Powered by Deep Web Technologies
Note: This page contains sample records for the topic "direction air temperature" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Single-Duct Constant Air Volume System Supply Air Temperature Reset: Using Return Air Temperature or Outside Air Temperature?  

E-Print Network [OSTI]

The supply air temperature set point for a singleduct constant air volume air handling unit (AHU) system is often reset based on either return air temperature or outside air temperature in order to reduce simultaneous cooling and heating energy...

Wei, G.; Turner, W. D.; Claridge, D.; Liu, M.

2002-01-01T23:59:59.000Z

2

Air Handling Unit Supply Air Temperature Optimization During Economizer Cycles  

E-Print Network [OSTI]

temperature at supply air temperature setpoint. Mechanical cooling is always required when outside air temperature is higher than the supply air temperature setpoint. Generally the supply air temperature setpoint is set at 55°F for space humidity control...

Xu, K.; Liu, M.; Wang, G.; Wang, Z.

2007-01-01T23:59:59.000Z

3

Direct numerical simulation of autoignition of a hydrogen vortex ring reacting with hot air  

E-Print Network [OSTI]

Direct numerical simulation of auto­ignition of a hydrogen vortex ring reacting with hot air Jeff2/air combustion proposed by Mueller et al. [2]. Diluted H2 at ambient temperature (300 K) is injected into hot air. The simulations study the effect of fuel/air ratios, oxidizer temperature, Lewis

Mahesh, Krishnan

4

Crowdsourcing urban air temperatures from smartphone battery?temperatures  

E-Print Network [OSTI]

Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on ...

Overeem, A.

5

Air Temperature in the Undulator Hall  

SciTech Connect (OSTI)

Various analyses have been performed recently to estimate the performance of the air conditioning (HVAC) system planned for the Undulator Hall. This reports summarizes the results and provides an upgrade plan to be used if new requirements are needed in the future. The estimates predict that with the planned loads the tunnel air temperature will be well within the allowed tolerance during normal operation.

Not Available

2010-12-07T23:59:59.000Z

6

Air separation with temperature and pressure swing  

DOE Patents [OSTI]

A chemical absorbent air separation process is set forth which uses a temperature swing absorption-desorption cycle in combination with a pressure swing wherein the pressure is elevated in the desorption stage of the process.

Cassano, Anthony A. (Allentown, PA)

1986-01-01T23:59:59.000Z

7

air temperature change: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Index 21 Air temperature regulation by urban trees and green infrastructure Renewable Energy Websites Summary: Air temperature regulation by urban trees and green...

8

High-Temperature, Air-Cooled Traction Drive Inverter Packaging...  

Broader source: Energy.gov (indexed) [DOE]

High-Temperature, Air-Cooled Traction Drive Inverter Packaging High-Temperature, Air-Cooled Traction Drive Inverter Packaging 2010 DOE Vehicle Technologies and Hydrogen Programs...

9

Analysis of a Dedicated Outdoor Air System and Low Temperature Supply Air Conditioning System  

E-Print Network [OSTI]

This paper presents the principles and the characteristics of a dedicated outdoor air system (DOAS) and low temperature supply air system. DOAS is offered based on the demands of indoor air quality and the low temperature supply air system...

Guang, L.; Li, R.

2006-01-01T23:59:59.000Z

10

Undulator Hall Air Temperature Fault Scenarios  

SciTech Connect (OSTI)

Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about {+-}2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

Sevilla, J.; Welch, J.; /SLAC; ,

2010-11-17T23:59:59.000Z

11

Development of empirical temperature and humidity-based degraded-condition indicators for low-tonnage air conditioners  

E-Print Network [OSTI]

A split-system direct-expansion air conditioner was used to empirically determine temperature and return-air humidity indicators that could detect performance degradation resulting from degraded conditions. The air conditioner test bench...

Watt, James Bonner

1997-01-01T23:59:59.000Z

12

Air temperature thresholds for indoor comfort and perceived air quality  

E-Print Network [OSTI]

in the Netherlands, Indoor Air 2, 127 – 136. BuildingPaliaga, G. (2009) Moving air for comfort. ASHRAE Journal,ventilation system on perceived air quality, Indoor Air

Zhang, Hui; Edward, Arens; Pasut, Wilmer

2012-01-01T23:59:59.000Z

13

High Temperature 300°C Directional Drilling System  

Broader source: Energy.gov [DOE]

Project objective: provide a directional drilling system that can be used at environmental temperatures of up to 300°C; and at depths of 10; 000 meters.

14

Metal-air low temperature ionic liquid cell  

DOE Patents [OSTI]

The present application relates to an electrochemical metal-air cell in which a low temperature ionic liquid is used.

Friesen, Cody A; Buttry, Daniel A

2014-11-25T23:59:59.000Z

15

EECBG Direct Equipment Purchase Air Conditioner Guide Equipment Type  

E-Print Network [OSTI]

EECBG Direct Equipment Purchase Air Conditioner Guide Equipment Type Size Category (Btu/h) Size.ahridirectory.org/ceedirectory/pages/ac/cee/defaultSearch.aspx 12,000 Btu/h = 1 ton Less than 65,000 Btu/h Air Conditioners, Air Cooled Air Conditioners, Water completed by the California Energy Commission at a rate of 12,000 Btu/h per ton of air conditioning Source

16

Direct Kinetics Study of the Temperature Dependence  

E-Print Network [OSTI]

and suggested as a tracer of the photochemical age of air masses [2], but the chemical processes lead- ing performed using the turbulent flow technique with high-pressure chemical ionization mass spectrometry for the detection of reactants and products. The temperature dependence of the CH2O-producing channel rate constant

Elrod, Matthew J.

17

Predicting Air Quality: Current Status and Future Directions  

E-Print Network [OSTI]

Predicting Air Quality: Current Status and Future Directions Gregory R. Carmichael ,a Adrian Sandu, OR 97207, USA Abstract Air quality prediction plays an important role in the management of our envi can predict pollution in an urban air shed with spatial resolution less than a kilometer, and cover

Sandu, Adrian

18

High-temperature directional drilling turbodrill  

SciTech Connect (OSTI)

The development of a high-temperature turbodrill for directional drilling of geothermal wells in hard formations is summarized. The turbodrill may be used for straight-hole drilling but was especially designed for directional drilling. The turbodrill was tested on a dynamometer stand, evaluated in laboratory drilling into ambient temperature granite blocks, and used in the field to directionally drill a 12-1/4-in.-diam geothermal well in hot 200/sup 0/C (400/sup 0/F) granite at depths to 10,5000 ft.

Neudecker, J.W.; Rowley, J.C.

1982-02-01T23:59:59.000Z

19

Air temperature regulation by urban trees and green infrastructure  

E-Print Network [OSTI]

Air temperature regulation by urban trees and green infrastructure Kieron Doick and Tony Hutchings to a UHI include the thermal properties, height and spacing of buildings, the production of waste heat, air years. An estimated 8­11 extra deaths occur each day for each degree increase in air temperature during

20

Influence of air conditioning management on heat island in Paris air street temperatures  

E-Print Network [OSTI]

Influence of air conditioning management on heat island in Paris air street temperatures Brice 2012 Available online 13 March 2012 Keywords: Air conditioning Heat island mitigation Urban heat island killer'', is exacerbated in urban areas owing to the heat island effect. Air conditioning (A/C) is a key

Ribes, Aurélien

Note: This page contains sample records for the topic "direction air temperature" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Geothermal Direct-Use — Meeting Clean Air Standards  

Broader source: Energy.gov [DOE]

Geothermal direct-use applications—such as greenhouses, district and space heating, and aquaculture—can easily meet local and federal clean air standards, which help protect our environment.

22

Air Breathing Direct Methanol Fuel Cell  

DOE Patents [OSTI]

A method for activating a membrane electrode assembly for a direct methanol fuel cell is disclosed. The method comprises operating the fuel cell with humidified hydrogen as the fuel followed by running the fuel cell with methanol as the fuel.

Ren; Xiaoming (Los Alamos, NM)

2003-07-22T23:59:59.000Z

23

Low Temperature Air Bake of Stainless Steel for Very Low  

E-Print Network [OSTI]

that gives very hot water with detergent. #12;4. The method of using a relatively low temperature air bake of the requirements for high quality forged blanks for flanges. After machining using a water based lubricantLow Temperature Air Bake of Stainless Steel for Very Low Outgassing Rates Surface Conditioning

24

Supply Air Temperature Control Using a VFD Pump  

E-Print Network [OSTI]

Supply Air Temperature Control Using a VFD Pump Bin Zheng and Mingsheng Liu Ph.D., P.E. Energy Systems Laboratory University of Nebraska-Lincoln Abstract Traditionally, chilled water pump speed is modulated to maintain the water loop... differential pressure set point and the control valve at the air handling unit (AHU) is modulated to maintain the supply air temperature. This paper introduces a new VFD pump speed control algorithm, optimal pump head control strategy, in variable water...

Zheng, B.; Liu, M.

2005-01-01T23:59:59.000Z

25

INFLUENCE OF SUPPLY AIR TEMPERATURE ON UNDERFLOOR AIR DISTRIBUTION (UFAD) SYSTEM ENERGY PERFORMANCE  

E-Print Network [OSTI]

chilled water cooling coil, and supply fan. The fan is aspecify the VAV box cooling design supply air temperature (the underfloor supply plenum (thereby, reducing room cooling

2012-01-01T23:59:59.000Z

26

Residential Air Conditioner Direct Load Control "Energy Partners Program"  

E-Print Network [OSTI]

RESIDENTIAL AIR CONDITIONER DIRECT LOAD CONTROL "ENERGY PARTNERS PROGRAMn John D. Cook Supervisor Houston ABSTRACT Demand side management programs like Energy Partners can provide an effective peak reducing capability which within a.... In this partnership the customer allows HLfP to install a I switch on his/her air conditioner or heat pump and i periodically cycle the unit off during the hottest summer 1 days. In return the customer benefits by receiving an incentive payment, as well...

Cook, J. D.

1994-01-01T23:59:59.000Z

27

E-Print Network 3.0 - air temperature variations Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FLOW WITH FLAME TEMPERATURE CONTROL (CON STANT STOKER SPEED... TEMPERATURES AND AIR DISTRIBUTION IN LARGE RECTANGULAR INCINERATOR FURNACES PART III MIRO DVIRKA... air flow factor...

28

Eos, Vol. 93, No. 15, 10 April 2012 Land surface air temperature is one of the  

E-Print Network [OSTI]

as "the temperature indicated by a thermometer exposed to the air in a place sheltered from direct solar developed by the late seventeenth century, and D. G. Fahrenheit invented the mercury thermometer in 1714, the liquid-in-glass thermometer (such as the mercury thermometer) was widely used. In particular, maximum

29

Optimize the Supply Air Temperature Reset Schedule for a Single-Duct VAV System  

E-Print Network [OSTI]

air temperature. However, resetting the supply air temperature not only impacts the cooling and heating energy consumption, but also the fan power consumption. If reset improperly, it may cause indoor air humidity problems or result in a fan power...

Wei, G.; Claridge, D. E.; Liu, M.

2000-01-01T23:59:59.000Z

30

E-Print Network 3.0 - air temperature anomalies Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

mean SST anomalies Fig.6 shows the low-pass mean SST anomalies, air temperature... wind speed anomalies, sea-air temperature difference anomalies, and sea-air ... Source: Maine,...

31

Dendroclimatic Analysis for Changes of Air Temperature and Precipitation  

E-Print Network [OSTI]

periodsClimate change viewed over different periods #12;Northern Russia:Northern Russia: Raspopov increase in the pastincrease in the past 250 years250 years #12;Climate change viewed over differentDendroclimatic Analysis for Changes of Air Temperature and Precipitation in Southwestern Bulgaria

University of Forestry (Bulgaria)

32

High Temperature 300°C Directional Drilling System  

Broader source: Energy.gov (indexed) [DOE]

300C Directional Drilling System John Macpherson Baker Hughes Oilfield Operations DE-EE0002782 May 19, 2010 This presentation does not contain any proprietary confidential, or...

33

E-Print Network 3.0 - air-breathing direct methanol Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Res. 2005; 29:10411050 Summary: , U.S.A. SUMMARY An 8-cell air-breathing direct methanol fuel cell (DMFC) stack with the active area... of an air-breathing direct methanol fuel...

34

Air Cooling for High Temperature Power Electronics (Presentation)  

SciTech Connect (OSTI)

Current emphasis on developing high-temperature power electronics, including wide-bandgap materials such as silicon carbide and gallium nitride, increases the opportunity for a completely air-cooled inverter at higher powers. This removes the liquid cooling system for the inverter, saving weight and volume on the liquid-to-air heat exchanger, coolant lines, pumps, and coolant, replacing them with just a fan and air supply ducting. We investigate the potential for an air-cooled heat exchanger from a component and systems-level approach to meet specific power and power density targets. A proposed baseline air-cooled heat exchanger design that does not meet those targets was optimized using a parametric computational fluid dynamics analysis, examining the effects of heat exchanger geometry and device location, fixing the device heat dissipation and maximum junction temperature. The CFD results were extrapolated to a full inverter, including casing, capacitor, bus bar, gate driver, and control board component weights and volumes. Surrogate ducting was tested to understand the pressure drop and subsequent system parasitic load. Geometries that met targets with acceptable loads on the system were down-selected for experimentation. Nine baseline configuration modules dissipated the target heat dissipation, but fell below specific power and power density targets. Six optimized configuration modules dissipated the target heat load, exceeding the specific power and power density targets. By maintaining the same 175 degrees C maximum junction temperature, an optimized heat exchanger design and higher device heat fluxes allowed a reduction in the number of modules required, increasing specific power and power density while still maintaining the inverter power.

Waye, S.; Musselman, M.; King, C.

2014-09-01T23:59:59.000Z

35

Stability limit of room air temperature of a VAV system  

SciTech Connect (OSTI)

To control heating, ventilating, and air-conditioning (HVAC) systems, it has been necessary to accept an analog system controlled mainly by proportional-plus-integral-plus-derivative (PID) action. However, when conventional PID controllers are replaced with new digital controllers by selecting the same PID parameters as before, the control loops have often got into hunting phenomena, which result in undamped oscillations. Unstable control characteristics (such as huntings) are thought to be one of the crucial problems faced by field operators. The PID parameters must be carefully selected to avoid instabilities. In this study, a room space is simulated as a thermal system that is air-conditioned by a variable-air-volume (VAV) control system. A dynamic room model without infiltration or exfiltration, which is directly connected to a simple air-handling unit without an economizer, is developed. To explore the possible existence of huntings, a numerical system model is formulated as a bilinear system with time-delayed feedback, and a parametric analysis of the stability limit is presented. Results are given showing the stability region affected by the selection of control and system parameters. This analysis was conducted to help us tune the PID controllers for optimal HVAC control.

Matsuba, Tadahiko; Kamimura, Kazuyuki [Yamatake-Honeywell Co., Ltd., Tokyo (Japan). Building System Div.; Kasahara, Masato; Kimbara, Akiomi; Kurosu, Shigeru [Oyama National Coll. of Technology (Japan); Murasawa, Itaru; Hashimoto, Yukihiko [Tonets Corp., Tokyo (Japan). Engineering Project Dept.

1998-12-31T23:59:59.000Z

36

High-Temperature Air-Cooled Power Electronics Thermal Design (Presentation)  

SciTech Connect (OSTI)

This presentation discusses the status of research at NREL on high temperature air-cooled power electronics thermal design.

Waye, S.

2014-06-01T23:59:59.000Z

37

Furnace Controls Using High Temperature Preheated Combustion Air  

E-Print Network [OSTI]

on accuracy in variable leakage of recuperators ESL-IE-81-04-85 Proceedings from the Third Industrial Energy Technology Conference Houston, TX, April 26-29, 1981 balancing orifice, butterfly, etc.) upstream of the burner. This is especially necessary... the recuperator and preheat temperature result in little or no effect on the accuracy of this system. The orifice plates utilized in the air line must be located in a laminar flow position (straight run of pipe) to insure accuracy. Figure 4C shows a simple flow...

Gonzales, J. M.; Rebello, W. J.

1981-01-01T23:59:59.000Z

38

Effect of Ambient Design Temperature on Air-Cooled Binary Plant Output  

SciTech Connect (OSTI)

Air-cooled binary plants are designed to provide a specified level of power production at a particular air temperature. Nominally this air temperature is the annual mean or average air temperature for the plant location. This study investigates the effect that changing the design air temperature has on power generation for an air-cooled binary plant producing power from a resource with a declining production fluid temperature and fluctuating ambient temperatures. This analysis was performed for plants operating both with and without a geothermal fluid outlet temperature limit. Aspen Plus process simulation software was used to develop optimal air-cooled binary plant designs for specific ambient temperatures as well as to rate the performance of the plant designs at off-design operating conditions. Results include calculation of annual and plant lifetime power generation as well as evaluation of plant operating characteristics, such as improved power generation capabilities during summer months when electric power prices are at peak levels.

Dan Wendt; Greg Mines

2011-10-01T23:59:59.000Z

39

Investigations on Vapour Compression Air Conditioner with Direct Contact Desiccant Loop over Condenser and Evaporator  

E-Print Network [OSTI]

Perceived air quality increases when relative humidity is decreased till about 30% in the range of comfort temperature. In the present scenario, humidity is considered as a pollutant. Hence, a controlled environment not only at low temperature...

Maiya, M. P.; Ravi, J.; Tiwari, S.

2010-01-01T23:59:59.000Z

40

Experimental evaluation of cell temperature effects on miniature, air-breathing PEM fuel cells  

E-Print Network [OSTI]

Experimental evaluation of cell temperature effects on miniature, air-breathing PEM fuel cells Z June 2011 Available online 14 June 2011 Keywords: Air-breathing PEM fuel cell Temperature effects Air) fuel cells is investi- gated using polarization and impedance spectroscopy. Three active area sizes

Lee, Tonghun

Note: This page contains sample records for the topic "direction air temperature" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Direct imaging of the acoustic waves generated by femtosecond filaments in air  

E-Print Network [OSTI]

Direct imaging of the acoustic waves generated by femtosecond filaments in air J. K. Wahlstrand, N of spatial single- and higher-mode 50 fs, 800 nm pulses in air at 10 Hz and 1 kHz repetition rates. Results in air [9]. They claimed a positive gas density perturba- tion on axis with a microsecond lifetime

Milchberg, Howard

42

Chemical Vapor Deposition of Silicon Dioxide by Direct-Current Corona Discharges in Dry Air  

E-Print Network [OSTI]

Chemical Vapor Deposition of Silicon Dioxide by Direct-Current Corona Discharges in Dry Air, Si4O4(CH3)8) widely used as additives in personal care products. In both photocopiers and air in indoor air, the gas-phase processes limit the rate of deposition. KEY WORDS: Corona plasma; corona

Chen, Junhong

43

Direct Digital Control in Air Conditioning Systems for Energy Efficiency  

E-Print Network [OSTI]

the function and the level of the building, but also save energy. At present, air-conditioning design in internal commercial buildings is becoming more complex and enormous. The proportion of air conditioning systems in the whole building is getting larger...

Liu, W.; Ye, A.; Li, D.

2006-01-01T23:59:59.000Z

44

RESEARCH ARTICLE Statistics of the surface temperature field of an air/water interface  

E-Print Network [OSTI]

is the coefficient of thermal expansion, m is the kinematic viscosity, a is the thermal diffusivity, DTRESEARCH ARTICLE Statistics of the surface temperature field of an air/water interface under air

Saylor, John R.

45

Optimization of supply air temperature reset schedule for a single duct VAV systems  

E-Print Network [OSTI]

In a single duct variable air volume (SDVAV) system, the supply air temperature is usually set as a constant value. Since this constant setpoint is selected to satisfy the maximum cooling load conditions, significant reheat will occur once...

Fan, Wenshu

2009-05-15T23:59:59.000Z

46

Study of the Influence of Air Supply Temperature on Air Distribution in the Run-through Large Space Architecture  

E-Print Network [OSTI]

The article introduces the concept and features of run-through large space. By using CFD technology, the paper simulates a velocity field and temperature field in the important air conditioned zone of China's science and technology museum (new...

Tian, Z.; Zhang, J.; Zhu, M.; He, J.

2006-01-01T23:59:59.000Z

47

E-Print Network 3.0 - air temperature air Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

measured as 74 per of air flowing through the turbine. The turbine operates... the ideal gas model for air, determine the turbine efficiency. Problem 2 ... Source: Bahrami, Majid -...

48

Using ductwork to improve supply plenum temperature distribution in underfloor air distribution (UFAD) system  

E-Print Network [OSTI]

air temperature under partial load conditions. More thannecessarily true for all the partial load range, and it mustsystem works with partial loads. Figure 9-1 Configuration#1.

Pasut, Wilmer

2011-01-01T23:59:59.000Z

49

Direct Gas Fired Air Heating For 40 to 50% Fuel Savings  

E-Print Network [OSTI]

the safety aspects of direct gas fired air heating, the most important qUe~tion is whether there would be a harmful build up of carbon monoxide within the building as a result of!the products of combustion being released directly into the air stream.... The unvented infrared heaterslhave long been proven safe from this standpoint. By looking at the fundamental chemistry of combustion! of natural gas, the direct gas-fired make-up air heaters can be shown to produce lower concentrationsII of carbon monoxide...

Searcy, J. A.

1979-01-01T23:59:59.000Z

50

Greenland Ice Sheet Surface Air Temperature Variability: 18402007* JASON E. BOX  

E-Print Network [OSTI]

Greenland Ice Sheet Surface Air Temperature Variability: 1840­2007* JASON E. BOX Byrd Polar, seasonal, and annual mean Greenland ice sheet near- surface air temperatures. Independent observations Greenland in autumn and southern Greenland in winter. Spring trends marked the 1920s warming onset, while

Howat, Ian M.

51

Upper-air temperatures around Greenland: 19642005 Jason E. Box1,2  

E-Print Network [OSTI]

Upper-air temperatures around Greenland: 1964­2005 Jason E. Box1,2 and Ariel E. Cohen2 Received 15 of 12h balloon soundings from six sites surrounding Greenland reveal distinct patterns of tropospheric-air temperatures around Greenland: 1964­ 2005, Geophys. Res. Lett., 33, L12706, doi:10.1029/ 2006GL025723. 1

Howat, Ian M.

52

High-Temperature, Air-Cooled Traction Drive Inverter Packaging  

Broader source: Energy.gov (indexed) [DOE]

Air-Cooled Traction Drive Inverter Packaging Madhu Chinthavali Oak Ridge National Laboratory June 10, 2010 Project ID: APE025 This presentation does not contain any proprietary,...

53

Cu-Cu direct bonding achieved by surface method at room temperature  

SciTech Connect (OSTI)

The metal bonding is a key technology in the processes for the microelectromechanical systems (MEMS) devices and the semiconductor devices to improve functionality and higher density integration. Strong adhesion between surfaces at the atomic level is crucial; however, it is difficult to achieve close bonding in such a system. Cu films were deposited on Si substrates by vacuum deposition, and then, two Cu films were bonded directly by means of surface activated bonding (SAB) at room temperature. The two Cu films, with the surface roughness Ra about 1.3nm, were bonded by using SAB at room temperature, however, the bonding strength was very weak in this method. In order to improve the bonding strength between the Cu films, samples were annealed at low temperatures, between 323 and 473 K, in air. As the result, the Cu-Cu bonding strength was 10 times higher than that of the original samples without annealing.

Utsumi, Jun [Advanced Technology Research Center, Mitsubishi Heavy Industries, Ltd., 1-8-1 Sachiura, Kanazawa-ku, Yokohama 236-8515 (Japan); Ichiyanagi, Yuko, E-mail: yuko@ynu.ac.jp [Department of Physics, Graduate School of Engineering, Yokohama National University, Tokiwadai, Hodogaya, Yokohama 240-8501 (Japan)

2014-02-20T23:59:59.000Z

54

Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger  

DOE Patents [OSTI]

A magnetohydrodynamic (MHD) power generating system in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

Berry, Gregory F. (Naperville, IL); Minkov, Vladimir (Skokie, IL); Petrick, Michael (Joliet, IL)

1988-01-01T23:59:59.000Z

55

Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger  

DOE Patents [OSTI]

A magnetohydrodynamic (MHD) power generating system is described in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

Berry, G.F.; Minkov, V.; Petrick, M.

1981-11-02T23:59:59.000Z

56

Direct control of air gap flux in permanent magnet machines  

DOE Patents [OSTI]

A method and apparatus for field weakening in PM machines uses field weakening coils (35, 44, 45, 71, 72) to produce flux in one or more stators (34, 49, 63, 64), including a flux which counters flux normally produced in air gaps between the stator(s) (34, 49, 63, 64) and the rotor (20, 21, 41, 61) which carries the PM poles. Several modes of operation are introduced depending on the magnitude and polarity of current in the field weakening coils (35, 44, 45, 71, 72). The invention is particularly useful for, but not limited to, the electric vehicle drives and PM generators.

Hsu, John S. (Oak Ridge, TN)

2000-01-01T23:59:59.000Z

57

air ambient temperature: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

It not only impacts the thermal comfort of occupants, but also also greatly affects the energy consumption in air conditioning systems. The lower the indoor... Yao, Y.; Lian, Z.;...

58

ambient air temperature: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

It not only impacts the thermal comfort of occupants, but also also greatly affects the energy consumption in air conditioning systems. The lower the indoor... Yao, Y.; Lian, Z.;...

59

Model Based Sensor System for Temperature Measurement in R744 Air Conditioning Systems  

E-Print Network [OSTI]

The goal is the development of a novel principle for the temperature acquisition of refrigerants in CO2 air conditioning systems. The new approach is based on measuring the temperature inside a pressure sensor, which is also needed in the system. On the basis of simulative investigations of different mounting conditions functional relations between measured and medium temperature will be derived.

Reitz, Sven; Schneider, Peter

2008-01-01T23:59:59.000Z

60

Direct-Expansion Air-Conditioning System Performance in Low Humidity Applications: A Case Study  

E-Print Network [OSTI]

DIRECT-EXPANSION AIR-CONDITIONING SYSTEM PERFORMANCE IN LOW HUMIDITY APPLICATIONS: A CASE STUDY MUKESH K. KHATTAR, P.E. DENNIS KEEBAUGH, P.E. Senior Systems Engineer Senior Research Engineer Florida Solar Energy Center Shenandoah Solar Center... warehouse. The flat gravel roof is exposed to sun. The 16' ceiling is insulated with two inch spray foam. Entrance to the warehouse is through sealed and insulated doors located on the west partition wall. The air -conditioning sys tem on this leased...

Khattar, M. K.; Keebaugh, D.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "direction air temperature" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Optimal Indoor Air Temperature Considering Energy Savings and Thermal Comfort in the Shanghai Area  

E-Print Network [OSTI]

as possible in winter. Meanwhile, indoor thermal comfort should be considered. This paper will establish the optimal indoor air temperature for an air-conditioning system aiming at both energy savings and thermal comfort in the Shanghai area, based on the PMV...

Yao, Y.; Lian, Z.; Hou, Z.; Liu, W.

2006-01-01T23:59:59.000Z

62

Parallel air temperature measurements at the KNMI observatory in De Bilt (the  

E-Print Network [OSTI]

in De Bilt (the Netherlands) May 2003 - June 2005 | March 14, 2011 Page 6 of 56 #12;nal | Parallel air at the KNMI observatory in De Bilt (the Netherlands) May 2003 - June 2005 | March 14, 2011 Page 8 of 56 #12Parallel air temperature measurements at the KNMI observatory in De Bilt (the Netherlands) May 2003

Brandsma, Theo

63

Field test of two high-pressure, direct-contact downhole steam generators. Volume I. Air/diesel system  

SciTech Connect (OSTI)

As a part of the Project DEEP STEAM to develop technology to more efficiently utilize steam for the recovery of heavy oil from deep reservoirs, a field test of a downhole steam generator (DSG) was performed. The DSG burned No. 2 diesel fuel in air and was a direct-contact, high pressure device which mixed the steam with the combustion products and injected the resulting mixture directly into the oil reservoir. The objectives of the test program included demonstration of long-term operation of a DSG, development of operational methods, assessment of the effects of the steam/combustion gases on the reservoir and comparison of this air/diesel DSG with an adjacent oxygen/diesel direct contact generator. Downhole operation of the air/diesel DSG was started in June 1981 and was terminated in late February 1982. During this period two units were placed downhole with the first operating for about 20 days. It was removed, the support systems were slightly modified, and the second one was operated for 106 days. During this latter interval the generator operated for 70% of the time with surface air compressor problems the primary source of the down time. Thermal contact, as evidenced by a temperature increase in the production well casing gases, and an oil production increase were measured in one of the four wells in the air/diesel pattern. Reservoir scrubbing of carbon monoxide was observed, but no conclusive data on scrubbing of SO/sub x/ and NO/sub x/ were obtained. Corrosion of the DSG combustor walls and some other parts of the downhole package were noted. Metallurgical studies have been completed and recommendations made for other materials that are expected to better withstand the downhole combustion environment. 39 figures, 8 tables.

Marshall, B.W.

1983-05-01T23:59:59.000Z

64

Room location (design) in accordance with the sol-air temperature and solar heat gain  

E-Print Network [OSTI]

ROOM LOCATION (DESIGN) IN ACCORDANCE WITH THE SOL-AIR TEMPERATURE AND SOLAR HEAT GAIN A Thesis GARY LYNN PORTER Submitted to the Graduate College of Texas ASM University in parital fulfillment of the requirement for the degree of MASTER... OF SCIENCE May 1977 Major Subject: Meteorology ROOM LOCATION (DESIGN) IN ACCORDANCE WITH THE SOL-AIR TEMPERATURE AND SOLAR HEAT GAIN A Thesis by GARY LYNN PORTER Approved as to style and content by: hairman of Committee) (Head of Department) ( (Q...

Porter, Gary Lynn

1977-01-01T23:59:59.000Z

65

Application of high temperature air heaters to advanced power generation cycles  

SciTech Connect (OSTI)

Recent developments in ceramic composite materials open up the possibility of recuperative air heaters heating air to temperatures well above the feasible with metal tubes. A high temperature air heater (HTAH) has long been recognized as a requirement for the most efficient MHD plants in order to reach high combustor flame temperatures. The application of gas turbines in coal-fired plants of all types has been impeded because of the problems in cleaning exhaust gas sufficiently to avoid damage to the turbine. With a possibility of a HTAH, such plants may become feasible on the basis of air turbine cycles, in which air is compressed and heated in the HTAH before being applied to turbine. The heat exchanger eliminates the need for the hot gas cleanup system. The performance improvement potential of advanced cycles with HTAH application including the air turbine cycle in several variations such as the DOE program on ``Coal-Fired Air Furnace Combined Cycle...,`` variations originated by the authors, and the MHD combined cycle are presented. The status of development of ceramic air heater technology is included.

Thompson, T R [Tennessee Valley Authority, Chattanooga, TN (United States)] [Tennessee Valley Authority, Chattanooga, TN (United States); Boss, W H; Chapman, J N [Tennessee Univ., Tullahoma, TN (United States). Space Inst.] [Tennessee Univ., Tullahoma, TN (United States). Space Inst.

1992-03-01T23:59:59.000Z

66

Electric power generating plant having direct-coupled steam and compressed-air cycles  

DOE Patents [OSTI]

An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

Drost, M.K.

1981-01-07T23:59:59.000Z

67

Electric power generating plant having direct coupled steam and compressed air cycles  

DOE Patents [OSTI]

An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

Drost, Monte K. (Richland, WA)

1982-01-01T23:59:59.000Z

68

Direct retrieval of stratospheric CO2 infrared cooling rate profiles from AIRS data  

E-Print Network [OSTI]

of heating and cooling may be warranted. The largest infrared cooling takes place in the stratosphereDirect retrieval of stratospheric CO2 infrared cooling rate profiles from AIRS data D. R. Feldman,1 infrared cooling rate profiles, originally developed by Liou and Xue (1988) through application

Liou, K. N.

69

Opportunities to Reduce Air-Conditioning Loads Through Lower Cabin Soak Temperatures  

SciTech Connect (OSTI)

Air-conditioning loads can significantly reduce electric vehicle (EV) range and hybrid electric vehicle (HEV) fuel economy. In addition, a new U. S. emissions procedure, called the Supplemental Federal Test Procedure (SFTP), has provided the motivation for reducing the size of vehicle air-conditioning systems in the United States. The SFTP will measure tailpipe emissions with the air-conditioning system operating. If the size of the air-conditioning system is reduced, the cabin soak temperature must also be reduced, with no penalty in terms of passenger thermal comfort. This paper presents the impact of air-conditioning on EV range and HEV fuel economy, and compares the effectiveness of advanced glazing and cabin ventilation. Experimental and modeled results are presented.

Farrington, R.; Cuddy, M.; Keyser, M.; Rugh, J.

1999-07-12T23:59:59.000Z

70

The effect of hardware configuration on the performance of residential air conditioning systems at high outdoor ambient temperatures  

E-Print Network [OSTI]

A study was performed which investigated the effect of hardware configuration on air conditioning cooling system performance at high outdoor temperatures. The initial phase of the investigation involved the testing of ten residential air...

Bain, Joel Alan

1995-01-01T23:59:59.000Z

71

Decadal variations of the relationship between the summer North Atlantic Oscillation and middle East Asian air temperature  

E-Print Network [OSTI]

East Asian air temperature Jianqi Sun,1 Huijun Wang,1 and Wei Yuan2 Received 20 November 2007; revised., 1998]. In turn, it affects upper ocean currents, distribution of sea surface temperature, and strength the summer (July­September) North Atlantic Oscillation (SNAO) and simultaneous East Asian air temperature

72

A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-08nevius.pdf More Documents & Publications Complex System...

73

CO2 CH4 flux Air temperature Soil temperature and Soil moisture, Barrow, Alaska 2013 ver. 1  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This dataset consists of field measurements of CO2 and CH4 flux, as well as soil properties made during 2013 in Areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) measurements of CO2 and CH4 flux made from June to September (ii) Calculation of corresponding Gross Primary Productivity (GPP) and CH4 exchange (transparent minus opaque) between atmosphere and the ecosystem (ii) Measurements of Los Gatos Research (LGR) chamber air temperature made from June to September (ii) measurements of surface layer depth, type of surface layer, soil temperature and soil moisture from June to September.

Margaret Torn

74

GSOD Based Daily Global Mean Surface Temperature and Mean Sea Level Air Pressure (1982-2011)  

SciTech Connect (OSTI)

This data product contains all the gridded data set at 1/4 degree resolution in ASCII format. Both mean temperature and mean sea level air pressure data are available. It also contains the GSOD data (1982-2011) from NOAA site, contains station number, location, temperature and pressures (sea level and station level). The data package also contains information related to the data processing methods

Xuan Shi, Dali Wang

2014-05-05T23:59:59.000Z

75

GSOD Based Daily Global Mean Surface Temperature and Mean Sea Level Air Pressure (1982-2011)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This data product contains all the gridded data set at 1/4 degree resolution in ASCII format. Both mean temperature and mean sea level air pressure data are available. It also contains the GSOD data (1982-2011) from NOAA site, contains station number, location, temperature and pressures (sea level and station level). The data package also contains information related to the data processing methods

Xuan Shi, Dali Wang

76

De Bilt, 2011 | Scientific report; WR 2011-01 Parallel air temperature measurements  

E-Print Network [OSTI]

at the KNMI observatory in De Bilt (the Netherlands) May 2003 - June 2005 | March 14, 2011 Page 6 of 56 #12 observatory in De Bilt (the Netherlands) May 2003 - June 2005 Theo Brandsma #12;#12;Parallel air temperature measurements at the KNMI observatory in De Bilt (the Netherlands) May 2003 - June 2005 Version 1.0 Date March

Haak, Hein

77

Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells  

DOE Patents [OSTI]

A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators. 4 figs.

Kuo, L.J.H.; Singh, P.; Ruka, R.J.; Vasilow, T.R.; Bratton, R.J.

1997-11-11T23:59:59.000Z

78

Computational Fluid Dynamics Analyses on Very High Temperature Reactor Air Ingress  

SciTech Connect (OSTI)

A preliminary computational fluid dynamics (CFD) analysis was performed to understand density-gradient-induced stratified flow in a Very High Temperature Reactor (VHTR) air-ingress accident. Various parameters were taken into consideration, including turbulence model, core temperature, initial air mole-fraction, and flow resistance in the core. The gas turbine modular helium reactor (GT-MHR) 600 MWt was selected as the reference reactor and it was simplified to be 2-D geometry in modeling. The core and the lower plenum were assumed to be porous bodies. Following the preliminary CFD results, the analysis of the air-ingress accident has been performed by two different codes: GAMMA code (system analysis code, Oh et al. 2006) and FLUENT CFD code (Fluent 2007). Eventually, the analysis results showed that the actual onset time of natural convection (~160 sec) would be significantly earlier than the previous predictions (~150 hours) calculated based on the molecular diffusion air-ingress mechanism. This leads to the conclusion that the consequences of this accident will be much more serious than previously expected.

Chang H Oh; Eung S. Kim; Richard Schultz; David Petti; Hyung S. Kang

2009-07-01T23:59:59.000Z

79

Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells  

DOE Patents [OSTI]

A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators.

Kuo, Lewis J. H. (Monroeville, PA); Singh, Prabhakar (Export, PA); Ruka, Roswell J. (Churchill Boro, PA); Vasilow, Theodore R. (Penn Township, PA); Bratton, Raymond J. (Delmont, PA)

1997-01-01T23:59:59.000Z

80

Controlling a rabbet load and air/oil seal temperatures in a turbine  

DOE Patents [OSTI]

During a standard fired shutdown of a turbine, a loaded rabbet joint between the fourth stage wheel and the aft shaft of the machine can become unloaded causing a gap to occur due to a thermal mismatch at the rabbet joint with the bearing blower turned on. An open or unloaded rabbet could cause the parts to move relative to each other and therefore cause the rotor to lose balance. If the bearing blower is turned off during a shutdown, the forward air/oil seal temperature may exceed maximum design practice criterion due to "soak-back." An air/oil seal temperature above the established maximum design limits could cause a bearing fire to occur, with catastrophic consequences to the machine. By controlling the bearing blower according to an optimized blower profile, the rabbet load can be maintained, and the air/oil seal temperature can be maintained below the established limits. A blower profile is determined according to a thermodynamic model of the system.

Schmidt, Mark Christopher (Niskayuna, NY)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "direction air temperature" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

An updated global grid point surface air temperature anomaly data set: 1851--1990  

SciTech Connect (OSTI)

This document presents land-based monthly surface air temperature anomalies (departures from a 1951--1970 reference period mean) on a 5{degree} latitude by 10{degree} longitude global grid. Monthly surface air temperature anomalies (departures from a 1957--1975 reference period mean) for the Antarctic (grid points from 65{degree}S to 85{degree}S) are presented in a similar way as a separate data set. The data were derived primarily from the World Weather Records and the archives of the United Kingdom Meteorological Office. This long-term record of temperature anomalies may be used in studies addressing possible greenhouse-gas-induced climate changes. To date, the data have been employed in generating regional, hemispheric, and global time series for determining whether recent (i.e., post-1900) warming trends have taken place. This document also presents the monthly mean temperature records for the individual stations that were used to generate the set of gridded anomalies. The periods of record vary by station. Northern Hemisphere station data have been corrected for inhomogeneities, while Southern Hemisphere data are presented in uncorrected form. 14 refs., 11 figs., 10 tabs.

Sepanski, R.J.; Boden, T.A.; Daniels, R.C.

1991-10-01T23:59:59.000Z

82

Direct effects: Quantity related to precipitation Direct effects: Quantity related to precipitation and temperature  

E-Print Network [OSTI]

) Adequate and sufficient water supply: (storage, snow pack reservoir and groundwater levels)snow pack temperature extremes, heat waves and heavy precipitation. Precipitation increases in high latitudes and decreases in most sub-tropical land regions. Increases in annual river runoff and water availability

Fay, Noah

83

CHINESE JOURNAL OF GEOPHYSICS Vol.49, No.3, 2006, pp: 588598 REGIONAL DIFFERENCE OF SUMMER AIR TEMPERATURE  

E-Print Network [OSTI]

SURFACE TEMPERATURE SUN Jian-Qi1,2 WANG Hui-Jun1 1 State Key Laboratory of Numerical Modeling, the temporal- spatial distributions of summer air temperature (SAT) are investigated. It is found TEMPERATURE ANOMALIES IN NORTHEAST CHINA AND ITS RELATIONSHIP TO ATMOSPHERIC GENERAL CIRCULATION AND SEA

84

Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes  

E-Print Network [OSTI]

We report what we believe to be the first demonstration of direct bandgap electroluminescence (EL) from Ge/Si heterojunction light-emitting diodes (LEDs) at room temperature. In-plane biaxial tensile strain is used to ...

Sun, Xiaochen

85

Experimental investigation and modeling of a direct-coupled PV/T air collector  

SciTech Connect (OSTI)

Photovoltaic/thermal (PV/T) systems refer to the integration of photovoltaic and solar thermal technologies into one single system, in that both useful heat energy and electricity are produced. The impetus of this paper is to model a direct-coupled PV/T air collector which is designed, built, and tested at a geographic location of Kerman, Iran. In this system, a thin aluminum sheet suspended at the middle of air channel is used to increase the heat exchange surface and consequently improve heat extraction from PV panels. This PV/T system is tested in natural convection and forced convection (with two, four and eight fans operating) and its unsteady results are presented in with and without glass cover cases. A theoretical model is developed and validated against experimental data, where good agreement between the measured values and those calculated by the simulation model were achieved. Comparisons are made between electrical performance of the different modes of operation, and it is concluded that there is an optimum number of fans for achieving maximum electrical efficiency. Also, results show that setting glass cover on photovoltaic panels leads to an increase in thermal efficiency and decrease in electrical efficiency of the system. (author)

Shahsavar, A.; Ameri, M. [Department of Mechanical Engineering, Faculty of Engineering, Shahid Bahonar University, Kerman (Iran, Islamic Republic of); Energy and Environmental Engineering Research Center, Shahid Bahonar University, Kerman (Iran, Islamic Republic of)

2010-11-15T23:59:59.000Z

86

The Influence of Operating Modes, Room Temperature Set Point and Curtain Styles on Energy Consumption of Room Air Conditioner  

E-Print Network [OSTI]

A field investigation was carried out in an office building of Changsha city in winter and summer, the influence of different running modes, curtain styles and room temperature set point on energy consumption of room air conditioner (RAC...

Yu, J.; Yang, C.; Guo, R.; Wu, D.; Chen, H.

2006-01-01T23:59:59.000Z

87

IRRADIATION GROWTH IN ZIRCONIUM AT LOW TEMPERATURES BY DIRECT ATHERMAL DEPOSITION OF VACANCIES AT EXTENDED SINKS  

E-Print Network [OSTI]

IRRADIATION GROWTH IN ZIRCONIUM AT LOW TEMPERATURES BY DIRECT ATHERMAL DEPOSITION OF VACANCIES that at high temperatures (where vacancies are mobile) growth can be accounted for using a combination of : #12 vacancies and self-interstitial atoms (SIAs) as proposed by Woo and Gosele [5,6]. This theory seems

Motta, Arthur T.

88

High-temperature hydrogen-air-steam detonation experiments in the BNL small-scale development apparatus  

SciTech Connect (OSTI)

The Small-Scale Development Apparatus (SSDA) was constructed to provide a preliminary set of experimental data to characterize the effect of temperature on the ability of hydrogen-air-steam mixtures to undergo detonations and, equally important, to support design of the larger scale High-Temperature Combustion Facility (HTCF) by providing a test bed for solution of a number of high-temperature design and operational problems. The SSDA, the central element of which is a 10-cm inside diameter, 6.1-m long tubular test vessel designed to permit detonation experiments at temperatures up to 700K, was employed to study self-sustained detonations in gaseous mixtures of hydrogen, air, and steam at temperatures between 300K and 650K at a fixed initial pressure of 0.1 MPa. Hydrogen-air mixtures with hydrogen composition from 9 to 60 percent by volume and steam fractions up to 35 percent by volume were studied for stoichiometric hydrogen-air-steam mixtures. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air gas mixture temperature, in the range 300K-650K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at any given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The hydrogen-air detonability limits for the 10-cm inside diameter SSDA test vessel, based upon the onset of single-head spin, decreased from 15 percent hydrogen at 300K down to between 9 and 10 percent hydrogen at 650K. The one-dimensional ZND model does a very good job at predicting the overall trends in the cell size data over the range of hydrogen-air-steam mixture compositions and temperature studied in the experiments.

Ciccarelli, G.; Ginsburg, T.; Boccio, J.; Economos, C.; Finfrock, C.; Gerlach, L. [Brookhaven National Lab., Upton, NY (United States); Sato, K.; Kinoshita, M. [Nuclear Power Engineering Corp., Tokyo (Japan)

1994-08-01T23:59:59.000Z

89

Locating Nearby Sources of Air Pollution by Nonparametric Regression of Atmospheric Concentrations on Wind Direction  

E-Print Network [OSTI]

Locating Nearby Sources of Air Pollution by Nonparametric Regression of Atmospheric Concentrations. #12;1 Locating Nearby Sources of Air Pollution by Nonparametric Regression of Atmospheric. * Corresponding author. Submitted to Atmospheric Environment July, 2001. Abstract The relationship

Washington at Seattle, University of

90

Qualitative analysis of Zircaloy-4 cladding air degradation in O2-N2 mixtures at high temperature  

E-Print Network [OSTI]

. Thermogravimetry, optical microscopy, scanning electron microscopy and energy dispersive X-ray spectrometry1 Qualitative analysis of Zircaloy-4 cladding air degradation in O2-N2 mixtures at high temperature Email: M. Lasserre (marina.lasserre@irsn.fr) Keywords: Zircaloy-4; thermogravimetry; high temperature

Boyer, Edmond

91

Design and Control of High Temperature PEM Fuel Cell Systems using Methanol Reformers with Air or Liquid Heat Integration  

E-Print Network [OSTI]

Design and Control of High Temperature PEM Fuel Cell Systems using Methanol Reformers with Air PEM fuel cell systems fuelled by steam reformed methanol. Various fuel cell system solutions exist, they mainly differ depending on the desired fuel used. High temperature PEM (HTPEM) fuel cells offer

Berning, Torsten

92

Measurement of temperature distributions in large pool fires with the use of directional flame thermometers  

SciTech Connect (OSTI)

Temperatures inside the flame zone of large regulatory pool fires measured during tests of radioactive materials packages vary widely with both time and position. Measurements made with several Directional Flame Thermometers, in which a thermocouple is attached to a thin metal sheet that quickly approaches flame temperatures, have been used to construct fire temperature distributions and cumulative probability distributions. As an aid to computer simulations of these large fires, these distributions are presented. The distributions are constructed by sorting fire temperature data into bins 10 C wide. A typical fire temperature distribution curve has a gradual increase starting at about 600 C, with the number of observations increasing to a peak near 1000 C, followed by an abrupt decrease in frequency, with no temperatures observed above 1200 C.

KOSKI,JORMAN A.

2000-05-09T23:59:59.000Z

93

Direct and sequential radiative three-body reaction rates at low temperatures  

E-Print Network [OSTI]

We investigate the low-temperature reaction rates for radiative capture processes of three particles. We compare direct and sequential capture mechanisms and rates using realistic phenomenological parametrizations of the corresponding photodissociation cross sections.Energy conservation prohibits sequential capture for energies smaller than that of the intermediate two-body structure. A finite width or a finite temperature allows this capture mechanism. We study generic effects of positions and widths of two- and three-body resonances for very low temperatures. We focus on nuclear reactions relevant for astrophysics, and we illustrate with realistic estimates for the $\\alpha$-$\\alpha$-$\\alpha$ and $\\alpha$-$\\alpha$-$n$ radiative capture processes. The direct capture mechanism leads to reaction rates which for temperatures smaller than 0.1 GK can be several orders of magnitude larger than those of the NACRE compilation.

E. Garrido; R. de Diego; D. V. Fedorov; A. S. Jensen

2011-08-24T23:59:59.000Z

94

Using ductwork to improve supply plenum temperature distribution in underfloor air distribution (UFAD) system  

E-Print Network [OSTI]

overhead air distribution design(1). 1.3 Thermal comfortS. Under Floor Air Distribution (UFAD) Design Guide. s.l. :load design tool for underfloor air distribution systems.

Pasut, Wilmer

2011-01-01T23:59:59.000Z

95

Prediction of internal temperature swings in direct-gain passive-solar buildings  

SciTech Connect (OSTI)

The diurnal heat capacity method is presented for estimating inside-temperature swings attributable to direct winter solar gain. The procedures are simplified to be suitable for hand analysis, aided by tables of diurnal heat capacity for various materials. The method has been spot checked against computer simulation and has been used successfully by a group of 20 builders in New Mexico to analyze whether temperature swings would be excessive in their designs.

Balcomb, J.D.

1983-01-01T23:59:59.000Z

96

E-Print Network 3.0 - air temperature inversions Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory Collection: Environmental Sciences and Ecology ; Engineering 4 Air Pollution Physics and Chemistry EASCEE 6790 Home Work Assignment No. 1, Air Pollution...

97

Optical gain from the direct gap transition of Ge-on-Si at room temperature  

E-Print Network [OSTI]

We report direct band gap optical gain of tensile strained n+ epitaxial Ge-on-Si at room temperature, which confirms that band-engineered Ge-on-Si is a promising gain medium for monolithic optical amplifiers and lasers on Si.

Liu, Jifeng

98

RNAthermsw: Direct Temperature Simulations for Predicting the Location of RNA Thermometers  

E-Print Network [OSTI]

RNAthermsw: Direct Temperature Simulations for Predicting the Location of RNA Thermometers, Ben-Gurion University, Beer-Sheva, Israel Abstract The mechanism of RNA thermometers is a subject. The detection of RNA thermometers in various genes of interest is valuable as it could lead to the discovery

Barash, Danny

99

Variation in rectal temperature, respiratory rate, and pulse rate of cattle as related to variations in solar radiation, air temperature, wind velocity, and vapor pressure  

E-Print Network [OSTI]

VARIATION IN RECTAL TEMPERATURE, RESPIRATORY RATE, AND PULSE RATE GF CATTLE AS RELATED TO VARIATIONS IN SOLAR RADIATION, AIR TEMPERATURE, WIND VELOCITY, AND VAPOR PRESSURE A Dissertation By Mohammad Fazlur Rahim Quazi Approved as to style... Dissertation By Mohammad Fazlur Rahim tyiazi Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 1955 Major Subject: Genetics ? ?4...

Quazi, Mohammad Fazlur Rahim

1955-01-01T23:59:59.000Z

100

Stress-temperature-lifetime response of nicalon fiber-reinforced SiC composites in air  

SciTech Connect (OSTI)

Time-to-failure tests were conducted in four-point flexure and in air as a function of stress levels and temperatures to study the lifetime response of various Nicalon fiber-reinforced SiC (designated as Nic/SiC) composites with a graphitic interfacial coating. The results indicated that all of the Nic/SiC composites exhibit a similar stress-dependent failure at applied stress greater than a threshold value. In this case, the lifetimes of the composites increased with decrease in both stress level and test temperature. The lifetime of the composites appeared to be relatively insensitive to the thickness of graphitic interface layer and was enhanced somewhat by the addition of oxidation inhibitors. Electron microscopy and oxidation studies indicated that the life of the Nic/SiC composites was governed by the oxidation of the graphitic interfaces and the on of glass(es) in composites due to the oxidation of the fiber and matrix, inhibitor phases.

Lin, Hua-Tay; Becher, P.F.

1996-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "direction air temperature" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The Explorationon the Energy Saving Potential of an Innovative Dual-temperature Air Conditioner and the Mechanism of the Theoretical Mixed Refrigeration Cycl  

E-Print Network [OSTI]

The Exploration on the Energy Saving Potential of an Innovative Dual-temperature Air Conditioner and the Mechanism of the Theoretical Mixed Refrigeration Cycle Zhao Lei, Zhao Xijin, Hu Andu Professor, graduate student, graduate student...-temperature air conditioning system and its corresponding theoretical mixed refrigeration cycle are proposed. This consists of a separate air handling unit and a metal radiation panel as the dual-temperature evaporators, a compressor, a condenser, two thermal...

Zhao,L.; Zhao,X.; Hu,A.

2014-01-01T23:59:59.000Z

102

E-Print Network 3.0 - airworthiness directives air Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

aviation. Airworthiness... formation during flight. Hot-air anti- icing or electro-thermal de-icing systems are some of the means used... to provide ice protection. In this...

103

Seeing the invisible: Direct visualization of therapeutic radiation beams using air scintillation  

SciTech Connect (OSTI)

Purpose: To assess whether air scintillation produced during standard radiation treatments can be visualized and used to monitor a beam in a nonperturbing manner. Methods: Air scintillation is caused by the excitation of nitrogen gas by ionizing radiation. This weak emission occurs predominantly in the 300–430 nm range. An electron-multiplication charge-coupled device camera, outfitted with an f/0.95 lens, was used to capture air scintillation produced by kilovoltage photon beams and megavoltage electron beams used in radiation therapy. The treatment rooms were prepared to block background light and a short-pass filter was utilized to block light above 440 nm. Results: Air scintillation from an orthovoltage unit (50 kVp, 30 mA) was visualized with a relatively short exposure time (10 s) and showed an inverse falloff (r{sup 2} = 0.89). Electron beams were also imaged. For a fixed exposure time (100 s), air scintillation was proportional to dose rate (r{sup 2} = 0.9998). As energy increased, the divergence of the electron beam decreased and the penumbra improved. By irradiating a transparent phantom, the authors also showed that Cherenkov luminescence did not interfere with the detection of air scintillation. In a final illustration of the capabilities of this new technique, the authors visualized air scintillation produced during a total skin irradiation treatment. Conclusions: Air scintillation can be measured to monitor a radiation beam in an inexpensive and nonperturbing manner. This physical phenomenon could be useful for dosimetry of therapeutic radiation beams or for online detection of gross errors during fractionated treatments.

Fahimian, Benjamin; Türkcan, Silvan; Kapp, Daniel S.; Pratx, Guillem, E-mail: pratx@stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305 (United States)] [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305 (United States); Ceballos, Andrew [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)] [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

2014-01-15T23:59:59.000Z

104

Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities. I. Fundamental analysis and diagnostics  

SciTech Connect (OSTI)

The influence of thermal stratification on autoignition at constant volume and high pressure is studied by direct numerical simulation (DNS) with detailed hydrogen/air chemistry with a view to providing better understanding and modeling of combustion processes in homogeneous charge compression-ignition engines. Numerical diagnostics are developed to analyze the mode of combustion and the dependence of overall ignition progress on initial mixture conditions. The roles of dissipation of heat and mass are divided conceptually into transport within ignition fronts and passive scalar dissipation, which modifies the statistics of the preignition temperature field. Transport within ignition fronts is analyzed by monitoring the propagation speed of ignition fronts using the displacement speed of a scalar that tracks the location of maximum heat release rate. The prevalence of deflagrative versus spontaneous ignition front propagation is found to depend on the local temperature gradient, and may be identified by the ratio of the instantaneous front speed to the laminar deflagration speed. The significance of passive scalar mixing is examined using a mixing timescale based on enthalpy fluctuations. Finally, the predictions of the multizone modeling strategy are compared with the DNS, and the results are explained using the diagnostics developed. (author)

Chen, Jacqueline H.; Hawkes, Evatt R.; Sankaran, Ramanan [Reacting Flow Research Department, Combustion Research Facility, Sandia National Laboratories, P.O. Box 969 MS 9051, Livermore, CA 94551-0969 (United States); Mason, Scott D. [Lockheed Martin Corporation, Sunnyvale, CA 94089 (United States); Im, Hong G. [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2125 (United States)

2006-04-15T23:59:59.000Z

105

Parallel air temperature measurements at the KNMI-terrain in De Bilt (the Netherlands) May 2003 April 2005  

E-Print Network [OSTI]

measurements at the KNMI-terrain in De Bilt (the Netherlands) Page 2 #12;Interim report Page 3 Table measurements at the KNMI-terrain in De Bilt (the Netherlands) Page 4 Foreword From May 2003 through April 2005Parallel air temperature measurements at the KNMI-terrain in De Bilt (the Netherlands) May 2003

Stoffelen, Ad

106

Warm Humid Climate: Methodology to Study Air Temperature Distribution: Mobile Phones Base Stations as Viable Alternative for Fixed Points  

E-Print Network [OSTI]

October to March (considered the summer period). The winter period is rainy, with mild temperatures, high relative humidity and the highest wind speed with predominance in the southeast quadrant. In the first hours of the day, mainly, the wind direction... varies south – southwest. The summer period, from October to March is characterized by higher temperatures, lower relative humidity and relatively low wind speeds with southeast predominance, presenting small variations in the direction east...

Araujo, V.; Costa, A.; Labaki, L.

2006-01-01T23:59:59.000Z

107

E-Print Network 3.0 - air surface temperature Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Environmental Sciences and Ecology 40 REGIONAL DYNAMICAL DOWNSCALING OF GISS-ER CLIMATE SIMULATIONS WITH FOCUS ON GULF OF MEXICO STATES Summary: variables: air...

108

E-Print Network 3.0 - air velocity temperature Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Medicine ; Environmental Sciences and Ecology 66 Water Modeling of Steel Flow, Air Entrainment and Filtration Summary: . In general, a certain minimum velocity has to be...

109

Exposure information in environmental health research: Current opportunities and future directions for particulate matter, ozone, and toxic air pollutants  

E-Print Network [OSTI]

urban analysis of air pollution health effects, remainsderived from community air pollution health studies. Recentused to link them, in air pollution health studies including

McKone, Thomas E.

2008-01-01T23:59:59.000Z

110

Development of High-Temperature Air Braze Filler Metals for Use in Two-Step Joining and Sealing Processes  

SciTech Connect (OSTI)

Reactive air brazing (RAB) creates metallic braze joints between oxide surfaces. RAB can be performed in air and can undergo subsequent operation at temperatures up to 900ºC in oxidizing environments. This makes RAB an attractive joining method for creating seals in solid oxide fuel cells (SOFCs) which operate at temperatures between 700 and 850ºC and comprise cathode materials which are intolerant of reducing environments. Many planar SOFC designs require a two-step sealing process. Thus the seal formed during the first step must not melt or soften at the firing temperature of the second step, otherwise its integrity could be compromised. The goal of this study is to investigate the effects of adding Pd to a Ag-CuO RAB to produce a braze composition with a melting temperature high enough that it might be used in the first step of a two-step sealing process with unmodified Ag-CuO RAB used in the second step, thereby making possible a two step reactive air brazing process. Yttria-stabilized zirconia (YSZ) is the substrate of choice in this study in order to simulate the initial sealing step in planar SOFCs which often involves sealing a yttrium-stabilized zirconia (YSZ) electrolyte to a metallic support frame. RAB compositions containing a 15 mol% Pd : 85 mol% Ag alloy with 8 mol% Cu added were found to provide the best combination of wettability, mechanical strength, and melting characteristics for brazing YSZ.

Hardy, John S.; Weil, K. Scott

2006-11-02T23:59:59.000Z

111

The air side performance of extended surface direct expansion cooling coils  

E-Print Network [OSTI]

. The tubes are actually slightly flattened. The tube is 1/4" nominal steel tubing. Fins ara also steel. Drawing is not to scale and not all fins ara shown. 0? CSS FPM C SCS FPM / Wo ~c S p ~s g Mo ISO + 0 IS I So C I IO IL loo 1 Qo 0 So X.... 01507 0. 01460 0. 01375 0 . 01254 1103. 7 1102. 2 1100. 6 1098. 8 1096. 7 1095. 5 1094. 1 1092. 8 1091. 8 TABLE 1 (CONT. ) ~Ent1sll Water per lb. vapor/lb. QT dr air dr air BTU/hr ~ BTU/hr. BTU/hr. 33. 14 32. 32 31. 43 30. 42 29. 25...

Kinney, Robert Clarke

2012-06-07T23:59:59.000Z

112

Temperature Compensated Air/Fuel Ratio Control on a Recuperated Furnace  

E-Print Network [OSTI]

When recuperation is added to a furnace, air/ fuel ratio control seemingly becomes more complicated. Two methods normally used are mass flow control where the fuel pressure or flow is proportional to the mass flow of air or cross-connected control...

Ferri, J. L.

1983-01-01T23:59:59.000Z

113

airs-derived olr temperature: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

charmonium at finite temperature are presented After a discussion about problems for the Maximum Entropy Method applied to finite temperature lattice QCD, I show several results...

114

Initial proof-of-principle for near room temperature Xe and Kr separation from air with MOFs  

SciTech Connect (OSTI)

Materials were developed and tested in support of the U.S. Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Separations and Waste Forms Campaign. Specifically, materials are being developed for the removal of Xenon and krypton from gaseous products of nuclear fuel reprocessing unit operations. During FY 2012, Three Metal organic framework (MOF) structures were investigated in greater detail for the removal and storage of Xe and Kr from air at room temperature. Our breakthrough measurements on Nickel based MOF could capture and separate parts per million levels of Xe from Air (40 ppm Kr, 78% N2, 21% O2, 0.9% Ar, 0.03% CO2). Similarly, the selectivity can be changed from Xe > Kr to Xe < Kr simply by changing the temperature in another MOF. Also for the first time we estimated the cost of the metal organic frameworks in bulk.

Thallapally, Praveen K.; Strachan, Denis M.

2012-06-06T23:59:59.000Z

115

E-Print Network 3.0 - air temperature field Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

K as a function of the inverse applied field and by fitting a straight line Fig... of aerogels a 260-ARG and b 260-ARG-AIR at the indicated ... Source: Ris National Laboratory...

116

Catalytic oxidation of propylene with air at temperatures near 500° FCatalytic oxidation of propylene with air at temperatures near 500°F?  

E-Print Network [OSTI]

(9 ), propane was relatively difficult to oxidise. Using an arbitrary scale where the ease of oxidation of pentane equals 1 , the following values were reported} ethane, 0 .0 0 1 1; propane, 0 .1 ; butane, 0 .5 ; hexane, 7 .5 * *hs numbers refer.... They reported a 15 percent conversion to acrolein and a U peroent conversion to carbon dioxide. This was the lowest temperature at which the oxidation was reported to have been accomplished, and it appeared that the work of the present thesis in the region...

Dunlop, Donald Dunwody

1953-01-01T23:59:59.000Z

117

Pressure &Pressure & TemperatureTemperature  

E-Print Network [OSTI]

to measure atmospheric pressure, and thermometer toprobe to measure atmospheric pressure, and thermometer toprobe to measure atmospheric pressure, and thermometer toprobe to measure atmospheric pressure, and thermometer to measure air temperature.measure air temperature.measure air temperature.measure air temperature

California at Santa Cruz, University of

118

Directions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Directions Where We Are Directions The Bradbury Science Museum is located at 1350 Central Avenue Los Alamos, NM 87544 Los Alamos (elevation 7,355 feet) is perched high atop the...

119

Direct Observation of Room-Temperature Polar Ordering in Colloidal GeTe Nanocrystals  

SciTech Connect (OSTI)

Ferroelectrics and other materials that exhibit spontaneous polar ordering have demonstrated immense promise for applications ranging from non-volatile memories to microelectromechanical systems. However, experimental evidence of polar ordering and effective synthetic strategies for accessing these materials are lacking for low-dimensional nanomaterials. Here, we demonstrate the synthesis of size-controlled nanocrystals of the polar material germanium telluride (GeTe) using colloidal chemistry and provide the first direct evidence of room-temperature polar ordering in nanocrystals less than 5 nm in size using aberration-corrected transmission electron microscopy. Synchrotron x-ray diffraction and Raman studies demonstrate a sizeable polar distortion and a reversible size-dependent polar phase transition in these nanocrystals. The stability of polar ordering in solution-processible nanomaterials suggests an economical avenue to Tbit/in2-density non-volatile memory devices and other applications.

Polking, Mark J.; Zheng, Haimei; Urban, Jeffrey J.; Milliron, Delia J.; Chan, Emory; Caldwell, Marissa A.; Raoux, Simone; Kisielowski, Christian F.; Ager III, Joel W.; Ramesh, Ramamoorthy; Alivisatos, A.P.

2009-12-07T23:59:59.000Z

120

Ignition of syngas/air and hydrogen/air mixtures at low temperatures and high pressures: Experimental data interpretation and kinetic modeling implications  

SciTech Connect (OSTI)

The magnitude of ignition delay observations and homogeneous kinetic calculations seen elsewhere is a result in large measure of departures of the experimental configurations from behavior dominated solely by homogeneous gas phase kinetics. In the regime of interest (higher pressures, lower temperatures), the hydrogen-oxygen chemical induction processes can be significantly perturbed by several nonhomogeneous effects, which include catalytic aberrations. The multiple perturbations that can significantly affect induction chemistry are very difficult to remove in research experiments and nearly impossible to control in engineering applications. The implications for developing lean premixing schemes for advanced syngas gas turbine applications are that designs must consider the inherent presence of these perturbations on ignition delay as well as those that might occur from potential particle contamination of the air stream exiting the compressor, if stimulated flashback into the mixing region is to be precluded.

Dryer, Frederick L.; Chaos, Marcos [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544-5263 (United States)

2008-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "direction air temperature" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Metal-air cell comprising an electrolyte with a room temperature ionic liquid and hygroscopic additive  

DOE Patents [OSTI]

An electrochemical cell comprising an electrolyte comprising water and a hydrophobic ionic liquid comprising positive ions and negative ions. The electrochemical cell also includes an air electrode configured to absorb and reduce oxygen. A hydrophilic or hygroscopic additive modulates the hydrophobicity of the ionic liquid to maintain a concentration of the water in the electrolyte is between 0.001 mol % and 25 mol %.

Friesen, Cody A.; Krishnan, Ramkumar; Tang, Toni; Wolfe, Derek

2014-08-19T23:59:59.000Z

122

Comparative Assessment of Direct Drive High Temperature Superconducting Generators in Multi-Megawatt Class Wind Turbines  

SciTech Connect (OSTI)

This paper summarizes the work completed under the CRADA between NREL and American Superconductor (AMSC). The CRADA combined NREL and AMSC resources to benchmark high temperature superconducting direct drive (HTSDD) generator technology by integrating the technologies into a conceptual wind turbine design, and comparing the design to geared drive and permanent magnet direct drive (PMDD) wind turbine configurations. Analysis was accomplished by upgrading the NREL Wind Turbine Design Cost and Scaling Model to represent geared and PMDD turbines at machine ratings up to 10 MW and then comparing cost and mass figures of AMSC's HTSDD wind turbine designs to theoretical geared and PMDD turbine designs at 3.1, 6, and 10 MW sizes. Based on the cost and performance data supplied by AMSC, HTSDD technology has good potential to compete successfully as an alternative technology to PMDD and geared technology turbines in the multi megawatt classes. In addition, data suggests the economics of HTSDD turbines improve with increasing size, although several uncertainties remain for all machines in the 6 to 10 MW class.

Maples, B.; Hand, M.; Musial, W.

2010-10-01T23:59:59.000Z

123

O{sub 2} rotational temperature measurements in an atmospheric air microdischarge by radar resonance-enhanced multiphoton ionization  

SciTech Connect (OSTI)

Nonintrusive spatially resolved rotational temperature measurements in an atmospheric air microdischarge are presented. The measurements were based on coherent microwave Rayleigh scattering (Radar) from resonance-enhanced multiphoton ionization of molecular oxygen. The open air DC microdischarge source operated in a stable 'normal-glow' mode and pin-to-pin electrodes spaced 1.3 mm apart. The second harmonic of a tunable dye laser beam was focused between the two electrodes and scanned between 286 and 288 nm. Coherent microwave Rayleigh scattering was used to collect the two-photon rotational spectra of O{sub 2} at C{sup 3}{Pi}(v = 2) Leftwards-Arrow X{sup 3}{Sigma}(v Prime = 0) transitions. The Boltzmann plots from analyses of the O{sub 2} rotational lines determined local rotational temperatures at various axial locations between the electrodes. The molecular oxygen rotational temperature varied from {approx}1150 K to {approx}1350 K within the discharge area. The measurements had an accuracy of {approx}{+-}50 K.

Sawyer, Jordan; Wu, Yue; Zhang, Zhili [Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville Tennessee 37996 (United States)] [Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville Tennessee 37996 (United States); Adams, Steven F. [Air Force Research Laboratory (AFRL/RQQE), Wright-Patterson AFB, Ohio 45433-7919 (United States)] [Air Force Research Laboratory (AFRL/RQQE), Wright-Patterson AFB, Ohio 45433-7919 (United States)

2013-06-21T23:59:59.000Z

124

Ozone generation by negative direct current corona discharges in dry air fed coaxial wire-cylinder reactors  

SciTech Connect (OSTI)

An analytical study was made in this paper for calculating the ozone generation by negative dc corona discharges. The corona discharges were formed in a coaxial wire-cylinder reactor. The reactor was fed by dry air flowing with constant rates at atmospheric pressure and room temperature, and stressed by a negative dc voltage. The current-voltage characteristics of the negative dc corona discharges formed inside the reactor were measured in parallel with concentration of the generated ozone under different operating conditions. An empirical equation was derived from the experimental results for calculating the ozone concentration generated inside the reactor. The results, that have been recalculated by using the derived equation, have agreed with the experimental results over the whole range of the investigated parameters, except in the saturation range for the ozone concentration. Therefore, the derived equation represents a suitable criterion for expecting the ozone concentration generated by negative dc corona discharges in dry air fed coaxial wire-cylinder reactors under any operating conditions in range of the investigated parameters.

Yehia, Ashraf [Department of Physics, Faculty of Science, Assiut University, Assiut 71516, Egypt and Department of Physics, College of Science and Humanitarian Studies in Alkharj, Salman bin Abdulaziz University, P.O. Box 83, Alkharj 11942 (Saudi Arabia)] [Department of Physics, Faculty of Science, Assiut University, Assiut 71516, Egypt and Department of Physics, College of Science and Humanitarian Studies in Alkharj, Salman bin Abdulaziz University, P.O. Box 83, Alkharj 11942 (Saudi Arabia); Mizuno, Akira [Department of Environmental and Life Sciences, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580 (Japan)] [Department of Environmental and Life Sciences, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580 (Japan)

2013-05-14T23:59:59.000Z

125

The influence of air temperature inversions on snowmelt and glacier mass-balance simulations, Ammassalik island, SE Greenland  

SciTech Connect (OSTI)

In many applications, a realistic description of air temperature inversions is essential for accurate snow and glacier ice melt, and glacier mass-balance simulations. A physically based snow-evolution modeling system (SnowModel) was used to simulate eight years (1998/99 to 2005/06) of snow accumulation and snow and glacier ice ablation from numerous small coastal marginal glaciers on the SW-part of Ammassalik Island in SE Greenland. These glaciers are regularly influenced by inversions and sea breezes associated with the adjacent relatively low temperature and frequently ice-choked fjords and ocean. To account for the influence of these inversions on the spatiotemporal variation of air temperature and snow and glacier melt rates, temperature inversion routines were added to MircoMet, the meteorological distribution sub-model used in SnowModel. The inversions were observed and modeled to occur during 84% of the simulation period. Modeled inversions were defined not to occur during days with strong winds and high precipitation rates due to the potential of inversion break-up. Field observations showed inversions to extend from sea level to approximately 300 m a.s.l., and this inversion level was prescribed in the model simulations. Simulations with and without the inversion routines were compared. The inversion model produced air temperature distributions with warmer lower elevation areas and cooler higher elevation areas than without inversion routines due to the use of cold sea-breeze base temperature data from underneath the inversion. This yielded an up to 2 weeks earlier snowmelt in the lower areas and up to 1 to 3 weeks later snowmelt in the higher elevation areas of the simulation domain. Averaged mean annual modeled surface mass-balance for all glaciers (mainly located above the inversion layer) was -720 {+-} 620 mm w.eq. y{sup -1} for inversion simulations, and -880 {+-} 620 mm w.eq. y{sup -1} without the inversion routines, a difference of 160 mm w.eq. y{sup -1}. The annual glacier loss for the two simulations was 50.7 x 10{sup 6} m{sup 3} y{sup -1} and 64.4 x 10{sup 6} m{sup 3} y{sup -1} for all glaciers - a difference of {approx}21%. The average equilibrium line altitude (ELA) for all glaciers in the simulation domain was located at 875 m a.s.l. and at 900 m a.s.l. for simulations with or without inversion routines, respectively.

Mernild, Sebastian Haugard [Los Alamos National Laboratory; Liston, Glen [COLORADO STATE UNIV.

2009-01-01T23:59:59.000Z

126

Velocity and temperature distribution of air in the boundary layer of a vertical plate for free-convective heat transfer  

E-Print Network [OSTI]

against the nozzle and clamped to. a stand in such a way that its vertical position could be, set. as desired. Hot-Wire Anemometer A Plow Corporation Model HWB2 hot wire anemometer was used in connection with a single, filament, probe to measure...VELOCITY AND TEMPERATURE DISTRIBUTION OF AIR IN THE BOUNDARY LAYER OF A VERTICAL PLATE FOR FREE-CONVECTIVE HEAT TRANSFER A Thesis By JEAN MAXIME JOSE JULLIENNE Submitted to . the . Graduate School of the Agricultural. and Mechanical. College...

Jullienne, Jean Maxime Jose

2012-06-07T23:59:59.000Z

127

Influence of Shelves on Air Temperature and Velocity in a Supermarket  

E-Print Network [OSTI]

In the sales area of a supermarket, the airflow pattern is different from the general marketplace due to its particularity in shelf layout and system zones. When something generates heat, the influence on velocity fields and temperature fields...

Song, C.; Fang, X.; Tan, Y.

2006-01-01T23:59:59.000Z

128

E-Print Network 3.0 - airs temperature soundings Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

-validation of MIPASENVISAT and GPS-ROCHAMP temperature profiles D. Y. Wang, G. P. Stiller, T. von Clarmann, H... -505-454-3364 Summary This paper presents results from a...

129

Energy Savings in Buildings Using Air Movement and Allowing Floating Temperature in Rooms  

E-Print Network [OSTI]

on and off at the proper times, the intelligent controller calculated temperature limits using a mathematical procedure that determined the percentage of people who would be comfortable in rooms of the building. Simulations showed the annual cost savings...

Spain, S.

1985-01-01T23:59:59.000Z

130

The accuracy of miniature bead thermistors in the measurement of upper air temperature  

E-Print Network [OSTI]

A laboratory study was made of the errors of miniature bead thermistors of 5, 10, and 15 mils nominal diameter when used for the measurement of atmospheric temperature. Although the study was primarily concerned with the ...

Thompson, Donald C. (Donald Charles), 1933-

1967-01-01T23:59:59.000Z

131

Investigation on multi-variable decoupled temperature control system for enamelling machine with heated air circulation  

SciTech Connect (OSTI)

A lots of problems may occur frequently when controlling the temperature of the enamelling machine oven in the real industrial process, such as multi-variable coupled problem. an experimental rig with triple inputs and triple outputs was devised and a simulation modeling was established accordingly in this study,. the temperature control system based on the feedforward compensation algorithm was proposed. Experimental results have shown that the system is of high efficiency, good stability and promising application.

Li, Yang; Qin, Le; Zou, Shipeng; Long, Shijun [School of Information Engineering, Guangdong University of Technology, Guangzhou, 510006 (China)

2014-04-11T23:59:59.000Z

132

Numerical simulation of hourly temperatures at Webb Air Force Base, Texas  

E-Print Network [OSTI]

, with time of year, of the autocorrelation coefficient, and a first-order kharkov chain. Fourier (harmonic) analysis was used extensively in the development of the model and the reverse adjusted normal transformation was used to transform a normal... for by the 1st, 365th, 730th, and 1095th barmonics, 17 Vai~ es of the parameters used to generate the mean hourly temperature. Percent of the variance of the standard devia- tion of hourly temperature, accounted for by the 1st and 36th harmonics. 24...

Hansen, James Edward

1975-01-01T23:59:59.000Z

133

Measurement of gas species, temperatures, coal burnout, and wall heat fluxes in a 200 MWe lignite-fired boiler with different overfire air damper openings  

SciTech Connect (OSTI)

Measurements were performed on a 200 MWe, wall-fired, lignite utility boiler. For different overfire air (OFA) damper openings, the gas temperature, gas species concentration, coal burnout, release rates of components (C, H, and N), furnace temperature, and heat flux and boiler efficiency were measured. Cold air experiments for a single burner were conducted in the laboratory. The double-swirl flow pulverized-coal burner has two ring recirculation zones starting in the secondary air region in the burner. As the secondary air flow increases, the axial velocity of air flow increases, the maxima of radial velocity, tangential velocity and turbulence intensity all increase, and the swirl intensity of air flow and the size of recirculation zones increase slightly. In the central region of the burner, as the OFA damper opening widens, the gas temperature and CO concentration increase, while the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and coal particles ignite earlier. In the secondary air region of the burner, the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and the gas temperature and CO concentration vary slightly. In the sidewall region, the gas temperature, O{sub 2} concentration, and NOx concentration decrease, while the CO concentration increases and the gas temperature varies slightly. The furnace temperature and heat flux in the main burning region decrease appreciably, but increase slightly in the burnout region. The NOx emission decreases from 1203.6 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 0% to 511.7 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 80% and the boiler efficiency decreases from 92.59 to 91.9%. 15 refs., 17 figs., 3 tabs.

Jianping Jing; Zhengqi Li; Guangkui Liu; Zhichao Chen; Chunlong Liu [Harbin Institute of Technology, Harbin (China). School of Energy Science and Engineering

2009-07-15T23:59:59.000Z

134

High variability of Greenland surface temperature over the past 4000 years estimated from trapped air  

E-Print Network [OSTI]

High variability of Greenland surface temperature over the past 4000 years estimated from trapped 10 October 2011; accepted 11 October 2011; published 10 November 2011. [1] Greenland recently is impacting the Greenland ice sheet and in turn accelerating global sealevel rise. Yet, it remains imprecisely

Severinghaus, Jeffrey P.

135

Air service to small communities-directions for the future : final report of the Workshop on Low/Medium Density Air Transportation  

E-Print Network [OSTI]

Introduction: In the decade between 1962 and 1972, certificated air service was deleted at about 250 points in the United States. In some of these cases, the service was no longer needed because of improved highway access ...

Vittek, Joseph F.

1974-01-01T23:59:59.000Z

136

Demonstration of Air-Power-Assist Engine Technology for Clean Combustion and Direct Energy Recovery in Heavy Duty Application  

SciTech Connect (OSTI)

The first phase of the project consists of four months of applied research, starting from September 1, 2005 and was completed by December 31, 2005. During this time, the project team heavily relied on highly detailed numerical modeling techniques to evaluate the feasibility of the APA technology. Specifically, (i) A GT-Power{sup TM}engine simulation model was constructed to predict engine efficiency at various operating conditions. Efficiency was defined based on the second-law thermodynamic availability. (ii) The engine efficiency map generated by the engine simulation was then fed into a simplified vehicle model, which was constructed in the Matlab/Simulink environment, to predict fuel consumption of a refuse truck on a simple collection cycle. (iii) Design and analysis work supporting the concept of retrofitting an existing Sturman Industries Hydraulic Valve Actuation (HVA) system with the modifications that are required to run the HVA system with Air Power Assist functionality. A Matlab/Simulink model was used to calculate the dynamic response of the HVA system. Computer aided design (CAD) was done in Solidworks for mechanical design and hydraulic layout. At the end of Phase I, 11% fuel economy improvement was predicted. During Phase II, the engine simulation group completed the engine mapping work. The air handling group made substantial progress in identifying suppliers and conducting 3D modelling design. Sturman Industries completed design modification of the HVA system, which was reviewed and accepted by Volvo Powertrain. In Phase II, the possibility of 15% fuel economy improvement was shown with new EGR cooler design by reducing EGR cooler outlet temperature with APA engine technology from Air Handling Group. In addition, Vehicle Simulation with APA technology estimated 4 -21% fuel economy improvement over a wide range of driving cycles. During Phase III, the engine experimental setup was initiated at VPTNA, Hagerstown, MD. Air Handling system and HVA system were delivered to VPTNA and then assembly of APA engine was completed by June 2007. Functional testing of APA engine was performed and AC and AM modes testing were completed by October 2007. After completing testing, data analysis and post processing were performed. Especially, the models were instrumental in identifying some of the key issues with the experimental HVA system. Based upon the available engine test results during AC and AM modes, the projected fuel economy improvement over the NY composite cycle is 14.7%. This is close to but slightly lower than the originally estimated 18% from ADVISOR simulation. The APA project group demonstrated the concept of APA technology by using simulation and experimental testing. However, there are still exists of technical challenges to meet the original expectation of APA technology. The enabling technology of this concept, i.e. a fully flexible valve actuation system that can handle high back pressure from the exhaust manifold is identified as one of the major technical challenges for realizing the APA concept.

Hyungsuk Kang; Chun Tai

2010-05-01T23:59:59.000Z

137

Deemed Savings Estimates for Legacy Air Conditioning and WaterHeating Direct Load Control Programs in PJM Region  

SciTech Connect (OSTI)

During 2005 and 2006, the PJM Interconnection (PJM) Load Analysis Subcommittee (LAS) examined ways to reduce the costs and improve the effectiveness of its existing measurement and verification (M&V) protocols for Direct Load Control (DLC) programs. The current M&V protocol requires that a PURPA-compliant Load Research study be conducted every five years for each Load-Serving Entity (LSE). The current M&V protocol is expensive to implement and administer particularly for mature load control programs, some of which are marginally cost-effective. There was growing evidence that some LSEs were mothballing or dropping their DLC programs in lieu of incurring the expense associated with the M&V. This project had several objectives: (1) examine the potential for developing deemed savings estimates acceptable to PJM for legacy air conditioning and water heating DLC programs, and (2) explore the development of a collaborative, regional, consensus-based approach for conducting monitoring and verification of load reductions for emerging load management technologies for customers that do not have interval metering capability.

Goldman, Charles

2007-03-01T23:59:59.000Z

138

Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG  

E-Print Network [OSTI]

Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb and heat sink grease respectively). The dynamics of thermal effects is also presented. PACS 42.55.Xi (Diode-pumped in a diode-end-pumped Yb:YAG crystal, using a calibrated infrared camera, with a 60-µm spatial resolution

Paris-Sud XI, Université de

139

Effects of fuel octane number and inlet air temperature on knock characteristics of a single cylinder engine  

SciTech Connect (OSTI)

A dual sample rate technique has been developed and applied to measuring in-cylinder pressure and its oscillations due to autoignition. The harmonics of in-cylinder oscillations were found in good agreement with those obtained from the solutions of wave equation in a cylindrical container. The time of knock relative to spark timing was almost independent of the knock intensity, fuel octane number, and inlet air temperature. The knock intensity was almost constant up to the spark advance when about 100% of the cycles were knocking, further spark advance resulted in higher knock intensity. The mass fraction of unburned fuel at the time of knock was about 10% and was independent of the frequency of the cycles knocking. These observations indicated that the phenomenon of knock is a single-site autoignition for intermittent knock and multi-site autoignition for severe knocking.

Haghgooie, M.

1990-01-01T23:59:59.000Z

140

Mechanical characterization of metallic materials for high-temperature gas-cooled reactors in air and in helium environments  

SciTech Connect (OSTI)

In the French R and D program for high-temperature gas-cooled reactors (HTGRs), three metallic alloys were studied: steel Chromesco-3 with 2.25% chromium, alloy 800H, and Hastelloy-X. The Chromesco-3 and alloy 800H creep behavior is the same in air and in HTGR atmosphere (helium). The tensile tests of Hastelloy-X specimens reveal that aging has embrittlement and hardening effects up to 700/sup 0/C, but the creep tests at 800/sup 0/C show opposite effects. This particular behavior could be due to induced precipitation by aging and the depletion of hardening elements from the matrix. Tests show a low influence of cobalt content on mechanical properties of Hastelloy-X.

Sainfort, G.; Cappelaere, M.; Gregoire, J.; Sannier, J.

1984-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "direction air temperature" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Direct  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData FilesShape,PhysicsDileepDirac Charge Dynamcs inDirect

142

Direct fired reciprocating engine and bottoming high temperature fuel cell hybrid  

DOE Patents [OSTI]

A system of a fuel cell bottoming an internal combustion engine. The engine exhaust gas may be combined in varying degrees with air and fed as input to a fuel cell. Reformer and oxidizers may be combined with heat exchangers to accommodate rich and lean burn conditions in the engine in peaking and base load conditions without producing high concentrations of harmful emissions.

Geisbrecht, Rodney A. (New Alexandria, PA); Holcombe, Norman T. (McMurray, PA)

2006-02-07T23:59:59.000Z

143

Nanofluid-based receivers for high-temperature, high-flux direct solar collectors  

E-Print Network [OSTI]

Solar power plants with surface receivers have low overall energy conversion efficiencies due to large emissive losses at high temperatures. Alternatively, volumetric receivers promise increased performance because solar ...

Lenert, Andrej

2010-01-01T23:59:59.000Z

144

Nonlocal control of electron temperature in short direct current glow discharge plasma  

SciTech Connect (OSTI)

To demonstrate controlling the electron temperature in nonlocal plasma, experiments have been performed on a short (without positive column) dc glow discharge with a cold cathode by applying different voltages to the conducting discharge wall. The experiments have been performed for low-pressure noble gas discharges. The applied voltage can modify trapping the energetic electrons emitted from the cathode sheath and arising from the atomic and molecular processes in the plasma within the device volume. This phenomenon results in the energetic electrons heating the slow plasma electrons, which consequently modifies the electron temperature. Furthermore, a numerical model of the discharge has demonstrated the electron temperature modification for the above case.

Demidov, V. I. [Department of Optics and Spectroscopy, St. Petersburg State University, St. Petersburg 199034 (Russian Federation); International Laboratory “Nonlocal Plasma in Nanotechnology and Medicine”, ITMO University, Kronverkskiy pr. 49, St. Petersburg 197101 (Russian Federation); Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506 (United States); Kudryavtsev, A. A.; Stepanova, O. M. [Department of Optics and Spectroscopy, St. Petersburg State University, St. Petersburg 199034 (Russian Federation); Kurlyandskaya, I. P. [International Laboratory “Nonlocal Plasma in Nanotechnology and Medicine”, ITMO University, Kronverkskiy pr. 49, St. Petersburg 197101 (Russian Federation); St. Petersburg University of State Fire Service of EMERCOM RF, Murmansk Branch, Murmansk 183040 (Russian Federation)

2014-09-15T23:59:59.000Z

145

The Coordinated Control of a Central Air Conditioning System Based on Variable Chilled Water Temperature and Variable Chilled Water Flow  

E-Print Network [OSTI]

At present, regulation of water flow by means of pump frequency conversion is one of the major methods for power-saving in central air conditioning systems. In this article, optimization regulation for central air conditioning system on the basis...

Liu, J.; Mai, Y.; Liu, X.

2006-01-01T23:59:59.000Z

146

Heat Transfer -2 A pure platinum wire with diameter D = 3 mm and length L = 20 mm is placed outside on a day when air temperature  

E-Print Network [OSTI]

Heat Transfer - 2 A pure platinum wire with diameter D = 3 mm and length L = 20 mm is placed outside on a day when air temperature T = 10o C. The heat transfer coefficient at the wire's surface h equation that includes all heat transfer mechanisms involved in this problem. Write this energy balance

Virginia Tech

147

Methyl Chloride from Direct Methane Partial Oxidation: A High-Temperature Shilov-Like Catalytic System  

SciTech Connect (OSTI)

The intention of this study is to demonstrate and evaluate the scientific and economic feasibility of using special solvents to improve the thermal stability of Pt-catalyst in the Shilov system, such that a high reaction temperature could be achieved. The higher conversion rate (near 100%) of methyl chloride from partial oxidation of methane under the high temperature ({approx} 200 C) without significant Pt0 precipitation has been achieved. High concentration of the Cl- ion has been identified as the key for the stabilization of the Pt-catalysts. H/D exchange measurements indicated that the over oxidation will occur at the elevated temperature, developments of the effective product separation processes will be necessary in order to rationalize the industry-visible CH4 to CH3Cl conversion.

Yongchun Tang; John (Qisheng) Ma

2012-03-23T23:59:59.000Z

148

Impact of Solar Control PVB Glass on Vehicle Interior Temperatures, Air-Conditioning Capacity, Fuel Consumption, and Vehicle Range  

SciTech Connect (OSTI)

The objective of the study was to assess the impact of Saflex1 S-series Solar Control PVB (polyvinyl butyral) configurations on conventional vehicle fuel economy and electric vehicle (EV) range. The approach included outdoor vehicle thermal soak testing, RadTherm cool-down analysis, and vehicle simulations. Thermal soak tests were conducted at the National Renewable Energy Laboratory's Vehicle Testing and Integration Facility in Golden, Colorado. The test results quantified interior temperature reductions and were used to generate initial conditions for the RadTherm cool-down analysis. The RadTherm model determined the potential reduction in air-conditioning (A/C) capacity, which was used to calculate the A/C load for the vehicle simulations. The vehicle simulation tool identified the potential reduction in fuel consumption or improvement in EV range between a baseline and modified configurations for the city and highway drive cycles. The thermal analysis determined a potential 4.0% reduction in A/C power for the Saflex Solar PVB solar control configuration. The reduction in A/C power improved the vehicle range of EVs and fuel economy of conventional vehicles and plug-in hybrid electric vehicles.

Rugh, J.; Chaney, L.; Venson, T.; Ramroth, L.; Rose, M.

2013-04-01T23:59:59.000Z

149

Exposure information in environmental health research: Current opportunities and future directions for particulate matter, ozone, and toxic air pollutants  

SciTech Connect (OSTI)

Understanding and quantifying outdoor and indoor sources of human exposure are essential but often not adequately addressed in health-effects studies for air pollution. Air pollution epidemiology, risk assessment, health tracking and accountability assessments are examples of health-effects studies that require but often lack adequate exposure information. Recent advances in exposure modeling along with better information on time-activity and exposure factors data provide us with unique opportunities to improve the assignment of exposures for both future and ongoing studies linking air pollution to health impacts. In September 2006, scientists from the US Environmental Protection Agency (EPA) and the Centers for Disease Control and Prevention (CDC) along with scientists from the academic community and state health departments convened a symposium on air pollution exposure and health in order to identify, evaluate, and improve current approaches for linking air pollution exposures to disease. This manuscript presents the key issues, challenges and recommendations identified by the exposure working group, who used cases studies of particulate matter, ozone, and toxic air pollutant exposure to evaluate health-effects for air pollution. One of the over-arching lessons of this workshop is that obtaining better exposure information for these different health-effects studies requires both goal-setting for what is needed and mapping out the transition pathway from current capabilities to meeting these goals. Meeting our long-term goals requires definition of incremental steps that provide useful information for the interim and move us toward our long-term goals. Another over-arching theme among the three different pollutants and the different health study approaches is the need for integration among alternate exposure assessment approaches. For example, different groups may advocate exposure indicators, biomonitoring, mapping methods (GIS), modeling, environmental media monitoring, and/or personal exposure modeling. However, emerging research reveals that the greatest progress comes from integration among two or more of these efforts.

McKone, Thomas E.; Ryan, P. Barry; Ozkaynak, Haluk

2007-02-01T23:59:59.000Z

150

A plug and play framework for an HVAC air handling unit and temperature sensor auto recognition technique.  

E-Print Network [OSTI]

??A plug and play framework for an HVAC air handling unit control system is proposed in this study. This is the foundation and the first… (more)

Zhou, Xiaohui

2010-01-01T23:59:59.000Z

151

EA-1892: Direct Final Rule Energy Conservation Standards for Residential Furnaces and Residential Central Air Conditioners & Heat Pumps  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of a proposal to adopt energy conservation standards for various consumer products and certain commercial and industrial equipment, including residential furnaces and residential air conditioners and heat pumps, as required by the Energy Policy and Conservation Act, as amended (42 U.S.C. 6291 et seq.)

152

Energy Efficient Removal of Volatile Organic Compounds (VOCs) and Organic Hazardous Air Pollutants (o-HAPs) from Industrial Waste Streams by Direct Electron Oxidation  

SciTech Connect (OSTI)

This research program investigated and quantified the capability of direct electron beam destruction of volatile organic compounds and organic hazardous air pollutants in model industrial waste streams and calculated the energy savings that would be realized by the widespread adoption of the technology over traditional pollution control methods. Specifically, this research determined the quantity of electron beam dose required to remove 19 of the most important non-halogenated air pollutants from waste streams and constructed a technical and economic model for the implementation of the technology in key industries including petroleum refining, organic & solvent chemical production, food & beverage production, and forest & paper products manufacturing. Energy savings of 75 - 90% and green house gas reductions of 66 - 95% were calculated for the target market segments.

Testoni, A. L.

2011-10-19T23:59:59.000Z

153

The effect of air charge temperature on performance, ignition delay and exhaust emissions of diesel engines using w/o emulsions as fuel  

SciTech Connect (OSTI)

Most of the work performed on the use of water/oil emulsions in diesel engines showed that increasing the water content in the emulsified fuel was effective in reducing NO/sub x/ and soot emissions. Unfortunately, the increase in water content in the emulsified fuel also increases the ignition delay and may cause diesel knock. One way to reduce the ignition delay is to increase the air charge temperature. In this study, the effect of increasing the air charge temperature on ignition delay, performance and exhaust emissions was investigated. The experiments were conducted on a CLR diesel engine using base-line diesel fuel number2 and stabilized macro-emulsions containing 15 percent, 30 percent and 45 percent water by volume.

Afify, E.M.; Korah, N.S.; Dickey, D.W.

1987-01-01T23:59:59.000Z

154

QCD analysis and effective temperature of direct photons in lead-lead collisions at the LHC  

E-Print Network [OSTI]

We present a systematic theoretical analysis of the ALICE measurement of low-$p_T$ direct-photon production in central lead-lead collisions at the LHC with a centre-of-mass energy of $\\sqrt{s_{NN}}=2.76$ TeV. Using next-to-leading order of perturbative QCD, we compute the relative contributions to prompt-photon production from different initial and final states and the theoretical uncertainties coming from independent variations of the renormalisation and factorisation scales, the nuclear parton densities and the fragmentation functions. Based on different fits to the unsubtracted and prompt-photon subtracted ALICE data, we consistently find an exponential, possibly thermal, photon spectrum from the quark-gluon plasma (or hot medium) with slope $T=304\\pm 58$ MeV and $309\\pm64$ MeV at $p_T\\in[0.8;2.2]$ GeV and $p_T\\in[1.5;3.5]$ GeV as well as a power-law ($p_T^{-4}$) behavior for $p_T>4$ GeV as predicted by QCD hard scattering.

M. Klasen; C. Klein-Bösing; F. König; J. P. Wessels

2014-09-11T23:59:59.000Z

155

High-temperature low-cycle fatigue and tensile properties of Hastelloy X and alloy 617 in air and HTGR-helium  

SciTech Connect (OSTI)

Results of strain controlled fatigue and tensile tests are presented for two nickel base solution hardened alloys which are reference structural alloys for use in several high temperature gas cooled reactor concepts. These alloys, Hastelloy X Inconel 617, were tested at temperatures ranging from room temperature to 871/sup 0/C in air and impure helium. Materials were tested in the solution annealed as well as in the pre-aged condition where aging consisted of isothermal exposure at one of several temperatures for periods of up to 20,000 h. Comparisons are also given between the strain controlled fatigue lives of these alloys and several other commonly used alloys all tested at 538/sup 0/C.

Strizak, J.P.; Brinkman, C.R.; Rittenhouse, P.L.

1981-01-01T23:59:59.000Z

156

Small Break Air Ingress Experiment  

SciTech Connect (OSTI)

The small break air-ingress experiment, described in this report, is designed to investigate air-ingress phenomena postulated to occur in pipes in a very high temperature gas-cooled reactor (VHTRs). During this experiment, air-ingress rates were measured for various flow and break conditions through small holes drilled into a pipe of the experimental apparatus. The holes were drilled at right angles to the pipe wall such that a direction vector drawn from the pipe centerline to the center of each hole was at right angles with respect to the pipe centerline. Thus the orientation of each hole was obtained by measuring the included angle between the direction vector of each hole with respect to a reference line anchored on the pipe centerline and pointing in the direction of the gravitational force. Using this reference system, the influence of several important parameters on the air ingress flow rate were measured including break orientation, break size, and flow velocity . The approach used to study the influence of these parameters on air ingress is based on measuring the changes in oxygen concentrations at various locations in the helium flow circulation system as a function of time using oxygen sensors (or detectors) to estimate the air-ingress rates through the holes. The test-section is constructed of a stainless steel pipe which had small holes drilled at the desired locations.

Chang Oh; Eung Soo Kim

2011-09-01T23:59:59.000Z

157

Energy Consumption Estimation for Room Air-conditioners Using Room Temperature Simulation with One-Minute Intervals  

E-Print Network [OSTI]

For the purpose of developing optimized control algorithm for room air-conditioners to ensure their energy efficiency, a short time interval (i.e., one minute) simulation of building thermal performance is necessary because the sampling time...

Wang, F.; Yoshida, H.; Matsumoto, K.

2006-01-01T23:59:59.000Z

158

Technical Paper by T.D. Stark and L.F. Pazmino HIGH TEMPERATURE AIR CHANNEL TESTING OF  

E-Print Network [OSTI]

BONDED PVC GEOMEMBRANE SEAMS __________________________________________________________ ABSTRACT track thermal seams for 0.75 mm thick PVC geomembranes. This objective is accomplished by developing conducting destructive tests. KEYWORDS: PVC Geomembrane, Air Channel Testing, Seams, Quality Assurance

159

Optimizing the Low Temperature Cooling Energy Supply: Experimental Performance of an Absorption Chiller, a Compression Refrigeration Machine and Direct Cooling - a Comparison  

E-Print Network [OSTI]

A strategy to optimize the low temperature cooling energy supply of a newly build office building is discussed against the background of a changing energy system. It is focused on, what production way - Direct Cooling, the Compression Refrigeration...

Uhrhan, S.; Gerber, A.

2012-01-01T23:59:59.000Z

160

air bag parameter: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

air temperatures... conditions. The design of this study was based on the relation- ship of four parameters: air temperature, air velocity, radiant heat, and globe...

Note: This page contains sample records for the topic "direction air temperature" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Direct Electron Heating Observed by Fast Waves in ICRF Range on a Low-Density Low Temperature Tokamak ADITYA  

SciTech Connect (OSTI)

Fast wave electron heating experiments are carried out on Aditya tokamak [R = 0.75 m, a = 0.25m,Bt = 0.75T,ne{approx}1-3E13/cc,Te{approx}250eV] with the help of indigenously developed 200 kW, 20-40 MHz RF heating system. Significant direct electron heating is observed by fast waves in hydrogen plasma with prompt rise in electron temperature with application of RF power and it increases linearly with RF power. A corresponding increase in plasma beta and hence increase in stored diamagnetic energy is also observed in presence of RF. We observe an improvement of energy confinement time from 2-4msec during ohmic heating phase to 3-6msec in RF heating phase. This improvement is within the ohmic confinement regime for the present experiments. The impurity radiation and electron density do not escalate significantly with RF power. The direct electron heating by fast wave in Aditya is also predicted by ion cyclotron resonance heating code TORIC.

Mishra, K.; Kulkarni, S.; Rathi, D.; Varia, A.; Jadav, H.; Parmar, K.; Kadia, B.; Joshi, R.; Srinivas, Y.; Singh, R.; Kumar, S.; Dani, S.; Gayatri, A.; Yogi, R.; Singh, M.; Joisa, Y.; Rao, C.; Kumar, S.; Jha, R.; Manchanda, R. [Institute for Plasma Research, Bhat, Gandhinagar (India)

2011-12-23T23:59:59.000Z

162

Primary zone air proportioner  

DOE Patents [OSTI]

An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.

Cleary, Edward N. G. (San Diego, CA)

1982-10-12T23:59:59.000Z

163

The effect of palladium additions on the solidus/liquidus temperatures and wetting properties of Ag-CuO based air brazes  

SciTech Connect (OSTI)

A new ceramic brazing technique referred to as reactive air brazing (RAB) has recently been developed for potential applications in high temperature devices such as gas concentrators, solid oxide fuel cells, gas turbines, and combustion engines. At present, the technique utilizing a silver-copper oxide system is of great interest. The maximum operating temperature of this system is limited by its eutectic temperature of ~945°C, although in practice the operating temperature will need to be lower. An obvious strategy that can be employed to increase the maximum operating temperature of the braze material is to add a higher melting noble alloying element. In this paper, we report the effects of palladium addition on the melting characteristics of the Ag-CuO system and on the wetting properties of the resulting braze with respect to alumina. It was found that the addition of Pd will cause an increase in the melting temperature of the Ag-CuO braze but possibly at a sacrifice of wetting properties depending on composition.

Darsell, Jens T.; Weil, K. Scott

2007-01-01T23:59:59.000Z

164

Analysis of mixing layer heights inferred from radiosonde, wind profiler, airborne lidar, airborne microwave temperature profiler, and in-situ aircraft data during the Texas 2000 air quality study in Houston, TX  

E-Print Network [OSTI]

The mixing layer (ML) heights inferred from radiosondes, wind profilers, airborne lidar, airborne microwave temperature profiler (MTP), and in-situ aircraft data were compared during the Texas 2000 Air Quality Study in the Houston area...

Smith, Christina Lynn

2005-08-29T23:59:59.000Z

165

Oil and Gas Air Heaters  

E-Print Network [OSTI]

, the relation of hot-air temperature, oil or gas consumption and fresh airflow is determined based on energy equilibrium....

Kou, G.; Wang, H.; Zhou, J.

2006-01-01T23:59:59.000Z

166

Direct Digital Control- A Tool for Energy Management of HVAC Systems  

E-Print Network [OSTI]

Direct digital control (DDC) applied to heating, ventilating, and air-conditioning (HVAC) systems corrects many of the deficiencies of conventional automatic temperature control systems. By applying new control sequences, DDC optimizes HVAC energy...

Swanson, K.

167

Elevated air temperature alters an old-field insect community in a multi-factor climate change experiment  

SciTech Connect (OSTI)

To address how multiple, interacting climate drivers may affect plant-insect community associations, we sampled the insect community from a constructed old-field plant community grown under simultaneous [CO2], temperature, and water manipulation. Insects were identified to morphospecies, assigned to feeding guilds and abundance, richness and evenness quantified. Warming significantly increased Order Thysanoptera abundance and reduced overall morphospecies richness and evenness. Non-metric multidimensional scaling clearly supported the effect of warming on insect community composition. Reductions in richness for herbivores and parasitoids suggest trophic-level effects within the insect community. Analysis of dominant insects demonstrated the effects of warming were limited to a relatively small number of morphospecies. Reported reductions in whole-community foliar N at elevated [CO2] unexpectedly did not result in any effects on herbivores. These results demonstrate climatic warming may alter certain insect communities via effects on insect species most responsive to higher temperature, contributing to a change in community structure.

Villalpando, Sean [Appalachian State University; Williams, Ray [ORNL; Norby, Richard J [ORNL

2009-01-01T23:59:59.000Z

168

Health effects of air pollution: some historical notes.  

E-Print Network [OSTI]

that was his first air pollution health effects committeeand direction of air pollution health effects research inof community air pollution, including health ef- fects, has

Whittenberger, J L

1989-01-01T23:59:59.000Z

169

Variable temperature seat climate control system  

DOE Patents [OSTI]

A temperature climate control system comprises a variable temperature seat, at least one heat pump, at least one heat pump temperature sensor, and a controller. Each heat pump comprises a number of Peltier thermoelectric modules for temperature conditioning the air in a main heat exchanger and a main exchanger fan for passing the conditioned air from the main exchanger to the variable temperature seat. The Peltier modules and each main fan may be manually adjusted via a control switch or a control signal. Additionally, the temperature climate control system may comprise a number of additional temperature sensors to monitor the temperature of the ambient air surrounding the occupant as well as the temperature of the conditioned air directed to the occupant. The controller is configured to automatically regulate the operation of the Peltier modules and/or each main fan according to a temperature climate control logic designed both to maximize occupant comfort during normal operation, and minimize possible equipment damage, occupant discomfort, or occupant injury in the event of a heat pump malfunction.

Karunasiri, Tissa R. (Van Nuys, CA); Gallup, David F. (Pasadena, CA); Noles, David R. (Glendale, CA); Gregory, Christian T. (Alhambra, CA)

1997-05-06T23:59:59.000Z

170

Combustion Air Control  

E-Print Network [OSTI]

calibration and tune-up: ? A measure of combustion efficiency must be selected as a target operating goal for the combustion control system. Possible measures and typical targets include: Stack Gas Excess Air, 15% Stack Gas Opacity, 0.3 RN Stack Gas CO... Fuel Flows ? Preheater Inlet Temperature ? Btu Flow (Fuel Flow ? Preheater Outlet Temperature Controller Measurement) ? Ambient Temperature ? Oxygen in the Stack ? Boiler Master Controller Output ? Opac i ty Normalize the steam, air and fuel flow...

Hughart, C. L.

1979-01-01T23:59:59.000Z

171

Direct exchange interaction of localized spins associated with unpaired sp electrons in Be-doped low-temperature-grown GaAs layers  

SciTech Connect (OSTI)

Beryllium-doped GaAs layers grown at low temperatures by molecular-beam epitaxy contain localized spins associated with unpaired sp electrons of As{sub Ga}{sup +} ions. Interactions of these localized spins are investigated by measuring the magnetization with a superconducting quantum interference device and the peak-to-peak width of electron paramagnetic resonance (EPR) spectra for samples with different spin concentrations ranging from 3 x 10{sup 18} to 2.0 x 10{sup 19} cm{sup -3}. The results show that localized spins in this material antiferromagnetically interact on each other via direct exchange. From the analysis of the temperature dependence and field dependence of the magnetization on the basis of the Curie-Weiss law and the molecular-field approximation, exchange energy of each sample was derived. The dependence of the exchange energy on the concentration of localized spins is reasonably explained by a model of direct exchange, which results from the overlapping of wave functions of unpaired electrons at As{sub Ga}{sup +} ions. The peak-to-peak width of EPR spectra increases with an increase in the spin concentration at low temperatures, whereas it decreases with an increase in the temperature for samples with high spin concentrations. These EPR results also show that significant exchange interactions indeed occur between localized spins in this material. These effects of direct exchange interactions between localized spins can clearly be observed at their average distances of around 4 nm, which implies a considerably large spatial extension of the wave function of an unpaired sp electron around an As{sub Ga}{sup +} ion.

Bae, K. W.; Mohamed, Mohd Ambri; Jung, D. W.; Otsuka, N. [School of Materials Science Japan Advanced Institute of Science and Technology Asahidai 1-1, Nomishi, Ishikawa 923-1292 (Japan)

2011-04-01T23:59:59.000Z

172

Vapor-liquid equilibrium of water-acetone-air at ambient temperatures and pressures. An analysis of different VLE-fitting methods  

SciTech Connect (OSTI)

The availability of accurate equilibrium data is of high importance in chemical engineering practice both for design and research purposes. It appeared that for the gas absorption system water-acetone-air in the range of special interest for absorption and desorption operations, neither literature data nor calculations following UNIFAC gave a sufficient accuracy. An experimental program was set up to determine equilibrium data with an accuracy within 2% for low acetone concentrations (up to 7 wt % gas phase) at ambient temperature (16-30/sup 0/C) and atmospheric pressure (740-860 mmHg). From experiments the activity coefficient at infinite dilution of acetone ..gamma.. is found to be 6.79 (0.01) at 20/sup 0/C and 7.28 (0.01) at 25/sup 0/C, while the total error in ..gamma.. is 1.5%. The equilibrium constant can be calculated from ..gamma.. and shows the same error. The experimental data-fitting with procedures of Margules (two parameters) and Van Laar were successful, but NRTL, Wilson, and UNIQUAC failed, probably because of the small concentration range used.

Lichtenbelt, J.H.; Schram, B.J.

1985-04-01T23:59:59.000Z

173

Air Quality  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Why Air Quality Air Quality To preserve our existing wilderness-area air quality, LANL implements a conscientious program of air monitoring. April 12, 2012 Real-time data...

174

Apparatus and method for direct measurement of coal ash sintering and fusion properties at elevated temperatures and pressures  

DOE Patents [OSTI]

A high-pressure microdilatometer is provided for measuring the sintering and fusion properties of various coal ashes under the influence of elevated pressures and temperatures in various atmospheres. Electrical resistivity measurements across a sample of coal ash provide a measurement of the onset of the sintering and fusion of the ash particulates while the contraction of the sample during sintering is measured with a linear variable displacement transducer for detecting the initiation of sintering. These measurements of sintering in coal ash at different pressures provide a mechanism by which deleterious problems due to the sintering and fusion of ash in various combustion systems can be minimized or obviated.

Khan, M. Rashid (Morgantown, WV)

1990-01-01T23:59:59.000Z

175

An air line carries air at 800 kPa and 80C. An Air line ~ O O C insulated tank initially contains 20C air at a  

E-Print Network [OSTI]

An air line carries air at 800 kPa and 80°C. An Air line ~ O O C insulated tank initially contains 20°C air at a pressure of 90kPa. The valve is opened, and air flows into the tank. Determine the final temperature of the air in the tank and the mass of air that enters the tank if the valve is left

Huang, Haimei

176

Numerical Simulation Study on Transpired Solar Air Collector  

E-Print Network [OSTI]

The unglazed transpired solar air collector is now a well-recognized solar air heater for heating outside air directly. In this article, researchers introduced numerical simulation tools into the solar air collector research area, analyzed...

Wang, C.; Guan, Z.; Zhao, X.; Wang, D.

2006-01-01T23:59:59.000Z

177

High-Temperature Co-electrolysis of Steam and Carbon Dioxide for Direct Production of Syngas; Equilibrium Model and Single-Cell Tests  

SciTech Connect (OSTI)

An experimental study has been completed to assess the performance of single solid-oxide electrolysis cells operating over a temperature range of 800 to 850ºC in the coelectrolysis mode, simultaneously electrolyzing steam and carbon dioxide for the direct production of syngas. The experiments were performed over a range of inlet flow rates of steam, carbon dioxide, hydrogen and nitrogen and over a range of current densities (-0.1 to 0.25 A/cm2) using single electrolyte-supported button electrolysis cells. Steam and carbon dioxide consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation and a gas chromatograph, respectively. Cell operating potentials and cell current were varied using a programmable power supply. Measured values of open-cell potential and outlet gas composition are compared to predictions obtained from a chemical equilibrium coelectrolysis model. Model predictions of outlet gas composition based on an effective equilibrium temperature are shown to agree well with measurements. Cell area-specific resistance values were similar for steam electrolysis and coelectrolysis.

O'Brien, J. E.; Stoots, C. M.; Herring, J. S.; Hartvigsen, J. J.

2007-07-01T23:59:59.000Z

178

Vehicle Technologies Office Merit Review 2014: High-Temperature...  

Broader source: Energy.gov (indexed) [DOE]

High-Temperature Air-Cooled Power Electronics Thermal Design Vehicle Technologies Office Merit Review 2014: High-Temperature Air-Cooled Power Electronics Thermal Design...

179

Problem 7-3: The air enters with a dry-bulb temperature of 50 o F and, at 50% relative humidity, with a wet-  

E-Print Network [OSTI]

cooling water leaves the condenser at To = 8 o F below the temperature of the condensing steam water, leaving the cooling tower and entering the condenser at TCWin = 70 o F, this amount of heat requires a temperature rise in the condenser and corresponding temperature drop in the cooling tower

180

Control of temperature and heat flux in a combustor using coal-derived gas of varying heat content. [Patent application  

SciTech Connect (OSTI)

The present invention is directed to a fuel-air control system for a combustor in which coal-derived gas of varying heat content is used. To maintain the temperature in the combustor at an essentially constant value the fuel-to-air ratio is adjusted by using a temperature actuated variable pressure regulator in the gas feed line to compensate for the variability of the heat content of the gas. The velocity of the products of combustion is maintained at an essentially constant flow rate by controlling the mass flow of the air and fuel through linked valves on the gas and air feed lines.

Loth, J.L.; Nakaishi, C.V.; Carpenter, L.K.; Bird, J.D.

1981-06-03T23:59:59.000Z

Note: This page contains sample records for the topic "direction air temperature" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Mitigation of thermoacoustic instability utilizing steady air injection near the flame anchoring zone  

SciTech Connect (OSTI)

The objective of this work is to investigate the effectiveness of steady air injection near the flame anchoring zone in suppressing thermoacoustic instabilities driven by flame-vortex interaction mechanism. We perform a systematic experimental study which involves using two different configurations of air injection in an atmospheric pressure backward-facing step combustor. The first configuration utilizes a row of micro-diameter holes allowing for air injection in the cross-stream direction just upstream of the step. The second configuration utilizes an array of micro-diameter holes located on the face of the step, allowing for air injection in the streamwise direction. The effects of each of these configurations are analyzed to determine which one is more effective in suppressing thermoacoustic instabilities at different operating conditions. The tests are conducted while varying the equivalence ratio and the inlet temperature. The secondary air temperature is always the same as the inlet temperature. We used pure propane or propane/hydrogen mixtures as fuels. Combustion dynamics are explored through simultaneous pressure and heat release-rate measurements, and high-speed video images. When the equivalence ratio of the reactant mixture is high, it causes the flame to flashback towards the inlet channel. When air is injected in the cross-stream direction, the flame anchors slightly upstream of the step, which suppresses the instability. When air is injected in the streamwise direction near the edge of step, thermoacoustic instability could be eliminated at an optimum secondary air flow rate, which depends on the operating conditions. When effective, the streamwise air injection prevents the shedding of an unsteady vortex, thus eliminating the flame-vortex interaction mechanism and resulting in a compact, stable flame to form near the step. (author)

Murat Altay, H.; Hudgins, Duane E.; Speth, Raymond L.; Annaswamy, Anuradha M.; Ghoniem, Ahmed F. [Massachusetts Institute of Technology, Department of Mechanical Engineering, Cambridge, MA 02139 (United States)

2010-04-15T23:59:59.000Z

182

Sponsored by Air Force Research Laboratory  

E-Print Network [OSTI]

Sponsored by Air Force Research Laboratory Space Vehicles Directorate Directed Energy Directorate PROGRAM Space Scholars and Directed Energy Scholars The Space Vehicles and Directed Energy Directorates Scholars The Phillips Scholars internship offers an edu- cational and fulfilling summer job experience

Piao, Daqing

183

Development of Direct-Use Projects: Preprint  

SciTech Connect (OSTI)

A geothermal direct-use project utilizes a natural resource, a flow of geothermal fluid at elevated temperatures, which is capable of providing heat and/or cooling to buildings, greenhouses, aquaculture ponds, and industrial processes. Geothermal utilization requires matching the varied needs of the user and characteristics of the resource in order to development a successful project. Each application is unique; guidelines are provided for the logical steps required to implement a project. Recommended temperature and flows are suggested for spas and pools, space and district heating, greenhouse and aquaculture pond heating, and industrial applications. Guidelines are provided for selecting the necessary equipment for successfully implementing a direct-use project, including downhole pumps, piping, heat exchangers, and heat convectors. Additionally, the relationship between temperature, flow rate, and the use of heat exchangers to provide heat to a space with hot water or hot air is provided for a number of applications, with suggested 'rules of thumb'.

Lund, J.

2011-01-01T23:59:59.000Z

184

Radial lean direct injection burner  

DOE Patents [OSTI]

A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

2012-09-04T23:59:59.000Z

185

Evaluation of a Local Air Conditioning Duty Cycling Device as a Load Management Tool  

E-Print Network [OSTI]

the air conditioners were controlled. The local control device and the direct control device were both found to reduce demand of the compressor by about 0.65 kW at 100°F ambient temperature. Also, the kW reduction achieved was found to increase with higher...

Schneider, K.; Thedford, M.

1986-01-01T23:59:59.000Z

186

Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology  

SciTech Connect (OSTI)

The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.

Not Available

1993-11-01T23:59:59.000Z

187

Lessons learned in modeling Underfloor Air Distribution system  

E-Print Network [OSTI]

terminal unit (TU) cooling design supply air temperature (due to the low supply airflow at low cooling load conditioncontrol the cooling air flow rate or reheated supply air to

Lee, Kwang Ho; Schiavon, Stefano; Webster, Tom; Bauman, Fred; Feng, Jingjuan; Hoyt, Tyler

2011-01-01T23:59:59.000Z

188

Considering Air Density in Wind Power Production  

E-Print Network [OSTI]

In the wind power production calculations the air density is usually considered as constant in time. Using the CIPM-2007 equation for the density of moist air as a function of air temperature, air pressure and relative humidity, we show that it is worth taking the variation of the air density into account, because higher accuracy can be obtained in the calculation of the power production for little effort.

Farkas, Zénó

2011-01-01T23:59:59.000Z

189

Considering Air Density in Wind Power Production  

E-Print Network [OSTI]

In the wind power production calculations the air density is usually considered as constant in time. Using the CIPM-2007 equation for the density of moist air as a function of air temperature, air pressure and relative humidity, we show that it is worth taking the variation of the air density into account, because higher accuracy can be obtained in the calculation of the power production for little effort.

Zénó Farkas

2011-03-11T23:59:59.000Z

190

KONG, JIAN. Infrared-Based Temperature Measurement in Ceramics Grinding and Diesel Exhaust Aftertreatment Filters. (Under the direction of Albert J. Shih)  

E-Print Network [OSTI]

ABSTRACT KONG, JIAN. Infrared-Based Temperature Measurement in Ceramics Grinding and Diesel Exhaust was used in the applications of temperature measurement in ceramics grinding and diesel exhaust of the temperature distribution on the cavity wall surface in diesel exhaust aftertreatment filters using

Shih, Albert J.

191

Investigation of Feasibility of All-Fresh Air Supply in an All-Air System  

E-Print Network [OSTI]

The feasibility of an all-fresh air supply in an all-air system is investigated in theory, and the problem of AHU-handling air in low efficiency in summer and winter conditions is analyzed. The air supply temperature is almost up to standards when a...

Wang, J.; Yan, Z.

2006-01-01T23:59:59.000Z

192

Air Quality and Emissions Impacts of Heat Island Mitigation Strategies  

E-Print Network [OSTI]

Air Quality and Emissions Impacts of Heat Island Mitigation Strategies ENVIRONMENTAL AREA RESEARCH the temperature of the ground surface and the ambient air. This situation creates areas called urban heat summertime temperatures reduces electricity demand for air conditioning, which lowers air pollution levels

193

air breathing engine: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fuel cells Z June 2011 Available online 14 June 2011 Keywords: Air-breathing PEM fuel cell Temperature effects Air buoyancy a b s t r a c t The impact of temperature on...

194

air breathing engines: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fuel cells Z June 2011 Available online 14 June 2011 Keywords: Air-breathing PEM fuel cell Temperature effects Air buoyancy a b s t r a c t The impact of temperature on...

195

Liquid phase thermal swing chemical air separation  

DOE Patents [OSTI]

A temperature swing absorption separation of oxygen from air is performed with an oxygen acceptor of alkali metal nitrate and nitrite. 2 figs.

Erickson, D.C.

1988-05-24T23:59:59.000Z

196

Liquid phase thermal swing chemical air separation  

DOE Patents [OSTI]

A temperature swing absorption separation of oxygen from air is performed with an oxygen acceptor of alkali metal nitrate and nitrite.

Erickson, Donald C. (Annapolis, MD)

1988-01-01T23:59:59.000Z

197

Energy Efficient Process Heating: Managing Air Flow Kevin Carpenter and Kelly Kissock  

E-Print Network [OSTI]

temperature and decreased combustion gas mass flow rate. The method for calculating savings from preheating flow include minimizing combustion air, preheating combustion air, minimizing ventilation air from minimizing combustion air accounts for improvement in efficiency from increased combustion

Kissock, Kelly

198

Regenerative air heater  

DOE Patents [OSTI]

A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

Hasselquist, Paul B. (Maple Grove, MN); Baldner, Richard (Minnetonka, MN)

1982-01-01T23:59:59.000Z

199

Regenerative air heater  

DOE Patents [OSTI]

A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

Hasselquist, P.B.; Baldner, R.

1980-11-26T23:59:59.000Z

200

High-Compression-Ratio; Atkinson-Cycle Engine Using Low-Pressure Direct Injection and Pneumatic-Electronic Valve Actuation Enabled by Ionization Current and Foward-Backward Mass Air Flow Sensor Feedback  

SciTech Connect (OSTI)

This report describes the work completed over a two and one half year effort sponsored by the US Department of Energy. The goal was to demonstrate the technology needed to produce a highly efficient engine enabled by several technologies which were to be developed in the course of the work. The technologies included: (1) A low-pressure direct injection system; (2) A mass air flow sensor which would measure the net airflow into the engine on a per cycle basis; (3) A feedback control system enabled by measuring ionization current signals from the spark plug gap; and (4) An infinitely variable cam actuation system based on a pneumatic-hydraulic valve actuation These developments were supplemented by the use of advanced large eddy simulations as well as evaluations of fuel air mixing using the KIVA and WAVE models. The simulations were accompanied by experimental verification when possible. In this effort a solid base has been established for continued development of the advanced engine concepts originally proposed. Due to problems with the valve actuation system a complete demonstration of the engine concept originally proposed was not possible. Some of the highlights that were accomplished during this effort are: (1) A forward-backward mass air flow sensor has been developed and a patent application for the device has been submitted. We are optimistic that this technology will have a particular application in variable valve timing direct injection systems for IC engines. (2) The biggest effort on this project has involved the development of the pneumatic-hydraulic valve actuation system. This system was originally purchased from Cargine, a Swedish supplier and is in the development stage. To date we have not been able to use the actuators to control the exhaust valves, although the actuators have been successfully employed to control the intake valves. The reason for this is the additional complication associated with variable back pressure on the exhaust valves when they are opened. As a result of this effort, we have devised a new design and have filed for a patent on a method of control which is believed to overcome this problem. The engine we have been working with originally had a single camshaft which controlled both the intake and exhaust valves. Single cycle lift and timing control was demonstrated with this system. (3) Large eddy simulations and KIVA based simulations were used in conjunction with flow visualizations in an optical engine to study fuel air mixing. During this effort we have devised a metric for quantifying fuel distribution and it is described in several of our papers. (4) A control system has been developed to enable us to test the benefits of the various technologies. This system used is based on Opal-RT hardware and is being used in a current DOE sponsored program.

Harold Schock; Farhad Jaberi; Ahmed Naguib; Guoming Zhu; David Hung

2007-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "direction air temperature" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Effect of Return Air Leakage on Air Conditioner Performance in Hot/Humid Climates  

E-Print Network [OSTI]

An experimental study was conducted to quantify the effect of return air leakage from hot/humid attic spaces on the performance of a residential air conditioner. Tests were conducted in psychrometric facilities where temperatures and humidities...

O'Neal, D. L.; Rodriguez, A.; Davis, M.; Kondepudi, S.

1996-01-01T23:59:59.000Z

202

Demonstration of Air-Power-Assist (APA) Engine Technology for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion and Direct Energy Recovery in Heavy Duty Application Demonstration of Air-Power-Assist (APA) Engine Technology for Clean Combustion and Direct Energy Recovery in...

203

Chapter 22: Compressed Air Evaluation Protocol  

SciTech Connect (OSTI)

Compressed-air systems are used widely throughout industry for many operations, including pneumatic tools, packaging and automation equipment, conveyors, and other industrial process operations. Compressed-air systems are defined as a group of subsystems composed of air compressors, air treatment equipment, controls, piping, pneumatic tools, pneumatically powered machinery, and process applications using compressed air. A compressed-air system has three primary functional subsystems: supply, distribution, and demand. Air compressors are the primary energy consumers in a compressed-air system and are the primary focus of this protocol. The two compressed-air energy efficiency measures specifically addressed in this protocol are: high-efficiency/variable speed drive (VSD) compressor replacing modulating compressor; compressed-air leak survey and repairs. This protocol provides direction on how to reliably verify savings from these two measures using a consistent approach for each.

Benton, N.

2014-11-01T23:59:59.000Z

204

Air Chemistry and Pollution Spring 2014  

E-Print Network [OSTI]

ATOC 3500 Air Chemistry and Pollution Spring 2014 Meeting: T/Th, 12:30 ­ 1:45 am; Duane G1B25 in the news; for example, the quality of the air we breathe directly affects our health. In addition to mitigate the effects of air pollution. Finally, we examine some recent examples of atmospheric chemical

Toohey, Darin W.

205

Air Quality Standards & ATOC/CHEM 5151  

E-Print Network [OSTI]

1 Lecture 22 Air Quality Standards & Control ATOC/CHEM 5151 #12;2 Primary Pollutants Things to reduce air pollution emissions ­ Latest version ­ 1990 (original, 1963) ­ What is an "air pollutant that are directly emitted Nitrogen Oxides (NOx) Hydrocarbons (VOCs) Carbon Monoxide (CO) #12;3 Secondary Pollutants

Toohey, Darin W.

206

Meteorological Effects on Air/Fuel Ratio  

E-Print Network [OSTI]

1. "Temperature Compensat d Air/Fuel Ratio Control on a Recuperated Furnace," by J. L. Ferri. GTE Products Corporation, Towanda, PA, lECTC '83 2. Chemical Engineers Handbook, PerTY and Chilton, 5th ed.., (McGraw Hlln, p. 12-7. 3. "Technology..., E = (100 ... 10) (ill) - 100 = 17.2% excess a . 2 Example 2 A furnace uses recuperators which prehe~t the combustion air to 1200 OF using 30 OF air. WithJlOO OF air, the preheated air temperature will be approxIjrnately 1270 OF, a 70 OF increase...

Ferri, J. L.

1984-01-01T23:59:59.000Z

207

AD : Airworthiness Directive ADC : Air Data Computer  

E-Print Network [OSTI]

Flight Control Unit EFIS : Electronic Flight Instrument System ENG : Engine EPR : Engine Pressure Ratio Mean Sea Level R ALT : Radio Altitude RET : Retract RMI : Radio Magnetic Indicator RWY : Runway SATC

Ladkin, Peter B.

208

Directives Tools  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Useful links and resources for Directives Writers, Directives Point of Contact (DPCs), Subject Matter Experts (SMEs), and Draft Directive Reviewers.

209

Alternatives to Electric Air Conditioning Systems  

E-Print Network [OSTI]

, and exposed to a purge air stream to remove the moisture. The drier air eliminates the need for low evaporator temperatures, allowing the compressor to operate more efficiently, providing only sensible cooling. The synergy of the desiccant/engine chiller... during the summer, including solar gain and high ambient temperatures, the air conditioning system must also handle the heat generated by lighting, personnel, and office equipment. These internal loads dominate in large buildings, especially where...

Lindsay, B. B.; Koplow, M. D.

1988-01-01T23:59:59.000Z

210

Air temperature thresholds for indoor comfort and perceived air quality  

E-Print Network [OSTI]

building, Proceedings of Healthy Buildings 2003 Conference.of the California Healthy Building Study: A Summary, Indoorsurvey, Proceedings of Healthy Buildings 2009, September.

Zhang, Hui; Edward, Arens; Pasut, Wilmer

2012-01-01T23:59:59.000Z

211

Air Quality  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre theAdministratorCFM LEAPAgendaConditioning AirWhy » Air

212

Opportunities for Saving Energy and Improving Air Quality in Urban Heat Islands  

SciTech Connect (OSTI)

World energy use is the main contributor to atmospheric CO2. In 2002, about 7.0 giga metric tons of carbon (GtC) were emitted internationally by combustion of gas, liquid, and solid fuels (CDIAC, 2006), 2 to 5 times the amount contributed by deforestation (Brown et al., 1988). The share of atmospheric carbon emissions for the United States from fossil fuel combustion was 1.6 GtC. Increasing use of fossil fuel and deforestation together have raised atmospheric CO{sub 2} concentration some 25% over the last 150 years. According to global climate models and preliminary measurements, these changes in the composition of the atmosphere have already begun raising the Earth's average temperature. If current energy trends continue, these changes could drastically alter the Earth's temperature, with unknown but potentially catastrophic physical and political consequences. During the last three decades, increased energy awareness has led to conservation efforts and leveling of energy consumption in the industrialized countries. An important byproduct of this reduced energy use is the lowering of CO{sub 2} emissions. Of all electricity generated in the United States, about one-sixth is used to air-condition buildings. The air-conditioning use is about 400 tera-watt-hours (TWh), equivalent to about 80 million metric tons of carbon (MtC) emissions, and translating to about $40 billion (B) per year. Of this $40 B/year, about half is used in cities that have pronounced 'heat islands'. The contribution of the urban heat island to the air-conditioning demand has increased over the last 40 years and it is currently at about 10%. Metropolitan areas in the United States (e.g., Los Angeles, Phoenix, Houston, Atlanta, and New York City) have typically pronounced heat islands that warrant special attention by anyone concerned with broad-scale energy efficiency (HIG, 2006). The ambient air is primarily heated through three processes: direct absorption of solar radiation, convection of heat from hot surfaces, and man-made heat (exhaust from cars, buildings, etc.). Air is fairly transparent to light--the direct absorption of solar radiation in atmospheric air only raises the air temperature by a small amount. Typically about 90% of solar radiation reaches the Earth's surface and then is either absorbed or reflected. The absorbed radiation on the surface increases the surface temperature. And in turn the hot surfaces heat the air. This convective heating is responsible for the majority of the diurnal temperature range. The contribution of man-made heat (e.g., air conditioning, cars) is very small, compared to the heating of air by hot surfaces, except for the downtown high-rise areas.

Akbari, Hashem

2007-07-01T23:59:59.000Z

213

E-Print Network 3.0 - air mass origin Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Yale University Collection: Chemistry 27 Framework for Coupling Room Air Models to Heat Balance Model Load and Energy Calculations (RP-1222) Summary: temperature. The air heat...

214

CSP Tower Air Brayton Combustor  

Broader source: Energy.gov [DOE]

This fact sheet describes a concentrating solar power tower air Brayton combustor project awarded under the DOE's 2012 SunShot CSP R&D award program. The team, led by the Southwest Research Institute, is working to develop an external combustor that allows for the mixing of CSP-heated air with natural gas in hybridized power plants. This project aims to increase the temperature capabilities of the CSP tower air receiver and gas turbine to 1,000ºC and achieve energy conversion efficiencies greater than 50%.

215

Inertial impaction air sampling device  

DOE Patents [OSTI]

An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

Dewhurst, K.H.

1987-12-10T23:59:59.000Z

216

Inertial impaction air sampling device  

DOE Patents [OSTI]

An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry.

Dewhurst, Katharine H. (13150 Wenonah SE. Apt. 727, Albuquerque, NM 87123)

1990-01-01T23:59:59.000Z

217

Inertial impaction air sampling device  

DOE Patents [OSTI]

An inertial impactor is designed which is to be used in an air sampling device for collection of respirable size particles in ambient air. The device may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

Dewhurst, K.H.

1990-05-22T23:59:59.000Z

218

Air Quality: Construction Project Air Permit Requirements  

E-Print Network [OSTI]

Air Quality: Construction Project Air Permit Requirements Department: Chemical and General Safety Program: Air Quality Owner: Program Manager Authority: ES&H Manual, Chapter 30, Air Quality1 All manager or operator must submit the completed form to the air quality program manager before the project

Wechsler, Risa H.

219

ARM - Lesson Plans: Air Density and Temperature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearch Related InformationAcid Rain Outreach Home Room NewsDensity and

220

Burner Designs and Controls for Variable Air Preheat Systems  

E-Print Network [OSTI]

and batch type melting operations resulting in cyclic or variable air preheat temperatures will be discussed. Fuel savings relating to the use of recuperation and various types of fuel/air ratio systems will also be discussed....

Lied, C. R.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "direction air temperature" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Directed Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Directed Energy The Directed Energy Program provides laser systems design, engineering and production for specific applications and missions, experimentally validated...

222

Desiccant Enhanced Evaporative Air-Conditioning (DEVap): Evaluation of a New Concept in Ultra Efficient Air Conditioning  

SciTech Connect (OSTI)

NREL has developed the novel concept of a desiccant enhanced evaporative air conditioner (DEVap) with the objective of combining the benefits of liquid desiccant and evaporative cooling technologies into an innovative 'cooling core.' Liquid desiccant technologies have extraordinary dehumidification potential, but require an efficient cooling sink. DEVap's thermodynamic potential overcomes many shortcomings of standard refrigeration-based direct expansion cooling. DEVap decouples cooling and dehumidification performance, which results in independent temperature and humidity control. The energy input is largely switched away from electricity to low-grade thermal energy that can be sourced from fuels such as natural gas, waste heat, solar, or biofuels.

Kozubal, E.; Woods, J.; Burch, J.; Boranian, A.; Merrigan, T.

2011-01-01T23:59:59.000Z

223

Zero Carryover Liquid-Desiccant Air Conditioner for Solar Applications: Preprint  

SciTech Connect (OSTI)

A novel liquid-desiccant air conditioner that dries and cools building supply air will transform the use of direct-contact liquid-desiccant systems in HVAC applications, improving comfort, air quality, and providing energy-efficient humidity control.

Lowenstein, A.; Slayzak, S.; Kozubal, E.

2006-07-01T23:59:59.000Z

224

Economizer Control Using Mixed Air Enthalpy  

E-Print Network [OSTI]

Enthalpy economizer can theoretically save more energy than temperature based economizer. However, the requirement of outdoor air humidity measurement in the traditional enthalpy economizer control made it impossible. A novel control sequence using...

Feng, J.; Liu, M.; Pang, W.

2007-01-01T23:59:59.000Z

225

Mixed Layer Lateral Eddy Fluxes Mediated by Air-Sea Interaction  

E-Print Network [OSTI]

The modulation of air–sea heat fluxes by geostrophic eddies due to the stirring of temperature at the sea surface is discussed and quantified. It is argued that the damping of eddy temperature variance by such air–sea ...

Shuckburgh, Emily

226

Alpha-environmental continuous air monitor inlet  

DOE Patents [OSTI]

A wind deceleration and protective shroud that provides representative samples of ambient aerosols to an environmental continuous air monitor (ECAM) has a cylindrical enclosure mounted to an input on the continuous air monitor, the cylindrical enclosure having shrouded nozzles located radially about its periphery. Ambient air flows, often along with rainwater flows into the nozzles in a sampling flow generated by a pump in the continuous air monitor. The sampling flow of air creates a cyclonic flow in the enclosure that flows up through the cylindrical enclosure until the flow of air reaches the top of the cylindrical enclosure and then is directed downward to the continuous air monitor. A sloped platform located inside the cylindrical enclosure supports the nozzles and causes any moisture entering through the nozzle to drain out through the nozzles.

Rodgers, John C. (Santa Fe, NM)

2003-01-01T23:59:59.000Z

227

E-Print Network 3.0 - air monitor operating Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& Biological Engineering Summary: ASREC Air temperatures and relative humidity, static pressure, heater, fogger and fan operation... economic stability and profitability...

228

Metal-Air Batteries  

SciTech Connect (OSTI)

Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

2011-08-01T23:59:59.000Z

229

Moving air for comfort  

E-Print Network [OSTI]

Brager, L. Zagreus. 2007, “Air movement preferences observed709-731. 9. Toftum, J. 2004. “Air movement – good or bad? ”Indoor Air 14, pp 40-45. 10. Gong, N. , K. Tham, A. Melikov,

Arens, Edward; Turner, Stephen; Zhang, Hui; Paliaga, Gwelen

2009-01-01T23:59:59.000Z

230

Feasibility of air capture  

E-Print Network [OSTI]

Capturing CO2 from air, referred to as Air Capture, is being proposed as a viable climate change mitigation technology. The two major benefits of air capture, reported in literature, are that it allows us to reduce the ...

Ranjan, Manya

2010-01-01T23:59:59.000Z

231

TEMPERATURE PREDICTION IN DOMESTIC REFRIGERATOR: DETERMINIST AND STOCHASTIC APPROACHES  

E-Print Network [OSTI]

the calculation of air and load temperatures. An analysis of the predicted temperatures was undertaken temperature and thermostat setting, on air and load temperatures in non ventilated domestic refrigerator was studied. A simplified steady state heat transfer model was developed which takes into account heat

Paris-Sud XI, Université de

232

Room air monitor for radioactive aerosols  

DOE Patents [OSTI]

A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-preamplifier combination. 2 figs.

Balmer, D.K.; Tyree, W.H.

1987-03-23T23:59:59.000Z

233

Direct hydrocarbon fuel cells  

DOE Patents [OSTI]

The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

Barnett, Scott A.; Lai, Tammy; Liu, Jiang

2010-05-04T23:59:59.000Z

234

Fusion Engineering and Design 89 (2014) 19891994 Contents lists available at ScienceDirect  

E-Print Network [OSTI]

walls, oxidation of blanket structures at high temperature in air or steam, inventories of tritium bred of module structures at high temperature in air or steam, inventories of tritium bred in or permeating

Abdou, Mohamed

235

Localized temperature stability of low temperature cofired ceramics  

DOE Patents [OSTI]

The present invention is directed to low temperature cofired ceramic modules having localized temperature stability by incorporating temperature coefficient of resonant frequency compensating materials locally into a multilayer LTCC module. Chemical interactions can be minimized and physical compatibility between the compensating materials and the host LTCC dielectrics can be achieved. The invention enables embedded resonators with nearly temperature-independent resonance frequency.

Dai, Steven Xunhu

2013-11-26T23:59:59.000Z

236

AiR surface: AiR surface 1  

E-Print Network [OSTI]

AiR surface: 1 PDA AiR surface 1 1: AiR surface () () 2 [1] [2] 3 AiR surface AiR surface surface surface surface 3.1 surface [3]( 3 ) surface 3.2 surface surface AiR surface 4 AiR surface surface AiR surface: Virtual Touch Panel

Tanaka, Jiro

237

Air Pollution Spring 2010  

E-Print Network [OSTI]

ATS 555 Air Pollution Spring 2010 T Th 11:00 ­ 12:15, NESB 101 Instructor: Prof. Sonia Kreidenweis an understanding of types and sources of air pollution. 2. Examine concentrations of air pollutants and their effects on health and welfare. Review regulations governing air pollution. 3. Examine the meteorological

238

Study of Air Infiltration Energy Consumption  

E-Print Network [OSTI]

SYSTEMATIC ERROR DUE TO THE STEADY-STATE COMBINED MODELS 127 SIMULATION AND NUMERICAL RESULTS 141 APPLICATION 150 SUMMARy 157 METHODOLOGy 158 DIFFERENTIAL EQUATION 159 DISCRETIZATION OF THE DIFFERENTIAL EQUATION 161 EXTERNAL NODE EQUATIONS 164... temperature. Clearly, the room heater does not need to heat the air from the outside temperature to the room temperature because it has already captured part of the conduction heat flowing through the wall. To properly estimate house energy consumption...

Liu, Mingsheng

239

A Compressed Air Reduction Program  

E-Print Network [OSTI]

A COMPRESSED AIR REDUCTION PROGRAM K. Dwight Hawks General Motors Corporation - Ruick-Oldsmobi1e-Cadillac Group Warren, Michigan ABSTRACT The reascn for implementing this program was to assist the plant in Quantifying some of its leaks... in the equipme~t throuqhout the plant and to provide direction as to which leaks are yenerat~ng high uti 1ity costs. The direction is very beneficial in lIlaking maintenance aware of prolill,Pls within equipment .IS \\Iell as notifying them as to whf're thei...

Hawks, K. D.

240

Temperature, Power, and Makespan Aware Dependent Task Scheduling for Data Zheng Li, Li Wang, and Shangping Ren  

E-Print Network [OSTI]

conditioners are used to supply cold air and remove heat from the center. The supplied air must be cold enough of a server, the lower the temperature of cooling air provided by the air conditioner has to be. Unfortunately, as pointed out by Moore [4], lowing the room air conditioner's working temperature degrades its capability

Quan, Gang

Note: This page contains sample records for the topic "direction air temperature" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Directives System  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Department of Energy (DOE) Directives System is the means by which DOE policies, requirements, and responsibilities are developed and communicated throughout the Department. Directives are used to inform, direct, and guide employees in the performance of their jobs, and to enable employees to work effectively within the Department and with agencies, contractors, and the public. Cancels: DOE O 251.1, DOE M 251.1-1

1998-01-30T23:59:59.000Z

242

The Air or Brayton Cycle Solvent Recovery System  

E-Print Network [OSTI]

reduction of the turbine exhaust air temperature. In this manner the system will boot strap itself down to a very low temperature in just a few minutes. I have observed the 8000 CFM system, which will be described a little later, cool from an ambient... condens~ng temperature for many solvents is colder than -50 F. Such low temperatures require relatively complicated freon refri geration systems. This led to development of the Air Cycle System. Fig. 3 shows a simple schematic of the air cycle. A...

Fox, B. J.

243

Direct from CDC Environmental Health  

E-Print Network [OSTI]

environmental health services (i.e., services involving water quality, air quality, waste management, or vector management plans of water supply systems. The team also works on sustainability evalu ation and sanitationDirect from CDC Environmental Health Services Branch Editor's note: NEHA strives to provide up

244

High Energy Efficiency Air Conditioning  

SciTech Connect (OSTI)

This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these values agree well with previous results and computer simulations of Ikon B performance versus R-22. The lower cooling capacity of Ikon B is not a concern unless a particular air conditioner is near its maximum cooling capacity in application. Typically, oversized A/C systems are installed by contractors to cover contingencies. In the extended run with Ikon B, which lasted about 4.5 months at 100 deg F ambient temperature and 68% compressor on time, the air conditioner performed well with no significant loss of energy efficiency. Post-run analysis of the refrigerant, compressor lubricant oil, compressor, compressor outlet tubing, and the filter/dryer showed minor effects but nothing that was considered significant. The project was very successful. All objectives were achieved, and the performance of Ikon B indicates that it can easily be retrofitted into R-22 air conditioners to give 15 - 20% energy savings and a 1 - 3 year payback of retrofit costs depending on location and use. Ikon B has the potential to be a successful commercial product.

Edward McCullough; Patrick Dhooge; Jonathan Nimitz

2003-12-31T23:59:59.000Z

245

Performance of Supply Airflow Entrainment for Particles in an Underfloor Air Distribution System  

E-Print Network [OSTI]

air measurement campaign in Helsinki, Finland 1999?the effect of outdoor air pollution on indoor air. Atmospheric Environment [J].2001;35: 1465?77. [6] C.Y.H. Chao, M.P. Wan. Airflow and air temperature distribution in the occupied region...

Li, C.; Li, N.

2006-01-01T23:59:59.000Z

246

Gravity Effects on Steady Two-Dimensional Partially Premixed MethaneAir Flames  

E-Print Network [OSTI]

cases due to buoyancy- induced entrainment, since advection of air into the outer reaction zone in an opposite direction to the gravity vector, causing air entrainment that enhances the fuel­air mixing andGravity Effects on Steady Two-Dimensional Partially Premixed Methane­Air Flames ZHUANG SHU, CHUN W

Aggarwal, Suresh K.

247

Skin temperature of the sea as determined by radiometer  

E-Print Network [OSTI]

) Differences Temperature Vapor Press Skin Skin Bkt Skin Bkt -Bkt -Air -Air -Air -Air 120100 120200 120400 120500 1 20600 1 20700 1 20800 1 20900 1 21000 130100 130200 130300 130400 130500 130600 130700 130800 131000 131100 . 6235 . 6732.... FORTRAN program. 57 6. Stepwise analysis of error in radiation temperature of the sea. 65 LIST OF FIGURES Number Page 1. Tracks of Cruise 62 -H-10 along which radiation data were obtained, 2. Comparison of i. nfrared emissivities of water vapor. 14...

Boudreau, Robert Donald

2012-06-07T23:59:59.000Z

248

Air-Shower Spectroscopy at horizons  

E-Print Network [OSTI]

Horizontal and Upward air-showers are suppressed by deep atmosphere opacity and by the Earth shadows. In such noise-free horizontal and upward directions rare Ultra High Cosmic rays and rarer neutrino induced air-showers may shine, mostly mediated by resonant PeVs interactions in air or by higher energy Tau Air-showers originated by neutrino tau skimming the Earth. At high altitude (mountains, planes, balloons) the air density is so rarefied that nearly all common air-showers might be observed at their maximal growth at a tuned altitude and directions. The arrival angle samples different distances and the corresponding most probable primary cosmic ray energy. The larger and larger distances (between observer and C.R. interaction) make wider and wider the shower area and it enlarge the probability to be observed (up to three order of magnitude more than vertical showers); the observation of a maximal electromagnetic shower development may amplify the signal by two-three order of magnitude (respect suppressed shower at sea level); the peculiar altitude-angle range may disentangle at best the primary cosmic ray energy and composition. Even from existing mountain observatory the up-going air-showers may trace, above the horizons, PeV-EeV high energy cosmic rays and, below the horizons, PeV-EeV neutrino astronomy: their early signals may be captured in already existing gamma telescopes as Magic at Canarie, while facing the Earth edges during (useless) cloudy nights.

D. Fargion

2005-11-20T23:59:59.000Z

249

Engine Cylinder Temperature Control  

DOE Patents [OSTI]

A method and apparatus for controlling a temperature in a combustion cylinder in an internal combustion engine. The cylinder is fluidly connected to an intake manifold and an exhaust manifold. The method and apparatus includes increasing a back pressure associated with the exhaust manifold to a level sufficient to maintain a desired quantity of residual exhaust gas in the cylinder, and varying operation of an intake valve located between the intake manifold and the cylinder to an open duration sufficient to maintain a desired quantity of fresh air from the intake manifold to the cylinder, wherein controlling the quantities of residual exhaust gas and fresh air are performed to maintain the temperature in the cylinder at a desired level.

Kilkenny, Jonathan Patrick (Peoria, IL); Duffy, Kevin Patrick (Metamora, IL)

2005-09-27T23:59:59.000Z

250

Mountain Home Air Force Base, Idaho Geothermal Resource Assessment and Future Recommendations  

SciTech Connect (OSTI)

The U.S. Air Force is facing a number of challenges as it moves into the future, one of the biggest being how to provide safe and secure energy to support base operations. A team of scientists and engineers met at Mountain Home Air Force Base in early 2011 near Boise, Idaho, to discuss the possibility of exploring for geothermal resources under the base. The team identified that there was a reasonable potential for geothermal resources based on data from an existing well. In addition, a regional gravity map helped identify several possible locations for drilling a new well. The team identified several possible sources of funding for this well—the most logical being to use U.S. Department of Energy funds to drill the upper half of the well and U.S. Air Force funds to drill the bottom half of the well. The well was designed as a slimhole well in accordance with State of Idaho Department of Water Resources rules and regulations. Drilling operations commenced at the Mountain Home site in July of 2011 and were completed in January of 2012. Temperatures increased gradually, especially below a depth of 2000 ft. Temperatures increased more rapidly below a depth of 5500 ft. The bottom of the well is at 5976 ft, where a temperature of about 140°C was recorded. The well flowed artesian from a depth below 5600 ft, until it was plugged off with drilling mud. Core samples were collected from the well and are being analyzed to help understand permeability at depth. Additional tests using a televiewer system will be run to evaluate orientation and directions at fractures, especially in the production zone. A final report on the well exploitation will be forthcoming later this year. The Air Force will use it to evaluate the geothermal resource potential for future private development options at Mountain Home Air Force Base. In conclusion, Recommendation for follow-up efforts include the following:

Joseph C. Armstrong; Robert P. Breckenridge; Dennis L. Nielson; John W. Shervais; Thomas R. Wood

2013-03-01T23:59:59.000Z

251

Directives Help  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

All DOE directives are available through this site. While it may seem overwhelming, given the number of documents, we have provided a number of ways in which you may get to the information you need.

252

Aesculap, Inc. Air Products  

E-Print Network [OSTI]

Aesculap, Inc. Air Products Air Products Foundation Alaric Compliance Services, LLC Alvin H. Butz & Herger, Inc. Sodexo Campus Services Sodexo Inc. and Affiliates Stupp Bros., Inc. Sugarbush Products, Inc

Napier, Terrence

253

General Air Permits (Louisiana)  

Broader source: Energy.gov [DOE]

Any source, including a temporary source, which emits or has the potential to emit any air contaminant requires an air permit. Facilities with potential emissions less than 5 tons per year of any...

254

Healthy Air Act (Maryland)  

Broader source: Energy.gov [DOE]

The Maryland Healthy Air Act was developed with the purpose of bringing Maryland into attainment with the National Ambient Air Quality Standards (NAAQS) for ozone and fine particulate matter by the...

255

Advanced Strategy Guideline: Air Distribution Basics and Duct Design  

SciTech Connect (OSTI)

This report discusses considerations for designing an air distribution system for an energy efficient house that requires less air volume to condition the space. Considering the HVAC system early in the design process will allow adequate space for equipment and ductwork and can result in cost savings. Principles discussed that will maximize occupant comfort include delivery of the proper amount of conditioned air for appropriate temperature mixing and uniformity without drafts, minimization of system noise, the impacts of pressure loss, efficient return air duct design, and supply air outlet placement, as well as duct layout, materials, and sizing.

Burdick, A.

2011-12-01T23:59:59.000Z

256

on man, nature & air pollution  

E-Print Network [OSTI]

on man, nature & air pollution About three decades ago, itand episodes of air pollution the following summer. Wetthe increase in air pollution. This hypothesis generated

Finlayson-Pitts, Barbara J

2008-01-01T23:59:59.000Z

257

Ignition of hydrogen/air mixing layer in turbulent flows  

SciTech Connect (OSTI)

Autoignition of a scalar hydrogen/air mixing layer in homogeneous turbulence is studied using direct numerical simulation. An initial counterflow of unmixed nitrogen-diluted hydrogen and heated air is perturbed by two-dimensional homogeneous turbulence. The temperature of the heated air stream is chosen to be 1,100 K which is substantially higher than the crossover temperature at which the rates of the chain branching and termination reactions become equal. Three different turbulence intensities are tested in order to assess the effect of the characteristic flow time on the ignition delay. For each condition, a simulation without heat release is also performed. The ignition delay determined with and without heat release is shown to be almost identical up to the point of ignition for all of the turbulence intensities tested, and the predicted ignition delays agree well within a consistent error band. It is also observed that the ignition kernel always occurs where hydrogen is focused, and the peak concentration of HO{sub 2} is aligned well with the scalar dissipation rate. The dependence of the ignition delay on turbulence intensity is found to be nonmonotonic. For weak to moderate turbulence the ignition is facilitated by turbulence via enhanced mixing, while for stronger turbulence, whose timescale is substantially smaller than the ignition delay, the ignition is retarded due to excessive scalar dissipation, and hence diffusive loss, at the ignition location. However, for the wide range of initial turbulence fields studied, the variation in ignition delay due to the corresponding variation in turbulence intensity appears to be quite small.

Im, H.G.; Chen, J.H. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility; Law, C.K. [Princeton Univ., NJ (United States). Dept. of Mechanical and Aerospace Engineering

1998-03-01T23:59:59.000Z

258

Air Products effective way  

E-Print Network [OSTI]

PE O A e s a b O T A O ENNST Overview Air Products effective way standard me Departm Shipping has recently y of shipping eans. Air Pro ontainer that es of this pro onduct mark eep accelera eep the cost tilize widely a earch and m m visited Air er needs wer model was cr m approache ms

Demirel, Melik C.

259

Air Quality Chapter Outline  

E-Print Network [OSTI]

Chapter 30 Air Quality Chapter Outline 1 Overview 2 1.1 Hazards / Impacts 2 1.2 Exposure Sources 3 Manual Chapter 30: Air Quality 7 References 20 8 Implementation 21 9 Ownership 22 1 Overview SLAC operations produce a wide range of air emissions. Sources of emissions include standard equipment

Wechsler, Risa H.

260

MAD-AIR  

E-Print Network [OSTI]

with stress- related illness rather than the anwr that spells RELIEF. Air flow in, through ad arourd a house is an important concern in the building we call haw. !lb enhance air flow and change the various corditions or properties of the air, a variety...

Tooley, J. J.; Moyer, N. A.

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "direction air temperature" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Effect of refrigerant charge, duct leakage, and evaporator air flow on the high temerature performance of air conditioners and heat pumps.  

E-Print Network [OSTI]

??An experimental study was conducted to quantify the effect of several installation items on the high outdoor ambient temperature performance of air conditioners. These installation… (more)

Rodriguez, Angel Gerardo

2012-01-01T23:59:59.000Z

262

Air flow effects in the piston ring pack and their implications on oil transport  

E-Print Network [OSTI]

3 different flow regimes of piston blowby air and their influences on oil transport are studied. It is found that air mainly interacts with oil close to the ring gaps and directly below the ring-liner contacts. Geometric ...

Wang, Yuan, S.M. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

263

Design of a continuous fiber ceramic composite heat exchanger for high-temperature, high-pressure applications  

SciTech Connect (OSTI)

A conceptual design of a continuous fiber ceramic composite (CFCC) heat exchanger for high-temperature, high-pressure applications is presented. The CFCC materials under consideration are SiC reinforced with SiC fibers manufactured using the continuous vapor infiltration process and alumina reinforced with SiC or alumina fibers manufactured using the directed metal oxidation process. These composite materials are highly resistant to high-temperature corrosive environment and possess a greater creep strength than metallic materials. Heat exchangers constructed of CFCC material may be utilized for high-temperature, high-pressure applications such as air/gas heaters in advanced energy systems and high-temperature energy recovery systems. This paper presents a design of a gas-to-air CFCC heat exchanger for the high temperature advanced furnace (HITAF) in the high-performance power system (HIPPS). The 1.38 MPa (200 psia) air is heated from 760 C (1,400 F) to 982 C (1,800 F) using the combustion products at 1,650 C (3,000 F). The heat exchanger is of a cross-parallel/counter flow type in which the tube-side air flow makes a combined parallel and counter flow arrangement with a cross-flowing combustion gas in such a way that the maximum CFCC tube temperature will not exceed a 1,260 C (2,300 F) design limit. The main heat transfer mechanism from the external hot gas to the tube-side air is that of gaseous radiation for the first few rows of the tubes, followed by convective heat transfer across the remainder of the tube bundle. The design characteristics of this high-temperature, high-pressure CFCC heat exchanger with supporting thermal, flow, structural, and vibrational analyses are presented in detail in the paper.

Cho, S.M.; Seltzer, A.H.; Narayanan, T.V. [Foster Wheeler Development Corp., Livingston, NJ (United States); Shah, A.C.; Weddell, J.K. [DuPont Lanxide Composites Inc., Newark, DE (United States)

1996-12-31T23:59:59.000Z

264

Air to Air Communication Protocol Arjan Durresi1  

E-Print Network [OSTI]

1 Air to Air Communication Protocol Arjan Durresi1 , Vamsi Paruchuri1 , Leonard Barolli2 and Raj. Louis, MO 63130, USA 314-935-4963, jain@cse.wustl.edu Abstract--We present Air to Air Communication (AAC........................................................2 3. AIR TO AIR COMMUNICATION..............................3 4. SIMULATIONS

Jain, Raj

265

ORIGINAL ARTICLE Ambient Air Pollution  

E-Print Network [OSTI]

ORIGINAL ARTICLE Ambient Air Pollution and Cardiovascular Emergency Department Visits Kristi Busico ambient air pollutants and cardiovascular disease (CVD), the roles of the physicochemical components the relation between ambient air pollution and cardiovascular conditions using ambient air quality data

Mulholland, James A.

266

Direct Liquid Cooling for Electronic Equipment  

SciTech Connect (OSTI)

This report documents a demonstration of an electronic--equipment cooling system in the engineering prototype development stage that can be applied in data centers. The technology provides cooling by bringing a water--based cooling fluid into direct contact with high--heat--generating electronic components. This direct cooling system improves overall data center energy efficiency in three ways: High--heat--generating electronic components are more efficiently cooled directly using water, capturing a large portion of the total electronic equipment heat generated. This captured heat reduces the load on the less--efficient air--based data center room cooling systems. The combination contributes to the overall savings. The power consumption of the electronic equipment internal fans is significantly reduced when equipped with this cooling system. The temperature of the cooling water supplied to the direct cooling system can be much higher than that commonly provided by facility chilled water loops, and therefore can be produced with lower cooling infrastructure energy consumption and possibly compressor-free cooling. Providing opportunities for heat reuse is an additional benefit of this technology. The cooling system can be controlled to produce high return water temperatures while providing adequate component cooling. The demonstration was conducted in a data center located at Lawrence Berkeley National Laboratory in Berkeley, California. Thirty--eight servers equipped with the liquid cooling system and instrumented for energy measurements were placed in a single rack. Two unmodified servers of the same configuration, located in an adjacent rack, were used to provide a baseline. The demonstration characterized the fraction of heat removed by the direct cooling technology, quantified the energy savings for a number of cooling infrastructure scenarios, and provided information that could be used to investigate heat reuse opportunities. Thermal measurement data were used with data center energy use modeling software to estimate overall site energy use. These estimates show that an overall data center energy savings of approximately 20 percent can be expected if a center is retrofitted as specified in the models used. Increasing the portion of heat captured by this technology is an area suggested for further development.

Coles, Henry; Greenberg, Steve

2014-03-01T23:59:59.000Z

267

atmospheric pressure air: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and power for a given heat transfer capability and ambient temperature in an air motorcompressor to achieve a given pressure ratio. It is shown that the optimal frontier is...

268

Reducing Air-Conditioning System Energy Using a PMV Index  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China Maximize Comfort: Temperature, Humidity and IAQ Vol.I-4-1 Reducing Air-Conditioning System Energy Using a PMV Index Hui Li Qingfan Zhang Associate professor...

Li, H.; Zhang, Q.

2006-01-01T23:59:59.000Z

269

Nuclear tanker producing liquid fuels from air and water  

E-Print Network [OSTI]

Emerging technologies in CO? air capture, high temperature electrolysis, microchannel catalytic conversion, and Generation IV reactor plant systems have the potential to create a shipboard liquid fuel production system ...

Galle-Bishop, John Michael

2011-01-01T23:59:59.000Z

270

air heat pump: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: In a double stage-coupling heat pump, comprising an air source and water loop heat pump, the 1320 ? low temperature water is supplied to the water loop heat pump unit....

271

Trends in wetting behavior for Ag–CuO braze alloys on Ba0.5Sr0.5Co0.8Fe0.2O(3??) at elevated temperatures in air  

SciTech Connect (OSTI)

Ba0.5Sr0.5Co0.8Fe0.2O(3-?? (BSCF) is a potential oxygen separation membrane material for advanced coal based power plants. For this application, BSCF must be joined to a metal. In the current study, Ag-CuO, a reactive air brazing (RAB) alloy was evaluated for brazing BSCF. In-situ contact angle tests were performed on BSCF using Ag-CuO binary mixtures at 950 and 1000°C and the interfacial microstructures were evaluated. Wetting contact angles (?<90°) were obtained at short times at 950°C and the contact angles remained constant at 1000°C for 1, 2 and 8 mol% CuO contents. Microstructural analysis revealed the dissolution of copper oxide into the BSCF matrix to form copper-cobalt-oxygen rich dissolution products along the BSCF grain boundary. The formation of a thick interfacial reaction product layer and ridging at the sessile drop triple point indicate that the reaction kinetics are very rapid and that it will require careful process control to obtain the desired thin but continuous interfacial product layer.

Joshi, Vineet V.; Meier, Alan; Darsell, Jens T.; Weil, K. Scott; Bowden, Mark E.

2013-10-01T23:59:59.000Z

272

Improving Glass Walls Thermal Resistance In Air-Conditioned Buildings  

E-Print Network [OSTI]

The solar radiation through an air conditioned building depends on what is called the building envelope. Building envelope consists of the surfaces that separate the inside from the building outdoors. Area, direction, and specifications of glass...

Galal, T.; Kulaib, A. M.; Alajmi, R.; Al-Ansary. A; Abuzaid, M.

2010-01-01T23:59:59.000Z

273

E-Print Network 3.0 - air intake shaft Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

elevator shaft pressurization for smoke control Summary: a net positive. In physical terms, air is being entrained into the shaft on lower floors and forced out... temperature...

274

Total hemispherical emittance measured at high temperatures by the calorimetric method  

SciTech Connect (OSTI)

A calorimetric vacuum emissometer (CVE) capable of measuring total hemispherical emittance of surfaces at elevated temperatures was designed, built, and tested. Several materials with a wide range of emittances were measured in the CVE between 773 to 923 K. These results were compared to values calculated from spectral emittance curves measured in a room temperature Hohlraum reflectometer and in an open-air elevated temperature emissometer. The results differed by as much as 0.2 for some materials but were in closer agreement for the more highly-emitting, diffuse-reflecting samples. The differences were attributed to temperature, atmospheric, and directional effects, and errors in the Hohlraum and emissometer measurements ({+-} 5 percent). The probable error of the CVE measurements was typically less than 1 percent.

DiFilippo, F. [Case Western Reserve Univ., Cleveland, OH (United States); Mirtich, M.J.; Banks, B.A. [Lewis Research Center, Cleveland, OH (United States); Stidham, C.; Kussmaul, M. [Cleveland State Univ., OH (United States)

1994-09-01T23:59:59.000Z

275

Exploration and Resource Assessment at Mountain Home Air Force Base, Idaho Using an Integrated Team Approach  

SciTech Connect (OSTI)

The U.S. Air Force is facing a number of challenges as it moves into the future, one of the biggest being how to provide safe and secure energy to support base operations. A team of scientists and engineers met at Mountain Home Air Force Base near Boise, Idaho, to discuss the possibility of exploring for geothermal resources under the base. The team identified that there was a reasonable potential for geothermal resources based on data from an existing well. In addition, a regional gravity map helped identify several possible locations for drilling a new well. The team identified several possible sources of funding for this well—the most logical being to use U.S. Department of Energy funds to drill the upper half of the well and U.S. Air Force funds to drill the bottom half of the well. The well was designed as a slimhole well in accordance with State of Idaho Department of Water Resources rules and regulations. Drilling operations commenced at the Mountain Home site in July of 2011 and were completed in January of 2012. Temperatures increased gradually, especially below a depth of 2000 ft. Temperatures increased more rapidly below a depth of 5500 ft. The bottom of the well is at 5976 ft, where a temperature of about 140°C was recorded. The well flowed artesian from a depth below 5600 ft, until it was plugged off with drilling mud. Core samples were collected from the well and are being analyzed to help understand permeability at depth. Additional tests using a televiewer system will be run to evaluate orientation and directions at fractures, especially in the production zone. A final report on the well exploitation will be forthcoming later this year. The Air Force will use it to evaluate the geothermal resource potential for future private development options at Mountain Home AFB.

Joseph C. Armstrong; Robert P. Breckenridge; Dennis L. Nielson; John W. Shervais; Thomas R. Wood

2012-10-01T23:59:59.000Z

276

Personal continuous air monitor  

DOE Patents [OSTI]

A personal continuous air monitor capable of giving immediate warning of the presence of radioactivity has a filter/detector head to be worn in the breathing zone of a user, containing a filter mounted adjacent to radiation detectors, and a preamplifier. The filter/detector head is connected to a belt pack to be worn at the waist or on the back of a user. The belt pack contains a signal processor, batteries, a multichannel analyzer, a logic circuit, and an alarm. An air pump also is provided in the belt pack for pulling air through the filter/detector head by way of an air tube.

Morgan, Ronald G. (Los Alamos, NM); Salazar, Samuel A. (Albuquerque, NM)

2000-01-01T23:59:59.000Z

277

Environmental Quality: Air (Louisiana)  

Broader source: Energy.gov [DOE]

The Department of Environmental Quality regulates air quality in Louisiana. The Department has an established a fee system for funding the monitoring, investigation and other activities required...

278

Net weekly variation of vertical temperature structure in the upper ocean layers (Autumn, North Atlantic)  

E-Print Network [OSTI]

LIBRARY A a M COLLEGE OF TEXAS HET MEEKLY VARIATION OF VERTICAL TEMPERATURE STRUCTURE IN THE UPPER OCEAN LAYERS (AUTUMN, NORTH ATIANTIC) A Thesis RCHERT ALLEN GILCREST Submitted to the Graduate School of the Agricultural and Mechanical... Temperature in the mixed layer Temperature in the mixed layer at the beginning of a week TD 4500 1" 500 Pw p s Ocean surface temperature Temperature at the level of no seasonal ohange Air temperature Air temperature at anemometer height Dew point...

Gilcrest, Robert A

2012-06-07T23:59:59.000Z

279

International MODIS and AIRS processing package: AIRS products and applications  

E-Print Network [OSTI]

International MODIS and AIRS processing package: AIRS products and applications Elisabeth Weisz presented and discussed in this paper demonstrate that the IMAPP AIRS retrieval product is rigorously parameters from the operational AIRS L2 product and data from other instruments. Keywords: AIRS, IMAPP

Li, Jun

280

AIR SEALING Seal air leaks and save energy!  

E-Print Network [OSTI]

AIR SEALING Seal air leaks and save energy! W H A T I S A I R L E A K A G E ? Ventilation is fresh air that enters a house in a controlled manner to exhaust excess moisture and reduce odors and stuffiness. Air leakage, or infiltration, is outside air that enters a house uncontrollably through cracks

Oak Ridge National Laboratory

Note: This page contains sample records for the topic "direction air temperature" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Recirculating electric air filter  

DOE Patents [OSTI]

An electric air filter cartridge has a cylindrical inner high voltage electrode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

Bergman, W.

1985-01-09T23:59:59.000Z

282

Portable oven air circulator  

DOE Patents [OSTI]

A portable air circulating apparatus for use in cooking ovens which is used to create air currents in the oven which transfer heat to cooking foodstuffs to promote more rapid and more uniform cooking or baking, the apparatus including a motor, fan blade and housing of metallic materials selected from a class of heat resistant materials.

Jorgensen, Jorgen A. (Bloomington, MN); Nygren, Donald W. (Minneapolis, MN)

1983-01-01T23:59:59.000Z

283

Compressed Air System Optimization  

E-Print Network [OSTI]

Several years ago I went to a gas station and noticed that my car's tires were low on air. I saw the gas station had an air compressor, but it cost a quarter to use the compressor. I paid my quarter and used the compressor. I realized...

Aegerter, R.

284

Flame Propagation of Butanol Isomers/Air Mixtures  

SciTech Connect (OSTI)

An experimental and computational study was conducted on the propagation of flames of saturated butanol isomers. The experiments were performed in the counterflow configuration under atmospheric pressure, unburned mixture temperature of 343 K, and for a wide range of equivalence ratios. The experiments were simulated using a recent kinetic model for the four isomers of butanol. Results indicate that n-butanol/air flames propagate somewhat faster than both sec-butanol/air and iso-butanol/air flames, and that tert-butanol/air flames propagate notably slower compared to the other three isomers. Reaction path analysis of tert-butanol/air flames revealed that iso-butene is a major intermediate, which subsequently reacts to form the resonantly stable iso-butenyl radical retarding thus the overall reactivity of tert-butanol/air flames relatively to the other three isomers. Through sensitivity analysis, it was determined that the mass burning rates of sec-butanol/air and iso-butanol/air flames are sensitive largely to hydrogen, carbon monoxide, and C{sub 1}–C{sub 2} hydrocarbon kinetics and not to fuel-specific reactions similarly to n-butanol/air flames. However, for tert-butanol/air flames notable sensitivity to fuel-specific reactions exists. While the numerical results predicted closely the experimental data for n-butanol/air and sec-butanol/air flames, they overpredicted and underpredicted the laminar flame speeds for iso-butanol/air and tert-butanol/air flames respectively. It was demonstrated further that the underprediction of the laminar flame speeds of tert-butanol/air flames by the model was most likely due to deficiencies of the C{sub 4}-alkene kinetics.

Veloo, Peter S.; Egolfopoulos, Fokion N.

2011-01-01T23:59:59.000Z

285

Standoff alpha radiation detection via excited state absorption of air  

SciTech Connect (OSTI)

A standoff alpha radiation detection technique based on the physical mechanism of excited state absorption of air molecules was explored and is presented in this paper. Instead of directly detecting the radiation via measuring the intensity of radiation induced air fluorescence, the radiation is detected via the excited state absorption of alpha radiation excited/ionized air molecules. Both theoretical analyses and experimental verifications were conducted. The experimental results confirmed that the radiation could be detected via excited state absorption of radiation excited/ionized air molecules at a 10 m standoff distance, which was consistent with the theoretical analyses.

Yao, Jimmy; Yin, Stuart Shizhuo [Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)] [Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Brenizer, Jack [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)] [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Hui, Rongqing [Department of Electrical Engineering and Computer Science, The University of Kansas, Lawrence, Kansas 66045 (United States)] [Department of Electrical Engineering and Computer Science, The University of Kansas, Lawrence, Kansas 66045 (United States)

2013-06-24T23:59:59.000Z

286

OM300 Direction Drilling Module  

SciTech Connect (OSTI)

OM300 – Geothermal Direction Drilling Navigation Tool: Design and produce a prototype directional drilling navigation tool capable of high temperature operation in geothermal drilling Accuracies of 0.1° Inclination and Tool Face, 0.5° Azimuth Environmental Ruggedness typical of existing oil/gas drilling Multiple Selectable Sensor Ranges High accuracy for navigation, low bandwidth High G-range & bandwidth for Stick-Slip and Chirp detection Selectable serial data communications Reduce cost of drilling in high temperature Geothermal reservoirs Innovative aspects of project Honeywell MEMS* Vibrating Beam Accelerometers (VBA) APS Flux-gate Magnetometers Honeywell Silicon-On-Insulator (SOI) High-temperature electronics Rugged High-temperature capable package and assembly process

MacGugan, Doug

2013-08-22T23:59:59.000Z

287

Total Building Air Management: When Dehumidification Counts  

E-Print Network [OSTI]

are realized when systems are designed with a total operating strategy in mind. Thls strategy takes Cheryl L. White Technical Consultant Eddleson & Rowe, Assoc. Denver, Colorado into consideration every factor of buildmg air management includmg: 1...-89 specifies at least 15 CFM per person. In Denver Colorado where relative humidity of outdoor air is low and outdoor design temperature is 92" F DB/65" F WB, this may be a cost effective method of assuring high IAQ. In other parts of the country - Houston...

Chilton, R. L.; White, C. L.

1996-01-01T23:59:59.000Z

288

Measured Impacts of Air Conditioner Condenser Shading  

E-Print Network [OSTI]

reaching the expansion valve. In theory, the efficiency of vapor compression air conditioning can be improved through two primary mechanisms associated with condenser shading: Direct shading. Incident solar radiation can pose approximately a 1,000 w...]: IEYPERAlURL COUPARlSOn A/C SHADING DP. 1 (Some): SOUR RADlAllON COUPARISON I=AYEI[Nl KYP orq=82.1 , mu=87.(22 Z=CONDEHSIR ARU AIR lEYP orq=83.8 , mox=02.858 TIME OF DAY, (hr) 9 12 15 TIME OF DAY, (hr) Figure 3. Sample daily 15-minute data for June 21...

Parker, D. S.; Barkaszi, S. F.; Sonne, J. K.

1996-01-01T23:59:59.000Z

289

Direct Expansion Air Conditioning System Selection for Hot & Humid Climates  

E-Print Network [OSTI]

Capacity at Part-Load Conditions In 1996, Henderson and Rengarajan4 published a method for modeling the latent capacity degradation of DX equipment with constant blower operation. This latent degradation model provided critical information need... to match the moisture removal capacity of the selected system to the moisture load. However, the model required an iterative solution and knowledge of equipment parameters that were not readily available during design. In 1998, Henderson published a...

Browning, B. K.

2002-01-01T23:59:59.000Z

290

Optimal Terminal Box Control for Single Duct Air-Handling Units  

E-Print Network [OSTI]

Terminal boxes maintain room temperature by modulating supply air temperature and airflow in building HVAC systems. Terminal boxes with conventional control sequences often supply inadequate airflow to a conditioned space, resulting in occupant...

Cho, Y.; Vondal, J.; Wang, G.; Liu, M.

2006-01-01T23:59:59.000Z

291

Cold side thermal energy storage system for improved operation of air cooled power plants  

E-Print Network [OSTI]

Air cooled power plants experience significant performance fluctuations as plant cooling capacity reduces due to higher daytime temperature than nighttime temperature. The purpose of this thesis is to simulate the detailed ...

Williams, Daniel David

2012-01-01T23:59:59.000Z

292

A diffusion approximation approach to stochastic modeling of air conditioning type loads  

E-Print Network [OSTI]

that the air conditioning unit is on and off. In the followino equations, TNIN and TNAX are the lower and upper limit temperatures of the thermostat deadband and To is the outside temperature. Gi 2Gw To Tw Cw Ci $ QeXt To - outside temperature Tw - wall... temperature Ti - inside temperature Gw ? thermal conductance of wall Gi - thermal conductance of air Cw - thermal capacitance of wall Ci ? thermal capacitance of air Qe - rated capacity of cooling unit Xt - zero-one process describing the switching...

Roy, Teresa Henryka

1981-01-01T23:59:59.000Z

293

Prediction of Air Conditioning Load Response for Providing Spinning Reserve - ORNL Report  

SciTech Connect (OSTI)

This report assesses the use of air conditioning load for providing spinning reserve and discusses the barriers and opportunities. Air conditioning load is well suited for this service because it often increases during heavy load periods and can be curtailed for short periods with little impact to the customer. The report also provides an appendix describing the ambient temperature effect on air conditioning load.

Kueck, John D [ORNL; Kirby, Brendan J [ORNL; Ally, Moonis Raza [ORNL; Rice, C Keith [ORNL

2009-02-01T23:59:59.000Z

294

Air Pollution Control Regulations: No. 7 - Emission of Air Contaminant...  

Broader source: Energy.gov (indexed) [DOE]

with the enjoyment of life and property. The criteria for determining compliance is listed in the regulations, and is based on other air pollution and ambient air standards...

295

Air ejector augmented compressed air energy storage system  

DOE Patents [OSTI]

Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

1980-01-01T23:59:59.000Z

296

Air Resources: Prevention and Control of Air Contamination and Air  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe OfficeUtility Fed. GovernmentFed. Government CommercialPollution, Air

297

Health Hazards in Indoor Air  

E-Print Network [OSTI]

Health Hazards in Indoor Air. In Proceedings of the 2010for VOCs from post-1990 indoor air concentration studies inUnion project on indoor air pollutants. Allergy, 2008. 63(

Logue, Jennifer M.

2012-01-01T23:59:59.000Z

298

Texas Clean Air Act (Texas)  

Broader source: Energy.gov [DOE]

This Act is designed to safeguard the state's air resources from pollution by requiring the control and abatement of air pollution and emissions of air contaminants, consistent with the protection...

299

NREL Provides Guidance to Improve Air Mixing and Thermal Comfort in Homes (Fact Sheet)  

SciTech Connect (OSTI)

NREL research determines optimal HVAC system design for proper air mixing and thermal comfort in homes. As U.S. homes become more energy efficient, heating, ventilation, and cooling (HVAC) systems will be downsized, and the air flow volumes required to meet heating and cooling loads may be too small to maintain uniform room air mixing-which can affect thermal comfort. Researchers at the National Renewable Energy Laboratory (NREL) evaluated the performance of high sidewall air supply inlets and confirmed that these systems can achieve good air mixing and provide suitable comfort levels for occupants. Using computational fluid dynamics modeling, NREL scientists tested the performance of high sidewall supply air jets over a wide range of parameters including supply air temperature, air velocity, and inlet size. This technique uses the model output to determine how well the supply air mixes with the room air. Thermal comfort is evaluated by monitoring air temperature and velocity in more than 600,000 control volumes that make up the occupied zone of a single room. The room has an acceptable comfort level when more than 70% of the control volumes meet the comfort criteria on both air temperature and velocity. The study shows that high sidewall supply air jets achieve uniform mixing in a room, which is essential for providing acceptable comfort levels. The study also provides information required to optimize overall space conditioning system design in both heating and cooling modes.

Not Available

2012-02-01T23:59:59.000Z

300

Particulate air pollution, ambulatory heart rate variability, and cardiac arrhythmia in retirement community residents with coronary artery disease.  

E-Print Network [OSTI]

air pollution in patients with coronary artery disease. Environ Healthair pollution on cardiac arrhythmia: the APACR Study. Environ Healthair pollution and air temperature among myocardial infarction survivors. Environ Health

Bartell, Scott M; Longhurst, John; Tjoa, Thomas; Sioutas, Constantinos; Delfino, Ralph J

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "direction air temperature" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Combustion Air Preheat and Radiant Heat Transfer in Fired Heaters - A Graphical Method for Design and Operating Analysis  

E-Print Network [OSTI]

The installation of combustion air preheat is a widely used technique for improving the fuel efficiency of existing fired heaters and fired tubular reactors. By increasing adiabatic flame temperature, combustion air preheat increases radiant section...

Grantom, R. L.

1981-01-01T23:59:59.000Z

302

High-Temperature Falling-Particle Receiver  

Broader source: Energy.gov (indexed) [DOE]

temperatures, nitrate salt fluids become chemically unstable. In contrast, direct absorption receivers using solid particles that fall through a beam of concentrated solar...

303

Air heating system  

DOE Patents [OSTI]

A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

Primeau, John J. (19800 Seminole Rd., Euclid, OH 44117)

1983-03-01T23:59:59.000Z

304

Operation technology of air treatment system in nuclear facilities  

E-Print Network [OSTI]

Effective operation techniques were reviewed on the air treatment system to protect the personnel in nuclear facilities from the contamination of radio-active particles and to keep the environment clear. Nuclear air treatment system consisted of the ventilation and filtering system was characterized by some test. Measurement of air velocity of blowing/exhaust fan in the ventilation system, leak tests of HEPA filters in the filtering, and measurement of pressure difference between the areas defined by radiation level were conducted. The results acquired form the measurements were reflected directly for the operation of air treatment. In the abnormal state of virus parts of devices composted of the system, the repairing method, maintenance and performance test were also employed in operating effectively the air treatment system. These measuring results and techniques can be available to the operation of air treatment system of PIEF as well as the other nuclear facilities in KAERI.

Chun, Y B; Hwong, Y H; Lee, H K; Min, D K; Park, K J; Uom, S H; Yang, S Y

2001-01-01T23:59:59.000Z

305

Hot Air Stratification of Ceiling Air Supply in a Large Space Building  

E-Print Network [OSTI]

The effects of different states of air supply and airflow patterns on temperature gradient distribution are calculated and analyzed with the help of FFSV3.0 software, using the LB models and LES and RANS methods. An experimental study with upper...

Wang, H.; Wang, Z.; Liu, C.

2006-01-01T23:59:59.000Z

306

Ambient Air Quality Standards (Iowa)  

Broader source: Energy.gov [DOE]

These regulations set statewide ambient air quality standards for various contaminants. The state code follows the regulations set forth in the National Primary and Secondary Ambient Air Quality...

307

High strength air-dried aerogels  

DOE Patents [OSTI]

A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

Coronado, Paul R.; Satcher, Jr., Joe H.

2012-11-06T23:59:59.000Z

308

Retrofit Air Preheat Economics  

E-Print Network [OSTI]

Retrofit air preheat systems are the most reliable and efficient means to effect significant energy conservation for large existing industrial furnaces. Units can be quickly installed without a lengthy shutdown, and the furnace efficiency can...

Goolsbee, J. A.

1981-01-01T23:59:59.000Z

309

Breathing zone air sampler  

SciTech Connect (OSTI)

A sampling apparatus is provided which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

Tobin, John (Bethel Park, PA)

1989-01-01T23:59:59.000Z

310

Breathing zone air sampler  

SciTech Connect (OSTI)

A sampling apparatus is presented which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

Tobin, J.

1989-08-22T23:59:59.000Z

311

Padding with Compressed Air  

E-Print Network [OSTI]

We commonly find plants using padding to transport liquids or light solids short distances from tankers into storage tanks. Padding can wreck havoc in compressed air systems with limited storage, undersized cleanup equipment (dryers and filters...

Beals, C.

2004-01-01T23:59:59.000Z

312

Air Carrier Flight Operations  

E-Print Network [OSTI]

Most air carriers operate under a system of prioritized goals including safety, customer service (on-time departures and arrivals) and operating economics. The flight operations department is responsible for the safe and ...

Midkif, Alan H.

313

Air conditioning system  

DOE Patents [OSTI]

An air conditioner comprises a plurality of plates arranged in a successively stacked configuration with portions thereof having a spaced apart arrangement, and defining between successive adjacent pairs of plates at the spaced apart portions a first and second series of discrete alternating passages wherein a first air stream is passed through the first series of passages and a second air stream is passed through the second series of passages; and said stacked configuration of plates forming integrally therewith a liquid delivery means for delivering from a source a sufficient quantity of a liquid to the inside surfaces of the first series of fluid passages in a manner which provides a continuous flow of the liquid from a first end to a second end of the plurality of plates while in contact with the first air stream.

Lowenstein, Andrew; Miller, Jeffrey; Gruendeman, Peter; DaSilva, Michael

2005-02-01T23:59:59.000Z

314

Canned Air in China  

E-Print Network [OSTI]

Broadcast Transcript: Not that long ago, coal smoke made the air here in Beijing so caustic that your nasal passages were seared with each breath. Those were the good old days: Car ownership was limited to government ...

Hacker, Randi

2013-10-23T23:59:59.000Z

315

Air bag restraint device  

DOE Patents [OSTI]

A rear-seat air bag restraint device is disclosed that prevents an individual, or individuals, from continuing violent actions while being transported in a patrol vehicle`s rear seat without requiring immediate physical contact by the law enforcement officer. The air bag is activated by a control switch in the front seat and inflates to independently restrict the amount of physical activity occurring in the rear seat of the vehicle while allowing the officer to safely stop the vehicle. The air bag can also provide the officer additional time to get backup personnel to aid him if the situation warrants it. The bag is inflated and maintains a constant pressure by an air pump. 8 figs.

Marts, D.J.; Richardson, J.G.

1995-10-17T23:59:59.000Z

316

Cooling output optimization of an air handling unit Andrew Kusiak *, Mingyang Li  

E-Print Network [OSTI]

supply temperature and supply air temperature in response to the dynamic cooling load and changingCooling output optimization of an air handling unit Andrew Kusiak *, Mingyang Li Department mining Neural network Multi-objective optimization Evolutionary computation Dynamic modeling Cooling

Kusiak, Andrew

317

A nonintrusive method for measuring the operating temperature of a solenoid-operated valve  

SciTech Connect (OSTI)

Experimental data are presented to show that the in-service operating temperature of a solenoid-operated valve (SOV) can be interred simply and nondisruptively by using the copper winding of the solenoid coil as a self-indicating, permanently available resistance thermometer. The principal merits of this approach include (a) there is no need for an add-on temperature sensor, (b) the true temperature of a critical --- and likely the hottest --- part of the SOV (namely, the electrical coil) is measured directly, (c) temperature readout can be provided at any location at which the SOV electrical lead wires are accessible (even though remote from the valve), (d) the SOV need not be disturbed (whether normally energized or deenergized) to measure its temperature in situ, and (e) the method is applicable to all types of SOVs, large and small, ac- and dc-powered. Laboratory tests comparing temperatures measured both by coil resistance and by a conventional thermometer placed in contact with the external surface of the potted solenoid coil indicate that temperature within the coil may be on the order of 40{degree}C higher than that measured externally, a fact that is important to life-expectancy calculations made on the basis of Arrhenius theory. Field practicality is illustrated with temperature measurements made using this method on a SOV controlling the flow of refrigerant in a large chilled-water air-conditioning system. 5 refs., 7 figs.

Kryter, R.C.

1990-01-01T23:59:59.000Z

318

Clearing the Air: "AIR" Training Session Wednesday, December 18  

E-Print Network [OSTI]

Clearing the Air: "AIR" Training Session Wednesday, December 18 12 p.m. ­ 1:00 p.m. Human Resources/Tobacco- Free! Join us for an interactive session and learn more about "AIR" (Approach, Inform, Refer, and safe campus environment. Visit Clearing the Air website (http://tobaccofree.ucr.edu/) for more

Reed, Christopher A.

319

Air distribution effectiveness with stratified air distribution systems  

E-Print Network [OSTI]

1 Air distribution effectiveness with stratified air distribution systems Kisup Lee* Zheng Jiang, Ph.D Qingyan Chen, Ph.D. Student Member ASHRAE Fellow ASHRAE ABSTRACT Stratified air distribution systems such as Traditional Displacement Ventilation (TDV) and Under- Floor Air Distribution (UFAD

Chen, Qingyan "Yan"

320

inAir: Sharing Indoor Air Quality Measurements and Visualizations  

E-Print Network [OSTI]

evidence has indicated that indoor air pollution within homes and other buildings can be worse than the outdoor air pollution in even the largest and most industrialized cities. For example, the California Air Resources Board estimates that indoor air pollutant levels are 25-62% greater than outside levels [4

Mankoff, Jennifer

Note: This page contains sample records for the topic "direction air temperature" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Air Quality: Air Pollutants, SLAC Emissions Sources, and Regulatory Reference  

E-Print Network [OSTI]

permit regulations are designed to track, record, and control air pollutants belonging to severalAir Quality: Air Pollutants, SLAC Emissions Sources, and Regulatory Reference Department: Chemical on chemical classifications. This reference outlines major categories of air pollutants found at SLAC

Wechsler, Risa H.

322

Economic Analysis of a Nuclear Reactor Powered High-Temperature Electrolysis Hydrogen Production Plant  

SciTech Connect (OSTI)

A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled nuclear reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540°C and 900°C, respectively. The electrolysis unit used to produce hydrogen includes 4,009,177 cells with a per-cell active area of 225 cm2. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating-current, AC, to direct-current, DC, conversion efficiency is 96%. The overall system thermal-to-hydrogen production efficiency (based on the lower heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.23/kg of hydrogen was calculated assuming an internal rate of return of 10%.

E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

2008-08-01T23:59:59.000Z

323

PERFORMANCE EVALUATION OF AN AIR-TO-AIR HEAT PUMP COUPLED WITH TEMPERATE AIR-SOURCES INTEGRATED INTO A DWELLING  

E-Print Network [OSTI]

PERFORMANCE EVALUATION OF AN AIR-TO-AIR HEAT PUMP COUPLED WITH TEMPERATE AIR-SOURCES INTEGRATED.peuportier@mines-paristech.fr, Tel.: +33 1 40 51 91 51 ABSTRACT An inverter-driven air-to-air heat pump model has been developped capacity air-to-air heat pump coupled with temperate air sources (crawlspace, attic, sunspace, heat

Paris-Sud XI, Université de

324

Cool Colored Roofs to Save Energy and Improve Air Quality  

SciTech Connect (OSTI)

Urban areas tend to have higher air temperatures than their rural surroundings as a result of gradual surface modifications that include replacing the natural vegetation with buildings and roads. The term ''Urban Heat Island'' describes this phenomenon. The surfaces of buildings and pavements absorb solar radiation and become extremely hot, which in turn warm the surrounding air. Cities that have been ''paved over'' do not receive the benefit of the natural cooling effect of vegetation. As the air temperature rises, so does the demand for air-conditioning (a/c). This leads to higher emissions from power plants, as well as increased smog formation as a result of warmer temperatures. In the United States, we have found that this increase in air temperature is responsible for 5-10% of urban peak electric demand for a/c use, and as much as 20% of population-weighted smog concentrations in urban areas. Simple ways to cool the cities are the use of reflective surfaces (rooftops and pavements) and planting of urban vegetation. On a large scale, the evapotranspiration from vegetation and increased reflection of incoming solar radiation by reflective surfaces will cool a community a few degrees in the summer. As an example, computer simulations for Los Angeles, CA show that resurfacing about two-third of the pavements and rooftops with reflective surfaces and planting three trees per house can cool down LA by an average of 2-3K. This reduction in air temperature will reduce urban smog exposure in the LA basin by roughly the same amount as removing the basin entire onroad vehicle exhaust. Heat island mitigation is an effective air pollution control strategy, more than paying for itself in cooling energy cost savings. We estimate that the cooling energy savings in U.S. from cool surfaces and shade trees, when fully implemented, is about $5 billion per year (about $100 per air-conditioned house).

Akbari, Hashem; Levinson, Ronnen; Miller, William; Berdahl, Paul

2005-08-23T23:59:59.000Z

325

Directives Help - DOE Directives, Delegations, and Requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Directives Help by Website Administrator All DOE directives are available through this site. While it may seem overwhelming, given the number of documents, we have provided a...

326

Strategic direction for the IAQ industry  

SciTech Connect (OSTI)

Over the past 20 years, there has been much concern over pollution of the outdoor environment. In recent years, concern over indoor pollution, commonly referred to as indoor air quality, has grown as well. Indoor air quality is a complex, multi-faceted issue. Contaminant source control, ventilation, humidity control, filtration, occupant activities and building operation and maintenance all play a role in creating a healthy productive indoor environment. These elements of IAQ are complex enough to spend days studying each of them. For the purposes of this article, the author will be looking specifically at the direction the HVAC industry is taking in the areas of ventilation, energy efficiency, humidity and comfort control to produce more healthy, productive and energy efficient buildings. Indoor air quality is broader than just the direct effects to human health. It also can significantly impact building occupant productivity and general well-being.

Wendl, D. [Trane Co., Englewood, CO (United States)

1996-12-31T23:59:59.000Z

327

Analysis of an open-air swimming pool solar heating system by using an experimentally validated TRNSYS model  

SciTech Connect (OSTI)

In the case of private outdoor swimming pools, seldom larger than 100 m{sup 2}, conventional auxiliary heating systems are being installed less and less. Solar heating is an option to extend the swimming season. The temperature evolution of an open-air swimming pool highly depends on the wind speed directly on the water surface, which at the same time is influenced by the surroundings of the pool. In this paper, the TRNSYS model of a private open-air pool with a 50-m{sup 2} surface was validated by registering the water temperature evolution and the meteorological data at the pool site. Evaporation is the main component of energy loss in swimming pools. Six different sets of constants found in literature were considered to evaluate the evaporative heat transfer coefficient with the purpose of finding the most suitable one for the TRNSYS pool model. In order to do that, the evolution of the pool water temperature predicted by the TRNSYS pool model was compared with the experimentally registered one. The simulation with TRNSYS of the total system, including the swimming pool and the absorber circuit integrated into the existing filter circuit, provided information regarding the increase of the pool temperature for different collector areas during the swimming season. This knowledge, together with the economic costs, support the decision about the absorber field size. (author)

Ruiz, Elisa; Martinez, Pedro J. [Universidad Miguel Hernandez - Edificio Torreblanca, Avda. de la Universidad s/n, 03202 Elche (Spain)

2010-01-15T23:59:59.000Z

328

Air PSE (Problem Solving Environment)  

E-Print Network [OSTI]

PSE - 1 Air PSE (Problem Solving Environment) MODELLING OF AIR POLLUTION IN THE LOS ANGELES BASIN WITH AIR PSE Developed by Prof. Donald Dabdub Computational Environmental Sciences Laboratory Mechanical COMPUTER MODELS An air pollution model is a computer program that computes how the different chemical

Nizkorodov, Sergey

329

EMISSIONS TO AIR OPERATIONAL PROCEDURE  

E-Print Network [OSTI]

EMISSIONS TO AIR OPERATIONAL PROCEDURE Swansea University Estates Services Singleton Park Swansea to Air Department: Estates and Facilities Site: All Author: Ambreen Jahangir Approved by: Mark Durdin PURPOSE: To minimise emissions and discharges to air from boilers, fume cupboards, air conditioning

Harman, Neal.A.

330

Method and apparatus for reducing cold-phase emissions by utilizing oxygen-enriched intake air  

DOE Patents [OSTI]

An oxygen-enriched air intake control system for an internal combustion engine includes air directing apparatus to control the air flow into the intake of the engine. During normal operation of the engine, ambient air flowing from an air filter of the engine flows through the air directing apparatus into the intake of the engine. In order to decrease the amount of carbon monoxide (CO) and hydrocarbon (HC) emissions that tend to be produced by the engine during a short period of time after the engine is started, the air directing apparatus diverts for a short period of time following the start up of the engine at least a portion of the ambient air from the air filter through a secondary path. The secondary path includes a selectively permeable membrane through which the diverted portion of the ambient air flows. The selectively permeable membrane separates nitrogen and oxygen from the diverted air so that oxygen enriched air containing from about 23% to 25% oxygen by volume is supplied to the intake of the engine.

Poola, Ramesh B. (Woodridge, IL); Sekar, Ramanujam R. (Naperville, IL); Stork, Kevin C. (Chicago, IL)

1997-01-01T23:59:59.000Z

331

Compressed air energy storage system  

DOE Patents [OSTI]

An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

1981-01-01T23:59:59.000Z

332

Assessing the direction of climate interactions by means of complex networks and information theoretic tools  

E-Print Network [OSTI]

An estimate of the net direction of climate interactions in different geographical regions is made by constructing a directed climate network from a regular latitude-longitude grid of nodes, using a directionality index (DI) based on conditional mutual information. Two datasets of surface air temperature anomalies - one monthly-averaged and another daily-averaged - are analyzed and compared. The network links are interpreted in terms of known atmospheric tropical and extratropical variability patterns. Specific and relevant geographical regions are selected, the net direction of propagation of the atmospheric patterns is analyzed and the direction of the inferred links is validated by recovering some well-known climate variability structures. These patterns are found to be acting at various time-scales, such as atmospheric waves in the extra-tropics or longer range events in the tropics. This analysis demonstrates the capability of the DI measure to infer the net direction of climate interactions and may contribute to improve the present understanding of climate phenomena and climate predictability. The work presented here also stands out as an application of advanced tools to the analysis of empirical, real-world data.

J. Ignacio Deza; Cristina Masoller; Marcelo Barreiro

2015-02-04T23:59:59.000Z

333

Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion  

DOE Patents [OSTI]

A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

Tuthill, Richard Sterling (Bolton, CT); Bechtel, II, William Theodore (Scotia, NY); Benoit, Jeffrey Arthur (Scotia, NY); Black, Stephen Hugh (Duanesburg, NY); Bland, Robert James (Clifton Park, NY); DeLeonardo, Guy Wayne (Scotia, NY); Meyer, Stefan Martin (Troy, NY); Taura, Joseph Charles (Clifton Park, NY); Battaglioli, John Luigi (Glenville, NY)

2002-01-01T23:59:59.000Z

334

Performance of underfloor air distribution: Results of a field study  

SciTech Connect (OSTI)

Underfloor air distribution (UFAD) is a new method of supplying heated or cooled air throughout a building. Reported advantages of UFAD include easy relocation of air supply diffusers, energy savings, and improved indoor air quality (IAQ). We measured several aspects of the performance of an UFAD system installed in a medium-size office building. The measured air change effectiveness was very close to unity, which is comparable to that measured in buildings with typical overhead air distribution. The pollutant removal efficiency for carbon dioxide was 13 percent higher than expected in a space with well-mixed air, suggesting a 13 percent reduction in exposures to occupant generated pollutants. The increase in indoor air temperatures with height above the floor was only 1 to 2 C (2-4 F). This amount of thermal stratification could reduce the sensible energy requirements for cooling of outdoor air by approximately 10 percent. The occupants level of satisfaction with thermal conditions w as well above average and this high satisfaction rating could possibly be due, in all or part, to the use of a UFAD system. The results of this study provide some evidence of moderate energy and IAQ-related benefits of UFAD. Before general conclusions are drawn, the benefits need to be confirmed in other studies.

Fisk, William; Faulkner, David; Sullivan, Douglas

2004-09-02T23:59:59.000Z

335

An empirical expression to relate aerodynamic and surface temperatures for use within1 single-source energy balance models2  

E-Print Network [OSTI]

1 n.1 An empirical expression to relate aerodynamic and surface temperatures for use within1 single that the14 reference temperature for the estimation of convective fluxes, the aerodynamic temperature, is15 between the aerodynamic22 and the air temperatures and the difference between the surface and the air

Paris-Sud XI, Université de

336

Method and apparatus for controlling combustor temperature during transient load changes  

DOE Patents [OSTI]

A method and apparatus for controlling the temperature of a combustor in a fuel cell apparatus includes a fast acting air bypass valve connected in parallel with an air inlet to the combustor. A predetermined excess quantity of air is supplied from an air source to a series connected fuel cell and combustor. The predetermined excess quantity of air is provided in a sufficient amount to control the temperature of the combustor during start-up of the fuel processor when the load on the fuel cell is zero and to accommodate any temperature transients during operation of the fuel cell.

Clingerman, Bruce J. (Palmyra, NY); Chalfant, Robert W. (West Henrietta, NY)

2002-01-01T23:59:59.000Z

337

Reference book on geothermal direct use  

SciTech Connect (OSTI)

This report presents the direct uses of geothermal energy in the United States. Topics discussed include: low-temperature geothermal energy resources; energy reserves; geothermal heat pumps; geothermal energy for residential buildings; and geothermal energy for industrial usage.

Lienau, P.J.; Lund, J.W.; Rafferty, K.; Culver, G.

1994-08-01T23:59:59.000Z

338

Ventilation Air Preconditioning Systems  

E-Print Network [OSTI]

capacity. Optional Morning Warm-up If connected to a liquid condenser bundle, the icemaking chiller can serve as a heat recovery heat pump. The chiller can freeze ice in the early morning to provide heat for morning warm-up, and use the ice... the cooling coil or drain pan re-evaporates and is delivered to occupied space during compressor off-cycles. Although heat recovery between the exhaust air and ventilation air can reduce the impact on the HVAC system, many buildings do not have central...

Khattar, M.; Brandemuehl, M. J.

1996-01-01T23:59:59.000Z

339

Space Temperature Policy This document seeks to clarify the position regarding internal space temperature limits that  

E-Print Network [OSTI]

. It should be noted that it is the responsibility of local managers for the welfare of their staff action to be taken. Space Temperatures Limits The Health & Safety Executive (HSE) has stated by air temperature alone. The HSE considers 80% of occupants as a reasonable limit for the minimum number

Chittka, Lars

340

Considerations of Alloy N for Fluoride Salt-Cooled High-Temperature Reactor Applications  

SciTech Connect (OSTI)

Fluoride Salt-Cooled High-Temperature Reactors (FHRs) are a promising new class of thermal-spectrum nuclear reactors. The reactor structural materials must possess high-temperature strength and chemical compatibility with the liquid fluoride salt as well as with a power cycle fluid such as supercritical water while remaining resistant to residual air within the containment. Alloy N was developed for use with liquid fluoride salts and it possesses adequate strength and chemical compatibility up to about 700 C. A distinctive property of FHRs is that their maximum allowable coolant temperature is restricted by their structural alloy maximum service temperature. As the reactor thermal efficiency directly increases with the maximum coolant temperature, higher temperature resistant alloys are strongly desired. This paper reviews the current status of Alloy N and its relevance to FHRs including its design principles, development history, high temperature strength, environmental resistance, metallurgical stability, component manufacturability, ASME codification status, and reactor service requirements. The review will identify issues and provide guidance for improving the alloy properties or implementing engineering solutions.

Ren, Weiju [ORNL; Muralidharan, Govindarajan [ORNL; Wilson, Dane F [ORNL; Holcomb, David Eugene [ORNL

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "direction air temperature" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

ATMOSPHERIC DYNAMICS OF BROWN DWARFS AND DIRECTLY IMAGED GIANT PLANETS  

SciTech Connect (OSTI)

A variety of observations provide evidence for vigorous motion in the atmospheres of brown dwarfs and directly imaged giant planets. Motivated by these observations, we examine the dynamical regime of the circulation in the atmospheres and interiors of these objects. Brown dwarfs rotate rapidly, and for plausible wind speeds, the flow at large scales will be rotationally dominated. We present three-dimensional, global, numerical simulations of convection in the interior, which demonstrate that at large scales, the convection aligns in the direction parallel to the rotation axis. Convection occurs more efficiently at high latitudes than low latitudes, leading to systematic equator-to-pole temperature differences that may reach ?1 K near the top of the convection zone. The interaction of convection with the overlying, stably stratified atmosphere will generate a wealth of atmospheric waves, and we argue that, as in the stratospheres of planets in the solar system, the interaction of these waves with the mean flow will cause a significant atmospheric circulation at regional to global scales. At large scales, this should consist of stratified turbulence (possibly organizing into coherent structures such as vortices and jets) and an accompanying overturning circulation. We present an approximate analytic theory of this circulation, which predicts characteristic horizontal temperature variations of several to ?50 K, horizontal wind speeds of ?10-300 m s{sup –1}, and vertical velocities that advect air over a scale height in ?10{sup 5}-10{sup 6} s. This vertical mixing may help to explain the chemical disequilibrium observed on some brown dwarfs. Moreover, the implied large-scale organization of temperature perturbations and vertical velocities suggests that near the L/T transition, patchy clouds can form near the photosphere, helping to explain recent observations of brown-dwarf variability in the near-IR.

Showman, Adam P. [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, 1629 University Boulevard, Tucson, AZ 85721 (United States); Kaspi, Yohai, E-mail: showman@lpl.arizona.edu [Center for Planetary Science, Weizmann Institute of Science, Rehovot (Israel)

2013-10-20T23:59:59.000Z

342

Development of Optimization Tool for Air Conditioning System Operation  

E-Print Network [OSTI]

Operations, Berlin, Germany, October 20-22, 2008 Outside air temperature and the absolute air humidity are predicted by the Auto-regressive Integrated Moving Average (ARIMA) model [1],[2]. The solar radiation on a horizontal surface... of the error margin Energy Consumption (set value A) Energy Consumption (set value B) ESL-IC-08-10-55 Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 J VAV unit is also operated under...

Sumiyoshi, D.; Akashi, Y.

343

Are Ventilation Filters Degrading Indoor Air Quality in California Classrooms?  

SciTech Connect (OSTI)

Heating, ventilating, and cooling classrooms in California consume substantial electrical energy. Indoor air quality (IAQ) in classrooms affects studenthealth and performance. In addition to airborne pollutants that are emitted directly by indoor sources and those generated outdoors, secondary pollutants can be formed indoors by chemical reaction of ozone with other chemicals and materials. Filters are used in nearly all classroom heating, ventilation and air?conditioning (HVAC) systems to maintain energy-efficient HVAC performance and improve indoor air quality; however, recent evidence indicates that ozone reactions with filters may, in fact, be a source of secondary pollutants. This project quantitatively evaluated ozone deposition in HVAC filters and byproduct formation, and provided a preliminary assessment of the extent towhich filter systems are degrading indoor air quality. The preliminary information obtained will contribute to the design of subsequent research efforts and the identification of energy efficient solutions that improve indoor air quality in classrooms and the health and performance of students.

Fisk, William J.; Destaillats, H.; Apte, M.G.; Destaillats,, Hugo; Fisk, Michael G. Apte and William J.

2008-10-01T23:59:59.000Z

344

ESTIMATION OF THE TEMPERATURE OF STARCH PARTICLES-AIR FLAMES  

E-Print Network [OSTI]

d'Energetique etde Ditonique, U.RA. 193 CNRS E.N.S.M.A., Poitiers. France & C.Proust I and original experimental results on this problem. Experimental Method Experimental setup The method used

Paris-Sud XI, Université de

345

air temperature reconstructed: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

forward model of tree growth in the virtual reality of two simulations of the climate of the last millennium with different amplitude of solar forcing variations. The...

346

High-Temperature Air-Cooled Power Electronics Thermal Design  

Broader source: Energy.gov (indexed) [DOE]

* Thermal Design: Sub-module testing and model validation; fanducting testing; optimization * Thermal System Design: Balance- of-system analysis; full system models *...

347

AirTemperature(C) 21.Jun28.Jun  

E-Print Network [OSTI]

circulation in unconsolidated sediments originating from ice and snow melting above permafrost or impervious in unconsolidated sediments model parameters such as the spatial distribution of the total and effective storage

Brückl, Ewald

348

Improving Boiler Efficiency Modeling Based on Ambient Air Temperature  

E-Print Network [OSTI]

Optimum economic operation in a large power plant can cut operating costs substantially. Individual plant equipment should be operated under conditions that are most favorable for maximizing its efficiency. It is widely accepted that boiler load...

Zhou, J.; Deng, S.; Claridge, D. E.; Haberl, J. S.; Turner, W. D.

349

Electrically Heated High Temperature Incineration of Air Toxics  

E-Print Network [OSTI]

Inert material heated by alectrical energy to a tempera ture range up to 2000 Fahrenheit. The reaction of organic vapors and oxygen In the bed Is exothermic, thereby reducing the power Input JOHN B. ~ILCOX, PH.D. VICE PRESIDENT IN...

Agardy, F. J.; Wilcox, J. B.

350

2009 OSAIACP 2009 Air Pressure Effect on the Temperature  

E-Print Network [OSTI]

in the fiber loop [2,3]. However, conventional PMFs (e.g. Panda and bow-tie PMFs) have a high thermal sensitivity due to the large thermal expansion coefficient difference between boron-doped stress

Wai, Ping-kong Alexander

351

Improving Boiler Efficiency Modeling Based On Ambient Air Temperature  

E-Print Network [OSTI]

AND RESOURCES ORGANIZATION (FL.H.E.R.O.) Over 400 single and multifamily homes have been constructed in the Gainesville, FL area with technical assistance from FL H.E.R.O. These homes were constructed by over a dozen different builders. In this paper....9 Figure 5 HERS Scores for FL H.E.R.O. Homes SF MF Sample Size, n 164 146 Average ACH50 4.5 5.2 Median ACH50 4.4 5.3 Minimum ACH50 2.1 2.2 Maximum ACH50 8.6 8.4 Figure 6 ACH50 Values for FL H...

Zhou, J.; Deng, S.; Turner, W. D.; Claridge, D. E.; Haberl, J. S.

2002-01-01T23:59:59.000Z

352

Departmental Directives Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order is the primary directive for administering the Department's directives Program. Cancels: DOE O 251.1A

2006-08-16T23:59:59.000Z

353

E-Print Network 3.0 - air surveillance air Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sample search results for: air surveillance air Page: << < 1 2 3 4 5 > >> 1 Public Health Air Surveillance Evaluation Project Public Health Air Surveillance Evaluation (PHASE)...

354

Sticking with air  

SciTech Connect (OSTI)

A decision to replace more than 300 aging damper actuators at Independence Plant in Newark, Arkensas forced Entergy to make a choice between pneumatic and electric actuator designs. The dampers route air flow through separate dedicated compartments to ensure proper firing of pulverised coal. The reasons that pneumatics was chosen are discussed in this article. 4 figs.

Coker, S.N. [Entergy (US). Independence Plant

2005-06-01T23:59:59.000Z

355

Entrainment of refrigerated air curtains down a wall  

SciTech Connect (OSTI)

Refrigerated air curtains are used in open supermarket display cases as a barrier between the warm ambient air and the cold refrigerated air. Entrainment of ambient air into the curtain by shear layer mixing contributes to both the sensible and the latent heat load on the display case. To better understand the fluid dynamics which govern entrainment, velocity and temperature measurements of the curtains were made in a refrigerated display case, which was modified to allow a more fundamental flow. In particular, a vertical solid wall was installed to approximately represent a fully-stocked configuration. As such, negatively-buoyant wall jets (with high inflow turbulence) in the Reynolds number range of 4200-8000 and in the Richardson number range of 0.13-0.58 were examined. To define the air curtain vortex structures, flow visualization of the curtain interface was employed. The results of which showed that the entrainment of the ambient air was found to be governed by a variety of eddy engulfing structures. Particle Image Velocimetry was used to examine the velocity profiles of the air curtains in a non-intrusive manner, the measurements of which indicated negatively-buoyant acceleration following the jet exhaust, followed by a more linear curtain growth characteristic of isothermal wall jets. In addition, thermocouples were used to obtain the net increase in temperature of the curtain due to entrainment, where it was found that the dimensionless thermal energy loss decreased with decreasing Reynolds number.

Field, Brandon S.; Loth, Eric [Department of Aerospace Engineering, University of Illinois, Urbana-Champaign, 104 South Wright Street, Urbana, IL 61801 (United States)

2006-01-01T23:59:59.000Z

356

Industrial HVAC Air-to-Air Energy Recovery Retrofit Economics  

E-Print Network [OSTI]

Retrofitting air-to-air energy recovery equipment is relatively simply to design and easy to install. Additionally, HVAC energy recovery is almost risk free when compared to process retrofit. Life cycle cost analysis is the best way to illustrate...

Graham, E. L.

1980-01-01T23:59:59.000Z

357

Vermont Air Pollution Control Regulations, Ambient Air Quality Standards (Vermont)  

Broader source: Energy.gov [DOE]

The ambient air quality standards are based on the national ambient air quality standards. The Vermont standards are classified as primary and secondary standards and judged adequate to protect...

358

Staged direct injection diesel engine  

DOE Patents [OSTI]

A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.

Baker, Quentin A. (San Antonio, TX)

1985-01-01T23:59:59.000Z

359

Recent Progress in Retrieving Air Temperature Profiles and Air-Sea Temperature Differences from Infrared and Microwave Scan...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, andEpidermalOxideSelectedRecent NewsRecent Progress

360

Environmental Pollution Air Pollution Dispersion Practical Air Pollution Dispersion  

E-Print Network [OSTI]

Environmental Pollution Air Pollution Dispersion 1 of 5 Practical ­ Air Pollution Dispersion in the lectures how such models can be used to explain observed concentrations of air pollutants in an area and to test `what-if' scenarios for pollution control and reduction. You will use the Gaussian Plume Model

Moncrieff, John B.

Note: This page contains sample records for the topic "direction air temperature" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Construction of prototype system for directional solvent extraction desalination  

E-Print Network [OSTI]

Directional solvent extraction has been demonstrated as a low temperature, membrane free desalination process. This method dissolves the water into an inexpensive, benign directional solvent, rejects the contaminants, then ...

Fowler, Michael James

2012-01-01T23:59:59.000Z

362

INNOVATIVE INSTRUMENTATION AND ANALYSIS OF THE TEMPERATURE MEASUREMENT FOR HIGH TEMPERATURE GASIFICATION  

SciTech Connect (OSTI)

The systematic tests of the gasifier simulator on the ultrasonic vibration application for cleaning method were completed in this reporting period. Within the systematic tests on the ultrasonic vibration application, the ambient temperature and high temperature status condition were tested separately. The sticky dirt on the thermocouple tip was simulated by the cement-covered layer on the thermocouple tip. At the ambient temperature status, four (4) factors were considered as the input factors affecting the response variable of peeling off rate. The input factors include the shape of the cement-covered layer (thickness and length), the ultrasonic vibration output power, and application time. At the high temperature tests, four (4) different environments were considered as the experimental parameters including air flow supply, water and air supply environment, water/air/fine dust particle supply, and air/water/ammonia/fine dust particle supply environment. The factorial design method was used in the experiment design with twelve (12) data sets of readings. Analysis of Variances (ANOVA) was applied to the results from systematic tests. The ANOVA results show that the thickness and length of the cement-covered layer have the significant impact on the peeling off rate of ultrasonic vibration application at the ambient temperature environment. For the high temperature tests, the different environments do not seem to have significant impact on the temperature changes. These results may indicate that the ultrasonic vibration is one of best cleaning methods for the thermocouple tip.

Seong W. Lee

2005-04-01T23:59:59.000Z

363

Direct observation of temperature dependent magnetic domain structure of the multiferroic La{sub 0.66}Sr{sub 0.34}MnO{sub 3}/BiFeO{sub 3} bilayer system by x-ray linear dichroism- and x-ray magnetic circular dichroism-photoemission electron microscopy  

SciTech Connect (OSTI)

Low-thickness La{sub 0.66}Sr{sub 0.34}MnO{sub 3} (LSMO)/BiFeO{sub 3} (BFO) thin film samples deposited on SrTiO{sub 3} were imaged by high resolution x-ray microscopy at different temperatures. The ultra-thin thickness of the top layer allows to image both the ferromagnetic domain structure of LSMO and the multiferroic domain structure of the buried BFO layer, opening a path to a direct observation of coupling at the interface on a microscopic level. By comparing the domain size and structure of the BFO and LSMO, we observed that, in contrast to LSMO single layers, LSMO/BFO multilayers show a strong temperature dependence of the ferromagnetic domain structure of the LSMO. Particularly, at 40?K, a similar domain size for BFO and LSMO is observed. This indicates a persistence of exchange coupling on the microscopic scale at a temperature, where the exchange bias as determined by magnetometer measurements is vanishing.

Mix, C.; Finizio, S.; Jakob, G.; Kläui, M. [Institut für Physik, Johannes Gutenberg Universität Mainz, Staudingerweg 7, D-55128 Mainz (Germany); Buzzi, M.; Nolting, F. [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Kronast, F. [Helmholtz-Zentrum-Berlin für Materialien und Energie GmbH, Albert-Einstein Straße 15, D-12489 Berlin (Germany)

2014-05-21T23:59:59.000Z

364

Direct conversion of algal biomass to biofuel  

SciTech Connect (OSTI)

A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

2014-10-14T23:59:59.000Z

365

Direct Measurement of Oxygen Incorporation into Thin Film Oxides...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measurement of Oxygen Incorporation into Thin Film Oxides at Room Temperature Upon Ultraviolet Phton Irradiation. Direct Measurement of Oxygen Incorporation into Thin Film Oxides...

366

Tennessee Air Quality Act (Tennessee)  

Broader source: Energy.gov [DOE]

The Tennessee Air Quality Act (AQA) delegates the power to maintain air quality in the State to the Department of Environment and Conservation. Under the Department of the Environment and...

367

Fundamentals of Compressed Air Systems  

Broader source: Energy.gov [DOE]

Find out how a compressed air system works and the benefits of optimal compressed air system performance. This initial class demonstrates how to compute the current cost of your plant's compressed...

368

Louisiana Air Control Law (Louisiana)  

Broader source: Energy.gov [DOE]

This law states regulations for air quality control and states the powers and duties of the secretary of environmental quality. It provides information about permits and licenses, air quality...

369

Performance of underfloor air distribution in a fieldsetting  

SciTech Connect (OSTI)

Underfloor air distribution (UFAD) is a new method of supplying heated or cooled air throughout a building. Reported advantages of UFAD include energy savings and improved indoor air quality (IAQ). We measured several aspects of the performance of an UFAD system installed in a medium-size office building. The measured air change effectiveness was very close to unity, which is comparable to that measured in buildings with typical overhead air distribution. The pollutant removal efficiency for carbon dioxide was 13% higher than expected in a space with well-mixed air, suggesting a 13% reduction in exposures to occupant generated pollutants. The increase in indoor air temperatures with height above the floor was only 1 to 2 C. This amount of thermal stratification could reduce the sensible energy requirements for cooling of outdoor air by approximately 10%. The occupant's level of satisfaction with thermal conditions was well above average and this high satisfaction rating could possibly be due, in all or part, to the use of a UFAD system. The results of this study provide some evidence of moderate energy and IAQ-related benefits of UFAD. Before general conclusions are drawn, the benefits need to be confirmed in other studies.

Fisk, W.J.; Faulkner, D.; Sullivan, D.P.; Chao, C.; Wan, M.P.; Zagreus, L.; Webster, T.

2005-10-01T23:59:59.000Z

370

Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in an old-field grassland  

SciTech Connect (OSTI)

Responses of soil respiration to atmospheric and climatic change will have profound impacts on ecosystem and global C cycling in the future. This study was conducted to examine effects on soil respiration of the concurrent driving factors of elevated atmospheric CO2 concentration, rising temperature, and changing precipitation in a constructed old-field grassland in eastern Tennessee, USA. Model ecosystems of seven old-field species in 12 open-top chambers (4 m in diameter) were treated with two CO2 (ambient and ambient plus 300 ppm) and two temperature (ambient and ambient plus 3 C) levels. Two split plots with each chamber were assigned with high and low soil moisture levels. During the 19-month experimental period from June 2003 to December 2004, higher CO2 concentration and soil water availability significantly increased mean soil respiration by 35.8% and 15.7%, respectively. The effects of air warming on soil respiration varied seasonally from small reductions to significant increases to no response, and there was no significant main effect. In the wet side of elevated CO2 chambers, air warming consistently caused increases in soil respiration, whereas in other three combinations of CO2 and water treatments, warming tended to decrease soil respiration over the growing season but increase it over the winter. There were no interactive effects on soil respiration among any two or three treatment factors irrespective of testing time period. Temperature sensitivity of soil respiration was reduced by air warming, lower in the wet than the dry side, and not affected by CO2 treatment. Variations of soil respiration responses with soil temperature and soil moisture ranges could be primarily attributable to the seasonal dynamics of plant growth and its responses to the three treatments. Using a conceptual model to interpret the significant relationships of treatment-induced changes in soil respiration with changes in soil temperature and moisture observed in this study, we conclude that elevated CO2, air warming, and changing soil water availability had both direct and indirect effects on soil respiration via changes in the three controlling factors: soil temperature, soil moisture, and C substrate. Our results demonstrate that the response of soil respiration to climatic warming should not be represented in models as a simple temperature response function. A more mechanistic understanding of the direct and indirect impacts of concurrent global change drivers on soil respiration is needed to facilitate the interpretation and projection of ecosystem and global C cycling in response to atmospheric and climate change.

Wan, Shiqiang [Chinese Academy of Sciences; Norby, Richard J [ORNL; Childs, Joanne [ORNL; Weltzin, Jake [University of Tennessee, Knoxville (UTK)

2007-01-01T23:59:59.000Z

371

Effect of refrigerant charge, duct leakage, and evaporator air flow on the high temerature performance of air conditioners and heat pumps  

E-Print Network [OSTI]

An experimental study was conducted to quantify the effect of several installation items on the high outdoor ambient temperature performance of air conditioners. These installation items were: improper amount of refrigerant charge, reduced...

Rodriguez, Angel Gerardo

2012-06-07T23:59:59.000Z

372

Compressed Air Energy Storage System  

E-Print Network [OSTI]

/expanders are crucial for the economical viability of a Compressed Air Energy Storage (CAES) system such as the

Farzad A. Shirazi; Mohsen Saadat; Bo Yan; Perry Y. Li; Terry W. Simon

373

Metal-air battery assessment  

SciTech Connect (OSTI)

The objective of this report is to evaluate the present technical status of the zinc-air, aluminum/air and iron/air batteries and assess their potential for use in an electric vehicle. In addition, this report will outline proposed research and development priorities for the successful development of metal-air batteries for electric vehicle application. 39 refs., 25 figs., 11 tabs.

Sen, R.K.; Van Voorhees, S.L.; Ferrel, T.

1988-05-01T23:59:59.000Z

374

Making Compressed Air System Decisions  

E-Print Network [OSTI]

spawned an entire industry dedicated to manufacturing equipment designed to remove moisture, lubricant, particulate and vapor contaminants from compressed air. Purification equipment, such as air dryers and filters, are used alone or in combination... to reduce the amount of contaminants in the compressed air to the desired purity. All compressed ESL-IE-96-04-32 Proceedings from the Eighteenth Industrial Energy Technology Conference, Houston, TX, April 17-18, 1996 air purification equipment requires...

Porri, R. E.

375

Ventilation System Effectiveness and Tested Indoor Air Quality Impacts  

SciTech Connect (OSTI)

Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

Rudd, A.; Bergey, D.

2014-02-01T23:59:59.000Z

376

COMBUSTION-GENERATED INDOOR AIR POLLUTION  

E-Print Network [OSTI]

The Japanese Union of Air Pollution Prevention Associations,The Status of Indoor Air Pollution Research 1976, GeometAnnual Meeting of the Air Pollution Control Association,

Hollowell, C.D.

2011-01-01T23:59:59.000Z

377

Review: Integrating Climate, Energy and Air Pollution  

E-Print Network [OSTI]

Climate, Energy and Air Pollution By Gary Bryner with RobertEnergy, and Air Pollution. Cambridge, Massachusetts, The MITClimate, Energy, and Air Pollution provides a well-

Toohey, David E.

2013-01-01T23:59:59.000Z

378

Radionuclide Air Emission Report for 2011  

E-Print Network [OSTI]

LBNL-470E-20Ì1 Radionuclide Air Emission Report for Preparedfor Estimating Fugitive Air Emissions of Radionuclides fromStandards for Hazardous Air Pollutants (Radionuclides),

Wahl, Linnea

2012-01-01T23:59:59.000Z

379

Air Pollution & Health in Rapidly Developing Countries  

E-Print Network [OSTI]

For example, “Air Pollution and Health – Studies in theAssessment of Air Pollution and Health” is illustrative inReview: Air Pollution & Health in Rapidly Developing

Bucher, Scott

2005-01-01T23:59:59.000Z

380

FLUIDIC: Metal Air Recharged  

ScienceCinema (OSTI)

Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

Friesen, Cody

2014-04-02T23:59:59.000Z

Note: This page contains sample records for the topic "direction air temperature" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Air Observe System  

E-Print Network [OSTI]

This manuscript contains a description and basic principles for observing inaccessible areas using low cost, easily deployed equipment. The basic premise is to suspend a tiny video camera at an altitude of 10 - 200 meters over the area to be surveyed. The TV camera supports at altitude by wind or balloon. The technical challenges regard the means by which the camera is suspended. Such a system may be used by military or police forces or by civil authorities for rescue missions or assessment of natural disasters. The method may be further developed for military applications by integrating the surveillance task with deployment of munitions. Key words: air observer, air suspended system, low altitude video observer.

Alexander Bolonkin

2007-01-10T23:59:59.000Z

382

FLUIDIC: Metal Air Recharged  

SciTech Connect (OSTI)

Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

Friesen, Cody

2014-03-07T23:59:59.000Z

383

Air cathode structure manufacture  

DOE Patents [OSTI]

An improved air cathode structure for use in primary batteries and the like. The cathode structure includes a matrix active layer, a current collector grid on one face of the matrix active layer, and a porous, nonelectrically conductive separator on the opposite face of the matrix active layer, the collector grid and separator being permanently bonded to the matrix active layer. The separator has a preselected porosity providing low IR losses and high resistance to air flow through the matrix active layer to maintain high bubble pressure during operation of the battery. In the illustrated embodiment, the separator was formed of porous polypropylene. A thin hydrophobic film is provided, in the preferred embodiment, on the current collecting metal grid.

Momyer, William R. (Palo Alto, CA); Littauer, Ernest L. (Los Altos Hills, CA)

1985-01-01T23:59:59.000Z

384

Air Pollution Socio-Economic  

E-Print Network [OSTI]

Traffic Air Pollution and Socio-Economic Status Gregory C Pratt PhD Kristie Ellickson PhD #12 · Relationships #12;Living near traffic increases exposure to air pollution and is associated with adverse health exposed to traffic and air pollution. They are also more vulnerable and have an increased risk of adverse

Minnesota, University of

385

Reducing Air Compressor Work by Using Inlet Air Cooling and Dehumidification  

E-Print Network [OSTI]

. These compressors can account for a significant portion of a manufacturing facility?s electric consumption and any increase in efficiency can lead to economic benefits. Air compressors are sensitive to ambient conditions, as evidenced by the fact... fall as low as 20% below their 4 rated generation capacity (standard ISO power output at 59?F ambient) when temperatures are over 95?F. Further, warmer days result in increased electric power demand due to the need for household cooling. In order...

Hardy, Mark James

2011-02-22T23:59:59.000Z

386

The relationship of air temperature and air volume to the rate of drying rice in sacks  

E-Print Network [OSTI]

operation to a stoiiture content, ef 19 to, 14 per eemt. "She eaoJee w~e ~~;. ;ogpu;Ih dtiring. the '&yield, epeMMen for each test, At the end of the drying peribd, s composite simple 5 r n'ne, 'tegen fron. each ~i4r:, for;~ii~, . determ4nsMem ~8 later... ~ 0 XQO. I 1'15. h +1, 8 1%4. 5 1/0, 5 1~9&JI 1OV~ XMQ gp, ss N. , '7G gg, 65 g). , 4Q Q6. 48 QO;51 $6, 41 19. 75 (VS sLin ) 19. VT ('l. 5 'min. ) 14 62 (Ts min. ) XQ 44 , X5? x1AS a '. gutsy. Isagles fojt'~i'etige detereinstiona...

Mayfield, William Lloyd

1951-01-01T23:59:59.000Z

387

INFLUENCE OF SUPPLY AIR TEMPERATURE ON UNDERFLOOR AIR DISTRIBUTION (UFAD) SYSTEM ENERGY PERFORMANCE  

E-Print Network [OSTI]

this study, perimeter fan coil unit (FCU) energy also addsvariable speed series fan coil unit. The FCU shuts off whenunit including an economizer, chilled water cooling coil, and supply fan.

2012-01-01T23:59:59.000Z

388

alternating temperature preculture: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A; Moi, L 2013-01-01 3 Warm Humid Climate: Methodology to Study Air Temperature Distribution: Mobile Phones Base Stations as Viable Alternative for Fixed Points Texas A&M...

389

Generation of concentration density maxima of small dispersive coal dust particles in horizontal iodine air filter at air-dust aerosol blow  

E-Print Network [OSTI]

The spatial distributions of the small dispersive coal dust particles with the nano and micro sizes in the granular filtering medium with the cylindrical coal granules in the absorber in the horizontal iodine air filter during its long term operation at the nuclear power plant are researched. It is shown that the concentration density maxima of the small dispersive coal dust particles appear in the granular filtering medium with the cylindrical coal absorbent granules in the horizontal iodine air filter at an action by the air dust aerosol blow. The comparison of the measured aerodynamic resistances of the horizontal and vertical iodine air filters is conducted. The main conclusion is that the magnitude of the aerodynamic resistance of the horizontal iodine air filters is much smaller in comparison with the magnitude of the aerodynamic resistance of the vertical iodine air filters at the same loads of the air dust aerosol volumes. It is explained that the direction of the air dust aerosol blow and the direction of the gravitation force in the horizontal iodine air filter are orthogonal, hence the effective accumulation of the small dispersive coal dust particles takes place at the bottom of absorber in the horizontal iodine air filter. It is found that the air dust aerosol stream flow in the horizontal iodine air filter is not limited by the appearing structures, made of the precipitated small dispersive coal dust particles, in distinction from the vertical iodine air filter, in the process of long term operation of the iodine air filters at the nuclear power plant.

I. M. Neklyudov; O. P. Ledenyov; L. I. Fedorova; P. Ya. Poltinin

2013-06-11T23:59:59.000Z

390

Premixed direct injection disk  

DOE Patents [OSTI]

A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho

2013-04-23T23:59:59.000Z

391

Beamline Temperatures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience ProgramBackground8.0.1 PrintTemperatures Energy: 3.0000 GeV

392

Air Risk Information Support Center  

SciTech Connect (OSTI)

The Air Risk Information Support Center (Air RISC) was initiated in early 1988 by the US Environmental Protection Agency`s (EPA) Office of Health and Environmental Assessment (OHEA) and the Office of Air Quality Planning and Standards (OAQPS) as a technology transfer effort that would focus on providing information to state and local environmental agencies and to EPA Regional Offices in the areas of health, risk, and exposure assessment for toxic air pollutants. Technical information is fostered and disseminated by Air RISCs three primary activities: (1) a {open_quotes}hotline{close_quotes}, (2) quick turn-around technical assistance projects, and (3) general technical guidance projects. 1 ref., 2 figs.

Shoaf, C.R.; Guth, D.J. [Environmental Protection Agency, Washington, DC (United States)

1990-12-31T23:59:59.000Z

393

An analysis of the impact of datacenter temperature on energy efficiency  

E-Print Network [OSTI]

The optimal air temperature for datacenters is one of ways to improve energy efficiency of datacenter cooling systems. Many datacenter owners have been interested in raising the room temperature as a quick and simple method ...

Lee, Heechang

2012-01-01T23:59:59.000Z

394

Exploring Maximum Humidity Control and Energy Conservation Opportunities with Single Duct Single Zone Air-Handling Units  

E-Print Network [OSTI]

Humidity control for single-duct single-zone (SDSZ) constant volume air handling units is known to be a challenge. The operation of these systems is governed by space temperature only. Under mild weather conditions, discharge air temperature can get...

Zhou, J.; Wei, G.; Turner, W. D.; Deng, S.; Claridge, D.

2006-01-01T23:59:59.000Z

395

Directives Quarterly Updates  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Listings of new Justification Memoranda and new or revised Directives that have been posted to the DOE Directives, Delegations, and Requirements Portal. Updated quarterly.

396

Another face of DIRECT  

E-Print Network [OSTI]

authors, see for example, tree-Direct [5]. This paper ..... [4] J.M. Gablonsky, Modifications of the DIRECT Algorithm, Ph.D. Thesis, North Carolina State. University ...

chiter

2007-08-01T23:59:59.000Z

397

Air Corrosivity in U.S. Outdoor-Air-Cooled Data Centers is Similar to That in Conventional Data Centers  

SciTech Connect (OSTI)

There is a concern that environmental-contamination caused corrosion may negatively affect Information Technology (IT) equipment reliability. Nineteen data centers in the United States and two in India were evaluated using Corrosion Classification Coupons (CCC) to assess environmental air quality as it may relate IT equipment reliability. The data centers were of two basic types: closed and outside-air cooled. A closed data center provides cool air to the IT equipment using air conditioning in which only a small percent age of the recirculation air is make-up air continuously supplied from outside to meet human health requirements. An outside-air cooled data center uses outside air directly as the primary source for IT equipment cooling. Corrosion measuring coupons containing copper and silver metal strips were placed in both closed and outside-air cooled data centers. The coupons were placed at each data center (closed and outside-air cooled types) with the location categorized into three groups: (1) Outside - coupons sheltered, located near or at the supply air inlet, but located before any filtering, (2) Supply - starting just after initial air filtering continuing inside the plenums and ducts feeding the data center rooms, and (3) Inside located inside the data center rooms near the IT equipment. Each coupon was exposed for thirty days and then sent to a laboratory for a corrosion rate measurement analysis. The goal of this research was to investigate whether gaseous contamination is a concern for U.S. data center operators as it relates to the reliability of IT equipment. More specifically, should there be an increased concern if outside air for IT equipment cooling is used To begin to answer this question limited exploratory measurements of corrosion rates in operating data centers in various locations were undertaken. This study sought to answer the following questions: (1) What is the precision of the measurements (2) What are the approximate statistical distributions of copper and silver corrosion rates in the sampled data centers(3) To what extent are copper and silver corrosion measurements related (4) What is the relationship of corrosion rate measurements between outside-air cooled data centers compared to closed data centers (5) How do corrosivity measurements relate to IT equipment failure rates The data from our limited sample size suggests that most United States data center operators should not be concerned with environmental gaseous contamination causing high IT equipment failure rates even when using outside-air cooling. The research team recommends additional basic research on how environmental conditions, specifically gaseous contamination, affect electronic equipment reliability.

Coles, Henry C.; Han, Taewon; Price, Phillip N.; Gadgil, Ashok J.; Tschudi, William F.

2011-07-17T23:59:59.000Z

398

Method and apparatus for optical temperature measurement  

DOE Patents [OSTI]

A temperature probe and a method for using said probe for temperature measurements based on changes in light absorption by the probe are disclosed. The probe comprises a first and a second optical fiber that carry light to and from the probe, and a temperature sensor material, the absorbance of which changes with temperature, through which the light is directed. Light is directed through the first optical fiber, passes through the temperature sensor material, and is transmitted by a second optical fiber from the material to a detector. Temperature-dependent and temperature-independent factors are derived from measurements of the transmitted light intensity. For each sensor material, the temperature T is a function of the ratio, R, of these factors. The temperature function f(R) is found by applying standard data analysis techniques to plots of T versus R at a series of known temperatures. For a sensor having a known temperature function f(R) and known characteristic and temperature-dependent factors, the temperature can be computed from a measurement of R. Suitable sensor materials include neodymium-doped borosilicate glass, accurate to [+-]0.5 C over an operating temperature range of about [minus]196 C to 400 C; and a mixture of D[sub 2]O and H[sub 2]O, accurate to [+-]0.1 C over an operating range of about 5 C to 90 C. 13 figs.

O'Rourke, P.E.; Livingston, R.R.; Prather, W.S.

1994-09-20T23:59:59.000Z

399

Method and apparatus for optical temperature measurement  

DOE Patents [OSTI]

A temperature probe and a method for using said probe for temperature measurements based on changes in light absorption by the probe. The probe comprises a first and a second optical fiber that carry light to and from the probe, and a temperature sensor material, the absorbance of which changes with temperature, through which the light is directed. Light is directed through the first optical fiber, passes through the temperature sensor material, and is transmitted by a second optical fiber from the material to a detector. Temperature-dependent and temperature-independent factors are derived from measurements of the transmitted light intensity. For each sensor material, the temperature T is a function of the ratio, R, of these factors. The temperature function f(R) is found by applying standard data analysis techniques to plots of T versus R at a series of known temperatures. For a sensor having a known temperature function f(R) and known characteristic and temperature-dependent factors, the temperature can be computed from a measurement of R. Suitable sensor materials include neodymium-doped boresilicate glass, accurate to .+-.0.5.degree. C. over an operating temperature range of about -196.degree. C. to 400.degree. C.; and a mixture of D.sub.2 O and H.sub.2 O, accurate to .+-.0.1.degree. C. over an operating range of about 5.degree. C. to 90.degree. C.

O'Rourke, Patrick E. (Martinez, GA); Livingston, Ronald R. (Aiken, SC); Prather, William S. (Augusta, GA)

1994-01-01T23:59:59.000Z

400

Electrocatalysts for Nonaqueous Lithium–Air Batteries:...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges, and Perspective. Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges,...

Note: This page contains sample records for the topic "direction air temperature" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Asymmetry of Daily Temperature Records YOSEF ASHKENAZY  

E-Print Network [OSTI]

Asymmetry of Daily Temperature Records YOSEF ASHKENAZY Solar Energy and Environmental Physics, BIDR author address: Yosef Ashkenazy, Department of Solar Energy and Environmental Physics, The J. Blaustein cold fronts are significantly faster and steeper than warm fronts, and to intrusions of cold air

Tziperman, Eli

402

Safeguarding indoor air quality  

SciTech Connect (OSTI)

California has created and implemented the first state program devoted exclusively to the investigation of nonindustrial indoor air quality. The program is responsible for promoting and conducting research on the determining factors of healthful indoor environments and is structured to obtain information about emission sources, ventilation effects, indoor concentrations, human activity patterns, exposures, health risks, control measures and public policy options. Data are gathered by a variety of methods, including research conducted by staff members, review of the available scientific literature, participation in technical meetings, contractual agreements with outside agencies, cooperative research projects with other groups and consultation with experts. 23 references, 1 figure, 1 table.

Sexton, K.; Wesolowski, J.J.

1985-01-01T23:59:59.000Z

403

Hot air drum evaporator  

DOE Patents [OSTI]

An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

Black, Roger L. (Idaho Falls, ID)

1981-01-01T23:59:59.000Z

404

Off-peak air conditioning; A major energy saver  

SciTech Connect (OSTI)

Today, the mission given to manufacturers is changing to include saving energy (kWh). Until now, saving energy was ignored because the utilities were happy to fill their night valley to reach a higher load factor. There also was a general feeling that making ice was much less efficient than standard air conditioning, and that anyone saying otherwise was a dreamer. This article discusses the energy savings based on the more prevalent ice storage technology, the similar suction temperatures of the various types of ice storage, and how storage is applied. Included are baseload power generation, partial storage with chiller priority, using air cooled condensers when making ice at night, colder duct air, heat recovery, central rooftop systems, smart controls, electric/gas combinations, supply side transmission and distribution losses, and cooling of air entering gas turbine generators during peak conditions.

MacCracken, C.D.

1991-12-01T23:59:59.000Z

405

Surface preparation for high purity alumina ceramics enabling direct brazing in hydrogen atmospheres  

DOE Patents [OSTI]

The present invention relates to a method for preparing the surface of a high purity alumina ceramic or sapphire specimen that enables direct brazing in a hydrogen atmosphere using an active braze alloy. The present invention also relates to a method for directly brazing a high purity alumina ceramic or sapphire specimen to a ceramic or metal member using this method of surface preparation, and to articles produced by this brazing method. The presence of silicon, in the form of a SiO.sub.2 -containing surface layer, can more than double the tensile bond strength in alumina ceramic joints brazed in a hydrogen atmosphere using an active Au-16Ni-0.75 Mo-1.75V filler metal. A thin silicon coating applied by PVD processing can, after air firing, produce a semi-continuous coverage of the alumina surface with a SiO.sub.2 film. Room temperature tensile strength was found to be proportional to the fraction of air fired surface covered by silicon-containing films. Similarly, the ratio of substrate fracture versus interface separation was also related to the amount of surface silicon present prior to brazing. This process can replace the need to perform a "moly-manganese" metallization step.

Cadden, Charles H. (Danville, CA); Yang, Nancy Yuan Chi (Lafayette, CA); Hosking, Floyd M. (Albuquerque, NM)

2001-01-01T23:59:59.000Z

406

AGU Press Conference, December 13, The influence of air-  

E-Print Network [OSTI]

CURRENT STATE FUTURE PROJECTION 1. Meteorological scenario: 2003 European heat wave ATMOSPHERE Method Conference, December 13, 2010 Urban heat island intensity increases during a heat wave. Source: Météo- France a 1-2°C increase in air temperatures due to AC usage during weekdays (Ohashi et al. 2007). · Energy

407

Concepts for Environmental Radioactive Air Sampling and Monitoring  

SciTech Connect (OSTI)

Environmental radioactive air sampling and monitoring is becoming increasingly important as regulatory agencies promulgate requirements for the measurement and quantification of radioactive contaminants. While researchers add to the growing body of knowledge in this area, events such as earthquakes and tsunamis demonstrate how nuclear systems can be compromised. The result is the need for adequate environmental monitoring to assure the public of their safety and to assist emergency workers in their response. Two forms of radioactive air monitoring include direct effluent measurements and environmental surveillance. This chapter presents basic concepts for direct effluent sampling and environmental surveillance of radioactive air emissions, including information on establishing the basis for sampling and/or monitoring, criteria for sampling media and sample analysis, reporting and compliance, and continual improvement.

Barnett, J. M.

2011-11-04T23:59:59.000Z

408

Office of radiation and indoor air: Program description  

SciTech Connect (OSTI)

The goal of the Environmental Protection Agency`s (EPA) Office of Radiation and Indoor Air is to protect the public and the environment from exposures to radiation and indoor air pollutants. The Office develops protection criteria, standards, and policies and works with other programs within EPA and other agencies to control radiation and indoor air pollution exposures; provides technical assistance to states through EPA`s regional offices and other agencies having radiation and indoor air protection programs; directs an environmental radiation monitoring program; responds to radiological emergencies; and evaluates and assesses the overall risk and impact of radiation and indoor air pollution. The Office is EPA`s lead office for intra- and interagency activities coordinated through the Committee for Indoor Air Quality. It coordinates with and assists the Office of Enforcement in enforcement activities where EPA has jurisdiction. The Office disseminates information and works with state and local governments, industry and professional groups, and citizens to promote actions to reduce exposures to harmful levels of radiation and indoor air pollutants.

Not Available

1993-06-01T23:59:59.000Z

409

Abatement of Air Pollution: Air Pollution Control Equipment and...  

Broader source: Energy.gov (indexed) [DOE]

contain instructions for the operation and monitoring of air pollution control equipment, as well as comments on procedures in the event of equipment breakdown, failure, and...

410

Water-to-Air Heat Pump Performance with Lakewater  

E-Print Network [OSTI]

The performance of water-to-air heat pumps using lakewater as the heat source and sink has been investigated. Direct cooling with deep lakewater has also been considered. Although the emphasis of the work was with southern lakes, many results also...

Kavanaugh, S.; Pezent, M. C.

1989-01-01T23:59:59.000Z

411

Synthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge  

E-Print Network [OSTI]

Synthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge K 73019 Received October 11, 2002 In this study, synthesis gas production in an AC electric gas discharge of methane and air mixtures at room temperature and ambient pressure was investigated. The objective

Mallinson, Richard

412

2006-01-1085 Air Path Estimation on Diesel HCCI Engine  

E-Print Network [OSTI]

: fresh air and EGR temperature probes. INTRODUCTION Increasingly stringent pollution standards norms have2006-01-1085 Air Path Estimation on Diesel HCCI Engine J. Chauvin, N. Petit, P. Rouchon ´Ecole des Mines de Paris G. Corde IFP C. Vigild Ford Forschungszentrum Aachen GmbH Copyright c 2006 Society

413

The effect of air blowing on the properties of rubber-modified asphalt binder  

E-Print Network [OSTI]

production and use. Air blowing, accompanied by high shear mixing at elevated temperatures, was used to produce many asphalt-rubber blends in an attempt to discover a binder which resists phase separation. These air-blown, rubber-modified binders were...

Bauer, Shauna Erin

1997-01-01T23:59:59.000Z

414

Experimental investigation of burning velocities of ultra-wet methane-air-steam mixtures  

E-Print Network [OSTI]

Experimental investigation of burning velocities of ultra-wet methane-air-steam mixtures Eric Abstract Global burning velocities of methane-air-steam mixtures are measured on prismatic laminar Bunsen flames and lifted turbulent V-flames for various preheating temperatures, equivalence ratios and steam

Paris-Sud XI, Université de

415

Premixed direct injection nozzle  

DOE Patents [OSTI]

An injection nozzle having a main body portion with an outer peripheral wall is disclosed. The nozzle includes a plurality of fuel/air mixing tubes disposed within the main body portion and a fuel flow passage fluidly connected to the plurality of fuel/air mixing tubes. Fuel and air are partially premixed inside the plurality of the tubes. A second body portion, having an outer peripheral wall extending between a first end and an opposite second end, is connected to the main body portion. The partially premixed fuel and air mixture from the first body portion gets further mixed inside the second body portion. The second body portion converges from the first end toward said second end. The second body portion also includes cooling passages that extend along all the walls around the second body to provide thermal damage resistance for occasional flame flash back into the second body.

Zuo, Baifang (Simpsonville, SC); Johnson, Thomas Edward (Greer, SC); Lacy, Benjamin Paul (Greer, SC); Ziminsky, Willy Steve (Simpsonville, SC)

2011-02-15T23:59:59.000Z

416

Air-Cooled Condensers in Next-Generation Conversion Systems Geothermal...  

Open Energy Info (EERE)

makeup. Though they use no water, air-cooling systems have higher capital costs, reduced power output (heat is rejected at a higher temperature), lower power sales due to higher...

417

Use of airs and modis thermal infrared channels to retrieve ice cloud properties  

E-Print Network [OSTI]

In this study, we use thermal infrared channels to retrieve the optical thickness and effective particle radius of ice clouds. A physical model is used in conjunction with Atmospheric Infrared Sounder (AIRS) temperature and water vapor profiles...

Yost, Christopher Rogers

2007-04-25T23:59:59.000Z

418

Using Outside Air for Flooded Oil Screw Compressors at an Industrial Facility  

E-Print Network [OSTI]

A study has been performed to determine if inlet air temperature provides an increase in compressor efficiency, seen through reduced power for some specified mass flow. A theoretical analysis suggests that power is not a function of volumetric flow...

Hunt, D. G.; Terry, S.

2014-01-01T23:59:59.000Z

419

Double Ended Guillotine Break in a Prismatic Block VHTR Lower Plenum Air Ingress Scenario  

E-Print Network [OSTI]

The double ended guillotine break leading to density-driven air ingress has been identified as a low probability yet high consequence event for Very High Temperature Reactor (VHTR). The lower plenum of the VHTR contains the core support structure...

Hartley, Jessica

2012-10-19T23:59:59.000Z

420

The Effects of Water Vapor and Hydrogen on the High-Temperature Oxidation of Alloys  

SciTech Connect (OSTI)

Essentially all alloys and coatings that are resistant to corrosion at high temperature require the formation of a protective (slowly-growing and adherent) oxide layer by a process known as selective oxidation. The fundamental understanding of this process has been developed over the years for exposure in pure oxygen or air. However, the atmospheres in most applications contain significant amounts of water vapor which can greatly modify the behavior of protective oxides. The development of oxy-fuel combustion systems in which fossil fuels are burned in a mixture of recirculated flue gas and oxygen, rather than in air, has caused renewed interest in the effects of water vapor and steam on alloy oxidation. The focus of this paper is on the ways the presence of water vapor can directly alter the selective oxidation process. The paper begins with a brief review of the fundamentals of selective oxidation followed by a description of recent experimental results regarding the effect of water vapor on the oxidation of a variety of chromia-forming alloys (Fe- and Ni-base) in the temperature range 600 to 700 °C. The atmospheres include air, air-H{sub 2}O, Ar-H{sub 2}O and Ar-H{sub 2}O-O{sub 2}. Then the behavior of alumina-forming alloys in H{sub 2}O-containing atmospheres is briefly described. As hydrogen is produced during oxidation of alloys in H{sub 2}O, it can be released back into the gas phase or injected into the metal (where it can diffuse through to the other side). Experiments in which hydrogen concentrations have been measured on both sides of thin specimens during oxidation by H{sub 2}O on only one side are described. Finally, it is attempted to catalogue the various experimental observations under a few general principles.

Mu, N.; Jung, K.; Yanar, N. M.; Pettit, F. S; Holcomb, G. R.; Howard, B. H.; Meier, G. H.

2013-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "direction air temperature" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

System for controlling the operating temperature of a fuel cell  

DOE Patents [OSTI]

A method and system are provided for improved control of the operating temperature of a fuel cell (32) utilizing an improved temperature control system (30) that varies the flow rate of inlet air entering the fuel cell (32) in response to changes in the operating temperature of the fuel cell (32). Consistent with the invention an improved temperature control system (30) is provided that includes a controller (37) that receives an indication of the temperature of the inlet air from a temperature sensor (39) and varies the heat output by at least one heat source (34, 36) to maintain the temperature of the inlet air at a set-point Tinset. The controller (37) also receives an indication of the operating temperature of the fuel cell (32) and varies the flow output by an adjustable air mover (33), within a predetermined range around a set-point Fset, in order to maintain the operating temperature of the fuel cell (32) at a set-point Topset.

Fabis, Thomas R.; Makiel, Joseph M.; Veyo, Stephen E.

2006-06-06T23:59:59.000Z

422

Modeling the pneumatic subsystem of a S-cam air brake system  

E-Print Network [OSTI]

The air brake system is one of the critical components in ensuring the safe operation of any commercial vehicle. This work is directed towards the development of a fault-free model of the pneumatic subsystem of the air brake system. This model can...

Coimbatore Subramanian, Shankar

2004-09-30T23:59:59.000Z

423

Cooling air recycling for gas turbine transition duct end frame and related method  

DOE Patents [OSTI]

A method of cooling a transition duct end frame in a gas turbine includes the steps of a) directing cooling air into the end frame from a region external of the transition duct and the impingement cooling sleeve; and b) redirecting the cooling air from the end frame into the annulus between the transition duct and the impingement cooling sleeve.

Cromer, Robert Harold (Johnstown, NY); Bechtel, William Theodore (Scotia, NY); Sutcu, Maz (Niskayuna, NY)

2002-01-01T23:59:59.000Z

424

Directed Evolution Study of Temperature Adaptation in a Psychrophilic Enzyme  

E-Print Network [OSTI]

important insights into the molecular basis of pro- tein adaptation. Based on studies of this kind, a number, circular dichroism; HEPPS, N-2-hydroxyethylpiperazine-NH -3-propane sulfonic acid; StEP, staggered

Arnold, Frances H.

425

Low Temperature Direct Use Agricultural Drying Geothermal Facilities | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster AndLittletown,LongweiLoveland, Colorado:LCS) DatabaseEnergy

426

Low Temperature Direct Use Aquaculture Geothermal Facilities | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster AndLittletown,LongweiLoveland, Colorado:LCS)

427

Low Temperature Direct Use District Heating Geothermal Facilities | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster AndLittletown,LongweiLoveland, Colorado:LCS)Energy

428

Low Temperature Direct Use Greenhouse Geothermal Facilities | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster AndLittletown,LongweiLoveland,

429

Low Temperature Direct Use Industrial Geothermal Facilities | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster AndLittletown,LongweiLoveland,Information Loading map...

430

Low Temperature Direct Use Snowmelt Geothermal Facilities | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster AndLittletown,LongweiLoveland,Information

431

Low Temperature Direct Use Space Heating Geothermal Facilities | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster AndLittletown,LongweiLoveland,InformationEnergy

432

Map of Low Temperature Direct Use Geothermal Facilities | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellis a town in CarrollManteca,Change |Information

433

Category:Geothermal Low Temperature Direct Use Facilities | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacilityCascadeJump to: navigation, searchInformation Jump

434

Argonne/EPA system captures mercury from air in gold shops |...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the mercury vaporizes. The vaporized mercury is directed outside the shop into the open air where it descends onto homes, water and food of the local populations. Image credit:...

435

Freight mode choice : air transport versus ocean transport in the 1990's  

E-Print Network [OSTI]

Value density is often considered when considering the choice whether to ship cargo by air or by water. However, although cargo value is directly linked to the overall cost of shipment, it is the deciding factor in mode ...

Lewis, Dale B.

1994-01-01T23:59:59.000Z

436

Air Distribution and Microenvironment Evaluation of a Desktop Task Conditioning System  

E-Print Network [OSTI]

Task conditioning aims to provide each occupant with personalized clean air direct to the breathing zone. The microenvironment of a typical office workplace, consisting of two desktop task conditioning systems (a Horizontal Desk Grill (HDG...

Zheng, G.

2006-01-01T23:59:59.000Z

437

Greenland temperature, climate change, and human society during the last 11,600 years  

E-Print Network [OSTI]

temperatures directly from the Greenland Ice Sheet. Science2006. The 8.2ka event from Greenland ice cores. QuaternaryJouzel, Isotope calibrated Greenland temperature record over

Kobashi, Takuro

2007-01-01T23:59:59.000Z

438

Free Energy Fluctuations for Directed Polymers in Random Media in 1?+?1 Dimension  

E-Print Network [OSTI]

We consider two models for directed polymers in space-time independent random media (the O'Connell-Yor semidiscrete directed polymer and the continuum directed random polymer) at positive temperature and prove their KPZ ...

Borodin, Alexei

439

Air Force Renewable Energy Programs  

Broader source: Energy.gov [DOE]

Presentation covers Air Force Renewable Energy Programs and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

440

Oklahoma Clean Air Act (Oklahoma)  

Broader source: Energy.gov [DOE]

This legislation establishes the authority for the Oklahoma Department of Environmental Quality to administer programs to maintain and monitor air quality across Oklahoma. The Department monitors...

Note: This page contains sample records for the topic "direction air temperature" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Nebraska Air Quality Regulations (Nebraska)  

Broader source: Energy.gov [DOE]

These regulations, promulgated by the Department of Environmental Quality, contain provisions pertaining to ambient air quality standards, pollution source operating permits, emissions reporting,...

442

Air Liquide - Biogas & Fuel Cells  

Broader source: Energy.gov (indexed) [DOE]

Liquide - Biogas & Fuel Cells Hydrogen Energy Biogas Upgrading Technology 12 June 2012 Charlie.Anderson@airliquide.com 2 Air Liquide, world leader in gases for industry,...

443

Directives Quarterly Updates - DOE Directives, Delegations, and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: https://www.directives.doe.gov/directives/directives

444

Monitoring and evaluation of replacing low-efficiency air conditioners with high-efficiency air conditioners in single-family detached houses in Austin, Texas  

SciTech Connect (OSTI)

The US DOE initiated this project to evaluate the performance of an air conditioner retrofit program in Austin, Texas. The City's Austin's Resource Management Department pursued this project to quantify the retrofit effect of replacing low-efficiency air conditioners with high-efficiency air conditioners in single-family detached homes. If successfully implemented, this retrofit program could help defer construction of a new power plant which is a major goal of this department. The project compares data collected from 12 houses during two cooling seasons under pre-retrofit and then post-retrofit air conditioner units. The existing low-efficiency air conditioners were monitored during the 1987 cooling season, replaced during the 1987--88 heating season with new, smaller sized, high-efficiency units, and then monitored again during the 1988 cooling season. Results indicated that the air conditioner retrofits reduce the annual air conditioner electric consumption and peak electric demand by an average of 38%. When normalized to the nominal capacity of the air conditioner, average demand savings were 1.12 W/ft{sup 2} and estimated annual energy savings were 1.419 kWh/ft{sup 2}. Individual air conditioner power requirements were found to be a well defined function of outdoor temperature as expected. In the absence of detailed data, estimates of the peak demand reductions of new air conditioners can be made from the manufacturer's specifications. Air conditioner energy consumption proved to be strongly linear as a function of the outdoor temperature as expected when taken as an aggregate. No noticeable differences in the diversity factor of the air conditioner usage were found. Analysis of the retrofit effect using PRISM yields estimates of the reduction in normalized annual consumption (NAC) and annual cooling consumption of 12% and 30%. 2 refs., 11 figs., 17 tabs.

Burns, R.; Hough, R.E. (Fleming (W.S.) and Associates, Inc., Syracuse, NY (United States))

1991-10-01T23:59:59.000Z

445

Direct-contact closed-loop heat exchanger  

DOE Patents [OSTI]

A high temperature heat exchanger with a closed loop and a heat transfer liquid within the loop, the closed loop having a first horizontal channel with inlet and outlet means for providing direct contact of a first fluid at a first temperature with the heat transfer liquid, a second horizontal channel with inlet and outlet means for providing direct contact of a second fluid at a second temperature with the heat transfer liquid, and means for circulating the heat transfer liquid.

Berry, Gregory F. (Naperville, IL); Minkov, Vladimir (Skokie, IL); Petrick, Michael (Joliet, IL)

1984-01-01T23:59:59.000Z

446

Inhalation intake of ambient air pollution in California's South Coast Air Basin  

E-Print Network [OSTI]

the impacts on air pollution and health of urban areaas a proxy for air pollution health effects (Bennett etFuel combustion, air pollution exposure, and health: The

Marshall, Julian D.; Granvold, Patrick W.; Hoats, Abigail S.; McKone, Thomas E.; Deakin, Elizabeth; Nazaroff, William W.

2006-01-01T23:59:59.000Z

447

The Effects of Indoor Air Velocity on Occupant Thermal Comfort in Winter  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China Maximize Comfort: Temperature, Humidity, and IAQ, Vol. I-2-5 The Effects of Indoor Air Velocity on Occupant Thermal Comfort in Winter Jiaolin Wang Lu Chen Postgrauate Master... surface temperature decline to reduce the body?s heat loss. Meanwhile shudder will promote the body?s heat production. So the temperature of organism doesn?t drop with decline of the environmental temperature. But if organism stays at cool environment...

Wang, J.; Chen, L.

2006-01-01T23:59:59.000Z

448

Fairmont Hot Springs Resort Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Oregon Institute of Technology's Geo-Heat Center1 Fairmont Hot Springs Resort is a Space Heating low temperature direct use geothermal facility in Fairmont, Montana. This...

449

Reduce Air Infiltration in Furnaces (English/Chinese) (Fact Sheet)  

SciTech Connect (OSTI)

Chinese translation of the Reduce Air Infiltration in Furnaces fact sheet. Provides suggestions on how to improve furnace energy efficiency. Fuel-fired furnaces discharge combustion products through a stack or a chimney. Hot furnace gases are less dense and more buoyant than ambient air, so they rise, creating a differential pressure between the top and the bottom of the furnace. This differential, known as thermal head, is the source of a natural draft or negative pressure in furnaces and boilers. A well-designed furnace (or boiler) is built to avoid air leakage into the furnace or leakage of flue gases from the furnace to the ambient. However, with time, most furnaces develop cracks or openings around doors, joints, and hearth seals. These openings (leaks) usually appear small compared with the overall dimensions of the furnace, so they are often ignored. The negative pressure created by the natural draft (or use of an induced-draft fan) in a furnace draws cold air through the openings (leaks) and into the furnace. The cold air becomes heated to the furnace exhaust gas temperature and then exits through the flue system, wasting valuable fuel. It might also cause excessive oxidation of metals or other materials in the furnaces. The heat loss due to cold air leakage resulting from the natural draft can be estimated if you know four major parameters: (1) The furnace or flue gas temperature; (2) The vertical distance H between the opening (leak) and the point where the exhaust gases leave the furnace and its flue system (if the leak is along a vertical surface, H will be an average value); (3) The area of the leak, in square inches; and (4) The amount of operating time the furnace spends at negative pressure. Secondary parameters that affect the amount of air leakage include these: (1) The furnace firing rate; (2) The flue gas velocity through the stack or the stack cross-section area; (3) The burner operating conditions (e.g., excess air, combustion air temperature, and so on). For furnaces or boilers using an induced-draft (ID) fan, the furnace negative pressure depends on the fan performance and frictional losses between the fan inlet and the point of air leakage. In most cases, it would be necessary to measure or estimate negative pressure at the opening. The amount of air leakage, the heat lost in flue gases, and their effects on increased furnace or boiler fuel consumption can be calculated by using the equations and graphs given in Industrial Furnaces (see W. Trinks et al., below). Note that the actual heat input required to compensate for the heat loss in flue gases due to air leakage would be greater than the heat contained in the air leakage because of the effect of available heat in the furnace. For a high-temperature furnace that is not maintained properly, the fuel consumption increase due to air leakage can be as high as 10% of the fuel input.

Not Available

2011-10-01T23:59:59.000Z

450

High Temperatures & Electricity Demand  

E-Print Network [OSTI]

High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

451

HIGH-TEMPERATURE ELECTROLYSIS FOR HYDROGEN PRODUCTION FROM NUCLEAR ENERGY  

SciTech Connect (OSTI)

An experimental study is under way to assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900ºC. Results presented in this paper were obtained from a ten-cell planar electrolysis stack, with an active area of 64 cm2 per cell. The electrolysis cells are electrolyte-supported, with scandia-stabilized zirconia electrolytes (~140 µm thick), nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed over a range of steam inlet mole fractions (0.1 - 0.6), gas flow rates (1000 - 4000 sccm), and current densities (0 to 0.38 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. Cell operating potentials and cell current were varied using a programmable power supply. Hydrogen production rates up to 90 Normal liters per hour were demonstrated. Values of area-specific resistance and stack internal temperatures are presented as a function of current density. Stack performance is shown to be dependent on inlet steam flow rate.

James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Joseph J. Hartvigsen

2005-10-01T23:59:59.000Z

452

High-temperature zirconia insulation and method for making same  

DOE Patents [OSTI]

The present invention is directed to a highly pure, partially stabilized, fibrous zirconia composite for use as thermal insulation in environments where temperatures up to about 2,000 C are utilized. The composite of the present invention is fabricated into any suitable configuration such as a cone, cylinder, dome or the like by vacuum molding an aqueous slurry of partially stabilized zirconia fibers into a desired configuration on a suitably shaped mandrel. The molded fibers are infiltrated with zirconyl nitrate and the resulting structure is then dried to form a rigid structure which may be removed and placed in a furnace. The structure is then heated in air to a temperature of about 600 C for driving off the nitrate from the structure and for oxidizing the zirconyl ion to zirconia. Thereafter, the structure is heated to about 950 to 1,250 C to fuse the zirconia fibers at their nexi in a matrix of zirconia. The composite produced by the present invention is self-supporting and can be readily machined to desired final dimensions. Additional heating to about 1,800 to 2,000 C further improves structural rigidity.

Wrenn, G.E. Jr.; Holcombe, C.E. Jr.; Lewis, J. Jr.

1988-05-10T23:59:59.000Z

453

Direct/Indirect Costs  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This chapter provides recommended categories for direct and indirect elements developed by the Committee for Cost Methods Development (CCMD) and describes various estimating techniques for direct and indirect costs.

1997-03-28T23:59:59.000Z

454

Direct Loan Program (Connecticut)  

Broader source: Energy.gov [DOE]

The Connecticut Development Authority’s Direct Loan Program provides direct senior and subordinated loans and mezzanine investments to companies creating or maintaining jobs. Up to $20,000 per job...

455

ORIGINAL ARTICLE Ambient Air Pollution  

E-Print Network [OSTI]

ORIGINAL ARTICLE Ambient Air Pollution and Respiratory Emergency Department Visits Jennifer L. Peel pollution and respiratory outcomes. More refined assessment has been limited by study size and available air quality data. Methods: Measurements of 5 pollutants (particulate matter PM10 , ozone, nitrogen dioxide NO2

Mulholland, James A.

456

Air Force Enhanced Use Lease  

Broader source: Energy.gov (indexed) [DOE]

S e r v i c e - E x c e l l e n c e Headquarters U.S. Air Force 1 Air Force Enhanced Use Lease Mr. Brian Brown 16 Oct. 12 I n t e g r i t y - S e r v i c e - E x c e l l e n c e 2...

457

Environmental Aspects of Air Transportation  

E-Print Network [OSTI]

Innovation Center #12;2 Aviation and Climate #12;3 Combustion Products Commercial jet fuel is essentially FOR AIR TRANSPORTATIONCENTER FOR AIR TRANSPORTATION SYSTEMS RESEARCHSYSTEMS RESEARCH Metron Aviation GMU, and the process inside real engines is considerably more complex. Typical emission rates for jet aircraft (grams

458

Air Force Renewable Energy Programs  

Broader source: Energy.gov (indexed) [DOE]

in All We Do" I n t e g r i t y - S e r v i c e - E x c e l l e n c e THINK GREEN, BUILD GREEN, Topics Air Force Energy Use Air Force Facility Energy Center Current RE...

459

Protective supplied breathing air garment  

DOE Patents [OSTI]

A breathing air garment is disclosed for isolating a wearer from hostile environments containing toxins or irritants includes a suit and a separate head protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit rear torso panel permits access into the suit and is sealed with an adhesive sealing flap. 17 figs.

Childers, E.L.; Hortenau, E.F. von.

1984-07-10T23:59:59.000Z

460

High Temperature Gas Reactors The Next Generation ?  

E-Print Network [OSTI]

-Proof Advanced Reactor and Gas Turbine #12;Flow through Power Conversion Vessel 8 #12;9 TRISO Fuel Particle1 High Temperature Gas Reactors The Next Generation ? Professor Andrew C Kadak Massachusetts of Brayton vs. Rankine Cycle · High Temperature Helium Gas (900 C) · Direct or Indirect Cycle · Originally

Note: This page contains sample records for the topic "direction air temperature" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Directives System Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual provides detailed requirements to supplement DOE O 251.1A, Directives System, dated 1-30-98.

1998-01-30T23:59:59.000Z

462

Direct process for explosives  

DOE Patents [OSTI]

A direct process of making ethylenediamine dinitrate through the reaction of ethylenediamine and ammonium nitrate is described.

Akst, I.B.; Stinecipher, M.M.

1982-10-12T23:59:59.000Z

463

Technology assessment of vertical and horizontal air drilling potential in the United States. Final report  

SciTech Connect (OSTI)

The objective of the research was to assess the potential for vertical, directional and horizontal air drilling in the United States and to evaluate the current technology used in air drilling. To accomplish the task, the continental United States was divided into drilling regions and provinces. The map in Appendix A shows the divisions. Air drilling data were accumulated for as many provinces as possible. The data were used to define the potential problems associated with air drilling, to determine the limitations of air drilling and to analyze the relative economics of drilling with air versus drilling mud. While gathering the drilling data, operators, drilling contractors, air drilling contractors, and service companies were contacted. Their opinion as to the advantages and limitations of air drilling were discussed. Each was specifically asked if they thought air drilling could be expanded within the continental United States and where that expansion could take place. The well data were collected and placed in a data base. Over 165 records were collected. Once in the data base, the information was analyzed to determine the economics of air drilling and to determine the limiting factors associated with air drilling.

Carden, R.S.

1993-08-18T23:59:59.000Z

464

Position paper -- Tank ventilation system design air flow rates  

SciTech Connect (OSTI)

The purpose of this paper is to document a project position on required ventilation system design air flow rates for the waste storage tanks currently being designed by project W-236A, the Multi-Function Waste Tank Facility (MWTF). The Title 1 design primary tank heat removal system consists of two systems: a primary tank vapor space ventilation system; and an annulus ventilation system. At the conclusion of Title 1 design, air flow rates for the primary and annulus ventilation systems were 960 scfm and 4,400 scfm, respectively, per tank. These design flow rates were capable of removing 1,250,000 Btu/hr from each tank. However, recently completed and ongoing studies have resulted in a design change to reduce the extreme case heat load to 700,000 Btu/hr. This revision of the extreme case heat load, coupled with results of scale model evaporative testing performed by WHC Thermal Hydraulics, allow for a reduction of the design air flow rates for both primary and annulus ventilation systems. Based on the preceding discussion, ICF Kaiser Hanford Co. concludes that the design should incorporate the following design air flow rates: Primary ventilation system--500 scfm maximum and Annulus ventilation system--1,100 scfm maximum. In addition, the minimum air flow rates in the primary and annulus ventilation systems will be investigated during Title 2 design. The results of the Title 2 investigation will determine the range of available temperature control using variable air flows to both ventilation systems.

Goolsby, G.K.

1995-01-04T23:59:59.000Z

465

Closed loop air cooling system for combustion turbines  

DOE Patents [OSTI]

Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts.

Huber, David John (North Canton, OH); Briesch, Michael Scot (Orlando, FL)

1998-01-01T23:59:59.000Z

466

Closed loop air cooling system for combustion turbines  

DOE Patents [OSTI]

Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts. 1 fig.

Huber, D.J.; Briesch, M.S.

1998-07-21T23:59:59.000Z

467

Modeling air entrainment in plunging jet using 3DYNAFS  

E-Print Network [OSTI]

As the liquid jet plunges into a free surface, significant air is entrained into the water and forms air pockets. These air pockets eventually break up into small bubbles, which travel downstream to form a bubbly wake. To better understand the underlying flow physics involved in the bubble entrainment, in the linked videos, air entrainment due to a water jet plunging onto a pool of stationary water was numerically studied by using the 3DYNAFS software suit. The flow field is simulated by directly solving the Navier-Stokes equations through the viscous module, 3DYNAFS-VIS, using a level set method for capturing the free surface. The breakup of entrained air pockets and the resulting bubbly flow were modeled by coupling 3DYNAFS-VIS with a Lagrangian multi-bubble tracking model, 3DYNAFS-DSM (Hsiao & Chahine, 2003), which emits bubbles into the liquid according to local liquid/gas interface flow conditions based on the sub-grid air entrainment modeling proposed by Ma et al. (2011), and tracks all bubbles in t...

Hsiao, Chao-Tsung; Wu, Xiongjun; Chahine, Georges L

2011-01-01T23:59:59.000Z

468

Air Leakage and Air Transfer Between Garage and Living Space  

SciTech Connect (OSTI)

This research project focused on evaluation of air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multi-point fan pressurization tests and additional zone pressure diagnostic testing characterized the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed. For houses employing whole-house supply ventilation (positive pressure) or balanced ventilation (same pressure effect as the Baseline condition), adherence to the EPA Indoor airPLUS house-to-garage air sealing requirements should be sufficient to expect little to no garage-to-house air transfer.

Rudd, A.

2014-09-01T23:59:59.000Z

469

Laser sheet light flow visualization for evaluating room air flowsfrom Registers  

SciTech Connect (OSTI)

Forced air heating and cooling systems and whole house ventilation systems deliver air to individual rooms in a house via supply registers located on walls ceilings or floors; and occasionally less straightforward locations like toe-kicks below cabinets. Ideally, the air velocity out of the registers combined with the turbulence of the flow, vectoring of air by register vanes and geometry of register placement combine to mix the supply air within the room. A particular issue that has been raised recently is the performance of multiple capacity and air flow HVAC systems. These systems vary the air flow rate through the distribution system depending on the system load, or if operating in a ventilation rather than a space conditioning mode. These systems have been developed to maximize equipment efficiency, however, the high efficiency ratings do not include any room mixing effects. At lower air flow rates, there is the possibility that room air will be poorly mixed, leading to thermal stratification and reduced comfort for occupants. This can lead to increased energy use as the occupants adjust the thermostat settings to compensate and parts of the conditioned space have higher envelope temperature differences than for the well mixed case. In addition, lack of comfort can be a barrier to market acceptance of these higher efficiency systems To investigate the effect on room mixing of reduced air flow rates requires the measurement of mixing of supply air with room air throughout the space to be conditioned. This is a particularly difficult exercise if we want to determine the transient performance of the space conditioning system. Full scale experiments can be done in special test chambers, but the spatial resolution required to fully examine the mixing problem is usually limited by the sheer number of thermal sensors required. Current full-scale laboratory testing is therefore severely limited in its resolution. As an alternative, we used a water-filled scale model of a room in which whole-field supply air mixing maps of two vertical planes were measured using a Planar Laser-Induced Fluorescence (PLIF) measurement technique. Water marked with fluorescent dye was used to simulate the supply airflow; and the resulting concentrations within the water filled model show how the supply air mixes with the room air and are an analog for temperature (for thermal loads) or fresh air (for ventilation). In addition to performing experiments over a range of flow rates, we also changed register locations and examined the effects for both heating and cooling operation by changing the water density (simulating air density changes due to temperature changes) using dissolved salt.

Walker, Iain S.; Claret, Valerie; Smith, Brian

2006-04-01T23:59:59.000Z

470

Environmental continuous air monitor inlet with combined preseparator and virtual impactor  

DOE Patents [OSTI]

An inlet for an environmental air monitor is described wherein a pre-separator interfaces with ambient environment air and removes debris and insects commonly associated with high wind outdoors and a deflector plate in communication with incoming air from the pre-separator stage, that directs the air radially and downward uniformly into a plurality of accelerator jets located in a manifold of a virtual impactor, the manifold being cylindrical and having a top, a base, and a wall, with the plurality of accelerator jets being located in the top of the manifold and receiving the directed air and accelerating directed air, thereby creating jets of air penetrating into the manifold, where a major flow is deflected to the walls of the manifold and extracted through ports in the walls. A plurality of receiver nozzles are located in the base of the manifold coaxial with the accelerator jets, and a plurality of matching flow restrictor elements are located in the plurality of receiver nozzles for balancing and equalizing the total minor flow among all the plurality of receiver nozzles, through which a lower, fractional flow extracts large particle constituents of the air for collection on a sample filter after passing through the plurality of receiver nozzles and the plurality of matching flow restrictor elements.

Rodgers, John C. (Santa Fe, NM)

2007-06-19T23:59:59.000Z

471

Hadron Production at Fixed Target Energies and Extensive Air Showers  

E-Print Network [OSTI]

NA61/SHINE is a fixed-target experiment to study hadron production in hadron-nucleus and nucleus-nucleus collisions at the CERN SPS. Due to the very good acceptance and particle identification in forward direction, NA61/SHINE is well suited for measuring particle production to improve the reliability of air shower simulations. Data with proton and pion beams have been taken in 2007 and 2009. First analysis results for the pion yield in proton-carbon interactions at 31 GeV will be shown and compared to predictions from models used in air shower simulations.

M. Unger; for the NA61/SHINE Collaboration

2010-12-12T23:59:59.000Z

472

Public Health Air Surveillance Evaluation Project Public Health Air Surveillance Evaluation (PHASE) Project  

E-Print Network [OSTI]

Public Health Air Surveillance Evaluation Project Public Health Air Surveillance Evaluation (PHASE) Project Evaluating, Developing, and Delivering Air Quality Characterization Data to Environmental Public Public Health Tracking (EPHT) Network. The EPA is developing routinely available air quality information

473

AIR LECTURES HANDOUT 3 P Rhines 21 Feb 03 AIR: THE SMALL (AIR POLLUTION)  

E-Print Network [OSTI]

­ coal smoke in winter (home heating) with clear air, radiational cooling stratifies air SMOG- warm of Science Technology and Environment ( www.pcd.go.th ). Site Location SO2 SO2 * NO2 NO2 * CO (1hr) CO (1hr small for this fluid cleaning mechanism to work. It is the smallest particles that can reach

474

On the Loss of Protective Scale Formation in Creep-Resistant, Alumina-Forming Austenitic Stainless Steels at 900?aC in Air  

SciTech Connect (OSTI)

A family of creep-resistant, Al2O3-forming austenitic (AFA) stainless steels was recently developed. The alloys exhibit excellent oxidation resistance up to 800 aC, but are susceptible to internal attack of Al at higher temperatures. In the present work, higher levels of Ni, Cr, Al, and Nb additions were found to correlate with improved oxidation behavior at 900 aC in air. The alloys generally appeared to be initially capable of external Al2O3 scale formation, with a subsequent transition to internal attack of Al (internal oxidation and internal nitridation) that is dependent on alloy composition. Compositional profiles at the alloy/scale interface suggest that the transition to internal oxidation is preceded by subsurface depletion of Al. Alloy design directions to increase the upper-temperature limit of protective Al2O3 scale formation in these alloys are discussed

Brady, Michael P [ORNL; Yamamoto, Yukinori [ORNL; Pint, Bruce A [ORNL; Santella, Michael L [ORNL; Maziasz, Philip J [ORNL; Walker, Larry R [ORNL

2008-01-01T23:59:59.000Z

475

DIRECTIONAL DETECTION OF A NEUTRON SOURCE.  

SciTech Connect (OSTI)

Advantages afforded by the development of new directional neutron detectors and imagers are discussed. Thermal neutrons have mean free paths in air of about 20 meters, and can be effectively imaged using coded apertures. Fission spectrum neutrons have ranges greater than 100 meters, and carry enough energy to scatter at least twice in multilayer detectors which can yield both directional and spectral information. Such strategies allow better discrimination between a localized spontaneous fission source and the low, but fluctuating, level of background neutrons generated by cosmic rays. A coded aperture thermal neutron imager will be discussed as well as a proton-recoil double-scatter fast-neutron directional detector with time-of-flight energy discrimination.

VANIER, P.E.; FORMAN, L.

2006-10-23T23:59:59.000Z

476

Directives Templates - DOE Directives, Delegations, and Requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct:Directives Templates by Website Administrator Directives

477

A Novel Procedure to Determine Optimal Air Static Pressure Set-points and Reset Schedules in VAV Air Handling Units  

E-Print Network [OSTI]

through the cold air duct. Stand-alone controllers are used to control the VFD of the cold deck, hot deck fans and deck temperatures. Figure 3 shows the diagram of the AHUs. Table 1 summarizes the AHU operation conditions before the commissioning.... Table 1 : Summary of the AHU Operations before Commissioning (Toa: 8S°F to 94°F) approximately 213 of the length of the main duct from the AHUs. 4s Ave. RA SF CC SP I 1 , I 2 4 VFD 5 AHU 1 N Figure 3. Diagram of the AHUs Mixed Air (OF) 77...

Zhu, Y.; Liu, M.; Claridge, D. E.; Turner, W. D.; Powell, T.

1998-01-01T23:59:59.000Z

478

Investigation of Countercurrent Helium-Air Flows in Air-ingress Accidents for VHTRs  

SciTech Connect (OSTI)

The primary objective of this research is to develop an extensive experimental database for the air- ingress phenomenon for the validation of computational fluid dynamics (CFD) analyses. This research is intended to be a separate-effects experimental study. However, the project team will perform a careful scaling analysis prior to designing a scaled-down test facility in order to closely tie this research with the real application. As a reference design in this study, the team will use the 600 MWth gas turbine modular helium reactor (GT-MHR) developed by General Atomic. In the test matrix of the experiments, researchers will vary the temperature and pressure of the helium— along with break size, location, shape, and orientation—to simulate deferent scenarios and to identify potential mitigation strategies. Under support of the Department of Energy, a high-temperature helium test facility has been designed and is currently being constructed at Ohio State University, primarily for high- temperature compact heat exchanger testing for the VHTR program. Once the facility is in operation (expected April 2009), this study will utilize high-temperature helium up to 900°C and 3 MPa for loss-of-coolant accident (LOCA) depressurization and air-ingress experiments. The project team will first conduct a scaling study and then design an air-ingress test facility. The major parameter to be measured in the experiments is oxygen (or nitrogen) concentration history at various locations following a LOCA scenario. The team will use two measurement techniques: 1) oxygen (or similar type) sensors employed in the flow field, which will introduce some undesirable intrusiveness, disturbing the flow, and 2) a planar laser-induced fluorescence (PLIF) imaging technique, which has no physical intrusiveness to the flow but requires a transparent window or test section that the laser beam can penetrate. The team will construct two test facilities, one for high-temperature helium tests with local sensors and the other for low- temperature helium tests with the PLIF technique. The results from the two instruments will provide a means to cross-calibrate the measurement techniques.

Sun, Xiaodong; Christensen, Richard; Oh, Chang

2013-10-03T23:59:59.000Z

479

Optimized Flow Sheet for a Reference Commercial-Scale Nuclear-Driven High-Temperature Electrolysis Hydrogen Production Plant  

SciTech Connect (OSTI)

This report presents results from the development and optimization of a reference commercialscale high-temperature electrolysis (HTE) plant for hydrogen production. The reference plant design is driven by a high-temperature helium-cooled reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540° C and 900°C, respectively. The electrolysis unit used to produce hydrogen consists of 4.176 × 10 6 cells with a per-cell active area of 225 cm2. A nominal cell area-specific resistance, ASR, value of 0.4 Ohm•cm2 with a current density of 0.25 A/cm2 was used, and isothermal boundary conditions were assumed. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The overall system thermal-to-hydrogen production efficiency (based on the low heating value of the produced hydrogen) is 49.07% at a hydrogen production rate of 2.45 kg/s with the high-temperature helium-cooled reactor concept. The information presented in this report is intended to establish an optimized design for the reference nuclear-driven HTE hydrogen production plant so that parameters can be compared with other hydrogen production methods and power cycles to evaluate relative performance characteristics and plant economics.

M. G. McKellar; J. E. O'Brien; E. A. Harvego; J. S. Herring

2007-11-01T23:59:59.000Z

480

Effects of nonequilibrium chemistry on the reference temperature method and Reynolds analogy  

SciTech Connect (OSTI)

The effect of nonequilibrium air chemistry on skin friction and Stanton number and the applicability of the reference temperature method and Reynold's analogy for such conditions was investigated. The nonequilibrium laminar boundary layer equations were solved on a flat plate geometry for different Mach numbers, altitudes and wall to edge temperature ratios. A correlation of a modification to the reference temperature method is made for application in the presence of nonequilibrium dissociated air at hypersonic speeds. 17 refs.

Ott, J.D.; Anderson, J.D. Jr. (Univ. of Maryland, College Park, MD (United States))

1994-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "direction air temperature" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Contrasting the 2007 and 2005 hurricane seasons: Evidence of possible impacts of Saharan dry air and dust on tropical cyclone activity in the  

E-Print Network [OSTI]

and precipitation directly through thermal structure and indirectly through dry air entrainment [e.g., MapesContrasting the 2007 and 2005 hurricane seasons: Evidence of possible impacts of Saharan dry air indicate significant drying (subsidence) in the Western North Atlantic (WNA) in 2007. The drier air

Sun, Donglian

482

INEEL AIR MODELING PROTOCOL ext  

SciTech Connect (OSTI)

Various laws stemming from the Clean Air Act of 1970 and the Clean Air Act amendments of 1990 require air emissions modeling. Modeling is used to ensure that air emissions from new projects and from modifications to existing facilities do not exceed certain standards. For radionuclides, any new airborne release must be modeled to show that downwind receptors do not receive exposures exceeding the dose limits and to determine the requirements for emissions monitoring. For criteria and toxic pollutants, emissions usually must first exceed threshold values before modeling of downwind concentrations is required. This document was prepared to provide guidance for performing environmental compliance-driven air modeling of emissions from Idaho National Engineering and Environmental Laboratory facilities. This document assumes that the user has experience in air modeling and dose and risk assessment. It is not intended to be a "cookbook," nor should all recommendations herein be construed as requirements. However, there are certain procedures that are required by law, and these are pointed out. It is also important to understand that air emissions modeling is a constantly evolving process. This document should, therefore, be reviewed periodically and revised as needed. The document is divided into two parts. Part A is the protocol for radiological assessments, and Part B is for nonradiological assessments. This document is an update of and supersedes document INEEL/INT-98-00236, Rev. 0, INEEL Air Modeling Protocol. This updated document incorporates changes in some of the rules, procedures, and air modeling codes that have occurred since the protocol was first published in 1998.

C. S. Staley; M. L. Abbott; P. D. Ritter

2004-12-01T23:59:59.000Z

483

AIR LEAKAGE OF NEWLY INSTALLED RESIDENTIAL WINDOWS  

E-Print Network [OSTI]

Tables 2.0.2a 2.0.2b PAGE Air Leakage Through Sash/FrameOperation Types . . . . . Air Leakage of Installed WindowsComparison of Window Types Air Leakage Performance of

Weidt, John

2013-01-01T23:59:59.000Z

484

Air movement preferences observed in office buildings  

E-Print Network [OSTI]

Movement – Good or Bad? Indoor Air 14: 40-45. Toftum, J (Quality Survey. Indoor Air 14 (8): 65–74. Internationalon the Perception of Indoor Air Quality during Immediate and

2007-01-01T23:59:59.000Z

485

Compressed Air 101: Getting Compressed Air to Work  

E-Print Network [OSTI]

plant energy use. Furthermore, air compression is inefficient with up to 95% of compressor power dissipated as heat. Thus even minor improvements in system operation, control strategies, and efficiency can yield large energy savings and significant non-energy...

Burke, J. J.; Bessey, E. G.

486

Air pollution kills. So what? Air quality engineering to improve public health  

E-Print Network [OSTI]

9/14/12 1 Air pollution kills. So what? Air quality engineering to improve public health;9/14/12 2 Air Quality Engineering H Air Quality Engineering H #12;9/14/12 3 Really? Air pollution running out of coffins and florists were running out of flowers. -- BBC #12;9/14/12 4 Air pollution

Levinson, David M.

487

Air Leakage of Furnaces and Air Handlers Iain S. Walker, Mike Lubliner, Darryl Dickerhoff,  

E-Print Network [OSTI]

Air Leakage of Furnaces and Air Handlers of California. #12;1 Air Leakage of Furnaces and Air Handlers Iain S. Walker, LBNL Mike Lubliner, Washington been made in reducing air leakage in residential and to a lesser extent small commercial forced air

488

U.S. Air Force Fact Sheet Air Force Reserve Officer Training Corps  

E-Print Network [OSTI]

U.S. Air Force Fact Sheet Air Force Reserve Officer Training Corps Mission Develop Quality Leaders for the Air Force. Personnel and Resources Air Force Reserve Officer Training Corps (ROTC) includes four,796 new Second Lieutenants who entered active duty in the United States Air Force. Organization Air Force

Su, Xiao

489

WearAir: Expressive T-shirts for Air Quality Sensing Sunyoung Kim and Eric Paulos  

E-Print Network [OSTI]

are less proactively concerned with air quality. AIR POLLUTANT: VOLATILE ORGANIC COMPOUNDS Different types of air pollutants contribute to air quality in different locations: Ozone, CO, NOx and VOCs are major contributors to outdoor air pollution; and particulate matters, VOCs, carbon monoxide and lead are common air

Mankoff, Jennifer

490

The investigation of exhaust powered, automotive air cycle air conditioning  

E-Print Network [OSTI]

domestic automobiles and trucks because of its proven success. This system requires approximately 4 hp (2. 983 kW)[3] for operation snd employs a pressurized fluorinated hydrocarbon (R-12), hereafter fluorocarbon, as a refrigerant. Most of the research... extraction and avoid the use of a fluorocarbon refrigerant. The maJority of work involved with the new units has associated itself in the area of utilizing an absorption cycle or air cycle. The absorption air conditioning unit differs significantly from...

Holley, James Andrew

1978-01-01T23:59:59.000Z

491

Integrated Technology Air Cleaners (ITAC): Design and Evaluation  

E-Print Network [OSTI]

of particle air filtration technologies." Indoor Air 12(4):2011a). New air cleaning technologies for reduced commercialnumber 2 Integrated technology air cleaner High efficiency

Fisk, William J.

2014-01-01T23:59:59.000Z

492

Reference Inside KS1992 Tray Inside Air  

E-Print Network [OSTI]

Reference Inside KS1992 0.2 Tray Inside Air 0.5 Tray Inside Air 0.8 Tray Inside Air 0.2 Tray Side Wall Inner 0.2 Tray Side Wall Inner Under TAMP near sensor pos4 Under TAMP near sensor pos4 Air Gap Below TDIG pos1 Air Gap Below TDIG pos4 Air Gap Below TDIG pos6 HPTDC1 Chip pos6 HPTDC4 Chip pos6 HPTDC2

Llope, William J.

493

Personal cooling air filtering device  

DOE Patents [OSTI]

A temperature modification system for modifying the temperature of fluids includes at least one thermally conductive carbon foam element, the carbon foam element having at least one flow channel for the passage of fluids. At least one temperature modification device is provided, the temperature modification device thermally connected to the carbon foam element and adapted to modify the temperature of the carbon foam to modify the temperature of fluids flowing through the flow channels. Thermoelectric and/or thermoionic elements can preferably be used as the temperature modification device. A method for the reversible temperature modification of fluids includes the steps of providing a temperature modification system including at least one thermally conductive carbon foam element having flow channels and at least one temperature modification device, and flowing a fluid through the flow channels.

Klett, James (Knoxville, TN); Conway, Bret (Denver, NC)

2002-08-13T23:59:59.000Z

494

COMBUSTION-GENERATED INDOOR AIR POLLUTION  

E-Print Network [OSTI]

The Status of Indoor Air Pollution Research 1976. GeometNovakov, T. : Formation of Pollution Particulate NitrogenGENERATED INDOOR AIR POLLUTION Dr. C. D. Hollowell, Dr. R.

Hollowell, C.D.

2010-01-01T23:59:59.000Z

495

Stochastic Microenvironment Models for Air Pollution Exposure  

E-Print Network [OSTI]

human exposure to air pollution." SIMS Technical Report No.human exposure to air pollution." Environment International.Annual Meeting of the A i r Pollution Control Association,

Naihua Duan

2011-01-01T23:59:59.000Z

496

Colorado Air Pollution Control Division - Construction Permits...  

Open Energy Info (EERE)

Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Colorado Air Pollution Control Division - Construction Permits Forms and Air Pollutant Emission...

497

Improving Control of a Dual-Duct Single-Fan Variable Air Volume Systems  

E-Print Network [OSTI]

cold and hot air duct static pressure set points is presented. The paper also explores the interactions between the cold and hot deck temperatures and duct static pressures, and discusses the impact of non-ideal deck temperature settings on duct static...

Wei, G.; Martinez, J.; Minihan, T.; Brundidge, T.; Claridge, D. E.; Turner, W. D.

2003-01-01T23:59:59.000Z

498

Kansas Air Quality Regulations (Kansas)  

Broader source: Energy.gov [DOE]

All new air contaminant emission sources or alterations to emission sources that are required to be reported shall be in compliance with all applicable emission control regulations at the time that...

499

Kansas Air Quality Act (Kansas)  

Broader source: Energy.gov [DOE]

No person shall construct, own, operate, install, alter or use any air contaminant emission stationary source which, in accordance with rules and regulations, the secretary finds may cause or...

500

Missouri Air Conservation Law (Missouri)  

Broader source: Energy.gov [DOE]

This law's purpose is to maintain the purity of the air resources of the state to protect the health, general welfare and physical property of the people, maximum employment and the full industrial...