23:59:59.000Z

    1. Starting O? set E?ects in SMT Simulation 2. Evaluatingdual hardware context SMT Processor. . . . . . . . . . . . .results of co-phase matrix simulation. SMT processor con?

  17. The Integrated Plasma Simulator: A Flexible Python Framework for Coupled Multiphysics Simulation

    SciTech Connect (OSTI)

    Foley, Samantha S [ORNL; Elwasif, Wael R [ORNL; Bernholdt, David E [ORNL

    2011-11-01T23:59:59.000Z

    High-fidelity coupled multiphysics simulations are an increasingly important aspect of computational science. In many domains, however, there has been very limited experience with simulations of this sort, therefore research in coupled multiphysics often requires computational frameworks with significant flexibility to respond to the changing directions of the physics and mathematics. This paper presents the Integrated Plasma Simulator (IPS), a framework designed for loosely coupled simulations of fusion plasmas. The IPS provides users with a simple component architecture into which a wide range of existing plasma physics codes can be inserted as components. Simulations can take advantage of multiple levels of parallelism supported in the IPS, and can be controlled by a high-level ``driver'' component, or by other coordination mechanisms, such as an asynchronous event service. We describe the requirements and design of the framework, and how they were implemented in the Python language. We also illustrate the flexibility of the framework by providing examples of different types of simulations that utilize various features of the IPS.

  18. Simulations of Solar System observations in alternative theories of gravity

    E-Print Network [OSTI]

    A. Hees; B. Lamine; S. Reynaud; M. -T. Jaekel; C. Le Poncin-Lafitte; V. Lainey; A. Füzfa; J. -M. Courty; V. Dehant; P. Wolf

    2013-02-27T23:59:59.000Z

    In this communication, we focus on the possibility to test General Relativity (GR) with radioscience experiments. We present simulations of observables performed in alternative theories of gravity using a software that simulates Range/Doppler signals directly from the space time metric. This software allows one to get the order of magnitude and the signature of the modifications induced by an alternative theory of gravity on radioscience signals. As examples, we present some simulations for the Cassini mission in Post-Einsteinian gravity (PEG) and with Standard Model Extension (SME).

  19. Laser Direct Drive: Scientific Advances,

    E-Print Network [OSTI]

    1 Laser Direct Drive: Scientific Advances, Technical Achievements, and the Road To Fusion Energy energy gain ( 40) at 1 MJ laser energy · Advanced lasers/ target designs overcome uniformity requirements, medical applications) Gas laser medium is easy to cool (tough to break gas) Nike single beam focus #12

  20. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-19T23:59:59.000Z

    The order establishes DOE requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Cancels DOE O 413.3A. Admin Chg 1, dated 1-31-11, cancels DOE O 413.3B. Certified 7-14-2011.

  1. Direct from CDC Environmental Health

    E-Print Network [OSTI]

    and the Caribbean, an estimated 50 million persons lack access to an improved water supply. WSPs are a preventive Direct from CDC Environmental Health Services Branch CAPT Rick Gelting, PhD, PE Water leader of the Global Water, Sanitation, and Hygiene Team in CDC's En vironmental Health Services Branch

  2. Direct Hamiltonization for Nambu Systems

    E-Print Network [OSTI]

    Maria Lewtchuk Espindola

    2008-10-13T23:59:59.000Z

    The direct hamiltonization procedure applied to Nambu mechanical systems proves that the Nambu mechanics is an usual mechanics described by only one Hamiltonian. Thus a particular case of Hamiltonian mechanics. It is also proved that any mechanical system described by the equation d{\\bf r}/dt={\\bf A(r)} is a Nambu system.

  3. Dislocation dynamics simulations of plasticity at small scales

    SciTech Connect (OSTI)

    Zhou, Caizhi

    2010-12-15T23:59:59.000Z

    As metallic structures and devices are being created on a dimension comparable to the length scales of the underlying dislocation microstructures, the mechanical properties of them change drastically. Since such small structures are increasingly common in modern technologies, there is an emergent need to understand the critical roles of elasticity, plasticity, and fracture in small structures. Dislocation dynamics (DD) simulations, in which the dislocations are the simulated entities, offer a way to extend length scales beyond those of atomistic simulations and the results from DD simulations can be directly compared with the micromechanical tests. The primary objective of this research is to use 3-D DD simulations to study the plastic deformation of nano- and micro-scale materials and understand the correlation between dislocation motion, interactions and the mechanical response. Specifically, to identify what critical events (i.e., dislocation multiplication, cross-slip, storage, nucleation, junction and dipole formation, pinning etc.) determine the deformation response and how these change from bulk behavior as the system decreases in size and correlate and improve our current knowledge of bulk plasticity with the knowledge gained from the direct observations of small-scale plasticity. Our simulation results on single crystal micropillars and polycrystalline thin films can march the experiment results well and capture the essential features in small-scale plasticity. Furthermore, several simple and accurate models have been developed following our simulation results and can reasonably predict the plastic behavior of small scale materials.

  4. Direct detection of dark matter axions with directional sensitivity

    SciTech Connect (OSTI)

    Irastorza, Igor G.; García, Juan A., E-mail: Igor.Irastorza@cern.ch, E-mail: jagarpas@unizar.es [Laboratorio de Física Nuclear y Astropartículas, Departamento de Física Teórica, Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza (Spain)

    2012-10-01T23:59:59.000Z

    We study the directional effect of the expected axion dark matter signal in a resonant cavity of an axion haloscope detector, for cavity geometries not satisfying the condition that the axion de Broglie wavelength ?{sub a} is sufficiently larger than the cavity dimensions L for a fully coherent conversion, i.e. ?{sub a}?>2?L. We focus on long thin cavities immersed in dipole magnets and find, for appropriately chosen cavity lengths, an O(1) modulation of the signal with the cavity orientation with respect the momentum distribution of the relic axion background predicted by the isothermal sphere model for the galactic dark matter halo. This effect can be exploited to design directional axion dark matter detectors, providing an unmistakable signature of the extraterrestrial origin of a possible positive detection. Moreover, the precise shape of the modulation may give information of the galactic halo distribution and, for specific halo models, give extra sensitivity for higher axion masses.

  5. High performance distributed simulation for interactive simulated vascular reconstruction

    E-Print Network [OSTI]

    Amsterdam, Universiteit van

    performance. 1 Introduction Interactive simulation environments are dynamic systems that combine simula- tion.1 Performance of interactive simulation environments The most important factor in the performance of a dynamic dynamic simulation environment. 1 1 2 2 3 visualization rendering simulation time rendering delay

  6. Simulating the Quantum Magnet

    E-Print Network [OSTI]

    Axel Friedenauer; Hector Schmitz; Jan Tibor Glückert; Diego Porras; Tobias Schätz

    2008-02-27T23:59:59.000Z

    To gain deeper insight into the dynamics of complex quantum systems we need a quantum leap in computer simulations. We can not translate quantum behaviour arising with superposition states or entanglement efficiently into the classical language of conventional computers. The final solution to this problem is a universal quantum computer [1], suggested in 1982 and envisioned to become functional within the next decade(s); a shortcut was proposed via simulating the quantum behaviour of interest in a different quantum system, where all parameters and interactions can be controlled and the outcome detected sufficiently well. Here we study the feasibility of a quantum simulator based on trapped ions [2]. We experimentally simulate the adiabatic evolution of the smallest non-trivial spin system from the paramagnetic into the (anti-)ferromagnetic order with a quantum magnetisation for two spins of 98%, controlling and manipulating all relevant parameters of the Hamiltonian independently via electromagnetic fields. We prove that the observed transition is not driven by thermal fluctuations, but of quantum mechanical origin, the source of quantum fluctuations in quantum phase transitions [3]. We observe a final superposition state of the two degenerate spin configurations for the ferromagnetic and the antiferromagnetic order, respectively. These correspond to deterministically entangled states achieved with a fidelity up to 88%. Our work demonstrates a building block for simulating quantum spin-Hamiltonians with trapped ions. The method has potential for scaling to a higher number of coupled spins [2].

  7. Sandia National Laboratories: direct measurement of combustion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    direct measurement of combustion intermediate Direct Measurement of Key Molecule Will Increase Accuracy of Combustion Models On March 3, 2015, in Computational Modeling &...

  8. Direct calibration of PICKY-designed microarrays.

    E-Print Network [OSTI]

    Chou, Hui-Hsien; Trisiriroj, Arunee; Park, Sunyoung; Hsing, Yue-Ie C; Ronald, Pamela C; Schnable, Patrick S

    2009-01-01T23:59:59.000Z

    Methodology article Direct calibration of P ICKY -designedtest a direct microarray calibration method based on the Pconcentrations. The microarray calibration method reported

  9. Direct calibration of PICKY-designed microarrays

    E-Print Network [OSTI]

    Chou, Hui-Hsien; Trisiriroj, Arunee; Park, Sunyoung; Hsing, Yue-Ie C; Ronald, Pamela C; Schnable, Patrick S

    2009-01-01T23:59:59.000Z

    Methodology article Direct calibration of P ICKY -designedtest a direct microarray calibration method based on the Pconcentrations. The microarray calibration method reported

  10. Liquid Hydrogen Delivery - Strategic Directions for Hydrogen...

    Broader source: Energy.gov (indexed) [DOE]

    Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

  11. Simulating neural systems with Xyce.

    SciTech Connect (OSTI)

    Schiek, Richard Louis; Thornquist, Heidi K.; Mei, Ting; Warrender, Christina E.; Aimone, James Bradley; Teeter, Corinne; Duda, Alex M. [University of Illinois, Urbana-Champaign

    2012-12-01T23:59:59.000Z

    Sandia's parallel circuit simulator, Xyce, can address large scale neuron simulations in a new way extending the range within which one can perform high-fidelity, multi-compartment neuron simulations. This report documents the implementation of neuron devices in Xyce, their use in simulation and analysis of neuron systems.

  12. OM300 Direction Drilling Module

    SciTech Connect (OSTI)

    MacGugan, Doug

    2013-08-22T23:59:59.000Z

    OM300 – Geothermal Direction Drilling Navigation Tool: Design and produce a prototype directional drilling navigation tool capable of high temperature operation in geothermal drilling Accuracies of 0.1° Inclination and Tool Face, 0.5° Azimuth Environmental Ruggedness typical of existing oil/gas drilling Multiple Selectable Sensor Ranges High accuracy for navigation, low bandwidth High G-range & bandwidth for Stick-Slip and Chirp detection Selectable serial data communications Reduce cost of drilling in high temperature Geothermal reservoirs Innovative aspects of project Honeywell MEMS* Vibrating Beam Accelerometers (VBA) APS Flux-gate Magnetometers Honeywell Silicon-On-Insulator (SOI) High-temperature electronics Rugged High-temperature capable package and assembly process

  13. Prediction Of Transport Protocol Performance Through Simulation K. Mills, M. Wheatley, and S. Heatley

    E-Print Network [OSTI]

    Mills, Kevin

    open systems interconnection (OSI) protocols as described in the tieneral Motor's manufacturing. If a point-to-point link is simulated, each direction is treated as a simplex chan- nel so that a variety

  14. Use of an Engine Cycle Simulation to Study a Biodiesel Fueled Engine 

    E-Print Network [OSTI]

    Zheng, Junnian

    2010-01-14T23:59:59.000Z

    Based on the GT-Power software, an engine cycle simulation for a biodiesel fueled direct injection compression ignition engine was developed and used to study its performance and emission characteristics. The major objectives ...

  15. Kinetics modeling and 3-dimensional simulation of surface roughness during plasma etching

    E-Print Network [OSTI]

    Guo, Wei, Ph. D. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    The control of feature profiles in directional plasma etching processes is crucial as critical dimension, line-edge roughening, and other artifacts affect device performance and process yields. A profile simulator is ...

  16. FULL ELECTROMAGNETIC FEL SIMULATION VIA THE LORENTZ-BOOSTED FRAME TRANSFORMATION

    E-Print Network [OSTI]

    Fawley, William

    2010-01-01T23:59:59.000Z

    FULL ELECTROMAGNETIC FEL SIMULATION VIA THE LORENTZ-BOOSTEDrest frame), the red-shifted FEL radiation and blue-shiftedper- mit direct study of FEL problems for which the eikonal

  17. Use of an Engine Cycle Simulation to Study a Biodiesel Fueled Engine

    E-Print Network [OSTI]

    Zheng, Junnian

    2010-01-14T23:59:59.000Z

    Based on the GT-Power software, an engine cycle simulation for a biodiesel fueled direct injection compression ignition engine was developed and used to study its performance and emission characteristics. The major objectives were to establish...

  18. Wellbore inertial directional surveying system

    DOE Patents [OSTI]

    Andreas, R.D.; Heck, G.M.; Kohler, S.M.; Watts, A.C.

    1982-09-08T23:59:59.000Z

    A wellbore inertial directional surveying system for providing a complete directional survey of an oil or gas well borehole to determine the displacement in all three directions of the borehole path relative to the well head at the surface. The information generated by the present invention is especially useful when numerous wells are drilled to different geographical targets from a single offshore platform. Accurate knowledge of the path of the borehole allows proper well spacing and provides assurance that target formations are reached. The tool is lowered down into a borehole on an electrical cable. A computer positioned on the surface communicates with the tool via the cable. The tool contains a sensor block which is supported on a single gimbal, the rotation axis of which is aligned with the cylinder axis of the tool and, correspondingly, the borehole. The gyroscope measurement of the sensor block rotation is used in a null-seeking servo loop which essentially prevents rotation of the sensor block about the gimbal axis. Angular rates of the sensor block about axes which are perpendicular to te gimbal axis are measured by gyroscopes in a manner similar to a strapped-down arrangement. Three accelerometers provide acceleration information as the tool is lowered within the borehole. The uphole computer derives position information based upon acceleration information and angular rate information. Kalman estimation techniques are used to compensate for system errors. 25 figures.

  19. Wellbore inertial directional surveying system

    DOE Patents [OSTI]

    Andreas, Ronald D. (Albuquerque, NM); Heck, G. Michael (Albuquerque, NM); Kohler, Stewart M. (Albuquerque, NM); Watts, Alfred C. (Albuquerque, NM)

    1991-01-01T23:59:59.000Z

    A wellbore inertial directional surveying system for providing a complete directional survey of an oil or gas well borehole to determine the displacement in all three directions of the borehole path relative to the well head at the surface. The information generated by the present invention is especially useful when numerous wells are drilled to different geographical targets from a single off-shore platform. Accurate knowledge of the path of the borehole allows proper well spacing and provides assurance that target formations are reached. The tool is lowered down into a borehole on the electrical cable. A computer positioned on the surface communicates with the tool via the cable. The tool contains a sensor block which is supported on a single gimbal, the rotation axis of which is aligned with the cylinder axis of the tool and, correspondingly, the borehole. The gyroscope measurement of the sensor block rotation is used in a null-seeking servo loop which essentially prevents rotation of the sensor block aboutthe gimbal axis. Angular rates of the sensor block about axes which are perpendicular to the gimbal axis are measured by gyroscopes in a manner similar to a strapped-down arrangement. Three accelerometers provide acceleration information as the tool is lowered within the borehole. The uphole computer derives position information based upon acceleration information and anular rate information. Kalman estimation techniques are used to compensate for system errors.

  20. BNL Direct Wind Superconducting Magnets

    SciTech Connect (OSTI)

    Parker, B.; Anerella, M.; Escallier, J.; Ghosh, A.; Jain, A.; Marone, A.; Muratore, A.; Wanderer, P.

    2011-09-12T23:59:59.000Z

    BNL developed Direct Wind magnet technology is used to create a variety of complex multi-functional multi-layer superconducting coil structures without the need for creating custom production tooling and fixturing for each new project. Our Direct Wind process naturally integrates prestress into the coil structure so external coil collars and yokes are not needed; the final coil package transverse size can then be very compact. Direct Wind magnets are produced with very good field quality via corrections applied during the course of coil winding. The HERA-II and BEPC-II Interaction Region (IR) magnet, J-PARC corrector and Alpha antihydrogen magnetic trap magnets and our BTeV corrector magnet design are discussed here along with a full length ILC IR prototype magnet presently in production and the coils that were wound for an ATF2 upgrade at KEK. A new IR septum magnet design concept for a 6.2 T combined-function IR magnet for eRHIC, a future RHIC upgrade, is introduced here.

  1. Snowmass Energy Frontier Simulations

    E-Print Network [OSTI]

    Jacob Anderson; Aram Avetisyan; Raymond Brock; Sergei Chekanov; Timothy Cohen; Nitish Dhingra; James Dolen; James Hirschauer; Kiel Howe; Ashutosh Kotwal; Tom LeCompte; Sudhir Malik; Patricia Mcbride; Kalanand Mishra; Meenakshi Narain; Jim Olsen; Sanjay Padhi; Michael E. Peskin; John Stupak III; Jay G. Wacker

    2013-09-01T23:59:59.000Z

    This document describes the simulation framework used in the Snowmass Energy Frontier studies for future Hadron Colliders. An overview of event generation with {\\sc Madgraph}5 along with parton shower and hadronization with {\\sc Pythia}6 is followed by a detailed description of pile-up and detector simulation with {\\sc Delphes}3. Details of event generation are included in a companion paper cited within this paper. The input parametrization is chosen to reflect the best object performance expected from the future ATLAS and CMS experiments; this is referred to as the "Combined Snowmass Detector". We perform simulations of $pp$ interactions at center-of-mass energies $\\sqrt{s}=$ 14, 33, and 100 TeV with 0, 50, and 140 additional $pp$ pile-up interactions. The object performance with multi-TeV $pp$ collisions are studied for the first time using large pile-up interactions.

  2. Liquid filtration simulation

    SciTech Connect (OSTI)

    Corey, I.; Bergman, W.

    1996-06-01T23:59:59.000Z

    We have a developed a computer code that simulates 3-D filtration of suspended particles in fluids in realistic filter structures. This code, being the most advanced filtration simulation package developed to date, provides LLNL and DOE with new capabilities to address problems in cleaning liquid wastes, medical fluid cleaning, and recycling liquids. The code is an integrated system of commercially available and LLNL-developed software; the most critical are the computational fluid dynamics (CFD) solver and the particle transport program. For the CFD solver, we used a commercial package based on Navier-Stokes equations and a LLNL-developed package based on Boltzman-lattice gas equations. For the particle transport program, we developed a cod based on the 3-D Langevin equation of motion and the DLVO theory of electrical interactions. A number of additional supporting packages were purchased or developed to integrate the simulation tasks and to provide visualization output.

  3. Laboratory Facility for Simulating Solar Wind Sails

    SciTech Connect (OSTI)

    Funaki, Ikkoh [Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, 229-8510 (Japan); JST/CREST, Kawaguchi, Saitama, 332-0012 (Japan); Ueno, Kazuma; Oshio, Yuya [Graduate University for Advanced Studies, Sagamihara, Kanagawa, 229-8510 (Japan); Ayabe, Tomohiro; Horisawa, Hideyuki [Tokai University, Hiratsuka, Kanagawa, 259-1292 (Japan); Yamakawa, Hiroshi [Kyoto University, Uji, Kyoto, 611-0011 (Japan); JST/CREST, Kawaguchi, Saitama, 332-0012 (Japan)

    2008-12-31T23:59:59.000Z

    Magnetic sail (MagSail) is a deep space propulsion system, in which an artificial magnetic cavity captures the energy of the solar wind to propel a spacecraft in the direction leaving the sun. For a scale-model experiment of the plasma flow of MagSail, we employed a magnetoplasmadynamic arcjet as a solar wind simulator. It is observed that a plasma flow from the solar wind simulator reaches a quasi-steady state of about 0.8 ms duration after a transient phase when initiating the discharge. During this initial phase of the discharge, a blast-wave was observed to develop radially in a vacuum chamber. When a solenoidal coil (MagSail scale model) is immersed into the quasi-steady flow where the velocity is 45 km/s, and the number density is 10{sup 19} m-3, a bow shock as well as a magnetic cavity were formed in front of the coil. As a result of the interaction between the plasma flow and the magnetic cavity, the momentum of the simulated solar wind is decreased, and it is found from the thrust measurement that the solar wind momentum is transferred to the coil simulating MagSail.

  4. Simulating Complex Window Systems using BSDF Data

    SciTech Connect (OSTI)

    Konstantoglou, Maria; Jonsson, Jacob; Lee, Eleanor

    2009-06-22T23:59:59.000Z

    Nowadays, virtual models are commonly used to evaluate the performance of conventional window systems. Complex fenestration systems can be difficult to simulate accurately not only because of their geometry but also because of their optical properties that scatter light in an unpredictable manner. Bi-directional Scattering Distribution Functions (BSDF) have recently been developed based on a mixture of measurements and modelling to characterize the optics of such systems. This paper describes the workflow needed to create then use these BSDF datasets in the Radiance lighting simulation software. Limited comparisons are made between visualizations produced using the standard ray-tracing method, the BSDF method, and that taken in a full-scale outdoor mockup.

  5. Is a co-rotating Dark Disk a threat to Dark Matter Directional Detection ?

    E-Print Network [OSTI]

    Billard, J; Mayet, F; Santos, D

    2012-01-01T23:59:59.000Z

    Recent N-Body simulations are in favor of the presence of a co-rotating Dark Disk that might contribute significantly (10%-50%) to the local Dark Matter density. Such substructure could have dramatic effect on directional detection. Indeed, in the case of a null lag velocity, one expects an isotropic WIMP velocity distribution arising from the Dark Disk contribution, which might weaken the strong angular signature expected in directional detection. For a wide range of Dark Disk parameters, we evaluate in this Letter the effect of such dark component on the discovery potential of upcoming directional detectors. As a conclusion of our study, using only the angular distribution of nuclear recoils, we show that Dark Disk models as suggested by recent N-Body simulations will not affect significantly the Dark Matter reach of directional detection, even in extreme configurations.

  6. Development of a 2-D 2-group neutron noise simulator

    E-Print Network [OSTI]

    Demazière, Christophe

    . This simulator calculates both the direct and the adjoint reactor transfer function between a stat- ionary noise applications. Consequently, the calculation of the dynamic reactor transfer function, i.e. the neutron noise demonstrated that the calculation of the dynamic reactor transfer function was possible mainly by modifying

  7. Shell to shell energy transfer in magnetohydrodynamic dynamo simulations

    E-Print Network [OSTI]

    Pouquet, Annick

    Shell to shell energy transfer in magnetohydrodynamic dynamo simulations Pablo Mininni, Alexandros 80307 (Dated: May 5, 2005) We study the transfer of energy between different scales for forced three, and which scales of the magnetic field receive energy directly from the velocity field and which scales

  8. Direct connection of series self-excited generators and HVDC converters

    SciTech Connect (OSTI)

    Arrillaga, J.; Macdonald, S.J.; Watson, N.R.; Watson, S. (Univ. Canterbury, Christchurch (New Zealand))

    1993-10-01T23:59:59.000Z

    An alternative and simpler solution is proposed for the direct connection of generators to HVdc converters. The generator exciter windings are connected in series with the output of the HVdc converter and take the place of the conventional smoothing reactor. Existing steady state and time domain simulation programs are modified to represent the behavior of the series direct connection scheme. It is shown that series excitation extends naturally the power transmission capability and permits fast fault clearances.

  9. FY 2011 4th Quarter Metric: Estimate of Future Aerosol Direct and Indirect Effects

    SciTech Connect (OSTI)

    Koch, D

    2011-09-21T23:59:59.000Z

    The global and annual mean aerosol direct and indirect effects, relative to 1850 conditions, estimated from CESM simulations are 0.02 W m-2 and -0.39 W m-2, respectively, for emissions in year 2100 under the IPCC RCP8.5 scenario. The indirect effect is much smaller than that for 2000 emissions because of much smaller SO2 emissions in 2100; the direct effects are small due to compensation between warming by black carbon and cooling by sulfate.

  10. Refined numerical models for multidimensional Type Ia supernova simulations

    E-Print Network [OSTI]

    Reinecke, M; Niemeyer, J C

    2002-01-01T23:59:59.000Z

    Following up on earlier work on this topic (Reinecke et al. 1999, A&A 347, pp. 724 and 739), we present an improved set of numerical models for simulations of white dwarfs exploding as Type Ia supernovae (SNe Ia). Two-dimensional simulations were used to test the reliability and numerical robustness of these algorithms; the results indicate that integral quantities like the total energy release are insensitive to changes of the grid resolution (above a certain threshold), which was not the case for our former code. The models were further enhanced to allow fully three-dimensional simulations of SNe Ia. A direct comparison of a 2D and a 3D calculation with identical initial conditions shows that the explosion is considerably more energetic in three dimensions; this is most likely caused by the assumption of axisymmetry in 2D, which inhibits the growth of flame instabilities in the azimuthal direction and thereby decreases the flame surface.

  11. Refined numerical models for multidimensional Type Ia supernova simulations

    E-Print Network [OSTI]

    M. Reinecke; W. Hillebrandt; J. C. Niemeyer

    2001-11-26T23:59:59.000Z

    Following up on earlier work on this topic (Reinecke et al. 1999, A&A 347, pp. 724 and 739), we present an improved set of numerical models for simulations of white dwarfs exploding as Type Ia supernovae (SNe Ia). Two-dimensional simulations were used to test the reliability and numerical robustness of these algorithms; the results indicate that integral quantities like the total energy release are insensitive to changes of the grid resolution (above a certain threshold), which was not the case for our former code. The models were further enhanced to allow fully three-dimensional simulations of SNe Ia. A direct comparison of a 2D and a 3D calculation with identical initial conditions shows that the explosion is considerably more energetic in three dimensions; this is most likely caused by the assumption of axisymmetry in 2D, which inhibits the growth of flame instabilities in the azimuthal direction and thereby decreases the flame surface.

  12. Building Galaxies with Simulations

    E-Print Network [OSTI]

    Romeel Davé; Kristian Finlator; Lars Hernquist; Neal Katz; Dušan Kereš; Casey Papovich; David H. Weinberg

    2005-10-20T23:59:59.000Z

    We present an overview of some of the issues surrounding current models of galaxy formation, highlighting recent insights obtained from cosmological hydrodynamic simulations. Detailed examination of gas accretion processes show a hot mode of gas cooling from near the halo's virial temperature, and a previously underappreciated cold mode where gas flows in along filaments on dynamical timescales, emitting its energy in line radiation. Cold mode dominates in systems with halo masses slightly smaller than the Milky Way and below, and hence dominates the global accretion during the heydey of galaxy formation. This rapid accretion path enables prompt assembly of massive galaxies in the early universe, and results in $z\\sim 4$ galaxy properties in broad agreement with observations, with the most massive galaxies being the most rapid star formers. Massive galaxies today are forming stars at a much reduced rate, a trend called downsizing. The trend of downsizing is naturally reproduced in simulations, owing to a transition from cold mode accretion in the early growth phase to slower hot mode accretion once their halos grow large. However, massive galaxies at the present epoch are still observed to have considerably redder colors than simulations suggest, suggesting that star formation is not sufficiently truncated in models by the transition to hot mode, and that another process not included in current simulations is required to suppress star formation.

  13. The gem5 simulator

    E-Print Network [OSTI]

    Nathan Binkert; Bradford Beckmann; Gabriel Black; Steven K. Reinhardt; Ali Saidi; Arkaprava Basu; Joel Hestness; Derek R. Hower; Tushar Krishna; Somayeh Sardashti; Rathijit Sen; Korey Sewell; Muhammad Shoaib; Nilay Vaish; Mark D. Hill; David A. Wood

    2011-01-01T23:59:59.000Z

    The gem5 simulation infrastructure is the merger of the best aspects of the M5 [4] and GEMS [9] simulators. M5 provides a highly configurable simulation framework, multiple ISAs, and diverse CPU models. GEMS complements these features with a detailed and flexible memory system, including support for multiple cache coherence protocols and interconnect models. Currently, gem5 supports most commercial ISAs (ARM, ALPHA, MIPS, Power, SPARC, and x86), including booting Linux on three of them (ARM, ALPHA, and x86). The project is the result of the combined efforts of many academic and industrial institutions, including AMD, ARM, HP, MIPS, Princeton, MIT, and the Universities of Michigan, Texas, and Wisconsin. Over the past ten years, M5 and GEMS have been used in hundreds of publications and have been downloaded tens of thousands of times. The high level of collaboration on the gem5 project, combined with the previous success of the component parts and a liberal BSD-like license, make gem5 a valuable full-system simulation tool. 1

  14. Simulation of geothermal subsidence

    SciTech Connect (OSTI)

    Miller, I.; Dershowitz, W.; Jones, K.; Myer, L.; Roman, K.; Schauer, M.

    1980-03-01T23:59:59.000Z

    The results of an assessment of existing mathematical models for subsidence simulation and prediction are summarized. The following subjects are discussed: the prediction process, physical processes of geothermal subsidence, computational models for reservoir flow, computational models for deformation, proficiency assessment, and real and idealized case studies. (MHR)

  15. Simulating Inhomogeneous Reionization

    E-Print Network [OSTI]

    Michael L. Norman; Paschalis Paschos; Tom Abel

    1998-07-28T23:59:59.000Z

    We describe an approach for incorporating radiative transfer into 3D hydrodynamic cosmological simulations. The method, while approximate, allows for a self-consistent treatment of self-shielding and shadowing, diffuse and point sources of radiation, and frequency dependent transfer. Applications include photodissociation, photoheating, and photoionization of the IGM.

  16. SIMULATING EVOLUTION OF TECHNOLOGY

    E-Print Network [OSTI]

    that simulates turnover of equipment stock as a function of detailed data on equipment costs and stock in (1) technology stocks, (2) products or services, or (3) the mix of fuels used. This thesis involves ability to pick out the right road to take (in most ca

  17. TROPICAL STORMS SUPER SIMULATIONS

    E-Print Network [OSTI]

    Fukai, Tomoki

    physical sciences 15 A new flavor of superconductor Computer simulations show how fundamental particles behave like electrons in a superconductor 16 Higgs versus the Big Bang The Higgs boson could help explain The magnetic interactions in beryllium-11 could explain its unusual shape 19 A solitary superconductor emerges

  18. 1997 Laboratory directed research and development. Annual report

    SciTech Connect (OSTI)

    Meyers, C.E.; Harvey, C.L.; Chavez, D.L.; Whiddon, C.P. [comps.

    1997-12-31T23:59:59.000Z

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1997. In addition to a programmatic and financial overview, the report includes progress reports from 218 individual R&D projects in eleven categories. Theses reports are grouped into the following areas: materials science and technology; computer sciences; electronics and photonics; phenomenological modeling and engineering simulation; manufacturing science and technology; life-cycle systems engineering; information systems; precision sensing and analysis; environmental sciences; risk and reliability; national grand challenges; focused technologies; and reserve.

  19. Direct application of geothermal energy

    SciTech Connect (OSTI)

    Reistad, G.M.

    1980-01-01T23:59:59.000Z

    An overall treatment of direct geothermal applications is presented with an emphasis on the above-ground engineering. The types of geothermal resources and their general extent in the US are described. The potential market that may be served with geothermal energy is considered briefly. The evaluation considerations, special design aspects, and application approaches for geothermal energy use in each of the applications are considered. The present applications in the US are summarized and a bibliography of recent studies and applications is provided. (MHR)

  20. Directions to Wilson Hall, Fermilab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both the Fermilab box office

  1. DOE Directives | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010Conferencing andContactsCriminalTraining

  2. Payroll Check Direct Deposit Authorization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTestPhysicsParticipantsPartnersC.Payroll Check Direct

  3. Comparing Membrane Simulations to Scattering Experiments: Introducing the SIMtoEXP Software

    E-Print Network [OSTI]

    Nagle, John F.

    of biomembrane simulations with experimental X-ray and neutron scattering data. It has the following features: (1 the electron density e(z) and neutron scattering length density m(z) profiles along the z direction (i.e., nor simulation Á X-ray scattering Á Neutron scattering Á Computer software Introduction It is well recognized

  4. VOF-BASED SIMULATION OF REACTIVE MASS TRANSFER ACROSS DEFORMABLE INTERFACES

    E-Print Network [OSTI]

    Bothe, Dieter

    . of the bubbles is there- fore of fundamental importance for effective design of the reactor. In case of fast-based approach for the Direct Numerical Simulation of reactive mass transfer in gas-liquid flows is described simulation results are presented for non reactive and reactive mass transfer from rising gas bubbles

  5. Coupled displacive and orderdisorder dynamics in LiNbO3 by molecular-dynamics simulation

    E-Print Network [OSTI]

    Gopalan, Venkatraman

    .1063/1.1669063 Ferroelectric lithium niobate (LiNbO3) has emerged as an important material in surface acoustic wave devices1 the structure and properties of materials. Indeed, atomic-level simulations have been used previously-dynamics MD simulations described here we treat the Coulomb interactions using a direct summation method

  6. Directly observing entropy accumulate on the horizon and holography

    E-Print Network [OSTI]

    Ariel Edery; Hugues Beauchesne

    2012-05-15T23:59:59.000Z

    Recent numerical simulations of gravitational collapse show that there exists a special foliation of the spacetime where matter and entropy accumulate directly on the inside of the horizon surface. In this foliation, the time coincides with the proper time of the asymptotic static observer (ASO) and for spherical symmetry, this corresponds to isotropic coordinates. In this gauge, the three-volume in the interior shrinks to zero and only the horizon area remains at the end of collapse. In a different foliation, matter and entropy accumulate in the volume. The entropy is however independent of the foliation. Black hole holography is therefore a mapping from an arbitrary foliation, where information resides in the volume, to the special ASO frame, where it resides directly on the horizon surface.

  7. Laboratory Directed Research and Development FY 2000 Annual Progress Report

    SciTech Connect (OSTI)

    Los Alamos National Laboratory

    2001-05-01T23:59:59.000Z

    This is the FY00 Annual Progress report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes progress on each project conducted during FY00, characterizes the projects according to their relevance to major funding sources, and provides an index to principal investigators. Project summaries are grouped by LDRD component: Directed Research and Exploratory Research. Within each component, they are further grouped into the ten technical categories: (1) atomic, molecular, optical, and plasma physics, fluids, and beams, (2) bioscience, (3) chemistry, (4) computer science and software engineering, (5) engineering science, (6) geoscience, space science, and astrophysics, (7) instrumentation and diagnostics, (8) materials science, (9) mathematics, simulation, and modeling, and (10) nuclear and particle physics.

  8. Urologic robots and future directions

    E-Print Network [OSTI]

    Mozer, Pierre; Stoianovici, Dan; 10.1097/MOU.0b013e32831cc1ba

    2008-01-01T23:59:59.000Z

    PURPOSE OF REVIEW: Robot-assisted laparoscopic surgery in urology has gained immense popularity with the daVinci system, but a lot of research teams are working on new robots. The purpose of this study is to review current urologic robots and present future development directions. RECENT FINDINGS: Future systems are expected to advance in two directions: improvements of remote manipulation robots and developments of image-guided robots. SUMMARY: The final goal of robots is to allow safer and more homogeneous outcomes with less variability of surgeon performance, as well as new tools to perform tasks on the basis of medical transcutaneous imaging, in a less invasive way, at lower costs. It is expected that improvements for a remote system could be augmented in reality, with haptic feedback, size reduction, and development of new tools for natural orifice translumenal endoscopic surgery. The paradigm of image-guided robots is close to clinical availability and the most advanced robots are presented with end-use...

  9. Radial lean direct injection burner

    DOE Patents [OSTI]

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04T23:59:59.000Z

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  10. Staged direct injection diesel engine

    DOE Patents [OSTI]

    Baker, Quentin A. (San Antonio, TX)

    1985-01-01T23:59:59.000Z

    A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.

  11. Control of molecular rotation in the limit of extreme rotational excitation

    E-Print Network [OSTI]

    Milner, V

    2015-01-01T23:59:59.000Z

    Laser control of molecular rotation is an area of active research. A number of recent studies has aimed at expanding the reach of rotational control to extreme, previously inaccessible rotational states, as well as controlling the directionality of molecular rotation. Dense ensembles of molecules undergoing ultrafast uni-directional rotation, known as molecular superrotors, are anticipated to exhibit unique properties, from spatially anisotropic diffusion and vortex formation to the creation of powerful acoustic waves and tuneable THz radiation. Here we describe our recent progress in controlling molecular rotation in the regime of high rotational excitation. We review two experimental techniques of producing uni-directional rotational wave packets with a "chiral train" of femtosecond pulses and an "optical centrifuge". Three complementary detection methods, enabling the direct observation, characterization and control of the superrotor states, are outlined: the one based on coherent Raman scattering, and two...

  12. A. Weitzenfeld: NSL Neural Simulation Language 1 Neural Simulation Language

    E-Print Network [OSTI]

    Weitzenfeld, Alfredo

    : +52-55-56284060 Fax: +52-55-56162211 email: alfredo@itam.mx #12;A. Weitzenfeld: NSL Neural Simulation

  13. Atomistic Kinetic Monte Carlo Simulations of Polycrystalline Copper Electrodeposition

    E-Print Network [OSTI]

    Treeratanaphitak, Tanyakarn; Abukhdeir, Nasser Mohieddin

    2014-01-01T23:59:59.000Z

    A high-fidelity kinetic Monte Carlo (KMC) simulation method (T. Treeratanaphitak, M. Pritzker, N. M. Abukhdeir, Electrochim. Acta 121 (2014) 407--414) using the semi-empirical multi-body embedded-atom method (EAM) potential has been extended to model polycrystalline metal electrodeposition. The presented KMC-EAM method enables true three-dimensional atomistic simulations of electrodeposition over experimentally relevant timescales. Simulations using KMC-EAM are performed over a range of overpotentials to predict the effect on deposit texture evolution. Results show strong agreement with past experimental results both with respect to deposition rates on various copper surfaces and roughness-time power law behaviour. It is found that roughness scales with time $\\propto t^\\beta$ where $\\beta=0.62 \\pm 0.12$, which is in good agreement with past experimental results. Furthermore, the simulations provide insights into sub-surface deposit morphologies which are not directly accessible from experimental measurements.

  14. PEBBLES Mechanics Simulation Speedup

    SciTech Connect (OSTI)

    Joshua J. Cogliati; Abderrafi M. Ougouag

    2010-05-01T23:59:59.000Z

    Pebble bed reactors contain large numbers of spherical fuel elements arranged randomly. Determining the motion and location of these fuel elements is required for calculating certain parameters of pebble bed reactor operation. These simulations involve hundreds of thousands of pebbles and involve determining the entire core motion as pebbles are recirculated. Single processor algorithms for this are insufficient since they would take decades to centuries of wall-clock time. This paper describes the process of parallelizing and speeding up the PEBBLES pebble mechanics simulation code. Both shared memory programming with the Open Multi-Processing API and distributed memory programming with the Message Passing Interface API are used in simultaneously in this process. A new shared memory lock-less linear time collision detection algorithm is described. This method allows faster detection of pebbles in contact than generic methods. These combine to make full recirculations on AVR sized reactors possible in months of wall clock time.

  15. The Umbra Simulation Framework

    SciTech Connect (OSTI)

    GOTTLIEB,ERIC; HARRIGAN,RAYMOND W.; MCDONALD,MICHAEL J.; OPPEL III,FRED J.; XAVIER,PATRICK G.

    2001-06-01T23:59:59.000Z

    Umbra is a new Sandia-developed modeling and simulation framework. The Umbra framework allows users to quickly build models and simulations for intelligent system development, analysis, experimentation, and control and supports tradeoff analyses of complex robotic systems, device, and component concepts. Umbra links together heterogeneous collections of modeling tools. The models in Umbra include 3D geometry and physics models of robots, devices and their environments. Model components can be built with varying levels of fidelity and readily switched to allow models built with low fidelity for conceptual analysis to be gradually converted to high fidelity models for later phase detailed analysis. Within control environments, the models can be readily replaced with actual control elements. This paper describes Umbra at a functional level and describes issues that Sandia uses Umbra to address.

  16. Simulating Concordant Computations

    E-Print Network [OSTI]

    Bryan Eastin

    2010-06-23T23:59:59.000Z

    A quantum state is called concordant if it has zero quantum discord with respect to any part. By extension, a concordant computation is one such that the state of the computer, at each time step, is concordant. In this paper, I describe a classical algorithm that, given a product state as input, permits the efficient simulation of any concordant quantum computation having a conventional form and composed of gates acting on two or fewer qubits. This shows that such a quantum computation must generate quantum discord if it is to efficiently solve a problem that requires super-polynomial time classically. While I employ the restriction to two-qubit gates sparingly, a crucial component of the simulation algorithm appears not to be extensible to gates acting on higher-dimensional systems.

  17. Author's personal copy Simulations of a prototypical device using pyroelectric materials

    E-Print Network [OSTI]

    Pilon, Laurent

    for harvesting waste heat Damien Vanderpool, Jeong Hwan Yoon, Laurent Pilon * University of California, Los Keywords: Pyroelectric Direct energy conversion Waste heat Optimum efficiency Power density Numerical simulation a b s t r a c t This paper is concerned with directly converting waste heat into electricity using

  18. Direct synthesis of magnesium borohydride

    DOE Patents [OSTI]

    Ronnebro, Ewa Carin Ellinor (Kennewick, WA); Severa, Godwin (Honolulu, HI); Jensen, Craig M. (Kailua, HI)

    2012-04-03T23:59:59.000Z

    A method is disclosed for directly preparing an alkaline earth metal borohydride, i.e. Mg(BH.sub.4).sub.2, from the alkaline earth metal boride MgB.sub.2 by hydrogenating the MgB.sub.2 at an elevated temperature and pressure. The boride may also be doped with small amounts of a metal chloride catalyst such as TiCl.sub.3 and/or NiCl.sub.2. The process provides for charging MgB.sub.2 with high pressure hydrogen above at least 70 MPa while simultaneously heating the material to about 350.degree. C. to about 400.degree. C. The method is relatively simple and inexpensive and provides a reversible hydride compound having a hydrogen capacity of at least 11 wt %.

  19. Direct synthesis of calcium borohydride

    DOE Patents [OSTI]

    Ronnebro, Ewa Carin Ellinor (Dublin, CA); Majzoub, Eric H. (Pleasanton, CA)

    2009-10-27T23:59:59.000Z

    A method is disclosed for directly preparing an alkaline earth metal borohydride, i.e. Ca(BH.sub.4).sub.2, from the alkaline earth metal hydride and the alkaline earth metal boride. The borohydride thus prepared is doped with a small portion of a metal chloride catalyst compound, such as RuCl.sub.3, TiCl.sub.3, or a mixture of TiCl.sub.3 and palladium metal. The process provides for mechanically mixing the dry reagents under an inert atmosphere followed by charging the mixed materials with high pressure hydrogen at about 70 MPa while heating the mixture to about 400.degree. C. The method is relatively simple and inexpensive and provides reversible hydride compounds which are free of the usual contamination introduced by prior art wet chemical methods.

  20. Colloidal Micromotors: Controlled Directed Motion

    E-Print Network [OSTI]

    Baraban, Larysa; Makarov, Denys; Leiderer, Paul; Erbe, Artur

    2008-01-01T23:59:59.000Z

    Here we demonstrate a synthetic micro-engine, based on long-range controlled movement of colloidal particles, which is induced by a local catalytic reaction. The directed motion at long timescales was achieved by placing specially designed magnetic capped colloids in a hydrogen peroxide solution at weak magnetic fields. The control of the motion of the particles was provided by changes of the concentration of the solution and by varying the strength of the applied magnetic field. Such synthetic objects can then be used not only to understand the fundamental driving processes but also be employed as small motors in biological environments, for example, for the transportation of molecules in a controllable way.

  1. Colloidal Micromotors: Controlled Directed Motion

    E-Print Network [OSTI]

    Larysa Baraban; Christian Kreidler; Denys Makarov; Paul Leiderer; Artur Erbe

    2008-07-10T23:59:59.000Z

    Here we demonstrate a synthetic micro-engine, based on long-range controlled movement of colloidal particles, which is induced by a local catalytic reaction. The directed motion at long timescales was achieved by placing specially designed magnetic capped colloids in a hydrogen peroxide solution at weak magnetic fields. The control of the motion of the particles was provided by changes of the concentration of the solution and by varying the strength of the applied magnetic field. Such synthetic objects can then be used not only to understand the fundamental driving processes but also be employed as small motors in biological environments, for example, for the transportation of molecules in a controllable way.

  2. Direct laser initiation of PETN

    SciTech Connect (OSTI)

    Early, J. W. (James W.); Kennedy, J. E. (James E.)

    2001-01-01T23:59:59.000Z

    In the early 1970s Yang and Menichelli demonstrated that direct laser illumination of low-density secondary explosive prr:ssings through a transparent window could produce detonation. 'The energy requirement for threshold initiation of detonation was reduced when a thin metal coating of metal covered the side of the window against which the low-density explosive was pressed. We have obtained experimental results that are in general agreement with the results of Renllund, Stanton and Trott (1 989) and recent: work by Nagayama, hou and Nakahara (2001). We report exploration of the effects of laser beam diameter, PEiTN density and specific surface area, and thickness of a titanium coating on the window.

  3. Method for directional hydraulic fracturing

    DOE Patents [OSTI]

    Swanson, David E. (West St. Paul, MN); Daly, Daniel W. (Crystal, MN)

    1994-01-01T23:59:59.000Z

    A method for directional hydraulic fracturing using borehole seals to confine pressurized fluid in planar permeable regions, comprising: placing a sealant in the hole of a structure selected from geologic or cemented formations to fill the space between a permeable planar component and the geologic or cemented formation in the vicinity of the permeable planar component; making a hydraulic connection between the permeable planar component and a pump; permitting the sealant to cure and thereby provide both mechanical and hydraulic confinement to the permeable planar component; and pumping a fluid from the pump into the permeable planar component to internally pressurize the permeable planar component to initiate a fracture in the formation, the fracture being disposed in the same orientation as the permeable planar component.

  4. Laboratory directed research and development

    SciTech Connect (OSTI)

    Not Available

    1991-11-15T23:59:59.000Z

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  5. Design of mechanical arterial simulator

    E-Print Network [OSTI]

    Chai, Lauren (Lauren Amy)

    2012-01-01T23:59:59.000Z

    A force controlled ultrasound probe is being explored as a new method of measuring blood pressure. An arterial simulator was designed and built for experiments. For this simulator, the vessels and bulk material were designed ...

  6. Simulation des Frsens mit Industrierobotern

    E-Print Network [OSTI]

    Stryk, Oskar von

    Parameteridentifikation Simulation of milling with industrial robots: trajectory planning and experimental parameter experimentelle Parameteridentifikation Simulation of milling with industrial robots: trajectory planning Bauteile erweitert. Abstract Recently, industrial robots are increasingly used for cutting soft material

  7. Particle Accelerators, 1990, Vol. 32, pp. 241-247 Reprints available directly from the publisher

    E-Print Network [OSTI]

    Morrison, Philip J.,

    profile is importa.nt for the study of laser acceler- ation of particles. For a specific relation betweenParticle Accelerators, 1990, Vol. 32, pp. 241-247 Reprints available directly from the publisher in plasma. Carrying out numerical particle simulation runs in which a deviation from this relation

  8. Simulation of Sextet Diquark Production

    E-Print Network [OSTI]

    Peter Richardson; David Winn

    2011-11-22T23:59:59.000Z

    We present a method for simulating the production and decay of particles in the sextet representation of $SU(3)_C$ including the simulation of QCD radiation. First results from the Monte Carlo simulation of sextet diquark production at the LHC including both resonant and pair production are presented. We include limits on resonant diquark production from recent ATLAS results and perform the first simulation studies of the less model dependent pair production mechanism.

  9. Simulations of an offshore wind farm using large eddy simulation and a torque-controlled actuator disc model

    E-Print Network [OSTI]

    Creech, Angus; Maguire, A Eoghan

    2014-01-01T23:59:59.000Z

    We present here a computational fluid dynamics (CFD) simulation of Lillgrund offshore wind farm, which is located in the {\\O}resund Strait between Sweden and Denmark. The simulation combines a dynamic representation of wind turbines embedded within a Large-Eddy Simulation CFD solver, and uses hr-adaptive meshing to increase or decrease mesh resolution where required. This allows the resolution of both large scale flow structures around the wind farm, and local flow conditions at individual turbines; consequently, the response of each turbine to local conditions can be modelled, as well as the resulting evolution of the turbine wakes. This paper provides a detailed description of the turbine model which simulates interactions between the wind, turbine rotors, and turbine generators by calculating the forces on the rotor, the body forces on the air, and instantaneous power output. This model was used to investigate a selection of key wind speeds and directions, investigating cases where a row of turbines would ...

  10. Coupled Geomechanical Simulations of UCG Cavity Evolution

    SciTech Connect (OSTI)

    Morris, J P; Buscheck, T A; Hao, Y

    2009-07-13T23:59:59.000Z

    This paper presents recent work from an ongoing project to develop predictive tools for cavity/combustion-zone growth and to gain quantitative understanding of the processes and conditions (both natural and engineered) affecting underground coal gasification (UCG). In this paper we will focus upon the development of coupled geomechanical capabilities for simulating the evolution of the UCG cavity using discrete element methodologies. The Discrete Element Method (DEM) has unique advantages for facilitating the prediction of the mechanical response of fractured rock masses, such as cleated coal seams. In contrast with continuum approaches, the interfaces within the coal can be explicitly included and combinations of both elastic and plastic anisotropic response are simulated directly. Additionally, the DEM facilitates estimation of changes in hydraulic properties by providing estimates of changes in cleat aperture. Simulation of cavity evolution involves a range of coupled processes and the mechanical response of the host coal and adjoining rockmass plays a role in every stage of UCG operations. For example, cavity collapse during the burn has significant effect upon the rate of the burn itself. In the vicinity of the cavity, collapse and fracturing may result in enhanced hydraulic conductivity of the rock matrix in the coal and caprock above the burn chamber. Even far from the cavity, stresses due to subsidence may be sufficient to induce new fractures linking previously isolated aquifers. These mechanical processes are key in understanding the risk of unacceptable subsidence and the potential for groundwater contamination. These mechanical processes are inherently non-linear, involving significant inelastic response, especially in the region closest to the cavity. In addition, the response of the rock mass involves both continuum and discrete mechanical behavior. We have recently coupled the LDEC (Livermore Distinct Element Code) and NUFT (Non-isothermal Unsaturated Flow and Transport) codes to investigate the interaction between combustion, water influx and mechanical response. The modifications to NUFT are described in detail in a companion paper. This paper considers the extension of the LDEC code and the application of the coupled tool to the simulation of cavity growth and collapse. The distinct element technology incorporated into LDEC is ideally suited to simulation of the progressive failure of the cleated coal mass by permitting the simulation of individual planes of weakness. We will present details of the coupling approach and then demonstrate the capability through simulation of several test cases.

  11. Bio-threat microparticle simulants

    DOE Patents [OSTI]

    Farquar, George Roy; Leif, Roald

    2014-09-16T23:59:59.000Z

    A bio-threat simulant that includes a carrier and DNA encapsulated in the carrier. Also a method of making a simulant including the steps of providing a carrier and encapsulating DNA in the carrier to produce the bio-threat simulant.

  12. Bio-threat microparticle simulants

    DOE Patents [OSTI]

    Farquar, George Roy; Leif, Roald N

    2012-10-23T23:59:59.000Z

    A bio-threat simulant that includes a carrier and DNA encapsulated in the carrier. Also a method of making a simulant including the steps of providing a carrier and encapsulating DNA in the carrier to produce the bio-threat simulant.

  13. Computer Simulations of Protein Folding

    E-Print Network [OSTI]

    Sorin, Eric J.

    CHAPTER 8 Computer Simulations of Protein Folding VIJAY S. PANDE , ERIC J. SORIN , CHRISTOPHER D, CA 94305, USA 8.1 Introduction: Goals and Challenges of Simulating Protein Folding Computer as well as recent applications of this methodology. 8.1.1 Simulating Protein Folding Proteins play

  14. Evolution of analyzing reservoir simulation data

    SciTech Connect (OSTI)

    Phelps, R.E.; Huang, A.Y.

    1994-12-31T23:59:59.000Z

    Numerical Reservoir Simulation is routinely used by the petroleum producing companies world-wide as an engineering tool to efficiently manage their hydrocarbon reservoirs. The task of building models with a large number of grid-blocks is not easy, and to analyze the voluminous results produced by such models is even more difficult. This paper discusses the historical evolution of techniques used to analyze reservoir simulation data over the past decade. It outlines how the advancement of workstation technology and the introduction of X-Window System opened up an entirely new way of utilizing mainframe computing power and workstation graphical display capabilities, simultaneously. The paper also discusses Saudi Aramco`s experience in the development of sophisticated reservoir simulation post-processing packages. The need for direct communication between the programmer and end-users to facilitate a user-friendly package is emphasized. A practical example illustrating the benefit of these post-processing packages in the construction and history matching of a large model with approximately 52,000 cells is presented. Savings in manpower and computer resources using current technology are estimated.

  15. Evolution of analyzing reservoir simulation data

    SciTech Connect (OSTI)

    Phelps, R.E.; Huang, A.Y.

    1995-12-01T23:59:59.000Z

    Petroleum-producing companies world-wide routinely use numerical reservoir simulation as an engineering tool to manage their hydrocarbon reservoirs efficiently. The task of building models with a large number of gridblocks is not easy, and analyzing the voluminous results produced by such models is even more difficult. This paper discusses the historical evolution of techniques used to analyze reservoir simulation data over the past decade. It outlines how the advancement of workstation technology and the introduction of an X-Window system opened up an entirely new way of using mainframe computing power and workstation graphical display capabilities simultaneously. The paper also discusses Saudi Aramco`s experience in the development of sophisticated reservoir simulation postprocessing packages. The authors emphasize the need for direct communication between the programmer and end users to facilitate a user-friendly package. They present a practical example illustrating the benefit of these postprocessing packages in the construction and history matching of a large model with approximately 52,000 cells. They estimate savings in manpower and computer resources using current technology.

  16. Global cloud liquid water path simulations

    SciTech Connect (OSTI)

    Lemus, L. [Southern Hemisphere Meteorology, Clayton, Victoria (Australia)] [Southern Hemisphere Meteorology, Clayton, Victoria (Australia); Rikus, L. [Bureau of Meteorology Research Centre, Melbourne, Victoria (Australia)] [Bureau of Meteorology Research Centre, Melbourne, Victoria (Australia); Martin, C.; Platt, R. [CSIRO, Aspendale, Victoria (Australia)] [CSIRO, Aspendale, Victoria (Australia)

    1997-01-01T23:59:59.000Z

    A new parameterization of cloud liquid water and ice content has been included in the Bureau of Meteorology Global Assimilation and Prediction System. The cloud liquid water content is derived from the mean cloud temperatures in the model using an empirical relationship based on observations. The results from perpetual January and July simulations are presented and show that the total cloud water path steadily decreases toward high latitudes, with two relative maxima at midlatitudes and a peak at low latitudes. To validate the scheme, the simulated fields need to be processed to produce liquid water paths that can be directly compared with the corresponding field derived from Special Sensor Microwave/Imager (SSM/I) data. This requires the identification of cloud ice water content within the parameterization and a prescription to account for the treatment of strongly precipitating subgrid-scale cloud. The resultant cloud liquid water paths agree qualitatively with the SSM/I data but show some systematic errors that are attributed to corresponding errors in the model`s simulation of cloud amounts. Given that a more quantitative validation requires substantial improvement in the model`s diagnostic cloud scheme, the comparison with the SSM/I data indicates that the cloud water path, derived from the cloud liquid water content parameterization introduced in this paper, is consistent with the observations and can be usefully incorporated in the prediction system. 40 refs., 11 figs., 1 tab.

  17. Software Framework for Advanced Power Plant Simulations

    SciTech Connect (OSTI)

    John Widmann; Sorin Munteanu; Aseem Jain; Pankaj Gupta; Mark Moales; Erik Ferguson; Lewis Collins; David Sloan; Woodrow Fiveland; Yi-dong Lang; Larry Biegler; Michael Locke; Simon Lingard; Jay Yun

    2010-08-01T23:59:59.000Z

    This report summarizes the work accomplished during the Phase II development effort of the Advanced Process Engineering Co-Simulator (APECS). The objective of the project is to develop the tools to efficiently combine high-fidelity computational fluid dynamics (CFD) models with process modeling software. During the course of the project, a robust integration controller was developed that can be used in any CAPE-OPEN compliant process modeling environment. The controller mediates the exchange of information between the process modeling software and the CFD software. Several approaches to reducing the time disparity between CFD simulations and process modeling have been investigated and implemented. These include enabling the CFD models to be run on a remote cluster and enabling multiple CFD models to be run simultaneously. Furthermore, computationally fast reduced-order models (ROMs) have been developed that can be 'trained' using the results from CFD simulations and then used directly within flowsheets. Unit operation models (both CFD and ROMs) can be uploaded to a model database and shared between multiple users.

  18. West Virginia Direct Loan Program (West Virginia)

    Broader source: Energy.gov [DOE]

    The West Virginia Direct Loan Program, provides up to 45 percent in financing fixed assets through low-interest, direct loans to businesses expanding or locating in West Virginia. Proceeds from the...

  19. Packing Directed Joins Aaron Michael Williams

    E-Print Network [OSTI]

    Williams, Aaron

    that the conjecture does hold for directed graphs with directed paths from every source to every sink. Schrijver [13 a mathematician. Bad decisions kept me out the game." "Rock over London, Rock on Chicago!" iv #12;Contents 1

  20. Extension of DOE Directives on Security

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-12-31T23:59:59.000Z

    This Notice extends 15 Office of Security and Emergency Operation directives that have expired or will expire until December 31, 2001. This Notice will remain in effect until its expiration date or until new/revised directives are published. The following statement will be added to the summary of the extended directives-DOE N 251.40, dated 5/3/01, extends this directive until 12/31/01.

  1. Direct Electrochemistry and Electrocatalysis of Myoglobin Immobilized...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrochemistry and Electrocatalysis of Myoglobin Immobilized on Graphene-CTAB-Ionic Liquid Nanocomposite Film. Direct Electrochemistry and Electrocatalysis of Myoglobin...

  2. Hydrothermal industrialization: direct heat development. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-05-01T23:59:59.000Z

    A description of hydrothermal resources suitable for direct applications, their associated temperatures, geographic distribution and developable capacity are given. An overview of the hydrothermal direct-heat development infrastructure is presented. Development activity is highlighted by examining known and planned geothermal direct-use applications. Underlying assumptions and results for three studies conducted to determine direct-use market penetration of geothermal energy are discussed.

  3. Strategic Directions for Hydrogen Delivery Workshop Proceedings

    Broader source: Energy.gov [DOE]

    Proceedings from the Strategic Directions for Hydrogen Delivery Workshop held May 7-8, 2003 in Washington, DC. Author: Energetics

  4. Identification and quantification of fracture behavior through reservoir simulation

    SciTech Connect (OSTI)

    Cline, S. [Univ. of Oklahoma, Oklahoma City, OK (United States)]|[Hefner Corporation, Oklahoma City, OK (United States)

    1995-08-01T23:59:59.000Z

    This study demonstrated the use of reservoir simulation as a tool for quantifying and describing the relative significance of fracture and matrix flow units to overall reservoir storage capacity and transmissibility in a field development example. A high matrix porosity Pennsylvanian age sandstone oil reservoir, that is currently undergoing the early stages of secondary recovery by waterflood, was studied. Unexpected early water breakthrough indicated the presence of a high directional permeability fracture system superimposed on the high porosity matrix system. To further understand the reservoir behavior, improve field performance and to quantify the relative contributions of fracture and matrix units to permeability and storage capacity, a reservoir simulation and characterization project was initiated. Well test, well log, tracer and geologic data were integrated into the simulation project. The integrated study indicated that the fractures exhibited high directional permeability but low storage capacity relative to the matrix portion of the reservoir. Although fractures heavily influenced overall fluid flow behavior, they did not contain large storage capacity. The system had a low calculated fracture intensity index. Reservoir simulation enabled the quantification of the relative importance of the two flow systems which in turn had a large impact on total reserves estimates and production forecasting. Simulation results indicated a need to realign injector and producer patterns which improved production rates and ultimate recovery.

  5. Hydrodynamic and hydromagnetic energy spectra from large eddy simulations

    E-Print Network [OSTI]

    N. E. L. Haugen; A. Brandenburg

    2006-06-29T23:59:59.000Z

    Direct and large eddy simulations of hydrodynamic and hydromagnetic turbulence have been performed in an attempt to isolate artifacts from real and possibly asymptotic features in the energy spectra. It is shown that in a hydrodynamic turbulence simulation with a Smagorinsky subgrid scale model using 512^3 meshpoints two important features of the 4096^3 simulation on the Earth simulator (Kaneda et al. 2003, Phys. Fluids 15, L21) are reproduced: a k^{-0.1} correction to the inertial range with a k^{-5/3} Kolmogorov slope and the form of the bottleneck just before the dissipative subrange. Furthermore, it is shown that, while a Smagorinsky-type model for the induction equation causes an artificial and unacceptable reduction in the dynamo efficiency, hyper-resistivity yields good agreement with direct simulations. In the large-scale part of the inertial range, an excess of the spectral magnetic energy over the spectral kinetic energy is confirmed. However, a trend towards spectral equipartition at smaller scales in the inertial range can be identified. With magnetic fields, no explicit bottleneck effect is seen.

  6. Air breathing direct methanol fuel cell

    DOE Patents [OSTI]

    Ren, Xiaoming (Los Alamos, NM)

    2002-01-01T23:59:59.000Z

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source.

  7. Micro Fuel Cells Direct Methanol Fuel Cells

    E-Print Network [OSTI]

    Micro Fuel Cells TM Direct Methanol Fuel Cells for Portable Power A Fuel Cell System Developer-17, 2002 Phoenix, Arizona #12;Micro Fuel Cells Direct Methanol Fuel Cells for Portable Power Outline (1 Energy Content (Wh) Volume(cm^3) Li-Ion Battery DMFC #12;Direct Methanol Fuel Cell Technology

  8. DIRECTED ENERGY WEAPONS (DEWs): A BIBLIOGRAPHY

    E-Print Network [OSTI]

    DIRECTED ENERGY WEAPONS (DEWs): A BIBLIOGRAPHY Compiled by Greta E. Marlatt Dudley Knox Library://www.nps.edu/Library/Research%20Tools/Bibliographies/index.html #12;DIRECTED ENERGY WEAPONS (DEWs): A BIBLIOGRAPHY Complied INTENTIONALLY LEFT BLANK #12;4 Table of Contents DIRECTED ENERGY WEAPONS GENERAL

  9. Direct detector for terahertz radiation

    DOE Patents [OSTI]

    Wanke, Michael C. (Albuquerque, NM); Lee, Mark (Albuquerque, NM); Shaner, Eric A. (Albuquerque, NM); Allen, S. James (Santa Barbara, CA)

    2008-09-02T23:59:59.000Z

    A direct detector for terahertz radiation comprises a grating-gated field-effect transistor with one or more quantum wells that provide a two-dimensional electron gas in the channel region. The grating gate can be a split-grating gate having at least one finger that can be individually biased. Biasing an individual finger of the split-grating gate to near pinch-off greatly increases the detector's resonant response magnitude over prior QW FET detectors while maintaining frequency selectivity. The split-grating-gated QW FET shows a tunable resonant plasmon response to FIR radiation that makes possible an electrically sweepable spectrometer-on-a-chip with no moving mechanical optical parts. Further, the narrow spectral response and signal-to-noise are adequate for use of the split-grating-gated QW FET in a passive, multispectral terahertz imaging system. The detector can be operated in a photoconductive or a photovoltaic mode. Other embodiments include uniform front and back gates to independently vary the carrier densities in the channel region, a thinned substrate to increase bolometric responsivity, and a resistive shunt to connect the fingers of the grating gate in parallel and provide a uniform gate-channel voltage along the length of the channel to increase the responsivity and improve the spectral resolution.

  10. Low backlash direct drive actuator

    DOE Patents [OSTI]

    Kuklo, T.C.

    1994-10-25T23:59:59.000Z

    A low backlash direct drive actuator is described which comprises a motor such as a stepper motor having at least 200 steps per revolution; a two part hub assembly comprising a drive hub coaxially attached to the shaft of the motor and having a plurality of drive pins; a driven hub having a plurality of bores in one end thereof in alignment with the drive pins in the drive hub and a threaded shaft coaxially mounted in an opposite end of the driven hub; and a housing having a central bore therein into which are fitted the drive hub and driven hub, the housing having a motor mount on one end thereof to which is mounted the stepper motor, and a closed end portion with a threaded opening therein coaxial with the central bore in the housing and receiving therein the threaded shaft attached to the driven hub. Limit switches mounted to the housing cooperate with an enlarged lip on the driven hub to limit the lateral travel of the driven hub in the housing, which also acts to limit the lateral travel of the threaded shaft which functions as a lead screw. 10 figs.

  11. Bi-directional dc-dc Converter

    Broader source: Energy.gov (indexed) [DOE]

    Purpose of Work for FY08 1. Vehicle modeling, simulation, and operation voltages optimization. 2. DC-DC Power converter and control modeling. 3. Silicon Carbide device...

  12. Fusion Simulation Program

    SciTech Connect (OSTI)

    Project Staff (V.S. Chan)

    2012-02-29T23:59:59.000Z

    Under this project, General Atomics (GA) was tasked to develop the experimental validation plans for two high priority ISAs, Boundary and Pedestal and Whole Device Modeling in collaboration with the theory, simulation and experimental communities. The following sections have been incorporated into the final FSP Program Plan (www.pppl.gov/fsp), which was delivered to the US Department of Energy (DOE). Additional deliverables by GA include guidance for validation, development of metrics to evaluate success and procedures for collaboration with experiments. These are also part of the final report.

  13. Simulation-Based Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund3 Outlook for Gulf ofMailingSimulation-Based

  14. Modeling & Simulation publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA /Ml'. William Hirst HirstModeling & Simulation »

  15. Polar-direct-drive experiments on the National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hohenberger, M.; Radha, P. B.; Myatt, J. F.; LePape, S.; Marozas, J. A.; Marshall, F. J.; Michel, D. T.; Regan, S. P.; Seka, W.; Shvydky, A.; et al

    2015-05-01T23:59:59.000Z

    To support direct-drive inertial confinement fusion experiments at the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] in its indirect-drive beam configuration, the polar-direct-drive (PDD) concept [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004)] has been proposed. Ignition in PDD geometry requires direct-drive–specific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments to study the energetics and preheat in PDD implosions at the NIF have been performed. These experiments utilize the NIF in its current configuration, including beammore »geometry, phase plates, and beam smoothing. Room-temperature, 2.2-mm-diam plastic shells filled with D? gas were imploded with total drive energies ranging from ~500 to 750 kJ with peak powers of 120 to 180 TW and peak on-target irradiances at the initial target radius from 8 10¹? to 1.2 10¹?W/cm². Results from these initial experiments are presented, including measurements of shell trajectory, implosion symmetry, and the level of hot-electron preheat in plastic and Si ablators. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray-trace to model oblique beams, and models for nonlocal electron transport and cross-beam energy transport (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data.« less

  16. Polar-direct-drive experiments on the National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hohenberger, M. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States)] (ORCID:0000000258879711); Radha, P. B. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Myatt, J. F. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); LePape, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marozas, J. A. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Marshall, F. J. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Michel, D. T. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States)] (ORCID:0000000166894359); Regan, S. P. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Seka, W. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Shvydky, A. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Sangster, T. C. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States)] (ORCID:0000000340402672); Bates, J. W. [U. S. Naval Research Lab., Washington, DC (United States)] (ORCID:0000000188087240); Betti, R. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Boehly, T. R. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Bonino, M. J. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Casey, D. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Collins, T. J. B. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Craxton, R. S. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States)] (ORCID:0000000158858227); Delettrez, J. A. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Edgell, D. H. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Epstein, R. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States)] (ORCID:0000000340628444); Fiksel, G. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Fitzsimmons, P. [General Atomics, San Diego, CA (United States); Frenje, J. A. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)] (ORCID:0000000168460378); Froula, D. H. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Goncharov, V. N. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Harding, D. R. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Kalantar, D. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Karasik, M. [U. S. Naval Research Lab., Washington, DC (United States); Kessler, T. J. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Kilkenny, J. D. [General Atomics, San Diego, CA (United States); Knauer, J. P. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Kurz, C. [General Atomics, San Diego, CA (United States); Lafon, M. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); LaFortune, K. N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacGowan, B. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mackinnon, A. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacPhee, A. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)] (ORCID:0000000341604479); McCrory, R. L. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); McKenty, P. W. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States); Meeker, J. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Meyerhofer, D. D. [Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States)

    2015-05-01T23:59:59.000Z

    To support direct-drive inertial confinement fusion experiments at the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] in its indirect-drive beam configuration, the polar-direct-drive (PDD) concept [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004)] has been proposed. Ignition in PDD geometry requires direct-drive–specific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments to study the energetics and preheat in PDD implosions at the NIF have been performed. These experiments utilize the NIF in its current configuration, including beam geometry, phase plates, and beam smoothing. Room-temperature, 2.2-mm-diam plastic shells filled with D? gas were imploded with total drive energies ranging from ~500 to 750 kJ with peak powers of 120 to 180 TW and peak on-target irradiances at the initial target radius from 8 10¹? to 1.2 10¹?W/cm². Results from these initial experiments are presented, including measurements of shell trajectory, implosion symmetry, and the level of hot-electron preheat in plastic and Si ablators. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray-trace to model oblique beams, and models for nonlocal electron transport and cross-beam energy transport (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data.

  17. Methodology for characterizing modeling and discretization uncertainties in computational simulation

    SciTech Connect (OSTI)

    ALVIN,KENNETH F.; OBERKAMPF,WILLIAM L.; RUTHERFORD,BRIAN M.; DIEGERT,KATHLEEN V.

    2000-03-01T23:59:59.000Z

    This research effort focuses on methodology for quantifying the effects of model uncertainty and discretization error on computational modeling and simulation. The work is directed towards developing methodologies which treat model form assumptions within an overall framework for uncertainty quantification, for the purpose of developing estimates of total prediction uncertainty. The present effort consists of work in three areas: framework development for sources of uncertainty and error in the modeling and simulation process which impact model structure; model uncertainty assessment and propagation through Bayesian inference methods; and discretization error estimation within the context of non-deterministic analysis.

  18. Fault simulation of combinational circuits based on critical path tracing

    E-Print Network [OSTI]

    Burnett, Charles James

    1992-01-01T23:59:59.000Z

    advantage of the computer's internal architecture and does not intelligently analyze the CUT. The deductive simulator traverses the good circuit to determine the value of each line. At the same time, every fault that causes a line to have a different... of the faults on a line within the circuit is detected for a given test vector, the line is marked as critical [10]. These faults that are detected are marked as covered. This very quickly gathers faults without direct simulation to the outputs, however...

  19. Direct FuelCell/Turbine Power Plant

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2008-09-30T23:59:59.000Z

    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply to the system, was demonstrated. System analyses of 40 MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, were carried out using CHEMCAD simulation software. The analyses included systems for near-term and long-term deployment. A new concept was developed that was based on clusters of one-MW fuel cell modules as the building blocks. The preliminary design of a 40 MW power plant, including the key equipment layout and the site plan, was completed. The process information and operational data from the proof-of-concept tests were used in the design of 40 MW high efficiency DFC/T power plants. A preliminary cost estimate for the 40 MW DFC/T plant was also prepared. Pilot-scale tests of the cascaded fuel cell concept for achieving high fuel utilizations were conducted. The tests demonstrated that the concept has the potential to offer higher power plant efficiency. Alternate stack flow geometries for increased power output and fuel utilization capabilities were also evaluated. Detailed design of the packaged sub-MW DFC/T Alpha Unit was completed, including equipment and piping layouts, instrumentation, electrical, and structural drawings. The lessons learned from the proof-of-concept tests were incorporated in the design of the Alpha Unit. The sub-MW packaged unit was fabricated, including integration of the Direct FuelCell{reg_sign} (DFC{reg_sign}) stack module with the mechanical balance-of-plant and electrical balance-of-plant. Factory acceptance tests of the Alpha DFC/T power plant were conducted at Danbury, CT. The Alpha Unit achieved an unsurpassed electrical efficiency of 58% (LHV natural gas) during the factory tests. The resulting high efficiency in conversion of chemical energy to electricity far exceeded any sub-MW class power generation equipment presently in the market. After successful completion of the factory tests, the unit was shipped to the Billings Clinic in Billings, MT, for field demonstration tests. The DFC/T unit accomplished a major achievement by successfully completing 8000 hours of operation at the Billings site. The Alpha sub-MW DF

  20. Direct Energy Services | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro SiteDaytonDestilariaDirect EnergyDirectDirectDirect

  1. Exploiting simultaneous observational constraints on mass and absorption to estimate the global direct radiative forcing of black carbon and brown carbon

    E-Print Network [OSTI]

    Schwarz, J. P.

    Atmospheric black carbon (BC) is a leading climate warming agent, yet uncertainties on the global direct radiative forcing (DRF) remain large. Here we expand a global model simulation (GEOS-Chem) of BC to include the ...

  2. Experimental spectra analysis in THM with the help of simulation based on Geant4 framework

    E-Print Network [OSTI]

    Chengbo Li; Qungang Wen; Shuhua Zhou; Yuanyong Fu; Jing Zhou; Qiuying Meng; Zongjun Jiang; Xiaolian Wang

    2014-08-27T23:59:59.000Z

    The Coulomb barrier and electron screening cause difficulties in directly measuring nuclear reaction cross sections of charged particles in astrophysical energies. The Trojan-horse method has been introduced to solve the difficulties as a powerful indirect tool. In order to understand experimental spectra better, Geant4 is employed to simulate the method for the first time. Validity and reliability of the simulation are examined by comparing the experimental data with simulated results. The Geant4 simulation can give useful information to understand the experimental spectra better in data analysis and is beneficial to the design for future related experiments.

  3. Laparoscopic simulation interface

    DOE Patents [OSTI]

    Rosenberg, Louis B.

    2006-04-04T23:59:59.000Z

    A method and apparatus for providing high bandwidth and low noise mechanical input and output for computer systems. A gimbal mechanism provides two revolute degrees of freedom to an object about two axes of rotation. A linear axis member is coupled to the gimbal mechanism at the intersection of the two axes of rotation. The linear axis member is capable of being translated along a third axis to provide a third degree of freedom. The user object is coupled to the linear axis member and is thus translatable along the third axis so that the object can be moved along all three degrees of freedom. Transducers associated with the provided degrees of freedom include sensors and actuators and provide an electromechanical interface between the object and a digital processing system. Capstan drive mechanisms transmit forces between the transducers and the object. The linear axis member can also be rotated about its lengthwise axis to provide a fourth degree of freedom, and, optionally, a floating gimbal mechanism is coupled to the linear axis member to provide fifth and sixth degrees of freedom to an object. Transducer sensors are associated with the fourth, fifth, and sixth degrees of freedom. The interface is well suited for simulations of medical procedures and simulations in which an object such as a stylus or a joystick is moved and manipulated by the user.

  4. FPGA Acceleration of Discrete Molecular Dynamics Simulation

    E-Print Network [OSTI]

    Herbordt, Martin

    ' & $ % FPGA Acceleration of Discrete Molecular Dynamics Simulation Joshua Model Thesis submitted UNIVERSITY COLLEGE OF ENGINEERING Thesis FPGA Acceleration of Discrete Molecular Dynamics Simulation Acceleration of Discrete Molecular Dynamics Simulation Joshua Model ABSTRACT Molecular dynamics simulation

  5. Stochastic Modeling and Direct Simulation of the Diffusion Media for Polymer Electrolyte Fuel Cells

    E-Print Network [OSTI]

    Schmidt, Volker

    Cells Yun Wang* and Xuhui Feng Renewable Energy Resources Lab (RERL) and National Fuel Cell Research the stochastic-model-based reconstruction of the gas diffusion layer (GDL) of polymer electrolyte fuel cells on pore-level transport and scrutinize the macroscopic approach vastly adopted in current fuel cell

  6. Measuring the black hole spin direction in 3D Cartesian numerical relativity simulations

    E-Print Network [OSTI]

    Vassilios Mewes; José A. Font; Pedro J. Montero

    2015-05-27T23:59:59.000Z

    We show that the so-called flat-space rotational Killing vector method for measuring the Cartesian components of a black hole spin can be derived from the surface integral of Weinberg's pseudotensor over the apparent horizon surface when using Gaussian normal coordinates in the integration. Moreover, the integration of the pseudotensor in this gauge yields the Komar angular momentum integral in a foliation adapted to the axisymmetry of the spacetime. As a result, the method does not explicitly depend on the evolved lapse $\\alpha$ and shift $\\beta^i$ on the respective timeslice, as they are fixed to Gaussian normal coordinates, while leaving the coordinate labels of the spatial metric $\\gamma_{ij}$ and the extrinsic curvature $K_{ij}$ unchanged. Such gauge fixing endows the method with coordinate invariance, which is not present in integral expressions using Weinberg's pseudotensor, as they normally rely on the explicit use of Cartesian coordinates.

  7. Direct numerical simulation of electroconvective instability and hysteretic current-voltage response of a permselective membrane

    E-Print Network [OSTI]

    Pham, Van Sang

    We present a systematic, multiscale, fully detailed numerical modeling for dynamics of fluid flow and ion transport covering Ohmic, limiting, and overlimiting current regimes in conductance of ion-selective membrane. By ...

  8. Direct numerical simulations of multiphase flow with applications to basaltic volcanism and planetary evolution

    E-Print Network [OSTI]

    Suckale, Jenny

    2011-01-01T23:59:59.000Z

    Multiphase flows are an essential component of natural systems: They affect the explosivity of volcanic eruptions, shape the landscape of terrestrial planets, and govern subsurface flow in hydrocarbon reservoirs. Advancing ...

  9. Simulation of a direct current microplasma discharge in helium at atmospheric pressure

    E-Print Network [OSTI]

    Economou, Demetre J.

    to be dissipated in gas heating. On the other hand, since microdischarges have a much larger surface-to- volume, Demetre J. Economou,a and Vincent M. Donnellyb Plasma Processing Laboratory, Department of Chemical to satisfy the "global" particle balance in the plasma. Gas heating was found to play an important role

  10. Study of multi-component fuel premixed combustion using direct numerical simulation

    E-Print Network [OSTI]

    Nikolaou, Zacharias M.

    2014-04-29T23:59:59.000Z

    Fossil fuel reserves are projected to be decreasing, and emission regulations are becoming more stringent due to increasing atmospheric pollution. Alternative fuels for power generation in industrial gas turbines are thus required able to meet...

  11. Direct numerical simulation of a reacting turbulent channel flow with thermo-chemical ablation

    E-Print Network [OSTI]

    Nicoud, Franck

    species; 2) pyrolysis of the composite material resin (series of chemical reactions arising and multicompo- nent physics, multi-phase flow dynamics, thermo-structural mechanics of composite materials attack. Graphite and carbon-carbon composites are widely used because they offer excellent thermo

  12. Direct simulation and deterministic prediction of large-scale nonlinear ocean wave-field

    E-Print Network [OSTI]

    Wu, Guangyu, 1972-

    2004-01-01T23:59:59.000Z

    Despite its coarse approximation of physics, the phase-averaged wave spectrum model has been the only type of tool available for ocean wave prediction in the past 60 years. With the rapid advances in sensing technology, ...

  13. Direct Numerical Simulations of Interfacial Turbulence at Low Froude and Weber Numbers

    E-Print Network [OSTI]

    Zhang, Qi

    2014-05-22T23:59:59.000Z

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Thermal signature of ocean surface and related subsurface dynamics 3 1.2.2 Surfactant effects on ocean surface . . . . . . . . . . . . . . . . . 5 1.2.3 Gas transfer and active thermography on turbulent buoyant con- vection... and investigation of passive scalar beneath the surfactant contaminated free surface. 6 1.2.3 Gas transfer and active thermography on turbulent buoyant convection One of the objectives of the IR thermal signature and subsurface dynamics study is to unveil...

  14. Direct numerical simulation of a reacting turbulent channel flow with thermo-chemical ablation

    E-Print Network [OSTI]

    Boyer, Edmond

    in the material itself); 3) sublimation of the material at high temperature; 4) mechan- ical erosion due species of the combustion products such as H2O, CO2, H2 or OH. As a consequence, the heterogeneous surface, the use of high energy solid propellant generates an hostile environment and the nozzle structure

  15. Direct Simulation of Pathological Detonations James B. Anderson and Lyle N. Long

    E-Print Network [OSTI]

    of fixed diameter without internal energies. Rotational and vi conservation laws provide reasonable predictions of temperature jumps across the detonation and the detonation if we run an unsteady code and perform ensemble averaging. A no-time-counter collision routine is used

  16. Direct numerical simulation and subgrid analysis of a transitional droplet laden mixing layer

    E-Print Network [OSTI]

    Miller, Richard S.

    106 grid points are used to discretize the Eulerian gas phase equations and up to 5.7 106 initially intensities when a filter width-dependent model constant is used. The subgrid fluctuation variances acting. For these flows, large numbers ( 105 106 ) of individual dispersed particles are tracked in the Lagrangian

  17. Electrochimica Acta 51 (2006) 31393150 Direct numerical simulation (DNS) modeling of PEFC electrodes

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    to produce elec- tricity, water and waste heat. The hydrogen oxidation reaction (HOR) occurs in the anode together with protons and electrons, producing water along with waste heat. The cathodic half-reaction, i

  18. Direct control of the small-scale energy balance in 2D fluid dynamics

    E-Print Network [OSTI]

    Frank, Jason; Myerscough, Keith

    2014-01-01T23:59:59.000Z

    We explore the direct modification of the pseudo-spectral truncation of 2D, incompressible fluid dynamics to maintain a prescribed kinetic energy spectrum. The method provides a means of simulating fluid states with defined spectral properties, for the purpose of matching simulation statistics to given information, arising from observations, theoretical prediction or high fidelity simulation. In the scheme outlined here, Nos\\'e-Hoover thermostats, commonly used in molecular dynamics, are introduced as feedback controls applied to energy shells of the Fourier-discretized Navier-Stokes equations. As we demonstrate in numerical experiments, the dynamical properties (quantified using autocorrelation functions) are only modestly perturbed by our device, while ensemble dispersion is significantly enhanced in comparison with simulations of a corresponding truncation incorporating hyperviscosity.

  19. The Directional Dependence of Apertures, Limits and Sensitivity of the Lunar Cherenkov Technique to a UHE Neutrino Flux

    E-Print Network [OSTI]

    C. W. James; R. J. Protheroe

    2008-03-26T23:59:59.000Z

    We use computer simulations to obtain the directional-dependence of the lunar Cherenkov technique for ultra-high energy (UHE) neutrino detection. We calculate the instantaneous effective area of past lunar Cherenkov experiments as a function of neutrino arrival direction, and hence the directional-dependence of the combined limit imposed by GLUE and the experiment at Parkes. We also determine the directional dependence of the aperture of future planned experiments with ATCA, ASKAP and the SKA to a UHE neutrino flux, and calculate the potential annual exposure to astronomical objects as a function of angular distance from the lunar trajectory through celestial coordinates.

  20. Distributed Energy Technology Simulator: Microturbine Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simulator: Microturbine Demonstration, October 2001 Distributed Energy Technology Simulator: Microturbine Demonstration, October 2001 This 2001 paper discusses the National Rural...

  1. Investigations of Solar Prominence Dynamics Using Laboratory Simulations

    SciTech Connect (OSTI)

    Paul M Bellan

    2008-05-28T23:59:59.000Z

    Laboratory experiments simulating many of the dynamical features of solar coronal loops have been carried out. These experiments manifest collimation, kinking, jet flows, and S-shapes. Diagnostics include high-speed photography and x-ray detectors. Two loops having opposite or the same magnetic helicity polarities have been merged and it is found that counter-helicity merging provides much greater x-ray emission. A non-MHD particle orbit instability has been discovered whereby ions going in the opposite direction of the current flow direction can be ejected from a magnetic flux tube.

  2. DIRECT LIQUEFACTION PROOF OF CONCEPT

    SciTech Connect (OSTI)

    NONE

    1998-09-01T23:59:59.000Z

    The eighth bench scale test of POC program, Run PB-08, was successfully completed from August 8 to August 26, 1997. A total of five operating conditions were tested aiming at evaluating the reactivity of different pyrolysis oils in liquefaction of a Wyoming sub-bituminous coal (Black Thunder coal). For the first time, water soluble promoters were incorporated into the iron-based GelCat to improve the dispersion of the promoter metals in the feed blend. The concentration of the active metals, Mo and Fe, was 100 and 1000 ppm of moisture-free coal, respectively. Black Thunder coal used in this run was the same batch as tested in HTI?s Run POC-02. Similar to Runs PB-01 through 7, this run employed two back mixed slurry reactors, an interstage gas/slurry separator and a direct-coupled hydrotreater. In addition to the hot vapor from the second stage separator, the first stage separator overhead liquid was also fed to the hydrotreater, which was packed with Criterion C-411 hydrotreating catalyst. Pyrolysis oil was produced off-line from a pyrolysis unit acquired from University of Wyoming. Solids rejection was achieved by purging out pressure filter solid. The recycle solvents consisted of O-6 separator bottoms and pressure filter liquid (PFL). The Run PB-08 proceeded very smoothly without any interruptions. Coal conversion consistently above 90W% was achieved. High resid conversion and distillate yield have been obtained from co-processing of coal and 343°C+ (650°F+) pyrolysis oil. Light gas (C1-C3 ) yield was minimized and hydrogen consumption was reduced due to the introduction of pyrolysis oil, compared with conventional coal-derived solvent. Catalytic activity was improved by incorporating a promoter metal into the iron-based GelCat. It seemed that lowering the first stage temperature to 435°C might increase the hydrogenation function of the promoter metal. In comparison with previous coal-waste coprocessing run (PB-06), significant improvements in the process performance were achieved due to catalyst modification and integration of pyrolysis technique into liquefaction.

  3. Supergranulation Scale Connection Simulations

    E-Print Network [OSTI]

    R. F. Stein; A. Nordlund; D. Georgobiani; D. Benson; W. Schaffenberger

    2008-11-04T23:59:59.000Z

    Results of realistic simulations of solar surface convection on the scale of supergranules (96 Mm wide by 20 Mm deep) are presented. The simulations cover only 10% of the geometric depth of the solar convection zone, but half its pressure scale heights. They include the hydrogen, first and most of the second helium ionization zones. The horizontal velocity spectrum is a power law and the horizontal size of the dominant convective cells increases with increasing depth. Convection is driven by buoyancy work which is largest close to the surface, but significant over the entire domain. Close to the surface buoyancy driving is balanced by the divergence of the kinetic energy flux, but deeper down it is balanced by dissipation. The damping length of the turbulent kinetic energy is 4 pressure scale heights. The mass mixing length is 1.8 scale heights. Two thirds of the area is upflowing fluid except very close to the surface. The internal (ionization) energy flux is the largest contributor to the convective flux for temperatures less than 40,000 K and the thermal energy flux is the largest contributor at higher temperatures. This data set is useful for validating local helioseismic inversion methods. Sixteen hours of data are available as four hour averages, with two hour cadence, at steinr.msu.edu/~bob/96averages, as idl save files. The variables stored are the density, temperature, sound speed, and three velocity components. In addition, the three velocity components at 200 km above mean continuum optical depth unity are available at 30 sec. cadence.

  4. Non-detonable explosive simulators

    DOE Patents [OSTI]

    Simpson, Randall L. (Livermore, CA); Pruneda, Cesar O. (Livermore, CA)

    1994-01-01T23:59:59.000Z

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules.

  5. Non-detonable explosive simulators

    DOE Patents [OSTI]

    Simpson, R.L.; Pruneda, C.O.

    1994-11-01T23:59:59.000Z

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules. 5 figs.

  6. Power Plant Modeling and Simulation

    ScienceCinema (OSTI)

    None

    2010-01-08T23:59:59.000Z

    The National Energy Technology Laboratory's Office of Research and Development provides open source tools and expetise for modeling and simulating power plants and carbon sequestration technologies.

  7. Occupancy Simulation Schedule Appendix C -Occupancy Simulation Schedule

    E-Print Network [OSTI]

    Figure C.1 and Figure C.2 present the load simulation and occupancy schedules for the lab homes highly adults. The per-person sensible heat generation and occupancy profiles were mapped from previous studies lamp to simulate human occupancy; occupancy and lighting loads in other areas of the home were

  8. Agent-based Simulation Platforms Agent-based Simulation Platforms

    E-Print Network [OSTI]

    Boone, Randall B.

    Agent-based Simulation Platforms Agent-based Simulation Platforms: Review and Development 1081 Fritz Ave. McKinleyville, CA 95519, USA Five software platforms for scientific agent-based models (ABMs) were reviewed by implementing example models in each. NetLogo is the highest-level platform

  9. Air breathing direct methanol fuel cell

    DOE Patents [OSTI]

    Ren, Xiaoming (Los Alamos, NM); Gottesfeld, Shimshon (Los Alamos, NM)

    2002-01-01T23:59:59.000Z

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source. Water loss from the cell is minimized by making the conductive cathode assembly hydrophobic and the conductive anode assembly hydrophilic.

  10. Direct conversion of algal biomass to biofuel

    DOE Patents [OSTI]

    Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

    2014-10-14T23:59:59.000Z

    A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

  11. Estimating Methods - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    direct costs, and other estimating considerations are discussed in this chapter. g4301-1chp15.pdf -- PDF Document, 28 KB Writer: John Makepeace Subjects: Administration Management...

  12. Direct-Cooled Power Electronic Substrate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    70C standalone cooling loop * Three dimensional inverter packaging and eliminating the heat exchanger volume by directly cooling the DBC result in compact, light weight design...

  13. Direct Observation of Aggregative Nanoparticle Growth: Kinetic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aggregative Nanoparticle Growth: Kinetic Modeling of the Size Distribution and Growth Rate. Direct Observation of Aggregative Nanoparticle Growth: Kinetic Modeling of the Size...

  14. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Broader source: Energy.gov (indexed) [DOE]

    "Advancing The Technology" Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Corey E. Weaver Ford Research and Advanced Engineering 05132011 Project...

  15. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Broader source: Energy.gov (indexed) [DOE]

    "Advancing The Technology" Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Corey E. Weaver Ford Research and Advanced Engineering 05182012 Project...

  16. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Broader source: Energy.gov (indexed) [DOE]

    "Advancing The Technology" Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Corey E. Weaver Ford Research and Advanced Engineering 06192014 Project...

  17. High Temperature 300°C Directional Drilling System

    Broader source: Energy.gov (indexed) [DOE]

    300C Directional Drilling System John Macpherson Baker Hughes Oilfield Operations DE-EE0002782 May 19, 2010 This presentation does not contain any proprietary confidential, or...

  18. MANUFACTURING LOGISTICS RESEARCH: TAXONOMY AND DIRECTIONS

    E-Print Network [OSTI]

    Wu, David

    MANUFACTURING LOGISTICS RESEARCH: TAXONOMY AND DIRECTIONS S. DAVID WU Lehigh University, Bethlehem formed in the workshop. To convey this vision we suggest a taxonomy that characterizes research problems

  19. ORNL microscopy directly images problematic lithium dendrites...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    865.574.7308 ORNL microscopy directly images problematic lithium dendrites in batteries ORNL electron microscopy captured the first real-time nanoscale images of the nucleation and...

  20. Ionization based multi-directional flow sensor

    DOE Patents [OSTI]

    Chorpening, Benjamin T. (Morgantown, WV); Casleton, Kent H. (Morgantown, WV)

    2009-04-28T23:59:59.000Z

    A method, system, and apparatus for conducting real-time monitoring of flow (airflow for example) in a system (a hybrid power generation system for example) is disclosed. The method, system and apparatus measure at least flow direction and velocity with minimal pressure drop and fast response. The apparatus comprises an ion source and a multi-directional collection device proximate the ion source. The ion source is configured to generate charged species (electrons and ions for example). The multi-directional collection source is configured to determine the direction and velocity of the flow in real-time.

  1. Direct electrochemistry and electrocatalysis of horseradish peroxidase...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    activity toward hydrogen peroxide. Citation: Kang X, J Wang, Z Tang, H Wu, and Y Lin.2009."Direct electrochemistry and electrocatalysis of horseradish peroxidase...

  2. High Temperature 300°C Directional Drilling System

    Broader source: Energy.gov [DOE]

    Project objective: provide a directional drilling system that can be used at environmental temperatures of up to 300°C; and at depths of 10; 000 meters.

  3. Future Directions in Engines and Fuels

    Broader source: Energy.gov (indexed) [DOE]

    parties Future Directions in Engines and Fuels 9 HP-EGR Cooler: Shell and tubes heat exchanger with optimised gas tube design High thermal exchange and resistance to...

  4. Direct Energy Services (Maine) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro SiteDaytonDestilariaDirect Energy ServicesDirectDirect

  5. Direct Energy Services (Pennsylvania) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro SiteDaytonDestilariaDirect EnergyDirectDirect Energy

  6. Simulation of Fusion Plasmas

    ScienceCinema (OSTI)

    Chris Holland

    2010-01-08T23:59:59.000Z

    The upcoming ITER experiment (www.iter.org) represents the next major milestone in realizing the promise of using nuclear fusion as a commercial energy source, by moving into the ?burning plasma? regime where the dominant heat source is the internal fusion reactions. As part of its support for the ITER mission, the US fusion community is actively developing validated predictive models of the behavior of magnetically confined plasmas. In this talk, I will describe how the plasma community is using the latest high performance computing facilities to develop and refine our models of the nonlinear, multiscale plasma dynamics, and how recent advances in experimental diagnostics are allowing us to directly test and validate these models at an unprecedented level.

  7. Fast computation algorithms for speckle pattern simulation

    SciTech Connect (OSTI)

    Nascov, Victor; Samoil?, Cornel; Ursu?iu, Doru [Transylvania University of Braov (Romania)

    2013-11-13T23:59:59.000Z

    We present our development of a series of efficient computation algorithms, generally usable to calculate light diffraction and particularly for speckle pattern simulation. We use mainly the scalar diffraction theory in the form of Rayleigh-Sommerfeld diffraction formula and its Fresnel approximation. Our algorithms are based on a special form of the convolution theorem and the Fast Fourier Transform. They are able to evaluate the diffraction formula much faster than by direct computation and we have circumvented the restrictions regarding the relative sizes of the input and output domains, met on commonly used procedures. Moreover, the input and output planes can be tilted each to other and the output domain can be off-axis shifted.

  8. MAGNETOHYDRODYNAMIC SIMULATIONS OF INTERPLANETARY CORONAL MASS EJECTIONS

    SciTech Connect (OSTI)

    Lionello, Roberto; Downs, Cooper; Linker, Jon A.; Török, Tibor; Riley, Pete; Miki?, Zoran, E-mail: lionel@predsci.com, E-mail: cdowns@predsci.com, E-mail: linker@predsci.com, E-mail: tibor@predsci.com, E-mail: pete@predsci.com, E-mail: mikic@predsci.com [Predictive Science, Inc., 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121-2910 (United States)

    2013-11-01T23:59:59.000Z

    We describe a new MHD model for the propagation of interplanetary coronal mass ejections (ICMEs) in the solar wind. Accurately following the propagation of ICMEs is important for determining space weather conditions. Our model solves the MHD equations in spherical coordinates from a lower boundary above the critical point to Earth and beyond. On this spherical surface, we prescribe the magnetic field, velocity, density, and temperature calculated typically directly from a coronal MHD model as time-dependent boundary conditions. However, any model that can provide such quantities either in the inertial or rotating frame of the Sun is suitable. We present two validations of the technique employed in our new model and a more realistic simulation of the propagation of an ICME from the Sun to Earth.

  9. A Direct Measurement of the $W$ Decay Width

    SciTech Connect (OSTI)

    Vine, Troy; /University Coll. London

    2008-08-01T23:59:59.000Z

    A direct measurement of the W boson total decay width is presented in proton-antiproton collisions at {radical}s = 1.96 TeV using data collected by the CDF II detector. The measurement is made by fitting a simulated signal to the tail of the transverse mass distribution in the electron and muon decay channels. An integrated luminosity of 350 pb{sup -1} is used, collected between February 2002 and August 2004. Combining the results from the separate decay channels gives the decay width as 2.038 {+-} 0.072 GeV in agreement with the theoretical prediction of 2.093 {+-} 0.002 GeV. A system is presented for the management of detector calibrations using a relational database schema. A description of the implementation and monitoring of a procedure to provide general users with a simple interface to the complete set of calibrations is also given.

  10. Modeling the thermal conductivity of fiber-reinforced ceramic composites

    SciTech Connect (OSTI)

    Beecher, S.C.; Dinwiddie, R.B.

    1993-06-01T23:59:59.000Z

    A review of models for the prediction of the thermal conductivity of uni-directional fiber-reinforced composites will be presented. The ability of these models to give an accurate prediction of the composite thermal conductivity depends on the amount of information known about the constituent phase properties under the assumption that these properties do not change as a result of processing. Also presented are models that take into account the effects of fiber coatings.

  11. Thyristor converter simulation and analysis

    SciTech Connect (OSTI)

    Zhang, S.Y.

    1991-01-01T23:59:59.000Z

    In this paper we present a simulation on thyristor converters. The simulation features nonlinearity, non-uniform firing, and the commutations. Several applications such as a current regulation, a converter frequency characteristics analysis, and a power line disturbance analysis will be presented. 4 refs., 4 figs.

  12. CONSTRUCTING VIRTUAL HUMAN LIFE SIMULATIONS

    E-Print Network [OSTI]

    Kallmann, Marcelo

    , Virtual Environments, Behavioral Animation, Object Interaction, Python. 1. INTRODUCTION Virtual humanCONSTRUCTING VIRTUAL HUMAN LIFE SIMULATIONS Marcelo Kallmann, Etienne de Sevin and Daniel Thalmann human life simulations. Our main goal is to have virtual human actors living and working autonomously

  13. Simulation of open quantum systems

    E-Print Network [OSTI]

    Florian Mintert; Eric J. Heller

    2008-03-27T23:59:59.000Z

    We present an approach for the semiclassical treatment of open quantum systems. An expansion into localized states allows restriction of a simulation to a fraction of the environment that is located within a predefined vicinity of the system. Adding and dropping environmental particles during the simulation yields an effective reduction of the size of the system that is being treated.

  14. SciVerse ScienceDirect

    E-Print Network [OSTI]

    ELSEVIER Mathematics and Computers in Simulation 82 (2012) 1919-1935 ... An object-oriented ?nite element method is used to solve the multi-?eld ...... Computer Methods in Applied Mechanics and Engineering 195 (2006) 1096-1 1 15.

  15. FUEL ASSEMBLY SHAKER TEST SIMULATION

    SciTech Connect (OSTI)

    Klymyshyn, Nicholas A.; Sanborn, Scott E.; Adkins, Harold E.; Hanson, Brady D.

    2013-05-30T23:59:59.000Z

    This report describes the modeling of a PWR fuel assembly under dynamic shock loading in support of the Sandia National Laboratories (SNL) shaker test campaign. The focus of the test campaign is on evaluating the response of used fuel to shock and vibration loads that a can occur during highway transport. Modeling began in 2012 using an LS-DYNA fuel assembly model that was first created for modeling impact scenarios. SNL’s proposed test scenario was simulated through analysis and the calculated results helped guide the instrumentation and other aspects of the testing. During FY 2013, the fuel assembly model was refined to better represent the test surrogate. Analysis of the proposed loads suggested the frequency band needed to be lowered to attempt to excite the lower natural frequencies of the fuel assembly. Despite SNL’s expansion of lower frequency components in their five shock realizations, pretest predictions suggested a very mild dynamic response to the test loading. After testing was completed, one specific shock case was modeled, using recorded accelerometer data to excite the model. Direct comparison of predicted strain in the cladding was made to the recorded strain gauge data. The magnitude of both sets of strain (calculated and recorded) are very low, compared to the expected yield strength of the Zircaloy-4 material. The model was accurate enough to predict that no yielding of the cladding was expected, but its precision at predicting micro strains is questionable. The SNL test data offers some opportunity for validation of the finite element model, but the specific loading conditions of the testing only excite the fuel assembly to respond in a limited manner. For example, the test accelerations were not strong enough to substantially drive the fuel assembly out of contact with the basket. Under this test scenario, the fuel assembly model does a reasonable job of approximating actual fuel assembly response, a claim that can be verified through direct comparison of model results to recorded test results. This does not offer validation for the fuel assembly model in all conceivable cases, such as high kinetic energy shock cases where the fuel assembly might lift off the basket floor to strike to basket ceiling. This type of nonlinear behavior was not witnessed in testing, so the model does not have test data to be validated against.a basis for validation in cases that substantially alter the fuel assembly response range. This leads to a gap in knowledge that is identified through this modeling study. The SNL shaker testing loaded a surrogate fuel assembly with a certain set of artificially-generated time histories. One thing all the shock cases had in common was an elimination of low frequency components, which reduces the rigid body dynamic response of the system. It is not known if the SNL test cases effectively bound all highway transportation scenarios, or if significantly greater rigid body motion than was tested is credible. This knowledge gap could be filled through modeling the vehicle dynamics of a used fuel conveyance, or by collecting acceleration time history data from an actual conveyance under highway conditions.

  16. DIRECTING THE MOVEMENT OF FISH WITH ELECTRICITY

    E-Print Network [OSTI]

    DIRECTING THE MOVEMENT OF FISH WITH ELECTRICITY Marine Biological Laboratory APR 21 1953 WOODS HOLE, Albert M. Day, Director DIRECTING THE MOVH-IENT OF FISH WITH ELECTRICITY by Alberton L. McLain Fishery of an electrical leading device 21 Literature cited. ..,...,..,..........·· 2k ILLUSTRATIONS Figure Page 1. Diagram

  17. Sub-femtosecond electron bunches created by direct laser acceleration in a laser wakefield accelerator with ionization injection

    E-Print Network [OSTI]

    Lemos, N; Marsh, K A; Joshi, C

    2015-01-01T23:59:59.000Z

    In this work, we will show through three-dimensional particle-in-cell simulations that direct laser acceleration in laser a wakefield accelerator can generate sub-femtosecond electron bunches. Two simulations were done with two laser pulse durations, such that the shortest laser pulse occupies only a fraction of the first bubble, whereas the longer pulse fills the entire first bubble. In the latter case, as the trapped electrons moved forward and interacted with the high intensity region of the laser pulse, micro-bunching occurred naturally, producing 0.5 fs electron bunches. This is not observed in the short pulse simulation.

  18. Edge Direction and the Structure of Networks

    E-Print Network [OSTI]

    Foster, Jacob G; Grassberger, Peter; Paczuski, Maya

    2009-01-01T23:59:59.000Z

    Directed networks are ubiquitous, from food webs to the World Wide Web, but the directionality of their interactions has been disregarded in most studies of global network structure. One important global property is the tendency of nodes with similar numbers of edges to be connected. This tendency, called assortativity, affects crucial structural and dynamic properties of real-world networks. Here we demonstrate the importance of edge direction by studying assortativity in directed networks. We define a set of four directed assortativity measures. By comparison to randomized networks, we discover significant features of three network classes: online/social networks, food webs, and word-adjacency networks. The full set of measures is needed to reveal patterns common to the class or to separate networks that have been previously classified together. Our measures expose limitations of existing theoretical models, and show that many networks are not purely assortative or disassortative but a mixture of the two.

  19. Linking atomistic and mesoscale simulations of nanocrystalline materials : quantitative validation for the case of grain growth.

    SciTech Connect (OSTI)

    Moldovan, D.; Wolf, D.; Phillpot, S. R.; Materials Science Division; Louisiana State Univ.

    2003-11-01T23:59:59.000Z

    Using grain growth in nanocrystalline palladium as a simple case study, we demonstrate how a novel mesoscale approach for simulating microstructural evolution in polycrystalline materials can be validated directly against atomic-level simulations of the same system. We first describe molecular dynamics simulations of grain growth in a columnar model microstructure. The atomic-level insights into the grain-growth mechanism gained from these simulations, particularly in the role of grain rotations, are captured theoretically for incorporation into the mesoscale approach, in which the objects evolving in space and time are the grain boundaries and grain junctions rather than the atoms. With all the input parameters to the mesoscale being physically well defined and obtained directly from the atomic-level simulations, the mesoscale simulations are fully prescribed. We find that the morphology of the mesoscale system evolves in an almost identical manner with that of the molecular dynamics simulation, demonstrating that the length- and time-scale linking has been performed correctly. When applied to systems containing large numbers of grains, the now validated mesoscale simulation approach allows the growth topology and long-time growth kinetics to be determined. As an outlook, we describe how the effects of applied stress can be incorporated.

  20. Simulation of a plant minicomputer in reactor control room simulator

    SciTech Connect (OSTI)

    Forrester, A.; Anderson, J.L.

    1984-12-07T23:59:59.000Z

    A control room simulator for the N-Reactor at Hanford is being developed. An important aspect of reactor operation is provided by the plant minicomputer. This paper discusses the simulation of the plant minicomputer. The original commitments in developing the model are set out, as well as the actual requirements at the start of implementation of the model. Original estimates of costs and times for the simulation are presented; actual costs and times were lower by large factors, and the reasons for better performance are examined.

  1. Exceptional ion rejection ability of directional solvent for non-membrane desalination

    SciTech Connect (OSTI)

    Rish, Daniel [Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Department of Civil Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Luo, Shirui; Kurtz, Brien [Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Luo, Tengfei, E-mail: tluo@nd.edu [Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Center for Sustainable Energy at Notre Dame, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2014-01-13T23:59:59.000Z

    The recently demonstrated directional solvent extraction (DSE) is promising for very low temperature, membrane-free water desalination. In this paper, we combine atomistic simulations and experimental validation to demonstrate that the currently used directional solvent, decanoic acid, can reject all major salt ions in seawater, with very high rejection rates. The salinities of the DSE recovered water show that ion rejection rates are ?98%–99%—similar to those of the best reverse osmosis membranes. Our test also shows that the DSE process can desalt seawater to produce fresh water that meets drinking water standards.

  2. Directed polymer near a hard wall and KPZ equation in the half-space

    E-Print Network [OSTI]

    Thomas Gueudre; Pierre Le Doussal

    2012-09-17T23:59:59.000Z

    We study the directed polymer with fixed endpoints near an absorbing wall, in the continuum and in presence of disorder, equivalent to the KPZ equation on the half space with droplet initial conditions. From a Bethe Ansatz solution of the equivalent attractive boson model we obtain the exact expression for the free energy distribution at all times. It converges at large time to the Tracy Widom distribution $F_4$ of the Gaussian Symplectic Ensemble (GSE). We compare our results with numerical simulations of the lattice directed polymer, both at zero and high temperature.

  3. Contrasting the direct radiative effect and direct radiative forcing of aerosols

    E-Print Network [OSTI]

    Heald, Colette L.

    The direct radiative effect (DRE) of aerosols, which is the instantaneous radiative impact of all atmospheric particles on the Earth's energy balance, is sometimes confused with the direct radiative forcing (DRF), which ...

  4. Optimization for Simulation: LAD Accelerator

    E-Print Network [OSTI]

    2008-11-19T23:59:59.000Z

    Nov 19, 2008 ... very few replications and records the mean value of directly measurable quantities (called observ- ...... Management Science 25, 1258-1271.

  5. Analysis of the cyanobacterial hydrogen photoproduction process via model identification and process simulation

    E-Print Network [OSTI]

    Zhang, Dongda; Dechatiwongse, Pongsathorn; Del-Rio-Chanona, Ehecatl Antonio; Hellgardt, Klaus; Maitland, Geoffrey C.; Vassiliadis, Vassilios S.

    2015-02-02T23:59:59.000Z

    February 2015 Keywords: Biohydrogen Cyanobacteria Photoproduction Kinetic models Process simulation Bioreactor design a b s t r a c t Cyanothece sp. ATCC 51142 is considered a microorganism with the potential to generate sustainable hydrogen in the future... the direction of culture movement, the overall hydrogen production rate in a PFR may be lower than that in a CSTR. Finally, in this study fed-batch photoproduction processes are proposed containing only one photo- bioreactor based on the current simulation...

  6. Calibration of Moving Puncture Simulations

    E-Print Network [OSTI]

    Bernd Bruegmann; Jose A. Gonzalez; Mark Hannam; Sascha Husa; Ulrich Sperhake; Wolfgang Tichy

    2006-10-26T23:59:59.000Z

    We present single and binary black hole simulations that follow the moving puncture paradigm of simulating black-hole spacetimes without excision, and use moving boxes mesh refinement. Focussing on binary black hole configurations where the simulations cover roughly two orbits, we address five major issues determining the quality of our results: numerical discretization error, finite extraction radius of the radiation signal, physical appropriateness of initial data, gauge choice and computational performance. We also compare results we have obtained with the BAM code described here with the independent LEAN code.

  7. The Xygra gun simulation tool.

    SciTech Connect (OSTI)

    Garasi, Christopher Joseph; Lamppa, Derek C.; Aubuchon, Matthew S.; Shirley, David Noyes; Robinson, Allen Conrad; Russo, Thomas V.

    2008-12-01T23:59:59.000Z

    Inductive electromagnetic launchers, or coilguns, use discrete solenoidal coils to accelerate a coaxial conductive armature. To date, Sandia has been using an internally developed code, SLINGSHOT, as a point-mass lumped circuit element simulation tool for modeling coilgun behavior for design and verification purposes. This code has shortcomings in terms of accurately modeling gun performance under stressful electromagnetic propulsion environments. To correct for these limitations, it was decided to attempt to closely couple two Sandia simulation codes, Xyce and ALEGRA, to develop a more rigorous simulation capability for demanding launch applications. This report summarizes the modifications made to each respective code and the path forward to completing interfacing between them.

  8. Numerical wind speed simulation model

    SciTech Connect (OSTI)

    Ramsdell, J.V.; Athey, G.F.; Ballinger, M.Y.

    1981-09-01T23:59:59.000Z

    A relatively simple stochastic model for simulating wind speed time series that can be used as an alternative to time series from representative locations is described in this report. The model incorporates systematic seasonal variation of the mean wind, its standard deviation, and the correlation speeds. It also incorporates systematic diurnal variation of the mean speed and standard deviation. To demonstrate the model capabilities, simulations were made using model parameters derived from data collected at the Hanford Meteorology Station, and results of analysis of simulated and actual data were compared.

  9. Records Management Vice-Chancellor's Directive 1 Records Management Vice-Chancellor's Directive

    E-Print Network [OSTI]

    University of Technology, Sydney

    Records Management Vice-Chancellor's Directive 1 Records Management Vice-Chancellor's Directive-Chancellor's Directive Privacy Management Plan Intellectual Property Policy UTS Records Management Procedures Privacy Access) Act 2009 (NSW) (GIPA Act) File number UR07/1205 Superseded documents Records Management Vice

  10. La conversion lectromcanique directe. 4 fvrier 1999 -ENS Cachan -SEE LES ENTRANEMENTS LECTROMCANIQUES DIRECTS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    La conversion électromécanique directe. 4 février 1999 - ENS Cachan - SEE LES ENTRA�NEMENTS direct drives represent ultimate simplification of the electromechanical conversion systems because'entraînement électromécanique direct représente la simplification ultime des systèmes de conversion électromécanique d

  11. Direct and semi-direct aerosol effects of Southern African1 biomass burning aerosol2

    E-Print Network [OSTI]

    Wood, Robert

    , negative top of atmosphere (TOA)13 semi-direct radiative effects associated with increased low cloud cover dominate over a weaker14 positive all-sky direct radiative effect (DRE). In contrast, over the land where positive semi-direct radiative effect that dominates over a near-zero DRE. Over the ocean, the17 cloud

  12. Directional drilling used in Mississippi River crossing

    SciTech Connect (OSTI)

    Fuess, G.T.

    1988-05-02T23:59:59.000Z

    Tennessee Gas Pipeline Co. recently completed its longest large-diameter directional bore and pulled nearly 3,000 feet of 20-in. replacement pipe under the Southwest Pass of the Mississippi River. The replacement was necessary to allow for planned widening and deepening of Southwest Pass. This article explains why conventional dredging methods were not possible. It then explains how the directional drilling was done. Given favorable soil conditions such as found along much of the Gulf Coast, the speed of installation, environmental consideration of dredging eliminated, and the cost-competitive posture Tennessee found among the directional drilling contractors, Tennessee plans to utilize this technique increasingly in the future.

  13. Progress in direct heat applications projects

    SciTech Connect (OSTI)

    Childs, F.W.; Jones, K.W.; Nelson, L.B.; Strawn, J.A.; Tucker, M.K.

    1980-09-09T23:59:59.000Z

    The development of hydrothermal energy for direct heat applications is being aided by twenty-two demonstration projects that are funded on a cost-sharing basis by the US Department of Energy, Division of Geothermal Energy. These projects are designed to demonstrate the technical and economic feasibility of the direct use of geothermal heat in the United States. Twelve of these projects are administered by the DOE-Idaho Operations Office with technical support from EG and G Idaho, Inc. Engineering and economic data for these projects are summarized in this paper. The data and experience being generated by these projects will be an important basis for future geothermal direct use projects.

  14. High-temperature directional drilling turbodrill

    SciTech Connect (OSTI)

    Neudecker, J.W.; Rowley, J.C.

    1982-02-01T23:59:59.000Z

    The development of a high-temperature turbodrill for directional drilling of geothermal wells in hard formations is summarized. The turbodrill may be used for straight-hole drilling but was especially designed for directional drilling. The turbodrill was tested on a dynamometer stand, evaluated in laboratory drilling into ambient temperature granite blocks, and used in the field to directionally drill a 12-1/4-in.-diam geothermal well in hot 200/sup 0/C (400/sup 0/F) granite at depths to 10,5000 ft.

  15. Direct Energy Services (Illinois) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro SiteDaytonDestilariaDirect Energy ServicesDirect

  16. Direct Energy Services (Massachusetts) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro SiteDaytonDestilariaDirect EnergyDirect Energy

  17. Direct Grid Technologies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro SiteDaytonDestilariaDirectDirect Global Power Inc

  18. First Direct Imaging of Swollen Microgel Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancing OpportunitiesDirect Evidence ofDirectDirect

  19. First Direct Observation of Spinons and Holons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancing OpportunitiesDirect EvidenceDirectFirst Direct

  20. Direct Imaging of Antiferromagnetic Vortex States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: PotentialFederal Financial Interventions andDirectDirectDirect

  1. Direct Kinetic Measurements of a Criegee Intermediate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: PotentialFederal Financial InterventionsDirectDirectDirect

  2. Directed Spray Mast - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: PotentialFederal FinancialDirectDirect-Write ofDirected Spray

  3. Directing Biomolecules to Intracellular Microcompartments and Scaffolds -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: PotentialFederal FinancialDirectDirect-Write ofDirected

  4. A robotic crawler exploiting directional frictional interactions: experiments, numerics, and derivation of a reduced model

    E-Print Network [OSTI]

    Giovanni Noselli; Antonio DeSimone

    2014-08-26T23:59:59.000Z

    We present experimental and numerical results for a model crawler which is able to extract net positional changes from reciprocal shape changes, i.e. 'breathing-like' deformations, thanks to directional, frictional interactions with a textured solid substrate, mediated by flexible inclined feet. We also present a simple reduced model that captures the essential features of the kinematics and energetics of the gait, and compare its predictions with the results from experiments and from numerical simulations.

  5. Dehumidification Enhancement of Direct Expansion Systems Through Component Augmentation of the Cooling Coil

    E-Print Network [OSTI]

    Kosar, D.; Swami, M.; Shirey, D.; Raustad, R.; Basarkar, M.

    2006-01-01T23:59:59.000Z

    Dehumidification Enhancement of Direct Expansion Systems Through Component Augmentation of the Cooling Coil Douglas Kosar Muthasamy Swami Richard Raustad Principal Research Engineer Program Director Senior Research Engineer Energy Resources... – for System State Point Performance While sophisticated modeling tools such as EnergyPlus are essential for research of the complex annual cooling simulations of system applications in various building types and climate locations, there is also a need...

  6. Prediction of internal temperature swings in direct-gain passive-solar buildings

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1983-01-01T23:59:59.000Z

    The diurnal heat capacity method is presented for estimating inside-temperature swings attributable to direct winter solar gain. The procedures are simplified to be suitable for hand analysis, aided by tables of diurnal heat capacity for various materials. The method has been spot checked against computer simulation and has been used successfully by a group of 20 builders in New Mexico to analyze whether temperature swings would be excessive in their designs.

  7. FPGA ACCELERATION OF MOLECULAR DYNAMICS SIMULATIONS

    E-Print Network [OSTI]

    Herbordt, Martin

    ' & $ % FPGA ACCELERATION OF MOLECULAR DYNAMICS SIMULATIONS YONGFENG GU Dissertation submitted;BOSTON UNIVERSITY COLLEGE OF ENGINEERING Dissertation FPGA ACCELERATION OF MOLECULAR DYNAMICS SIMULATIONS DYNAMICS SIMULATIONS (Order No. ) YONGFENG GU Boston University, College of Engineering, 2008 Major

  8. Adaptive Sampling in Hierarchical Simulation

    SciTech Connect (OSTI)

    Knap, J; Barton, N R; Hornung, R D; Arsenlis, A; Becker, R; Jefferson, D R

    2007-07-09T23:59:59.000Z

    We propose an adaptive sampling methodology for hierarchical multi-scale simulation. The method utilizes a moving kriging interpolation to significantly reduce the number of evaluations of finer-scale response functions to provide essential constitutive information to a coarser-scale simulation model. The underlying interpolation scheme is unstructured and adaptive to handle the transient nature of a simulation. To handle the dynamic construction and searching of a potentially large set of finer-scale response data, we employ a dynamic metric tree database. We study the performance of our adaptive sampling methodology for a two-level multi-scale model involving a coarse-scale finite element simulation and a finer-scale crystal plasticity based constitutive law.

  9. Cowgame: animal breeding simulation software

    E-Print Network [OSTI]

    Kleibrink, Kevin Michael

    1997-01-01T23:59:59.000Z

    ) to calculate Expected Progeny Differences (EPDS) and accuracies so that the analysis is completely independent of simulation. Output of phenotypes, EPDS, accuracies, and progeny averages are available for each animal in the population and are reported to each...

  10. Reservoir management using streamline simulation

    E-Print Network [OSTI]

    Choudhary, Manoj Kumar

    2000-01-01T23:59:59.000Z

    of information and sparsity of data. Quantifying this uncertainty in terms of reservoir performance forecast poses a major reservoir management challenge. One solution to this problem is flow simulation of a large number of these plausible reservoir descriptions...

  11. DYNAMIC SIMULATION OF PERFORMANCE DEVELOPMENT

    E-Print Network [OSTI]

    Perl, Jürgen

    for scheduling optimal training planes. (a) offline analysis (b) online prediction load profile original) online prediction load profile original performance profile simulated performance profile predicted performance profile Figure 1: Offline load-performance-analysis (a) compared to online performance

  12. Preparing for Hurricane Irene: Follow Local Direction

    Broader source: Energy.gov [DOE]

    Hurricane Irene is heading towards the East Coast, and while the extent of its impact is not yet known, those who may be effected (even inland areas), should get prepared and follow the direction...

  13. Reference book on geothermal direct use

    SciTech Connect (OSTI)

    Lienau, P.J.; Lund, J.W.; Rafferty, K.; Culver, G.

    1994-08-01T23:59:59.000Z

    This report presents the direct uses of geothermal energy in the United States. Topics discussed include: low-temperature geothermal energy resources; energy reserves; geothermal heat pumps; geothermal energy for residential buildings; and geothermal energy for industrial usage.

  14. Extension of DOE Directives on Security

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-06T23:59:59.000Z

    The Notice extends the following directives until 12/31/02. DOE N 205.1, DOE N 205.2, DOE 205.3, DOE N 471.3, and DOE 473.6.

  15. Geothermal direct use engineering and design guidebook

    SciTech Connect (OSTI)

    Lienau, P.J.; Lunis, B.C. (eds.)

    1991-01-01T23:59:59.000Z

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating and cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of the resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental consideration. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very large potential in the United States.

  16. Air Breathing Direct Methanol Fuel Cell

    DOE Patents [OSTI]

    Ren; Xiaoming (Los Alamos, NM)

    2003-07-22T23:59:59.000Z

    A method for activating a membrane electrode assembly for a direct methanol fuel cell is disclosed. The method comprises operating the fuel cell with humidified hydrogen as the fuel followed by running the fuel cell with methanol as the fuel.

  17. Methods of conditioning direct methanol fuel cells

    DOE Patents [OSTI]

    Rice, Cynthia (Newington, CT); Ren, Xiaoming (Menands, NY); Gottesfeld, Shimshon (Niskayuna, NY)

    2005-11-08T23:59:59.000Z

    Methods for conditioning the membrane electrode assembly of a direct methanol fuel cell ("DMFC") are disclosed. In a first method, an electrical current of polarity opposite to that used in a functioning direct methanol fuel cell is passed through the anode surface of the membrane electrode assembly. In a second method, methanol is supplied to an anode surface of the membrane electrode assembly, allowed to cross over the polymer electrolyte membrane of the membrane electrode assembly to a cathode surface of the membrane electrode assembly, and an electrical current of polarity opposite to that in a functioning direct methanol fuel cell is drawn through the membrane electrode assembly, wherein methanol is oxidized at the cathode surface of the membrane electrode assembly while the catalyst on the anode surface is reduced. Surface oxides on the direct methanol fuel cell anode catalyst of the membrane electrode assembly are thereby reduced.

  18. Direct transfer of graphene onto flexible substrates

    E-Print Network [OSTI]

    Araujo, P. T.

    In this paper we explore the direct transfer via lamination of chemical vapor deposition graphene onto different flexible substrates. The transfer method investigated here is fast, simple, and does not require an intermediate ...

  19. Geothermal Direct-Use — Minimizing Solid Waste

    Broader source: Energy.gov [DOE]

    Aquaculture and horticulture businesses, and other industries that use geothermal direct-use systems typically don't generate any more solid waste than those that use other energy resources.

  20. Geothermal direct use engineering and design guidebook

    SciTech Connect (OSTI)

    Bloomquist, R.G.; Culver, G.; Ellis, P.F.; Higbee, C.; Kindle, C.; Lienau, P.J.; Lunis, B.C.; Rafferty, K.; Stiger, S.; Wright, P.M.

    1989-03-01T23:59:59.000Z

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of these resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse, aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental considerations. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very potential in the United States.

  1. Improved Usability of Aviation Automation Through Direct

    E-Print Network [OSTI]

    Kaber, David B.

    Improved Usability of Aviation Automation Through Direct Manipulation and Graphical User Interface Design David B. Kaber and Jennifer M. Riley Department of Industrial Engineering North Carolina State University Kheng-Wooi Tan Department of Industrial Engineering Mississippi State University Problems

  2. Direct optimization overly optimizes data Kazunori Yoshizawa

    E-Print Network [OSTI]

    Yoshizawa, Kazunori

    OPINION Direct optimization overly optimizes data Kazunori Yoshizawa Systematic Entomology optimization is a criterion that recognizes sequence alignment and tree search as a single epistemological optimization criterion, all data partitions are combined and optimized simultaneously along with the same tree

  3. Direct Imaging of Antiferromagnetic Vortex States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H.W. Zhao, J. Bokor, and Z.Q. Qiu, "Direct observation of imprinted antiferromagnetic vortex states in CoOFeAg(001) discs," Nat. Phys. 7, 303 (2011). ALS Science Highlight 235...

  4. Direct Imaging of Antiferromagnetic Vortex States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Z.Q. Qiu, "Direct observation of imprinted antiferromagnetic vortex states in CoOFeAg(001) discs," Nat. Phys. 7, 303 (2011). ALS Science Highlight 235 ALSNews Vol. 324...

  5. A direct search for Dirac magnetic monopoles

    E-Print Network [OSTI]

    Mulhearn, Michael James

    2005-01-01T23:59:59.000Z

    Magnetic monopoles are highly ionizing and curve in the direction of the magnetic field. A new dedicated magnetic monopole trigger at CDF, which requires large light pulses in the scintillators of the time-of-flight system, ...

  6. News & Updates - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Departmental Directives Program DRAFT - DOE G 580.1-1A, Personal Property DRAFT- DOE O 442.1B, Department of Energy Employee Concerns Program Recent Administrative Change 12-4-14...

  7. Computer simulation of submarine motion

    E-Print Network [OSTI]

    Zurflueh, Jeffery Alan

    1991-01-01T23:59:59.000Z

    Subject: Mechanical Engineering COMPUTER SIMULATION OF SUBMARINE MOTION A Thesis by JEFFERY ALAN ZURFLUEH Approved as to style and content by: Make McDermott, Jr. ( Chair of Committee ) Glen Williams ( Member ) Lo 4verett ( Member ) gu r Walter...COMPUTER SIMULATION OF SUBMARINE MOTION A Thesis by JEFFERY ALAN ZURFLUEH Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1991 Major...

  8. Physically based simulation of explosions

    E-Print Network [OSTI]

    Roach, Matthew Douglas

    2005-08-29T23:59:59.000Z

    PHYSICALLY BASED SIMULATION OF EXPLOSIONS A Thesis by MATTHEW DOUGLAS ROACH Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May 2005 Major Subject: Visualization Sciences PHYSICALLY BASED SIMULATION OF EXPLOSIONS A Thesis by MATTHEW DOUGLAS ROACH Submitted to Texas A&M University in partial fulfillment of the requirements for the degree...

  9. Terascale Simulation Tools and Technologies

    SciTech Connect (OSTI)

    Li, Xiaolin

    2007-03-09T23:59:59.000Z

    We report the development of front tracking method as a simulation tool and technology for the computation on several important SciDAC and SciDAC associated applications. The progress includes the extraction of an independent software library from the front tracking code, conservative front tracking, applications of front tracking to the simulation of fusion pellet injection in a magnetically confined plasma, the study of a fuel injection jet, and the study of fluid chaotic mixing, among other problems.

  10. de direction UFR Pluridisciplinaire de Bayonne

    E-Print Network [OSTI]

    Dambrine, Marc

    Adjoint de direction UFR Pluridisciplinaire de Bayonne PME / PMI Objectifs Former des "Adjoints de autres cas) : · pour les salariés issus de PME-PMI financièrement pris en charge, · pour les salariés non professionnelle "Adjoint de direction PME - PMI" est organisée en 6 unités d'enseignement : >> DROIT Apprentissage

  11. Nanoscale Science, Engineering and Technology Research Directions

    SciTech Connect (OSTI)

    Lowndes, D. H.; Alivisatos, A. P.; Alper, M.; Averback, R. S.; Jacob Barhen, J.; Eastman, J. A.; Imre, D.; Lowndes, D. H.; McNulty, I.; Michalske, T. A.; Ho, K-M; Nozik, A. J.; Russell, T. P.; Valentin, R. A.; Welch, D. O.; Barhen, J.; Agnew, S. R.; Bellon, P.; Blair, J.; Boatner, L. A.; Braiman, Y.; Budai, J. D.; Crabtree, G. W.; Feldman, L. C.; Flynn, C. P.; Geohegan, D. B.; George, E. P.; Greenbaum, E.; Grigoropoulos, C.; Haynes, T. E.; Heberlein, J.; Hichman, J.; Holland, O. W.; Honda, S.; Horton, J. A.; Hu, M. Z.-C.; Jesson, D. E.; Joy, D. C.; Krauss, A.; Kwok, W.-K.; Larson, B. C.; Larson, D. J.; Likharev, K.; Liu, C. T.; Majumdar, A.; Maziasz, P. J.; Meldrum, A.; Miller, J. C.; Modine, F. A.; Pennycook, S. J.; Pharr, G. M.; Phillpot, S.; Price, D. L.; Protopopescu, V.; Poker, D. B.; Pui, D.; Ramsey, J. M.; Rao, N.; Reichl, L.; Roberto, J.; Saboungi, M-L; Simpson, M.; Strieffer, S.; Thundat, T.; Wambsganss, M.; Wendleken, J.; White, C. W.; Wilemski, G.; Withrow, S. P.; Wolf, D.; Zhu, J. H.; Zuhr, R. A.; Zunger, A.; Lowe, S.

    1999-01-01T23:59:59.000Z

    This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty-first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry.

  12. A parametric study of directional sea modeling 

    E-Print Network [OSTI]

    Whatley, Christopher Paul

    1990-01-01T23:59:59.000Z

    from -s to rr at each frequency. If a certain functional form for the directional distribution of wave energy, D(8) is assumed, the covariances of the data, determined from a method like the Fourier series analysis mentioned above, can be used... to researchers. Still, no universally accepted model of this complex physical phenomena has yet evolved. Researchers have opted for selecting a functional form to describe the directional distribution of wave energy rather than using a Fourier series model...

  13. Sandia National Laboratories: modeling and simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and simulation Sandian Mark Boslough Featured on NOVA Episode about Chelyabinsk Meteor On November 20, 2013, in Computational Modeling & Simulation, Modeling, Modeling, Modeling &...

  14. House Simulation Protocols (Building America Benchmark) - Building...

    Energy Savers [EERE]

    House Simulation Protocols. See an example of this Top Innovation in action. Find more case studies of Building America projects across the country that utilize House Simulation...

  15. Sandia National Laboratories: CINT Computer Simulation Guide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ClimateECEnergyRenewable EnergyBiofuelsCINT Computer Simulation Guide for Designing Polymeric Nanoparticles Published CINT Computer Simulation Guide for Designing Polymeric...

  16. Sandia Energy - Simulating Turbine-Turbine Interaction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of wind-turbine wakes within a turbulent atmospheric boundary layer using a large eddy simulation (LES) method. Current and ongoing work aims to leverage the simulation...

  17. Sandia National Laboratories: Predictive Simulation of Internal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Predictive Simulation of Internal Combustion Engines Sandia and General Motors: Advancing Clean Combustion Engines with Predictive Simulation Tools On February 14, 2013, in CRF,...

  18. Improved Solvers for Advanced Engine Combustion Simulation |...

    Broader source: Energy.gov (indexed) [DOE]

    Improved Solvers for Advanced Engine Combustion Simulation Improved Solvers for Advanced Engine Combustion Simulation 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

  19. Clot Busting Simulations Test Potential Stroke Treatment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clot Busting Simulations Test Potential Stroke Treatment Clot Busting Simulations Test Potential Stroke Treatment September 24, 2013 | Tags: Biological and Environmental Research...

  20. MAPPING HVAC SYSTEMS FOR SIMULATION IN ENERGYPLUS

    E-Print Network [OSTI]

    Basarkar, Mangesh

    2013-01-01T23:59:59.000Z

    LBNL-XXXXX MAPPING HVAC SYSTEMS FOR SIMULATION IN ENERGYPLUSof California. MAPPING HVAC SYSTEMS FOR SIMULATION INpresent a conventional view of HVAC systems to the user, and

  1. Zero Power Reactor simulation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zero Power Reactor simulation Share Description Ever wanted to see a nuclear reactor core in action? Here's a detailed simulation of the Zero Power Reactor experiment, run by...

  2. Nuclear Systems Modeling & Simulation | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Modeling and Simulation SHARE Nuclear Systems Modeling and Simulation Reactor physics depletion model for the Advanced Test Reactor Reactor physics depletion model for the...

  3. Nuclear Systems Modeling, Simulation & Validation | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Modeling and Simulation SHARE Nuclear Systems Modeling, Simulation and Validation Reactor physics depletion model for the Advanced Test Reactor Reactor physics depletion...

  4. Sensors and Actuators B 182 (2013) 4552 Contents lists available at SciVerse ScienceDirect

    E-Print Network [OSTI]

    Peter, Yves-Alain

    2013-01-01T23:59:59.000Z

    with a simplified analytical model and with finite element simulations. Conventional and phenyl-doped poly to salt [2] hydrocarbons [3] and humidity [4]. Bragg gratings were also fabricated directly with pas- sively aligned conventional single-mode optical fibers, rather than requiring free space

  5. Anomalous Scaling of Structure Functions and Dynamic Constraints on Turbulence Simulations

    E-Print Network [OSTI]

    Victor Yakhot; Katepalli R. Sreenivasan

    2005-06-20T23:59:59.000Z

    The connection between anomalous scaling of structure functions (intermittency) and numerical methods for turbulence simulations is discussed. It is argued that the computational work for direct numerical simulations (DNS) of fully developed turbulence increases as $Re^{4}$, and not as $Re^{3}$ expected from Kolmogorov's theory, where $Re$ is a large-scale Reynolds number. Various relations for the moments of acceleration and velocity derivatives are derived. An infinite set of exact constraints on dynamically consistent subgrid models for Large Eddy Simulations (LES) is derived from the Navier-Stokes equations, and some problems of principle associated with existing LES models are highlighted.

  6. Laboratory Directed Research and Development Program FY 2008 Annual Report

    E-Print Network [OSTI]

    editor, Todd C Hansen

    2009-01-01T23:59:59.000Z

    was developed using the Modelica system simulation language.object-oriented language Modelica. The component models areSystems M. Wetter; "Modelica-based Modeling and Simulation

  7. AMIDAS-II: Upgrade of the AMIDAS Package and Website for Direct Dark Matter Detection Experiments and Phenomenology

    E-Print Network [OSTI]

    Chung-Lin Shan

    2014-11-13T23:59:59.000Z

    In this paper, we give a detailed user's guide to the AMIDAS (A Model-Independent Data Analysis System) package and website, which is developed for online simulations and data analyses for direct Dark Matter detection experiments and phenomenology. Recently, the whole AMIDAS package and website system has been upgraded to the second phase: AMIDAS-II, for including the new developed Bayesian analysis technique. AMIDAS has the ability to do full Monte Carlo simulations as well as to analyze real/pseudo data sets either generated by another event generating programs or recorded in direct DM detection experiments. Moreover, the AMIDAS-II package can include several "user-defined" functions into the main code: the (fitting) one-dimensional WIMP velocity distribution function, the nuclear form factors for spin-independent and spin-dependent cross sections, artificial/experimental background spectrum for both of simulation and data analysis procedures, as well as different distribution functions needed in Bayesian analyses.

  8. INDIRECT AND SEMI-DIRECT AEROSOL CAMPAIGN

    E-Print Network [OSTI]

    Shupe, Matthew

    . McFarquhar, Steven Ghan, JohanneS verlinde, alexei Korolev, J. Walter Strapp, beat SchMid, JaSon M surface (Walsh and Chapman 1998). However, GCM simulations and radiative transfer calculations show processes in GCMs. Data collected at the Department of Energy Atmospheric Radiation Measurement Program

  9. Geothermal direct heat applications program summary

    SciTech Connect (OSTI)

    None

    1980-04-01T23:59:59.000Z

    The use of geothermal energy for direct heat purposes by the private sector within the US has been quite limited to date. However, there is a large potential market for thermal energy in such areas as industrial processing, agribusiness, and space/water heating of commercial and residential buildings. Technical and economic information is needed to assist in identifying prospective direct heat users and to match their energy needs to specific geothermal reservoirs. Technological uncertainties and associated economic risks can influence the user's perception of profitability to the point of limiting private investment in geothermal direct applications. To stimulate development in the direct heat area, the Department of Energy, Division of Geothermal Energy, issued two Program Opportunity Notices (PON's). These solicitations are part of DOE's national geothermal energy program plan, which has as its goal the near-term commercialization by the private sector of hydrothermal resources. Encouragement is being given to the private sector by DOE cost-sharing a portion of the front-end financial risk in a limited number of demonstration projects. The twenty-two projects summarized herein are direct results of the PON solicitations.

  10. Modularity of Directed Networks: Cycle Decomposition Approach

    E-Print Network [OSTI]

    Natasa Djurdjevac Conrad; Ralf Banisch; Christof Schütte

    2014-07-31T23:59:59.000Z

    The problem of decomposing networks into modules (or clusters) has gained much attention in recent years, as it can account for a coarse-grained description of complex systems, often revealing functional subunits of these systems. A variety of module detection algorithms have been proposed, mostly oriented towards finding hard partitionings of undirected networks. Despite the increasing number of fuzzy clustering methods for directed networks, many of these approaches tend to neglect important directional information. In this paper, we present a novel random walk based approach for finding fuzzy partitions of directed, weighted networks, where edge directions play a crucial role in defining how well nodes in a module are interconnected. We will show that cycle decomposition of a random walk process connects the notion of network modules and information transport in a network, leading to a new, symmetric measure of node communication. walk process, for which we will prove that although being time-reversible it inherits all necessary information about directions and modular structure of the original network. Finally, we will use this measure to introduce a communication graph, for which we will show that although being undirected it inherits all necessary information about modular structures from the original network.

  11. Adaptive LES Methodology for Turbulent Flow Simulations

    SciTech Connect (OSTI)

    Oleg V. Vasilyev

    2008-06-12T23:59:59.000Z

    Although turbulent flows are common in the world around us, a solution to the fundamental equations that govern turbulence still eludes the scientific community. Turbulence has often been called one of the last unsolved problem in classical physics, yet it is clear that the need to accurately predict the effect of turbulent flows impacts virtually every field of science and engineering. As an example, a critical step in making modern computational tools useful in designing aircraft is to be able to accurately predict the lift, drag, and other aerodynamic characteristics in numerical simulations in a reasonable amount of time. Simulations that take months to years to complete are much less useful to the design cycle. Much work has been done toward this goal (Lee-Rausch et al. 2003, Jameson 2003) and as cost effective accurate tools for simulating turbulent flows evolve, we will all benefit from new scientific and engineering breakthroughs. The problem of simulating high Reynolds number (Re) turbulent flows of engineering and scientific interest would have been solved with the advent of Direct Numerical Simulation (DNS) techniques if unlimited computing power, memory, and time could be applied to each particular problem. Yet, given the current and near future computational resources that exist and a reasonable limit on the amount of time an engineer or scientist can wait for a result, the DNS technique will not be useful for more than 'unit' problems for the foreseeable future (Moin & Kim 1997, Jimenez & Moin 1991). The high computational cost for the DNS of three dimensional turbulent flows results from the fact that they have eddies of significant energy in a range of scales from the characteristic length scale of the flow all the way down to the Kolmogorov length scale. The actual cost of doing a three dimensional DNS scales as Re{sup 9/4} due to the large disparity in scales that need to be fully resolved. State-of-the-art DNS calculations of isotropic turbulence have recently been completed at the Japanese Earth Simulator (Yokokawa et al. 2002, Kaneda et al. 2003) using a resolution of 40963 (approximately 10{sup 11}) grid points with a Taylor-scale Reynolds number of 1217 (Re {approx} 10{sup 6}). Impressive as these calculations are, performed on one of the world's fastest super computers, more brute computational power would be needed to simulate the flow over the fuselage of a commercial aircraft at cruising speed. Such a calculation would require on the order of 10{sup 16} grid points and would have a Reynolds number in the range of 108. Such a calculation would take several thousand years to simulate one minute of flight time on today's fastest super computers (Moin & Kim 1997). Even using state-of-the-art zonal approaches, which allow DNS calculations that resolve the necessary range of scales within predefined 'zones' in the flow domain, this calculation would take far too long for the result to be of engineering interest when it is finally obtained. Since computing power, memory, and time are all scarce resources, the problem of simulating turbulent flows has become one of how to abstract or simplify the complexity of the physics represented in the full Navier-Stokes (NS) equations in such a way that the 'important' physics of the problem is captured at a lower cost. To do this, a portion of the modes of the turbulent flow field needs to be approximated by a low order model that is cheaper than the full NS calculation. This model can then be used along with a numerical simulation of the 'important' modes of the problem that cannot be well represented by the model. The decision of what part of the physics to model and what kind of model to use has to be based on what physical properties are considered 'important' for the problem. It should be noted that 'nothing is free', so any use of a low order model will by definition lose some information about the original flow.

  12. LFSC - Linac Feedback Simulation Code

    SciTech Connect (OSTI)

    Ivanov, Valentin; /Fermilab

    2008-05-01T23:59:59.000Z

    The computer program LFSC (Simulation Code>) is a numerical tool for simulation beam based feedback in high performance linacs. The code LFSC is based on the earlier version developed by a collective of authors at SLAC (L.Hendrickson, R. McEwen, T. Himel, H. Shoaee, S. Shah, P. Emma, P. Schultz) during 1990-2005. That code was successively used in simulation of SLC, TESLA, CLIC and NLC projects. It can simulate as pulse-to-pulse feedback on timescale corresponding to 5-100 Hz, as slower feedbacks, operating in the 0.1-1 Hz range in the Main Linac and Beam Delivery System. The code LFSC is running under Matlab for MS Windows operating system. It contains about 30,000 lines of source code in more than 260 subroutines. The code uses the LIAR ('Linear Accelerator Research code') for particle tracking under ground motion and technical noise perturbations. It uses the Guinea Pig code to simulate the luminosity performance. A set of input files includes the lattice description (XSIF format), and plane text files with numerical parameters, wake fields, ground motion data etc. The Matlab environment provides a flexible system for graphical output.

  13. Infrastructure for distributed enterprise simulation

    SciTech Connect (OSTI)

    Johnson, M.M.; Yoshimura, A.S.; Goldsby, M.E. [and others

    1998-01-01T23:59:59.000Z

    Traditional discrete-event simulations employ an inherently sequential algorithm and are run on a single computer. However, the demands of many real-world problems exceed the capabilities of sequential simulation systems. Often the capacity of a computer`s primary memory limits the size of the models that can be handled, and in some cases parallel execution on multiple processors could significantly reduce the simulation time. This paper describes the development of an Infrastructure for Distributed Enterprise Simulation (IDES) - a large-scale portable parallel simulation framework developed to support Sandia National Laboratories` mission in stockpile stewardship. IDES is based on the Breathing-Time-Buckets synchronization protocol, and maps a message-based model of distributed computing onto an object-oriented programming model. IDES is portable across heterogeneous computing architectures, including single-processor systems, networks of workstations and multi-processor computers with shared or distributed memory. The system provides a simple and sufficient application programming interface that can be used by scientists to quickly model large-scale, complex enterprise systems. In the background and without involving the user, IDES is capable of making dynamic use of idle processing power available throughout the enterprise network. 16 refs., 14 figs.

  14. ATLAS Fast Tracker Simulation Challenges

    E-Print Network [OSTI]

    Adelman, Jahred; The ATLAS collaboration; Borodin, Mikhail; Chakraborty, Dhiman; García Navarro, José Enrique; Golubkov, Dmitry; Kama, Sami; Panitkin, Sergey; Smirnov, Yuri; Stewart, Graeme; Tompkins, Lauren; Vaniachine, Alexandre; Volpi, Guido

    2015-01-01T23:59:59.000Z

    To deal with Big Data flood from the ATLAS detector most events have to be rejected in the trigger system. the trigger rejection is complicated by the presence of a large number of minimum-bias events – the pileup. To limit pileup effects in the high luminosity environment of the LHC Run-2, ATLAS relies on full tracking provided by the Fast TracKer (FTK) implemented with custom electronics. The FTK data processing pipeline has to be simulated in preparation for LHC upgrades to support electronics design and develop trigger strategies at high luminosity. The simulation of the FTK - a highly parallelized system - has inherent performance bottlenecks on general-purpose CPUs. To take advantage of the Grid Computing power, the FTK simulation is integrated with Monte Carlo simulations at the Production System level above the ATLAS workload management system PanDA. We report on ATLAS experience with FTK simulations on the Grid and next steps for accommodating the growing requirements for resources during the LHC R...

  15. REAL : A Network Simulator Srinivasan Keshav

    E-Print Network [OSTI]

    Keshav, Srinivasan

    simulations using REAL, and Section 7 presents a performance evaluation of the simulator. Section 8 describes a design for extending REAL to parallel distributed simulation. Section 9 is an evaluation of this work, and Section 10 describes future work. 2. Outline of the Simulator This section describes a user's view

  16. MOOSE: Multiphysics Object-Oriented Simulation Environment

    ScienceCinema (OSTI)

    Gaston, Derek

    2014-05-30T23:59:59.000Z

    An overview of Idaho National Laboratory's MOOSE: Multiphysics Object-Oriented Simulation Environment

  17. Real-time network simulation support for

    E-Print Network [OSTI]

    Liu, Xiaowen "Jason"

    Real-time network simulation support for scalable routing experiments Yue Li*, Jason Liu, and Raju-time network simulation with the realism of open- source routing protocol implementations. The infrastructure experiments on light-weight virtual machines. Keywords: network simulation; real-time simulation; network

  18. Community detection in directed acyclic graphs

    E-Print Network [OSTI]

    Speidel, Leo; Masuda, Naoki

    2015-01-01T23:59:59.000Z

    Some temporal networks, most notably citation networks, are naturally represented as directed acyclic graphs (DAGs). To detect communities in DAGs, we propose a modularity for DAGs by defining an appropriate null model (i.e., randomized network) respecting the order of nodes. We implement a spectral method to approximately maximize the proposed modularity measure and test the method on citation networks and other DAGs. We find that the attained values of the modularity for DAGs are similar for partitions that we obtain by maximizing the proposed modularity (designed for DAGs), the modularity for undirected networks and that for general directed networks. In other words, if we neglect the order imposed on nodes (and the direction of links) in a given DAG and maximize the conventional modularity measure, the obtained partition is close to the optimal one in the sense of the modularity for DAGs.

  19. Lattice Simulations and Infrared Conformality

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Appelquist, Thomas; Fleming, George T.; Lin, Meifeng; Neil, Ethan T.; Schaich, David A.

    2011-09-01T23:59:59.000Z

    We examine several recent lattice-simulation data sets, asking whether they are consistent with infrared conformality. We observe, in particular, that for an SU(3) gauge theory with 12 Dirac fermions in the fundamental representation, recent simulation data can be described assuming infrared conformality. Lattice simulations include a fermion mass m which is then extrapolated to zero, and we note that this data can be fit by a small-m expansion, allowing a controlled extrapolation. We also note that the conformal hypothesis does not work well for two theories that are known or expected to be confining and chirally broken, and that it does work well for another theory expected to be infrared conformal.

  20. Lattice Simulations and Infrared Conformality

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Appelquist, Thomas; Fleming, George T.; Lin, Meifeng; Neil, Ethan T.; Schaich, David A.

    2011-09-01T23:59:59.000Z

    We examine several recent lattice-simulation data sets, asking whether they are consistent with infrared conformality. We observe, in particular, that for an SU(3) gauge theory with 12 Dirac fermions in the fundamental representation, recent simulation data can be described assuming infrared conformality. Lattice simulations include a fermion mass m which is then extrapolated to zero, and we note that this data can be fit by a small-m expansion, allowing a controlled extrapolation. We also note that the conformal hypothesis does not work well for two theories that are known or expected to be confining and chirally broken, and that itmore »does work well for another theory expected to be infrared conformal.« less

  1. Simulating Reionization in Numerical Cosmology

    E-Print Network [OSTI]

    Aaron Sokasian; Tom Abel; Lars E. Hernquist

    2001-05-10T23:59:59.000Z

    The incorporation of radiative transfer effects into cosmological hydrodynamical simulations is essential for understanding how the intergalactic medium (IGM) makes the transition from a neutral medium to one that is almost fully ionized. Here, we present an approximate numerical method designed to study in a statistical sense how a cosmological density field is ionized by a set of discrete point sources. A diffuse background radiation field is also computed self-consistently in our procedure. The method requires relatively few time steps and can be employed with simulations having high resolution. We describe the details of the algorithm and provide a description of how the method can be applied to the output from a pre-existing cosmological simulation to study the systematic reionization of a particular ionic species. As a first application, we compute the reionization of He II by quasars in the redshift range 3 to 6.

  2. Simulating chemistry using quantum computers

    E-Print Network [OSTI]

    Ivan Kassal; James D. Whitfield; Alejandro Perdomo-Ortiz; Man-Hong Yung; Alán Aspuru-Guzik

    2010-07-15T23:59:59.000Z

    The difficulty of simulating quantum systems, well-known to quantum chemists, prompted the idea of quantum computation. One can avoid the steep scaling associated with the exact simulation of increasingly large quantum systems on conventional computers, by mapping the quantum system to another, more controllable one. In this review, we discuss to what extent the ideas in quantum computation, now a well-established field, have been applied to chemical problems. We describe algorithms that achieve significant advantages for the electronic-structure problem, the simulation of chemical dynamics, protein folding, and other tasks. Although theory is still ahead of experiment, we outline recent advances that have led to the first chemical calculations on small quantum information processors.

  3. Special nuclear material simulation device

    DOE Patents [OSTI]

    Leckey, John H.; DeMint, Amy; Gooch, Jack; Hawk, Todd; Pickett, Chris A.; Blessinger, Chris; York, Robbie L.

    2014-08-12T23:59:59.000Z

    An apparatus for simulating special nuclear material is provided. The apparatus typically contains a small quantity of special nuclear material (SNM) in a configuration that simulates a much larger quantity of SNM. Generally the apparatus includes a spherical shell that is formed from an alloy containing a small quantity of highly enriched uranium. Also typically provided is a core of depleted uranium. A spacer, typically aluminum, may be used to separate the depleted uranium from the shell of uranium alloy. A cladding, typically made of titanium, is provided to seal the source. Methods are provided to simulate SNM for testing radiation monitoring portals. Typically the methods use at least one primary SNM spectral line and exclude at least one secondary SNM spectral line.

  4. Laboratory Directed Research and Development FY2011 Annual Report

    SciTech Connect (OSTI)

    Craig, W; Sketchley, J; Kotta, P

    2012-03-22T23:59:59.000Z

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High-Energy-Density Science; (11) Laser Inertial-Fusion Energy; (12) Advanced Laser Optical Systems and Applications; (12) Space Security; (13) Stockpile Stewardship Science; (14) National Security; (15) Alternative Energy; and (16) Climatic Change.

  5. Direct Laser Synthesis of Functional Coatings

    SciTech Connect (OSTI)

    P. Schaaf; Michelle D. Shinn; E. Carpene; J. Kaspar

    2005-06-01T23:59:59.000Z

    The direct laser synthesis of functional coatings employs the irradiation of materials with short intensive laser pulses in a reactive atmosphere. The material is heated and plasma is ignited in the reactive atmosphere. This leads to an intensive interaction of the material with the reactive species and a coating is directly formed on the materials surface. By that functional coatings can be easily produced a fast way on steel, aluminium, and silicon by irradiation in nitrogen, methane, or even hydrogen. The influence of the processing parameters to the properties of the functional coatings will be presented for titanium nitride coating produced on titanium with the free electron laser.

  6. Direct Kinetic Measurements of a Criegee Intermediate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDiesel pricesDiesel28, 2007,DiracDirectDirect

  7. Direct Energy Services (Delaware) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro SiteDaytonDestilariaDirect Energy Services (Delaware)

  8. Direct Energy Services (Maryland) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro SiteDaytonDestilariaDirect Energy

  9. Direct Energy, LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro SiteDaytonDestilariaDirect

  10. First Direct Imaging of Swollen Microgel Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancing OpportunitiesDirect Evidence ofDirect Imaging

  11. First Direct Imaging of Swollen Microgel Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancing OpportunitiesDirect Evidence ofDirect

  12. First Direct Imaging of Swollen Microgel Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancing OpportunitiesDirect EvidenceDirect Imaging of

  13. First Direct Observation of Spinons and Holons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancing OpportunitiesDirect EvidenceDirect Imaging

  14. First Direct Observation of Spinons and Holons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancing OpportunitiesDirect EvidenceDirect

  15. Direct Imaging of Antiferromagnetic Vortex States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: PotentialFederal Financial Interventions andDirectDirect

  16. Direct Imaging of Asymmetric Magnetization Reversal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: PotentialFederal Financial InterventionsDirect ImagingDirect

  17. Direct Kinetic Measurements of a Criegee Intermediate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: PotentialFederal Financial InterventionsDirectDirect Kinetic

  18. Direct Kinetic Measurements of a Criegee Intermediate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: PotentialFederal Financial InterventionsDirectDirect

  19. Integrating software architectures for distributed simulations and simulation analysis communities.

    SciTech Connect (OSTI)

    Goldsby, Michael E.; Fellig, Daniel; Linebarger, John Michael; Moore, Patrick Curtis; Sa, Timothy J.; Hawley, Marilyn F.

    2005-10-01T23:59:59.000Z

    The one-year Software Architecture LDRD (No.79819) was a cross-site effort between Sandia California and Sandia New Mexico. The purpose of this research was to further develop and demonstrate integrating software architecture frameworks for distributed simulation and distributed collaboration in the homeland security domain. The integrated frameworks were initially developed through the Weapons of Mass Destruction Decision Analysis Center (WMD-DAC), sited at SNL/CA, and the National Infrastructure Simulation & Analysis Center (NISAC), sited at SNL/NM. The primary deliverable was a demonstration of both a federation of distributed simulations and a federation of distributed collaborative simulation analysis communities in the context of the same integrated scenario, which was the release of smallpox in San Diego, California. To our knowledge this was the first time such a combination of federations under a single scenario has ever been demonstrated. A secondary deliverable was the creation of the standalone GroupMeld{trademark} collaboration client, which uses the GroupMeld{trademark} synchronous collaboration framework. In addition, a small pilot experiment that used both integrating frameworks allowed a greater range of crisis management options to be performed and evaluated than would have been possible without the use of the frameworks.

  20. Simulations of binary black hole mergers using spectral methods

    SciTech Connect (OSTI)

    Szilagyi, Bela; Lindblom, Lee; Scheel, Mark A. [Theoretical Astrophysics 350-17, California Institute of Technology, Pasadena, California 91125 (United States)

    2009-12-15T23:59:59.000Z

    Several improvements in numerical methods and gauge choice are presented that make it possible now to perform simulations of the merger and ringdown phases of 'generic' binary black hole evolutions using the pseudospectral evolution code SpEC. These improvements include the use of a new damped-wave gauge condition, a new grid structure with appropriate filtering that improves stability, and better adaptivity in conforming the grid structures to the shapes and sizes of the black holes. Simulations illustrating the success of these new methods are presented for a variety of binary black hole systems. These include fairly generic systems with unequal masses (up to 2 ratio 1 mass ratios), and spins (with magnitudes up to 0.4M{sup 2}) pointing in various directions.