National Library of Energy BETA

Sample records for directed stockpile work

  1. University Research Program in Robotics - "Technologies for Micro-Electrical-Mechanical Systems in directed Stockpile Work (DSW) Radiation and Campaigns", Final Technical Annual Report, Project Period 9/1/06 - 8/31/07

    SciTech Connect (OSTI)

    James S. Tulenko; Carl D. Crane

    2007-12-13

    The University Research Program in Robotics (URPR) is an integrated group of universities performing fundamental research that addresses broad-based robotics and automation needs of the NNSA Directed Stockpile Work (DSW) and Campaigns. The URPR mission is to provide improved capabilities in robotics science and engineering to meet the future needs of all weapon systems and other associated NNSA/DOE activities.

  2. UNIVERSITY RESEARCH PROGRAMS IN ROBOTICS, TECHNOLOGIES FOR MICROELECTROMECHANICAL SYSTEMS IN DIRECTED STOCKPILE WORK RADIATION AND ENGINEERING CAMPAIGNS - 2005-06 FINAL ANNUAL REPORT

    SciTech Connect (OSTI)

    James S. Tulenko; Dean Schoenfeld; David Hintenlang; Carl Crane; Shannon Ridgeway; Jose Santiago; Charles Scheer

    2006-11-30

    The research performed by the University of Florida (UF) is directed to the development of technologies that can be utilized at a micro-scale in varied environments. Work is focused on micro-scale energy systems, visualization, and mechanical devices. This work will impact the NNSA need related to micro-assembly operations. The URPR activities are executed in a University environment, yet many applications of the resulting technologies may be classified or highly restrictive in nature. The NNSA robotics technologists apply an NNSA needs focus to the URPR research, and actively work to transition relevant research into the deployment projects in which they are involved. This provides a “Research to Development to Application” structure within which innovative research has maximum opportunity for impact without requiring URPR researchers to be involved in specific NNSA projects. URPR researchers need to be aware of the NNSA applications in order to ensure the research being conducted has relevance, the URPR shall rely upon the NNSA sites for direction.

  3. Stockpile Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stockpile Stewardship NIF and Stockpile Stewardship In the 1990s, the U.S. nuclear weapons program shifted emphasis from developing new designs to dismantling thousands of existing ...

  4. Stockpile Stewardship Quarterly

    National Nuclear Security Administration (NNSA)

    1, Number 3 * October 2011 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Comments Questions or comments regarding the Stockpile Stewardship Quarterly should be directed to Terri.Batuyong@nnsa.doe.gov Technical Editor: Chris Werner, Publication Editor: Millicent Mischo Defense Programs Stockpile Stewardship in Action Volume 1, Number 3 Inside this Issue 2 Simulation: A Window into the Detonation of High Explosives 3 Modeling of High-Explosive Detonation

  5. Stockpile Stewardship

    National Nuclear Security Administration (NNSA)

    Fiscal Year 2015 Stockpile Stewardship and Management Plan Report to Congress April 2014 United States Department of Energy Washington, DC 20585 Department of Energy | April 2014 Fiscal Year 2015 Stockpile Stewardship and Management Plan | Page i Message from the Secretary This report is the Department of Energy National Nuclear Security Administration Fiscal Year 2015 Stockpile Stewardship and Management Plan. It addresses the statutory requirements of Title 50 of United States Code section

  6. Stockpile Stewardship Quarterly

    National Nuclear Security Administration (NNSA)

    2 * July 2012 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Defense Programs Stockpile Stewardship in Action Volume 2, Number 2 Inside this Issue 2 Exploring Shock-Induced Chemistry on Ultrafast Timescales 3 Toward Exascale Simulation of Re-Entry Flight Environment 4 Probing Inertial Confinement Fusion Plasmas 5 Shock Physics 6 Inertial Confinement Fusion 7 Modeling Polar Direct Drive Implosions on NIF 8 Developing Improved Physics Models for Predictive

  7. Stockpile Stewardship Q

    National Nuclear Security Administration (NNSA)

    4 | DECEMBER 2015 Office of Research, Development, Test, and Evaluation DOE/NA-0036 We recently celebrated the 20th anniversary of the Stockpile Stewardship Program (SSP). The Washington, DC event (see photo on right) was a wonderful opportunity to highlight the work that has been accomplished to ensure that the stockpile remains safe, secure, and reliable in the absence of nuclear testing. It was an occasion to celebrate the successes of our efforts and to interact with an impressive set of

  8. Defense Experimentation and Stockpile Stewardship

    ScienceCinema (OSTI)

    None

    2015-01-07

    A primary mission of the site is to help ensure that the nation's nuclear weapon stockpile remains safe, secure and reliable. The stockpile stewardship program, working with the national weapons laboratories conducts a wide range of experiments using advanced diagnostic technologies, many of which were developed right here at the NNSS.

  9. Defense Experimentation and Stockpile Stewardship

    SciTech Connect (OSTI)

    2014-10-28

    A primary mission of the site is to help ensure that the nation's nuclear weapon stockpile remains safe, secure and reliable. The stockpile stewardship program, working with the national weapons laboratories conducts a wide range of experiments using advanced diagnostic technologies, many of which were developed right here at the NNSS.

  10. Update Direct-Strike Lightning Environment for Stockpile-to-Target Sequence

    SciTech Connect (OSTI)

    Uman, M A; Rakov, V A; Elisme, J O; Jordan, D M; Biagi, C J; Hill, J D

    2008-10-01

    The University of Florida has surveyed all relevant publications reporting lightning characteristics and presents here an up-to-date version of the direct-strike lightning environment specifications for nuclear weapons published in 1989 by R. J. Fisher and M. A. Uman. Further, we present functional expressions for current vs. time, current derivative vs. time, second current derivative vs. time, charge transfer vs. time, and action integral (specific energy) vs. time for first return strokes, for subsequent return strokes, and for continuing currents; and we give sets of constants for these expressions so that they yield approximately the median and extreme negative lightning parameters presented in this report. Expressions for the median negative lightning waveforms are plotted. Finally, we provide information on direct-strike lightning damage to metals such as stainless steel, which could be used as components of storage containers for nuclear waste materials; and we describe UF's new experimental research program to add to the sparse data base on the properties of positive lightning. Our literature survey, referred to above, is included in four Appendices. The following four sections (II, III, IV, and V) of this final report deal with related aspects of the research: Section II. Recommended Direct-Strike Median and Extreme Parameters; Section III. Time-Domain Waveforms for First Strokes, Subsequent Strokes, and Continuing Currents; Section IV. Damage to Metal Surfaces by Lightning Currents; and Section V. Measurement of the Characteristics of Positive Lightning. Results of the literature search used to derive the material in Section II and Section IV are found in the Appendices: Appendix 1. Return Stroke Current, Appendix 2. Continuing Current, Appendix 3. Positive Lightning, and Appendix 4. Lightning Damage to Metal Surfaces.

  11. Stockpile Stewardship Q

    National Nuclear Security Administration (NNSA)

    2 | JUNE 2014 Office of Research, Development, Test, and Evaluation DOE/NA-0023 I t is with great pleasure that I craft my first message for the Stockpile Stewardship Quarterly. I am honored to lead this organization that performs work crucial to the success of the Defense Programs' mission. I have confidence in the ability of the enterprise to deliver the best science, technology, and engineering solutions to the mission challenges before us. I will be focusing a lot of my time on improving

  12. Stockpile Stewardship Q

    National Nuclear Security Administration (NNSA)

    2 | JUNE 2015 Office of Research, Development, Test, and Evaluation DOE/NA-0030 This issue of the Stockpile Stewardship Quarterly addresses some of our latest research areas, ranging from computing to manufacturing. The first article on the 20-petaflop Sequoia supercomputer describes why it is number one in the world according to the Graph 500 data analytics benchmark. This is a remarkable tool which supports a required capability for stockpile stewardship. High energy density physics

  13. Stockpile Stewardship Quarterly

    National Nuclear Security Administration (NNSA)

    2, Number 3 * November 2012 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Defense Programs Stockpile Stewardship in Action Volume 2, Number 3 Inside this Issue 2 Jupiter - An Intermediate-Scale Laser User Facility 4 Trident Intermediate-Scale Laser Facility 5 Mach-Zehnder Fiber-Optic Links for Inertial Confinement Fusion Diagnostics 7 High Energy Density Experiments at the OMEGA Laser Facility 9 Doubling the Electric Power Generated by an LTD Cavity 10

  14. stockpile | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home /

  15. Stockpile Stewardship: Los Alamos

    ScienceCinema (OSTI)

    McMillan, Charlie; Morgan, Nathanial; Goorley, Tom; Merrill, Frank; Funk, Dave; Korzekwa, Deniece; Laintz, Ken

    2014-08-12

    "Heritage of Science" is a short video that highlights the Stockpile Stewardship program at Los Alamos National Laboratory. Stockpile Stewardship was conceived in the early 1990s as a national science-based program that could assure the safety, security, and effectiveness of the U.S. nuclear deterrent without the need for full-scale underground nuclear testing. This video was produced by Los Alamos National Laboratory for screening at the Lab's Bradbury Science Museum in Los Alamos, NM and is narrated by science correspondent Miles O'Brien.

  16. Stockpile Stewardship: Los Alamos

    SciTech Connect (OSTI)

    McMillan, Charlie; Morgan, Nathanial; Goorley, Tom; Merrill, Frank; Funk, Dave; Korzekwa, Deniece; Laintz, Ken

    2012-01-26

    "Heritage of Science" is a short video that highlights the Stockpile Stewardship program at Los Alamos National Laboratory. Stockpile Stewardship was conceived in the early 1990s as a national science-based program that could assure the safety, security, and effectiveness of the U.S. nuclear deterrent without the need for full-scale underground nuclear testing. This video was produced by Los Alamos National Laboratory for screening at the Lab's Bradbury Science Museum in Los Alamos, NM and is narrated by science correspondent Miles O'Brien.

  17. managing the stockpile | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    managing the stockpile | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at

  18. Risk in the Weapons Stockpile

    SciTech Connect (OSTI)

    Noone, Bailey C

    2012-08-14

    When it comes to the nuclear weapons stockpile, risk must be as low as possible. Design and care to keep the stockpile healthy involves all aspects of risk management. Design diversity is a method that helps to mitigate risk.

  19. Stockpile Stewardship Q

    National Nuclear Security Administration (NNSA)

    3 | SEPTEMBER 2014 Office of Research, Development, Test, and Evaluation DOE/NA-0024 S ince the last issue of the Stockpile Stewardship Quarterly (SSQ), I have attended several conferences where I met researchers that represent the pipeline for staffing future Research, Development, Test, and Evaluation (RDT&E) activities. I attended the Computational Science Graduate Fellowship Annual Program Review and the American Nuclear Society's Plutonium Futures-The Science conference. It was

  20. Stockpile Stewardship Quarterly

    National Nuclear Security Administration (NNSA)

    3, Number 4 * December 2013 Message from the (Acting) Assistant Deputy Administrator for Research, Development, Test, and Evaluation, Roger A. Lewis Defense Programs Stockpile Stewardship in Action Volume 3, Number 4 Inside this Issue 2 The Annual Nuclear Weapons Assessment Process 4 Stronglink High-Voltage Bypass in Abnormal Thermal Environments 5 The Enhanced Surveillance Fitness for Reuse Evaluation for the B61 Life Extension Program 7 Facilities Used by the Division of Nuclear Experiments 9

  1. Stockpile Stewardship era: 1989-present

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stockpile Stewardship era Stockpile Stewardship era: 1989-present Trinity was the culmination of a fantastic effort of groundbreaking science and engineering by hundreds of men and women at Los Alamos National Laboratory (and other Manhattan Project sites). It took them less than two years to change the world. July 10, 2015 trinity to trinity feature image Trinity to Trinity "Highly accurate 3D computing is a Holy Grail of the Stockpile Stewardship Program's supercomputing efforts. As the

  2. NNSA Releases Annual Stockpile Stewardship & Management Plan...

    National Nuclear Security Administration (NNSA)

    NNSA Blog Home Library Press Releases NNSA Releases Annual Stockpile Stewardship & Management Plan NNSA Releases Annual Stockpile Stewardship & Management Plan Press Release...

  3. stockpile stewardship program | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    program | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home

  4. stockpile stewardship | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home /

  5. stockpile modernization | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    modernization | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog

  6. Stockpile Stewardship's 20th Anniversary

    SciTech Connect (OSTI)

    Hecker, Siegfried; Gottemoeller, Rose; Reis, Victor H.; McMillan, Charles; Rohlfing, Joan; Hurricane, Omar; Hagengruber, Roger; Taylor, John

    2015-10-22

    A short oral history of the NNSA's Stockpile Stewardship Program, produced in association with the 20th anniversary of the program. It features Siegfried Hecker, Rose Gottemoeller, Victor Reis, Charles McMillan, Joan Rohlfing, Omar Hurricane, Roger Hagengruber, and John Taylor.

  7. Analytical Characterization of the Thorium Nitrate Stockpile

    SciTech Connect (OSTI)

    Mattus, CH

    2003-12-30

    For several years, Oak Ridge National Laboratory (ORNL) has been supporting the Defense Logistics Agency-Defense National Stockpile Center with stewardship of a thorium nitrate (ThN) stockpile. The effort for fiscal year 2002 was to prepare a sampling and analysis plan and to use the activities developed in the plan to characterize the ThN stockpile. The sampling was performed in June and July 2002 by RWE NUKEM with oversight by ORNL personnel. The analysis was performed by Southwest Research Institute of San Antonio, Texas, and data validation was performed by NFT, Inc., of Oak Ridge, Tennessee. Of the {approx} 21,000 drums in the stockpile, 99 were sampled and 53 were analyzed for total metals composition, radiological constituents (using alpha and gamma spectrometry), and oxidizing characteristics. Each lot at the Curtis Bay Depot was sampled. Several of the samples were also analyzed for density. The average density of the domestic ThN was found to be 1.89 {+-} 0.08 g/cm{sup 3}. The oxidizer test was performed following procedures issued by the United Nations in 1999. Test results indicated that none of the samples tested was a Division 5.1 oxidizer per Department of Transportation definition. The samples were analyzed for total metals following the U.S. Environmental Protection Agency methods SW-846-6010B and 6020 (EPA 2003) using a combination of inductively coupled plasma--atomic emission spectroscopy and inductively coupled plasma--mass spectroscopy techniques. The results were used to compare the composition of the eight Resource Conservation and Recovery Act metals present in the sample (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver) to regulatory limits. None of the samples was found to be hazardous for toxicity characteristics. The radiological analyses confirmed, when possible, the results obtained by the inductively coupled plasma analyses. These results--combined with the historical process knowledge acquired on the material and the results of previous tests--classified the ThN as low-level radioactive waste for disposal purposes. This characterization was necessary to continue the efforts associated with disposition of the material at the Nevada Test Site, Mercury, Nevada. With the current work presented in this report, the analytical characterization phase is completed for this source material stockpile.

  8. Los Alamos names new head of stockpile manufacturing and support

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New head of stockpile manufacturing and support Los Alamos names new head of stockpile manufacturing and support Carl Beard is the new associate director for stockpile...

  9. stockpile

    National Nuclear Security Administration (NNSA)

    2%2A en The man who trains everyone on the bombs http:nnsa.energy.govblogman-who-trains-everyone-bombs

  10. ORISE: Chemical Stockpile Emergency Preparedness Program Exercise...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Stockpile Emergency Preparedness Program Exercise Training and Analysis Tool Training Tool Improves Information Sharing Between CSEPP and its Response Partners In 2006,...

  11. NNSA releases summary of Stockpile Stewardship experiments |...

    National Nuclear Security Administration (NNSA)

    in combination with complex computational models and NNSA's Advanced Simulation and Computing Program to assess the safety, security and effectiveness of the stockpile. Aug 19,...

  12. Explosives performance key to stockpile stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    key to stockpile stewardship A new video shows how researchers use scientific guns to induce shock waves into explosive materials to study their performance and...

  13. Stockpile | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Y-12 is an integral part of that mission. We execute stewardship through refurbishment, dismantlement and surveillance of weapons in the nuclear stockpile. Nuclear...

  14. Stockpile Stewardship at Los Alamos(U)

    SciTech Connect (OSTI)

    Webster, Robert B.

    2012-06-29

    Stockpile stewardship is the retention of nuclear weapons in the stockpile beyond their original design life. These older weapons have potential changes inconsistent with the original design intent and military specifications. The Stockpile Stewardship Program requires us to develop high-fidelity, physics-based capabilities to predict, assess, certify and design nuclear weapons without conducting a nuclear test. Each year, the Lab Directors are required to provide an assessment of the safety, security, and reliability our stockpile to the President of the United States. This includes assessing whether a need to return to testing exists. This is a talk to provide an overview of Stockpile Stewardship's scientific requirements and how stewardship has changed in the absence of nuclear testing. The talk is adapted from an HQ talk to the War college, and historical unclassified talks on weapon's physics.

  15. Planning guidance for the Chemical Stockpile Emergency Preparedness Program

    SciTech Connect (OSTI)

    Shumpert, B.L.; Watson, A.P.; Sorensen, J.H. [and others] and others

    1995-02-01

    This planning guide was developed under the direction of the U.S. Army and the Federal Emergency Management Agency (FEMA) which jointly coordinate and direct the development of the Chemical Stockpile Emergency Preparedness Program (CSEPP). It was produced to assist state, local, and Army installation planners in formulating and coordinating plans for chemical events that may occur at the chemical agent stockpile storage locations in the continental United States. This document provides broad planning guidance for use by both on-post and off-post agencies and organizations in the development of a coordinated plan for responding to chemical events. It contains checklists to assist in assuring that all important aspects are included in the plans and procedures developed at each Chemical Stockpile Disposal Program (CSDP) location. The checklists are supplemented by planning guidelines in the appendices which provide more detailed guidance regarding some issues. The planning guidance contained in this document will help ensure that adequate coordination between on-post and off-post planners occurs during the planning process. This planning guide broadly describes an adequate emergency planning base that assures that critical planning decisions will be made consistently at every chemical agent stockpile location. This planning guide includes material drawn from other documents developed by the FEMA, the Army, and other federal agencies with emergency preparedness program responsibilities. Some of this material has been developed specifically to meet the unique requirements of the CSEPP. In addition to this guidance, other location-specific documents, technical studies, and support studies should be used as needed to assist in the planning at each of the chemical agent stockpile locations to address the specific hazards and conditions at each location.

  16. FMT Workforce FTEs by Scope Current Contract Scope of Work (Section...

    National Nuclear Security Administration (NNSA)

    FMT Workforce FTEs by Scope Current Contract Scope of Work (Section J. Appendix A) FTE's* Directed Stockpile Work (DSW) 1,329 Campaigns 260 Readiness in Technical Base & Facilities...

  17. Reducing the Nuclear Weapons Stockpile | National Nuclear Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Nuclear Weapons Stockpile | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering ...

  18. Maintaining the Stockpile | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Most nuclear weapons in the U.S. stockpile were produced anywhere from 30 to 40 years ago, and no new nuclear weapons have been produced since the end of the Cold War. At the time ...

  19. Explosives performance key to stockpile stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explosives performance key to stockpile stewardship Explosives performance key to stockpile stewardship A new video shows how researchers use scientific guns to induce shock waves into explosive materials to study their performance and properties. November 3, 2014 Adam Pacheco of shock and detonation physics presses the "fire" button during an experiment at the two-stage gas gun facility. Adam Pacheco of shock and detonation physics presses the "fire" button during an

  20. Explosives performance key to stockpile stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explosives performance key to stockpile stewardship Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Explosives performance key to stockpile stewardship A new video shows how researchers use scientific guns to induce shock waves into explosive materials to study their performance and properties January 1, 2015 Adam Pacheco of shock and detonation physics presses the "fire" button during an experiment at the

  1. Maintaining the Stockpile | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Our Mission / Maintaining the Stockpile Maintaining the Stockpile NNSA ensures the Nation sustains a safe, secure, and effective nuclear deterrent through the application of science, technology, engineering, and manufacturing. To deal with the changing face of nuclear deterrence and more-widely dispersed nuclear knowledge, NNSA also ensures the United States maintains excellence in nuclear science and technology that is second to none. Within the Nuclear Security Enterprise, the central mission

  2. Maintaining the Stockpile | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Maintaining the Stockpile Maintaining the Stockpile NNSA Hosts NPT Parties at Los Alamos and Sandia National Laboratories WASHINGTON D.C. - On March 25-27, 2015, the National Nuclear Security Administration (NNSA) hosted representatives from 11 States Parties to the Treaty on the Non-Proliferation of Nuclear Flight Test of Weapons System Body by Navy Successful Third Flight Demonstrated Dynamics and Functional Performance in Flight EnvironmentWASHINGTON, D.C. - The National Nuclear Security

  3. Stockpile Stewardship Quarterly Volume 1, Number 4

    National Nuclear Security Administration (NNSA)

    1, Number 4 * February 2012 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Defense Programs Stockpile Stewardship in Action Volume 1, Number 4 Inside this Issue 2 Applying Advanced Simulation Models to Neutron Tube Ion Extraction 3 Advanced Optical Cavities for Subcritical and Hydrodynamic Experiments 5 Progress Toward Ignition on the National Ignition Facility 7 Commissioning URSA Minor: The First LTD-Based Accelerator for Radiography 8 Publication

  4. Stockpile Stewardship Quarterly, Volume 2, Number 1

    National Nuclear Security Administration (NNSA)

    1 * May 2012 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Defense Programs Stockpile Stewardship in Action Volume 2, Number 1 Inside this Issue 2 LANL and ANL Complete Groundbreaking Shock Experiments at the Advanced Photon Source 3 Characterization of Activity-Size-Distribution of Nuclear Fallout 5 Modeling Mix in High-Energy-Density Plasma 6 Quality Input for Microscopic Fission Theory 8 Fiber Reinforced Composites Under Pressure: A Case Study in

  5. ORISE: Chemical Stockpile Emergency Preparedness Program Training Advisor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6.0 CSEPP Training HSEEP Training Spokesperson Training Incident Command System Training Emergency Management Emergency Response Crisis and Risk Communication How ORISE is Making a Difference Overview Exercises and Planning Training and Technology Support Resources How to Work With Us Contact Us Oak Ridge Institute for Science Education Training Chemical Stockpile Emergency Preparedness Program Training: Advisor 6.0 The Oak Ridge Institute for Science and Education (ORISE) designed a unique

  6. Direct Conversion of Light into Work - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Thermal Solar Thermal Industrial Technologies Industrial Technologies Find More Like This Return to Search Direct Conversion of Light into Work Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryAlex Zettl, Jean M. J. Fréchet, and a team of Berkeley Lab researchers have discovered a mechanism for converting solar energy directly into mechanical work, thus eliminating the need for capital-intensive energy storage and distribution facilities.

  7. Stockpile Stewardship Program Quarterly Experiments | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Program Quarterly Experiments | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs

  8. Stockpile stewardship past, present, and future

    SciTech Connect (OSTI)

    Adams, Marvin L.

    2014-05-09

    The U.S. National Academies released a report in 2012 on technical issues related to the Comprehensive Test Ban Treaty. One important question addressed therein is whether the U.S. could maintain a safe, secure, and reliable nuclear-weapons stockpile in the absence of nuclear-explosion testing. Here we discuss two main conclusions from the 2012 Academies report, which we paraphrase as follows: 1) Provided that sufficient resources and a national commitment to stockpile stewardship are in place, the U.S. has the technical capabilities to maintain a safe, secure, and reliable stockpile of nuclear weapons into the foreseeable future without nuclear-explosion testing. 2) Doing this would require: a) a strong weapons science and engineering program that addresses gaps in understanding; b) an outstanding workforce that applies deep and broad weapons expertise to deliver solutions to stockpile problems; c) a vigorous, stable surveillance program that delivers the requisite data; d) production facilities that meet stewardship needs. We emphasize that these conclusions are independent of CTBT ratification-they apply provided only that the U.S. continues its nuclear-explosion moratorium.

  9. Stockpile Stewardship Quarterly Newsletter | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Quarterly Newsletter | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our

  10. Update on the Stockpile Monitor Program

    SciTech Connect (OSTI)

    Rivera, T.; Harry, H.H.

    1999-04-01

    In 1991 the Los Alamos National Laboratory (LANL) launched a program to develop a comprehensive database of warhead storage conditions. Because of the extended lifetimes expected of the Stockpile, it became desirable to obtain as much detailed information on the storage environments as possible. Temperature and relative humidity at various facilities capable of storing and/or handling nuclear weapons were used as monitoring locations. The Stockpile Monitor Program (SMP) was implemented in a variety of locations as illustrated in a figure. Probably the most useful data come from the most extreme conditions monitored. The hottest outside temperatures and relative humidities come from Barksdale, while some of the lowest relative humidity values come from Nellis, which continue to be monitored. The coldest conditions come from Grand Forks, Griffiss, and KI Sawyer, none of which are presently being monitored. For this reason, the authors would like to begin monitoring Minot, ND. The outside extreme temperatures are ameliorated by the structures to a significant degree. For example, the hottest outside temperature (120 F) is contrasted by the corresponding cooler inside temperature (85 F), and the coldest outside temperature ({minus}35 F) is contrasted by the corresponding warmer inside temperature (+25 F). These data have become useful for calculations related to stockpile-to-target sequence (STS) and other analyses. SMP information has been provided to a number of outside agencies.

  11. Nuclear stockpile stewardship and Bayesian image analysis (DARHT and the

    Office of Scientific and Technical Information (OSTI)

    BIE) (Conference) | SciTech Connect Conference: Nuclear stockpile stewardship and Bayesian image analysis (DARHT and the BIE) Citation Details In-Document Search Title: Nuclear stockpile stewardship and Bayesian image analysis (DARHT and the BIE) Since the end of nuclear testing, the reliability of our nation's nuclear weapon stockpile has been performed using sub-critical hydrodynamic testing. These tests involve some pretty 'extreme' radiography. We will be discussing the challenges and

  12. Los Alamos names new head of stockpile manufacturing and support

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New head of stockpile manufacturing and support Los Alamos names new head of stockpile manufacturing and support Carl Beard is the new associate director for stockpile manufacturing and support. Beard has held this position in an acting capacity since June 2007. January 22, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

  13. Hydrodynamic experiment provides key data for Stockpile Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrodynamic experiment provides Stockpile Stewardship key data Los Alamos hydrodynamic experiment provides key data for Stockpile Stewardship Hydrodynamic experiments such as Leda involve non-nuclear surrogate materials that mimic many of the properties of nuclear materials. December 22, 2014 Los Alamos hydrodynamic experiment provides key data for Stockpile Stewardship "Leda," experimental vessel in the "Zero Room" at the underground U1a facility, at the Nevada National

  14. Why the Nuclear Stockpile Needs Supercomputers | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    NNSA supercomputers are a key part of our ability to keep our nuclear stockpile safe, secure and effective. Joshua McConaha What does this mean for me? The NNSA's Stockpile Stewardship Program performs a critical role in implementing President Obama's nuclear security agenda Through a scientific mixture of hardware, software, codes and data and using some of the world's most advanced computer systems, the National Nuclear Security Administration's (NNSA) Stockpile Stewardship Program performs a

  15. Hydrodynamic experiment provides key data for Stockpile Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    weapon performance in the absence of full-scale underground nuclear testing," said Webster. Los Alamos hydrodynamic experiment provides key data for Stockpile Stewardship In...

  16. US, UK, France Discuss Stockpile Stewardship, Arms Control and...

    National Nuclear Security Administration (NNSA)

    UK, France Discuss Stockpile Stewardship, Arms Control and Nonproliferation and Visit the Nevada National Security Site | National Nuclear Security Administration Facebook Twitter...

  17. LEP: Extending stockpile life | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Life Extension Program allows safe, effective weapons to remain in the stockpile well beyond their original service life. Nuclear weapons are intricate and, in a sense, ...

  18. NNSA Stockpile Stewardship and Management Plan now available | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration Stockpile Stewardship and Management Plan now available | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters

  19. NNSA releases Stockpile Stewardship Program quarterly experiments summary |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration releases Stockpile Stewardship Program quarterly experiments summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact

  20. US, UK, France Discuss Stockpile Stewardship, Arms Control and

    National Nuclear Security Administration (NNSA)

    Nonproliferation and Visit the Nevada National Security Site | National Nuclear Security Administration UK, France Discuss Stockpile Stewardship, Arms Control and Nonproliferation and Visit the Nevada National Security Site | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our

  1. NNSA Releases Annual Stockpile Stewardship & Management Plan | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration Annual Stockpile Stewardship & Management Plan | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press

  2. NNSA's Stockpile Stewardship Program Quarterly Experiments summary now

    National Nuclear Security Administration (NNSA)

    available | National Nuclear Security Administration Stockpile Stewardship Program Quarterly Experiments summary now available | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional

  3. Proposed Laser-Based HED physics experiments for Stockpile Stewardship

    SciTech Connect (OSTI)

    Benage, John F.; Albright, Brian J.; Fernandez, Juan C.

    2012-09-04

    An analysis of the scientific areas in High Energy Density (HED) physics that underpin the enduring LANL mission in Stockpile Stewardship (SS) has identified important research needs that are not being met. That analysis has included the work done as part of defining the mission need for the High Intensity Laser Laboratory (HILL) LANL proposal to NNSA, LDRD DR proposal evaluations, and consideration of the Predictive Capability Framework and LANL NNSA milestones. From that evaluation, we have identified several specific and scientifically-exciting experimental concepts to address those needs. These experiments are particularly responsive to physics issues in Campaigns 1 and 10. These experiments are best done initially at the LANL Trident facility, often relying on the unique capabilities available there, although there are typically meritorious extensions envisioned at future facilities such as HILL, or the NIF once the ARC short-pulse laser is available at sufficient laser intensity. As the focus of the LANL HEDP effort broadens from ICF ignition of the point design at the conclusion of the National Ignition Campaign, into a more SS-centric effort, it is useful to consider these experiments, which address well-defined issues, with specific scientific hypothesis to test or models to validate or disprove, via unit-physics experiments. These experiments are in turn representative of a possible broad experimental portfolio to elucidate the physics of interest to these campaigns. These experiments, described below, include: (1) First direct measurement of the evolution of particulates in isochorically heated dense plasma; (2) Temperature relaxation measurements in a strongly-coupled plasma; (3) Viscosity measurements in a dense plasma; and (4) Ionic structure factors in a dense plasma. All these experiments address scientific topics of importance to our sponsors, involve excellent science at the boundaries of traditional fields, utilize unique capabilities at LANL, and contribute to the Campaign milestone in 2018. Given their interdisciplinary nature, it is not surprising that these research needs are not being addressed by the other excellent high-energy density physics (HEDP) facilities coming on line, facilities aimed squarely at more established fields and missions. Although energy rich, these facilities deliver radiation (e.g., particle beams for isochoric heating) over a timescale that is too slow in these unit physics experiments to eliminate hydrodynamic evolution of the target plasma during the time it is being created. A theme shared by all of these experiments is the need to quickly create a quasi-homogeneous 'initial state' whose properties and evolution we wish to study. Otherwise, we cannot create unit experiments to isolate the physics of interest and validate the models in our codes, something that cannot be done with the integrated experiments often done in HED. Moreover, these experiments in some cases involve combinations of solid and plasmas, or matter in the warm-dense matter state, where neither the theoretical approximations of solid state or of fully-ionized weakly-coupled plasmas can be used. In all cases, the capability of 'isochoric heating' ('flash' heating at constant density) is important. In some cases, the ability to selectively heat to different degrees different species within a target, whether mixed or adjacent to each other, is critical for the experiment. This capability requires the delivery of very high power densities, which require the conversion of the laser into very short and intense pulses of secondary radiation (electrons, ions, neutrons, x-rays). Otherwise, there is no possibility of a clean experiment to constrain the models, in the cases there are any, or inform the creation of one. Another typical requirement of these experiments is the ability to probe these exotic extreme conditions of matter with flexible and diverse sources of secondary radiation. Without a high-intensity high-power laser with some unique attributes available on Trident today (e.g., ultra-high laser-puls

  4. NNSA's Summary of Experiments Conducted in Support of Stockpile...

    National Nuclear Security Administration (NNSA)

    of experiments performed at each facility during each quarter of the fiscal year. The U.S. Stockpile Stewardship Program is a robust program of scientific inquiry used to sustain...

  5. Picture of the Week: From nuclear weapons testing to stockpile...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 From nuclear weapons testing to stockpile stewardship On Sept. 23, 1992, the last full-scale underground test of a nuclear weapon was conducted by Los Alamos National Lab at the ...

  6. ORISE: Chemical Stockpile Emergency Preparedness Program Exercise Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Analysis Tool Chemical Stockpile Emergency Preparedness Program Exercise Training and Analysis Tool Training Tool Improves Information Sharing Between CSEPP and its Response Partners In 2006, the Oak Ridge Institute for Science and Education (ORISE) customized the structure of the U.S. Department of Energy's (DOE) Office of Emergency Response Asset Readiness Management System (ARMS) databases to create a framework for Chemical Stockpile Emergency Preparedness Program (CSEPP) sites to

  7. ORISE: Chemical Stockpile Emergency Preparedness Program Exercise Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Analysis Tool Exercise Trending Tool ORISE-developed tool improves information sharing between Chemical Stockpile Emergency Preparedness Program partners The Oak Ridge Institute for Science and Education customized the structure of the U.S. Department of Energy's Office of Emergency Response Asset Readiness Management System databases to create a framework for Chemical Stockpile Emergency Preparedness Program sites to track compliance with the National Incident Management System and

  8. NNSA's Stockpile Stewardship Program Quarterly Experiments summary...

    National Nuclear Security Administration (NNSA)

    Security Enterprise support nation's preparedness NNSA's work aids in fight against cancer NASA features LLNL star-formation simulations Consortium Led by University of...

  9. Stockpile Stewardship: How we Ensure the Nuclear Deterrent without Testing

    SciTech Connect (OSTI)

    2014-09-04

    In the 1990s, the U.S. nuclear weapons program shifted emphasis from developing new designs to dismantling thousands of existing weapons and maintaining a much smaller enduring stockpile. The United States ceased underground nuclear testing, and the Department of Energy created the Stockpile Stewardship Program to maintain the safety, security, and reliability of the U.S. nuclear deterrent without full-scale testing. This video gives a behind the scenes look at a set of unique capabilities at Lawrence Livermore that are indispensable to the Stockpile Stewardship Program: high performance computing, the Superblock category II nuclear facility, the JASPER a two stage gas gun, the High Explosive Applications Facility (HEAF), the National Ignition Facility (NIF), and the Site 300 contained firing facility.

  10. Los Alamos LDRD and our stockpile stewardship mission (u) (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect LDRD and our stockpile stewardship mission (u) Citation Details In-Document Search Title: Los Alamos LDRD and our stockpile stewardship mission (u) Authors: Chadwick, Mark B [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2011-05-24 OSTI Identifier: 1068893 Report Number(s): LA-UR-11-03037; LA-UR-11-3037 DOE Contract Number: AC52-06NA25396 Resource Type: Conference Resource Relation: Conference: NNSA 2011 LDRD symposium ; June 9, 2011 ;

  11. NNSA's Summary of Experiments Conducted in Support of Stockpile

    National Nuclear Security Administration (NNSA)

    Stewardship Now Online | National Nuclear Security Administration Now Online | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases

  12. Supplemental Directives | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Supplemental Directives | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at

  13. supplemental directives | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    supplemental directives | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at

  14. Stockpile Stewardship and Management Plan | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration and Management Plan | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our

  15. Stockpile Stewardship: 20 years of success | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Stewardship: 20 years of success | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for

  16. NNSA's Summary of Experiments Conducted in Support of Stockpile

    National Nuclear Security Administration (NNSA)

    Stewardship now available | National Nuclear Security Administration The quarterly summary prepared by NNSA's Office of Defense Programs provides descriptions of key NNSA facilities that conduct stockpile stewardship experiments. These include some of the most sophisticated scientific research facilities in the world including, the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory, National Ignition Facility (NIF) at Lawrence Livermore National

  17. NNSA's Summary of Experiments Conducted in Support of Stockpile

    National Nuclear Security Administration (NNSA)

    Stewardship now available | National Nuclear Security Administration The quarterly summary prepared by NNSA's Office of Defense Programs provides descriptions of key NNSA facilities that conduct stockpile stewardship experiments. These include some of the most sophisticated scientific research facilities in the world including, the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory, National Ignition Facility (NIF) at Lawrence Livermore National

  18. Risk communications and the Chemical Stockpile Emergency-Planning Program

    SciTech Connect (OSTI)

    Vogt, B.M.; Sorensen, J.H.

    1994-09-01

    The CSEPP (Chemical Stockpile Emergency Preparedness Program) was created to improve emergency planning and response capabilities at the eight sites around the country that store chemical weapons. These weapons are scheduled to be destroyed in the near future. In preparation of the Draft Programmatic Environmental Impact Statement (DPEIS) for the Chemical Stockpile Disposal Program (CSDP), it was proposed that the Army mitigate accidents through an enhanced community emergency preparedness program at the eight storage sites. In 1986, the Army initiated the development of an Emergency Response Concept Plan (ERCP) for the CSDP, one of 12 technical support studies conducted during preparation of the Final Programmatic Environmental Impact Statement (FPEIS). The purpose of this document is to provide a fairly comprehensive source book on risk, risk management, risk communication research and recommended risk communication practices. It does not merely summarize each publication in the risk communication literature, but attempts to synthesize them along the lines of a set of organizing principles. Furthermore, it is not intended to duplicate other guidance manuals (such as Covello et al.`s manual on risk comparison). The source book was developed for the CSEPP in support of the training module on risk communications. Although the examples provided are specific to CSEPP, its use goes beyond that of CSEPP as the findings apply to a broad spectrum of risk communication topics. While the emphasis is on communication in emergency preparedness and response specific to the CSEPP, the materials cover other non-emergency communication settings. 329 refs.

  19. FMT Workforce FTEs by Scope Current Contract Scope of Work (Section J. Appendix A)

    National Nuclear Security Administration (NNSA)

    FMT Workforce FTEs by Scope Current Contract Scope of Work (Section J. Appendix A) FTE's* Directed Stockpile Work (DSW) 1,329 Campaigns 260 Readiness in Technical Base & Facilities (RTBF) and Site Stewardship 110 Secure Transportation Asset (STA) 125 Security (Physical and Cyber) 160 Other NNSA/Other DOE 310 includes ICO and Emergency Response Non-DOE (Work for Others) 360 Total FTE's 2,654 *FTEs shown include allocation of indirect FTE's

  20. Materials and Sensor R&D to Transform the Nuclear Stockpile: Livermore?s

    Office of Scientific and Technical Information (OSTI)

    Transformational Materials Initiative (Technical Report) | SciTech Connect Materials and Sensor R&D to Transform the Nuclear Stockpile: Livermore?s Transformational Materials Initiative Citation Details In-Document Search Title: Materials and Sensor R&D to Transform the Nuclear Stockpile: Livermore?s Transformational Materials Initiative As the nation's nuclear weapons age and the demands placed on them change, significant challenges face the nuclear stockpile. Risks include material

  1. EIS-0236: Programmatic Environmental Impact Statement for Stockpile Stewardship and Management

    Broader source: Energy.gov [DOE]

    DOE must maintain a Complex with sufficient capability and capacity to meet current and future weapons requirements. For those activities associated with the ongoing stockpile stewardship program, DOE proposes to add enhanced capabilities to existing stockpile stewardship facilities to fulfill requirements.DOE proposes to "rightsize" existing facilities or consolidate them to fulfill expected requirements for manufacture of repair or replacement components for an aging U.S. stockpile.

  2. ARC will make tiny "movies" of thermonuclear and stockpile experiments

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration will make tiny "movies" of thermonuclear and stockpile experiments | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional

  3. In 20th Year, Stockpile Stewardship Program Celebrated As One of Nation's

    National Nuclear Security Administration (NNSA)

    Greatest Achievements in Science and Security | National Nuclear Security Administration 20th Year, Stockpile Stewardship Program Celebrated As One of Nation's Greatest Achievements in Science and Security | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We

  4. EIS-0347: Long-Term Management of the National Defense Stockpile Inventory of Excess Mercury

    Broader source: Energy.gov [DOE]

    This Defense Logistics Agency EIS evaluated alternatives for managing the Defense National Stockpile Center inventory of excess mercury. DOE was a cooperating agency for preparation of the draft EIS.

  5. Materials and Sensor R&D to Transform the Nuclear Stockpile:...

    Office of Scientific and Technical Information (OSTI)

    Title: Materials and Sensor R&D to Transform the Nuclear Stockpile: Livermore?s Transformational Materials Initiative As the nation's nuclear weapons age and the demands placed on ...

  6. Directions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directions Directions to HAZMAT Challenge LANL's HAZMAT Reesponse Ready Room and Training Facility are ready to welcome this year's Challengers Technical Area 64 - HAZMAT Response...

  7. Materials and Sensor R&D to Transform the Nuclear Stockpile: Livermore?s

    Office of Scientific and Technical Information (OSTI)

    Transformational Materials Initiative (Technical Report) | SciTech Connect Materials and Sensor R&D to Transform the Nuclear Stockpile: Livermore?s Transformational Materials Initiative Citation Details In-Document Search Title: Materials and Sensor R&D to Transform the Nuclear Stockpile: Livermore?s Transformational Materials Initiative × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and

  8. U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile September 17, 2007 - 2:41pm Addthis Declaration Reinforces U.S. Commitment to Nonproliferation VIENNA, AUSTRIA - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's National Nuclear Security Administration (NNSA) will remove nine metric tons of plutonium from further use as fissile material in U.S.

  9. 20th Anniversary of U.S. Commitment to Science-based Stockpile Stewardship

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration th Anniversary of U.S. Commitment to Science-based Stockpile Stewardship | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony

  10. Follow-up Audit on Stockpile Surveillance Testing, IG-0744 | Department of

    Office of Environmental Management (EM)

    Energy Audit on Stockpile Surveillance Testing, IG-0744 Follow-up Audit on Stockpile Surveillance Testing, IG-0744 Significant backlogs existed in each of the three types of tests Surveillance Testing conducted in the Surveillance Testing Program---laboratory tests, flight tests, and component tests---as of September 30? 2005. Laboratory tests are conducted on weapons' non-nuclear systems to detect defects due to handling, aging, manufacturing, or design. Flight tests involve dropping or

  11. 3.04 DOE.NA-0014 Stockpile Stewardship Plan.pdf

    National Nuclear Security Administration (NNSA)

    OVERVIEW DOE/NA-0014 November 13, 2006 STOCKPILE STEWARDSHIP PLAN STOCKPILE STEWARDSHIP PLAN United States Department of Energy National Nuclear Security Administration 1000 Independence Avenue, SW Washington, D.C. 20585 FISCAL YEAR 2007 - 2011 FISCAL YEAR 2007 - 2011 OVERVIEW Warhead W76 W88 Weapon System D5 Missile, Trident Submarine D5 Missile, Trident Submarine Laboratories Los Alamos/ Sandia Los Alamos/ Sandia Mission Underwater to Surface Underwater to Surface Military Service Navy Navy

  12. Directions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directions Directions Call Hilton Santa Fe Buffalo Thunder at (505) 455-5555 for shuttle information from the airport and downtown Santa Fe. Driving Directions to Hilton Santa Fe Buffalo Thunder Hilton Santa Fe Buffalo Thunder is located 15 minutes north of Santa Fe. Directions from Albuquerque (bypassing downtown Santa Fe) Take Interstate 25 north towards Santa Fe for approximately 50 miles. From Interstate 25, exit right onto the 599 Northbound Bypass for approximately 14 miles and continue to

  13. An Introduction to Risk with a Focus on Design Diversity in the Stockpile

    SciTech Connect (OSTI)

    Noone, Bailey C

    2012-08-13

    The maintenance and security of nuclear weapons in the stockpile involves decisions based on risk analysis and quantitative measures of risk. Risk is a factor in all decisions, a particularly important factor in decisions of a large scale. One example of high-risk decisions we will discuss is the risk involved in design diversity within the stockpile of nuclear weapons arsenal. Risk is defined as 'possibility of loss or injury' and the 'degree of probability of such loss' (Kaplan and Garrick 12). To introduce the risk involved with maintaining the weapons stockpile we will draw a parallel to the design and maintenance of Southwest Airlines fleet of Boeing 737 planes. The clear benefits for cost savings in maintenance of having a uniform fleet are what historically drove Southwest to have only Boeing 737s in their fleet. Less money and resources are need for maintenance, training, and materials. Naturally, risk accompanies those benefits. A defect in a part of the plane indicates a potential defect in that same part in all the planes of the fleet. As a result, safety, business, and credibility are at risk. How much variety or diversity does the fleet need to mitigate that risk? With that question in mind, a balance is needed to accommodate the different risks and benefits of the situation. In a similar way, risk is analyzed for the design and maintenance of nuclear weapons in the stockpile. In conclusion, risk must be as low as possible when it comes to the nuclear weapons stockpile. Design and care to keep the stockpile healthy involves all aspects of risk management. Design diversity is a method that helps to mitigate risk, and to help balance options in stockpile stewardship.

  14. Report to Congress on stockpile reliability, weapon remanufacture, and the role of nuclear testing

    SciTech Connect (OSTI)

    Miller, G.H.; Brown, P.S.; Alonso, C.T.

    1987-10-01

    This report analyzes two issues: (1) ''whether past warhead reliability problems demonstrate that nuclear explosive testing is needed to identify or to correct stockpile reliability,'' or (2) ''whether a program of stockpile inspection, nonnuclear testing, and remanufacture would be sufficient to deal with stockpile reliability problems.'' Chapter 1 examines the reasons for nuclear testing. Although the thrust of the request from Congressman Aspin et al., has to do with the need for nuclear testing as it relates to stockpile reliability and remanufacture, there are other very important reasons for nuclear testing. Since there has been increasing interest in the US Congress for more restrictive nuclear test limits, we have addressed the overall need for nuclear testing and the potential impact of further nuclear test limitations. Chapter 1 also summarizes the major conclusions of a recent study conducted by the Scientific and Academic Advisory Committee (SAAC) for the President of the University of California; the SAAC report is entitled, ''Nuclear Weapon Tests: The Role of the University of California-Department of Energy Laboratories.'' Chapter 2 presents a brief history of stockpile problems that involved post-deployment nuclear testing for their resolution. Chapter 3 addresses the problems involved in remanufacturing nuclear weapons, and Chapter 4 discusses measures that should be taken to prepare for possible future restrictive test limits.

  15. Direct measurement of the work of fracture for grain boundaries of twist misorientation about (100) in tungsten

    SciTech Connect (OSTI)

    Liu, J.M.; Shen, B.W.

    1984-06-01

    The authors report results on the direct measurement of the work of fracture in twist boundaries in electron beam zone refined bicrystals of tungsten. The work of fracture is referred to as the energy required for crack extension. This approach may be used to advantage when the effects of impurities are present, for example, in problems related to grain boundary embrittlement in steels, copper and nickel.

  16. Reducing the Nuclear Weapons Stockpile | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    This Site Budget IG Web Policy Privacy No Fear Act Accessibility FOIA Sitemap Federal Government The White House DOE.gov USA.gov Jobs Apply for Our Jobs Our Jobs Working at NNSA...

  17. Opening Remarks at the NNSA Stockpile Stewardship Program 20th Anniversary

    Energy Savers [EERE]

    Event -- As Delivered | Department of Energy Opening Remarks at the NNSA Stockpile Stewardship Program 20th Anniversary Event -- As Delivered Opening Remarks at the NNSA Stockpile Stewardship Program 20th Anniversary Event -- As Delivered October 22, 2015 - 5:50pm Addthis Dr. Ernest Moniz Dr. Ernest Moniz Secretary of Energy It's great to be here. This is an event that Frank and Madeleine and the deputy secretary and others of us have been really looking forward to as a really important

  18. Direct

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct removal of edge-localized pollutant emission in a near-infrared bremsstrahlung measurement J. K. Anderson, a) P. L. Andrew, b) B. E. Chapman, D. Craig, and D. J. Den Hartog Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, Wisconsin 53706 Í‘Presented on 10 July 2002Í’ Visible and near-infrared electron-ion bremsstrahlung measurements in fusion research devices, used to determine the effective ionic charge (Z eff ), are often plagued by pollutant emission

  19. EIS-0236-S2: Supplemental Programmatic Environmental Impact Statement on Stockpile Stewardship and Management for a Modern Pit Facility

    Broader source: Energy.gov [DOE]

    DOE's NNSA is responsible for the safety and reliability of the U.S. nuclear weapons stockpile, including production readiness required to maintain that stockpile. Pursuant to National Environmental Policy Act of 1969, NNSA has prepared a Supplement to the Programmatic Environmental Impact Statement on: (1) whether to proceed with a Modern Pit Facility (MPF); and (2) if so, where to locate a MPF.

  20. Certainty in Stockpile Computing: Recommending a Verification and Validation Program for Scientific Software

    SciTech Connect (OSTI)

    Lee, J.R.

    1998-11-01

    As computing assumes a more central role in managing the nuclear stockpile, the consequences of an erroneous computer simulation could be severe. Computational failures are common in other endeavors and have caused project failures, significant economic loss, and loss of life. This report examines the causes of software failure and proposes steps to mitigate them. A formal verification and validation program for scientific software is recommended and described.

  1. stockpile stewardship

    National Nuclear Security Administration (NNSA)

    in size from a pinhead to a small pea, is filled with a mixture of two isotopes of hydrogen (deuterium (D) and tritium (T)) and is subjected to a sudden application of...

  2. stockpile modernization

    National Nuclear Security Administration (NNSA)

    6%2A en Sandia completes major overhaul of key nuclear weapons test facilities http:nnsa.energy.govblogsandia-completes-major-overhaul-key-nuclear-weapons-test-facilities...

  3. stockpile stewardship

    National Nuclear Security Administration (NNSA)

    stockpilestewardshipdefensesciencedsfacilitieslansce" target"blank">Los Alamos Neutron Science Center (LANSCE), Los Alamos National Laboratory

  4. Stockpile Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In order to assure our allies and deter potential adversaries as long as nuclear weapons exist, the United States must sustain a safe, secure, and effective nuclear arsenal and ...

  5. EIS-0236-SA6; Draft Supplemental Analysis: Pit Manufacturing Facilities at Los Alamos National Laboratory, Stockpile, Stewardship

    Office of Environmental Management (EM)

    06/25/99 DRAFT SUPPLEMENT ANALYSIS: PIT MANUFACTURING FACILITIES AT LOS ALAMOS NATIONAL LABORATORY, STOCKPILE STEWARDSHIP AND MANAGEMENT PROGRAMMATIC ENVIRONMENTAL IMPACT STATEMENT June 1999 SUMMARY ............................................................................................................................... 3 INTRODUCTION ..................................................................................................................... 3 Purpose of this Document

  6. Stockpile coordination project. Harvard Energy Security Program. Final report. [Response of other oil importers to USA SPR policy

    SciTech Connect (OSTI)

    Devarajan, S.; Hubbard, R.G.; Weiner, R.

    1983-10-01

    This report considers the response of other oil importers to the United States' SPR policy. The treatment models the behavior of public stockpiles in other countries as endogenous. Simple theoretical and more complex simulation models are used to compare a cooperative stockpile drawdown policy (among oil importers) to one in which each country acts in its own self-interest. Finally, a specific agreement is proposed that attempts to capture the benefits from cooperation.

  7. A database system for characterization of munitions items in conventional ammunition demilitarization stockpiles

    SciTech Connect (OSTI)

    Chun, K.C.; Chiu, S.Y.; Ditmars, J.D.; Huber, C.C.; Nortunen, L.; Sabb, R.

    1994-05-01

    The MIDAS (Munition Items Disposition Action System) database system is an electronic data management system capable of storage and retrieval of information on the detailed structures and material compositions of munitions items designated for demilitarization. The types of such munitions range from bulk propellants and small arms to projectiles and cluster bombs. The database system is also capable of processing data on the quantities of inert, PEP (propellant, explosives and pyrotechnics) and packaging materials associated with munitions, components, or parts, and the quantities of chemical compounds associated with parts made of PEP materials. Development of the MIDAS database system has been undertaken by the US Army to support disposition of unwanted ammunition stockpiles. The inventory of such stockpiles currently includes several thousand items, which total tens of thousands of tons, and is still growing. Providing systematic procedures for disposing of all unwanted conventional munitions is the mission of the MIDAS Demilitarization Program. To carry out this mission, all munitions listed in the Single Manager for Conventional Ammunition inventory must be characterized, and alternatives for resource recovery and recycling and/or disposal of munitions in the demilitarization inventory must be identified.

  8. EIS-0348 and EIS-0236-S3: Continued Operation of Lawrence Livermore National Laboratory and Supplement Stockpile Stewardship and Management

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to continue operation of Lawrence Livermore National Laboratory (LLNL), which is critical to the National Nuclear Security Administration’s Stockpile Stewardship Program and to preventing the spread and use of nuclear weapons worldwide. This document is also Supplement 3 to the Final Programmatic Environmental Impact Statement for Stockpile Stewardship and Management (EIS-0236) for use of proposed materials at the National Ignition Facility (NIF). This combination ensures timely analysis of the reasonably foreseeable environmental impact of NIF experiments using the proposed materials concurrent with the environmental analyses being conducted for the site-wide activities.

  9. Use of hazard assessments to achieve risk reduction in the USDOE Stockpile Stewardship (SS-21) Program

    SciTech Connect (OSTI)

    Fischer, S.R.; Konkel, H.; Bott, T.; Eisenhawer, S.W. [Los Alamos National Lab., NM (United States); DeYoung, L.; Hockert, J. [Odgen Environmental and Energy Services, Albuquerque, NM (United States)

    1995-07-01

    This paper summarizes the nuclear explosive hazard assessment activities performed to support US Department of Energy (DOE) Stockpile Stewardship Demonstration Project SS-21, better known as the ``Seamless Safety`` program. Past practice within the DOE Complex has dictated the use of a significant number of post-design/fabrication safety reviews to analyze the safety associated with operations on nuclear explosives and to answer safety questions. These practices have focused on reviewing-in or auditing-in safety vs incorporating safety in the design process. SS-21 was proposed by the DOE as an avenue to develop a program to ``integrate established, recognized, verifiable safety criteria into the process at the design stage rather than continuing the reliance on reviews, evaluations and audits.`` The entire Seamless Safety design and development process is verified by a concurrent hazard assessment (HA). The primary purpose of the SS-21 Demonstration Project HA was to demonstrate the feasibility of performing concurrent HAs as part of an engineering design and development effort and then to evaluate the use of the HA to provide an indication in the risk reduction or gain in safety achieved. To accomplish this objective, HAs were performed on both baseline (i.e., old) and new (i.e. SS-21) B61-0 Center Case Section disassembly processes. These HAs were used to support the identification and documentation of weapon- and process-specific hazards and safety-critical operating steps. Both HAs focused on identifying accidents that had the potential for worker injury, public health effects, facility damage, toxic gas release, and dispersal of radioactive materials. A comparison of the baseline and SS-21 process risks provided a semi-quantitative estimate of the risk reduction gained via the Seamless Safety process.

  10. Work Schedules | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Work Schedules | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA

  11. Laboratory Directed Research & Development | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Laboratory Directed Research & Development | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery

  12. NNSA Administrator Recognizes Los Alamos Employees for Exceptional Work |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Recognizes Los Alamos Employees for Exceptional Work | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets

  13. Working with Interpreters | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Interpreters | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA

  14. Working at NNSA | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    at NNSA | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home

  15. The Final B61 Refurbished Warhead Returns to the U.S. Stockpile...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home About Us Our History NNSA Timeline The Final B61 Refurbished Warhead Returns to ... The Final B61...

  16. How NIF Works

    ScienceCinema (OSTI)

    None

    2010-09-01

    The National Ignition Facility, located at Lawrence Livermore National Laboratory, is the world's largest laser system... 192 huge laser beams in a massive building, all focused down at the last moment at a 2 millimeter ball containing frozen hydrogen gas. The goal is to achieve fusion... getting more energy out than was used to create it. It's never been done before under controlled conditions, just in nuclear weapons and in stars. We expect to do it within the next 2-3 years. The purpose is threefold: to create an almost limitless supply of safe, carbon-free, proliferation-free electricity; examine new regimes of astrophysics as well as basic science; and study the inner-workings of the U.S. stockpile of nuclear weapons to ensure they remain safe, secure and reliable without the need for underground testing. More information about NIF can be found at:

  17. Development of Designer Diamond Technology for High Pressure High Temperature Experiments in Support of Stockpile Stewardship Program

    SciTech Connect (OSTI)

    Vohra, Yogesh, K.

    2009-10-28

    The role of nitrogen in the fabrication of designer diamond was systematically investigated by adding controlled amount of nitrogen in hydrogen/methane/oxygen plasma. This has led to a successful recipe for reproducible fabrication of designer diamond anvils for high-pressure high-temperature research in support of stockpile stewardship program. In the three-year support period, several designer diamonds fabricated with this new growth chemistry were utilized in high-pressure experiments at UAB and Lawrence Livermore National Laboratory. The designer diamond anvils were utilized in high-pressure studies on heavy rare earth metals, high pressure melting studies on metals, and electrical resistance measurements on iron-based layered superconductors under high pressures. The growth chemistry developed under NNSA support can be adapted for commercial production of designer diamonds.

  18. Directives System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-01-30

    The Department of Energy (DOE) Directives System is the means by which DOE policies, requirements, and responsibilities are developed and communicated throughout the Department. Directives are used to inform, direct, and guide employees in the performance of their jobs, and to enable employees to work effectively within the Department and with agencies, contractors, and the public. Cancels: DOE O 251.1, DOE M 251.1-1

  19. DOE/EIS-0236/SA-6 Final Supplement Analysis for Pit Manufacturing Facilities at Los Alamos National Laboratory, Stockpile Stewardship and Management Programmatic Environmental Impact Statement

    Office of Environmental Management (EM)

    Government Department of Energy memorandum DATE: REPLY TO ATTN OF: DP-45 (G. Palmer, 6-1785) SUBJECT: DETERMINATION OF THE NEED FOR ADDITIONAL NATIONAL ENVIRONMENTAL POLICY ACT (NEPA) REVIEW TO: Dave Beck, DP-20 As requested in your action memorandum, same subject, I have reviewed the attached Final Supplement Analysis for Pit Manufacturing Facilities at Los Alamos National Laboratory, Stockpile Stewardship and Management Programmatic Environmental Impact Statement, dated August 1999. This

  20. Stockpile Stewardship Quarterly

    National Nuclear Security Administration (NNSA)

    ... 1: Molecular structure of LLM-105. Figure 2: Weapons system model (left) for EM thermal insult assessments; board-level model (right) for critical EM safety design ...

  1. stockpile stewardship program

    National Nuclear Security Administration (NNSA)

    NIF, in particular the first Pu experiment on NIF, the return to operations of the TA-55 gas gun, a successful series of plutonium experiments on Joint Actinide Shock Physics...

  2. managing the stockpile

    National Nuclear Security Administration (NNSA)

    managed by the National Nuclear Security Administration within the U. S. Department of Energy.

    OST is responsible for the safe and secure transport in the contiguous United...

  3. Stockpile Stewardship Q

    National Nuclear Security Administration (NNSA)

    Office of Research, Development, Test, and Evaluation DOENA-0023 I t is with great ... the NNSA Office of Research, Development, Test and Evaluation (RDT&E) on our core mission. ...

  4. Stockpile Stewardship Quarterly

    National Nuclear Security Administration (NNSA)

    Message from the (Acting) Assistant Deputy Administrator for Research, Development, Test, ... Quarterly is produced by the NNSA Office of Research, Development, Test, and Evaluation. ...

  5. Maintaining the Stockpile

    National Nuclear Security Administration (NNSA)

    %2A en Albuquerque Complex http:nnsa.energy.govaboutusourlocationsnnsa-complex

    Page...

  6. Maintaining the Stockpile

    National Nuclear Security Administration (NNSA)

    stockpilestewardshipdefensesciencedsfacilitieslansce" target"blank">Los Alamos Neutron Science Center (LANSCE), Los Alamos National Laboratory

  7. managing the stockpile

    National Nuclear Security Administration (NNSA)

    of radioactive material. This is due largely to the OST philosophy that safety and security are of equal and paramount importance in the accomplishment of NNSA's...

  8. Stockpile Stewardship Q

    National Nuclear Security Administration (NNSA)

    ... concepts exist, all must bring the fusion fuel to an extreme high-energy-density state. ... liners imploded on the Z Facility. Green and red dashed lines indicate the liner's ...

  9. Chair, CTBT working group B Radionuclide Expert Group and the U.S.

    National Nuclear Security Administration (NNSA)

    Radionuclide Subgroup of the Verification Monitoring Task Force, Pacific Northwest National Laboratory | National Nuclear Security Administration Chair, CTBT working group B Radionuclide Expert Group and the U.S. Radionuclide Subgroup of the Verification Monitoring Task Force, Pacific Northwest National Laboratory | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency

  10. Y-12, UT sign agreement to continue, expand collaborative work | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration UT sign agreement to continue, expand collaborative work | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters

  11. NNSA Launches Second Travel Blog to Feature Administrator's Work at Next

    National Nuclear Security Administration (NNSA)

    Generation Safeguards Meeting in Japan | National Nuclear Security Administration Second Travel Blog to Feature Administrator's Work at Next Generation Safeguards Meeting in Japan | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our

  12. NNSA's work aids in fight against cancer | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration work aids in fight against cancer | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for

  13. It worked

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yes, it worked

  14. Update Direct-Strike Lightning Environment for Stockpile-to-Target Sequence: Supplement LLNL Subcontract #B568621 Lightning Protection at the Yucca Mountain Waste Storage Facility

    SciTech Connect (OSTI)

    Uman, M A

    2008-10-09

    The University of Florida has surveyed all relevant publications reporting lightning damage to metals, metals which could be used as components of storage containers for nuclear waste materials. We show that even the most severe lightning could not penetrate the stainless steel thicknesses proposed for nuclear waste storage casks.

  15. Directives Tools

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    Useful links and resources for Directives Writers, Directives Point of Contact (DPCs), Subject Matter Experts (SMEs), and Draft Directive Reviewers.

  16. NNSA Works to Establish a Reliable Supply of Mo-99 Produced Without Highly

    National Nuclear Security Administration (NNSA)

    Enriched Uranium | National Nuclear Security Administration Works to Establish a Reliable Supply of Mo-99 Produced Without Highly Enriched Uranium | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations

  17. Sandia California works on nuclear weapon W80-4 Life Extension Program |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration works on nuclear weapon W80-4 Life Extension Program | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets

  18. Two of the World's Most Powerful Computers work for NNSA | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration of the World's Most Powerful Computers work for NNSA | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press

  19. Y-12 recognized for work with STEM group | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration work with STEM group | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our

  20. Small Business Contracts Surge from the Department of Energy's Work in Oak

    National Nuclear Security Administration (NNSA)

    Ridge | National Nuclear Security Administration Contracts Surge from the Department of Energy's Work in Oak Ridge | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony

  1. SRS employees spend a day off working for the community | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration spend a day off working for the community | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo

  2. Draft Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2004-02-27

    This ''Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement'' (LLNL SW/SPEIS) describes the purpose and need for agency action for the continued operation of LLNL and analyzes the environmental impacts of these operations. The primary purpose of continuing operation of LLNL is to provide support for the National Nuclear Security Administration's (NNSA's) nuclear weapons stockpile stewardship missions. LLNL, located about 40 miles east of San Francisco, California, is also needed to support other U.S. Department of Energy (DOE) programs and Federal agencies such as the U.S. Department of Defense, Nuclear Regulatory Commission, U.S. Environmental Protection Agency (EPA), and the newly established U.S. Department of Homeland Security. This LLNL SW/SPEIS analyzes the environmental impacts of reasonable alternatives for ongoing and foreseeable future operations, facilities, and activities at LLNL. The reasonable alternatives include the No Action Alternative, Proposed Action, and the Reduced Operation Alternative. The major decision to be made by DOE/NNSA is to select one of the alternatives for the continued operation of the LLNL. As part of the Proposed Action, DOE/NNSA is considering: using additional materials including plutonium on the National Ignition Facility (NIF); increasing the administrative limit for plutonium in the Superblock, which includes the Plutonium Facility, the Tritium Facility, and the Hardened Engineering Test Building; conducting the Integrated Technology Project, using laser isotope separation to provide material for Stockpile Stewardship experiments, in the Plutonium Facility; increasing the material-at-risk limit for the Plutonium Facility; and increasing the Tritium Facility material-at-risk. A discussion of these issues is presented in Section S.5.2, Proposed Action. The ''National Environmental Policy Act'' (NEPA) establishes environmental policy, sets goals, and provides means for implementing the policy. NEPA contains provisions to ensure that Federal agencies adhere to the letter and spirit of the Act. The key provision requires preparation of an environmental impact statement on ''major Federal actions significantly affecting the quality of the human environment'' (40 ''Code of Federal Regulations'' [CFR] {section}1502.3). NEPA ensures that environmental information is available to public officials and citizens before decisions are made and actions are taken (40 CFR {section}1500.1[b]). DOE has a policy to prepare sitewide environmental impact statements documents for certain large, multiple-facility sites such as LLNL (10 CFR {section}1021.330). In August 1992, DOE released the ''Final Environmental Impact Statement and Environmental Impact Report for Continued Operations of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore'' (LLNL EIS/EIR). A Record of Decision (ROD) (58 ''Federal Register'' [FR] 6268) was issued in January 1993. With the passage of more than 10 years since the publication of the 1992 LLNL EIS/EIR (DOE/EIS-0157) and because of proposed modifications to existing projects and new programs, NNSA determined that it was appropriate to prepare a new LLNL SW/SPEIS.

  3. Work Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work Plan NSSAB Members Vote on Work Plan Tasks; The Nevada Site Specific Advisory Board operates on a fiscal year basis and conducts work according to a NSSAB generated and U.S....

  4. Notice of Intent to Prepare a Supplement to the Stockpile Stewardship and Management Programmatic Environmental Impact Statement-Complex 2030 (DOE/EIS-0236-S4)(October 19, 2006)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    731 Federal Register / Vol. 71, No. 202 / Thursday, October 19, 2006 / Notices 1 A pit is the central core of a nuclear weapon typically containing plutonium-239 that undergoes fission when compressed by high explosives. DEPARTMENT OF ENERGY Notice of Intent To Prepare a Supplement to the Stockpile Stewardship and Management Programmatic Environmental Impact Statement-Complex 2030 AGENCY: National Nuclear Security Administration, Department of Energy. ACTION: Notice of intent. SUMMARY: The

  5. Nuclear Deterrence and Stockpile Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    prominence of nuclear weapons in U.S. security policy has diminished with the end of the Cold War, nuclear weapons continue to provide an essential component of national security. ...

  6. Strategic Direction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Volume One Film Collection Volume Two 75th Anniversary Hydropower in the Northwest Woody Guthrie Videos Strategic Direction Branding & Logos Power of the River History Book...

  7. Directives Help

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    All DOE directives are available through this site. While it may seem overwhelming, given the number of documents, we have provided a number of ways in which you may get to the information you need.

  8. DRIVING DIRECTIONS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DRIVING DIRECTIONS HILTON PALACIO DEL RIO 200 South Alamo Street San Antonio, Texas 78205 (210) 222-1400 San Antonio International Airport DIRECTIONS Take Interstate 281 south to Commerce Street. Continue west on Commerce Street to Losoya Street, turn left. Losoya becomes Alamo. The Hilton Palacio del Rio is located at 200 South Alamo Street. Distance from Hotel: 8 mi. Drive Time: 20 min. From the South: -I 37 North and take Commerce Street exit -Turn left at Commerce Street -Follow Commerce

  9. Jet engine test stand and soil stockpile. 107th fighter-interceptor group Niagara Falls Air Force Reserve Station, New York Air National Guard, Niagara Falls, New York. Final site assessment addendum report, 9-12 February 1993

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    THis report outlines additional site assessment activities which were conducted at the Jet Engine Test Stand (JETS), Building No. 852 located at the 197th Fighter-Interceptor Group, Niagara Falls Air National Guard Station (NFANGS), Air Force Reserve Facility (AFRF) approximately 6 miles northeast of Niagara Falls, New York (Figure 1.1). The additional site assessment activities were performed in response to requests, dated February 9 and 12, 1993, by the New York State Department of Environmental Conservation (NYSDEC) to further investigate contaminated soil and groundwater conditions at the JETS and at an existing soil stockpile (Appendix A).

  10. Exascale Hardware Architectures Working Group

    SciTech Connect (OSTI)

    Hemmert, S; Ang, J; Chiang, P; Carnes, B; Doerfler, D; Leininger, M; Dosanjh, S; Fields, P; Koch, K; Laros, J; Noe, J; Quinn, T; Torrellas, J; Vetter, J; Wampler, C; White, A

    2011-03-15

    The ASC Exascale Hardware Architecture working group is challenged to provide input on the following areas impacting the future use and usability of potential exascale computer systems: processor, memory, and interconnect architectures, as well as the power and resilience of these systems. Going forward, there are many challenging issues that will need to be addressed. First, power constraints in processor technologies will lead to steady increases in parallelism within a socket. Additionally, all cores may not be fully independent nor fully general purpose. Second, there is a clear trend toward less balanced machines, in terms of compute capability compared to memory and interconnect performance. In order to mitigate the memory issues, memory technologies will introduce 3D stacking, eventually moving on-socket and likely on-die, providing greatly increased bandwidth but unfortunately also likely providing smaller memory capacity per core. Off-socket memory, possibly in the form of non-volatile memory, will create a complex memory hierarchy. Third, communication energy will dominate the energy required to compute, such that interconnect power and bandwidth will have a significant impact. All of the above changes are driven by the need for greatly increased energy efficiency, as current technology will prove unsuitable for exascale, due to unsustainable power requirements of such a system. These changes will have the most significant impact on programming models and algorithms, but they will be felt across all layers of the machine. There is clear need to engage all ASC working groups in planning for how to deal with technological changes of this magnitude. The primary function of the Hardware Architecture Working Group is to facilitate codesign with hardware vendors to ensure future exascale platforms are capable of efficiently supporting the ASC applications, which in turn need to meet the mission needs of the NNSA Stockpile Stewardship Program. This issue is relatively immediate, as there is only a small window of opportunity to influence hardware design for 2018 machines. Given the short timeline a firm co-design methodology with vendors is of prime importance.

  11. Working Copy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    99-3119 Compliance Monitoring Implementation Plan for 40 CFR §191.14(b), Assurance Requirement U. S. Department of Energy Revision 8 October 2014 This document supersedes Revision 7 of DOE/WIPP-99-3119. Working Copy Compliance Monitoring Implementation Plan DOE/WIPP-99-3119, Rev. 8 2 This document has been submitted as required to: U.S. Department of Energy Office of Scientific and Technical Information PO Box 62 Oak Ridge, TN 37831 (865) 576-8401 Additional information about this document may

  12. Directives Tools - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guides (Text version available here) Cancelling a Directive New Canceling a Directive The process for canceling directives (Text version available here) Directives Templates...

  13. Laboratory Directed Research and Development Program FY 2008 Annual Report

    SciTech Connect (OSTI)

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Berkeley Lab LDRD program also play an important role in leveraging DOE capabilities for national needs. The fundamental scientific research and development conducted in the program advances the skills and technologies of importance to our Work For Others (WFO) sponsors. Among many directions, these include a broad range of health-related science and technology of interest to the National Institutes of Health, breast cancer and accelerator research supported by the Department of Defense, detector technologies that should be useful to the Department of Homeland Security, and particle detection that will be valuable to the Environmental Protection Agency. The Berkeley Lab Laboratory Directed Research and Development Program FY2008 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation, and review.

  14. Submitting Work | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Submitting Work Customers may directly contact the supervisor of the required service area to discuss the technical details of proposed projects. Iowa State University requestors need to bring an Intramural Purchase Order (IPO) with them from their departmental office to request services. After the technical details of the project are known, a cost estimate is prepared. Ames Laboratory operations work less than $1,000 is submitted directly to the shop using the Engineering Services Shop -

  15. Work For Others (Non-Department of Energy Funded Work)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-09-28

    Work for Others (WFO) is the performance of work for non-Department of Energy (DOE) entities by DOE/National Nuclear Security Administration (NNSA) and/or their respective contractor personnel or the use of DOE/NNSA facilities that is not directly funded by DOE appropriations. Cancels DOE O 481.1A.

  16. Work For Others (Non-Department of Energy Funded Work)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-03

    Work for Others (WFO) is the performance of work for non-Department of Energy (DOE) entities by DOE/National Nuclear Security Administration (NNSA) and/or their respective contractor personnel or the use of DOE/NNSA facilities that is not directly funded by DOE appropriations. WFO has the following objectives. Cancels DOE O 481.1.

  17. How it works

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How it works MINERvA is a particle physics experiment, located at Fermi National Accelerator Laboratory in Batavia, Illinois. MINERvA was designed to perform high-precision measurements of neutrino interactions on a wide variety of materials, including water, helium, carbon, iron, lead, and plastic. MINERvA is located 100 meters underground, and sits directly in front of the MINOS near detector. The source of MINERvA's neutrino beam is the Neutrinos at the Main Injector beamline, or NuMI. NuMI

  18. President Obama Signs New Directive to Strengthen our Work to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of women in conflict resolution and peace processes, to focusing on women and girls ... Challenge Corporation (MCC) to Peace Corps to the Department of Health and Human Services. ...

  19. Work for Others (Non-Department of Energy Funded Work)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-01-24

    Work for Others is the performance of work for non-Department of Energy (DOE) entities by DOE/National Nuclear Security Administration (NNSA) and/or their respective contractor personnel or the use of DOE/NNSA facilities that is not directly funded by DOE appropriations. Cancels DOE O 481.1B. Certified 1-13-11. Admin Chg 1, dated 3-14-11.

  20. Directions | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area Map Jefferson Lab is located in Newport News, VA, in the Hampton Roads area. A D D I T I O N A L L I N K S: Visiting JLab Transportation Driving in Virginia Accomodations Schedule A Tour International Visitors top-right bottom-left-corner bottom-right-corner DIRECTIONS Important Note: Effective Feb. 15, 2016, Jefferson Lab's main entrance is closed to all traffic. Excavation work is underway at the main entrance - at the intersection of Jefferson Ave. and Lawrence Drive. Please follow the

  1. Directives Templates - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and format Directives Templates Justification Memoranda Per Secretarial Memo, Enterprise Risk Management (ERM) Framework for Directives, dated July 9, 2012, by September 1, 2012,...

  2. Laboratory Directed Research and Development Program FY2011

    SciTech Connect (OSTI)

    none, none

    2012-04-27

    Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2011 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). Going forward in FY 2012, the LDRD program also supports the Goals codified in the new DOE Strategic Plan of May, 2011. The LDRD program also supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Brief summares of projects and accomplishments for the period for each division are included.

  3. CMRR Public Meeting, October 6, 2010

    SciTech Connect (OSTI)

    Holmes, Richard A

    2010-12-16

    The Chemistry Metallurgy Research Replacement (CMRR) Project seeks to relocate and consolidate mission-critical CMR capabilities at LANL to ensure continuous support of NNSA stockpile stewardship and management strategic objectives; these capabilities are necessary to support the current and directed stockpile work and campaign activities at LANL beyond 2010.

  4. Departmental Directives Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-08-16

    The Order is the primary directive for administering the Department's directives Program. Cancels: DOE O 251.1A

  5. November 13 - 15, 2012 HSS Work Group Leadership Meeting Summary - Work Force Retention

    Energy Savers [EERE]

    Work Force Retention Work Group Co-Lead Telecom November 16, 2012 DRAFT Discussion Overview Purpose: This HSS Focus Group Work Group telecom was held with the Work Group Co-Leads to discuss change elements and strategic direction to support accelerated efforts to advancing progress, productivity and performance within each of the Work Groups. Although current roles within all of the Work Groups and Focus Group efforts remain the same, the addition of centralized leadership and oversight by

  6. Work for Others (Non-Department of Energy Funded Work)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-01-24

    Work for Others is the performance of work for non-Department of Energy (DOE) entities by DOE/National Nuclear Security Administration (NNSA) and/or their respective contractor personnel or the use of DOE/NNSA facilities that is not directly funded by DOE appropriations. Cancels DOE O 481.1B. Certified 1-13-11. Admin Chg 1, dated 3-14-11, cancels DOE O 481.1C. Admin Chg 2, dated 3-9-15, cancels DOE O 481.1C Admin Chg 1

  7. NNSA releases Stockpile Stewardship Program quarterly experiments...

    National Nuclear Security Administration (NNSA)

    National Ignition Facility at Lawrence Livermore National Laboratory, and the Z machine at Sandia National Laboratories. The summary also provides the number of experiments...

  8. ORISE: Chemical Stockpile Emergency Preparedness Program Exercise...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Education customized the structure of the U.S. Department of Energy's Office of Emergency Response Asset Readiness Management System databases to create a framework for...

  9. Stockpile Stewardship and the National Ignition Facility

    SciTech Connect (OSTI)

    Moses, E

    2012-01-04

    The National Ignition Facility (NIF), the world's most energetic laser system, is operational at Lawrence Livermore National Laboratory (LLNL). Since the completion of the construction project in March 2009, NIF has completed nearly 150 target experiments for the National Ignition Campaign (NIC), High Energy Density Stewardship Science (HEDSS) in the areas of radiation transport, material dynamics at high pressure in the solid state, as well as fundamental science and other national security missions. NIF capabilities and infrastructure are in place to support all of its missions with over 50 X-ray, optical and nuclear diagnostic systems and the ability to shoot cryogenic targets and DT layered capsules. NIF is now qualified for use of tritium and other special materials as well as to perform high yield experiments and classified experiments. DT implosions with record indirect-drive neutron yield of 4.5 x 10{sup 14} neutrons have been achieved. A series of 43 experiments were successfully executed over a 27-day period, demonstrating the ability to perform precise experiments in new regimes of interest to HEDSS. This talk will provide an update of the progress on the NIF capabilities, NIC accomplishments, as well as HEDSS and fundamental science experimental results and an update of the experimental plans for the coming year.

  10. NNSA releases Stockpile Stewardship Program quarterly experiments...

    National Nuclear Security Administration (NNSA)

    in particular the first Pu experiment on NIF, the return to operations of the TA-55 gas gun, a successful series of plutonium experiments on Joint Actinide Shock Physics ...

  11. ORISE: Chemical Stockpile Emergency Preparedness Program (CSEPP...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    during an emergency. Topics and techniques covered include: Using the latest social media applications to provide more accurate situational awareness and to reach a...

  12. Maintaining the Stockpile | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    wave produced by the impact passes through the plutonium, and diagnostic Los Alamos Neutron Science Center LANSCE provides the scientific community with intense sources of...

  13. FY 1994 Annual Work Plan

    SciTech Connect (OSTI)

    Not Available

    1993-09-30

    In accordance with the Inspector General`s Strategic Planning Policy directive, the Office of Inspector General (OIG) annually updates its Strategic Plan with budgetary and program guidance for the next fiscal year. The program guidance identifies and establishes priorities for OIG coverage of important DOE issues and operations, provides the basis for assigning OIG resources, and is the source for issues covered in Assistant Inspectors General annual work plans. The Office of the Assistant Inspector General for Audits (AIGA) publishes an Annual Work Plan in September of each year. The plan includes the OIG program guidance and shows the commitment of resources necessary to accomplish the assigned work and meet our goals. The program guidance provides the framework within which the AIGA work will be planned and accomplished. Audits included in this plan are designed to help insure that the requirements of our stakeholders have been considered and blended into a well balanced audit program.

  14. Work for Others | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work for Others Work for Others The Department of Energy (DOE) national laboratories are available to conduct work for other Federal agencies and non-Federal customers on a 100% reimbursable basis. This work uses laboratory personnel and/or facilities; pertains to the mission of the laboratory; does not conflict or interfere with the achievement of DOE program objectives; does not place the laboratory in direct competition with the domestic private sector; and does not create a potential future

  15. Strategic Partnership Projects [Formerly Known as Work for Others (Non-Department of Energy Funded Work)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-01-24

    Strategic Partnership Projects is work performed for non-DOE entities by DOE/(NNSA personnel and/or their respective contractor personnel or the use of DOE/NNSA facilities for work that is not directly funded by DOE/NNSA appropriations. This Admin Chg address primarily address references to revised directives and the results of departmental reorganization. In addition, the Secretary directed effective immediately work formerly known as Work for Others (WFO) to be renamed Strategic Partnership Projects (SPPs). Admin Chg 2, dated 3-9-15, supersedes DOE O 481.1C Admin Chg 1, dated 3-14-11.

  16. Laboratory Directed Research and Development - DOE Directives...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2C, Laboratory Directed Research and Development by Russell Ames Functional areas: Energy Research & Technology To establish Department of Energy (DOE) requirements for laboratory...

  17. November 13 - 15, 2012 HSS Work Group Leadership Meeting Summary - Training Work Group

    Energy Savers [EERE]

    Training Work Group Co-Lead Telecom November 16, 2012 DRAFT Discussion Overview Purpose: This HSS Focus Group Work Group telecom was held with the Work Group Co-Leads to discuss change elements and strategic direction to support accelerated efforts to advancing progress, productivity and performance within each of the Work Groups. Although current roles within all of the Work Groups and Focus Group efforts remain the same, the addition of centralized leadership and oversight by representatives

  18. Financial Policy and Procedures for Reimbursable Work

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1988-08-15

    The directive establishes Department-wide financial policy and procedural guidance applicable to performing reimbursable work for other Federal agencies and with non-Federal Government entities, including foreign and commercial entities, State, and political subdivisions.

  19. Directives Quarterly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directives at https:www.directives.doe.govdirectives APRIL 2015 DOE O 325.2, Position Management and Classification The order establishes departmental requirements and...

  20. Directives Quarterly Updates

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    Listings of new Justification Memoranda and new or revised Directives that have been posted to the DOE Directives, Delegations, and Requirements Portal. Updated quarterly.

  1. OSCARS Collaborative Work

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OSCARS Collaborative Work Engineering Services The Network OSCARS How It Works Who's Using OSCARS? OSCARS and Future Tech OSCARS Standard and Open Grid Forum OSCARS Developers...

  2. Departmental Directives Program Policy - DOE Directives, Delegations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Functional areas: Information Technology, The Policy provides formal and organized communication of the Department's expectations for performance of work within the DOE complex....

  3. direct_deposit_111609

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PROTECT YOUR BANKING INFORMATION: DO NOT complete this form until you are ready to submit it to the Payroll Department. DIRECT DEPOSIT REQUEST Directions: 1. Provide required information neatly, legibly; 2. If Checking Account Direct Deposit, include a voided check. a. DO NOT submit a deposit slip! 3. If Savings Account Direct Deposit, include a copy of savings card. 4. Sign this form; 5. Inter-office mail it to Craft Payroll at "P238." DIRECT DEPOSITION AUTHORIZATION I hereby

  4. Buckman Direct Diversion Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Buckman Direct Diversion Project Buckman Direct Diversion Project This project takes surface water from the Rio Grande, and then treats and distributes these waters to the city and county of Santa Fe through their drinking water distribution systems. August 1, 2013 Water flumes at Buckman Direct Diversion Project Water flumes at Buckman Direct Diversion Project The City of Santa Fe and Santa Fe County completed the construction of the Buckman Direct Diversion (BDD) Project in December 2010. The

  5. Departmental Directives Program Manual - DOE Directives, Delegations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M 251.1-1B, Departmental Directives Program Manual by Website Administrator Functional areas: Information Technology, The Manual supplements DOE O 251.1B. Cancels DOE M 251.1-1A....

  6. Laboratory Directed Research and Development Program FY2004

    SciTech Connect (OSTI)

    Hansen, Todd C.

    2005-03-22

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also supports the strategic directions periodically under review by the Office of Science Program Offices, such as strategic LDRD projects germane to new research facility concepts and new fundamental science directions.

  7. Service and Repair Work

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Service and Repair Work Whenever on-site service or repair work needs to be done, a Procurement Work Sheet (PWS) must be completed, and possibly an IWS, authorized and released. PWS is required for service work even if there are no apparent hazards. PWS is required for work in Jupiter Laser Facility even if you have a PWS for service/repairs in another location. To complete a PWS for service work in Jupiter Laser Facility, please contact Sean Holte (2-3905, pager #05312). Notify Brent Stuart and

  8. Catalysis Working Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalysis Working Group Catalysis Working Group The Catalysis Working Group (CWG) meets twice per year to exchange information, create synergies, and collaboratively develop both an understanding of and tools for studying electrocatalysis for polymer electrolyte fuel cells (PEFCs) and other low- and intermediate-temperature fuel cell systems, including direct methanol fuel cells (DMFCs), alkaline fuel cells (AFCs), alkaline membrane fuel cells (AMFCs), and phosphoric acid fuel cells (PAFCs). The

  9. Quality Procedure - Stop Work | Department of Energy

    Energy Savers [EERE]

    Stop Work Quality Procedure - Stop Work This Quality Procedure establishes the Office of Standards and Quality Assurance authority, responsibilities, and instructions to direct that unsafe work be stopped, during the execution and operations of its activities, specifically in oversight activities. this procedure is utilized and accomplished upon coordination with management of the Environmental Management (EM) Headquarters and Field Office. This procedure also provides provisions for the restart

  10. Elements of doing work at SSRL (rev

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outline for doing work at SSRL Goals: 1. Work effectively, efficiently and safely 2. Compliance with DOE Directives as stated in on ES&H ISEMS web site: http://www-group.slac.stanford.edu/esh/general/isems/ 3. Compliance with SLAC operating directives as found on the SSRL safety web page http://www-ssrl.slac.stanford.edu/safety/index.html, e.g., AHAs, JHAMs, Work Authorizations, and Guidelines for Operations. Methods: 1. Safety process: practice 5 core functions; follow JHAMs, safety

  11. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Biological Materials Print Planning A complete Experiment Safety Sheet (ESS) is required before work can be done at the ALS. This ESS is either a part of the proposal...

  12. STATEMENT OF WORK

    National Nuclear Security Administration (NNSA)

    PART III - SECTION J APPENDIX B STATEMENT OF WORK Table of Contents 1.0 General.................................................................................................................... 273 2.0 Laboratory Mission and Scope of Work. ................................................................ 274 3.0 Science & Technology. ........................................................................................... 275 3.1 Defense Programs.

  13. Directional recoil rates for WIMP direct detection

    SciTech Connect (OSTI)

    Alenazi, Moqbil S.; Gondolo, Paolo [Department of Physics, University of Utah, 115 S 1400 E Rm 201, Salt Lake City, Utah 84112-0830 (United States)

    2008-02-15

    New techniques for the laboratory direct detection of dark matter weakly interacting massive particles (WIMPs) are sensitive to the recoil direction of the struck nuclei. We compute and compare the directional recoil rates dR/dcos{theta} (where {theta} is the angle measured from a reference direction in the sky) for several WIMP velocity distributions including the standard dark halo and anisotropic models such as Sikivie's late-infall halo model and logarithmic-ellipsoidal models. Since some detectors may be unable to distinguish the beginning of the recoil track from its end (lack of head-tail discrimination), we introduce a folded directional recoil rate dR/d|cos{theta}|, where |cos{theta}| does not distinguish the head from the tail of the track. We compute the CS{sub 2} and CF{sub 4} exposures required to distinguish a signal from an isotropic background noise, and find that dR/d|cos{theta}| is effective for the standard dark halo and some but not all anisotropic models.

  14. Administering Work Force Discipline

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-05-14

    The order provides requirements and responsibilities for administering work force discipline and corrective actions. Supersedes DOE O 3750.1.

  15. Interagency Sustainability Working Group

    Broader source: Energy.gov [DOE]

    The Interagency Sustainability Working Group (ISWG) is the coordinating body for sustainable buildings in the federal government.

  16. Directives Quarterly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    home page for Directives at: https:www.directives.doe.govdirectives- browsec8-operatoror&c10&c12&bstart0 October 2014 DOE O 475.2B, Identifying Classified Information -...

  17. Direct/Indirect Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter provides recommended categories for direct and indirect elements developed by the Committee for Cost Methods Development (CCMD) and describes various estimating techniques for direct and indirect costs.

  18. Work for Others Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-09-24

    The Guide has been developed to assist Operations/Field Offices in developing their local WFO processes. Does not cancel/supersede other directives.

  19. Directives System Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-01-30

    This Manual provides detailed requirements to supplement DOE O 251.1A, Directives System, dated 1-30-98.

  20. Direct process for explosives

    DOE Patents [OSTI]

    Akst, I.B.; Stinecipher, M.M.

    1982-10-12

    A direct process of making ethylenediamine dinitrate through the reaction of ethylenediamine and ammonium nitrate is described.

  1. Reimbursable Work for the Department of Homeland Security

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-08-17

    The Order establishes DOE policies and procedures for the acceptance, performance, and administration of reimbursable work directly funded by the Department of Homeland Security.

  2. Records Management Working Group Charter | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The purpose of the Records Management Working Group (RMWG) is to provide guidance, direction, and coordination for the Department of Energy's (DOE) Records Management Program so...

  3. ORISE: Working with ORISE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oak Ridge Institute for Science Education Working with ORISE If you are interested in learning about how your agency can utilize the capabilities of the Oak Ridge Institute for Science and Education (ORISE) through a Work for Others agreement or a procurement contract, or if you are looking for career opportunities, the following information provides an explanation of how to work with ORISE. If you do not see an option that applies to your needs, please contact ORISE General Information.

  4. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Biological Materials Print Planning A complete Experiment Safety Sheet (ESS) is required before work can be done at the ALS. This ESS is either a part of the proposal process or may be completed as an independent document. In the ESS, identify each material (including all biological materials) with which you will be working. The regulatory oversight for biological work is very complicated and we need to understand the risk levels involved with the material you plan to use at the ALS,

  5. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Biological Materials Print Planning A complete Experiment Safety Sheet (ESS) is required before work can be done at the ALS. This ESS is either a part of the proposal process or may be completed as an independent document. In the ESS, identify each material (including all biological materials) with which you will be working. The regulatory oversight for biological work is very complicated and we need to understand the risk levels involved with the material you plan to use at the ALS,

  6. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cells, viruses), plant or soil samples (USDA quarantines), recombinant DNA, or blood-borne pathogen. Biological Use Authorization The great majority of biological work at...

  7. INL @ work: Archaeologist

    ScienceCinema (OSTI)

    Lowrey, Dino

    2013-05-28

    INL @ work features jobs performed at the lab. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  8. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for proper development and review time. Training All resident LBNL users (those whose work authorization includes a JHA) must take the standard LBNL training courses for...

  9. Photoelectrochemical Working Group

    Broader source: Energy.gov [DOE]

    The Photoelectrochemical Working Group meets regularly to review technical progress, develop synergies, and collaboratively develop common tools and processes for photoelectrochemical (PEC) water...

  10. Departmental Directives Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-10-16

    To establish directives as the primary means to set, communicate, and institutionalize policies, requirements, responsibilities, and procedures for Departmental elements and contractors.

  11. Directives System Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-16

    This Manual provides detailed requirements to supplement DOE O 251.1, which establishes requirements for the development, coordination, and sunset review of DOE directives.

  12. Cancellation of Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-26

    Effective immediately the following Department of Energy directive is canceled. DOE M 452.2-2, Nuclear Explosive Safety Evaluation Processes, dated 04-14-2009.

  13. Direct-fired biomass

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The direct-fired biomass section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  14. Directives Quarterly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    https:www.directives.doe.govdirectivesdirectives October 2013 DOE O 472.2 Admin Chg 1, Personnel Security - The order establishes requirements that will enable DOE to operate...

  15. Work Authorization System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-04-20

    It establishes a work authorization and control process for work performed by designated management and operating (M&O), management and integrating (M&I), environmental restoration management contracts (ERMC) and other contracts determined by the Procurement Executive (hereafter referred to as M&O contractors). Cancels DOE O 5700.7C. Canceled by DOE O 412.1A.

  16. Work Authorization System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-04-21

    To establish a work authorization and control process for work performed by designated site and facility management contractors, and other contractors as determined by the procurement executive, consistent with the budget execution and program evaluation requirements of the Department of Energy's (DOE's) Planning, Programming, Budgeting, and Evaluation process. Cancels DOE O 412.1.

  17. Work Authorization System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-04-21

    To establish a work authorization and control process for work performed by designated site and facility management contractors, and other contractors as determined by the procurement executive, consistent with the budget execution and program evaluation requirements of the Department of Energy's Planning, Programming, Budgeting, and Evaluation process. Admin Chg 1, dated 5-21-2014, cancels DOE O 412.1A.

  18. Departmental Directives System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1983-04-07

    The order establishes the directives system to be used for publishing permanent and temporary directives issued by DOE Headquarters and addressed to Headquarters and/or field elements. Chg 1 dated 3-14-85. Cancels DOE 1321.1A.

  19. Trails Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trails » Trails Working Group Trails Working Group Our mission is to inventory, map, and prepare historical reports on the many trails used at LANL. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email The LANL Trails Working Group inventories, maps, and prepares historical reports on the many trails used at LANL. Some of these trails are ancient pueblo footpaths that continue to be used for recreational hiking today. Some

  20. How It Works

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How It Works Engineering Services The Network OSCARS How It Works Who's Using OSCARS? OSCARS and Future Tech OSCARS Standard and Open Grid Forum OSCARS Developers Community Read More... Fasterdata IPv6 Network Network Performance Tools The ESnet Engineering Team Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net How It Works

  1. Work/Life Balance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workplace » Work/Life Balance /careers/_assets/images/careers-icon.jpg Work/Life Balance Explore the multiple dimensions of a career at Los Alamos Lab: work with the best minds on the planet in an inclusive environment that is rich in intellectual vitality and opportunities for growth. What our employees say: Health & Wellness "The Lab pays 80 percent of my family's medical premiums with Blue Cross Blue Shield of New Mexico." Retirement & Savings "With the Lab matching my

  2. How Distributed Wind Works | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Wind Works How Distributed Wind Works Your browser does not support iframes. Distributed wind energy systems are commonly installed on, but are not limited to, residential, agricultural, commercial, industrial, and community sites, and can range in size from a 5-kilowatt turbine at a home to a multi-megawatt (MW) turbine at a manufacturing facility. Distributed wind systems are connected on the customer side of the meter to meet the onsite load or directly to distribution or micro

  3. Clean Energy Works

    Broader source: Energy.gov [DOE]

    Through Clean Energy Works, homeowners can finance up to $30,000 at a fixed interest rate for home energy efficiency retrofits for a variety of measures. Customers have varying lender and loan op...

  4. Working Group Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working Group Reports Special Working Session on the Role of Buoy Observations in the Tropical Western Pacific Measurement Scheme J. Downing Marine Sciences Laboratory Sequim, Washington R. M. Reynolds Brookhaven National Laboratory Upton, New York Attending W. Clements (TWPPO) F. Barnes (TWPPO) T. Ackerman (TWP Site Scientist) M. Ivey (ARCS Manager) H. Church J. Curry J. del Corral B. DeRoos S. Kinne J. Mather J. Michalsky M. Miller P. Minnett B. Porch J. Sheaffer P. Webster M. Wesely K.

  5. Macro Industrial Working Group

    Gasoline and Diesel Fuel Update (EIA)

    September 29, 2014 | Washington, DC WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Industrial team preliminary results for AEO2015 Overview AEO2015 2 Industrial Team Washington DC, September 29, 2014 WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE * AEO2015 is a "Lite" year - New ethane/propane pricing model only major update - Major side cases released with Reference case

  6. Partnerships & Sponsored Work

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partnerships & Sponsored Work Partnerships & Sponsored Work Los Alamos scientists and engineers conduct basic research across a wide range of scientific areas to support our national security mission. Many of the technologies, processes, and special technical expertise we have developed has been applied to solving problems in the private sector through mutually beneficial, technology partnerships. Contact Cooperative Research & Development Agreements (CRADA) CRADA Team Email

  7. Working With Us | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working With Us Join us in building a clean energy future. NREL offers many opportunities to industry, organizations, government, researchers, businesses, students, educators, and vendors. At NREL, we work with organizations large and small through research partnerships, licensing of NREL technologies, support for cleantech stakeholders, and fostering the clean energy economy. Join us to accelerate the movement of renewable energy and energy-efficient solutions into practical applications.

  8. Fermilab: Science at Work

    ScienceCinema (OSTI)

    Brendan Casey; Herman White; Craig Hogan; Denton Morris; Mary Convery; Bonnie Fleming; Deborah Harris; Dave Schmitz; Brenna Flaugher; Aron Soha

    2013-02-14

    Six days. Three frontiers. One amazing lab. From 2010 to 2012, a film crew followed a group of scientists at the Department of Energy's Fermilab and filmed them at work and at home. This 40-minute documentary shows the diversity of the people, research and work at Fermilab. Viewers catch a true behind-the-scenes look of the United States' premier particle physics laboratory while scientists explain why their research is important to them and the world.

  9. Departmental Directives Program Policy

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-08-16

    The Policy provides formal and organized communication of the Department's expectations for performance of work within the DOE complex. Cancels DOE P 251.1

  10. AISI direct steelmaking program

    SciTech Connect (OSTI)

    Aukrust, E.

    1991-01-09

    AISI with co-funding from DOE has initiated a research and development program aimed at the development of a new process for direct steelmaking, and the program is discussed in this document. The project is expected to cost about $30 million over a three-year period, with the government providing approximately 77 percent of the funds and AISI the balance. In contrast to current steelmaking processes which are largely open and batch, the direct steelmaking process would be closed and continuous. Further, it would use coal directly, thereby avoiding the need for coke ovens. The second year of the Direct Steelmaking Program (November 29, 1989, through November 28, 1990) was a year of significant accomplishment. The various research programs proceeded essentially on schedule and the pilot plant, the centerpiece of the program, was completed about three months behind schedule but began operation in almost a picture-perfect manner. This report presents the last years accomplishments.

  11. Direct nuclear pumped laser

    DOE Patents [OSTI]

    Miley, George H. (Champagne, IL); Wells, William E. (Urbana, IL); DeYoung, Russell J. (Hampton, VA)

    1978-01-01

    There is provided a direct nuclear pumped gas laser in which the lasing mechanism is collisional radiated recombination of ions. The gas laser active medium is a mixture of the gases, with one example being neon and nitrogen.

  12. Departmental Directives Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-08-13

    The order establishes directives as the primary means to set, communicate, and institutionalize policies, requirements, responsibilities, and procedures for Departmental elements and contractors. The second draft is being submitted for review owing to extensive revisions to the first draft.

  13. Laboratory Directed Research and Development FY2011 Annual Report

    SciTech Connect (OSTI)

    Craig, W; Sketchley, J; Kotta, P

    2012-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High-Energy-Density Science; (11) Laser Inertial-Fusion Energy; (12) Advanced Laser Optical Systems and Applications; (12) Space Security; (13) Stockpile Stewardship Science; (14) National Security; (15) Alternative Energy; and (16) Climatic Change.

  14. Work Force Retention Work Group Charter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Force Retention Work Group Charter Work Force Retention Work Group Charter The Work force Retention Work Group is established to support the Department's critical focus on maintaining a high-performing work force at a time when a significant number of the workers needed to support DOE's national security mission are reaching retirement age. PDF icon Work Force Retention Work Group Charter More Documents & Publications Workforce Retention Work Group Status Overview - September 2012 Training

  15. Refrigerant directly cooled capacitors

    DOE Patents [OSTI]

    Hsu, John S.; Seiber, Larry E.; Marlino, Laura D.; Ayers, Curtis W.

    2007-09-11

    The invention is a direct contact refrigerant cooling system using a refrigerant floating loop having a refrigerant and refrigeration devices. The cooling system has at least one hermetic container disposed in the refrigerant floating loop. The hermetic container has at least one electronic component selected from the group consisting of capacitors, power electronic switches and gating signal module. The refrigerant is in direct contact with the electronic component.

  16. Directions - 88-Inch Cyclotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directions The Laboratory is on the hillside directly above the campus of the University of California at Berkeley. Our address is 1 Cyclotron Rd. Bldg. 88, Berkeley, CA 94720. To make the Lab easily accessible, the Lab has its own shuttle service that takes people around the site, to downtown Berkeley, and to the BART station. Parking spaces can sometimes be difficult to find at the 88-Inch Cyclotron, so make sure to prearrange for a parking permit with our Administrative Office. Further

  17. Dismantlement and Disposition | National Nuclear Security Administrati...

    National Nuclear Security Administration (NNSA)

    Weapons dismantlement 1 and disposition are major parts of NNSA's stockpile work and significant elements of NNSA's effort to transform the nuclear weapons complex and stockpile. ...

  18. Work Group Leadership Meetings: Transition Elements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leadership Meetings: Transition Elements Work Group Leadership Meetings: Transition Elements Meeting Dates: November 13 - 15, 2012 This Focus Group Work Group telecom was held with the Work Group Co-Leads to discuss change elements and strategic direction to support accelerated efforts to advancing progress, productivity and performance within each of the Work Groups. Although current roles within all of the Work Groups and Focus Group efforts remain the same, the addition of centralized

  19. Exhibit G / working draft

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Off-site (Rev 5, 2/28/2014) P.R. No. * Date * Page 1 of 2 Subcontract No. or PO No. * EXHIBIT G OFF-SITE SECURITY REQUIREMENTS G1.0 Definitions and Acronyms (Feb 2014) Definitions and acronyms may be accessed electronically at http://www.lanl.gov/resources/_assets/docs/Exhibit-G/exhibit-g-definitions-acronyms-green.pdf G2.0 Statements Applicable To Scope of Work (July 2013) CONTRACTOR believes that all of the statements listed below are factually correct and applicable to the scope of work (SOW)

  20. Mon Valley work plan

    Office of Legacy Management (LM)

    GWSHP 1.8 U.S. Department of Energy UMTRA Ground Water Project Work Plan for Characterization Activities at the Shiprock UMTRA Project Site June 1998 Prepared by U.S. Department of Energy Albuquerque Operations Office Grand Junction Office Project Number UGW-511-0020-01-000 Document Number U0013400 Work Performed under DOE Contract No. DE-AC13-96GJ87335 Note: Some of the section page numbers in the Table of Contents may not correspond to the page on which the section appears when viewing them in

  1. Work breakdown structure guide

    SciTech Connect (OSTI)

    Not Available

    1987-02-06

    Utilization of the work breakdown structure (WBS) technique is an effective aid in managing Department of Energy (DOE) programs and projects. The technique provides a framework for project management by focusing on the products that are being developed or constructed to solve technical problems. It assists both DOE and contractors in fulfilling their management responsibilities. This document provides guidance for use of the WBS technique for product oriented work identification and definition. It is one in a series of policy and guidance documents supporting DOE's project manaagement system.

  2. NNSA: Working to Prevent Nuclear Proliferation | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration to Prevent Nuclear Proliferation | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for

  3. Working With PNNL Mentors, Engineering Students Deliver Prototype

    National Nuclear Security Administration (NNSA)

    Safeguards Fixtures | National Nuclear Security Administration With PNNL Mentors, Engineering Students Deliver Prototype Safeguards Fixtures | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios

  4. Technology Transfer Working Group (TTWG) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Transfer Working Group (TTWG) Technology Transfer Working Group (TTWG) With the passage of the Energy Policy Act of 2005, Title X, Sec. 1001, the Secretary of Energy was directed to establish a Technology Transfer Working Group (TTWG), to include representatives from DOE National Laboratories and single purpose research facilities. The same section of the Act also directs the Secretary to appoint a Technology Transfer Coordinator. The duties of the Technology Transfer Coordinator

  5. Interview: LaborWorks@NeighborWorks Provides Vermont Contractors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interview: LaborWorks@NeighborWorks Provides Vermont Contractors With Help When They Need It Interview: LaborWorks@NeighborWorks Provides Vermont Contractors With Help When They Need ...

  6. Durability Working Group

    Broader source: Energy.gov [DOE]

    Description, technical targets, meeting archives, and contacts for the DOE Durability Working Group, which meets twice per year to exchange information, create synergies, and collaboratively develop both an understanding of and tools for studying degradation mechanisms of polymer electrolyte fuel cell stacks.

  7. Work Force Discipline

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1983-03-23

    The order provides guidance and procedures and states responsibilities for maintaining work force discipline in DOE. Chg 1, dated 3-11-85; Chg 2, dated 1-6-86; Chg 3, dated 3-21-89; Chg 4, dated 8-2-90; Chg 5, dated 3-9-92; Chg 6, dated 8-21-92, cancels Chg 5.

  8. Highly directional thermal emitter

    DOE Patents [OSTI]

    Ribaudo, Troy; Shaner, Eric A; Davids, Paul; Peters, David W

    2015-03-24

    A highly directional thermal emitter device comprises a two-dimensional periodic array of heavily doped semiconductor structures on a surface of a substrate. The array provides a highly directional thermal emission at a peak wavelength between 3 and 15 microns when the array is heated. For example, highly doped silicon (HDSi) with a plasma frequency in the mid-wave infrared was used to fabricate nearly perfect absorbing two-dimensional gratings structures that function as highly directional thermal radiators. The absorption and emission characteristics of the HDSi devices possessed a high degree of angular dependence for infrared absorption in the 10-12 micron range, while maintaining high reflectivity of solar radiation (.about.64%) at large incidence angles.

  9. Direct conversion technology

    SciTech Connect (OSTI)

    Massier, P.F.; Back, L.H.; Ryan, M.A.; Fabris, G.

    1992-01-07

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.

  10. Directed Quantum Chaos

    SciTech Connect (OSTI)

    Efetov, K.B. [Max-Planck Institut fuer Physik komplexer Systeme, Heisenbergstrasse 1, 70569 Stuttgart (Germany)] [Max-Planck Institut fuer Physik komplexer Systeme, Heisenbergstrasse 1, 70569 Stuttgart (Germany); [L.D. Landau Institute for Theoretical Physics, Moscow (Russia)

    1997-07-01

    Quantum disordered problems with a direction (imaginary vector potential) are discussed and mapped onto a supermatrix {sigma} model. It is argued that the 0D version of the {sigma} model may describe a broad class of phenomena that can be called directed quantum chaos. It is demonstrated by explicit calculations that these problems are equivalent to those of random asymmetric or non-Hermitian matrices. A joint probability of complex eigenvalues is obtained. The fraction of states with real eigenvalues proves to be always finite for time reversal invariant systems. {copyright} {ital 1997} {ital The American Physical Society}

  11. Direct Conversion Technology

    SciTech Connect (OSTI)

    Back, L.H.; Fabris, G.; Ryan, M.A.

    1992-07-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)

  12. Directions & Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directions & Maps Directions & Maps The Bradbury Science Museum is located in downtown Los Alamos at the corner of Central Avenue and 15th Street. Contact Us thumbnail of Bradbury Science Museum 505 667-4444 Email Where we're located Los Alamos (elevation 7,355 feet) is perched high atop the Pajarito Plateau in the Jemez Mountains, 35 miles northwest of Santa Fe. The Bradbury Science Museum is located in downtown Los Alamos at the corner of Central Avenue and 15th Street. If you're

  13. Work plan (Nov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM STM Cloud Modeling Working Group Session AGENDA Brief introduction of new ARM funded modeling projects: ---------------------------------------------------------------------------------------------------------- 1:00 pm - 1:05 pm Understanding and Improving CRM and GCM Simulations of Cloud Systems with ARM Observations (Xiaoqing Wu, Iowa State University) 1:05 pm - 1:10 pm Interactions of Cumulus Convection and the Boundary Layer at the Southern Great Plains ACRF (Steve Krueger, University of

  14. Quality Work Plan Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 | Energy Efficiency and Renewable Energy eere.energy.gov ACI Detroit Quality Work Plan Update April 2014 QWP: Background Culmination of a multi-year investment aimed at demonstrating quality and accountability in the WAP Taking action on lessons learned through various quality assurance reviews Establishing WAP as a national leader in technical resources and quality assurance Improving long term sustainability by building the foundation of the national industry with WAP at the core 2

  15. Buildings Sector Working Group

    Gasoline and Diesel Fuel Update (EIA)

    July 22, 2013 AEO2014 Model Development For discussion purposes only Not for citation Overview Builldings Working Group Forrestal 2E-069 / July 22, 2013 2 * Residential projects - RECS update - Lighting model - Equipment, shell subsidies - ENERGY STAR benchmarking - Housing stock formation and decay * Commercial projects - Major end-use capacity factors - Hurdle rates - ENERGY STAR buildings * Both sectors - Consumer behavior workshop - Comparisons to STEO - AER  MER - Usual annual updates -

  16. Emergency Preparedness Working

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 24, 2015 Emergency Preparedness Working Group (EPWG) Grant * Nevada Field Office funds the EPWG grant based on $.50 per cubic foot of low-level/mixed low-level waste disposed at the Nevada National Security Site * EPWG consists of six Nevada counties: Clark, Elko, Esmeralda, Lincoln, Nye, and White Pine * EPWG addresses grant administration issues and any cross-cutting emergency related questions that incorporate grant funding or are required to attain operations level emergency response

  17. Directional gamma detector

    DOE Patents [OSTI]

    LeVert, Francis E.; Cox, Samson A.

    1981-01-01

    An improved directional gamma radiation detector has a collector sandwiched etween two layers of insulation of varying thicknesses. The collector and insulation layers are contained within an evacuated casing, or emitter, which releases electrons upon exposure to gamma radiation. Delayed electrons and electrons entering the collector at oblique angles are attenuated as they pass through the insulation layers on route to the collector.

  18. Direct fired heat exchanger

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

    1986-01-01

    A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

  19. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-02-12

    The following directives are extended until 8-12-04. DOE N 205.2, Foreign National Access to DOE Cyber Systems, dated 11/1/99. DOE N 205.3, Password Generation, Protection, and Use, dated 11/23/99.

  20. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-02-24

    This Notice extends the following directives until 2/16/04: DOE N 205.2, Foreign National Access to DOE Cyber Systems, and DOE N 205.3, Password Generation, Protection, and Use, dated 11/23/99-7/1/00.

  1. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-08-12

    The following directives are extended until 8-12-05: DOE N 205.2, Foreign National Access to DOE Cyber Security Systems, dated 11-1-99 and DOE N 205.3, Password Generation, Protection, and Use, dated 11-23-99. No cancellations.

  2. 6-Month Work Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 9, 2011 Page 1 of 1 RIVER & PLATEAU COMMITTEE - 6 MONTH WORK PLAN January * River Corridor Cleanup, using 100 K as an Example * Draft A, 100 K Proposed Plan * PW-1,3,6/CW-5 ROD: Draft letter February * TPA Milestone Delays for Central Plateau - 30 month delay on interim milestones driven by funding. Information session. * TRU Burial Grounds in 200 W (PU Waste Excavated from Z9 in 1973) * Barriers discussion (follow up from workshop) * 300 Area RI/FS (document due in December) *

  3. Work Force Restructuring Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Force Restructuring Activities December 10, 2008 Note: Current updates are in bold # Planned Site/Contractor HQ Approved Separations Status General * LM has finalized the compilation of contractor management team separation data for the end of FY07 actuals and end of FY08 and FY09 projections. LM has submitted to Congress the FY 2007 Annual Report on contractor work force restructuring activities. The report has been posted to the LM website. *LM conducted a DOE complex-wide data call to the

  4. How ICF Works

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science / icf How ICF Works Shiva Laser When the 20-beam Shiva laser was completed in 1978, it was the world's most powerful laser. It delivered more than ten kilojoules of energy in less than a billionth of a second in its first full-power firing. About the size of a football field, Shiva was the latest in a series of laser systems built over two decades, each five to ten times more powerful than its predecessor. Since the late 1940s, researchers have used magnetic fields to confine hot,

  5. How Lasers Work

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Lasers Work "Laser" is an acronym for light amplification by stimulated emission of radiation. A laser is created when the electrons in atoms in special glasses, crystals, or gases absorb energy from an electrical current or another laser and become "excited." The excited electrons move from a lower-energy orbit to a higher-energy orbit around the atom's nucleus. When they return to their normal or "ground" state, the electrons emit photons (particles of light).

  6. How NIF Works

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How NIF Works A weak laser pulse-about 1 billionth of a joule-is created, split, and carried on optical fibers to 48 preamplifiers that increase the pulse's energy by a factor of 10 billion, to a few joules. The 48 beams are then split into four beams each for injection into the 192 main laser amplifier beamlines. Each beam zooms through two systems of large glass amplifiers, first through the power amplifier and then into the main amplifier. In the main amplifier, a special optical switch traps

  7. HANFORD ENGINEER WORKS

    Office of Legacy Management (LM)

    HANFORD ENGINEER WORKS IJd *P-t - - ~~~ssiticatiC+n cwcetted rat G.E. NUCLEONICS PROJECT xi I ~@L.%&~--G-ENERAI,@ ELECTRIC z ,m ._.__.-. _ I--..-. By Authority of. COMPANY ._ Atmic Energy Commission Office of Hanford Dire&xl Operations Riohland, Washington Attention; Mr. Carleton Shugg, Manager ./ ALPKA-ROLLED EL'GIL%I jw -879 ' . *_ a. f' Richland, Washington February 6, 1948 , Thla Dclc.Jv-<en! :-; . ' - -*...-- f_ ~~~.s No .__. ._. .s / ~. - J-LccIp%. Fr:*? fi This will con&rm

  8. Direct hydrocarbon fuel cells

    DOE Patents [OSTI]

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  9. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2006-10-10

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  10. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett Lee; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-09-19

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  11. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-07-11

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  12. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2007-02-27

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  13. Directives System Order

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-16

    The order prescribes the process for development of Policy Statements, Orders, Notices, Manuals and Guides, which are intended to guide, inform, and instruct employees in the performance of their jobs, and enable them to work effectively within the Department and with agencies, contractors, and the public.

  14. Working Group Report: Sensors

    SciTech Connect (OSTI)

    Artuso, M.; et al.,

    2013-10-18

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

  15. Panasonic Electric Works Ltd formerly Matsushita Electric Works...

    Open Energy Info (EERE)

    Electric Works Ltd (formerly Matsushita Electric Works) Place: Kadoma-shi, Osaka, Japan Zip: 571-8686 Product: Japanese manufacturer of mainly electric appliances including...

  16. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-03-18

    The following directives are extended until 3-18-06: DOE N 205.8, Cyber Security Requirements for Wireless Devices and Information Systems, dated 2-11-04; DOE N 205.9, Certification and Accreditation Process for Information Systems Including National Security Systems, dated 02-19-04; DOE N 205.10, Cyber Security Requirements for Risk Management, dated 02-19-04; DOE N 205.11, Security Requirements for Remote Access to DOE and Applicable Contractor Information Technology Systems, dated 2-19-04. DOE N 205.12, Clearing, Sanitizing, and Destroying Information System Storage Media, Memory Devices, and Other Related Hardware, dated 2-19-04.

  17. Omni-directional railguns

    DOE Patents [OSTI]

    Shahinpoor, Mohsen (9521 Avenida Del Oso NE., Albuquerque, NM 87111)

    1995-01-01

    A device for electromagnetically accelerating projectiles. The invention features two parallel conducting circular plates, a plurality of electrode connections to both upper and lower plates, a support base, and a projectile magazine. A projectile is spring-loaded into a firing position concentrically located between the parallel plates. A voltage source is applied to the plates to cause current to flow in directions defined by selectable, discrete electrode connections on both upper and lower plates. Repulsive Lorentz forces are generated to eject the projectile in a 360 degree range of fire.

  18. Omni-directional railguns

    DOE Patents [OSTI]

    Shahinpoor, M.

    1995-07-25

    A device is disclosed for electromagnetically accelerating projectiles. The invention features two parallel conducting circular plates, a plurality of electrode connections to both upper and lower plates, a support base, and a projectile magazine. A projectile is spring-loaded into a firing position concentrically located between the parallel plates. A voltage source is applied to the plates to cause current to flow in directions defined by selectable, discrete electrode connections on both upper and lower plates. Repulsive Lorentz forces are generated to eject the projectile in a 360 degree range of fire. 4 figs.

  19. Internal temperature monitor for work pieces

    DOE Patents [OSTI]

    Berthold, John W. (Salem, OH)

    1993-01-01

    A method and apparatus for measuring the internal temperature of a work piece comprises an excitation laser for generating laser pulses which are directed through a water cooled probe, and in an optical fiber, to a first surface of the work piece. The laser is of sufficient intensity to ablate the surface of the work piece, producing a displacement and a resulting ultrasonic pulse which propagates within the thickness of the work piece to an opposite surface. The ultrasonic pulse is reflected from the opposite surface and returns to the first surface to create a second displacement. A second continuous laser also shines its light through an optical fiber in the probe into the first surface and is used in conjunction with signal processing equipment to measure the time between the first and second displacements. This time is proportional to the time-of-flight of the ultrasonic pulse in the work piece which, with a known or detected thickness of the work piece, can be used to calculate the internal temperature of the work piece.

  20. Internal temperature monitor for work pieces

    DOE Patents [OSTI]

    Berthold, J.W.

    1993-07-13

    A method and apparatus for measuring the internal temperature of a work piece comprises an excitation laser for generating laser pulses which are directed through a water cooled probe, and in an optical fiber, to a first surface of the work piece. The laser is of sufficient intensity to ablate the surface of the work piece, producing a displacement and a resulting ultrasonic pulse which propagates within the thickness of the work piece to an opposite surface. The ultrasonic pulse is reflected from the opposite surface and returns to the first surface to create a second displacement. A second continuous laser also shines its light through an optical fiber in the probe into the first surface and is used in conjunction with signal processing equipment to measure the time between the first and second displacements. This time is proportional to the time-of-flight of the ultrasonic pulse in the work piece which, with a known or detected thickness of the work piece, can be used to calculate the internal temperature of the work piece.

  1. Working With Your Utility to Obtain Metering Services

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meeting—covers the government metering requirement, the U.S. Department of Defense (DoD) metering directive, and customer metering services available from utilities.

  2. RESPONDING TO SOLICITATIONS UNDER DOE WORK FOR OTHERS PROGRAM

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    agency BAA sponsors shall provide a written statement that, to the best of the agency's knowledge, the work will not place DOE and their contractors in direct competition with...

  3. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mccomiskey, Allison

    2008-01-15

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  4. Remote direct memory access

    DOE Patents [OSTI]

    Archer, Charles J.; Blocksome, Michael A.

    2012-12-11

    Methods, parallel computers, and computer program products are disclosed for remote direct memory access. Embodiments include transmitting, from an origin DMA engine on an origin compute node to a plurality target DMA engines on target compute nodes, a request to send message, the request to send message specifying a data to be transferred from the origin DMA engine to data storage on each target compute node; receiving, by each target DMA engine on each target compute node, the request to send message; preparing, by each target DMA engine, to store data according to the data storage reference and the data length, including assigning a base storage address for the data storage reference; sending, by one or more of the target DMA engines, an acknowledgment message acknowledging that all the target DMA engines are prepared to receive a data transmission from the origin DMA engine; receiving, by the origin DMA engine, the acknowledgement message from the one or more of the target DMA engines; and transferring, by the origin DMA engine, data to data storage on each of the target compute nodes according to the data storage reference using a single direct put operation.

  5. CRAD, Work Controls Assessment Plan

    Broader source: Energy.gov [DOE]

    Management should have an established work control process in place with authorized, controlled and documented methods that provide an accurate status of the work to be performed.

  6. Nevada National Security Site-Directed Research and Development FY 2011 Annual Report

    SciTech Connect (OSTI)

    Howard Bender, comp.

    2012-04-25

    This fiscal year 2011 annual report of the Site-Directed Research and Development program, the 10th anniversary edition, recognizes a full decade of innovative R&D accomplishments in support of the Nevada National Security Site (NNSS). Last year the NNSS itself was renamed to reflect a diversifying mission, and our R&D program has contributed significantly to shape emerging missions that will continue to evolve. New initiatives in stockpile stewardship science, nonproliferation, and treaty verification and monitoring have had substantial successes in FY 2011, and many more accomplishments are expected. SDRD is the cornerstone on which many of these initiatives rest. Historically supporting our main focus areas, SDRD is also building a solid foundation for new, and non-traditional, emerging national security missions. The program continues its charter to advance science and technology for a broad base of agencies including the U.S. Department of Energy (DOE), U.S. Department of Defense (DoD), U.S. Department of Homeland Security (DHS), and many others.

  7. Directed light fabrication

    SciTech Connect (OSTI)

    Lewis, G.K.; Nemec, R.; Milewski, J.; Thoma, D.J.; Cremers, D.; Barbe, M.

    1994-09-01

    Directed Light Fabrication (DLF) is a rapid prototyping process being developed at Los Alamos National Laboratory to fabricate metal components. This is done by fusing gas delivered metal powder particles in the focal zone of a laser beam that is, programmed to move along or across the part cross section. Fully dense metal is built up a layer at a time to form the desired part represented by a 3 dimensional solid model from CAD software. Machine ``tool paths`` are created from the solid model that command the movement and processing parameters specific to the DLF process so that the part can be built one layer at a time. The result is a fully dense, near net shape metal part that solidifies under rapid solidification conditions.

  8. Site directed recombination

    DOE Patents [OSTI]

    Jurka, Jerzy W. (Los Altos, CA)

    1997-01-01

    Enhanced homologous recombination is obtained by employing a consensus sequence which has been found to be associated with integration of repeat sequences, such as Alu and ID. The consensus sequence or sequence having a single transition mutation determines one site of a double break which allows for high efficiency of integration at the site. By introducing single or double stranded DNA having the consensus sequence flanking region joined to a sequence of interest, one can reproducibly direct integration of the sequence of interest at one or a limited number of sites. In this way, specific sites can be identified and homologous recombination achieved at the site by employing a second flanking sequence associated with a sequence proximal to the 3'-nick.

  9. Clean Energy Works Oregon (CEWO)

    Broader source: Energy.gov [DOE]

    Presents Clean Energy Works Oregon's program background and the four easy steps to lender selection.

  10. High Temperature Membrane Working Group

    Broader source: Energy.gov [DOE]

    This presentation provides an overview of the High Temperature Membrane Working Group Meeting in May 2007.

  11. Video Shoot Scope of Work

    Broader source: Energy.gov [DOE]

    Video Shoot Scope of Work, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  12. Working memory, situation models, and synesthesia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Radvansky, Gabriel A.; Gibson, Bradley S.; McNerney, M. Windy

    2013-03-04

    Research on language comprehension suggests a strong relationship between working memory span measures and language comprehension. However, there is also evidence that this relationship weakens at higher levels of comprehension, such as the situation model level. The current study explored this relationship by comparing 10 grapheme–color synesthetes who have additional color experiences when they read words that begin with different letters and 48 normal controls on a number of tests of complex working memory capacity and processing at the situation model level. On all tests of working memory capacity, the synesthetes outperformed the controls. Importantly, there was no carryover benefitmore » for the synesthetes for processing at the situation model level. This reinforces the idea that although some aspects of language comprehension are related to working memory span scores, this applies less directly to situation model levels. As a result, this suggests that theories of working memory must take into account this limitation, and the working memory processes that are involved in situation model construction and processing must be derived.« less

  13. Direct contact, binary fluid geothermal boiler

    DOE Patents [OSTI]

    Rapier, Pascal M. (Richmond, CA)

    1982-01-01

    Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carry-over through the turbine causes corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

  14. Radiation Safety Work Control Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Safety Work Control Form (see instructions on pg-3) Rev. May 2014 Area: Form #: Date: Preliminary Applicability Screen: (a) Will closing the beam line injection stoppers mitigate the radiological hazards introduced by the proposed work? Yes No (b) Can the closed state of the beam line injection stoppers be assured during the proposed work (ie., work does NOT involve injection stoppers or associated HPS)? Yes No If the answers to both questions are yes, the work can be performed safely

  15. Chap15__Final with Work Stoppages.docx

    Energy Savers [EERE]

    March 2013 Chapter 15. Cost Accounting 15-1 CHAPTER 15 COST ACCOUNTING 1. INTRODUCTION a. Purpose. This chapter presents the policy to be followed by the Department of Energy (DOE) and its site/facility management contractors (contractors) in developing and operating a product or standard cost accounting system for: (1) the procurement and production of nuclear material, weapons components and any other products manufactured/assembled by the Department; (2) stockpiled weapons, weapons

  16. United States-Japan Nuclear Security Working Group | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs

  17. NNSA: Working To Prevent Nuclear Terrorism | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration To Prevent Nuclear Terrorism | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our

  18. Work Packages for Site Support Service at Los Alamos National

    Broader source: Energy.gov (indexed) [DOE]

    Laboratory-IG-0746 | Department of Energy of Energy's Los Alarnos National Laboratory (LANL) enhances global security by ensuring the safety and reliability of the U.S. nuclear weapons stockpile; developing technical solutioils to reduce the threat of weapons of mass destnlction; and solving problems related to energy, environn~ent,i nfrastructure, healtl~a, nd national security. Site support services at the Laboratory, iilcludiilg maintenance and repairs, are provided by the contractor KSL.

  19. Multiple direction vibration fixture

    DOE Patents [OSTI]

    Cericola, Fred (Albuquerque, NM); Doggett, James W. (Albuquerque, NM); Ernest, Terry L. (Albuquerque, NM); Priddy, Tommy G. (Rockville, MD)

    1991-01-01

    An apparatus for simulating a rocket launch environment on a test item undergoing centrifuge testing by subjecting the item simultaneously or separately to vibration along an axis of centripetal force and along an axis perpendicular to the centripetal force axis. The apparatus includes a shaker motor supported by centrifuge arms and a right angle fixture pivotally connected to one of the shaker motor mounts. When the shaker motor vibrates along the centripetal force axis, the vibrations are imparted to a first side of the right angle fixture. The vibrations are transmitted 90 degrees around the pivot and are directed to a second side of the right angle fixture which imparts vibrations perpendicular to the centripetal force axis. The test item is in contact with a third side of the right angle fixture and receives both centripetal-force-axis vibrations and perpendicular axis vibrations simultaneously. A test item can be attached to the third side near the flexible coupling or near the air bag to obtain vibrations along the centripetal force axis or transverse to the centripetal force axis.

  20. ARM - Engineering Work Request & Engineering Work Order Guidelines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work Request & Engineering Work Order Guidelines Page Contents: Introduction Discussion of the ARM Climate Research Facility Engineering Process: The Engineering Change Request (ECR) and the Engineering Change Order (ECO) Operations and Engineering Task Consulting: The Engineering Work Request (EWR) and the Engineering Work Order (EWO) Relationship of the ECR/ECO and EWR/EWO to the Engineering Task Tracking Tool Relationship of the ECR/ECO and EWR/EWO to the Existing Configuration Control

  1. Work for Others Program Interagency Work | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Presented to the Commission to Review the Effectiveness of National Energy Laboratories by Devon Streit, Associate Director, Laboratory Policy and Evaluation, Office of Science. PDF icon Work For Others Program, Interagency Work More Documents & Publications DOE O 481.1C, WORK FOR OTHERS (NON-DEPARTMENT OF ENERGY FUNDED WORK) Aligned Partnerships Interim Report of the Commission to Review the Effectiveness of the National Energy Laboratories

  2. Memorandum: Direction and Guidance for Implementing Direct DOE Relationship

    Office of Environmental Management (EM)

    & Funding for the EMSSAB | Department of Energy Direction and Guidance for Implementing Direct DOE Relationship & Funding for the EMSSAB Memorandum: Direction and Guidance for Implementing Direct DOE Relationship & Funding for the EMSSAB From: Designated Federal Officer, Sandra L. Waisley (EM-11) To: SSAB Members (G. Stegner, J. Reising, G. Bowman, T. Taylor, C. Gertz, B. Murphie, S. McCracken, M. Marvin, J. Rampe, A. Doswell, C. Anderson, B. Wethington, S. Brennan, K. Kozeliski,

  3. Direct Aromaization of Methane

    SciTech Connect (OSTI)

    George Marcelin

    1997-01-15

    The thermal decomposition of methane offers significant potential as a means of producing higher unsaturated and aromatic hydrocarbons when the extent of reaction is limited. Work in the literature previous to this project had shown that cooling the product and reacting gases as the reaction proceeds would significantly reduce or eliminate the formation of solid carbon or heavier (Clo+) materials. This project studied the effect and optimization of the quenching process as a means of increasing the amount of value added products during the pyrolysis of methane. A reactor was designed to rapidly quench the free-radical combustion reaction so as to maximize the yield of aromatics. The use of free-radical generators and catalysts were studied as a means of lowering the reaction temperature. A lower reaction temperature would have the benefits of more rapid quenching as well as a more feasible commercial process due to savings realized in energy and material of construction costs. It was the goal of the project to identify promising routes from methane to higher hydrocarbons based on the pyrolysis of methane.

  4. Reimbursable Work For Non-Federal Sponsors Process Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-03

    This Manual provides detailed requirements to supplement DOE O 481.1A, Work for Others (Non-DOE Funded Work), dated 01-03-01, which establishes requirements for the performance of work for non-Department of Energy (DOE) National Nuclear Security Administration (NNSA) entities by DOE/NNSA/contractor personnel and/or the use of DOE facilities that is not directly funded by DOE/NNSA appropriations. (Cancels DOE M 481.1-1).

  5. Quality Work Plan Training Requirement

    Broader source: Energy.gov [DOE]

    Weatherization Assistance Program's comprehensive Quality Work Plan requirements and resources to meet this obligation in the field.

  6. DOE Directives | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Directives DOE Directives Directives are the Department of Energy's primary means to communicate and institutionalize directives and policies and to establish requirements, responsibilities, and procedures for Departmental elements and contractors. DOE O 413.3A - Program and Project Management for the Acquisition of Capital Assets DOE G 413.3-1 - Managing Design and Construction Using Systems Engineering for Use with DOE O 413.3A DOE G 413.3-2 - Quality Assurance Guide for Project Management DOE

  7. Bioenergy Technologies Office New Directions

    Broader source: Energy.gov [DOE]

    New Directions and New Business Opportunities for BETO Valerie Reed, Acting Director, BETO, U.S. Department of Energy

  8. WORK PLAN FOR ENVIRONMENTAL WORK PLAN FOR ENVIRONMENTAL WORK PLAN FOR ENVIRONMENTAL

    Office of Legacy Management (LM)

    WORK PLAN FOR ENVIRONMENTAL WORK PLAN FOR ENVIRONMENTAL WORK PLAN FOR ENVIRONMENTAL WORK PLAN FOR ENVIRONMENTAL RESTORATION OF THE DOE MOUND RESTORATION OF THE DOE MOUND RESTORATION OF THE DOE MOUND RESTORATION OF THE DOE MOUND SITE, THE MOUND 2000 APPROACH SITE, THE MOUND 2000 APPROACH SITE, THE MOUND 2000 APPROACH SITE, THE MOUND 2000 APPROACH FEBRUARY 1999 Final (Revision 0) Department of Energy Babcock & Wilcox of Ohio Mr. Daniel Bird AICP, Planning Manager Miamisburg Mound Community

  9. July 2012, Work Force Retention Work Group Status Overview

    Office of Environmental Management (EM)

    Work Force Retention Work Group Status Overview Accomplishments: 1. Progress on the completion of the 10 CFR 1046 modifications to address barriers to workforce retention. Written response to public comment is being drafted by HS-51. 2. Pro-Force (PF) union representative, Randy Lawson, identified this accomplishment as the single most significant step toward PF workforce retention in over 20 years. 3. Draft re-charter of PF Career Options Committee (PFCOC) to establish a PF Working Group

  10. Interview: LaborWorks@NeighborWorks Provides Vermont Contractors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vermont Contractors With Help When They Need It NeighborWorks of Western Vermont ... organization to fulfill our contractors' need for a temporary workforce for home ...

  11. River Corridor Cleanup Contract Fiscal Year 2006 Detailed Work Plan: DWP Summary, Volume 1

    SciTech Connect (OSTI)

    Project Integration

    2005-09-26

    This detailed work plan provides the scope, cost, and schedule for the Fiscal Year 2006 activities required to support River Corridor cleanup objectives within the directed guidance.

  12. Clean Energy Works Oregon Final Technical Report

    SciTech Connect (OSTI)

    Jacob, Andria; Cyr, Shirley

    2013-12-31

    In April 2010, the City of Portland received a $20 million award from the U.S. Department of Energy, as part of the Energy Efficiency and Conservation Block Grant program. This award was appropriated under the American Recovery and Reinvestment Act (ARRA), passed by President Obama in 2009. DOE’s program became known as the Better Buildings Neighborhood Program (BBNP). The BBNP grant objectives directed the City of Portland Bureau of Planning and Sustainability (BPS) as the primary grantee to expand the BPS-led pilot program, Clean Energy Works Portland, into Clean Energy Works Oregon (CEWO), with the mission to deliver thousands of home energy retrofits, create jobs, save energy and reduce carbon dioxide emissions.The Final Technical Report explores the successes and lessons learned from the first 3 years of program implementation.

  13. NEW - DOE O 481.1C Admin Chg 2, Strategic Partnerships Projects (Formerly Known as Work for Others (Non-Department of Energy Funded Work)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    Strategic Partnership Projects is work performed for non-DOE entities by DOE/(NNSA personnel and/or their respective contractor personnel or the use of DOE/NNSA facilities for work that is not directly funded by DOE/NNSA appropriations. This Admin Chg address primarily address references to revised directives and the results of departmental reorganization. In addition, the Secretary directed effective immediately work formerly known as Work for Others (WFO) to be renamed Strategic Partnership Projects (SPPs). Admin Chg 2, dated 3-9-15, cancels DOE O 481.1C Admin Chg 1, dated 3-14-11.

  14. Working with SRNL - Technology Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    13/2015 SEARCH SRNL GO SRNL Home Technology Partnerships Working with SRNL Technology Partnerships Work for Others and Cooperative Research and Development Agreements SRNL is pleased to provide a variety of business arrangements whereby our technologies or capabilities can be utilized to benefit the general public. We welcome opportunities to bring new technologies to the marketplace by closely working with industry, universities, or state and local government agencies. With its wide spectrum of

  15. High Temperature Membrane Working Group

    Broader source: Energy.gov [DOE]

    The High Temperature Membrane Working Group consists of government, industry, and university researchers interested in developing high temperature membranes for fuel cells.

  16. INL @ work: Nuclear Reactor Operator

    ScienceCinema (OSTI)

    Russell, Patty

    2013-05-28

    INL @ work features jobs at the Idaho National Laboratory. Learn more about careers and energy research at INL's facebook site http://www.facebook.com/idahonationallaboratory

  17. Radiation Safety Work Control Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Safety Work Control Form (see instructions on pg-3) Rev. May 2014 Area: Form : Date: Preliminary Applicability Screen: (a) Will closing the beam line injection stoppers...

  18. Working with SRNL - Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SRNL GO Tech Briefs Contacts Ombudsman Tech Home SRNL Home Working with SRNL Technology Transfer 2015 SRNL Research and Technology Recognition Reception Click to view the 2015...

  19. Payroll Check Direct Deposit Authorization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Payroll Check Direct Deposit Authorization (for LANS non-craft salary & wage payments only) Note: Direct Deposit authorizations are available through Oracle LANL Worker Self Service with A-Level access. Limit 5 Direct Deposit authorization accounts per employee Financial Institution Name: Routing/Transit Number: (requires nine digits) Account Number: Type of Account (check one): Checking Savings A separate form is required for each account transaction. Type of Transacton Deposit Type (check

  20. Homeland Security Presidential Directive 7

    Office of Environmental Management (EM)

    7, 2003 Homeland Security Presidential Directive/Hspd-7 For Immediate Release Office of the Press Secretary December 17, 2003 December 17, 2003 Homeland Security Presidential Directive/Hspd-7 Subject: Critical Infrastructure Identification, Prioritization, and Protection Purpose (1) This directive establishes a national policy for Federal departments and agencies to identify and prioritize United States critical infrastructure and key resources and to protect them from terrorist attacks.

  1. DOE Directives | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Directives DOE Directives DOE Directives Initiated by the IG DOE O 221.3A, Establishment of Management Decisions on Office of Inspector General Reports - April 19, 2008 DOE O 221.1A, Reporting Fraud, Waste and Abuse to the Office of Inspector General - April 19, 2008 DOE O 221.2A, Cooperation with the Office of Inspector General - February 25, 2008 DOE O 224.2A, Auditing of Programs and Operations - November 9, 2007

  2. President Obama Signs New Directive to Strengthen our Work to Advance

    Broader source: Energy.gov (indexed) [DOE]

    Gender Equality Worldwide | Department of Energy Secretary of State Hillary Rodham Clinton watches as President Barack Obama signs a Presidential memorandum, "Coordination of Policies and Programs to Promote Gender Equality and Empower Women and Girls Globally," in the Oval Office, Jan. 20, 2013. (Official White House Photo by Pete Souza) Secretary of State Hillary Rodham Clinton watches as President Barack Obama signs a Presidential memorandum, "Coordination of Policies and

  3. Sunlight Direct | Open Energy Information

    Open Energy Info (EERE)

    Sector: Solar Product: Developed a system that tracks and concentrates solar energy for distributed power generation Website: www.sunlight-direct.com Coordinates: 33.0013938,...

  4. Laboratory Directed Research and Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phone Book Jobs Laboratory Directorate - Strategic Planning Office Laboratory Directed Research and Development (LDRD) LBNL LDRD Program Guidelines LDRD FY 2017 Call for...

  5. Direct cooled power electronics substrate

    DOE Patents [OSTI]

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W. [Kingston, TN; Lowe, Kirk T. [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  6. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation.

  7. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-30

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation

  8. DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Item Packaging and Transportation for Offsite Shipment of Materials of National Security Interest https:www.directives.doe.govinformational-purposes-only...

  9. Program Direction and Analysis Jobs

    Office of Science (SC) Website

    sc-4organizationprogram-direction-and-analysis Below is a list of currently open federal employment opportunities in the Office of Science. Prospective applicants should follow...

  10. Interagency Sustainability Working Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities Sustainable Buildings & Campuses Interagency Sustainability Working Group Interagency Sustainability Working Group The Interagency Sustainability Working Group ...

  11. Los Alamos Explosives Performance Key to Stockpile Stewardship

    ScienceCinema (OSTI)

    Dattelbaum, Dana

    2015-01-05

    As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- and small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.

  12. Strategic stockpiling of power system supplies for disaster recovery

    SciTech Connect (OSTI)

    Bent, Russell W; Coffrein, Carleton; Van Hentenryck, Pascal

    2010-11-23

    This paper studies the Power System Stochastic Storage Problem (PSSSP), a novel application in power restoration which consists of deciding how to store power system components throughout a populated area to maximize the amount of power served after disaster restoration. The paper proposes an exact mixed-integer formulation for the linearized DC power flow model and a general column-generation approach. Both formulations were evaluated experimentally on benchmarks using the electrical power infrastructure of the United States and disaster scenarios generated by state-of-the-art hurricane simulation tools similar to those used by the National Hurricane Center. The results show that the column-generation algorithm produces near-optimal solutions quickly and produces orders of magnitude speedups over the exact formulation for large benchmarks. Moreover, both the exact and the column-generation formulations produce significant improvements over greedy approach and hence should yield significant benefits in practice.

  13. ARC will make tiny "movies" of thermonuclear and stockpile experiments...

    National Nuclear Security Administration (NNSA)

    simulations Consortium Led by University of California, Berkeley Awarded 25M NNSA Grant for Nuclear Science and Security Research Final row of solar panels installed at Livermore...

  14. Nuclear stockpile stewardship and Bayesian image analysis (DARHT...

    Office of Scientific and Technical Information (OSTI)

    These tests involve some pretty 'extreme' radiography. We will be discussing the ... Authors: Carroll, James L 1 + Show Author Affiliations Los Alamos National Laboratory ...

  15. Opening Remarks at the NNSA Stockpile Stewardship Program 20th...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Soviet Union; the subsequent issues with Russia a few years later; end of the Cold War; ... the three declared nuclear explosive tests in North Korea over the past several years. ...

  16. NNSA's Summary of Experiments Conducted in Support of Stockpile...

    National Nuclear Security Administration (NNSA)

    National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, and the Z machine at Sandia National Laboratories. The summary also provides the number of experiments...

  17. Nuclear stockpile stewardship and Bayesian image analysis (DARHT...

    Office of Scientific and Technical Information (OSTI)

    Type: Conference Resource Relation: Conference: Brigham Young University Invited Talk ; January 14, 2011 ; Provo, UT Research Org: Los Alamos National Laboratory (LANL)...

  18. NNSA's Summary of Experiments Conducted in Support of Stockpile...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test (DARHT) facility at Los Alamos National Laboratory, National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, and the Z machine at Sandia National...

  19. Science based stockpile stewardship, uncertainty quantification, and fission fragment beams

    SciTech Connect (OSTI)

    Stoyer, M A; McNabb, D; Burke, J; Bernstein, L A; Wu, C Y

    2009-09-14

    Stewardship of this nation's nuclear weapons is predicated on developing a fundamental scientific understanding of the physics and chemistry required to describe weapon performance without the need to resort to underground nuclear testing and to predict expected future performance as a result of intended or unintended modifications. In order to construct more reliable models, underground nuclear test data is being reanalyzed in novel ways. The extent to which underground experimental data can be matched with simulations is one measure of the credibility of our capability to predict weapon performance. To improve the interpretation of these experiments with quantified uncertainties, improved nuclear data is required. As an example, the fission yield of a device was often determined by measuring fission products. Conversion of the measured fission products to yield was accomplished through explosion code calculations (models) and a good set of nuclear reaction cross-sections. Because of the unique high-fluence environment of an exploding nuclear weapon, many reactions occurred on radioactive nuclides, for which only theoretically calculated cross-sections are available. Inverse kinematics reactions at CARIBU offer the opportunity to measure cross-sections on unstable neutron-rich fission fragments and thus improve the quality of the nuclear reaction cross-section sets. One of the fission products measured was {sup 95}Zr, the accumulation of all mass 95 fission products of Y, Sr, Rb and Kr (see Fig. 1). Subsequent neutron-induced reactions on these short lived fission products were assumed to cancel out - in other words, the destruction of mass 95 nuclides was more or less equal to the production of mass 95 nuclides. If a {sup 95}Sr was destroyed by an (n,2n) reaction it was also produced by (n,2n) reactions on {sup 96}Sr, for example. However, since these nuclides all have fairly short half-lives (seconds to minutes or even less), no experimental nuclear reaction cross-sections exist, and only theoretically modeled cross-sections are available. Inverse kinematics reactions at CARIBU offer the opportunity, should the beam intensity be sufficient, to measure cross-sections on a few important nuclides in order to benchmark the theoretical calculations and significantly improve the nuclear data. The nuclides in Fig. 1 are prioritized by importance factor and displayed in stoplight colors, green the highest and red the lowest priority.

  20. DOE - Office of Legacy Management -- Falls City Uranium Ore Stockpile...

    Office of Legacy Management (LM)

    The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and storage sites) that were ...

  1. In 20th Year, Stockpile Stewardship Program Celebrated As One...

    National Nuclear Security Administration (NNSA)

    of modern science and engineering by requiring the transition from explosive nuclear weapons testing to what is effectively virtual nuclear testing-was celebrated today at a ...

  2. Laboratory's role in stockpile stewardship focus of 70th anniversary...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The talk will highlight some of the experimental, engineering and computational tools used to monitor nuclear weapons. December 12, 2013 Bradbury Science Museum Bradbury Science ...

  3. Statement on B61 Life Extension Program and Future Stockpile...

    National Nuclear Security Administration (NNSA)

    to discuss the President's plans for nuclear weapon modernization focused on the B61 Life Extension Program (LEP) and the Nuclear Weapons Council (NWC) approved "3+2 Strategy." ...

  4. Los Alamos Explosives Performance Key to Stockpile Stewardship

    SciTech Connect (OSTI)

    Dattelbaum, Dana

    2014-11-03

    As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- and small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.

  5. WageWorks Screen Shot(s)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WageWorks Screen Shot(s)

  6. Bi-Directional Fast Charging Study Report

    SciTech Connect (OSTI)

    Tyler Gray

    2012-02-01

    This report details the hardware and software infrastructure needed to demonstrate the possibility of utilizing battery power in plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) with a bi directional fast charger to support/offset peak building loads. This document fulfills deliverable requirements for Tasks 1.2.1.2, 1.2.1.3, and 1.2.1.4 of Statement of Work (SOW) No.5799 for Electric Transportation Engineering Corporation, now ECOtality North America (NA) support for the Idaho National Laboratory (INL).

  7. Radiator debris removing apparatus and work machine using same

    DOE Patents [OSTI]

    Martin, Kevin L. (Washburn, IL); Elliott, Dwight E. (Chillicothe, IL)

    2008-09-02

    A radiator assembly includes a finned radiator core and a debris removing apparatus having a compressed air inlet and at least one compressed air outlet configured to direct compressed air through the radiator core. A work machine such as a wheel loader includes a radiator and a debris removing apparatus coupled with on-board compressed air and having at least one pressurized gas outlet configured to direct a gas toward the face of the radiator.

  8. September 2012, Work Force Retention Work Group Status Overview

    Energy Savers [EERE]

    Work Force Retention Work Group Status Overview 2 Subgroups: Pro-Force and Non-Pro-Force Pro-Force Subgroup: Accomplishments: 1. Completion of 10 CFR 1046 [Protective Force Personnel Medical, Physical Readiness, Training, and Access Authorization Standards] as a final rule that includes modification efforts to address barriers to workforce retention. 2. Pro-Force (PF) union representative, Randy Lawson, identified this accomplishment as the single most significant step toward PF workforce

  9. Efficient Placement of Directional Antennas

    SciTech Connect (OSTI)

    Pan, Feng; Kasiviswanathan, Shiva

    2010-09-20

    Directional antenna is an technology for the proliferation of wireless networks. In centralized wireless network, wireless devices communicate through base stations. Directed antennas are placed on base stations and form a backbone of communication. The communication between base stations and wireless devices can be interfered due to a large number of wireless device. Methodically positioning and orienting directed antennas can help to reduce the interference while saving energy. An integer linear programming is developed for siting and directing antennas on multiple base stations, and this formulation can be extended to model non-overlapping channels. Through the integer programming formulation, optimal antenna positions can be used to analyze the performance of directed antennas with different parameters like the number base stations and the number of non-overlapping channels.

  10. RCRA corrective action: Work plans

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    This Information Brief describes the work plans that owners/operators may have to prepare in conjunction with the performance of corrective action for compliance with RCRA guidelines. In general, the more complicated the performance of corrective action appears from the remedial investigation and other analyses, the more likely it is that the regulator will impose work plan requirements. In any case, most owner/operators will prepare work plans in conjunction with the performance of corrective action processes as a matter of best engineering management practices.

  11. Responding to Solicitations Under DOE Work For Others Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RESPONDING TO SOLICITATIONS UNDER DOE WORK FOR OTHERS PROGRAM PURPOSE: To provide guidance on the Department's policy related to DOE's laboratories ability to respond to solicitations from non-DOE sponsors under the Work for Others (WFO) program. SCOPE: This chapter provides guidance on the effect of laws, regulations, and statutes to DOE/NNSA WFO policy related to the prohibition of DOE Federally Funded Research and Development Centers (FFRDCs) and other facilities from competing directly with

  12. Utility Security & Resiliency: Working Together

    Broader source: Energy.gov [DOE]

    Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—discusses Edison Electric Institute (EEI), including its key security objectives, key activities, cybersecurity activities, and spare transformer equipment program (STEP).

  13. Attachment 1 - Performance Work Statement

    National Nuclear Security Administration (NNSA)

    including TTR. Waste acceptance services will be performed at the NNSS and at waste generator sites. DE-SOL-0005982 Attachment 1 Page 1 2. Scope of Work 2.1 Requirement: The EPS...

  14. DOE Work Breakdown Structure Handbook

    Broader source: Energy.gov [DOE]

    This handbook provides suggested guidance and best practices on the development of product-oriented Work Breakdown Structures (WBS) that should be used by all projects within DOE to organize and...

  15. Get Access to Work Onsite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    your registration. NOTE: Users who are citizens of, or were born in, T4 countries (Cuba, Iran, Sudan, and Syria) need DOE permission to work at the ALS, a process which can...

  16. SSQ V1 N1_24feb11_FINAL

    National Nuclear Security Administration (NNSA)

    1 2011 Comments Questions or comments regarding the Stockpile Stewardship Quarterly should be directed to Terri Batuyong, Terri.Batuyong@nnsa.doe.gov Technical Editor: Douglas Drake, Publication Editor: Millicent Mischo Inside This Issue Stockpile Stewardship Defense Programs Stockpile Stewardship in Action Volume 1, Number 1 Quarterly Office of Stockpile Stewardship NA-11 Office of Stockpile Stewardship Assistant Deputy Administrator, Dr. Chris Deeney Deputy for Operations, COL Mark Visosky

  17. AEO2016 Electricity Working Group

    Gasoline and Diesel Fuel Update (EIA)

    Office of Electricity, Coal, Nuclear, and Renewables Analysis December 8, 2015 | Washington, DC AEO2016 Electricity Working Group WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE What to look for: Electricity sector in AEO2016 * Inclusion of EPA final Clean Power Plan in Reference Case * Updated cost estimates for new generating technologies * Major data update on existing coal plant status: MATS- compliant technology or retirement

  18. HEADQUARTERS MEDIATION PROGRAM MEDIATION WORKS!

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HEADQUARTERS MEDIATION PROGRAM MEDIATION WORKS! Mediation helps to build relationships. People solve their own problems by looking to the future, rather than finding fault with the past. YOU (the participant involved) make the decisions. * Mediation often works in conjunction with other dispute resolution processes, such as grievances or equal employment opportunity (EEO) complaints. However, mediation does NOT forestall established timeframes within those processes, nor does it constitute legal

  19. HEADQUARTERS MEDIATION PROGRAM MEDIATION WORKS!

    Energy Savers [EERE]

    HEADQUARTERS MEDIATION PROGRAM MEDIATION WORKS! Mediation helps to strengthen relationships. People solve their own problems by looking to the future, rather than finding fault with the past. YOU (the participant involved) make the decisions. * Mediation often works in conjunction with other dispute resolution processes, such as grievances or equal employment opportunity (EEO) complaints. However, mediation does NOT forestall established timeframes within those processes, nor does it constitute

  20. Directional fast-neutron detector

    DOE Patents [OSTI]

    Byrd, Roger C. (Albuquerque, NM)

    1994-01-01

    A plurality of omnidirectional radiation detectors are arranged in a close packed symmetrical pattern to form a segmented detector. The output radiation counts from these detectors are arithmetically combined to provide the direction of a source of incident radiation. Directionality is achieved without the use of shielding to provide collimation and background reduction effects. Indeed, output counts from paired detectors are simply subtracted to yield a vector direction toward the radiation source. The counts from all of the detectors can be combined to yield an output signal functionally related to the radiation source strength.

  1. President Bush Directs Energy Secretary to Draw Down Strategic Petroleum

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reserve | Department of Energy Directs Energy Secretary to Draw Down Strategic Petroleum Reserve President Bush Directs Energy Secretary to Draw Down Strategic Petroleum Reserve September 3, 2005 - 9:49am Addthis Washington, DC - U.S. Secretary of Energy Samuel W. Bodman today released the following statement regarding President Bush's historic decision to authorize the drawdown and sale of oil from America's Strategic Petroleum Reserve. "We continue to work hard to aggressively address

  2. Focus Series Â… Maine Residential Direct Install Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Focus Series MAINE-RESIDENTIAL DIRECT INSTALL PROGRAM Residential Air Sealing Program Drives Maine Home Energy Savings Through the Roof Better Buildings Neighborhood Program partner Efficiency Maine launched a statewide Residential Direct Install (RDI) program in 2012 to help drive demand for both energy assessments and upgrades. The program offered a $600 rebate to homeowners who completed an energy assessment and at least six hours of air sealing work. The incentives succeeded, with

  3. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08

    To establish the Department's, including the NNSA's, requirements for laboratory-directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Cancels DOE O 413.2. Canceled by DOE O 413.2B.

  4. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-19

    The Order establishes DOE requirements and responsibilities for laboratory directed research and development while providing laboratory directors with broad flexibility for program implementation. Cancels DOE O 413.2A. Admin Chg 1, 1-31-11.

  5. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-10-22

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Supersedes DOE O 413.2B.

  6. Nonimaging radiant energy direction device

    DOE Patents [OSTI]

    Winston, Roland

    1980-01-01

    A raidant energy nonimaging light direction device is provided. The device includes an energy transducer and a reflective wall whose contour is particularly determined with respect to the geometrical vector flux of a field associated with the transducer.

  7. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NRC Officials Visit WIPP Tod A weekly e-newsletter for the Waste Isolation Pilot Plant team September 25, 2003 The Big Story Recertification - a work in progress Topics Characterization News Transportation News Disposal News Safety News Working Smart Announcements Our Team Tools Acronym List Archives Back to Main Page WIPP Home Page Links Feedback Contact us with feedback or submit your e-mail address for updates. Click here to e-mail. WIPP Shipments (as of 9-25-03 at 7:16 a.m.) 21 Shipments

  8. DOE Directives | Department of Energy

    Energy Savers [EERE]

    Directives DOE Directives DOE O 414.1D, Quality Assurance DOE G 414.1-2B Admin Change 1, Quality Assurance Program Guide DOE O 221.1A, Reporting Fraud, Waste and Abuse to the Office of the Inspector General DOE O 232.2, Occurrence Reporting and Processing of Operations Information DOE O 440.1B, Worker Protection Program for DOE (Including the NNSA) Federal Employees

  9. Reimbursable Work for Non-Federal Sponsors Process Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-03

    This Manual provides detailed requirements to supplement DOE O 481.1B, Work For Others (Non-Department of Energy Funded Work), dated 9-28-01, which establishes requirements for the performance of work for non-Department of Energy (DOE)/non-National Nuclear Security Administration (NNSA) entities by DOE/NNSA/contractor personnel and/or the use of DOE/NNSA facilities that is not directly funded by DOE/NNSA appropriations. Chg 1, dated 9-28-01, supersedes DOE M 481.1-1. Certified 12-28-06.

  10. Coiled tubing working life prediction

    SciTech Connect (OSTI)

    Wu, J.

    1995-12-31

    Failure of coiled tubing, due to the repeated bending and plastic deformation of coiled tubing on and off the reel and gooseneck, is of great concern in coiled tubing operations. This paper discusses the coiled tubing working life based on one of the coiled tubing life models published in the literature, and compares the results with other models. Certain agreements are found among these models. A group of curves is presented to illustrate the coiled tubing working life affected by coiled tubing size and wall thickness, internal pressure, yield strength, reel diameter, gooseneck radius, operation condition (corrosion) and butt-welded connection (stress concentration). The results show that coiled tubing life can be greatly increased by increasing CT wall thickness and CT strength, while the coiled tubing working life decreases under high internal pressure, corrosion, and butt-weld conditions. These curves can be easily used in estimating coiled tubing life for the field use.

  11. CFCC working group meeting: Proceedings

    SciTech Connect (OSTI)

    1997-12-31

    This report is a compilation of the vugraphs presented at this meeting. Presentations covered are: CFCC Working Group; Overview of study on applications for advanced ceramics in industries for the future; Design codes and data bases: The CFCC program and its involvement in ASTM, ISO, ASME, and military handbook 17 activities; CFCC Working Group meeting (McDermott Technology); CFCC Working Group meeting (Textron); CFCC program for DMO materials; Developments in PIP-derived CFCCs; Toughened Silcomp (SiC-Si) composites for gas turbine engine applications; CFCC program for CVI materials; Self-lubricating CFCCs for diesel engine applications; Overview of the CFCC program`s supporting technologies task; Life prediction methodologies for CFCC components; Environmental testing of CFCCs in combustion gas environments; High-temperature particle filtration ORNL/DCC CRADA; HSCT CMC combustor; and Case study -- CFCC shroud for industrial gas turbines.

  12. November 13 - 15, 2012 HSS Work Group Leadership Meeting Summary - 851 Implementation

    Energy Savers [EERE]

    851 Implementation Work Group Co-Lead Telecom November 13, 2012 DRAFT Discussion Overview Purpose: This HSS Focus Group Work Group telecom was held with the Work Group Co-Leads to discuss change elements and strategic direction to support accelerated efforts to advancing progress, productivity and performance within each of the Work Groups. Although current roles within all of the Work Groups and Focus Group efforts remain the same, the addition of centralized leadership and oversight by

  13. November 13 - 15, 2012 HSS Work Group Leadership Meeting Summary - Strategic Initiatives

    Energy Savers [EERE]

    Strategic Initiatives Work Group Co-Lead Telecom November 13, 2012 DRAFT Discussion Overview Purpose: This HSS Focus Group Work Group telecom was held with the Work Group Co-Leads to discuss change elements and strategic direction to support accelerated efforts to advancing progress, productivity and performance within each of the Work Groups. Although current roles within all of the Work Groups and Focus Group efforts remain the same, the addition of centralized leadership and oversight by

  14. Reimbursable Work for the Department of Homeland Security

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-08-17

    The Order establishes DOE policies and procedures for the acceptance, performance, and administration of reimbursable work directly funded by the Department of Homeland Security. Cancels DOE N 481.1 and DOE N 251.62. Admin Chg 1, dated 3-14-11.

  15. Catalyst Working Group Kick-off Meeting: Personal Commentary

    Broader source: Energy.gov [DOE]

    Personal commentary on future directions in fuel cell electrocatalysis, presented by Mark Debe, 3M, at the kick-off meeting of the U.S. Department of Energy Fuel Cell Technologies Program's Catalysis Working Group, held May 14, 2012, in Arlington, Virginia.

  16. Reimbursable Work for the Department of Homeland Security

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-08-17

    The Order establishes DOE policies and procedures for the acceptance, performance, and administration of reimbursable work directly funded by the Department of Homeland Security. Admin Chg 2, dated 6-30-14, supersedes DOE O 484.1 Admin Chg 1. Certified 1-15-15

  17. Long working distance interference microscope

    DOE Patents [OSTI]

    Sinclair, Michael B.; DeBoer, Maarten P.; Smith, Norman F.

    2004-04-13

    Disclosed is a long working distance interference microscope suitable for three-dimensional imaging and metrology of MEMS devices and test structures on a standard microelectronics probe station. The long working distance of 10-30 mm allows standard probes or probe cards to be used. This enables nanometer-scale 3-D height profiles of MEMS test structures to be acquired across an entire wafer. A well-matched pair of reference/sample objectives is not required, significantly reducing the cost of this microscope, as compared to a Linnik microinterferometer.

  18. Get Access to Work Onsite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Get Access to Work Onsite Print The following process MUST be completed online by new and returning users at least TWO WEEKS prior to arrival at the ALS. Not a U.S. citizen? Please look at Documents for Foreign Nationals well ahead of your visit. Bring all relevant documents to the ALS in order to complete your registration. NOTE: Users who are citizens of, or were born in, T4 countries (Cuba, Iran, Sudan, and Syria) need DOE permission to work at the ALS, a process which can take 4-6 months to

  19. Get Access to Work Onsite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Get Access to Work Onsite Print The following process MUST be completed online by new and returning users at least TWO WEEKS prior to arrival at the ALS. Not a U.S. citizen? Please look at Documents for Foreign Nationals well ahead of your visit. Bring all relevant documents to the ALS in order to complete your registration. NOTE: Users who are citizens of, or were born in, T4 countries (Cuba, Iran, Sudan, and Syria) need DOE permission to work at the ALS, a process which can take 4-6 months to

  20. Directed Self-Assembly of Nanodispersions

    SciTech Connect (OSTI)

    Furst, Eric M

    2013-11-15

    Directed self-assembly promises to be the technologically and economically optimal approach to industrial-scale nanotechnology, and will enable the realization of inexpensive, reproducible and active nanostructured materials with tailored photonic, transport and mechanical properties. These new nanomaterials will play a critical role in meeting the 21st century grand challenges of the US, including energy diversity and sustainability, national security and economic competitiveness. The goal of this work was to develop and fundamentally validate methods of directed selfassembly of nanomaterials and nanodispersion processing. The specific aims were: 1. Nanocolloid self-assembly and interactions in AC electric fields. In an effort to reduce the particle sizes used in AC electric field self-assembly to lengthscales, we propose detailed characterizations of field-driven structures and studies of the fundamental underlying particle interactions. We will utilize microscopy and light scattering to assess order-disorder transitions and self-assembled structures under a variety of field and physicochemical conditions. Optical trapping will be used to measure particle interactions. These experiments will be synergetic with calculations of the particle polarizability, enabling us to both validate interactions and predict the order-disorder transition for nanocolloids. 2. Assembly of anisotropic nanocolloids. Particle shape has profound effects on structure and flow behavior of dispersions, and greatly complicates their processing and self-assembly. The methods developed to study the self-assembled structures and underlying particle interactions for dispersions of isotropic nanocolloids will be extended to systems composed of anisotropic particles. This report reviews several key advances that have been made during this project, including, (1) advances in the measurement of particle polarization mechanisms underlying field-directed self-assembly, and (2) progress in the directed self-assembly of anisotropic nanoparticles and their unique physical properties.

  1. Property:Wave Direction | Open Energy Information

    Open Energy Info (EERE)

    Wave Basin + Uni-Directional + Lakefront Tow Tank + Uni-Directional + Los Angeles and Long Beach Harbors Model + Uni-Directional + M MHL 2D WindWave + Uni-Directional + MHL...

  2. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Advanced Gasoline Turbocharged Direct Injection (GTDI) ...

  3. Advanced Particulate Filter Technologies for Direct Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Particulate Filter Technologies for Direct Injection Gasoline Engine Applications Advanced Particulate Filter Technologies for Direct Injection Gasoline Engine Applications Specific ...

  4. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbocharged Direct Injection (GTDI) Engine Development Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine ...

  5. Federal Utility Partnership Working Group

    Broader source: Energy.gov [DOE]

    The Federal Utility Partnership Working Group (FUPWG) establishes partnerships and facilitates communications among Federal agencies, utilities, and energy service companies. The group develops strategies to implement cost-effective energy efficiency and water conservation projects through utility incentive programs at Federal sites.

  6. ACME solar works | Open Energy Information

    Open Energy Info (EERE)

    ACME solar works Jump to: navigation, search Logo: ACME solar works Name: ACME solar works Address: 20738 Brown Lane Place: Summerdale, Alabama Zip: 36580 Sector: Solar Product:...

  7. Working Gas in Underground Storage Figure

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Gas in Underground Storage Figure Working Gas in Underground Storage Figure Working Gas in Underground Storage Compared with 5-Year Range Graph....

  8. LotusWorks | Open Energy Information

    Open Energy Info (EERE)

    LotusWorks Jump to: navigation, search Name: LotusWorks Place: Ireland Product: Engineering, technical and construction management service provider. References: LotusWorks1 This...

  9. Federal Utility Partnership Working Group Meeting: Washington...

    Energy Savers [EERE]

    Utility Partnership Working Group Meeting: Washington Update Federal Utility Partnership Working Group Meeting: Washington Update Federal Utility Partnership Working Group Meeting:...

  10. The AISI direct steelmaking program

    SciTech Connect (OSTI)

    Aukrust, E. ); Downing, K.B. )

    1991-01-01

    After six months of operation of the pilot plant, the viability of in-bath smelting combined with a high level of post combustion has been demonstrated, and the opportunity exists for an early commercialization of the direct ironmaking part of the process while we continue to research direct steelmaking. The program should be of equal interest to integrated and electric furnace producers. Smelting of ore provides virgin iron units. Additionally, the process has the flexibility of melting scrap and varying the ore-to-scrap ratio over wide ranges. This process does not require coke, thus eliminating the cokemaking operation, a major source of environmental concern.

  11. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-19

    The order establishes DOE requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Cancels DOE O 413.3A. Admin Chg 1, dated 1-31-11, cancels DOE O 413.2B. Certified 7-14-2011.

  12. Direct flow crystal growth system

    DOE Patents [OSTI]

    Montgomery, Kenneth E. (Tracy, CA); Milanovich, Fred P. (Lafayette, CA)

    1992-01-01

    A crystal is grown in a constantly filtered solution which is flowed directly into the growing face of a crystal. In a continuous flow system, solution at its saturation temperature is removed from a crystal growth tank, heated above its saturation temperature, filtered, cooled back to its saturation temperature, and returned to the tank.

  13. Sandia Energy - UFD Working Group 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UFD Working Group 2015 Home Stationary Power Nuclear Fuel Cycle Nuclear Energy Workshops UFD Working Group 2015 UFD Working Group 2015lmays2015-07-06T17:21:43+00:00 UFD WORKING...

  14. Workshop on Scientific Directions at the Advanced Light Source: Summary and

    Office of Scientific and Technical Information (OSTI)

    Reports of the Working Groups (Technical Report) | SciTech Connect Technical Report: Workshop on Scientific Directions at the Advanced Light Source: Summary and Reports of the Working Groups Citation Details In-Document Search Title: Workshop on Scientific Directions at the Advanced Light Source: Summary and Reports of the Working Groups No abstract prepared. Authors: Plummer, Ward E. ; Awschalom, David ; Russell, T. ; Cohen, M. ; Somorjai, G. ; Brown, Jr., Gordon E. ; Fleming, Graham ;

  15. Working with SRNL - Technology Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    19/2015 SEARCH SRNL GO SRNL Home SRNL Contacts Media Contacts For information about the Savannah River National Laboratory, contact: Will Callicott, Manager SRNL Executive Communications will.callicott@srnl.doe.gov 803-725-3786 Lana Patterson, Communications Coordinator SRNL Executive Communications lana.patterson@srnl.doe.gov 803-725-4396 Technology Transfer For information on working with SRNL in the development and use of new technology, contact: Dale Haas, Manager (Acting) Partnerships and

  16. Production work up for grabs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    work up for grabs Los Alamos continued in turmoil and scientists kept leaving. The Operation Crossroads effort had dealt the laboratory a tremendous blow as the demands for production seemed to override any scientific research and development. On September 24, 1946, John H. Manley wrote General Groves a letter as noted in Hewlett and Anderson's The New World. The letter said, in part, that Los Alamos was unable to maintain the position the United States had advertised before the world regarding

  17. Renewable Electricity Working Group Presentation

    U.S. Energy Information Administration (EIA) Indexed Site

    Renewable Electricity Working Group Chris Namovicz, Renewable Electricity Analysis Team July 9, 2013 Agenda * Review status of AEO 2013 * Discuss new model updates and development efforts for AEO 2014 and future AEOs - Model updates - Policy updates - Planned additions updates - Performance updates * Obtain feedback from stakeholders on any key items that EIA should look at Chris Namovicz, July 9 2 Status of AEO 2013 Chris Namovicz, July 9 * AEO 2013 was released in stages this year - Reference

  18. http://bellview/TeamWorks/TRUTeamWorks.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thursday, 9/4/03 | Total shipments received at WIPP: 1,978 | Shipments expected this week: Hanford (2), LA A weekly e-newsletter for the Waste Isolation Pilot Plant team September 4, 2003 The Big Story Get ready, set, go for 100 Topics Characterization News Transportation News Disposal News Safety News Working Smart Announcements Our Team Tools Acronym List Archives Back to Main Page WIPP Home Page Links Feedback Contact us with feedback or submit your e-mail address for updates. Click here to e

  19. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15/04 Shipments expected this week: Hanford (2), NTS (2), RFETS (11), SRS (6) January 15, 2004 The Big Story Topics Characterization News Transportation News Disposal News Safety News Working Smart Announcements Our Team Tools Acronym List Archives Back to Main Page WIPP Home Page Links Feedback Contact us with feedback or submit your e-mail address for updates. Click here to e-mail. WIPP Shipments (as of 1/15/04 at 7:09 a.m. Shipments scheduled to arrive at WIPP this week 21 Total shipments

  20. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2/04 Shipments expected this week: Hanford (3), NTS (2), RFETS (11), SRS (6) January 22, 2004 The Big Story Topics Characterization News Transportation News Disposal News Safety News Working Smart Announcements Our Team Tools Acronym List Archives Back to Main Page WIPP Home Page Links Feedback Contact us with feedback or submit your e-mail address for updates. Click here to e-mail. WIPP Shipments (as of 1/22/04 at 7:22 a.m. Shipments scheduled to arrive at WIPP this week 22 Total shipments

  1. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9/04 Shipments expected this week: NTS (2), RFETS (13), SRS (6) January 29, 2004 The Big Story WTS restructures workforce Topics Characterization News Transportation News Disposal News Safety News Working Smart Announcements Our Team Tools Acronym List Archives Back to Main Page WIPP Home Page Links Feedback Contact us with feedback or submit your e-mail address for updates. Click here to e-mail. WIPP Shipments (as of 1/29/04 at 7:14 a.m.) Shipments scheduled to arrive at WIPP this week 21 Total

  2. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A weekly e-newsletter for the Waste Isolation Pilot Plant team September 18, 2003 The Big Story Characterization Operations completed at ANL-E Topics Characterization News Transportation News Disposal News Safety News Working Smart Announcements Our Team Tools Acronym List Archives Back to Main Page WIPP Home Page Links Feedback Contact us with feedback or submit your e-mail address for updates. Click here to e-mail. WIPP Shipments (as of 9-18-03 at 7:17 a.m.) 21 Shipments scheduled to arrive

  3. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    /03 | Shipments expected this week: Hanford (1), RFETS (11), SRS (6) | A weekly e-newsletter for the Waste Isolation Pilot Plant team October 2, 2003 The Big Story Laboratory setup at CEMRC is teamwork in action Topics Characterization News Transportation News Disposal News Safety News Working Smart Announcements Our Team Tools Acronym List Archives Back to Main Page WIPP Home Page Links Feedback Contact us with feedback or submit your e-mail address for updates. Click here to e-mail. WIPP

  4. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    16/03 | Shipments expected this week: ANL-E (2) , RFETS (11), SRS (6) | A weekly e-newsletter for the Waste Isolation Pilot Plant team October 16, 2003 The Big Story EM-6 to review WIPP baseline Topics Characterization News Transportation News Disposal News Safety News Working Smart Announcements Our Team Tools Acronym List Archives Back to Main Page WIPP Home Page Links Feedback Contact us with feedback or submit your e-mail address for updates. Click here to e-mail. WIPP Shipments (as of

  5. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3/03 | Shipments expected this week: RFETS (11), SRS (4), Hanford (2) | A weekly e-newsletter for the Waste Isolation Pilot Plant team October 23, 2003 Sealed sources: questions and answers Topics Characterization News Transportation News Disposal News Safety News Working Smart Announcements Our Team Tools Acronym List Archives Back to Main Page WIPP Home Page Links Feedback Contact us with feedback or submit your e-mail address for updates. Click here to e-mail. WIPP Shipments (as of 10/23/03

  6. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    13/03 | Shipments expected this week: RFETS (11), SRS (6) | WIPP welcomes new CBFO Deputy Ma A weekly e-newsletter for the Waste Isolation Pilot Plant team November 13, 2003 The Big Story Farewell to a leader Topics Characterization News Transportation News Disposal News Safety News Working Smart Announcements Our Team Tools Acronym List Archives Back to Main Page WIPP Home Page Links Feedback Contact us with feedback or submit your e-mail address for updates. Click here to e-mail. WIPP

  7. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20/03 | Shipments expected this week: Hanford (2), RFETS (14), SRS (6) | A weekly e-newsletter for the Waste Isolation Pilot Plant team November 20, 2003 The Big Story WIPP welcomes Lloyd Piper Topics Characterization News Transportation News Disposal News Safety News Working Smart Announcements Our Team Tools Acronym List Archives Back to Main Page WIPP Home Page Links Feedback Contact us with feedback or submit your e-mail address for updates. Click here to e-mail. WIPP Shipments (as of

  8. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    04/03 | Shipments expected this week: Hanford (2), RFETS (11), SRS (3) | December 4, 2003 The Big Story H.R.2754 to usher in change Topics Characterization News Transportation News Disposal News Safety News Working Smart Announcements Our Team Tools Acronym List Archives Back to Main Page WIPP Home Page Links Feedback Contact us with feedback or submit your e-mail address for updates. Click here to e-mail. WIPP Shipments (as of 12/4/03 at 8:05 a.m.) Shipments scheduled to arrive at WIPP this

  9. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1/03 | Shipments expected this week: Hanford (2), RFETS (11), SRS (3) | December 11, 2003 The Big Story Standardization - a cost saving innovation Topics Characterization News Transportation News Disposal News Safety News Working Smart Announcements Our Team Tools Acronym List Archives Back to Main Page WIPP Home Page Links Feedback Contact us with feedback or submit your e-mail address for updates. Click here to e- mail. WIPP Shipments (as of 12/11/03 at 7:47 a.m.) Shipments scheduled to arrive

  10. Federal Utility Partnership Working Group Seminar: Chairman's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seminar: Chairman's Corner Federal Utility Partnership Working Group Seminar: Chairman's Corner Presentation covers the Federal Utility Partnership Working Group Seminar:...

  11. 1999 LDRD Laboratory Directed Research and Development

    SciTech Connect (OSTI)

    Rita Spencer; Kyle Wheeler

    2000-06-01

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  12. OM300 Direction Drilling Module

    SciTech Connect (OSTI)

    MacGugan, Doug

    2013-08-22

    OM300 – Geothermal Direction Drilling Navigation Tool: Design and produce a prototype directional drilling navigation tool capable of high temperature operation in geothermal drilling Accuracies of 0.1° Inclination and Tool Face, 0.5° Azimuth Environmental Ruggedness typical of existing oil/gas drilling Multiple Selectable Sensor Ranges High accuracy for navigation, low bandwidth High G-range & bandwidth for Stick-Slip and Chirp detection Selectable serial data communications Reduce cost of drilling in high temperature Geothermal reservoirs Innovative aspects of project Honeywell MEMS* Vibrating Beam Accelerometers (VBA) APS Flux-gate Magnetometers Honeywell Silicon-On-Insulator (SOI) High-temperature electronics Rugged High-temperature capable package and assembly process

  13. Directions to Wilson Hall, Fermilab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directions Both the Fermilab box office and Ramsey Auditorium are located in Wilson Hall, the central laboratory building of Fermi National Accelerator Laboratory, as shown on the map below. Ramsey Auditorium is located at the south end of Wilson Hall. Enter through the Auditorium lobby doors on the ground level at the south end of Wilson Hall. Wilson Hall is clearly visible from the Pine Street entrance. From I-88, exit north at Farnsworth, which becomes Kirk north of Butterfield road. We also

  14. Direct search for dark matter

    SciTech Connect (OSTI)

    Yoo, Jonghee; /Fermilab

    2009-12-01

    Dark matter is hypothetical matter which does not interact with electromagnetic radiation. The existence of dark matter is only inferred from gravitational effects of astrophysical observations to explain the missing mass component of the Universe. Weakly Interacting Massive Particles are currently the most popular candidate to explain the missing mass component. I review the current status of experimental searches of dark matter through direct detection using terrestrial detectors.

  15. BNL Direct Wind Superconducting Magnets

    SciTech Connect (OSTI)

    Parker, B.; Anerella, M.; Escallier, J.; Ghosh, A.; Jain, A.; Marone, A.; Muratore, A.; Wanderer, P.

    2011-09-12

    BNL developed Direct Wind magnet technology is used to create a variety of complex multi-functional multi-layer superconducting coil structures without the need for creating custom production tooling and fixturing for each new project. Our Direct Wind process naturally integrates prestress into the coil structure so external coil collars and yokes are not needed; the final coil package transverse size can then be very compact. Direct Wind magnets are produced with very good field quality via corrections applied during the course of coil winding. The HERA-II and BEPC-II Interaction Region (IR) magnet, J-PARC corrector and Alpha antihydrogen magnetic trap magnets and our BTeV corrector magnet design are discussed here along with a full length ILC IR prototype magnet presently in production and the coils that were wound for an ATF2 upgrade at KEK. A new IR septum magnet design concept for a 6.2 T combined-function IR magnet for eRHIC, a future RHIC upgrade, is introduced here.

  16. Wellbore inertial directional surveying system

    DOE Patents [OSTI]

    Andreas, R.D.; Heck, G.M.; Kohler, S.M.; Watts, A.C.

    1982-09-08

    A wellbore inertial directional surveying system for providing a complete directional survey of an oil or gas well borehole to determine the displacement in all three directions of the borehole path relative to the well head at the surface. The information generated by the present invention is especially useful when numerous wells are drilled to different geographical targets from a single offshore platform. Accurate knowledge of the path of the borehole allows proper well spacing and provides assurance that target formations are reached. The tool is lowered down into a borehole on an electrical cable. A computer positioned on the surface communicates with the tool via the cable. The tool contains a sensor block which is supported on a single gimbal, the rotation axis of which is aligned with the cylinder axis of the tool and, correspondingly, the borehole. The gyroscope measurement of the sensor block rotation is used in a null-seeking servo loop which essentially prevents rotation of the sensor block about the gimbal axis. Angular rates of the sensor block about axes which are perpendicular to te gimbal axis are measured by gyroscopes in a manner similar to a strapped-down arrangement. Three accelerometers provide acceleration information as the tool is lowered within the borehole. The uphole computer derives position information based upon acceleration information and angular rate information. Kalman estimation techniques are used to compensate for system errors. 25 figures.

  17. Wellbore inertial directional surveying system

    DOE Patents [OSTI]

    Andreas, Ronald D.; Heck, G. Michael; Kohler, Stewart M.; Watts, Alfred C.

    1991-01-01

    A wellbore inertial directional surveying system for providing a complete directional survey of an oil or gas well borehole to determine the displacement in all three directions of the borehole path relative to the well head at the surface. The information generated by the present invention is especially useful when numerous wells are drilled to different geographical targets from a single off-shore platform. Accurate knowledge of the path of the borehole allows proper well spacing and provides assurance that target formations are reached. The tool is lowered down into a borehole on the electrical cable. A computer positioned on the surface communicates with the tool via the cable. The tool contains a sensor block which is supported on a single gimbal, the rotation axis of which is aligned with the cylinder axis of the tool and, correspondingly, the borehole. The gyroscope measurement of the sensor block rotation is used in a null-seeking servo loop which essentially prevents rotation of the sensor block aboutthe gimbal axis. Angular rates of the sensor block about axes which are perpendicular to the gimbal axis are measured by gyroscopes in a manner similar to a strapped-down arrangement. Three accelerometers provide acceleration information as the tool is lowered within the borehole. The uphole computer derives position information based upon acceleration information and anular rate information. Kalman estimation techniques are used to compensate for system errors.

  18. Disordered amorphous calcium carbonate from direct precipitation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Farhadi Khouzani, Masoud; Chevrier, Daniel M.; Güttlein, Patricia; Hauser, Karin; Zhang, Peng; Hedin, Niklas; Gebauer, Denis

    2015-06-01

    Amorphous calcium carbonate (ACC) is known to play a prominent role in biomineralization. Different studies on the structure of biogenic ACCs have illustrated that they can have distinct short-range orders. However, the origin of so-called proto-structures in synthetic and additive-free ACCs is not well understood. In the current work, ACC has been synthesised in iso-propanolic media by direct precipitation from ionic precursors, and analysed utilising a range of different techniques. The data suggest that this additive-free type of ACC does not resemble clear proto-structural motifs relating to any crystalline polymorph. This can be explained by the undefined pH value inmore » iso-propanolic media, and the virtually instantaneous precipitation. Altogether, this work suggests that aqueous systems and pathways involving pre-nucleation clusters are required for the generation of clear proto-structural features in ACC. Experiments on the ACC-to-crystalline transformation in solution with and without ethanol highlight that polymorph selection is under kinetic control, while the presence of ethanol can control dissolution re-crystallisation pathways.« less

  19. Disordered amorphous calcium carbonate from direct precipitation

    SciTech Connect (OSTI)

    Farhadi Khouzani, Masoud; Chevrier, Daniel M.; Güttlein, Patricia; Hauser, Karin; Zhang, Peng; Hedin, Niklas; Gebauer, Denis

    2015-06-01

    Amorphous calcium carbonate (ACC) is known to play a prominent role in biomineralization. Different studies on the structure of biogenic ACCs have illustrated that they can have distinct short-range orders. However, the origin of so-called proto-structures in synthetic and additive-free ACCs is not well understood. In the current work, ACC has been synthesised in iso-propanolic media by direct precipitation from ionic precursors, and analysed utilising a range of different techniques. The data suggest that this additive-free type of ACC does not resemble clear proto-structural motifs relating to any crystalline polymorph. This can be explained by the undefined pH value in iso-propanolic media, and the virtually instantaneous precipitation. Altogether, this work suggests that aqueous systems and pathways involving pre-nucleation clusters are required for the generation of clear proto-structural features in ACC. Experiments on the ACC-to-crystalline transformation in solution with and without ethanol highlight that polymorph selection is under kinetic control, while the presence of ethanol can control dissolution re-crystallisation pathways.

  20. Mixed Waste Working Group report

    SciTech Connect (OSTI)

    Not Available

    1993-11-09

    The treatment of mixed waste remains one of this country`s most vexing environmental problems. Mixed waste is the combination of radioactive waste and hazardous waste, as defined by the Resource Conservation and Recovery Act (RCRA). The Department of Energy (DOE), as the country`s largest mixed waste generator, responsible for 95 percent of the Nation`s mixed waste volume, is now required to address a strict set of milestones under the Federal Facility Compliance Act of 1992. DOE`s earlier failure to adequately address the storage and treatment issues associated with mixed waste has led to a significant backlog of temporarily stored waste, significant quantities of buried waste, limited permanent disposal options, and inadequate treatment solutions. Between May and November of 1993, the Mixed Waste Working Group brought together stakeholders from around the Nation. Scientists, citizens, entrepreneurs, and bureaucrats convened in a series of forums to chart a course for accelerated testing of innovative mixed waste technologies. For the first time, a wide range of stakeholders were asked to examine new technologies that, if given the chance to be tested and evaluated, offer the prospect for better, safer, cheaper, and faster solutions to the mixed waste problem. In a matter of months, the Working Group has managed to bridge a gap between science and perception, engineer and citizen, and has developed a shared program for testing new technologies.

  1. Workforce Retention Work Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workforce Retention Work Group Workforce Retention Work Group The Workforce Retention Work Group was established to collaboratively address the needs of the Department to maintain a skilled work force in the face of anticipated retirements and to address the specific health and safety concerns of that work force that could impede retention. Due to the broad nature of the issues reflected within this working group, the chartered objectives and outcomes have been moved forward to be worked by the

  2. Enterprise Risk Management (ERM) Framework for Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-09-30

    Explains the new ERM framework for developing, revising, and reviewing directives. This memo directs the Office of Management to institutionalize ERM into the directives process no later than September 30, 2012.

  3. LED Directional Lamps | Department of Energy

    Energy Savers [EERE]

    Directional Lamps LED Directional Lamps BTP EERE Solid-State Lighting Program PDF icon led_directional_lamps.pdf More Documents & Publications Energy Savings Estimates of Light Emitting Diodes Recessed LED Downlights General Service LED Lamps

  4. Direct Deposit Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct Deposit Form Direct Deposit Form PDF icon Direct Deposit Form More Documents & Publications Employee In-Processing Forms Agreement for Minority Financial Institutions Participation in the Bank Deposit Financial Assistance Program Financial Management Handbook

  5. Work Plan - U.S.-India Coal Working Group | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon Work Plan - U.S.-India Coal Working Group More Documents & Publications Work Group Telecom (Draft Charters) U.S.-India Coal Working Group Terms of Reference Work Group Leadership Meetings: Transition Elements

  6. FY 1996 annual work plan

    SciTech Connect (OSTI)

    1995-09-30

    In April 1994, the Department of Energy (DOE) Strategic Plan was issued. This Plan presents the Department`s strategic outlook in response to a changing world. It discusses the Department`s unique capabilities; its mission, vision, and core values; and key customer and stakeholder considerations. The DOE Strategic Plan lists business strategies and critical success factors which are intended to aid the Department in accomplishing its mission and reaching its vision of itself in the future. The Office of Inspector General (OIG) has an important role in carrying out the goals and objectives of the Secretary`s Strategic Plan. The ultimate goal of the OIG is to facilitate positive change by assisting its customers, responsible Government officials, in taking actions to improve programs and operations. The Inspector General annually issues his own Strategic Plan that contains program guidance for the next fiscal year. As part of its responsibility in carrying out the OIG mission, the Office of the Deputy Inspector General for Audit Services (Office of Audit Services) publishes an Annual Work Plan that sets forth audits that are planned for the next fiscal year. Selection of these audits is based on the overall budget of the Department, analyses of trends in Departmental operations, guidance contained in the agency`s strategic plans, statutory requirements, and the expressed needs and audit suggestions of Departmental program managers and OIG managers and staff. This work plan includes audits that are carried over from FY 1995 and audits scheduled to start during FY 1996. Audits included in the plan will be performed by OIG staff.

  7. Direct measure of quantum correlation

    SciTech Connect (OSTI)

    Yu, Chang-shui [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Zhao, Haiqing [School of Science, Dalian Jiaotong University, Dalian 116028 (China)

    2011-12-15

    The quantumness of the correlation known as quantum correlation is usually measured by quantum discord. So far various quantum discords can be roughly understood as indirect measure by some special discrepancy of two quantities. We present a direct measure of quantum correlation by revealing the difference between the structures of classically and quantum correlated states. Our measure explicitly includes the contributions of the inseparability and local nonorthogonality of the eigenvectors of a density matrix. Besides its relatively easy computability, our measure can provide a unified understanding of quantum correlation of all the present versions.

  8. Direct application of geothermal energy

    SciTech Connect (OSTI)

    Reistad, G.M.

    1980-01-01

    An overall treatment of direct geothermal applications is presented with an emphasis on the above-ground engineering. The types of geothermal resources and their general extent in the US are described. The potential market that may be served with geothermal energy is considered briefly. The evaluation considerations, special design aspects, and application approaches for geothermal energy use in each of the applications are considered. The present applications in the US are summarized and a bibliography of recent studies and applications is provided. (MHR)

  9. First Direct Observation of Spinons and Holons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    theoretically possible for the hole (carrying a positive charge) to propagate in one direction while the spin propagates in the opposite direction, or at a different speed. If...

  10. Digital Surveying Directional Surveying Specialists | Open Energy...

    Open Energy Info (EERE)

    Surveying Specialists Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Digital Surveying Directional Surveying Specialists Author Directional Surveying...

  11. Solaire Direct SA | Open Energy Information

    Open Energy Info (EERE)

    Solaire Direct SA Jump to: navigation, search Name: Solaire Direct SA Place: Paris, France Zip: 75008 Product: Plans to build, operate and finance large PV installations, and...

  12. Optically Directed Assembly of Continuous Mesoscale Filaments...

    Office of Scientific and Technical Information (OSTI)

    Optically Directed Assembly of Continuous Mesoscale Filaments Title: Optically Directed Assembly of Continuous Mesoscale Filaments Authors: Bahns, J. T. ; Sankaranarayanan, S. K. ...

  13. Investigation of Direct Injection Vehicle Particulate Matter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct Injection Vehicle Particulate Matter Emissions Investigation of Direct Injection Vehicle Particulate Matter Emissions This study focuses primarily on particulate matter mass ...

  14. Direct Imaging of Asymmetric Magnetization Reversal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Imaging of Asymmetric Magnetization Reversal Direct Imaging of Asymmetric Magnetization Reversal Print Wednesday, 28 September 2005 00:00 The phenomenon of exchange bias has...

  15. Direct Energy Services (Illinois) | Open Energy Information

    Open Energy Info (EERE)

    Place: Illinois Phone Number: 1-855-461-1926 Website: www.directenergy.comillinois Twitter: @DirectEnergy Facebook: https:www.facebook.comDirectEnergy Outage Hotline:...

  16. Geothermal Direct Use Presentations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentations Geothermal Direct Use Presentations File Geothermal Direct Use Technology & Marketplace Intro File Introduction and Background File Geothermal Resources (in the ...

  17. Directional Drilling Systems | Open Energy Information

    Open Energy Info (EERE)

    Directional Drilling Systems Jump to: navigation, search Geothermal ARRA Funded Projects for Directional Drilling Systems Loading map... "format":"googlemaps3","type":"ROADMAP","t...

  18. DemandDirect | Open Energy Information

    Open Energy Info (EERE)

    DemandDirect Place: Woodbury, Connecticut Zip: 6798 Sector: Efficiency, Renewable Energy, Services Product: DemandDirect provides demand response, energy efficiency, load...

  19. Biogas Direct LCC | Open Energy Information

    Open Energy Info (EERE)

    LCC Jump to: navigation, search Name: Biogas Direct LCC Place: Spring Green, Wisconsin Zip: WI 53588 Product: Biogas Direct is specialized in constructing Biogas plants for the...

  20. Staged direct injection diesel engine

    DOE Patents [OSTI]

    Baker, Quentin A. (San Antonio, TX)

    1985-01-01

    A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.

  1. Radial lean direct injection burner

    DOE Patents [OSTI]

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  2. Graduate Program Time Limits and Work Schedules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Time Limits and Work Schedules Graduate Program Time Limits and Work Schedules Point your career towards Los Alamos Lab: work with the best minds on the planet in an inclusive...

  3. Undergraduate Program Time Limits and Work Schedules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Time Limits and Work Schedules Undergraduate Program Time Limits and Work Schedules Point your career towards Los Alamos Lab: work with the best minds on the planet in an inclusive...

  4. SpringWorks | Open Energy Information

    Open Energy Info (EERE)

    SpringWorks Jump to: navigation, search Name: SpringWorks Place: Minnetonka, Minnesota Zip: 55343-8684 Product: SpringWorks was created to discover and nurture incubation companies...

  5. Working with Modules within Perl and Python

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working with Modules within Perl and Python Working with Modules within Perl and Python It can often be convenient to work with the modules system from within perl or python...

  6. Legacy Management Work Progresses on Defense-Related Uranium Mines Report to Congress

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Legacy Management (LM) continues to work on a report to Congress regarding defense-related legacy uranium mines. LM was directed by the U.S. Congress in the...

  7. Request to Cancel DOE G 481.1-1, Department of Energy Work for Others Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-11-23

    By Cancelling this directive DOE is reducing duplicative publications of program related information and recognizing the effects of DOE/contractor working groups and the use of previously unavailable electronic communication systems.

  8. REGULATORY COOPERATION COUNCIL - WORK PLANNING FORMAT: Natural...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    COUNCIL - WORK PLANNING FORMAT: Natural Gas Use in Transportation PDF icon RCC Workplan NGV.PDF More Documents & Publications REGULATORY COOPERATION COUNCIL - WORK PLANNING ...

  9. Peak Underground Working Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    of capacity that may understate the amount that can actually be stored. Working Gas Design Capacity: This measure estimates a natural gas facility's working gas capacity, as...

  10. California Working Natural Gas Underground Storage Capacity ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  11. Brad Foote Gear Works | Open Energy Information

    Open Energy Info (EERE)

    Brad Foote Gear Works Jump to: navigation, search Name: Brad Foote Gear Works Place: Cicero, Illinois Zip: 60804-1404 Sector: Wind energy Product: Gearing systems manufacturer...

  12. Federal Utility Partnership Working Group Utility Partners

    Broader source: Energy.gov [DOE]

    Federal Utility Partnership Working Group (FUPWG) utility partners are eager to work closely with Federal agencies to help achieve energy management goals.

  13. Washington Working Natural Gas Underground Storage Capacity ...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Washington Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  14. Mississippi Working Natural Gas Underground Storage Capacity...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Mississippi Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  15. Pennsylvania Working Natural Gas Underground Storage Capacity...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Pennsylvania Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May...

  16. Contact Us - Working With Us | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us - Working With Us Contact us to learn more about working with NREL. Your name (Required) Your email address (Required) Your telephone number Your organization Your role...

  17. Federal Utility Partnership Working Group Meeting Chairman's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting Chairman's Corner Federal Utility Partnership Working Group Meeting Chairman's Corner Presentation-given at the Fall 2012 Federal Utility Partnership Working Group (FUPWG)...

  18. Federal Utility Partnership Working Group Meeting: Chairman's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting: Chairman's Corner Federal Utility Partnership Working Group Meeting: Chairman's Corner Presentation-given at the April 2012 Federal Utility Partnership Working Group...

  19. Work & Life at Munich | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work & Life at Munich Work & Life at Munich Living at Germany's Cosmopolitan Crossroads offers easy access to outdoor pursuits in the Alps and travel throughout Europe. Click to...

  20. Current work in energy analysis

    SciTech Connect (OSTI)

    1998-03-01

    This report describes the work performed at Berkeley Lab most recently. One of the Labs accomplishments is the publication of Scenarios of US Carbon Reductions, an analysis of the potential of energy technologies to reduce carbon emissions in the US. This analysis is described and played a key role in shaping the US position on climate change in the Kyoto Protocol negotiations. The Labs participation in the fundamental characterization of the climate change issue by the IPCC is described. Described also is a study of leaking electricity, which is stimulating an international campaign for a one-watt ceiling for standby electricity losses from appliances. This ceiling has the potential to save two-thirds of the 5% of US residential electricity currently expended on standby losses. The 54 vignettes contained in the report summarize results of research activities ranging in scale from calculating the efficacy of individual lamp ballasts to estimating the cost-effectiveness of the national Energy Star{reg_sign} labeling program, and ranging in location from a scoping study of energy-efficiency market transformation in California to development of an energy-efficiency project in the auto parts industry in Shandong Province, China.

  1. Hadron Colliders Working Group Report

    SciTech Connect (OSTI)

    S. Peggs and M.J. Syphers

    2001-11-08

    The ''point design'' studied this year shows that a staged VLHC (40, {approx} 200 TeV) is feasible, with no insurmountable challenges. Further work can provide a more optimized design, by studying various alternative field strengths (e.g., superferric magnets for Stage 1) for improvements to vacuum, wall impedance, and other major performance parameters. It may be that a ''single-stage'' scenario for accessing higher energies sooner is the correct approach. A next-step design study should be considered to look at the two cases near to and complementary to the 2001 VLHC Design Study. The effectiveness of photon stops and their engineering design need to be addressed in the near future to truly determine if these devices can lead this effort to even higher luminosities and energies. The superbunch approach should continue to be studied, as well as IR designs, new instrumentation and diagnostics, and beam dynamics issues. Finally, a well organized VLHC-motivated beam studies effort should become part of the national program.

  2. Direct synthesis of magnesium borohydride

    DOE Patents [OSTI]

    Ronnebro, Ewa Carin Ellinor (Kennewick, WA); Severa, Godwin (Honolulu, HI); Jensen, Craig M. (Kailua, HI)

    2012-04-03

    A method is disclosed for directly preparing an alkaline earth metal borohydride, i.e. Mg(BH.sub.4).sub.2, from the alkaline earth metal boride MgB.sub.2 by hydrogenating the MgB.sub.2 at an elevated temperature and pressure. The boride may also be doped with small amounts of a metal chloride catalyst such as TiCl.sub.3 and/or NiCl.sub.2. The process provides for charging MgB.sub.2 with high pressure hydrogen above at least 70 MPa while simultaneously heating the material to about 350.degree. C. to about 400.degree. C. The method is relatively simple and inexpensive and provides a reversible hydride compound having a hydrogen capacity of at least 11 wt %.

  3. Method for directional hydraulic fracturing

    DOE Patents [OSTI]

    Swanson, David E. (West St. Paul, MN); Daly, Daniel W. (Crystal, MN)

    1994-01-01

    A method for directional hydraulic fracturing using borehole seals to confine pressurized fluid in planar permeable regions, comprising: placing a sealant in the hole of a structure selected from geologic or cemented formations to fill the space between a permeable planar component and the geologic or cemented formation in the vicinity of the permeable planar component; making a hydraulic connection between the permeable planar component and a pump; permitting the sealant to cure and thereby provide both mechanical and hydraulic confinement to the permeable planar component; and pumping a fluid from the pump into the permeable planar component to internally pressurize the permeable planar component to initiate a fracture in the formation, the fracture being disposed in the same orientation as the permeable planar component.

  4. Direct synthesis of calcium borohydride

    DOE Patents [OSTI]

    Ronnebro, Ewa Carin Ellinor; Majzoub, Eric H.

    2009-10-27

    A method is disclosed for directly preparing an alkaline earth metal borohydride, i.e. Ca(BH.sub.4).sub.2, from the alkaline earth metal hydride and the alkaline earth metal boride. The borohydride thus prepared is doped with a small portion of a metal chloride catalyst compound, such as RuCl.sub.3, TiCl.sub.3, or a mixture of TiCl.sub.3 and palladium metal. The process provides for mechanically mixing the dry reagents under an inert atmosphere followed by charging the mixed materials with high pressure hydrogen at about 70 MPa while heating the mixture to about 400.degree. C. The method is relatively simple and inexpensive and provides reversible hydride compounds which are free of the usual contamination introduced by prior art wet chemical methods.

  5. Microsoft Word - DirectPayPermit.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    THIS DIRECT PAY PERMIT APPLIES ONLY TO PURCHASES MADE BY GE GLOBAL RESEARCH

  6. Nano-engineering by optically directed self-assembly.

    SciTech Connect (OSTI)

    Furst, Eric; Dunn, Elissa; Park, Jin-Gyu; Brinker, C. Jeffrey; Sainis, Sunil; Merrill, Jason; Dufresne, Eric; Reichert, Matthew D.; Brotherton, Christopher M.; Bogart, Katherine Huderle Andersen; Molecke, Ryan A.; Koehler, Timothy P.; Bell, Nelson Simmons; Grillet, Anne Mary; Gorby, Allen D.; Singh, John; Lele, Pushkar; Mittal, Manish

    2009-09-01

    Lack of robust manufacturing capabilities have limited our ability to make tailored materials with useful optical and thermal properties. For example, traditional methods such as spontaneous self-assembly of spheres cannot generate the complex structures required to produce a full bandgap photonic crystals. The goal of this work was to develop and demonstrate novel methods of directed self-assembly of nanomaterials using optical and electric fields. To achieve this aim, our work employed laser tweezers, a technology that enables non-invasive optical manipulation of particles, from glass microspheres to gold nanoparticles. Laser tweezers were used to create ordered materials with either complex crystal structures or using aspherical building blocks.

  7. Microsoft Word - wind direction vane1.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Understanding Wind Direction And Making A Wind Vane Grade Levels: Kindergarten, 1, 2, and 3 Objectives: The students will learn how to construct a wind vane and understand the parts of a wind vane. Students will learn the four directions. Students will understand that wind vanes are used to measure wind direction and be able to tell the wind direction from their own wind vane. Students will understand that wind direction and weather are correlated. Materials: (for each weathervane) * Triangle

  8. Advanced Simulation and Computing FY09-FY10 Implementation Plan Volume 2, Rev. 1

    SciTech Connect (OSTI)

    Kissel, L

    2009-04-01

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that was very successful in delivering an initial capability to one that is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive capability in the simulation tools. ASC must continue to meet three objectives: (1) Robust Tools - Develop robust models, codes, and computational techniques to support stockpile needs such as refurbishments, SFIs, LEPs, annual assessments, and evolving future requirements; (2) Prediction through Simulation - Deliver validated physics and engineering tools to enable simulations of nuclear weapons performance in a variety of operational environments and physical regimes and to enable risk-informed decisions about the performance, safety, and reliability of the stockpile; and (3) Balanced Operational Infrastructure - Implement a balanced computing platform acquisition strategy and operational infrastructure to meet Directed Stockpile Work (DSW) and SSP needs for capacity and high-end simulation capabilities.

  9. Advanced Simulation and Computing FY09-FY10 Implementation Plan, Volume 2, Revision 0.5

    SciTech Connect (OSTI)

    Meisner, R; Hopson, J; Peery, J; McCoy, M

    2008-10-07

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC)1 is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that was very successful in delivering an initial capability to one that is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive capability in the simulation tools. ASC must continue to meet three objectives: Objective 1. Robust Tools--Develop robust models, codes, and computational techniques to support stockpile needs such as refurbishments, SFIs, LEPs, annual assessments, and evolving future requirements. Objective 2. Prediction through Simulation--Deliver validated physics and engineering tools to enable simulations of nuclear weapons performance in a variety of operational environments and physical regimes and to enable risk-informed decisions about the performance, safety, and reliability of the stockpile. Objective 3. Balanced Operational Infrastructure--Implement a balanced computing platform acquisition strategy and operational infrastructure to meet Directed Stockpile Work (DSW) and SSP needs for capacity and high-end simulation capabilities.

  10. Advanced Simulation and Computing FY10-FY11 Implementation Plan Volume 2, Rev. 0.5

    SciTech Connect (OSTI)

    Meisner, R; Peery, J; McCoy, M; Hopson, J

    2009-09-08

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering (D&E) programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that was very successful in delivering an initial capability to one that is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive capability in the simulation tools. ASC must continue to meet three objectives: (1) Robust Tools - Develop robust models, codes, and computational techniques to support stockpile needs such as refurbishments, SFIs, LEPs, annual assessments, and evolving future requirements; (2) Prediction through Simulation - Deliver validated physics and engineering tools to enable simulations of nuclear weapons performance in a variety of operational environments and physical regimes and to enable risk-informed decisions about the performance, safety, and reliability of the stockpile; and (3) Balanced Operational Infrastructure - Implement a balanced computing platform acquisition strategy and operational infrastructure to meet Directed Stockpile Work (DSW) and SSP needs for capacity and high-end simulation capabilities.

  11. Advanced Simulation and Computing Fiscal Year 2011-2012 Implementation Plan, Revision 0

    SciTech Connect (OSTI)

    McCoy, M; Phillips, J; Hpson, J; Meisner, R

    2010-04-22

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering (D&E) programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that was very successful in delivering an initial capability to one that is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive capability in the simulation tools. ASC must continue to meet three objectives: Objective 1 - Robust Tools. Develop robust models, codes, and computational techniques to support stockpile needs such as refurbishments, SFIs, LEPs, annual assessments, and evolving future requirements. Objective 2 - Prediction through Simulation. Deliver validated physics and engineering tools to enable simulations of nuclear weapons performance in a variety of operational environments and physical regimes and to enable risk-informed decisions about the performance, safety, and reliability of the stockpile. Objective 3 - Balanced Operational Infrastructure. Implement a balanced computing platform acquisition strategy and operational infrastructure to meet Directed Stockpile Work (DSW) and SSP needs for capacity and high-end simulation capabilities.

  12. Advanced Simulation and Computing FY08-09 Implementation Plan, Volume 2, Revision 0.5

    SciTech Connect (OSTI)

    Kusnezov, D; Bickel, T; McCoy, M; Hopson, J

    2007-09-13

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC)1 is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear-weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable Stockpile Life Extension Programs (SLEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining the support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that was very successful in delivering an initial capability to one that is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive capability in the simulation tools. ASC must continue to meet three objectives: Objective 1. Robust Tools--Develop robust models, codes, and computational techniques to support stockpile needs such as refurbishments, SFIs, LEPs, annual assessments, and evolving future requirements. Objective 2--Prediction through Simulation. Deliver validated physics and engineering tools to enable simulations of nuclear-weapons performances in a variety of operational environments and physical regimes and to enable risk-informed decisions about the performance, safety, and reliability of the stockpile. Objective 3. Balanced Operational Infrastructure--Implement a balanced computing platform acquisition strategy and operational infrastructure to meet Directed Stockpile Work (DSW) and SSP needs for capacity and high-end simulation capabilities.

  13. Advanced Simulation & Computing FY09-FY10 Implementation Plan Volume 2, Rev. 0

    SciTech Connect (OSTI)

    Meisner, R; Perry, J; McCoy, M; Hopson, J

    2008-04-30

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the safety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future nonnuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC)1 is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear-weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable Stockpile Life Extension Programs (SLEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining the support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that was very successful in delivering an initial capability to one that is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive capability in the simulation tools. ASC must continue to meet three objectives: Objective 1. Robust Tools--Develop robust models, codes, and computational techniques to support stockpile needs such as refurbishments, SFIs, LEPs, annual assessments, and evolving future requirements. Objective 2--Prediction through Simulation. Deliver validated physics and engineering tools to enable simulations of nuclear-weapons performances in a variety of operational environments and physical regimes and to enable risk-informed decisions about the performance, safety, and reliability of the stockpile. Objective 3--Balanced Operational Infrastructure. Implement a balanced computing platform acquisition strategy and operational infrastructure to meet Directed Stockpile Work (DSW) and SSP needs for capacity and high-end simulation capabilities.

  14. Advanced Simulation and Computing FY10-11 Implementation Plan Volume 2, Rev. 0

    SciTech Connect (OSTI)

    Carnes, B

    2009-06-08

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that was very successful in delivering an initial capability to one that is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive capability in the simulation tools. ASC must continue to meet three objectives: Objective 1 Robust Tools--Develop robust models, codes, and computational techniques to support stockpile needs such as refurbishments, SFIs, LEPs, annual assessments, and evolving future requirements. Objective 2 Prediction through Simulation--Deliver validated physics and engineering tools to enable simulations of nuclear weapons performance in a variety of operational environments and physical regimes and to enable risk-informed decisions about the performance, safety, and reliability of the stockpile. Objective 3 Balanced Operational Infrastructure--Implement a balanced computing platform acquisition strategy and operational infrastructure to meet Directed Stockpile Work (DSW) and SSP needs for capacity and high-end simulation capabilities.

  15. Working Gas in Underground Storage Figure

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas in Underground Storage Figure Working Gas in Underground Storage Compared with 5-Year Range Graph...

  16. PIA - Radiological Work Permit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radiological Work Permit PIA - Radiological Work Permit PIA - Radiological Work Permit PDF icon PIA - Radiological Work Permit More Documents & Publications PIA - Bonneville Power Adminstration Ethics Helpline Occupational Medical Surveillance System (OMSS) PIA, Idaho National Laboratory PIA - HSPD-12 Physical and Logical Access System

  17. Interagency Working Groups | Department of Energy

    Office of Environmental Management (EM)

    About the Federal Energy Management Program » Interagency Working Groups Interagency Working Groups The Federal Energy Management Program works closely with agencies and partner organizations to coordinate interagency working groups. These groups focus on federal energy management and compliance with federal laws and requirements. Interagency Energy Management Task Force The Interagency Energy Management Task Force coordinates federal government activities that encourage energy conservation and

  18. Quality Work Plan Inspection and Monitoring Requirement

    Broader source: Energy.gov [DOE]

    Inspection and monitoring requirements for Weatherization Assistance Program's comprehensive Quality Work Plan.

  19. UTILITY OF MECHANISTIC MODELS FOR DIRECTING ADVANCED SEPARATIONS RESEARCH & DEVELOPMENT ACTIVITIES: Electrochemically Modulated Separation Example

    SciTech Connect (OSTI)

    Schwantes, Jon M.

    2009-06-01

    The objective for this work was to demonstrate the utility of mechanistic computer models designed to simulate actinide behavior for use in efficiently and effectively directing advanced laboratory R&D activities associated with developing advanced separations methods.

  20. ILDG Middleware Working Group Status Report

    SciTech Connect (OSTI)

    B. Joo; W. Watson

    2004-09-01

    We report on the status of the ILDG Middleware Working Group. The Middleware Working Group was formed with the aim of designing standard middleware to allow the interoperation of the data grids of ILDG member collaborations. Details of the working group are given. In this contribution we outline the role of middleware in the ILDG, present our proposed middleware architecture and discuss our current status and future work within the working group.

  1. How Fuel Cells Work | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells Work How Energy Works 30 likes How Fuel Cells Work Fuel cells produce electrical power without any combustion and operate on fuels like hydrogen, natural gas and propane. This clean energy technology can provide power for virtually any application -- from cars and buses to commercial buildings -- while helping reduce carbon pollution and oil consumption. As part of How Energy Works, we'll cover everything from how fuel cells work and why to their important to current uses and the

  2. Training Work Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outreach Forums » Focus Group and Work Group Activities » Training Work Group Training Work Group Collaborative Training Work Group: In a teamed effort, the U.S. Department of Energy's (DOE) National Training Center (NTC), the National Institute of Environmental Health Sciences (NIEHS), Volpentest HAMMER Training and Education Center (HAMMER), Energy Facility Contractors Group (EFCOG), and labor unions work to identify and address worker health, safety and security training improvement needs

  3. How DARHT Works - the World's Most Powerful X-ray Machine

    ScienceCinema (OSTI)

    None

    2014-06-25

    The Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory is an essential scientific tool that supports Stockpile Stewardship at the Laboratory. The World's most powerful x-ray machine, it's used to take high-speed images of mock nuclear devices - data that is used to confirm and modify advanced computer codes in assuring the safety, security, and effectiveness of the U.S. nuclear deterrent.

  4. United States-Japan Nuclear Security Working Group Fact Sheet | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration Fact Sheet | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our

  5. Direct detector for terahertz radiation

    DOE Patents [OSTI]

    Wanke, Michael C. (Albuquerque, NM); Lee, Mark (Albuquerque, NM); Shaner, Eric A. (Albuquerque, NM); Allen, S. James (Santa Barbara, CA)

    2008-09-02

    A direct detector for terahertz radiation comprises a grating-gated field-effect transistor with one or more quantum wells that provide a two-dimensional electron gas in the channel region. The grating gate can be a split-grating gate having at least one finger that can be individually biased. Biasing an individual finger of the split-grating gate to near pinch-off greatly increases the detector's resonant response magnitude over prior QW FET detectors while maintaining frequency selectivity. The split-grating-gated QW FET shows a tunable resonant plasmon response to FIR radiation that makes possible an electrically sweepable spectrometer-on-a-chip with no moving mechanical optical parts. Further, the narrow spectral response and signal-to-noise are adequate for use of the split-grating-gated QW FET in a passive, multispectral terahertz imaging system. The detector can be operated in a photoconductive or a photovoltaic mode. Other embodiments include uniform front and back gates to independently vary the carrier densities in the channel region, a thinned substrate to increase bolometric responsivity, and a resistive shunt to connect the fingers of the grating gate in parallel and provide a uniform gate-channel voltage along the length of the channel to increase the responsivity and improve the spectral resolution.

  6. Low backlash direct drive actuator

    DOE Patents [OSTI]

    Kuklo, T.C.

    1994-10-25

    A low backlash direct drive actuator is described which comprises a motor such as a stepper motor having at least 200 steps per revolution; a two part hub assembly comprising a drive hub coaxially attached to the shaft of the motor and having a plurality of drive pins; a driven hub having a plurality of bores in one end thereof in alignment with the drive pins in the drive hub and a threaded shaft coaxially mounted in an opposite end of the driven hub; and a housing having a central bore therein into which are fitted the drive hub and driven hub, the housing having a motor mount on one end thereof to which is mounted the stepper motor, and a closed end portion with a threaded opening therein coaxial with the central bore in the housing and receiving therein the threaded shaft attached to the driven hub. Limit switches mounted to the housing cooperate with an enlarged lip on the driven hub to limit the lateral travel of the driven hub in the housing, which also acts to limit the lateral travel of the threaded shaft which functions as a lead screw. 10 figs.

  7. Low backlash direct drive actuator

    DOE Patents [OSTI]

    Kuklo, Thomas C. (Oakland, CA)

    1994-01-01

    A low backlash direct drive actuator is described which comprises a motor such as a stepper motor having at least 200 steps per revolution; a two part hub assembly comprising a drive hub coaxially attached to the shaft of the motor and having a plurality of drive pins; a driven hub having a plurality of bores in one end thereof in alignment with the drive pins in the drive hub and a threaded shaft coaxially mounted in an opposite end of the driven hub; and a housing having a central bore therein into which are fitted the drive hub and driven hub, the housing having a motor mount on one end thereof to which is mounted the stepper motor, and a closed end portion with a threaded opening therein coaxial with the central bore in the housing and receiving therein the threaded shaft attached to the driven hub. Limit switches mounted to the housing cooperate with an enlarged lip on the driven hub to limit the lateral travel of the driven hub in the housing, which also acts to limit the lateral travel of the threaded shaft which functions as a lead screw.

  8. Clinton Engineer Works map | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clinton Engineer Works map Clinton Engineer Works map

  9. Electrochemical removal of material from metallic work

    DOE Patents [OSTI]

    Csakvary, Tibor; Fromson, Robert E.

    1980-05-13

    Deburring, polishing, surface forming and the like are carried out by electrochemical machining with conformable electrode means including an electrically conducting and an insulating web. The surface of the work to be processed is covered by a deformable electrically insulating web or cloth which is perforated and conforms with the work. The web is covered by a deformable perforated electrically conducting screen electrode which also conforms with, and is insulated from, the work by the insulating web. An electrolyte is conducted through the electrode and insulating web and along the work through a perforated elastic member which engages the electrode under pressure pressing the electrode and web against the work. High current under low voltage is conducted betwen the electrode and work through the insulator, removing material from the work. Under the pressure of the elastic member, the electrode and insulator continue to conform with the work and the spacing between the electrode and work is maintained constant.

  10. Investigations of Dual-Purpose Canister Direct Disposal Feasibility (FY14)

    Office of Environmental Management (EM)

    R1 | Department of Energy Investigations of Dual-Purpose Canister Direct Disposal Feasibility (FY14) R1 Investigations of Dual-Purpose Canister Direct Disposal Feasibility (FY14) R1 Results continue to support the earlier conclusion that direct disposal of DPCs is technically feasible, at least for some DPCs, and for some disposal concepts (geologic host media). Much of the work performed has reached a point where site-specific information would be needed for further resolution. Several

  11. Living Direct: Order (2011-CE-1904)

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE ordered Living Direct, Inc. to pay a $6,000 civil penalty after finding Living Direct had failed to certify that certain models of dishwashers, refrigerator-freezers and freezers comply with the applicable energy conservation standards.

  12. Direct Energy Services (Massachusetts) | Open Energy Information

    Open Energy Info (EERE)

    Services Place: Massachusetts Phone Number: 1-855-461-1930 Twitter: @DirectEnergy Facebook: http:www.facebook.comDirectEnergy Outage Hotline: 1-800-233-5325 (Greater Boston...

  13. Direct Energy, LP | Open Energy Information

    Open Energy Info (EERE)

    Direct Energy, LP Place: Texas Website: www.directenergy.com Twitter: @directenergy Facebook: https:www.facebook.comDirectEnergy Outage Hotline: 1-855-461-1926 References: EIA...

  14. DIRECT LIQUEFACTION PROOF OF CONCEPT

    SciTech Connect (OSTI)

    1998-09-01

    The eighth bench scale test of POC program, Run PB-08, was successfully completed from August 8 to August 26, 1997. A total of five operating conditions were tested aiming at evaluating the reactivity of different pyrolysis oils in liquefaction of a Wyoming sub-bituminous coal (Black Thunder coal). For the first time, water soluble promoters were incorporated into the iron-based GelCat to improve the dispersion of the promoter metals in the feed blend. The concentration of the active metals, Mo and Fe, was 100 and 1000 ppm of moisture-free coal, respectively. Black Thunder coal used in this run was the same batch as tested in HTI?s Run POC-02. Similar to Runs PB-01 through 7, this run employed two back mixed slurry reactors, an interstage gas/slurry separator and a direct-coupled hydrotreater. In addition to the hot vapor from the second stage separator, the first stage separator overhead liquid was also fed to the hydrotreater, which was packed with Criterion C-411 hydrotreating catalyst. Pyrolysis oil was produced off-line from a pyrolysis unit acquired from University of Wyoming. Solids rejection was achieved by purging out pressure filter solid. The recycle solvents consisted of O-6 separator bottoms and pressure filter liquid (PFL). The Run PB-08 proceeded very smoothly without any interruptions. Coal conversion consistently above 90W% was achieved. High resid conversion and distillate yield have been obtained from co-processing of coal and 343°C+ (650°F+) pyrolysis oil. Light gas (C1-C3 ) yield was minimized and hydrogen consumption was reduced due to the introduction of pyrolysis oil, compared with conventional coal-derived solvent. Catalytic activity was improved by incorporating a promoter metal into the iron-based GelCat. It seemed that lowering the first stage temperature to 435°C might increase the hydrogenation function of the promoter metal. In comparison with previous coal-waste coprocessing run (PB-06), significant improvements in the process performance were achieved due to catalyst modification and integration of pyrolysis technique into liquefaction.

  15. Hydrothermal industrialization: direct heat development. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-05-01

    A description of hydrothermal resources suitable for direct applications, their associated temperatures, geographic distribution and developable capacity are given. An overview of the hydrothermal direct-heat development infrastructure is presented. Development activity is highlighted by examining known and planned geothermal direct-use applications. Underlying assumptions and results for three studies conducted to determine direct-use market penetration of geothermal energy are discussed.

  16. Direct Methanol Fuel Cells - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Methanol Fuel Cells Los Alamos National Laboratory Contact LANL About This Technology Direct methanol fuel cells provide an alternative power source for mobile devices. Direct methanol fuel cells provide an alternative power source for mobile devices. Technology Marketing SummaryLANL has developed an intellectual property portfolio in Direct Methanol Fuel Cells that may permit companies to participate in the emerging DMFC market while minimizing R&D risks and expenditures. Our

  17. Extension of DOE Directives on Security

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-12-31

    This Notice extends 15 Office of Security and Emergency Operation directives that have expired or will expire until December 31, 2001. This Notice will remain in effect until its expiration date or until new/revised directives are published. The following statement will be added to the summary of the extended directives-DOE N 251.40, dated 5/3/01, extends this directive until 12/31/01.

  18. Basic ReseaRch DiRections

    National Nuclear Security Administration (NNSA)

    Basic ReseaRch DiRections for User Science at the National Ignition Facility Report on the National Nuclear Security Administration - Office of Science Workshop on Basic Research Directions on User Science at the National Ignition Facility BASIC RESEARCH DIRECTIONS FOR USER SCIENCE AT THE NATIONAL IGNITION FACILITY Report on the National Nuclear Security Administration (NNSA) - Office of Science (SC) Workshop on Basic Research Directions on User Science at the National Ignition Facility Chairs:

  19. How Carbon Capture Works | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fusion Energy Works 33 likes Fusion energy is the energy source of the sun and all of the stars. As part of How Energy Works, we'll cover everything from fuel sources to plasma...

  20. Elmira Stove Works: Order (2011-CE-1407)

    Broader source: Energy.gov [DOE]

    DOE ordered Elmira Stove Works to pay a $6,000 civil penalty after finding Elmira Stove Works had failed to certify that certain models of refrigerator-freezers comply with the applicable energy conservation standard.