National Library of Energy BETA

Sample records for directed stockpile work

  1. University Research Program in Robotics - "Technologies for Micro-Electrical-Mechanical Systems in directed Stockpile Work (DSW) Radiation and Campaigns", Final Technical Annual Report, Project Period 9/1/06 - 8/31/07

    SciTech Connect (OSTI)

    James S. Tulenko; Carl D. Crane

    2007-12-13

    The University Research Program in Robotics (URPR) is an integrated group of universities performing fundamental research that addresses broad-based robotics and automation needs of the NNSA Directed Stockpile Work (DSW) and Campaigns. The URPR mission is to provide improved capabilities in robotics science and engineering to meet the future needs of all weapon systems and other associated NNSA/DOE activities.

  2. UNIVERSITY RESEARCH PROGRAMS IN ROBOTICS, TECHNOLOGIES FOR MICROELECTROMECHANICAL SYSTEMS IN DIRECTED STOCKPILE WORK RADIATION AND ENGINEERING CAMPAIGNS - 2005-06 FINAL ANNUAL REPORT

    SciTech Connect (OSTI)

    James S. Tulenko; Dean Schoenfeld; David Hintenlang; Carl Crane; Shannon Ridgeway; Jose Santiago; Charles Scheer

    2006-11-30

    The research performed by the University of Florida (UF) is directed to the development of technologies that can be utilized at a micro-scale in varied environments. Work is focused on micro-scale energy systems, visualization, and mechanical devices. This work will impact the NNSA need related to micro-assembly operations. The URPR activities are executed in a University environment, yet many applications of the resulting technologies may be classified or highly restrictive in nature. The NNSA robotics technologists apply an NNSA needs focus to the URPR research, and actively work to transition relevant research into the deployment projects in which they are involved. This provides a “Research to Development to Application” structure within which innovative research has maximum opportunity for impact without requiring URPR researchers to be involved in specific NNSA projects. URPR researchers need to be aware of the NNSA applications in order to ensure the research being conducted has relevance, the URPR shall rely upon the NNSA sites for direction.

  3. Using Direct Sub-Level Entity Access to Improve Nuclear Stockpile Simulation Modeling

    SciTech Connect (OSTI)

    Robert Y. Parker

    1999-08-01

    Direct sub-level entity access is a seldom-used technique in discrete-event simulation modeling that addresses the accessibility of sub-level entity information. The technique has significant advantages over more common, alternative modeling methods--especially where hierarchical entity structures are modeled. As such, direct sub-level entity access is often preferable in modeling nuclear stockpile, life-extension issues, an area to which it has not been previously applied. Current nuclear stockpile, life-extension models were demonstrated to benefit greatly from the advantages of direct sub-level entity access. In specific cases, the application of the technique resulted in models that were up to 10 times faster than functionally equivalent models where alternative techniques were applied. Furthermore, specific implementations of direct sub-level entity access were observed to be more flexible, efficient, functional, and scalable than corresponding implementations using common modeling techniques. Common modeling techniques (''unbatch/batch'' and ''attribute-copying'') proved inefficient and cumbersome in handling many nuclear stockpile modeling complexities, including multiple weapon sites, true defect analysis, and large numbers of weapon and subsystem types. While significant effort was required to enable direct sub-level entity access in the nuclear stockpile simulation models, the enhancements were worth the effort--resulting in more efficient, more capable, and more informative models that effectively addressed the complexities of the nuclear stockpile.

  4. Defense Experimentation and Stockpile Stewardship

    SciTech Connect (OSTI)

    None

    2014-10-28

    A primary mission of the site is to help ensure that the nation's nuclear weapon stockpile remains safe, secure and reliable. The stockpile stewardship program, working with the national weapons laboratories conducts a wide range of experiments using advanced diagnostic technologies, many of which were developed right here at the NNSS.

  5. Defense Experimentation and Stockpile Stewardship

    ScienceCinema (OSTI)

    None

    2015-01-07

    A primary mission of the site is to help ensure that the nation's nuclear weapon stockpile remains safe, secure and reliable. The stockpile stewardship program, working with the national weapons laboratories conducts a wide range of experiments using advanced diagnostic technologies, many of which were developed right here at the NNSS.

  6. Stockpile Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment TopMetathesis and Oxidation of Metal Nodes inStockpile

  7. Update Direct-Strike Lightning Environment for Stockpile-to-Target Sequence

    SciTech Connect (OSTI)

    Uman, M A; Rakov, V A; Elisme, J O; Jordan, D M; Biagi, C J; Hill, J D

    2008-10-01

    The University of Florida has surveyed all relevant publications reporting lightning characteristics and presents here an up-to-date version of the direct-strike lightning environment specifications for nuclear weapons published in 1989 by R. J. Fisher and M. A. Uman. Further, we present functional expressions for current vs. time, current derivative vs. time, second current derivative vs. time, charge transfer vs. time, and action integral (specific energy) vs. time for first return strokes, for subsequent return strokes, and for continuing currents; and we give sets of constants for these expressions so that they yield approximately the median and extreme negative lightning parameters presented in this report. Expressions for the median negative lightning waveforms are plotted. Finally, we provide information on direct-strike lightning damage to metals such as stainless steel, which could be used as components of storage containers for nuclear waste materials; and we describe UF's new experimental research program to add to the sparse data base on the properties of positive lightning. Our literature survey, referred to above, is included in four Appendices. The following four sections (II, III, IV, and V) of this final report deal with related aspects of the research: Section II. Recommended Direct-Strike Median and Extreme Parameters; Section III. Time-Domain Waveforms for First Strokes, Subsequent Strokes, and Continuing Currents; Section IV. Damage to Metal Surfaces by Lightning Currents; and Section V. Measurement of the Characteristics of Positive Lightning. Results of the literature search used to derive the material in Section II and Section IV are found in the Appendices: Appendix 1. Return Stroke Current, Appendix 2. Continuing Current, Appendix 3. Positive Lightning, and Appendix 4. Lightning Damage to Metal Surfaces.

  8. Statistical modeling of spontaneous combustion in industrial-scale coal stockpiles

    SciTech Connect (OSTI)

    Ozdeniz, H [Selcuk University, Konya (Turkey). Dept. of Mining Engineering

    2009-07-01

    Companies consuming large amounts of coal should work with coal stocks in order to not face problems due to production delays. The industrial-scale stockpiles formed for the aforementioned reasons cause environmental problems and economic losses for the companies. This study was performed in a coal stock area of a large company in Konya, which uses large amounts of coal in its manufacturing units. The coal stockpile with 5 m width, 10 m length, 3 m height, and having 120 tons of weight was formed in the coal stock area of the company. The inner temperature data of the stockpile was recorded by 17 temperature sensors placed inside the stockpile at certain points. Additionally, the data relating to the air temperature, air humidity, atmospheric pressure, wind velocity, and wind direction that are the parameters affecting the coal stockpile were also recorded. A statistical model applicable for a spontaneous combustion event was developed during this study after applying multi-regression analyses to the data recorded in the stockpile during the spontaneous combustion event. The correlation coefficients obtained by the developed statistical model were measured approximately at a 0.95 level. Thus, the prediction of temperature variations influential in the spontaneous combustion event of the industrial-scale coal stockpiles will be possible.

  9. Stewarding a Reduced Stockpile

    SciTech Connect (OSTI)

    Goodwin, B T; Mara, G

    2008-04-18

    The future of the US nuclear arsenal continues to be guided by two distinct drivers: the preservation of world peace and the prevention of further proliferation through our extended deterrent umbrella. Timely implementation of US nuclear policy decisions depends, in part, on the current state of stockpile weapons, their delivery systems, and the supporting infrastructure within the Department of Defense (DoD) and the Department of Energy's National Nuclear Security Administration (NNSA). In turn, the present is a product of past choices and world events. Now more than ever, the nuclear weapons program must respond to the changing global security environment and to increasing budget pressures with innovation and sound investments. As the nation transitions to a reduced stockpile, the successes of the Stockpile Stewardship Program (SSP) present options to transition to a sustainable complex better suited to stockpile size, national strategic goals and budgetary realities. Under any stockpile size, we must maintain essential human capital, forefront capabilities, and have a right-sized effective production capacity. We present new concepts for maintaining high confidence at low stockpile numbers and to effectively eliminate the reserve weapons within an optimized complex. We, as a nation, have choices to make on how we will achieve a credible 21st century deterrent.

  10. Stockpile surveillance: Past and future

    SciTech Connect (OSTI)

    Johnson, K.; Keller, J. [Lawrence Livermore National Lab., CA (United States); Ekdahl, C.; Krajcik, R.; Salazar, L. [Los Alamos National Lab., NM (United States); Kelly, E.; Paulsen, R. [Sandia National Labs., Albuquerque, NM (United States)

    1996-01-01

    The US nuclear weapon stockpile is entering a different era. Continuous introduction of new weapons into the stockpile, a large production capacity, and underground nuclear testing played important roles in how the nuclear weapons stockpile was managed in the past. These are no longer elements of the nuclear weapons program. Adjustments need to be made to compensate for the loss of these elements. The history of the stockpile indicates that problems have been found in both nuclear and nonnuclear components through a variety of methods including the Stockpile Evaluation Program, stockpile management activities, underground nuclear tests, and research activities. Changes have been made to the stockpile when necessary to assure safety, performance, and reliability. There have been problems found in each of the weapon types expected to be in the stockpile in the year 2000. It is reasonable to expect problems will continue to arise in the stockpile as it ages beyond the original design expectations.

  11. Stockpile Stewardship: Los Alamos

    SciTech Connect (OSTI)

    McMillan, Charlie; Morgan, Nathanial; Goorley, Tom; Merrill, Frank; Funk, Dave; Korzekwa, Deniece; Laintz, Ken

    2012-01-26

    "Heritage of Science" is a short video that highlights the Stockpile Stewardship program at Los Alamos National Laboratory. Stockpile Stewardship was conceived in the early 1990s as a national science-based program that could assure the safety, security, and effectiveness of the U.S. nuclear deterrent without the need for full-scale underground nuclear testing. This video was produced by Los Alamos National Laboratory for screening at the Lab's Bradbury Science Museum in Los Alamos, NM and is narrated by science correspondent Miles O'Brien.

  12. Stockpile Stewardship: Los Alamos

    ScienceCinema (OSTI)

    McMillan, Charlie; Morgan, Nathanial; Goorley, Tom; Merrill, Frank; Funk, Dave; Korzekwa, Deniece; Laintz, Ken

    2014-08-12

    "Heritage of Science" is a short video that highlights the Stockpile Stewardship program at Los Alamos National Laboratory. Stockpile Stewardship was conceived in the early 1990s as a national science-based program that could assure the safety, security, and effectiveness of the U.S. nuclear deterrent without the need for full-scale underground nuclear testing. This video was produced by Los Alamos National Laboratory for screening at the Lab's Bradbury Science Museum in Los Alamos, NM and is narrated by science correspondent Miles O'Brien.

  13. Risk in the Weapons Stockpile

    SciTech Connect (OSTI)

    Noone, Bailey C

    2012-08-14

    When it comes to the nuclear weapons stockpile, risk must be as low as possible. Design and care to keep the stockpile healthy involves all aspects of risk management. Design diversity is a method that helps to mitigate risk.

  14. Thorium Nitrate Stockpile--From Here to Eternity

    SciTech Connect (OSTI)

    Hermes, W. H.; Hylton, T. D.; Mattus, C.H.; Storch, S. N.; Singley, P.S.; Terry. J. W.; Pecullan, M.; Reilly, F. K.

    2003-02-26

    The Defense National Stockpile Center (DNSC), a field level activity of the Defense Logistics Agency (DLA) has stewardship of a stockpile of thorium nitrate that has been in storage for decades. The stockpile is made up of approximately 3.2 million kg (7 million lb) of thorium nitrate crystals (hydrate form) stored at two depot locations in the United States. DNSC sought technical assistance from Oak Ridge National Laboratory (ORNL) to define and quantify the management options for the thorium nitrate stockpile. This paper describes methodologies and results comprising the work in Phase 1 and Phase 2. The results allow the DNSC to structure and schedule needed tasks to ensure continued safe long-term storage and/or phased disposal of the stockpile.

  15. Los Alamos names new head of stockpile manufacturing and support

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New head of stockpile manufacturing and support Los Alamos names new head of stockpile manufacturing and support Carl Beard is the new associate director for stockpile...

  16. Analytical Characterization of the Thorium Nitrate Stockpile

    SciTech Connect (OSTI)

    Mattus, CH

    2003-12-30

    For several years, Oak Ridge National Laboratory (ORNL) has been supporting the Defense Logistics Agency-Defense National Stockpile Center with stewardship of a thorium nitrate (ThN) stockpile. The effort for fiscal year 2002 was to prepare a sampling and analysis plan and to use the activities developed in the plan to characterize the ThN stockpile. The sampling was performed in June and July 2002 by RWE NUKEM with oversight by ORNL personnel. The analysis was performed by Southwest Research Institute of San Antonio, Texas, and data validation was performed by NFT, Inc., of Oak Ridge, Tennessee. Of the {approx} 21,000 drums in the stockpile, 99 were sampled and 53 were analyzed for total metals composition, radiological constituents (using alpha and gamma spectrometry), and oxidizing characteristics. Each lot at the Curtis Bay Depot was sampled. Several of the samples were also analyzed for density. The average density of the domestic ThN was found to be 1.89 {+-} 0.08 g/cm{sup 3}. The oxidizer test was performed following procedures issued by the United Nations in 1999. Test results indicated that none of the samples tested was a Division 5.1 oxidizer per Department of Transportation definition. The samples were analyzed for total metals following the U.S. Environmental Protection Agency methods SW-846-6010B and 6020 (EPA 2003) using a combination of inductively coupled plasma--atomic emission spectroscopy and inductively coupled plasma--mass spectroscopy techniques. The results were used to compare the composition of the eight Resource Conservation and Recovery Act metals present in the sample (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver) to regulatory limits. None of the samples was found to be hazardous for toxicity characteristics. The radiological analyses confirmed, when possible, the results obtained by the inductively coupled plasma analyses. These results--combined with the historical process knowledge acquired on the material and the results of previous tests--classified the ThN as low-level radioactive waste for disposal purposes. This characterization was necessary to continue the efforts associated with disposition of the material at the Nevada Test Site, Mercury, Nevada. With the current work presented in this report, the analytical characterization phase is completed for this source material stockpile.

  17. Why the Nuclear Stockpile Needs Supercomputers

    Broader source: Energy.gov [DOE]

    NNSA supercomputers are a key part of our ability to keep our nuclear stockpile safe, secure and effective.

  18. Artificial neural network modeling of the spontaneous combustion occurring in the industrial-scale coal stockpiles with 10-18 mm coal grain sizes

    SciTech Connect (OSTI)

    Ozdeniz, A.H.; Yilmaz, N. [Selcuk University, Konya (Turkey). Dept. of Mining Engineering

    2009-07-01

    Companies consuming large amounts of coal should work with coal stocks in order to not face problems due to production delays. The industrial-scale stockpiles formed for the aforementioned reasons cause environmental problems and economic losses for the companies. This study was performed in a coal stock area of a large company in Konya, which uses large amounts of coal in its manufacturing units. The coal stockpile with 5 m width, 10 m length, 3 m height, and having 120 tons of weight was formed in the coal stock area of the company. The inner temperature data of the stockpile was recorded by 17 temperature sensors placed inside the stockpile at certain points. In order to achieve this goal, the electrical signal conversion of temperatures sensed by 17 temperature sensors placed in certain points inside the coal stockpile, the transfer of these electrical signals into computer media by using analog-digital conversion unit after applying necessary filtration and upgrading processes, and the record of these information into a database in particular time intervals are provided. Additionally, the data relating to the air temperature, air humidity, atmospheric pressure, wind velocity, and wind direction that are the parameters affecting the coal stockpile were also recorded. Afterwards, these measurement values were used for training and testing of an artificial neural network model. Comparison of the experimental and artificial neural network results, accuracy rates of training and testing were found to be 99.5% and 99.17%, respectively. It is shown that possible coal stockpile behavior with this artificial neural network model is powerfully estimated.

  19. Aging and Radiation Effects in Stockpile Electronics

    SciTech Connect (OSTI)

    Hartman, E.F.

    1999-03-25

    It is likely that aging is affecting the radiation hardness of stockpile electronics, and we have seen apparent examples of aging that affects the electronic radiation hardness. It is also possible that low-level intrinsic radiation that is inherent during stockpile life will damage or in a sense age electronic components. Both aging and low level radiation effects on radiation hardness and stockpile reliability need to be further investigated by using both test and modeling strategies that include appropriate testing of electronic components withdrawn from the stockpile.

  20. ORISE: Chemical Stockpile Emergency Preparedness Program Exercise...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exercise Trending Tool ORISE-developed tool improves information sharing between Chemical Stockpile Emergency Preparedness Program partners The Oak Ridge Institute for Science and...

  1. ORISE: Chemical Stockpile Emergency Preparedness Program Exercise...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Stockpile Emergency Preparedness Program Exercise Training and Analysis Tool Training Tool Improves Information Sharing Between CSEPP and its Response Partners In 2006,...

  2. stockpile

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 20123/%2Anational lab |buisness |8/%2A

  3. Planning guidance for the Chemical Stockpile Emergency Preparedness Program

    SciTech Connect (OSTI)

    Shumpert, B.L.; Watson, A.P.; Sorensen, J.H. [and others] and others

    1995-02-01

    This planning guide was developed under the direction of the U.S. Army and the Federal Emergency Management Agency (FEMA) which jointly coordinate and direct the development of the Chemical Stockpile Emergency Preparedness Program (CSEPP). It was produced to assist state, local, and Army installation planners in formulating and coordinating plans for chemical events that may occur at the chemical agent stockpile storage locations in the continental United States. This document provides broad planning guidance for use by both on-post and off-post agencies and organizations in the development of a coordinated plan for responding to chemical events. It contains checklists to assist in assuring that all important aspects are included in the plans and procedures developed at each Chemical Stockpile Disposal Program (CSDP) location. The checklists are supplemented by planning guidelines in the appendices which provide more detailed guidance regarding some issues. The planning guidance contained in this document will help ensure that adequate coordination between on-post and off-post planners occurs during the planning process. This planning guide broadly describes an adequate emergency planning base that assures that critical planning decisions will be made consistently at every chemical agent stockpile location. This planning guide includes material drawn from other documents developed by the FEMA, the Army, and other federal agencies with emergency preparedness program responsibilities. Some of this material has been developed specifically to meet the unique requirements of the CSEPP. In addition to this guidance, other location-specific documents, technical studies, and support studies should be used as needed to assist in the planning at each of the chemical agent stockpile locations to address the specific hazards and conditions at each location.

  4. Stockpile Stewardship at Los Alamos(U)

    SciTech Connect (OSTI)

    Webster, Robert B.

    2012-06-29

    Stockpile stewardship is the retention of nuclear weapons in the stockpile beyond their original design life. These older weapons have potential changes inconsistent with the original design intent and military specifications. The Stockpile Stewardship Program requires us to develop high-fidelity, physics-based capabilities to predict, assess, certify and design nuclear weapons without conducting a nuclear test. Each year, the Lab Directors are required to provide an assessment of the safety, security, and reliability our stockpile to the President of the United States. This includes assessing whether a need to return to testing exists. This is a talk to provide an overview of Stockpile Stewardship's scientific requirements and how stewardship has changed in the absence of nuclear testing. The talk is adapted from an HQ talk to the War college, and historical unclassified talks on weapon's physics.

  5. Nuclear stockpile stewardship and Bayesian image analysis (DARHT...

    Office of Scientific and Technical Information (OSTI)

    Conference: Nuclear stockpile stewardship and Bayesian image analysis (DARHT and the BIE) Citation Details In-Document Search Title: Nuclear stockpile stewardship and Bayesian...

  6. Stockpile | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|SensitiveApril 2,BL4-2StefanLightsource5 StockpileStockpile

  7. In 20th Year, Stockpile Stewardship Program Celebrated As One...

    National Nuclear Security Administration (NNSA)

    technologies, including high-performance computing and breakthroughs on lasers, optics, diagnostics, materials properties, and engineering designs. Through these stockpile...

  8. Stockpile stewardship past, present, and future

    SciTech Connect (OSTI)

    Adams, Marvin L., E-mail: mladams@tamu.edu [Institute for National Security Education and Research, Texas A and M University, College Station, TX 77843-3133 (United States)

    2014-05-09

    The U.S. National Academies released a report in 2012 on technical issues related to the Comprehensive Test Ban Treaty. One important question addressed therein is whether the U.S. could maintain a safe, secure, and reliable nuclear-weapons stockpile in the absence of nuclear-explosion testing. Here we discuss two main conclusions from the 2012 Academies report, which we paraphrase as follows: 1) Provided that sufficient resources and a national commitment to stockpile stewardship are in place, the U.S. has the technical capabilities to maintain a safe, secure, and reliable stockpile of nuclear weapons into the foreseeable future without nuclear-explosion testing. 2) Doing this would require: a) a strong weapons science and engineering program that addresses gaps in understanding; b) an outstanding workforce that applies deep and broad weapons expertise to deliver solutions to stockpile problems; c) a vigorous, stable surveillance program that delivers the requisite data; d) production facilities that meet stewardship needs. We emphasize that these conclusions are independent of CTBT ratification-they apply provided only that the U.S. continues its nuclear-explosion moratorium.

  9. Update on the Stockpile Monitor Program

    SciTech Connect (OSTI)

    Rivera, T.; Harry, H.H.

    1999-04-01

    In 1991 the Los Alamos National Laboratory (LANL) launched a program to develop a comprehensive database of warhead storage conditions. Because of the extended lifetimes expected of the Stockpile, it became desirable to obtain as much detailed information on the storage environments as possible. Temperature and relative humidity at various facilities capable of storing and/or handling nuclear weapons were used as monitoring locations. The Stockpile Monitor Program (SMP) was implemented in a variety of locations as illustrated in a figure. Probably the most useful data come from the most extreme conditions monitored. The hottest outside temperatures and relative humidities come from Barksdale, while some of the lowest relative humidity values come from Nellis, which continue to be monitored. The coldest conditions come from Grand Forks, Griffiss, and KI Sawyer, none of which are presently being monitored. For this reason, the authors would like to begin monitoring Minot, ND. The outside extreme temperatures are ameliorated by the structures to a significant degree. For example, the hottest outside temperature (120 F) is contrasted by the corresponding cooler inside temperature (85 F), and the coldest outside temperature ({minus}35 F) is contrasted by the corresponding warmer inside temperature (+25 F). These data have become useful for calculations related to stockpile-to-target sequence (STS) and other analyses. SMP information has been provided to a number of outside agencies.

  10. Nuclear Deterrence and Stockpile Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxideUser Work FeaturedNuclear &

  11. stockpile | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0 4 2 r m m mDiurnalCarbonU C L E A Rstewardship ||

  12. NNSA's Summary of Experiments Conducted in Support of Stockpile...

    National Nuclear Security Administration (NNSA)

    in Science and Security NNSA Announces Procurement of Penguin Computing Clusters to Support Stockpile Stewardship at National Labs Stewardship Science Academic Alliances Awards...

  13. Proposed Laser-Based HED physics experiments for Stockpile Stewardship

    SciTech Connect (OSTI)

    Benage, John F.; Albright, Brian J.; Fernandez, Juan C.

    2012-09-04

    An analysis of the scientific areas in High Energy Density (HED) physics that underpin the enduring LANL mission in Stockpile Stewardship (SS) has identified important research needs that are not being met. That analysis has included the work done as part of defining the mission need for the High Intensity Laser Laboratory (HILL) LANL proposal to NNSA, LDRD DR proposal evaluations, and consideration of the Predictive Capability Framework and LANL NNSA milestones. From that evaluation, we have identified several specific and scientifically-exciting experimental concepts to address those needs. These experiments are particularly responsive to physics issues in Campaigns 1 and 10. These experiments are best done initially at the LANL Trident facility, often relying on the unique capabilities available there, although there are typically meritorious extensions envisioned at future facilities such as HILL, or the NIF once the ARC short-pulse laser is available at sufficient laser intensity. As the focus of the LANL HEDP effort broadens from ICF ignition of the point design at the conclusion of the National Ignition Campaign, into a more SS-centric effort, it is useful to consider these experiments, which address well-defined issues, with specific scientific hypothesis to test or models to validate or disprove, via unit-physics experiments. These experiments are in turn representative of a possible broad experimental portfolio to elucidate the physics of interest to these campaigns. These experiments, described below, include: (1) First direct measurement of the evolution of particulates in isochorically heated dense plasma; (2) Temperature relaxation measurements in a strongly-coupled plasma; (3) Viscosity measurements in a dense plasma; and (4) Ionic structure factors in a dense plasma. All these experiments address scientific topics of importance to our sponsors, involve excellent science at the boundaries of traditional fields, utilize unique capabilities at LANL, and contribute to the Campaign milestone in 2018. Given their interdisciplinary nature, it is not surprising that these research needs are not being addressed by the other excellent high-energy density physics (HEDP) facilities coming on line, facilities aimed squarely at more established fields and missions. Although energy rich, these facilities deliver radiation (e.g., particle beams for isochoric heating) over a timescale that is too slow in these unit physics experiments to eliminate hydrodynamic evolution of the target plasma during the time it is being created. A theme shared by all of these experiments is the need to quickly create a quasi-homogeneous 'initial state' whose properties and evolution we wish to study. Otherwise, we cannot create unit experiments to isolate the physics of interest and validate the models in our codes, something that cannot be done with the integrated experiments often done in HED. Moreover, these experiments in some cases involve combinations of solid and plasmas, or matter in the warm-dense matter state, where neither the theoretical approximations of solid state or of fully-ionized weakly-coupled plasmas can be used. In all cases, the capability of 'isochoric heating' ('flash' heating at constant density) is important. In some cases, the ability to selectively heat to different degrees different species within a target, whether mixed or adjacent to each other, is critical for the experiment. This capability requires the delivery of very high power densities, which require the conversion of the laser into very short and intense pulses of secondary radiation (electrons, ions, neutrons, x-rays). Otherwise, there is no possibility of a clean experiment to constrain the models, in the cases there are any, or inform the creation of one. Another typical requirement of these experiments is the ability to probe these exotic extreme conditions of matter with flexible and diverse sources of secondary radiation. Without a high-intensity high-power laser with some unique attributes available on Trident today (e.g., ultra-high laser-puls

  14. Speculation without Oil Stockpiling as a Signature: A Dynamic Perspective

    E-Print Network [OSTI]

    Babusiaux, Denis

    According to the standard analysis of commodity prices, stockpiling is a necessary signature of speculation. This paper develops an approach suggesting that speculation may temporarily push crude oil prices above the level ...

  15. Stockpile Stewardship: How we Ensure the Nuclear Deterrent without Testing

    SciTech Connect (OSTI)

    2014-09-04

    In the 1990s, the U.S. nuclear weapons program shifted emphasis from developing new designs to dismantling thousands of existing weapons and maintaining a much smaller enduring stockpile. The United States ceased underground nuclear testing, and the Department of Energy created the Stockpile Stewardship Program to maintain the safety, security, and reliability of the U.S. nuclear deterrent without full-scale testing. This video gives a behind the scenes look at a set of unique capabilities at Lawrence Livermore that are indispensable to the Stockpile Stewardship Program: high performance computing, the Superblock category II nuclear facility, the JASPER a two stage gas gun, the High Explosive Applications Facility (HEAF), the National Ignition Facility (NIF), and the Site 300 contained firing facility.

  16. NNSA Releases Annual Stockpile Stewardship & Management Plan...

    National Nuclear Security Administration (NNSA)

    Locations Budget Our Operations Media Congressional Testimony Fact Sheets Newsletters Press Releases Video Gallery Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA...

  17. managing the stockpile | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistoryM aterialsmFUSE: Functionmanaging the

  18. stockpile modernization | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0 4 2 r m m mDiurnalCarbonU C L E A R

  19. stockpile stewardship | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0 4 2 r m m mDiurnalCarbonU C L E A Rstewardship |

  20. EIS-0236: Programmatic Environmental Impact Statement for Stockpile Stewardship and Management

    Broader source: Energy.gov [DOE]

    DOE must maintain a Complex with sufficient capability and capacity to meet current and future weapons requirements. For those activities associated with the ongoing stockpile stewardship program, DOE proposes to add enhanced capabilities to existing stockpile stewardship facilities to fulfill requirements.DOE proposes to "rightsize" existing facilities or consolidate them to fulfill expected requirements for manufacture of repair or replacement components for an aging U.S. stockpile.

  1. Materials and Sensor R&D to Transform the Nuclear Stockpile:...

    Office of Scientific and Technical Information (OSTI)

    the nuclear stockpile. Risks include material supply issues, ever-increasing lifecycle costs, and loss of technical expertise across the weapons complex. For example, non-nuclear...

  2. Risk communications and the Chemical Stockpile Emergency-Planning Program

    SciTech Connect (OSTI)

    Vogt, B.M.; Sorensen, J.H.

    1994-09-01

    The CSEPP (Chemical Stockpile Emergency Preparedness Program) was created to improve emergency planning and response capabilities at the eight sites around the country that store chemical weapons. These weapons are scheduled to be destroyed in the near future. In preparation of the Draft Programmatic Environmental Impact Statement (DPEIS) for the Chemical Stockpile Disposal Program (CSDP), it was proposed that the Army mitigate accidents through an enhanced community emergency preparedness program at the eight storage sites. In 1986, the Army initiated the development of an Emergency Response Concept Plan (ERCP) for the CSDP, one of 12 technical support studies conducted during preparation of the Final Programmatic Environmental Impact Statement (FPEIS). The purpose of this document is to provide a fairly comprehensive source book on risk, risk management, risk communication research and recommended risk communication practices. It does not merely summarize each publication in the risk communication literature, but attempts to synthesize them along the lines of a set of organizing principles. Furthermore, it is not intended to duplicate other guidance manuals (such as Covello et al.`s manual on risk comparison). The source book was developed for the CSEPP in support of the training module on risk communications. Although the examples provided are specific to CSEPP, its use goes beyond that of CSEPP as the findings apply to a broad spectrum of risk communication topics. While the emphasis is on communication in emergency preparedness and response specific to the CSEPP, the materials cover other non-emergency communication settings. 329 refs.

  3. Indirect-direct hybrid-drive work-dominated hotspot ignition for inertial confinement fusion

    E-Print Network [OSTI]

    He, X T; Li, J W; Liu, J; Lan, K; Wu, J F; Wang, L F; Ye, W H

    2015-01-01

    An indirect-direct hybrid-drive work-dominated hotspot ignition scheme for inertial confinement fusion is proposed: a layered fuel capsule inside a spherical hohlraum with an octahedral symmetry is compressed first by indirect-drive soft-x rays (radiation) and then by direct-drive lasers in last pulse duration. In this scheme, an enhanced shock and a follow-up compression wave for ignition with pressure far greater than the radiation ablation pressure are driven by the direct-drive lasers, and provide large pdV work to the hotspot to perform the work-dominated ignition. The numerical simulations show that the enhanced shock stops the reflections of indirect-drive shock at the main fuel-hotspot interface, and therefore significantly suppresses the hydrodynamic instabilities and asymmetry. Based on the indirect-drive implosion dynamics the hotspot is further compressed and heated by the enhanced shock and follow-up compression wave, resulting in the work-dominated hotspot ignition and burn with a maximal implos...

  4. An examination of the perceived direction of work-family conflict 

    E-Print Network [OSTI]

    Huffman, Ann Hergatt

    2005-02-17

    -1 AN EXAMINATION OF THE PERCEIVED DIRECTION OF WORK-FAMILY CONFLICT A Dissertation by ANN HERGATT HUFFMAN Submitted to the Office of Graduate Studies of Texas A& M University in partial fulfillment of the requirements for the degree of DOCTOR... in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved as to style and content by: _____________________________ _____________________________ Stephanie C. Payne Winfred Arthur, Jr. (Chair...

  5. EIS-0347: Long-Term Management of the National Defense Stockpile Inventory of Excess Mercury

    Broader source: Energy.gov [DOE]

    This Defense Logistics Agency EIS evaluated alternatives for managing the Defense National Stockpile Center inventory of excess mercury. DOE was a cooperating agency for preparation of the draft EIS.

  6. Citizen-State Interaction and Technical Controversy: The U.S. Army Chemical Stockpile Disposal Program

    E-Print Network [OSTI]

    Futrell, Robert

    1997-04-01

    This paper explores the development and transformation of a local collective campaign opposing the U.S. Army's ChemicaL Weapons Stockpile Disposal Program into a social movement with national and international dimensions. I examine the ways in which...

  7. Polymeric materials replacement issues for the LANL stockpile.

    SciTech Connect (OSTI)

    Sandoval, C. W. (Cynthia W.); Gladysz, G. M. (Gary M.); Stephens, T. S. (Thomas S.); Gleiman, S. S. (Seth S.); Mendoza, D. (Daniel); Baker, G. K. (G. Keith); Schoonover, J. R. (Jon R.); Schneider, Jim; Perry, B. (Brian); Lula, J. W.

    2002-01-01

    A number of materials in the LANL stockpile are no longer available due to lack of availability or environment, safety and health issues. Silastic S-5370 a polysiloxane foam used to manufacture multiple components in LANL systems has been discontinued by Dow Corning. Kerimid 601 is a polyimide resin used as the binder for the syntactic foam used as a support material in the W76. It contains MDA, which has been identified by OSHA as a carcinogen and is no longer used in the nuclear weapons complex. In addition, the Thornel carbon mat used in the syntactic foam formulation is no longer available. These issues have created major challenges in the effort to reestablish aft support production capability for the W76 LEP. Urethane Encapsulant 7200, an adhesive used to bond explosive booster pellets and detonator components, was originally manufactured by Hexcel Corporation and is no longer available. The details of the projects currently underway to provide replacements for these materials will be discussed.

  8. An Introduction to Risk with a Focus on Design Diversity in the Stockpile

    SciTech Connect (OSTI)

    Noone, Bailey C

    2012-08-13

    The maintenance and security of nuclear weapons in the stockpile involves decisions based on risk analysis and quantitative measures of risk. Risk is a factor in all decisions, a particularly important factor in decisions of a large scale. One example of high-risk decisions we will discuss is the risk involved in design diversity within the stockpile of nuclear weapons arsenal. Risk is defined as 'possibility of loss or injury' and the 'degree of probability of such loss' (Kaplan and Garrick 12). To introduce the risk involved with maintaining the weapons stockpile we will draw a parallel to the design and maintenance of Southwest Airlines fleet of Boeing 737 planes. The clear benefits for cost savings in maintenance of having a uniform fleet are what historically drove Southwest to have only Boeing 737s in their fleet. Less money and resources are need for maintenance, training, and materials. Naturally, risk accompanies those benefits. A defect in a part of the plane indicates a potential defect in that same part in all the planes of the fleet. As a result, safety, business, and credibility are at risk. How much variety or diversity does the fleet need to mitigate that risk? With that question in mind, a balance is needed to accommodate the different risks and benefits of the situation. In a similar way, risk is analyzed for the design and maintenance of nuclear weapons in the stockpile. In conclusion, risk must be as low as possible when it comes to the nuclear weapons stockpile. Design and care to keep the stockpile healthy involves all aspects of risk management. Design diversity is a method that helps to mitigate risk, and to help balance options in stockpile stewardship.

  9. Development of Designer Diamond Technology for High-Pressure-High Temperature Experiments in Support of the Stockpile Stewardship

    SciTech Connect (OSTI)

    Vohra, Yogesh, K.

    2003-08-27

    OAK B127 Development of Designer Diamond Technology for High-Pressure-High Temperature Experiments in Support of the Stockpile Stewardship

  10. Report to Congress on stockpile reliability, weapon remanufacture, and the role of nuclear testing

    SciTech Connect (OSTI)

    Miller, G.H.; Brown, P.S.; Alonso, C.T.

    1987-10-01

    This report analyzes two issues: (1) ''whether past warhead reliability problems demonstrate that nuclear explosive testing is needed to identify or to correct stockpile reliability,'' or (2) ''whether a program of stockpile inspection, nonnuclear testing, and remanufacture would be sufficient to deal with stockpile reliability problems.'' Chapter 1 examines the reasons for nuclear testing. Although the thrust of the request from Congressman Aspin et al., has to do with the need for nuclear testing as it relates to stockpile reliability and remanufacture, there are other very important reasons for nuclear testing. Since there has been increasing interest in the US Congress for more restrictive nuclear test limits, we have addressed the overall need for nuclear testing and the potential impact of further nuclear test limitations. Chapter 1 also summarizes the major conclusions of a recent study conducted by the Scientific and Academic Advisory Committee (SAAC) for the President of the University of California; the SAAC report is entitled, ''Nuclear Weapon Tests: The Role of the University of California-Department of Energy Laboratories.'' Chapter 2 presents a brief history of stockpile problems that involved post-deployment nuclear testing for their resolution. Chapter 3 addresses the problems involved in remanufacturing nuclear weapons, and Chapter 4 discusses measures that should be taken to prepare for possible future restrictive test limits.

  11. EIS-0236-S2: Supplemental Programmatic Environmental Impact Statement on Stockpile Stewardship and Management for a Modern Pit Facility

    Broader source: Energy.gov [DOE]

    DOE's NNSA is responsible for the safety and reliability of the U.S. nuclear weapons stockpile, including production readiness required to maintain that stockpile. Pursuant to National Environmental Policy Act of 1969, NNSA has prepared a Supplement to the Programmatic Environmental Impact Statement on: (1) whether to proceed with a Modern Pit Facility (MPF); and (2) if so, where to locate a MPF.

  12. Draft Supplemental Programmatic Environmental Impact Statement on Stockpile Stewardship and Management for a Modern Pit Facility

    SciTech Connect (OSTI)

    N /A

    2003-06-06

    The U.S. Department of Energy's (DOE) National Nuclear Security Administration (NNSA) is responsible for the safety and reliability of the U.S. nuclear weapons stockpile, including production readiness required to maintain that stockpile. Since 1989, DOE has been without the capability to produce stockpile certified plutonium pits, which are an essential component of nuclear weapons. NNSA, the Department of Defense (DOD), and Congress have highlighted the lack of long-term pit production capability as a national security issue requiring timely resolution. While a small interim capacity is currently being established at the Los Alamos National Laboratory (LANL), classified analyses indicate projected capacity requirements (number of pits to be produced over a period of time), and agility (ability to rapidly change from production of one pit type to another, ability to simultaneously produce multiple pit types, or the flexibility to produce pits of a new design in a timely manner) necessary for long-term support of the stockpile will require a long-term pit production capability. In particular, identification of a systemic problem associated with an existing pit type, class of pits, or aging phenomenon cannot be adequately responded to today, nor could it be with the small capability being established at LANL (see Section S.2 for a more detailed discussion regarding the purpose and need for a Modern Pit Facility [MPF]).

  13. Direct measurement of the work of fracture for grain boundaries of twist misorientation about (100) in tungsten

    SciTech Connect (OSTI)

    Liu, J.M.; Shen, B.W.

    1984-06-01

    The authors report results on the direct measurement of the work of fracture in twist boundaries in electron beam zone refined bicrystals of tungsten. The work of fracture is referred to as the energy required for crack extension. This approach may be used to advantage when the effects of impurities are present, for example, in problems related to grain boundary embrittlement in steels, copper and nickel.

  14. Reducing the Nuclear Weapons Stockpile | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    This Site Budget IG Web Policy Privacy No Fear Act Accessibility FOIA Sitemap Federal Government The White House DOE.gov USA.gov Jobs Apply for Our Jobs Our Jobs Working at NNSA...

  15. Certainty in Stockpile Computing: Recommending a Verification and Validation Program for Scientific Software

    SciTech Connect (OSTI)

    Lee, J.R.

    1998-11-01

    As computing assumes a more central role in managing the nuclear stockpile, the consequences of an erroneous computer simulation could be severe. Computational failures are common in other endeavors and have caused project failures, significant economic loss, and loss of life. This report examines the causes of software failure and proposes steps to mitigate them. A formal verification and validation program for scientific software is recommended and described.

  16. US, UK, France Discuss Stockpile Stewardship, Arms Control and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With WIPPfinal design and fabrication ofWeathertestSoAtl

  17. stockpile stewardship

    National Nuclear Security Administration (NNSA)

    stockpilestewardshipdefensesciencedsfacilitieslansce" target"blank">Los Alamos Neutron Science Center (LANSCE), Los Alamos National Laboratory

  18. Stockpile Stewardship

    National Nuclear Security Administration (NNSA)

    Security Administration's technical scoping studies, cost and risk analysis, and resource allocation modeling of alternatives have informed this plan and support the Nuclear...

  19. stockpile modernization

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 20123/%2Anational lab |buisness |8/%2A6/%2A en

  20. Stockpile Stewardship

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport forRetirement Plan |AppropriationsSecurityFiscal Year 2015

  1. stockpile stewardship

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal ofNationalWIPPnon-proliferation |planning| Nationalssp/%2A en

  2. Direct

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent BondingMeetingDifferences BetweenDirac Charge Dynamcs inDirect

  3. Directions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent BondingMeetingDifferencesPlatinum FuelEnergy InnovationDirections

  4. EIS-0348 and EIS-0236-S3: Continued Operation of Lawrence Livermore National Laboratory and Supplement Stockpile Stewardship and Management

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to continue operation of Lawrence Livermore National Laboratory (LLNL), which is critical to the National Nuclear Security Administration’s Stockpile Stewardship Program and to preventing the spread and use of nuclear weapons worldwide. This document is also Supplement 3 to the Final Programmatic Environmental Impact Statement for Stockpile Stewardship and Management (EIS-0236) for use of proposed materials at the National Ignition Facility (NIF). This combination ensures timely analysis of the reasonably foreseeable environmental impact of NIF experiments using the proposed materials concurrent with the environmental analyses being conducted for the site-wide activities.

  5. Approaches to integrating nuclear weapons stockpile management and arms control objectives.

    SciTech Connect (OSTI)

    Sanders, Lani Miyoshi; DeLand, Sharon Marie; Pregenzer, Arian Leigh

    2010-06-01

    Historically, U.S. arms control policy and the U.S. nuclear weapons enterprise have been reactive to each other, rather than interdependent and mutually reinforcing. One element of the divergence has been the long timescale necessary to plan and create substantive changes in the infrastructure vs. the inherent unpredictability of arms control outcomes. We explore several examples that illustrate this tension, some of the costs and implications associated with this reactive paradigm, and illustrate that, while the nuclear weapons enterprise has long considered the implications of arms control in sizing capacity of its missions, it has not substantively considered arms control in construction requirement for capabilities and products. Since previous arms control agreements have limited numbers and types of deployed systems, with delivery systems as the object of verification, this disconnect has not been forefront. However, as future agreements unfold, the warhead itself may become the treaty limited item and the object of verification. Such a scenario might offer both the need and the opportunity to integrate nuclear weapons and arms control requirements in unprecedented ways. This paper seeks to inspire new thinking on how such integration could be fostered and the extent to which it can facilitate significant reduction in nuclear stockpiles.

  6. Integrated Baseline System (IBS), Version 1.03. User guide: Chemical Stockpile Emergency Preparedness Program

    SciTech Connect (OSTI)

    Bailey, B.M.; Burford, M.J.; Downing, T.R.; Matsumoto, S.W.; Schrank, E.E.; Williams, J.R.; Winters, C.

    1993-01-01

    The Integrated Baseline System (IBS), operated by the Federal Emergency Management Agency (FEMA), is a system of computerized tools for emergency planing and analysis. This document is the user guide for the IBS and explains how to operate the IBS system. The fundamental function of the IBS is to provide tools that civilian emergency management personnel can use in developing emergency plans and in supporting emergency management activities to cope with a chemical-releasing event at a military chemical stockpile. Emergency management planners can evaluate concepts and ideas using the IBS system. The results of that experience can then be factored into refining requirements and plans. This document provides information for the general system user, and is the primary reference for the system features of the IBS. It is designed for persons who are familiar with general emergency management concepts, operations, and vocabulary. Although the IBS manual set covers basic and advanced operations, it is not a complete reference document set. Emergency situation modeling software in the IBS is supported by additional technical documents. Some of the other LBS software is commercial software for which more complete documentation is available. The IBS manuals reference such documentation where necessary. IBS is a dynamic system. Its capabilities are in a state of continuing expansion and enhancement.

  7. Integrated Baseline System (IBS), Version 1. 03. [Chemical Stockpile Emergency Preparedness Program

    SciTech Connect (OSTI)

    Bailey, B.M.; Burford, M.J.; Downing, T.R.; Matsumoto, S.W.; Schrank, E.E.; Williams, J.R.; Winters, C.

    1993-01-01

    The Integrated Baseline System (IBS), operated by the Federal Emergency Management Agency (FEMA), is a system of computerized tools for emergency planing and analysis. This document is the user guide for the IBS and explains how to operate the IBS system. The fundamental function of the IBS is to provide tools that civilian emergency management personnel can use in developing emergency plans and in supporting emergency management activities to cope with a chemical-releasing event at a military chemical stockpile. Emergency management planners can evaluate concepts and ideas using the IBS system. The results of that experience can then be factored into refining requirements and plans. This document provides information for the general system user, and is the primary reference for the system features of the IBS. It is designed for persons who are familiar with general emergency management concepts, operations, and vocabulary. Although the IBS manual set covers basic and advanced operations, it is not a complete reference document set. Emergency situation modeling software in the IBS is supported by additional technical documents. Some of the other LBS software is commercial software for which more complete documentation is available. The IBS manuals reference such documentation where necessary. IBS is a dynamic system. Its capabilities are in a state of continuing expansion and enhancement.

  8. Use of hazard assessments to achieve risk reduction in the USDOE Stockpile Stewardship (SS-21) Program

    SciTech Connect (OSTI)

    Fischer, S.R.; Konkel, H.; Bott, T.; Eisenhawer, S.W. [Los Alamos National Lab., NM (United States); DeYoung, L.; Hockert, J. [Odgen Environmental and Energy Services, Albuquerque, NM (United States)

    1995-07-01

    This paper summarizes the nuclear explosive hazard assessment activities performed to support US Department of Energy (DOE) Stockpile Stewardship Demonstration Project SS-21, better known as the ``Seamless Safety`` program. Past practice within the DOE Complex has dictated the use of a significant number of post-design/fabrication safety reviews to analyze the safety associated with operations on nuclear explosives and to answer safety questions. These practices have focused on reviewing-in or auditing-in safety vs incorporating safety in the design process. SS-21 was proposed by the DOE as an avenue to develop a program to ``integrate established, recognized, verifiable safety criteria into the process at the design stage rather than continuing the reliance on reviews, evaluations and audits.`` The entire Seamless Safety design and development process is verified by a concurrent hazard assessment (HA). The primary purpose of the SS-21 Demonstration Project HA was to demonstrate the feasibility of performing concurrent HAs as part of an engineering design and development effort and then to evaluate the use of the HA to provide an indication in the risk reduction or gain in safety achieved. To accomplish this objective, HAs were performed on both baseline (i.e., old) and new (i.e. SS-21) B61-0 Center Case Section disassembly processes. These HAs were used to support the identification and documentation of weapon- and process-specific hazards and safety-critical operating steps. Both HAs focused on identifying accidents that had the potential for worker injury, public health effects, facility damage, toxic gas release, and dispersal of radioactive materials. A comparison of the baseline and SS-21 process risks provided a semi-quantitative estimate of the risk reduction gained via the Seamless Safety process.

  9. How NIF Works

    ScienceCinema (OSTI)

    None

    2010-09-01

    The National Ignition Facility, located at Lawrence Livermore National Laboratory, is the world's largest laser system... 192 huge laser beams in a massive building, all focused down at the last moment at a 2 millimeter ball containing frozen hydrogen gas. The goal is to achieve fusion... getting more energy out than was used to create it. It's never been done before under controlled conditions, just in nuclear weapons and in stars. We expect to do it within the next 2-3 years. The purpose is threefold: to create an almost limitless supply of safe, carbon-free, proliferation-free electricity; examine new regimes of astrophysics as well as basic science; and study the inner-workings of the U.S. stockpile of nuclear weapons to ensure they remain safe, secure and reliable without the need for underground testing. More information about NIF can be found at:

  10. Development of Designer Diamond Technology for High Pressure High Temperature Experiments in Support of Stockpile Stewardship Program

    SciTech Connect (OSTI)

    Vohra, Yogesh, K.

    2009-10-28

    The role of nitrogen in the fabrication of designer diamond was systematically investigated by adding controlled amount of nitrogen in hydrogen/methane/oxygen plasma. This has led to a successful recipe for reproducible fabrication of designer diamond anvils for high-pressure high-temperature research in support of stockpile stewardship program. In the three-year support period, several designer diamonds fabricated with this new growth chemistry were utilized in high-pressure experiments at UAB and Lawrence Livermore National Laboratory. The designer diamond anvils were utilized in high-pressure studies on heavy rare earth metals, high pressure melting studies on metals, and electrical resistance measurements on iron-based layered superconductors under high pressures. The growth chemistry developed under NNSA support can be adapted for commercial production of designer diamonds.

  11. We are looking for Medical Scribe candidates who are looking to gain valuable experience by working closely with physicians as a Medical Scribe for Essia Health. Our Medical Scribes assist directly with a

    E-Print Network [OSTI]

    Firestone, Jeremy

    each year. Essia Health is looking to hire and train Medical Scribes to work in Bel Air and Havre deWe are looking for Medical Scribe candidates who are looking to gain valuable experience by working closely with physicians as a Medical Scribe for Essia Health. Our Medical Scribes assist directly

  12. The Final B61 Refurbished Warhead Returns to the U.S. Stockpile | National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.Week Day Year(active tab) 2016TheThe EnergyThe Federal

  13. Article on Trident Laser Facility for NA-11 Stockpile Stewardship Quarterly

    SciTech Connect (OSTI)

    Barnes, Cris W. [Los Alamos National Laboratory

    2012-08-13

    The Trident Intermediate-Scale Laser Facility at Los Alamos National Laboratory is an extremely versatile Nd:glass laser system dedicated to high energy density laboratory physics and weapons physics research and fundamental laser-matter interactions. Trident is a three-beam, 200 J/beam at the second harmonic for glass (527 nm wavelength), facility with tremendous flexibility and high beam quality. Pulse durations varying over 6 orders of magnitude, from 0.5 picoseconds to 1.0 microsecs, can be directed to either of two different target chambers with changeable illumination geometries, including the ability to achieve near-diffraction limited focus. This provides a unique range of capability at one facility from sub-picosecond pulses (and high-intensity laser science) to nanosecond pulses (and LPI physics relevant to ICF) to microsecond pulses (and driving flyer plates for supported shock dynamic materials science.) When in short-pulse mode (less than picosecond pulse), a single beam can provide up to 200 TW of power with uniquely controllable and measured pre-pulse contrast of 10 orders of magnitude. A recent external capability review at Los Alamos concluded that 'Trident is generating excellent, cutting edge science and is a leading intermediate scale laser system worldwide.'

  14. Directives System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-01-30

    The Department of Energy (DOE) Directives System is the means by which DOE policies, requirements, and responsibilities are developed and communicated throughout the Department. Directives are used to inform, direct, and guide employees in the performance of their jobs, and to enable employees to work effectively within the Department and with agencies, contractors, and the public. Cancels: DOE O 251.1, DOE M 251.1-1

  15. managing the stockpile

    National Nuclear Security Administration (NNSA)

    managed by the National Nuclear Security Administration within the U. S. Department of Energy.

    OST is responsible for the safe and secure transport in the contiguous United...

  16. Stockpile Stewardship Quarterly

    National Nuclear Security Administration (NNSA)

    numerous cartoons to indicate time 'flying,' or the image of a rapid progression of a solar eclipse captured with time-lapse photography, perhaps you share with me the sense that...

  17. Stockpile Stewardship Q

    National Nuclear Security Administration (NNSA)

    yielded 9.6e15 DT neutrons). The shape of N131119 was characteristic of many of the high energy high-foot shots. Clearly, the depleted-uranium hohlraum was effective at improving...

  18. Stockpile Stewardship Quarterly

    National Nuclear Security Administration (NNSA)

    near the Fermi energy. Between 0.01 and 0.05 ns, there are more states near the Fermi energy. We predict that nitromethane becomes a poor conductor. Page 3 SSQ Volume 1, Number...

  19. Maintaining the Stockpile

    National Nuclear Security Administration (NNSA)

    stockpilestewardshipdefensesciencedsfacilitieslansce" target"blank">Los Alamos Neutron Science Center (LANSCE), Los Alamos National Laboratory

  20. stockpile stewardship program

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 FederalRivers andMEDA Station3/%2A ¡ ¢0/%2A4/%2A en

  1. Stockpile Stewardship Q

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 20123/%2A en Signature ofSebStarting1 | MARCH

  2. Stockpile Stewardship Q

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 20123/%2A en Signature ofSebStarting1 | MARCH2

  3. Stockpile Stewardship Q

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 20123/%2A en Signature ofSebStarting1 | MARCH22

  4. Stockpile Stewardship Q

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 20123/%2A en Signature ofSebStarting1 |

  5. Stockpile Stewardship Quarterly

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 20123/%2A en Signature ofSebStarting1 |1,

  6. Stockpile Stewardship Quarterly

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 20123/%2A en Signature ofSebStarting1 |1,2 *

  7. Stockpile Stewardship Quarterly

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 20123/%2A en Signature ofSebStarting1 |1,2 *2,

  8. Stockpile Stewardship Quarterly

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 20123/%2A en Signature ofSebStarting1 |1,2

  9. managing the stockpile

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 20123/%2A en46Afedkcp |field office6/%2A en

  10. Maintaining the Stockpile

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia NationalSecurityNuclearH-canyon |I6 Page 2 of 2/%2A/%2A

  11. Nevada Test Site-Directed Research and Development FY 2010 Annual Report

    SciTech Connect (OSTI)

    Howard Bender, comp.

    2011-04-04

    This annual report of the Site-Directed Research and Development (SDRD) program represents the highly significant R&D accomplishments conducted during fiscal year 2010. This year was noteworthy historically, as the Nevada Test Site was renamed to the Nevada National Security Site (NNSS). This change not only recognizes how the site's mission has evolved, but also heralds a future of new challenges and opportunities for the NNSS. In many ways, since its inception in 2002, the SDRD program has helped shape that evolving mission. As we approach 2012, SDRD will also mark a milestone, having completed its first full decade of innovative R&D in support of the site and national security. The program continues to fund advanced science and technology development across traditional Department of Energy (DOE) nuclear security areas such as stockpile stewardship and non-proliferation while also supporting Department of Homeland Security (DHS) needs, and specialized work for government agencies like the Department of Defense (DoD) and others. The NNSS will also contribute technologies in the areas of treaty verification and monitoring, two areas of increasing importance to national security. Keyed to the NNSS's broadened scope, the SDRD program will continue to anticipate and advance R&D projects that will help the NNSS meet forthcoming challenges.

  12. Update Direct-Strike Lightning Environment for Stockpile-to-Target Sequence: Supplement LLNL Subcontract #B568621 Lightning Protection at the Yucca Mountain Waste Storage Facility

    SciTech Connect (OSTI)

    Uman, M A

    2008-10-09

    The University of Florida has surveyed all relevant publications reporting lightning damage to metals, metals which could be used as components of storage containers for nuclear waste materials. We show that even the most severe lightning could not penetrate the stainless steel thicknesses proposed for nuclear waste storage casks.

  13. Directives Tools

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    Useful links and resources for Directives Writers, Directives Point of Contact (DPCs), Subject Matter Experts (SMEs), and Draft Directive Reviewers.

  14. Draft Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2004-02-27

    This ''Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement'' (LLNL SW/SPEIS) describes the purpose and need for agency action for the continued operation of LLNL and analyzes the environmental impacts of these operations. The primary purpose of continuing operation of LLNL is to provide support for the National Nuclear Security Administration's (NNSA's) nuclear weapons stockpile stewardship missions. LLNL, located about 40 miles east of San Francisco, California, is also needed to support other U.S. Department of Energy (DOE) programs and Federal agencies such as the U.S. Department of Defense, Nuclear Regulatory Commission, U.S. Environmental Protection Agency (EPA), and the newly established U.S. Department of Homeland Security. This LLNL SW/SPEIS analyzes the environmental impacts of reasonable alternatives for ongoing and foreseeable future operations, facilities, and activities at LLNL. The reasonable alternatives include the No Action Alternative, Proposed Action, and the Reduced Operation Alternative. The major decision to be made by DOE/NNSA is to select one of the alternatives for the continued operation of the LLNL. As part of the Proposed Action, DOE/NNSA is considering: using additional materials including plutonium on the National Ignition Facility (NIF); increasing the administrative limit for plutonium in the Superblock, which includes the Plutonium Facility, the Tritium Facility, and the Hardened Engineering Test Building; conducting the Integrated Technology Project, using laser isotope separation to provide material for Stockpile Stewardship experiments, in the Plutonium Facility; increasing the material-at-risk limit for the Plutonium Facility; and increasing the Tritium Facility material-at-risk. A discussion of these issues is presented in Section S.5.2, Proposed Action. The ''National Environmental Policy Act'' (NEPA) establishes environmental policy, sets goals, and provides means for implementing the policy. NEPA contains provisions to ensure that Federal agencies adhere to the letter and spirit of the Act. The key provision requires preparation of an environmental impact statement on ''major Federal actions significantly affecting the quality of the human environment'' (40 ''Code of Federal Regulations'' [CFR] {section}1502.3). NEPA ensures that environmental information is available to public officials and citizens before decisions are made and actions are taken (40 CFR {section}1500.1[b]). DOE has a policy to prepare sitewide environmental impact statements documents for certain large, multiple-facility sites such as LLNL (10 CFR {section}1021.330). In August 1992, DOE released the ''Final Environmental Impact Statement and Environmental Impact Report for Continued Operations of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore'' (LLNL EIS/EIR). A Record of Decision (ROD) (58 ''Federal Register'' [FR] 6268) was issued in January 1993. With the passage of more than 10 years since the publication of the 1992 LLNL EIS/EIR (DOE/EIS-0157) and because of proposed modifications to existing projects and new programs, NNSA determined that it was appropriate to prepare a new LLNL SW/SPEIS.

  15. Program Mission Campaigns are multi-year, multi-functional efforts involving, to varying degrees, every site in the nuclear

    E-Print Network [OSTI]

    degrees, every site in the nuclear weapons complex. They provide specialized scientific knowledge and technical support to the directed stockpile work on the nuclear weapons stockpile. Deliverables are defined/scheduled in each campaign plan and then coordinated with several key nuclear weapons complex directives, including

  16. Work Packages for Site Support Service at Los Alamos National...

    Broader source: Energy.gov (indexed) [DOE]

    (LANL) enhances global security by ensuring the safety and reliability of the U.S. nuclear weapons stockpile; developing technical solutioils to reduce the threat of weapons of...

  17. CMRR Public Meeting, October 6, 2010

    SciTech Connect (OSTI)

    Holmes, Richard A [Los Alamos National Laboratory

    2010-12-16

    The Chemistry Metallurgy Research Replacement (CMRR) Project seeks to relocate and consolidate mission-critical CMR capabilities at LANL to ensure continuous support of NNSA stockpile stewardship and management strategic objectives; these capabilities are necessary to support the current and directed stockpile work and campaign activities at LANL beyond 2010.

  18. Exascale Hardware Architectures Working Group

    SciTech Connect (OSTI)

    Hemmert, S; Ang, J; Chiang, P; Carnes, B; Doerfler, D; Leininger, M; Dosanjh, S; Fields, P; Koch, K; Laros, J; Noe, J; Quinn, T; Torrellas, J; Vetter, J; Wampler, C; White, A

    2011-03-15

    The ASC Exascale Hardware Architecture working group is challenged to provide input on the following areas impacting the future use and usability of potential exascale computer systems: processor, memory, and interconnect architectures, as well as the power and resilience of these systems. Going forward, there are many challenging issues that will need to be addressed. First, power constraints in processor technologies will lead to steady increases in parallelism within a socket. Additionally, all cores may not be fully independent nor fully general purpose. Second, there is a clear trend toward less balanced machines, in terms of compute capability compared to memory and interconnect performance. In order to mitigate the memory issues, memory technologies will introduce 3D stacking, eventually moving on-socket and likely on-die, providing greatly increased bandwidth but unfortunately also likely providing smaller memory capacity per core. Off-socket memory, possibly in the form of non-volatile memory, will create a complex memory hierarchy. Third, communication energy will dominate the energy required to compute, such that interconnect power and bandwidth will have a significant impact. All of the above changes are driven by the need for greatly increased energy efficiency, as current technology will prove unsuitable for exascale, due to unsustainable power requirements of such a system. These changes will have the most significant impact on programming models and algorithms, but they will be felt across all layers of the machine. There is clear need to engage all ASC working groups in planning for how to deal with technological changes of this magnitude. The primary function of the Hardware Architecture Working Group is to facilitate codesign with hardware vendors to ensure future exascale platforms are capable of efficiently supporting the ASC applications, which in turn need to meet the mission needs of the NNSA Stockpile Stewardship Program. This issue is relatively immediate, as there is only a small window of opportunity to influence hardware design for 2018 machines. Given the short timeline a firm co-design methodology with vendors is of prime importance.

  19. Stockpile Stewardship era: 1989-present

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541C.3X-rays3 Prepared by:'!Transport in PPCDStockpile

  20. Laboratory Directed Research and Development Program FY 2008 Annual Report

    SciTech Connect (OSTI)

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Berkeley Lab LDRD program also play an important role in leveraging DOE capabilities for national needs. The fundamental scientific research and development conducted in the program advances the skills and technologies of importance to our Work For Others (WFO) sponsors. Among many directions, these include a broad range of health-related science and technology of interest to the National Institutes of Health, breast cancer and accelerator research supported by the Department of Defense, detector technologies that should be useful to the Department of Homeland Security, and particle detection that will be valuable to the Environmental Protection Agency. The Berkeley Lab Laboratory Directed Research and Development Program FY2008 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation, and review.

  1. Work Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubictheThepresented in the7 Table7Work &Work Plan

  2. Collected Works

    E-Print Network [OSTI]

    Turner, Lance

    2011-04-26

    The collection of work presented here illustrates the constant struggle individuals face in understanding the repercussions of their past, the weight of their decisions in the present moment, and the possibilities of the ...

  3. thesis work

    E-Print Network [OSTI]

    Toback, David

    thesis work Aggie student given award for thesis on particle physics&M. Wagner accepted the Universities Research Association (URA) Thesis Award June 4 for his doctoral,500 award, is given each year to the most outstanding doctoral thesis written on research conducted

  4. Work For Others (Non-Department of Energy Funded Work)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-09-28

    Work for Others (WFO) is the performance of work for non-Department of Energy (DOE) entities by DOE/National Nuclear Security Administration (NNSA) and/or their respective contractor personnel or the use of DOE/NNSA facilities that is not directly funded by DOE appropriations. Cancels DOE O 481.1A.

  5. Work For Others (Non-Department of Energy Funded Work)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-03

    Work for Others (WFO) is the performance of work for non-Department of Energy (DOE) entities by DOE/National Nuclear Security Administration (NNSA) and/or their respective contractor personnel or the use of DOE/NNSA facilities that is not directly funded by DOE appropriations. WFO has the following objectives. Cancels DOE O 481.1.

  6. Working Draft

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-Sessions |discussed how saving energy5 Worker Righs, Issue 2 Working Capital

  7. Directives Help

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    All DOE directives are available through this site. While it may seem overwhelming, given the number of documents, we have provided a number of ways in which you may get to the information you need.

  8. Laboratory Directed Research and Development Program FY2011

    SciTech Connect (OSTI)

    none, none

    2012-04-27

    Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2011 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). Going forward in FY 2012, the LDRD program also supports the Goals codified in the new DOE Strategic Plan of May, 2011. The LDRD program also supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Brief summares of projects and accomplishments for the period for each division are included.

  9. Work for Others (Non-Department of Energy Funded Work)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-01-24

    Work for Others is the performance of work for non-Department of Energy (DOE) entities by DOE/National Nuclear Security Administration (NNSA) and/or their respective contractor personnel or the use of DOE/NNSA facilities that is not directly funded by DOE appropriations. Cancels DOE O 481.1B. Certified 1-13-11. Admin Chg 1, dated 3-14-11.

  10. DRIVING DIRECTIONS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent Bonding Low-Cost2 DOE HQSiteo n n eDPFJ.D.DRIVING DIRECTIONS

  11. Direct Frisk

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent BondingMeetingDifferences BetweenDirac ChargeSolarDirect

  12. Direct Conversion of Light into Work - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent BondingMeetingDifferences BetweenDirac ChargeSolar Thermal Solar

  13. Constraint Directed Improvisation in the Construction of New Works

    E-Print Network [OSTI]

    Henderson, Giles Stuart

    2015-01-01

    ice cream! Rocky Road. [Blackout. ] Wagoner Residence. Theleaving DORRIS alone. Blackout. In the transition DORRISthrows it in the garbage. [Blackout. ] The lights come up on

  14. President Obama Signs New Directive to Strengthen our Work to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "promoting gender equality and advancing the status of all women and girls around the world remains one of the greatest unmet challenges of our time, and one that is vital to...

  15. Strategic Partnership Projects [Formerly Known as Work for Others (Non-Department of Energy Funded Work)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-01-24

    Strategic Partnership Projects is work performed for non-DOE entities by DOE/(NNSA personnel and/or their respective contractor personnel or the use of DOE/NNSA facilities for work that is not directly funded by DOE/NNSA appropriations. This Admin Chg address primarily address references to revised directives and the results of departmental reorganization. In addition, the Secretary directed effective immediately work formerly known as Work for Others (WFO) to be renamed Strategic Partnership Projects (SPPs). Admin Chg 2, dated 3-9-15, supersedes DOE O 481.1C Admin Chg 1, dated 3-14-11.

  16. Work for Others (Non-Department of Energy Funded Work)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-01-24

    Work for Others is the performance of work for non-Department of Energy (DOE) entities by DOE/National Nuclear Security Administration (NNSA) and/or their respective contractor personnel or the use of DOE/NNSA facilities that is not directly funded by DOE appropriations. Cancels DOE O 481.1B. Certified 1-13-11. Admin Chg 1, dated 3-14-11, cancels DOE O 481.1C. Admin Chg 2, dated 3-9-15, cancels DOE O 481.1C Admin Chg 1

  17. September 2012, Work Force Retention Work Group Status Overview

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLE DIRECTIVES Pursuant to theDepartmentWork Force Retention Work Group

  18. FY 1994 Annual Work Plan

    SciTech Connect (OSTI)

    Not Available

    1993-09-30

    In accordance with the Inspector General`s Strategic Planning Policy directive, the Office of Inspector General (OIG) annually updates its Strategic Plan with budgetary and program guidance for the next fiscal year. The program guidance identifies and establishes priorities for OIG coverage of important DOE issues and operations, provides the basis for assigning OIG resources, and is the source for issues covered in Assistant Inspectors General annual work plans. The Office of the Assistant Inspector General for Audits (AIGA) publishes an Annual Work Plan in September of each year. The plan includes the OIG program guidance and shows the commitment of resources necessary to accomplish the assigned work and meet our goals. The program guidance provides the framework within which the AIGA work will be planned and accomplished. Audits included in this plan are designed to help insure that the requirements of our stakeholders have been considered and blended into a well balanced audit program.

  19. Financial Policy and Procedures for Reimbursable Work

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1988-08-15

    The directive establishes Department-wide financial policy and procedural guidance applicable to performing reimbursable work for other Federal agencies and with non-Federal Government entities, including foreign and commercial entities, State, and political subdivisions.

  20. Laboratory Directed Research and Development Program FY2004

    SciTech Connect (OSTI)

    Hansen, Todd C.

    2005-03-22

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also supports the strategic directions periodically under review by the Office of Science Program Offices, such as strategic LDRD projects germane to new research facility concepts and new fundamental science directions.

  1. Departmental Directives Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-08-16

    The Order is the primary directive for administering the Department's directives Program. Cancels: DOE O 251.1A

  2. NNSA releases Stockpile Stewardship Program quarterly experiments...

    National Nuclear Security Administration (NNSA)

    National Ignition Facility at Lawrence Livermore National Laboratory, and the Z machine at Sandia National Laboratories. The summary also provides the number of experiments...

  3. Stockpile Stewardship and the National Ignition Facility

    SciTech Connect (OSTI)

    Moses, E

    2012-01-04

    The National Ignition Facility (NIF), the world's most energetic laser system, is operational at Lawrence Livermore National Laboratory (LLNL). Since the completion of the construction project in March 2009, NIF has completed nearly 150 target experiments for the National Ignition Campaign (NIC), High Energy Density Stewardship Science (HEDSS) in the areas of radiation transport, material dynamics at high pressure in the solid state, as well as fundamental science and other national security missions. NIF capabilities and infrastructure are in place to support all of its missions with over 50 X-ray, optical and nuclear diagnostic systems and the ability to shoot cryogenic targets and DT layered capsules. NIF is now qualified for use of tritium and other special materials as well as to perform high yield experiments and classified experiments. DT implosions with record indirect-drive neutron yield of 4.5 x 10{sup 14} neutrons have been achieved. A series of 43 experiments were successfully executed over a 27-day period, demonstrating the ability to perform precise experiments in new regimes of interest to HEDSS. This talk will provide an update of the progress on the NIF capabilities, NIC accomplishments, as well as HEDSS and fundamental science experimental results and an update of the experimental plans for the coming year.

  4. Explosives performance key to stockpile stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    detonation physics presses the "fire" button during an experiment at the two-stage gas gun facility. Adam Pacheco of shock and detonation physics presses the "fire" button during...

  5. NNSA's Stockpile Stewardship Program Quarterly Experiments summary...

    National Nuclear Security Administration (NNSA)

    2014 (17) April 2014 (12) March 2014 (7) February 2014 (11) January 2014 (12) December 2013 (18) November 2013 (21) October 2013 (9) September 2013 (18) August 2013 (17) July 2013...

  6. NNSA releases Stockpile Stewardship Program quarterly experiments...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in particular the first Pu experiment on NIF, the return to operations of the TA-55 gas gun, a successful series of plutonium experiments on Joint Actinide Shock Physics...

  7. Maintaining the Stockpile | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    wave produced by the impact passes through the plutonium, and diagnostic Los Alamos Neutron Science Center LANSCE provides the scientific community with intense sources of...

  8. Explosives performance key to stockpile stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES OctoberEvan Racah Evan-5 Beamline

  9. Stockpile Stewardship Quarterly Volume 1, Number 4

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 20123/%2A en Signature ofSebStarting1 |1,21,

  10. Stockpile Stewardship Quarterly, Volume 2, Number 1

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 20123/%2A en Signature ofSebStarting1 |1,21,1 *

  11. stockpile stewardship program | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 20123/%2Anational lab |buisness |8/%2A6/%2A

  12. Stockpile Stewardship Program Quarterly Experiments | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport forRetirement Plan |AppropriationsSecurityFiscal Year

  13. Stockpile Stewardship Quarterly Newsletter | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal ofNational NuclearSite Office

  14. Maintaining the Stockpile | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeat PumpsTechnologiesTechnologies |ReviewsAnalogues& JAOur

  15. Maintaining the Stockpile | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS on the internetMagneticPlasmaMaintaining

  16. Explosives performance key to stockpile stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunitiesof Energy8)highlightsNew Phase ofJasontheExploring

  17. Maintaining the Stockpile | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport)Price (Dollars per Thousand CubicMaintaining the

  18. Reimbursable Work for the Department of Homeland Security

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-08-17

    The Order establishes DOE policies and procedures for the acceptance, performance, and administration of reimbursable work directly funded by the Department of Homeland Security.

  19. Directives Quarterly Updates

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    Listings of new Justification Memoranda and new or revised Directives that have been posted to the DOE Directives, Delegations, and Requirements Portal. Updated quarterly.

  20. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Biological Materials Print Planning A complete Experiment Safety Sheet (ESS) is required before work can be done at the ALS. This ESS is either a part of the proposal...

  1. Construction work process management 

    E-Print Network [OSTI]

    Soares, Jorge Barbosa

    1994-01-01

    for organizationand project-level work processes. Data to support the analysis were collected through a mailed questionnaire sent to construction executives and managers who were asked to provide information on organizational and project work processes, respectively....

  2. Team work: Construction

    E-Print Network [OSTI]

    Berdichevsky, Victor

    teamwork outside the classroom as well. Construction Management at Wayne StateTeam work: Construction Management The Division of Engineering Technology! Your coursework is just the beginning. Construction management students work

  3. Work for Others Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-09-24

    The Guide has been developed to assist Operations/Field Offices in developing their local WFO processes. Does not cancel/supersede other directives.

  4. Administering Work Force Discipline

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-05-14

    The order provides requirements and responsibilities for administering work force discipline and corrective actions. Supersedes DOE O 3750.1.

  5. Appointment Future work

    E-Print Network [OSTI]

    Phillips, David

    1/17 Appointment scheduling Example: a glaucoma clinic Future work Appointment scheduling #12;2/17 Appointment scheduling Example: a glaucoma clinic Future work Have you heard this one? So: a glaucoma clinic Future work Have you heard this one? So a mathematician walks into a room full

  6. Methodological Research Future Work

    E-Print Network [OSTI]

    Wolfe, Patrick J.

    Outline Background Methodological Research Results Future Work New Dataset 1878 PCA for 1000 rmfs Background Methodological Research Results Future Work New Dataset 1878 PCA for 1000 rmfs Background Quasar Analysis Future Work Doubly-intractable Distribution Other Calibration Uncertainty New Dataset

  7. Future Direction of National Fusion Research Tentative translation to English

    E-Print Network [OSTI]

    Future Direction of National Fusion Research (Report) Tentative translation to English Office of Fusion Energy, Research and Development Bureau, MEXT January 8, 2003 Working Group on Fusion Research -----------------------------------------------------------------21 Attachment, Future Direction of National Fusion Research (Synopsis) ---------------28 #12

  8. Laboratory Directed Research and Development FY2011 Annual Report

    SciTech Connect (OSTI)

    Craig, W; Sketchley, J; Kotta, P

    2012-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High-Energy-Density Science; (11) Laser Inertial-Fusion Energy; (12) Advanced Laser Optical Systems and Applications; (12) Space Security; (13) Stockpile Stewardship Science; (14) National Security; (15) Alternative Energy; and (16) Climatic Change.

  9. INL @ work: Archaeologist

    ScienceCinema (OSTI)

    Lowrey, Dino

    2013-05-28

    INL @ work features jobs performed at the lab. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  10. Work Area Policy

    E-Print Network [OSTI]

    2005-04-19

    POLICY X.X.X. Volume V, Information Technology. Chapter 6, Acceptable Safety Work Locations. Issuing Office: Department of Mathematics. Responsible ...

  11. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubictheThepresented in the7 Table7WorkWork withWork

  12. Departmental Directives Program - DOE Directives, Delegations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE O 251.1C, Departmental Directives Program and Conforming Changes to DOE O 252.1, Technical Standards Program Redline of DOE O 251.1D - First Draft Comment Response Report...

  13. WORKPLACE GUIDES GLOBAL WORKING

    E-Print Network [OSTI]

    Roelleke, Thomas

    of Stonewall good practice publications ­ profiles some of the employers paving the way for gay staff to work do arise. This guide provides clear, practical tips on how gay employees can access internationalWORKPLACE GUIDES GLOBAL WORKING Supporting lesbian, gay and bisexual staff on overseas assignments

  14. Work Authorization System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-04-21

    To establish a work authorization and control process for work performed by designated site and facility management contractors, and other contractors as determined by the procurement executive, consistent with the budget execution and program evaluation requirements of the Department of Energy's (DOE's) Planning, Programming, Budgeting, and Evaluation process. Cancels DOE O 412.1.

  15. Work Authorization System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-04-21

    To establish a work authorization and control process for work performed by designated site and facility management contractors, and other contractors as determined by the procurement executive, consistent with the budget execution and program evaluation requirements of the Department of Energy's Planning, Programming, Budgeting, and Evaluation process. Admin Chg 1, dated 5-21-2014, cancels DOE O 412.1A.

  16. Mathematical Future work

    E-Print Network [OSTI]

    Phillips, David

    1/15 Mathematical modeling Example: Glaucoma clinic Future work Scheduling and resource planning;2/15 Mathematical modeling Example: Glaucoma clinic Future work So a mathematician walks into a room full of healthcare providers... · Mathematical modeling · A model for the glaucoma clinic · Future possibilities #12

  17. Work Authorization System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-04-20

    It establishes a work authorization and control process for work performed by designated management and operating (M&O), management and integrating (M&I), environmental restoration management contracts (ERMC) and other contracts determined by the Procurement Executive (hereafter referred to as M&O contractors). Cancels DOE O 5700.7C. Canceled by DOE O 412.1A.

  18. Scalable Work Stealing

    SciTech Connect (OSTI)

    Dinan, James S.; Larkins, D. B.; Sadayappan, Ponnuswamy; Krishnamoorthy, Sriram; Nieplocha, Jaroslaw

    2009-11-14

    Irregular and dynamic parallel applications pose significant challenges to achieving scalable performance on large-scale multicore clusters. These applications often require ongoing, dynamic load balancing in order to maintain efficiency. While effective at small scale, centralized load balancing schemes quickly become a bottleneck on large-scale clusters. Work stealing is a popular approach to distributed dynamic load balancing; however its performance on large-scale clusters is not well understood. Prior work on work stealing has largely focused on shared memory machines. In this work we investigate the design and scalability of work stealing on modern distributed memory systems. We demonstrate high efficiency and low overhead when scaling to 8,192 processors for three benchmark codes: a producer-consumer benchmark, the unbalanced tree search benchmark, and a multiresolution analysis kernel.

  19. Direct/Indirect Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter provides recommended categories for direct and indirect elements developed by the Committee for Cost Methods Development (CCMD) and describes various estimating techniques for direct and indirect costs.

  20. Directives System Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-01-30

    This Manual provides detailed requirements to supplement DOE O 251.1A, Directives System, dated 1-30-98.

  1. Faculty of Social Work Strategic Plan

    E-Print Network [OSTI]

    Calgary, University of

    Faculty of Social Work Strategic Plan 2013 ­ 2018 Making a world of difference. #12;As one delighted to present our 2013-2018 Strategic Plan, which maps the foundation for our future. This Strategic Plan aligns closely with the University of Calgary's own Eyes HighTM strategic direction (read more

  2. Applicant Name: ______________________________________ University of Maine MASTER OF SOCIAL WORK

    E-Print Network [OSTI]

    Thomas, Andrew

    Applicant Name: ______________________________________ University of Maine MASTER OF SOCIAL WORK Program of Study Schedule Options Directions: The University of Maine School of Social Work offers several The University of Maine's Master of Social Work Program may be completed in three years through our new Online

  3. Applicant Name: ______________________________________ University of Maine MASTER OF SOCIAL WORK

    E-Print Network [OSTI]

    Thomas, Andrew

    Applicant Name: ______________________________________ University of Maine MASTER OF SOCIAL WORK Program of Study Schedule Options Directions: The University of Maine School of Social Work offers several 2016 The University of Maine's Master of Social Work Program may be completed in three years through

  4. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubictheThepresented in the7 Table7WorkWork with

  5. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubictheThepresented in the7 Table7WorkWork

  6. Directional recoil rates for WIMP direct detection

    SciTech Connect (OSTI)

    Alenazi, Moqbil S.; Gondolo, Paolo [Department of Physics, University of Utah, 115 S 1400 E Rm 201, Salt Lake City, Utah 84112-0830 (United States)

    2008-02-15

    New techniques for the laboratory direct detection of dark matter weakly interacting massive particles (WIMPs) are sensitive to the recoil direction of the struck nuclei. We compute and compare the directional recoil rates dR/dcos{theta} (where {theta} is the angle measured from a reference direction in the sky) for several WIMP velocity distributions including the standard dark halo and anisotropic models such as Sikivie's late-infall halo model and logarithmic-ellipsoidal models. Since some detectors may be unable to distinguish the beginning of the recoil track from its end (lack of head-tail discrimination), we introduce a folded directional recoil rate dR/d|cos{theta}|, where |cos{theta}| does not distinguish the head from the tail of the track. We compute the CS{sub 2} and CF{sub 4} exposures required to distinguish a signal from an isotropic background noise, and find that dR/d|cos{theta}| is effective for the standard dark halo and some but not all anisotropic models.

  7. Putting Science to Work

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that 'bright kid' whose advice I have always sought and mostly followed." Putting Science to Work SafeTy remINDer Filigenzi, Gergel on the Job for TTED T wo new ORNL staff...

  8. How Fusion Energy Works

    Broader source: Energy.gov [DOE]

    Fusion energy is the energy source of the sun and all of the stars. As part of How Energy Works, we'll cover everything from fuel sources to plasma physics and beyond.

  9. Clean Energy Works

    Broader source: Energy.gov [DOE]

    Through Clean Energy Works, homeowners can finance up to $30,000 at a fixed interest rate for home energy efficiency retrofits for a variety of measures. Customers have varying lender and loan op...

  10. Fermilab: Science at Work

    ScienceCinema (OSTI)

    Brendan Casey; Herman White; Craig Hogan; Denton Morris; Mary Convery; Bonnie Fleming; Deborah Harris; Dave Schmitz; Brenna Flaugher; Aron Soha

    2013-02-14

    Six days. Three frontiers. One amazing lab. From 2010 to 2012, a film crew followed a group of scientists at the Department of Energy's Fermilab and filmed them at work and at home. This 40-minute documentary shows the diversity of the people, research and work at Fermilab. Viewers catch a true behind-the-scenes look of the United States' premier particle physics laboratory while scientists explain why their research is important to them and the world.

  11. Fermilab: Science at Work

    SciTech Connect (OSTI)

    Brendan Casey; Herman White; Craig Hogan; Denton Morris; Mary Convery; Bonnie Fleming; Deborah Harris; Dave Schmitz; Brenna Flaugher; Aron Soha

    2013-02-01

    Six days. Three frontiers. One amazing lab. From 2010 to 2012, a film crew followed a group of scientists at the Department of Energy's Fermilab and filmed them at work and at home. This 40-minute documentary shows the diversity of the people, research and work at Fermilab. Viewers catch a true behind-the-scenes look of the United States' premier particle physics laboratory while scientists explain why their research is important to them and the world.

  12. Directives Tools - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent BondingMeetingDifferencesPlatinumDirections New
Directives &

  13. Directives - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB PacketDiesel prices continueDileepDirections &Directions

  14. Nevada National Security Site-Directed Research and Development FY 2011 Annual Report

    SciTech Connect (OSTI)

    Howard Bender, comp.

    2012-04-25

    This fiscal year 2011 annual report of the Site-Directed Research and Development program, the 10th anniversary edition, recognizes a full decade of innovative R&D accomplishments in support of the Nevada National Security Site (NNSS). Last year the NNSS itself was renamed to reflect a diversifying mission, and our R&D program has contributed significantly to shape emerging missions that will continue to evolve. New initiatives in stockpile stewardship science, nonproliferation, and treaty verification and monitoring have had substantial successes in FY 2011, and many more accomplishments are expected. SDRD is the cornerstone on which many of these initiatives rest. Historically supporting our main focus areas, SDRD is also building a solid foundation for new, and non-traditional, emerging national security missions. The program continues its charter to advance science and technology for a broad base of agencies including the U.S. Department of Energy (DOE), U.S. Department of Defense (DoD), U.S. Department of Homeland Security (DHS), and many others.

  15. Work breakdown structure guide

    SciTech Connect (OSTI)

    Not Available

    1987-02-06

    Utilization of the work breakdown structure (WBS) technique is an effective aid in managing Department of Energy (DOE) programs and projects. The technique provides a framework for project management by focusing on the products that are being developed or constructed to solve technical problems. It assists both DOE and contractors in fulfilling their management responsibilities. This document provides guidance for use of the WBS technique for product oriented work identification and definition. It is one in a series of policy and guidance documents supporting DOE's project manaagement system.

  16. Work/Life Balance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopmentatabout Who Works for NIF & PS? TheWindows,Work

  17. Work plan (Nov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubictheThepresented in the7 Table7Work

  18. Working Group Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubictheThepresented in1: Model or Working Group

  19. Working With Berkeley Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubictheThepresented in1: Model or Working

  20. Departmental Directives Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-10-16

    To establish directives as the primary means to set, communicate, and institutionalize policies, requirements, responsibilities, and procedures for Departmental elements and contractors.

  1. Directives System Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-16

    This Manual provides detailed requirements to supplement DOE O 251.1, which establishes requirements for the development, coordination, and sunset review of DOE directives.

  2. Direct Photons at RHIC

    E-Print Network [OSTI]

    Klaus Reygers; for the PHENIX Collaboration

    2009-08-17

    A brief overview of direct-photon measurements in p+p and Au+Au collisions at sqrt(s_NN) = 200 GeV with the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) is given. Direct-photon yields for pT > 4 GeV/c and photon-hadron azimuthal correlations were determined with the aid of an electromagnetic calorimeter. By detecting e+e- pairs from the internal conversion of virtual photons direct-photon yields were measured between 1 photons from a quark-gluon plasma (QGP) are expected to contribute significantly to the total direct-photon yield in this range.

  3. Cancellation of Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-26

    Effective immediately the following Department of Energy directive is canceled. DOE M 452.2-2, Nuclear Explosive Safety Evaluation Processes, dated 04-14-2009.

  4. Direct-fired biomass

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The direct-fired biomass section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  5. Work Force Discipline

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1983-03-23

    The order provides guidance and procedures and states responsibilities for maintaining work force discipline in DOE. Chg 1, dated 3-11-85; Chg 2, dated 1-6-86; Chg 3, dated 3-21-89; Chg 4, dated 8-2-90; Chg 5, dated 3-9-92; Chg 6, dated 8-21-92, cancels Chg 5.

  6. TEAM PROJECT: WORKING PROTOTYPE

    E-Print Network [OSTI]

    .) Value: the report is worth 10% of the Team Project grade. #12;Next steps: You will evaluateTEAM PROJECT: WORKING PROTOTYPE Due: Week of April 5-8 at time to be scheduled with GTA Format that will be polished into the final project for which you will create a final report and give a final presentation

  7. WORKING PAPER Resource Economics

    E-Print Network [OSTI]

    WORKING PAPER 2008-07 REPA Resource Economics & Policy Analysis Research Group Department of Economics University of Victoria Forest-mill integration: a transaction costs perspective Kurt Niquidet, Moeltne, and Johnson) 2003-06 ­ Climate Change and Forest Ecosystem Sinks: Economic Analysis (van Kooten

  8. Civil Works Environmental Desk

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Civil Works Environmental Desk Reference Prepared by the Institute for Water Resources U.S. Army to address economic, social, institutional, and environmental needs in water resources planning and policy for conducting economic, social, environmental, and institutional analyses. These methods were essential

  9. Departmental Directives System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1983-04-07

    The order establishes the directives system to be used for publishing permanent and temporary directives issued by DOE Headquarters and addressed to Headquarters and/or field elements. Chg 1 dated 3-14-85. Cancels DOE 1321.1A.

  10. Legacy Management Work Progresses on Defense-Related Uranium...

    Broader source: Energy.gov (indexed) [DOE]

    (LM) continues to work on a report to Congress regarding defense-related legacy uranium mines. LM was directed by the U.S. Congress in the National Defense Authorization Act...

  11. Making energy mortgages work

    SciTech Connect (OSTI)

    Luboff, J.A.

    1995-05-01

    At a time when many energy efficiency projects face an uncertain future, home energy ratings and energy mortgages are receiving more attention than ever. Will enthusiasm in the industry and new programs from conventional lenders and the federal government finally open up the market? This article describes the energy morgage marketplace, how energy mortages work, and what the future holds. Topics include the following: Who`s who and what`s what in the EM marketplace; initial Freddie Mac and Fannie Mae guidelines; past and present home energy rating system; how do you score a house; how an energy mortage works; energy improvement loans; sample rating certificate; fixing the system; Colorado`s conventional market approach; US DOE`s pilot group; energy mortages set to take off.

  12. Directives Quarterly Updates - DOE Directives, Delegations, and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB PacketDiesel prices continueDileepDirections Management's

  13. Directives Templates - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB PacketDiesel prices continueDileepDirections

  14. Internal temperature monitor for work pieces

    DOE Patents [OSTI]

    Berthold, J.W.

    1993-07-13

    A method and apparatus for measuring the internal temperature of a work piece comprises an excitation laser for generating laser pulses which are directed through a water cooled probe, and in an optical fiber, to a first surface of the work piece. The laser is of sufficient intensity to ablate the surface of the work piece, producing a displacement and a resulting ultrasonic pulse which propagates within the thickness of the work piece to an opposite surface. The ultrasonic pulse is reflected from the opposite surface and returns to the first surface to create a second displacement. A second continuous laser also shines its light through an optical fiber in the probe into the first surface and is used in conjunction with signal processing equipment to measure the time between the first and second displacements. This time is proportional to the time-of-flight of the ultrasonic pulse in the work piece which, with a known or detected thickness of the work piece, can be used to calculate the internal temperature of the work piece.

  15. Departmental Directives Program Policy

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-08-16

    The Policy provides formal and organized communication of the Department's expectations for performance of work within the DOE complex. Cancels DOE P 251.1

  16. dfield8 Direction Fields

    E-Print Network [OSTI]

    2010-08-05

    dfield8 Direction Fields. • The routine dfield8 is already loaded on all ITaP machines as standard software. To access MAtlAB from any ITaP machine: Start

  17. Art Directable Tornadoes 

    E-Print Network [OSTI]

    Dwivedi, Ravindra

    2011-08-08

    ......................................................................... 25 2. Directional Force ........................................................... 26 3. Vortex Force .................................................................. 26 4. Lattice... ................................................................... 7 7 Tornado in its rope stage before disappearing ........................................... 9 8 Fire vortex and Waterspout ........................................................................ 10 9 Landspout and Gustnado...

  18. Direct nuclear pumped laser

    DOE Patents [OSTI]

    Miley, George H. (Champagne, IL); Wells, William E. (Urbana, IL); DeYoung, Russell J. (Hampton, VA)

    1978-01-01

    There is provided a direct nuclear pumped gas laser in which the lasing mechanism is collisional radiated recombination of ions. The gas laser active medium is a mixture of the gases, with one example being neon and nitrogen.

  19. Direct from CDC's Environmental

    E-Print Network [OSTI]

    Direct from CDC's Environmental Health Services Branch CAPT Mark D. Miller, R.S., M.P.H. The Role control/ handwashing, solid waste disposal, vector control, general safety, sewage disposal, and adequate

  20. Departmental Directives Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-08-13

    The order establishes directives as the primary means to set, communicate, and institutionalize policies, requirements, responsibilities, and procedures for Departmental elements and contractors. The second draft is being submitted for review owing to extensive revisions to the first draft.

  1. Refrigerant directly cooled capacitors

    DOE Patents [OSTI]

    Hsu, John S. (Oak Ridge, TN); Seiber, Larry E. (Oak Ridge, TN); Marlino, Laura D. (Oak Ridge, TN); Ayers, Curtis W. (Kingston, TN)

    2007-09-11

    The invention is a direct contact refrigerant cooling system using a refrigerant floating loop having a refrigerant and refrigeration devices. The cooling system has at least one hermetic container disposed in the refrigerant floating loop. The hermetic container has at least one electronic component selected from the group consisting of capacitors, power electronic switches and gating signal module. The refrigerant is in direct contact with the electronic component.

  2. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0Photos andSeminarsDesign RenewableNational SecurityWork

  3. Winter 2014 Working Groups

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopmentatabout Who Works for NIF & PS? TheWindows, Doors,

  4. Working With Us | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopmentatabout Who Works for NIF & PS?

  5. ORISE: Working with ORISE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxideUser WorkEPVisiting Us If you are visiting theOak

  6. Service and Repair Work

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment Top Scientific Impact SinceService and Repair Work

  7. TRU TeamWorks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT OFEnergy- EnergyTri-State, 2004 By

  8. TRU TeamWorks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT OFEnergy- EnergyTri-State, 2004

  9. TRU TeamWorks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT OFEnergy- EnergyTri-State, 20041,

  10. TRU TeamWorks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT OFEnergy- EnergyTri-State, 20041,3

  11. TRU TeamWorks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT OFEnergy- EnergyTri-State,

  12. TRU TeamWorks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT OFEnergy- EnergyTri-State,2 WIPP

  13. TRU TeamWorks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT OFEnergy- EnergyTri-State,2 WIPP9,

  14. Work Force Restructuring Activities

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Lacledeutilities.EnergyKirstin AlberiComputerMathewsWeiWork Force

  15. TeamWorks.cdr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S. Coal StocksSuppliersmillion core hours toJune 2013September

  16. How It Works

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.Food Drive HolidayHours UsedFire 1GetHowHow It Works

  17. Doctor of Applied Social Research Social Work Pathway

    E-Print Network [OSTI]

    Little, Tony

    services. SWKPCJ: Crime, Welfare and Justice: explores the risk of crime and the impact of social policyDASR Doctor of Applied Social Research Social Work Pathway · The programme is intended in social work and related social issues. It is directed towards building capacity in the analysis of policy

  18. Coping with Hot Work Environments 

    E-Print Network [OSTI]

    Smith, David

    2005-04-28

    Many people work under hot, humid conditions. Summer heat is a particular hazard to agricultural producers who work long hours under the sun. However, other people working in hot yards, gardens, kitchens or industry jobs are also exposed...

  19. Working Group Report: Sensors

    SciTech Connect (OSTI)

    Artuso, M.; et al.,

    2013-10-18

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

  20. Direct Photons at RHIC

    E-Print Network [OSTI]

    G. David; for the PHENIX Collaboration

    2008-10-21

    Direct photons are ideal tools to investigate kinematical and thermodynamical conditions of heavy ion collisions since they are emitted from all stages of the collision and once produced they leave the interaction region without further modification by the medium. The PHENIX experiment at RHIC has measured direct photon production in p+p and Au+Au collisions at 200 GeV over a wide transverse momentum ($p_T$) range. The $p$ + $p$ measurements allow a fundamental test of QCD, and serve as a baseline when we try to disentangle more complex mechanisms producing high $p_T$ direct photons in Au+Au. As for thermal photons in Au+Au we overcome the difficulties due to the large background from hadronic decays by measuring "almost real" virtual photons which appear as low invariant mass $e^+e^-$ pairs: a significant excess of direct photons is measured above the above next-to-leading order perturbative quantum chromodynamics calculations. Additional insights on the origin of direct photons can be gained with the study of the azimuthal anisotropy which benefits from the increased statistics and reaction plane resolution achieved in RHIC Year-7 data.

  1. Direct laser initiation of PETN

    SciTech Connect (OSTI)

    Early, J. W. (James W.); Kennedy, J. E. (James E.)

    2001-01-01

    In the early 1970s Yang and Menichelli demonstrated that direct laser illumination of low-density secondary explosive prr:ssings through a transparent window could produce detonation. 'The energy requirement for threshold initiation of detonation was reduced when a thin metal coating of metal covered the side of the window against which the low-density explosive was pressed. We have obtained experimental results that are in general agreement with the results of Renllund, Stanton and Trott (1 989) and recent: work by Nagayama, hou and Nakahara (2001). We report exploration of the effects of laser beam diameter, PEiTN density and specific surface area, and thickness of a titanium coating on the window.

  2. Reimbursable Work For Non-Federal Sponsors Process Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-03

    This Manual provides detailed requirements to supplement DOE O 481.1A, Work for Others (Non-DOE Funded Work), dated 01-03-01, which establishes requirements for the performance of work for non-Department of Energy (DOE) National Nuclear Security Administration (NNSA) entities by DOE/NNSA/contractor personnel and/or the use of DOE facilities that is not directly funded by DOE/NNSA appropriations. (Cancels DOE M 481.1-1).

  3. Direct conversion technology

    SciTech Connect (OSTI)

    Massier, P.F.; Back, L.H.; Ryan, M.A.; Fabris, G.

    1992-01-07

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.

  4. Highly directional thermal emitter

    DOE Patents [OSTI]

    Ribaudo, Troy; Shaner, Eric A; Davids, Paul; Peters, David W

    2015-03-24

    A highly directional thermal emitter device comprises a two-dimensional periodic array of heavily doped semiconductor structures on a surface of a substrate. The array provides a highly directional thermal emission at a peak wavelength between 3 and 15 microns when the array is heated. For example, highly doped silicon (HDSi) with a plasma frequency in the mid-wave infrared was used to fabricate nearly perfect absorbing two-dimensional gratings structures that function as highly directional thermal radiators. The absorption and emission characteristics of the HDSi devices possessed a high degree of angular dependence for infrared absorption in the 10-12 micron range, while maintaining high reflectivity of solar radiation (.about.64%) at large incidence angles.

  5. Advanced Simulation and Computing FY09-FY10 Implementation Plan Volume 2, Rev. 1

    SciTech Connect (OSTI)

    Kissel, L

    2009-04-01

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that was very successful in delivering an initial capability to one that is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive capability in the simulation tools. ASC must continue to meet three objectives: (1) Robust Tools - Develop robust models, codes, and computational techniques to support stockpile needs such as refurbishments, SFIs, LEPs, annual assessments, and evolving future requirements; (2) Prediction through Simulation - Deliver validated physics and engineering tools to enable simulations of nuclear weapons performance in a variety of operational environments and physical regimes and to enable risk-informed decisions about the performance, safety, and reliability of the stockpile; and (3) Balanced Operational Infrastructure - Implement a balanced computing platform acquisition strategy and operational infrastructure to meet Directed Stockpile Work (DSW) and SSP needs for capacity and high-end simulation capabilities.

  6. Advanced Simulation and Computing FY09-FY10 Implementation Plan, Volume 2, Revision 0.5

    SciTech Connect (OSTI)

    Meisner, R; Hopson, J; Peery, J; McCoy, M

    2008-10-07

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC)1 is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that was very successful in delivering an initial capability to one that is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive capability in the simulation tools. ASC must continue to meet three objectives: Objective 1. Robust Tools--Develop robust models, codes, and computational techniques to support stockpile needs such as refurbishments, SFIs, LEPs, annual assessments, and evolving future requirements. Objective 2. Prediction through Simulation--Deliver validated physics and engineering tools to enable simulations of nuclear weapons performance in a variety of operational environments and physical regimes and to enable risk-informed decisions about the performance, safety, and reliability of the stockpile. Objective 3. Balanced Operational Infrastructure--Implement a balanced computing platform acquisition strategy and operational infrastructure to meet Directed Stockpile Work (DSW) and SSP needs for capacity and high-end simulation capabilities.

  7. Advanced Simulation and Computing FY10-FY11 Implementation Plan Volume 2, Rev. 0.5

    SciTech Connect (OSTI)

    Meisner, R; Peery, J; McCoy, M; Hopson, J

    2009-09-08

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering (D&E) programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that was very successful in delivering an initial capability to one that is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive capability in the simulation tools. ASC must continue to meet three objectives: (1) Robust Tools - Develop robust models, codes, and computational techniques to support stockpile needs such as refurbishments, SFIs, LEPs, annual assessments, and evolving future requirements; (2) Prediction through Simulation - Deliver validated physics and engineering tools to enable simulations of nuclear weapons performance in a variety of operational environments and physical regimes and to enable risk-informed decisions about the performance, safety, and reliability of the stockpile; and (3) Balanced Operational Infrastructure - Implement a balanced computing platform acquisition strategy and operational infrastructure to meet Directed Stockpile Work (DSW) and SSP needs for capacity and high-end simulation capabilities.

  8. Advanced Simulation and Computing Fiscal Year 2011-2012 Implementation Plan, Revision 0

    SciTech Connect (OSTI)

    McCoy, M; Phillips, J; Hpson, J; Meisner, R

    2010-04-22

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering (D&E) programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that was very successful in delivering an initial capability to one that is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive capability in the simulation tools. ASC must continue to meet three objectives: Objective 1 - Robust Tools. Develop robust models, codes, and computational techniques to support stockpile needs such as refurbishments, SFIs, LEPs, annual assessments, and evolving future requirements. Objective 2 - Prediction through Simulation. Deliver validated physics and engineering tools to enable simulations of nuclear weapons performance in a variety of operational environments and physical regimes and to enable risk-informed decisions about the performance, safety, and reliability of the stockpile. Objective 3 - Balanced Operational Infrastructure. Implement a balanced computing platform acquisition strategy and operational infrastructure to meet Directed Stockpile Work (DSW) and SSP needs for capacity and high-end simulation capabilities.

  9. Advanced Simulation and Computing FY08-09 Implementation Plan, Volume 2, Revision 0.5

    SciTech Connect (OSTI)

    Kusnezov, D; Bickel, T; McCoy, M; Hopson, J

    2007-09-13

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC)1 is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear-weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable Stockpile Life Extension Programs (SLEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining the support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that was very successful in delivering an initial capability to one that is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive capability in the simulation tools. ASC must continue to meet three objectives: Objective 1. Robust Tools--Develop robust models, codes, and computational techniques to support stockpile needs such as refurbishments, SFIs, LEPs, annual assessments, and evolving future requirements. Objective 2--Prediction through Simulation. Deliver validated physics and engineering tools to enable simulations of nuclear-weapons performances in a variety of operational environments and physical regimes and to enable risk-informed decisions about the performance, safety, and reliability of the stockpile. Objective 3. Balanced Operational Infrastructure--Implement a balanced computing platform acquisition strategy and operational infrastructure to meet Directed Stockpile Work (DSW) and SSP needs for capacity and high-end simulation capabilities.

  10. Advanced Simulation & Computing FY09-FY10 Implementation Plan Volume 2, Rev. 0

    SciTech Connect (OSTI)

    Meisner, R; Perry, J; McCoy, M; Hopson, J

    2008-04-30

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the safety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future nonnuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC)1 is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear-weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable Stockpile Life Extension Programs (SLEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining the support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that was very successful in delivering an initial capability to one that is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive capability in the simulation tools. ASC must continue to meet three objectives: Objective 1. Robust Tools--Develop robust models, codes, and computational techniques to support stockpile needs such as refurbishments, SFIs, LEPs, annual assessments, and evolving future requirements. Objective 2--Prediction through Simulation. Deliver validated physics and engineering tools to enable simulations of nuclear-weapons performances in a variety of operational environments and physical regimes and to enable risk-informed decisions about the performance, safety, and reliability of the stockpile. Objective 3--Balanced Operational Infrastructure. Implement a balanced computing platform acquisition strategy and operational infrastructure to meet Directed Stockpile Work (DSW) and SSP needs for capacity and high-end simulation capabilities.

  11. Advanced Simulation and Computing FY10-11 Implementation Plan Volume 2, Rev. 0

    SciTech Connect (OSTI)

    Carnes, B

    2009-06-08

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that was very successful in delivering an initial capability to one that is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive capability in the simulation tools. ASC must continue to meet three objectives: Objective 1 Robust Tools--Develop robust models, codes, and computational techniques to support stockpile needs such as refurbishments, SFIs, LEPs, annual assessments, and evolving future requirements. Objective 2 Prediction through Simulation--Deliver validated physics and engineering tools to enable simulations of nuclear weapons performance in a variety of operational environments and physical regimes and to enable risk-informed decisions about the performance, safety, and reliability of the stockpile. Objective 3 Balanced Operational Infrastructure--Implement a balanced computing platform acquisition strategy and operational infrastructure to meet Directed Stockpile Work (DSW) and SSP needs for capacity and high-end simulation capabilities.

  12. Direct sequential system assemblage

    E-Print Network [OSTI]

    Sandomire, Daniel M. (Daniel Micah)

    1997-01-01

    Decisions made during the building process have the opportunity to both inform the next set of decisions and provide unexpected and possibly positive features in the final project. Thus, working beyond the minimum definition ...

  13. Directed Quantum Chaos

    SciTech Connect (OSTI)

    Efetov, K.B. [Max-Planck Institut fuer Physik komplexer Systeme, Heisenbergstrasse 1, 70569 Stuttgart (Germany)] [Max-Planck Institut fuer Physik komplexer Systeme, Heisenbergstrasse 1, 70569 Stuttgart (Germany); [L.D. Landau Institute for Theoretical Physics, Moscow (Russia)

    1997-07-01

    Quantum disordered problems with a direction (imaginary vector potential) are discussed and mapped onto a supermatrix {sigma} model. It is argued that the 0D version of the {sigma} model may describe a broad class of phenomena that can be called directed quantum chaos. It is demonstrated by explicit calculations that these problems are equivalent to those of random asymmetric or non-Hermitian matrices. A joint probability of complex eigenvalues is obtained. The fraction of states with real eigenvalues proves to be always finite for time reversal invariant systems. {copyright} {ital 1997} {ital The American Physical Society}

  14. Direct Conversion Technology

    SciTech Connect (OSTI)

    Back, L.H.; Fabris, G.; Ryan, M.A.

    1992-07-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)

  15. Directed Relativistic Blast Wave

    E-Print Network [OSTI]

    Andrei Gruzinov

    2007-04-23

    A spherically symmetrical ultra-relativistic blast wave is not an attractor of a generic asymmetric explosion. Spherical symmetry is reached only by the time the blast wave slows down to non-relativistic velocities, when the Sedov-Taylor-von Neumann attractor solution sets in. We show however, that a directed relativistic explosion, with the explosion momentum close to the explosion energy, produces a blast wave with a universal intermediate asymptotic -- a selfsimilar directed ultra-relativistic blast wave. This universality might be of interest for the astrophysics of gamma-ray burst afterglows.

  16. Directions & Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB PacketDiesel prices continueDileepDirections & Maps Directions

  17. Directions to Berkeley Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB PacketDiesel prices continueDileepDirections & MapsDirections

  18. River Corridor Cleanup Contract Fiscal Year 2006 Detailed Work Plan: DWP Summary, Volume 1

    SciTech Connect (OSTI)

    Project Integration

    2005-09-26

    This detailed work plan provides the scope, cost, and schedule for the Fiscal Year 2006 activities required to support River Corridor cleanup objectives within the directed guidance.

  19. Video Shoot Scope of Work

    Broader source: Energy.gov [DOE]

    Video Shoot Scope of Work, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  20. High Temperature Membrane Working Group

    Broader source: Energy.gov [DOE]

    This presentation provides an overview of the High Temperature Membrane Working Group Meeting in May 2007.

  1. Clean Energy Works Oregon (CEWO)

    Broader source: Energy.gov [DOE]

    Presents Clean Energy Works Oregon's program background and the four easy steps to lender selection.

  2. Direct-to-Indirect Transfer for Cinematic Relighting

    E-Print Network [OSTI]

    Pellacini, Fabio

    Direct-to-Indirect Transfer for Cinematic Relighting Milos Hasan (Cornell University) Fabio Pellacini (Dartmouth College) Kavita Bala (Cornell University) #12;Introduction · Cinematic Relighting Transfer matrix #12;Interactive Demo #12;Related Work · Cinematic relighting engines ­ [Gershbein 00

  3. Nucleic base-directed adsorption of colloids and polyelectrolytes

    E-Print Network [OSTI]

    Terrot, Marianne S. (Marianne Simon)

    2007-01-01

    The primary objective of this work has been the advancement of selective adsorption techniques by use of new interactions and development of new approaches to the directed assembly of colloidal species. The ability to ...

  4. Two dimensional control of metamaterial parameters for radiation directivity

    E-Print Network [OSTI]

    Foltz, Eleanor R. (Eleanor Ruth)

    2006-01-01

    This work examines the feasibility of using metamaterials to direct radiation. The limits of required index of refraction and the required material depth are explored using MATLAB simulations. A wedge of connected S-shape ...

  5. Directed Regression Stanford University

    E-Print Network [OSTI]

    Van Roy, Ben

    Directed Regression Yi-hao Kao Stanford University Stanford, CA 94305 yihaokao Stanford, CA 94305 xyan@stanford.edu Abstract When used to guide decisions, linear regression analysis typically involves esti- mation of regression coefficients via ordinary least squares and their subsequent

  6. Deregulation Direct Access

    E-Print Network [OSTI]

    Kammen, Daniel M.

    AB 1890 AB1X Aggregator Blue Book CEC CPUC CTC Deregulation Direct Access Divestiture DWR EOB EPAct an initiative on the ballot in response to the energy crisis. www.ftcr.org ESPs that sell electricity generated of peak demand. Investor Owned Utility. A private electric utility (owned by shareholders) regulated

  7. Directed Diffusion Fabio Silva

    E-Print Network [OSTI]

    Heidemann, John

    nodes can cache, or transform data, and may direct interests based on previously cached data (Section 3 University of Southern California Los Angeles, CA, USA 90089 ¶ Computer Science Department University of California, Los Angeles Los Angeles, CA, USA 90095 {fabio,johnh,govindan,estrin}@isi.edu February 10, 2004 1

  8. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-08-12

    The following directives are extended until 8-12-05: DOE N 205.2, Foreign National Access to DOE Cyber Security Systems, dated 11-1-99 and DOE N 205.3, Password Generation, Protection, and Use, dated 11-23-99. No cancellations.

  9. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-02-24

    This Notice extends the following directives until 2/16/04: DOE N 205.2, Foreign National Access to DOE Cyber Systems, and DOE N 205.3, Password Generation, Protection, and Use, dated 11/23/99-7/1/00.

  10. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-02-12

    The following directives are extended until 8-12-04. DOE N 205.2, Foreign National Access to DOE Cyber Systems, dated 11/1/99. DOE N 205.3, Password Generation, Protection, and Use, dated 11/23/99.

  11. Direct fired heat exchanger

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

    1986-01-01

    A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

  12. Direct from CDC's Environmental

    E-Print Network [OSTI]

    Direct from CDC's Environmental Health Services Branch CAPT Daniel M. Harper, M.P.H. A Diverse Environmental Public Health Workforce to Meet the Diverse Environmental Health Challenges on environmental health and to build part nerships in the profession. In pursuit of these goals, we will feature

  13. Direct from CDC's Environmental

    E-Print Network [OSTI]

    Direct from CDC's Environmental Health Services Branch Brian Hubbard, M.P.H. Editor the Environmental Health Services Branch (EHSB) of the Centers for Disease Con trol and Prevention (CDC) in every environmental health programs and professionals to antici pate, identify, and respond to adverse envi ronmental

  14. Direct from CDC's Environmental

    E-Print Network [OSTI]

    Direct from CDC's Environmental Health Services Branch Daneen Farrow Collier, M.S.P.H. Editor's note: NEHA strives to pro vide up-to-date and relevant informa tion on environmental health the Environmental Health Services Branch (EHSB) of the Centers for Disease Control and Pre vention (CDC) in every

  15. Direct from CDC's Environmental

    E-Print Network [OSTI]

    Direct from CDC's Environmental Health Services Branch CAPT John Sarisky, R.S., M.P.H. Developing Environmental Public Health Leadership Editor's note: NEHA strives to provide up to of these goals, we will feature a column from the Environmental Health Services Branch (EHSB) of the Centers

  16. Reexamination of Pure Qubit Work Extraction

    E-Print Network [OSTI]

    Max F. Frenzel; David Jennings; Terry Rudolph

    2014-11-19

    Many work extraction or information erasure processes in the literature involve the raising and lowering of energy levels via external fields. But even if the actual system is treated quantum mechanically, the field is assumed to be classical and of infinite strength, hence not developing any correlations with the system or experiencing back-actions. We extend these considerations to a fully quantum mechanical treatment, by studying a spin-1/2 particle coupled to a finite-sized directional quantum reference frame, a spin-l system, which models an external field. With this concrete model together with a bosonic thermal bath, we analyse the back-action a finite-size field suffers during a quantum-mechanical work extraction process, the effect this has on the extractable work, and highlight a range of assumptions commonly made when considering such processes. The well-known semi-classical treatment of work extraction from a pure qubit predicts a maximum extractable work W = kT log 2 for a quasi-static process, which holds as a strict upper bound in the fully quantum mechanical case, and is only attained in the classical limit. We also address the problem of emergent local time-dependence in a joint system with globally fixed Hamiltonian.

  17. Interview: LaborWorks@NeighborWorks Provides Vermont Contractors...

    Broader source: Energy.gov (indexed) [DOE]

    LaborWorks@NeighborWorks is a nonprofit temporary labor pool formed to assist professional contractors involved with the HEAT Squad during busy periods when they couldn't keep up...

  18. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett Lee; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-09-19

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  19. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2007-02-27

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  20. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-07-11

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  1. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2006-10-10

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  2. Direct hydrocarbon fuel cells

    DOE Patents [OSTI]

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  3. Direct contact, binary fluid geothermal boiler

    DOE Patents [OSTI]

    Rapier, Pascal M. (Richmond, CA)

    1982-01-01

    Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carry-over through the turbine causes corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

  4. Directives System Order

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-16

    The order prescribes the process for development of Policy Statements, Orders, Notices, Manuals and Guides, which are intended to guide, inform, and instruct employees in the performance of their jobs, and enable them to work effectively within the Department and with agencies, contractors, and the public.

  5. Voltages across assembly joints due to direct-strike lightning currents

    SciTech Connect (OSTI)

    Dinallo, M.S. [Quatro Corp., Albuquerque, NM (United States); Fisher, R.J. [Sandia National Labs., Albuquerque, NM (United States)

    1994-08-01

    An extensive set of direct-strike lightning tests has been carried out on a set of facsimile assembly joints of the kinds employed in the design of nuclear weapon cases. Taken as a whole, the test hardware included all the conceptual design elements that are embodied, either singly or in combination, in any specific assembly joint incorporated into any stockpiled weapon. During the present testing, the effects of all key design parameters on the voltages developed across the interior of the joints were investigated under a range of lightning stroke current parameter values. Design parameter variations included the types and number of joint fasteners, mechanical preload, surface finish tolerance and coatings, and the material from which the joint assembly was fabricated. Variations of the simulated lightning stroke current included amplitude (30-, 100-, and 200-kA peak), rise time, and decay time. The maximum voltage observed on any of the test joints that incorporated proper metal-to-metal surface contact was 65 V. Typical response values were more on the order of 20 V. In order to assess the effect of the presence of a dielectric coating (either intentional or as a result of corrosion) between the mating surfaces of a joint, a special configuration was tested in which the mating parts of the test assembly were coated with a 1-mil-thick dielectric anodizing layer. First strokes to these test assemblies resulted in very narrow voltage spikes of amplitudes up to 900 V. The durations of these spikes were less than 0.1 {mu}s. However, beyond these initial spikes, the voltages typically had amplitudes of up to 400 V for durations of 3 to 5 {mu}s.

  6. Clean Energy Works Oregon Final Technical Report

    SciTech Connect (OSTI)

    Jacob, Andria; Cyr, Shirley

    2013-12-31

    In April 2010, the City of Portland received a $20 million award from the U.S. Department of Energy, as part of the Energy Efficiency and Conservation Block Grant program. This award was appropriated under the American Recovery and Reinvestment Act (ARRA), passed by President Obama in 2009. DOE’s program became known as the Better Buildings Neighborhood Program (BBNP). The BBNP grant objectives directed the City of Portland Bureau of Planning and Sustainability (BPS) as the primary grantee to expand the BPS-led pilot program, Clean Energy Works Portland, into Clean Energy Works Oregon (CEWO), with the mission to deliver thousands of home energy retrofits, create jobs, save energy and reduce carbon dioxide emissions.The Final Technical Report explores the successes and lessons learned from the first 3 years of program implementation.

  7. Water Resources Working Group Report

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Water Resources Working Group Report This report provided content for the Wisconsin Initiative in February 2011. #12;Water Resources Working Group Wisconsin Initiative on Climate Change Impacts October 2010 #12;Water Resources Working Group Members ­ WICCI Tim Asplund (Co-Chair) - Wisconsin Department

  8. Directions_Crossroads_Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent BondingMeetingDifferencesPlatinumDirections New


  9. Direct electroplating on nonconductors

    SciTech Connect (OSTI)

    Weng, D.; Landau, U. [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Chemical Engineering

    1995-08-01

    Recently proposed processes for direct electroplating on nonconductive substrates offer numerous advantages. The industrial implementation of such processes is, however, hampered by lack of understanding. Presented here is a model for this class of processes based on three synergistic mechanisms: (i) stepwise propagation through the seed clusters that serve as sequentially activated microelectrodes, (ii) preferential accessibility to current of the sharp edge, and (iii) kinetics-based enhancement due to the fast propagation of an additive-free edge. The model has been computer simulated and verified by experiments of copper electroplating on nonconductive substrates.

  10. Omni-directional railguns

    DOE Patents [OSTI]

    Shahinpoor, M.

    1995-07-25

    A device is disclosed for electromagnetically accelerating projectiles. The invention features two parallel conducting circular plates, a plurality of electrode connections to both upper and lower plates, a support base, and a projectile magazine. A projectile is spring-loaded into a firing position concentrically located between the parallel plates. A voltage source is applied to the plates to cause current to flow in directions defined by selectable, discrete electrode connections on both upper and lower plates. Repulsive Lorentz forces are generated to eject the projectile in a 360 degree range of fire. 4 figs.

  11. Omni-directional railguns

    DOE Patents [OSTI]

    Shahinpoor, Mohsen (9521 Avenida Del Oso NE., Albuquerque, NM 87111)

    1995-01-01

    A device for electromagnetically accelerating projectiles. The invention features two parallel conducting circular plates, a plurality of electrode connections to both upper and lower plates, a support base, and a projectile magazine. A projectile is spring-loaded into a firing position concentrically located between the parallel plates. A voltage source is applied to the plates to cause current to flow in directions defined by selectable, discrete electrode connections on both upper and lower plates. Repulsive Lorentz forces are generated to eject the projectile in a 360 degree range of fire.

  12. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-03-18

    The following directives are extended until 3-18-06: DOE N 205.8, Cyber Security Requirements for Wireless Devices and Information Systems, dated 2-11-04; DOE N 205.9, Certification and Accreditation Process for Information Systems Including National Security Systems, dated 02-19-04; DOE N 205.10, Cyber Security Requirements for Risk Management, dated 02-19-04; DOE N 205.11, Security Requirements for Remote Access to DOE and Applicable Contractor Information Technology Systems, dated 2-19-04. DOE N 205.12, Clearing, Sanitizing, and Destroying Information System Storage Media, Memory Devices, and Other Related Hardware, dated 2-19-04.

  13. Buckman Direct Diversion Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L OBransen PlasmaEnergy, science,Buckman Direct Diversion Project

  14. Direct Federal Financial

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic Feet)Cubic1992Thousand9)%YearD e sDirect

  15. Directives Points of Contact

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB PacketDiesel prices continueDileepDirections

  16. Directives Quarterly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB PacketDiesel prices continueDileepDirections Management's home page

  17. Directives Quarterly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB PacketDiesel prices continueDileepDirections Management's home

  18. Directives Quarterly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB PacketDiesel prices continueDileepDirections Management's

  19. Directives Quarterly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB PacketDiesel prices continueDileepDirections Management's

  20. Directives Quarterly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB PacketDiesel prices continueDileepDirections Management's home page

  1. Directives Quarterly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB PacketDiesel prices continueDileepDirections Management's home page

  2. Directives Quarterly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB PacketDiesel prices continueDileepDirections Management's home page

  3. Radiator debris removing apparatus and work machine using same

    DOE Patents [OSTI]

    Martin, Kevin L. (Washburn, IL); Elliott, Dwight E. (Chillicothe, IL)

    2008-09-02

    A radiator assembly includes a finned radiator core and a debris removing apparatus having a compressed air inlet and at least one compressed air outlet configured to direct compressed air through the radiator core. A work machine such as a wheel loader includes a radiator and a debris removing apparatus coupled with on-board compressed air and having at least one pressurized gas outlet configured to direct a gas toward the face of the radiator.

  4. Remote direct memory access

    DOE Patents [OSTI]

    Archer, Charles J.; Blocksome, Michael A.

    2012-12-11

    Methods, parallel computers, and computer program products are disclosed for remote direct memory access. Embodiments include transmitting, from an origin DMA engine on an origin compute node to a plurality target DMA engines on target compute nodes, a request to send message, the request to send message specifying a data to be transferred from the origin DMA engine to data storage on each target compute node; receiving, by each target DMA engine on each target compute node, the request to send message; preparing, by each target DMA engine, to store data according to the data storage reference and the data length, including assigning a base storage address for the data storage reference; sending, by one or more of the target DMA engines, an acknowledgment message acknowledging that all the target DMA engines are prepared to receive a data transmission from the origin DMA engine; receiving, by the origin DMA engine, the acknowledgement message from the one or more of the target DMA engines; and transferring, by the origin DMA engine, data to data storage on each of the target compute nodes according to the data storage reference using a single direct put operation.

  5. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mccomiskey, Allison

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  6. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mccomiskey, Allison

    2008-01-15

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  7. Defining work from operational principles

    E-Print Network [OSTI]

    R. Gallego; J. Eisert; H. Wilming

    2015-04-20

    In recent years we have witnessed a concentrated effort to make sense of thermodynamics for small-scale systems. One of the main difficulties is that, at the nano-scale, thermal fluctuations of energy in general render it conceptually difficult to distinguish work from heat. Despite of several attempts to resolve this issue, many of which inspired by quantum information theory, there is still remarkable little consensus on it. In this work, we attempt to define work in a strictly operational way. In our resource-theoretic approach, agents wish to agree upon how much work needs to be invested to effect a transition from one state of an arbitrary quantum work-storage device to another. We introduce basic operational principles, and deduce from them a strict set of mathematical properties that any reasonable function quantifying such work has to fulfil. One of those generalises strong sub-additivity, a key property in quantum information theory, to the domain of thermodynamics. We show that one work quantifier fulfilling all the required properties is the difference of the non-equilibrium free energy of the initial and final state of the work-storage system. More generally, for any work quantifier fulfilling the stated properties, we can derive a quantitative second law in the sense of bounding the work that can be performed using some non-equilibrium resource by the work that is needed to create it. We furthermore discuss the role of path dependence for work quantifiers and the connection to the concept of probability-distributions of work. Our mathematical results can be formulated abstractly and carry over to other resource theories than quantum thermodynamics.

  8. Defining work from operational principles

    E-Print Network [OSTI]

    R. Gallego; J. Eisert; H. Wilming

    2015-09-25

    In recent years we have witnessed a concentrated effort to make sense of thermodynamics for small-scale systems. One of the main difficulties is that, at the nano-scale, thermal fluctuations of energy in general render it conceptually difficult to distinguish work from heat. Despite of several attempts to resolve this issue, many of which inspired by quantum information theory, there is still remarkable little consensus on it. In this work, we attempt to define work in a strictly operational way. In our resource-theoretic approach, agents wish to agree upon how much work needs to be invested to effect a transition from one state of an arbitrary quantum work-storage device to another. We introduce basic operational principles, and deduce from them a strict set of mathematical properties that any reasonable function quantifying such work has to fulfill. We show that one work quantifier satisfying all the required properties is the difference of the non-equilibrium free energy of the initial and final state of the work-storage system. More generally, for any work quantifier fulfilling the stated properties, we can derive a quantitative second law in the sense of bounding the work that can be performed using some non-equilibrium resource by the work that is needed to create it. The appropriate treatment of correlations turns out to be essential to obtain such second laws and we discuss their role in detail. We furthermore discuss the role of path dependence for work quantifiers and the connection to the concept of probability-distributions of work. Our mathematical results can be formulated abstractly and are general enough to carry over to other resource theories than quantum thermodynamics.

  9. Interagency Sustainability Working Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainability Working Group Interagency Sustainability Working Group The Interagency Sustainability Working Group (ISWG) is the coordinating body for sustainable federal...

  10. Interagency Sustainability Working Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Areas Sustainable Buildings & Campuses Interagency Sustainability Working Group Interagency Sustainability Working Group The Interagency Sustainability Working Group...

  11. Directed light fabrication

    SciTech Connect (OSTI)

    Lewis, G.K.; Nemec, R.; Milewski, J.; Thoma, D.J.; Cremers, D.; Barbe, M.

    1994-09-01

    Directed Light Fabrication (DLF) is a rapid prototyping process being developed at Los Alamos National Laboratory to fabricate metal components. This is done by fusing gas delivered metal powder particles in the focal zone of a laser beam that is, programmed to move along or across the part cross section. Fully dense metal is built up a layer at a time to form the desired part represented by a 3 dimensional solid model from CAD software. Machine ``tool paths`` are created from the solid model that command the movement and processing parameters specific to the DLF process so that the part can be built one layer at a time. The result is a fully dense, near net shape metal part that solidifies under rapid solidification conditions.

  12. Ad Hoc Curriculum Implementation Working Group Ad Hoc Working Group

    E-Print Network [OSTI]

    Brown, Sally

    Ad Hoc Curriculum Implementation Working Group MINUTES Ad Hoc Working Group 4 December 2002 Friedman on her visit next week. ONE CURRICULUM OR TWO? Information presented by Trudeau shows that PSE and other programs cannot be merged into a single curriculum. The Faculty Senate website states

  13. The cultural work of microwork

    E-Print Network [OSTI]

    Irani, L

    2015-01-01

    divisions of labor in high-technology work. Among computerservice, in historical high-technology discourses throughthe present moment of high-technology entrepreneurialism and

  14. Construction Work in Progress (Kansas)

    Broader source: Energy.gov [DOE]

    This Act allows nuclear power plants to qualify for recovery of Construction Work in Progress (CWIP) and other preconstruction expenditures in rates. Previously, nuclear power plants were excluded...

  15. INL @ work: Nuclear Reactor Operator

    ScienceCinema (OSTI)

    Russell, Patty

    2013-05-28

    INL @ work features jobs at the Idaho National Laboratory. Learn more about careers and energy research at INL's facebook site http://www.facebook.com/idahonationallaboratory

  16. Ajay K. Agrawal Work: Home

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    · Lean premixed combustion of alternate fuels (synthetic gas, bio-fuels) · Low-emission combustion Worked with staff engineers to analyze fuel composition effects on lean premixed combustion

  17. Attachment 1 - Performance Work Statement

    National Nuclear Security Administration (NNSA)

    federal and state laws and regulations; DOE orders, standards, and recommendations; and industry standards and best practices are incorporated into the work scope. 3.2.5.4...

  18. Imagination at work. Aaron Couture

    E-Print Network [OSTI]

    Das, Suman

    rights reserved 12 Power Overlay (POL) Platform: Realizing the full benefit of SiC power electronics Direct copper interconnect Polyimide based integration platform #12;© 2014 General Electric Company - All · Chronic · 30-day re- admissions · General hospitalization · Critical car

  19. Bioenergy Technologies Office New Directions

    Broader source: Energy.gov [DOE]

    New Directions and New Business Opportunities for BETO Valerie Reed, Acting Director, BETO, U.S. Department of Energy

  20. Hazardous Working Policy November 2012

    E-Print Network [OSTI]

    Doran, Simon J.

    for: The management of University workers performing hazardous tasks or working in hazardous areas;2 Hazardous Areas: are areas where a University worker may be exposed to risks that are considered greater1 Hazardous Working Policy November 2012 Introduction The University of Surrey acknowledges

  1. The work value of information

    E-Print Network [OSTI]

    Oscar C. O. Dahlsten; Renato Renner; Elisabeth Rieper; Vlatko Vedral

    2009-08-04

    We present quantitative relations between work and information that are valid both for finite sized and internally correlated systems as well in the thermodynamical limit. We suggest work extraction should be viewed as a game where the amount of work an agent can extract depends on how well it can guess the micro-state of the system. In general it depends both on the agent's knowledge and risk-tolerance, because the agent can bet on facts that are not certain and thereby risk failure of the work extraction. We derive strikingly simple expressions for the extractable work in the extreme cases of effectively zero- and arbitrary risk tolerance respectively, thereby enveloping all cases. Our derivation makes a connection between heat engines and the smooth entropy approach. The latter has recently extended Shannon theory to encompass finite sized and internally correlated bit strings, and our analysis points the way to an analogous extension of statistical mechanics.

  2. Multiple direction vibration fixture

    DOE Patents [OSTI]

    Cericola, Fred (Albuquerque, NM); Doggett, James W. (Albuquerque, NM); Ernest, Terry L. (Albuquerque, NM); Priddy, Tommy G. (Rockville, MD)

    1991-01-01

    An apparatus for simulating a rocket launch environment on a test item undergoing centrifuge testing by subjecting the item simultaneously or separately to vibration along an axis of centripetal force and along an axis perpendicular to the centripetal force axis. The apparatus includes a shaker motor supported by centrifuge arms and a right angle fixture pivotally connected to one of the shaker motor mounts. When the shaker motor vibrates along the centripetal force axis, the vibrations are imparted to a first side of the right angle fixture. The vibrations are transmitted 90 degrees around the pivot and are directed to a second side of the right angle fixture which imparts vibrations perpendicular to the centripetal force axis. The test item is in contact with a third side of the right angle fixture and receives both centripetal-force-axis vibrations and perpendicular axis vibrations simultaneously. A test item can be attached to the third side near the flexible coupling or near the air bag to obtain vibrations along the centripetal force axis or transverse to the centripetal force axis.

  3. Reimbursable Work for Non-Federal Sponsors Process Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-03

    This Manual provides detailed requirements to supplement DOE O 481.1B, Work For Others (Non-Department of Energy Funded Work), dated 9-28-01, which establishes requirements for the performance of work for non-Department of Energy (DOE)/non-National Nuclear Security Administration (NNSA) entities by DOE/NNSA/contractor personnel and/or the use of DOE/NNSA facilities that is not directly funded by DOE/NNSA appropriations. Chg 1, dated 9-28-01, supersedes DOE M 481.1-1. Certified 12-28-06.

  4. Catalyst Working Group Kick-off Meeting: Personal Commentary

    Broader source: Energy.gov [DOE]

    Personal commentary on future directions in fuel cell electrocatalysis, presented by Mark Debe, 3M, at the kick-off meeting of the U.S. Department of Energy Fuel Cell Technologies Program's Catalysis Working Group, held May 14, 2012, in Arlington, Virginia.

  5. The Governance of Clean Development Working Paper 016 July 2011

    E-Print Network [OSTI]

    Watson, Andrew

    CDMs) as the dominant project pattern in China's CDM market. It intends to reveal the political and economic reasons: additionality; China; Clean Development Mechanism (CDM); foreign direct investment; governance; political Development Working Paper Series Understanding the dominance of unilateral CDM projects in China: origins

  6. Reimbursable Work for the Department of Homeland Security

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-08-17

    The Order establishes DOE policies and procedures for the acceptance, performance, and administration of reimbursable work directly funded by the Department of Homeland Security. Admin Chg 2, dated 6-30-14, supersedes DOE O 484.1 Admin Chg 1. Certified 1-15-15

  7. Reimbursable Work for the Department of Homeland Security

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-08-17

    The Order establishes DOE policies and procedures for the acceptance, performance, and administration of reimbursable work directly funded by the Department of Homeland Security. Cancels DOE N 481.1 and DOE N 251.62. Admin Chg 1, dated 3-14-11.

  8. Related Work 2.1 Realism in Computer Animation Techniques

    E-Print Network [OSTI]

    Rodríguez, Inmaculada

    Chapter 2 Related Work 2.1 Realism in Computer Animation Techniques Realistic animation of human the motion are directly applied to the virtual human. Motion capture is typically used in video game. Amaya et al. designed a model to generate "emotional" animation from "neutral" human motion [Ama96

  9. Radioactive Contamination Control Work Practices

    SciTech Connect (OSTI)

    WAGGONER, L.O.

    2002-10-01

    At Hanford, loose radioactive material can be found in plant systems, rooms, ventilation ducts, fuel pools, and outside radiological work facilities. Work practices used to accomplish radiological work in nuclear facilities often concern keeping radioactive contamination from spreading. This is not an easy task as the contamination activity levels can be very high and the material can be very unstable. Most of the time, the contamination is not visible, so we have to rely on surveys taken by Radiological Controls personnel to tell workers where the contamination is located and the activity levels present. The work practices used by workers are critical in controlling contamination spread, but it is impossible to document all of the work practices a worker should use. Many times, something will happen during the job that could result in a contamination spread. We rely on the workers knowledge and experience to realize when a potential spread of contamination is occurring, and take the actions necessary to prevent it from happening. It is important that a worker understand the concepts of contamination control in order to make the right decisions when work is accomplished. In facilities that work with ''fissile'' materials there is increased concern that nothing be done that increases the chance that a ''criticality accident'' might occur during work. Criticality safety personnel need to be consulted and approve contamination control practices that could increase the potential for a criticality accident. This Workshop includes a discussion of fundamental contamination control practices and new techniques used for radiological work. This is intended to be very informative and include hands-on exercises to provide the attendees with an appreciation of the methods being used to confine contamination spread.

  10. Direct Aromaization of Methane

    SciTech Connect (OSTI)

    George Marcelin

    1997-01-15

    The thermal decomposition of methane offers significant potential as a means of producing higher unsaturated and aromatic hydrocarbons when the extent of reaction is limited. Work in the literature previous to this project had shown that cooling the product and reacting gases as the reaction proceeds would significantly reduce or eliminate the formation of solid carbon or heavier (Clo+) materials. This project studied the effect and optimization of the quenching process as a means of increasing the amount of value added products during the pyrolysis of methane. A reactor was designed to rapidly quench the free-radical combustion reaction so as to maximize the yield of aromatics. The use of free-radical generators and catalysts were studied as a means of lowering the reaction temperature. A lower reaction temperature would have the benefits of more rapid quenching as well as a more feasible commercial process due to savings realized in energy and material of construction costs. It was the goal of the project to identify promising routes from methane to higher hydrocarbons based on the pyrolysis of methane.

  11. RCRA corrective action: Work plans

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    This Information Brief describes the work plans that owners/operators may have to prepare in conjunction with the performance of corrective action for compliance with RCRA guidelines. In general, the more complicated the performance of corrective action appears from the remedial investigation and other analyses, the more likely it is that the regulator will impose work plan requirements. In any case, most owner/operators will prepare work plans in conjunction with the performance of corrective action processes as a matter of best engineering management practices.

  12. NNSA's Summary of Experiments Conducted in Support of Stockpile...

    National Nuclear Security Administration (NNSA)

    National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, and the Z machine at Sandia National Laboratories. The summary also provides the number of experiments...

  13. Hydrodynamic experiment provides key data for Stockpile Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    component in the National Nuclear Security Administration's Science Campaigns and Plutonium Sustainment Programs to support the technical basis for confidence in the...

  14. Los Alamos Explosives Performance Key to Stockpile Stewardship

    SciTech Connect (OSTI)

    Dattelbaum, Dana

    2014-11-03

    As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- and small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.

  15. Strategies for denaturing the weapons-grade plutonium stockpile

    SciTech Connect (OSTI)

    Buckner, M.R.; Parks, P.B.

    1992-10-01

    In the next few years, approximately 50 metric tons of weapons-grade plutonium and 150 metric tons of highly-enriched uranium (HEU) may be removed from nuclear weapons in the US and declared excess. These materials represent a significant energy resource that could substantially contribute to our national energy requirements. HEU can be used as fuel in naval reactors, or diluted with depleted uranium for use as fuel in commercial reactors. This paper proposes to use the weapons-grade plutonium as fuel in light water reactors. The first such reactor would demonstrate the dual objectives of producing electrical power and denaturing the plutonium to prevent use in nuclear weapons.

  16. NNSA's Summary of Experiments Conducted in Support of Stockpile...

    National Nuclear Security Administration (NNSA)

    2014 (17) April 2014 (12) March 2014 (7) February 2014 (11) January 2014 (12) December 2013 (18) November 2013 (21) October 2013 (9) September 2013 (18) August 2013 (17) July 2013...

  17. US, UK, France Discuss Stockpile Stewardship, Arms Control and...

    National Nuclear Security Administration (NNSA)

    Control and Nonproliferation and Visit the Nevada National Security Site On Dec. 18-19, 2013, the United States hosted a visit by delegations from France and the United Kingdom to...

  18. How much will it cost to destroy stockpiled US plutonium?

    SciTech Connect (OSTI)

    Kramer, David

    2014-07-01

    Lawmakers reject the Obama administration’s plan to suspend construction of a South Carolina plant for fabricating mixed-oxide nuclear fuel.

  19. Science based stockpile stewardship, uncertainty quantification, and fission fragment beams

    SciTech Connect (OSTI)

    Stoyer, M A; McNabb, D; Burke, J; Bernstein, L A; Wu, C Y

    2009-09-14

    Stewardship of this nation's nuclear weapons is predicated on developing a fundamental scientific understanding of the physics and chemistry required to describe weapon performance without the need to resort to underground nuclear testing and to predict expected future performance as a result of intended or unintended modifications. In order to construct more reliable models, underground nuclear test data is being reanalyzed in novel ways. The extent to which underground experimental data can be matched with simulations is one measure of the credibility of our capability to predict weapon performance. To improve the interpretation of these experiments with quantified uncertainties, improved nuclear data is required. As an example, the fission yield of a device was often determined by measuring fission products. Conversion of the measured fission products to yield was accomplished through explosion code calculations (models) and a good set of nuclear reaction cross-sections. Because of the unique high-fluence environment of an exploding nuclear weapon, many reactions occurred on radioactive nuclides, for which only theoretically calculated cross-sections are available. Inverse kinematics reactions at CARIBU offer the opportunity to measure cross-sections on unstable neutron-rich fission fragments and thus improve the quality of the nuclear reaction cross-section sets. One of the fission products measured was {sup 95}Zr, the accumulation of all mass 95 fission products of Y, Sr, Rb and Kr (see Fig. 1). Subsequent neutron-induced reactions on these short lived fission products were assumed to cancel out - in other words, the destruction of mass 95 nuclides was more or less equal to the production of mass 95 nuclides. If a {sup 95}Sr was destroyed by an (n,2n) reaction it was also produced by (n,2n) reactions on {sup 96}Sr, for example. However, since these nuclides all have fairly short half-lives (seconds to minutes or even less), no experimental nuclear reaction cross-sections exist, and only theoretically modeled cross-sections are available. Inverse kinematics reactions at CARIBU offer the opportunity, should the beam intensity be sufficient, to measure cross-sections on a few important nuclides in order to benchmark the theoretical calculations and significantly improve the nuclear data. The nuclides in Fig. 1 are prioritized by importance factor and displayed in stoplight colors, green the highest and red the lowest priority.

  20. Los Alamos Explosives Performance Key to Stockpile Stewardship

    ScienceCinema (OSTI)

    Dattelbaum, Dana

    2015-01-05

    As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- and small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.

  1. ORISE: Chemical Stockpile Emergency Preparedness Program Exercise Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolarNewsusceptometer underI REEECNO OF DOCUMENT2ProtectiontheBalajeeand

  2. ORISE: Chemical Stockpile Emergency Preparedness Program Training Advisor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolarNewsusceptometer underI REEECNO OF

  3. Stockpile Stewardship and Management Plan | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the t-) S/,,5 'a C O09Our Mission / Poweringmap

  4. Stockpile Stewardship: 20 years of success | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the t-) S/,,5 'a C O09Our Mission /

  5. NNSA Stockpile Stewardship and Management Plan now available | National

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal of Honor recipientsAdministration LEUNuclearContacts:

  6. NNSA releases summary of Stockpile Stewardship experiments | National

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal of HonorPoster Session | Nationalhits 21 percent ofNuclear

  7. NNSA's Stockpile Stewardship Program Quarterly Experiments summary now

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal of HonorPoster Session | Nationalhits

  8. NNSA's Summary of Experiments Conducted in Support of Stockpile

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal of HonorPoster Session | NationalhitsStewardship now available |

  9. NNSA's Summary of Experiments Conducted in Support of Stockpile

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal of HonorPoster Session | NationalhitsStewardship now available

  10. Los Alamos LDRD and our stockpile stewardship mission (u) (Conference) |

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journalspectroscopy ofArticle) | SciTechPrinciplesstromal/stemSciTech Connect Los

  11. Los Alamos LDRD and our stockpile stewardship mission (u) (Conference) |

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journalspectroscopy ofArticle) | SciTechPrinciplesstromal/stemSciTech Connect

  12. Nuclear stockpile stewardship and Bayesian image analysis (DARHT and the

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech Connect Nanomechanical switchFlue Gas StreamsConnect JournalJournal(Conference)

  13. Nuclear stockpile stewardship and Bayesian image analysis (DARHT and the

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech Connect Nanomechanical switchFlue Gas StreamsConnect

  14. LEP: Extending stockpile life | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResource and JobLCLS Operating3ledp/ The listing of

  15. Laboratory's role in stockpile stewardship focus of 70th anniversary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate studentScienceLaboratory program helpsgarnernear

  16. Hydrodynamic experiment provides key data for Stockpile Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHighHussein Khalil Hussein KhalilStatistical

  17. ORISE: Chemical Stockpile Emergency Preparedness Program (CSEPP) Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSE The 2014Capabilities ORISE

  18. ORISE: Chemical Stockpile Emergency Preparedness Program Exercise Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSE The 2014Capabilities ORISEand Analysis Tool

  19. NNSA's Summary of Experiments Conducted in Support of Stockpile

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12 National Security Complex|AreasStewardship

  20. Reducing the Nuclear Weapons Stockpile | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProtonAbout Us Hanford SiteRecoveryWater

  1. Los Alamos names new head of stockpile manufacturing and support

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-EearnstakesLos AlamosPortableNew head of

  2. Attachment 1 - Performance Work Statement

    National Nuclear Security Administration (NNSA)

    including TTR. Waste acceptance services will be performed at the NNSS and at waste generator sites. DE-SOL-0005982 Attachment 1 Page 1 2. Scope of Work 2.1 Requirement: The EPS...

  3. Task Conceptions and Work Arrangements 

    E-Print Network [OSTI]

    Scott, W Richard; Dornbusch, Sanford M; Evashwick, Connie J; Magnani, Leonard; Sagatun, Inger

    2015-08-12

    , University of Bergen, Norway. TECHNICAL REPORT #47 TASK CONCEPTION'S AND WORK ARRANGEMENTS For well over half a century sociologists have been engaged in the study of organizations. But until the last few years, there has been relatively little systematic...

  4. Bi-Directional Fast Charging Study Report

    SciTech Connect (OSTI)

    Tyler Gray

    2012-02-01

    This report details the hardware and software infrastructure needed to demonstrate the possibility of utilizing battery power in plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) with a bi directional fast charger to support/offset peak building loads. This document fulfills deliverable requirements for Tasks 1.2.1.2, 1.2.1.3, and 1.2.1.4 of Statement of Work (SOW) No.5799 for Electric Transportation Engineering Corporation, now ECOtality North America (NA) support for the Idaho National Laboratory (INL).

  5. Principle of Minimal Work Fluctuations

    E-Print Network [OSTI]

    Gaoyang Xiao; Jiangbin Gong

    2015-06-03

    Understanding and manipulating work fluctuations in microscale and nanoscale systems are of both fundamental and practical interest. For example, in considering the Jarzynski equality $\\langle e^{-\\beta W} \\rangle=e^{-\\beta \\Delta F}$, a change in the fluctuations of $e^{-\\beta W}$ may impact on how fast the statistical average of $e^{-\\beta W}$ converges towards the theoretical value $e^{-\\beta \\Delta F}$, where $W$ is the work, $\\beta$ is the inverse temperature, and $\\Delta F$ is free energy difference between two equilibrium states. Motivated by our previous study aiming at the suppression of work fluctuations, here we obtain a principle of minimal work fluctuations. In brief, adiabatic processes as treated in quantum and classical adiabatic theorems yield the minimal fluctuations in $e^{-\\beta W}$. In the quantum domain, if a system initially prepared at thermal equilibrium is subject to a work protocol but isolated from a bath during the time evolution, then a quantum adiabatic process without energy level crossing (or an assisted adiabatic process reaching the same final states as in a conventional adiabatic process) yields the minimal fluctuations in $e^{-\\beta W}$, where $W$ is the quantum work defined by two energy measurements in the beginning and at the end of the process. In the classical domain where the classical work protocol is realizable by an adiabatic process, then the classical adiabatic process also yields the minimal fluctuations in $e^{-\\beta W}$. Numerical experiments based on a Landau-Zener process confirm our theory in the quantum domain, and our theory in the classical domain explains our previous numerical findings regarding the suppression of classical work fluctuations [G.~Y.~Xiao and J.~B.~Gong, Phys. Rev. E {\\bf 90}, 052132 (2014)].

  6. Direct Experimental Simulation of the Yang-Baxter Equation

    E-Print Network [OSTI]

    Chao Zheng; Jun-lin Li; Si-yu Song; Gui Lu Long

    2013-05-27

    Introduced in the field of many-body statistical mechanics, Yang-Baxter equation has become an important tool in a variety fields of physics. In this work, we report the first direct experimental simulation of the Yang-Baxter equation using linear quantum optics. The equality between the two sides of the Yang-Baxter equation in two dimension has been demonstrated directly, and the spectral parameter transformation in the Yang-Baxter equation is explicitly confirmed.

  7. IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. , NO. , APRIL 2006 1 A directional continuous wavelet

    E-Print Network [OSTI]

    McEwen, Jason

    IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. ­, NO. ­, APRIL 2006 1 A directional continuous of a directional continuous wavelet analysis on the sphere is derived herein. We adopt the harmonic scaling idea in these settings. In this work we construct a new directional continuous spherical wavelet transform (CSWT

  8. Combustion Stability During the Catalyst Warm-Up Phase Of a Direct Injection Spark Ignition Engine

    E-Print Network [OSTI]

    Combustion Stability During the Catalyst Warm-Up Phase Of a Direct Injection Spark Ignition Engine Conclusions and Further Work ·Multi-Cylinder, Naturally Aspirated, Direct Injection V8 Engine [2] ·Spray Guided Direct Injection through a six hole centrally mounted injector [2] ·This reduces in-cylinder wall

  9. Uncontrolled stockpiles of horse manure can be an unsightly, smelly and fly-infested mess. Stockpiles also

    E-Print Network [OSTI]

    Mukhtar, Saqib

    . Frequently, operators of equine facilities and large-animal veterinary clinics must pay some- one to take otherwise be a liability. Composting manure can eliminate a messy problem and provide a mod- est additional income. For the horse enthusiast interested in composting, it is important to understand the basic

  10. President Obama Signs New Directive to Strengthen our Work to Advance

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary AreasDepartment of Energy 898-09EnergyPresident|Gender

  11. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-30

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation

  12. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation.

  13. Direct cooled power electronics substrate

    DOE Patents [OSTI]

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W. (Kingston, TN) [Kingston, TN; Lowe, Kirk T. (Knoxville, TN) [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  14. Radiological Work Planning and Procedure

    SciTech Connect (OSTI)

    KURTZ, J.E.

    2000-01-01

    Each facility is tasked with maintaining personnel radiation exposure as low as reasonably achievable (ALARA). A continued effort is required to meet this goal by developing and implementing improvements to technical work documents (TWDs) and work performance. A review of selected TWDs from most facilities shows there is a need to incorporate more radiological control requirements into the TWD. The Radioactive Work Permit (RWP) provides a mechanism to place some of the requirements but does not provide all the information needed by the worker as he/she is accomplishing the steps of the TWD. Requiring the engineers, planners and procedure writers to put the radiological control requirements in the work steps would be very easy if all personnel had a strong background in radiological work planning and radiological controls. Unfortunately, many of these personnel do not have the background necessary to include these requirements without assistance by the Radiological Control organization at each facility. In addition, there seems to be confusion as to what should be and what should not be included in the TWD.

  15. Master of Social Work Program School of Social Work

    E-Print Network [OSTI]

    Su, Xiao

    within are intended to guide and facilitate the educational experience of our graduate students, details of Social Work Program Overview 11 Mission and Goals 11 General Organization and Administration Professional and Academic Advising for MSW Students 28 Concerns about the MSW Program 28 General University

  16. Federal Utility Partnership Working Group Meeting: Washington...

    Energy Savers [EERE]

    Utility Partnership Working Group Meeting: Washington Update Federal Utility Partnership Working Group Meeting: Washington Update Federal Utility Partnership Working Group Meeting:...

  17. Coiled tubing working life prediction

    SciTech Connect (OSTI)

    Wu, J.

    1995-12-31

    Failure of coiled tubing, due to the repeated bending and plastic deformation of coiled tubing on and off the reel and gooseneck, is of great concern in coiled tubing operations. This paper discusses the coiled tubing working life based on one of the coiled tubing life models published in the literature, and compares the results with other models. Certain agreements are found among these models. A group of curves is presented to illustrate the coiled tubing working life affected by coiled tubing size and wall thickness, internal pressure, yield strength, reel diameter, gooseneck radius, operation condition (corrosion) and butt-welded connection (stress concentration). The results show that coiled tubing life can be greatly increased by increasing CT wall thickness and CT strength, while the coiled tubing working life decreases under high internal pressure, corrosion, and butt-weld conditions. These curves can be easily used in estimating coiled tubing life for the field use.

  18. How DARHT Works - the World's Most Powerful X-ray Machine

    SciTech Connect (OSTI)

    None

    2011-11-06

    The Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory is an essential scientific tool that supports Stockpile Stewardship at the Laboratory. The World's most powerful x-ray machine, it's used to take high-speed images of mock nuclear devices - data that is used to confirm and modify advanced computer codes in assuring the safety, security, and effectiveness of the U.S. nuclear deterrent.

  19. How DARHT Works - the World's Most Powerful X-ray Machine

    ScienceCinema (OSTI)

    None

    2014-06-25

    The Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory is an essential scientific tool that supports Stockpile Stewardship at the Laboratory. The World's most powerful x-ray machine, it's used to take high-speed images of mock nuclear devices - data that is used to confirm and modify advanced computer codes in assuring the safety, security, and effectiveness of the U.S. nuclear deterrent.

  20. Long working distance interference microscope

    DOE Patents [OSTI]

    Sinclair, Michael B.; DeBoer, Maarten P.; Smith, Norman F.

    2004-04-13

    Disclosed is a long working distance interference microscope suitable for three-dimensional imaging and metrology of MEMS devices and test structures on a standard microelectronics probe station. The long working distance of 10-30 mm allows standard probes or probe cards to be used. This enables nanometer-scale 3-D height profiles of MEMS test structures to be acquired across an entire wafer. A well-matched pair of reference/sample objectives is not required, significantly reducing the cost of this microscope, as compared to a Linnik microinterferometer.

  1. NEW DIRECTIONS IN LOCAL HISTORY

    E-Print Network [OSTI]

    Banaji,. Murad

    NEW DIRECTIONS IN LOCAL HISTORY SINCE HOSKINS Edited by Christopher Dyer, Andrew Hopper, Evelyn Lord and Nigel Tringham New Directions in Local History since Hoskins Local history in Britain can of the publication of his Local History in England which was designed to help people researching the history

  2. Efficient Placement of Directional Antennas

    SciTech Connect (OSTI)

    Pan, Feng; Kasiviswanathan, Shiva

    2010-09-20

    Directional antenna is an technology for the proliferation of wireless networks. In centralized wireless network, wireless devices communicate through base stations. Directed antennas are placed on base stations and form a backbone of communication. The communication between base stations and wireless devices can be interfered due to a large number of wireless device. Methodically positioning and orienting directed antennas can help to reduce the interference while saving energy. An integer linear programming is developed for siting and directing antennas on multiple base stations, and this formulation can be extended to model non-overlapping channels. Through the integer programming formulation, optimal antenna positions can be used to analyze the performance of directed antennas with different parameters like the number base stations and the number of non-overlapping channels.

  3. PAPIERS DE RECHERCHE WORKING PAPERS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    MODEL OF SCHOLARLY PUBLICATIONS François Thérin hal-00451852,version1-1Feb2010 #12;Working Papers Series of Scholarly Publications Jean-Philippe Rennard GEM 12 Rue Pierre Sémard, 38003 Grenoble, France jean of scholarly publications. "If I have seen further it is by standing upon the shoulders of giants." The famous

  4. WORKING TITLES GUIDELINES HUMAN RESOURCES

    E-Print Network [OSTI]

    Su, Xiao

    titles for staff indicate an employee's functional responsibility, particularly when the classification are commonly used on business cards and in directories and in other correspondence with constituents the classification title. B. Working titles may be used to better communicate an employee's area of responsibility

  5. How Minds Work Schema Mechanism

    E-Print Network [OSTI]

    Memphis, University of

    1 How Minds Work Schema Mechanism Stan Franklin Computer Science Division & Institute for Intelligent Systems The University of Memphis #12;HMW: Schema Mechanism 2 Schema Mechanism · Implements early stages of Piaget's theory of child development · A mechanism of mind · Controls a body

  6. How Minds Work Brains, Ontologies &

    E-Print Network [OSTI]

    Memphis, University of

    or software agent is a virtual machine implemented on another virtual machine · The minds of humans or animals are virtual machines implemented on brains #12;Brains, Ontologies & Virtual Machines 13 Virtual1 How Minds Work Brains, Ontologies & Virtual Machines Stan Franklin Computer Science Division

  7. My PhD Plan Completed Work

    E-Print Network [OSTI]

    Ruina, Andy L.

    Background My PhD Plan Completed Work Planned Work Hierarchical Biped Control A Exam Matthew Kelly August 4, 2014 Matthew Kelly Hierarchical Biped Control 1 / 34 #12;Background My PhD Plan Completed Work Planned Work Table of Contents 1 Background 2 My PhD Plan 3 Completed Work 4 Planned Work Push Hold Free

  8. EnergyWorks Grabs Attention in Calm and Stormy Weather with Intuitive...

    Broader source: Energy.gov (indexed) [DOE]

    them with words such as "ice cream" and "central air." When clicked on, these banner ads linked directly to an introductory page on the EnergyWorks website. By hitting...

  9. Module bay with directed flow

    SciTech Connect (OSTI)

    Torczynski, John R. (Albuquerque, NM)

    2001-02-27

    A module bay requires less cleanroom airflow. A shaped gas inlet passage can allow cleanroom air into the module bay with flow velocity preferentially directed toward contaminant rich portions of a processing module in the module bay. Preferential gas flow direction can more efficiently purge contaminants from appropriate portions of the module bay, allowing a reduced cleanroom air flow rate for contaminant removal. A shelf extending from an air inlet slit in one wall of a module bay can direct air flowing therethrough toward contaminant-rich portions of the module bay, such as a junction between a lid and base of a processing module.

  10. 2008 world direct reduction statistics

    SciTech Connect (OSTI)

    NONE

    2009-07-01

    This supplement discusses total direct reduced iron (DRI) production for 2007 and 2008 by process. Total 2008 production by MIDREX(reg sign) direct reduction process plants was over 39.8 million tons. The total of all coal-based processes was 17.6 million tons. Statistics for world DRI production are also given by region for 2007 and 2008 and by year (1970-2009). Capacity utilization for 2008 by process is given. World DRI production by region and by process is given for 1998-2008 and world DRI shipments are given from the 1970s to 2008. A list of world direct reduction plants is included.

  11. Directional fast-neutron detector

    DOE Patents [OSTI]

    Byrd, Roger C. (Albuquerque, NM)

    1994-01-01

    A plurality of omnidirectional radiation detectors are arranged in a close packed symmetrical pattern to form a segmented detector. The output radiation counts from these detectors are arithmetically combined to provide the direction of a source of incident radiation. Directionality is achieved without the use of shielding to provide collimation and background reduction effects. Indeed, output counts from paired detectors are simply subtracted to yield a vector direction toward the radiation source. The counts from all of the detectors can be combined to yield an output signal functionally related to the radiation source strength.

  12. Directed Self-Assembly of Nanodispersions

    SciTech Connect (OSTI)

    Furst, Eric M

    2013-11-15

    Directed self-assembly promises to be the technologically and economically optimal approach to industrial-scale nanotechnology, and will enable the realization of inexpensive, reproducible and active nanostructured materials with tailored photonic, transport and mechanical properties. These new nanomaterials will play a critical role in meeting the 21st century grand challenges of the US, including energy diversity and sustainability, national security and economic competitiveness. The goal of this work was to develop and fundamentally validate methods of directed selfassembly of nanomaterials and nanodispersion processing. The specific aims were: 1. Nanocolloid self-assembly and interactions in AC electric fields. In an effort to reduce the particle sizes used in AC electric field self-assembly to lengthscales, we propose detailed characterizations of field-driven structures and studies of the fundamental underlying particle interactions. We will utilize microscopy and light scattering to assess order-disorder transitions and self-assembled structures under a variety of field and physicochemical conditions. Optical trapping will be used to measure particle interactions. These experiments will be synergetic with calculations of the particle polarizability, enabling us to both validate interactions and predict the order-disorder transition for nanocolloids. 2. Assembly of anisotropic nanocolloids. Particle shape has profound effects on structure and flow behavior of dispersions, and greatly complicates their processing and self-assembly. The methods developed to study the self-assembled structures and underlying particle interactions for dispersions of isotropic nanocolloids will be extended to systems composed of anisotropic particles. This report reviews several key advances that have been made during this project, including, (1) advances in the measurement of particle polarization mechanisms underlying field-directed self-assembly, and (2) progress in the directed self-assembly of anisotropic nanoparticles and their unique physical properties.

  13. Advanced Particulate Filter Technologies for Direct Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Particulate Filter Technologies for Direct Injection Gasoline Engine Applications Advanced Particulate Filter Technologies for Direct Injection Gasoline Engine Applications...

  14. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Advanced Gasoline Turbocharged Direct Injection...

  15. ARM - Engineering Work Request & Engineering Work Order Guidelines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? WeDatastreamstps DocumentationAtlanticENA Contacts ENA Related Links FacilitiesChange RequestWork

  16. file://\\Bellview\TeamWorks\TRUTeamWorks.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th Annual Conference onDickAlThe HonorableJohnJohnTotal

  17. file://\\Bellview\TeamWorks\TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th Annual Conference onDickAlThe HonorableJohnJohnTotal9/04

  18. file://\\Bellview\TeamWorks\TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th Annual Conference onDickAlThe

  19. file://\\Bellview\TeamWorks\TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th Annual Conference onDickAlThe30/03 Shipments expected this

  20. file://\\Bellview\TeamWorks\TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th Annual Conference onDickAlThe30/03 Shipments expected

  1. file://\\Bellview\TeamWorks\TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th Annual Conference onDickAlThe30/03 Shipments expected8/03

  2. http://bellview/TeamWorks/TRUTeamWorks.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistory Over 100 Years ofHousing Unit Tables3, 08

  3. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistory Over 100 Years ofHousing Unit Tables3,

  4. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistory Over 100 Years ofHousing Unit Tables3,2/04

  5. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistory Over 100 Years ofHousing Unit

  6. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistory Over 100 Years ofHousing UnitThursday,

  7. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistory Over 100 Years ofHousing UnitThursday, A

  8. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistory Over 100 Years ofHousing UnitThursday, A| NRC

  9. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistory Over 100 Years ofHousing UnitThursday, A|

  10. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistory Over 100 Years ofHousing UnitThursday, A|9/03

  11. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistory Over 100 Years ofHousing UnitThursday,

  12. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistory Over 100 Years ofHousing UnitThursday,3/03 |

  13. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistory Over 100 Years ofHousing UnitThursday,3/03

  14. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistory Over 100 Years ofHousing

  15. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistory Over 100 Years ofHousing04/03 | Shipments

  16. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistory Over 100 Years ofHousing04/03 | Shipments1/03

  17. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-10-22

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Supersedes DOE O 413.2B.

  18. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08

    To establish the Department's, including the NNSA's, requirements for laboratory-directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Cancels DOE O 413.2. Canceled by DOE O 413.2B.

  19. Directional impedance of geared transmissions

    E-Print Network [OSTI]

    Wang, Albert Duan

    2012-01-01

    The purpose of this research is to develop a design tool for geared actuation systems that experience bidirectional exchange of energy with the environment. Despite the asymmetry of efficiency depending on the direction ...

  20. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-19

    The Order establishes DOE requirements and responsibilities for laboratory directed research and development while providing laboratory directors with broad flexibility for program implementation. Cancels DOE O 413.2A. Admin Chg 1, 1-31-11.

  1. Direct Multisearch for Multiobjective Optimization

    E-Print Network [OSTI]

    2010-06-01

    Jun 1, 2010 ... derivatives of the individual functions along directions d in the hypertangent cone to ? at x, f. ? i (x;d) = .... functions (?(·),...,?(·)) or the constant, zero vector of dimension m. ...... Multiobjective GAs, quantative indices, and pattern.

  2. Research Directions in Rewriting Logic ?

    E-Print Network [OSTI]

    Meseguer, José

    introduction to rewriting logic, and to paint in broad strokes the main research directions that, since its and Strategies ? Supported by Office of Naval Research Contracts N00014­95­C­0225 and N00014­96­ C­0114

  3. Los Alamos National Laboratory The

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    modernizing its nuclear stockpile. More nations are debating whether to acquire their own nuclear weapons. The continuing need for the U.S. nuclear deterrent grows in direct...

  4. research

    National Nuclear Security Administration (NNSA)

    through the Predictive Capability Framework (PCF). The PCF is a long-term integrated roadmap to guide the science, technology and engineering activities and Directed Stockpile...

  5. Directions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent BondingMeetingDifferencesPlatinum FuelEnergy

  6. Relationships among Perceived Working Hours, General Stress, Work Centrality, Job Control, Job Demands, and Work Condition Constraints 

    E-Print Network [OSTI]

    Kim, Se Hoon

    2014-06-27

    the relationships among perceived working hours, general stress, work centrality, job control, job demands, and work condition constraints for full-time employees in the United States and Korea. A self-administered questionnaire survey approach was used to collect...

  7. Educating future social work administrators

    E-Print Network [OSTI]

    Ezell, Mark; Austin, M. J.

    2004-01-01

    of an innovative approach to taking stock of the educational isues facing MSW students who specialize in administration, their faculty, and, to some degre, the social work profesion. For the first time in its 25 year history, the Editorial Board convened a Board... one of the first in-depth asesments of the impact of fieldwork on the carers of MSW graduates. As an exploratory study, it poses many questions about the quality and intensity of administrative fieldwork and the need for national data. Some other...

  8. Perma Works | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio ProgramInformation 9thPerformance-BasedPerma Works Jump to:

  9. Working with SRNL - Technology Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0Photos andSeminarsDesignIn theWorking SRNL Home

  10. Working with SRNL - Technology Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0Photos andSeminarsDesignIn theWorking SRNL Home13/2015

  11. Working with SRNL - Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0Photos andSeminarsDesignIn theWorking SRNL

  12. Directional Dark Matter Detection Beyond the Neutrino Bound

    E-Print Network [OSTI]

    Philipp Grothaus; Malcolm Fairbairn; Jocelyn Monroe

    2014-09-30

    Coherent scattering of solar, atmospheric and diffuse supernovae neutrinos creates an irreducible background for direct dark matter experiments with sensitivities to WIMP-nucleon spin-independent scattering cross-sections of 10^(-46)-10^(-48) cm^2, depending on the WIMP mass. Even if one could eliminate all other backgrounds, this "neutrino floor" will limit future experiments with projected sensitivities to cross-sections as small as 10^(-48) cm^2. Direction-sensitive detectors have the potential to study dark matter beyond the neutrino bound by fitting event distributions in multiple dimensions: recoil kinetic energy, recoil track angle with respect to the sun, and event time. This work quantitatively explores the impact of direction-sensitivity on the neutrino bound in dark matter direct detection.

  13. Directives Review Board - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB PacketDiesel prices continueDileepDirections Management'sDirectives

  14. UNIVERSITY RESEARCH PROGRAM IN ROBOTICS, Final Technical Annual Report, Project Period: 9/1/04 - 8/31/05

    SciTech Connect (OSTI)

    James S. Tulenko; Carl D. Crane III

    2006-02-15

    The University Research Program in Robotics (URPR) Implementation Plan is an integrated group of universities performing fundamental research that addresses broad-based robotics and automation needs of the NNSA Directed Stockpile Work (DSW) and Campaigns. The URPR mission is to provide improved capabilities of robotics science and engineering to meet the future needs of all weapon systems and other associated NNSA/DOE activities.

  15. Mixed Waste Working Group report

    SciTech Connect (OSTI)

    Not Available

    1993-11-09

    The treatment of mixed waste remains one of this country`s most vexing environmental problems. Mixed waste is the combination of radioactive waste and hazardous waste, as defined by the Resource Conservation and Recovery Act (RCRA). The Department of Energy (DOE), as the country`s largest mixed waste generator, responsible for 95 percent of the Nation`s mixed waste volume, is now required to address a strict set of milestones under the Federal Facility Compliance Act of 1992. DOE`s earlier failure to adequately address the storage and treatment issues associated with mixed waste has led to a significant backlog of temporarily stored waste, significant quantities of buried waste, limited permanent disposal options, and inadequate treatment solutions. Between May and November of 1993, the Mixed Waste Working Group brought together stakeholders from around the Nation. Scientists, citizens, entrepreneurs, and bureaucrats convened in a series of forums to chart a course for accelerated testing of innovative mixed waste technologies. For the first time, a wide range of stakeholders were asked to examine new technologies that, if given the chance to be tested and evaluated, offer the prospect for better, safer, cheaper, and faster solutions to the mixed waste problem. In a matter of months, the Working Group has managed to bridge a gap between science and perception, engineer and citizen, and has developed a shared program for testing new technologies.

  16. Writing parallel programs that work

    E-Print Network [OSTI]

    CERN. Geneva

    2012-01-01

    Serial algorithms typically run inefficiently on parallel machines. This may sound like an obvious statement, but it is the root cause of why parallel programming is considered to be difficult. The current state of the computer industry is still that almost all programs in existence are serial. This talk will describe the techniques used in the Intel Parallel Studio to provide a developer with the tools necessary to understand the behaviors and limitations of the existing serial programs. Once the limitations are known the developer can refactor the algorithms and reanalyze the resulting programs with the tools in the Intel Parallel Studio to create parallel programs that work. About the speaker Paul Petersen is a Sr. Principal Engineer in the Software and Solutions Group (SSG) at Intel. He received a Ph.D. degree in Computer Science from the University of Illinois in 1993. After UIUC, he was employed at Kuck and Associates, Inc. (KAI) working on auto-parallelizing compiler (KAP), and was involved in th...

  17. 1999 LDRD Laboratory Directed Research and Development

    SciTech Connect (OSTI)

    Rita Spencer; Kyle Wheeler

    2000-06-01

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  18. The Work for Others Agreement The DOE national laboratories were granted the authority to

    E-Print Network [OSTI]

    The Work for Others Agreement The DOE national laboratories were granted the authority to perform programs at the DOE national laboratories are governed by DOE Directive 481.1-1A, "Reimbursable Work thereof--available at the Laboratory. · Projects must be approved by DOE, and must demonstrate non

  19. Searching For Work with a Criminal Record

    E-Print Network [OSTI]

    Smith, Sandra Susan; Broege, Nora C. R.

    2012-01-01

    Searching for Work with a Criminal Record Lopoo, Leonard M.Searching for Work with a Criminal Record R EFERENCES Autor,Searching for Work with a Criminal Record by Shawn Bushway,

  20. Graduate Program Time Limits and Work Schedules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Time Limits and Work Schedules Graduate Program Time Limits and Work Schedules Point your career towards Los Alamos Lab: work with the best minds on the planet in an inclusive...

  1. Technical Support Section annual work plan for FY 1995

    SciTech Connect (OSTI)

    Adkisson, B.P.; Hess, R.A.; Kunselman, C.W.; Millet, A.J.; Smelcer, D.R.

    1994-10-01

    The Technical Support Section (TSS) of the Instrumentation and Controls (I and C) Division of Oak Ridge National Laboratory (ORNL) provides technical services such as fabrication, modification, installation, calibration, operation, repair, and preventive maintenance of instruments and other related equipment. Work performed by TSS is in support of basic and applied research and development (R and D), engineering, and instrument and computer systems managed by ORNL. Because the activities and priorities of TSS must be adapted to the technical support needs of ORNL, the TSS Annual Work Plan is derived from and driven directly by current trends in the budgets and activities of each ORNL division for which TSS provides support. Trends that will affect TSS planning during this period are reductions in the staffing levels of some R and D programs because of attrition or budget cuts and the establishment of new facilities or environmental safety and health programs. The ``Long-Range Work Plan`` is based on estimates of impact of the long-range priorities and directions of the Laboratory. Identifiable proposed new facilities and programs provide additional basis for long-range planning. After identifying long-range initiatives, TSS planning includes future training requirements, reevaluation of qualifications for new-hires, and identification of essential test equipment needed in new work.

  2. Development of Superconducting High-Resolution Gamma-Ray Spectrometers for Nuclear Safeguards

    E-Print Network [OSTI]

    Dreyer, Jonathan

    2012-01-01

    wide stockpiles of plutonium. . . . . . . . . . . . . . .stockpiles. Weapons stockpiles consist of plutonium enrichedamount of plutonium in the existing stockpile is therefore

  3. WORK PLAN FOR ENVIRONMENTAL WORK PLAN FOR ENVIRONMENTAL WORK PLAN FOR ENVIRONMENTAL

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the WeldonB10081278 United Statestnv~ronmenrar~WORK PLAN

  4. Corrective measures evaluation work plan : Tijeras Arroyo Groundwater : revision 0.

    SciTech Connect (OSTI)

    Wymore, Ryan A.; Collins, Sue S.; Skelly, Michael Francis; Koelsch, Michael C.

    2004-12-01

    This document, which is prepared as directed by the Compliance Order on Consent (COOC) issued by the New Mexico Environment Department, outlines a process to evaluate remedial alternatives to identify a corrective measure for the Sandia National Laboratories Tijeras Arroyo Groundwater (TAG). The COOC provides guidance for implementation of a Corrective Measures Evaluation (CME) for TAG. This Work Plan documents an initial screening of remedial technologies and presents a list of possible remedial alternatives for those technologies that passed the screening. This Work Plan outlines the methods for evaluating these remedial alternatives and describes possible site-specific evaluation activities necessary to estimate remedy effectiveness and cost. These methods will be reported in the CME Report. This Work Plan outlines the CME Report, including key components and a description of the corrective measures process.

  5. Fast Generators of Direct Photons

    E-Print Network [OSTI]

    S. M. Kiselev

    2008-11-17

    Three fast generators of direct photons in the central rapidity region of high-energy heavy-ion collisions have been presented The generator of prompt photons is based on a tabulation of $p+p(\\bar p)$ data and binary scaling. Two generators of thermal direct photons, for hot hadron gas (HHG) and quark-gluon plasma (QGP) scenarios, assume the 1+1 Bjorken hydrodynamics. SPS and RHIC data can be fitted better by scenario with QGP. Predictions for the LHC energy have been made. The generators have been realized as macros for the ROOT analysis package.

  6. Directions to Wilson Hall, Fermilab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB PacketDiesel prices continueDileepDirections &Directions Both

  7. UPGRADES WORK IN PHILADELPHIA'S HISTORIC BUILDINGS | Department...

    Energy Savers [EERE]

    loan fund. ADDITIONAL RESOURCES REPORTS Final Technical Report Summary of Reported Data Data Dashboard 2011 EnergyWorks Annual Report STORIES & INTERVIEWS "EnergyWorks Grabs...

  8. Federal Utility Partnership Working Group Meeting: Washington...

    Energy Savers [EERE]

    Federal Utility Partnership Working Group Meeting: Washington Update Federal Utility Partnership Working Group Meeting: Washington Update Presentation-given at the Fall 2012...

  9. Federal Utility Partnership Working Group Utility Partners

    Broader source: Energy.gov [DOE]

    Federal Utility Partnership Working Group (FUPWG) utility partners are eager to work closely with Federal agencies to help achieve energy management goals.

  10. Undergraduate Program Time Limits and Work Schedules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    appointments, post-master's appointments, and GRA students working on a thesis or dissertation are excluded from the 30-hour per week work restriction. Summer...

  11. Energy Department Recognizes Landlords, Tenants Working Together...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Recognizes Landlords, Tenants Working Together to Save Energy in Commercial Buildings Energy Department Recognizes Landlords, Tenants Working Together to Save...

  12. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Nanoscale Chemical Imaging of a Working Catalyst Print Wednesday, 28 January 2009 00:00 The heterogeneous catalysts used in most...

  13. FY 1996 annual work plan

    SciTech Connect (OSTI)

    NONE

    1995-09-30

    In April 1994, the Department of Energy (DOE) Strategic Plan was issued. This Plan presents the Department`s strategic outlook in response to a changing world. It discusses the Department`s unique capabilities; its mission, vision, and core values; and key customer and stakeholder considerations. The DOE Strategic Plan lists business strategies and critical success factors which are intended to aid the Department in accomplishing its mission and reaching its vision of itself in the future. The Office of Inspector General (OIG) has an important role in carrying out the goals and objectives of the Secretary`s Strategic Plan. The ultimate goal of the OIG is to facilitate positive change by assisting its customers, responsible Government officials, in taking actions to improve programs and operations. The Inspector General annually issues his own Strategic Plan that contains program guidance for the next fiscal year. As part of its responsibility in carrying out the OIG mission, the Office of the Deputy Inspector General for Audit Services (Office of Audit Services) publishes an Annual Work Plan that sets forth audits that are planned for the next fiscal year. Selection of these audits is based on the overall budget of the Department, analyses of trends in Departmental operations, guidance contained in the agency`s strategic plans, statutory requirements, and the expressed needs and audit suggestions of Departmental program managers and OIG managers and staff. This work plan includes audits that are carried over from FY 1995 and audits scheduled to start during FY 1996. Audits included in the plan will be performed by OIG staff.

  14. Exit Counseling Guide for Direct Loan Borrowers You borrowed Direct Subsidized Loans and/or

    E-Print Network [OSTI]

    Minnesota, University of

    Exit Counseling Guide for Direct Loan Borrowers You borrowed Direct Subsidized Loans and/or Direct of Education. The word "loan" refers to one or more Direct Subsidized Loans or Direct Unsubsidized Loans Subsidized Loans) · Federal Direct Unsubsidized Stafford/Ford Loans (Direct Unsubsidized Loans) · Federal

  15. Behavioural Brain Research 228 (2012) 107115 Contents lists available at SciVerse ScienceDirect

    E-Print Network [OSTI]

    Jonides, John

    2012-01-01

    Direct Behavioural Brain Research journal homepage: www.elsevier.com/locate/bbr Research report The effects prefrontal cortex (DLPFC) and bilateral inferior parietal lobules (IPL) during spatial working memory

  16. UTILITY OF MECHANISTIC MODELS FOR DIRECTING ADVANCED SEPARATIONS RESEARCH & DEVELOPMENT ACTIVITIES: Electrochemically Modulated Separation Example

    SciTech Connect (OSTI)

    Schwantes, Jon M.

    2009-06-01

    The objective for this work was to demonstrate the utility of mechanistic computer models designed to simulate actinide behavior for use in efficiently and effectively directing advanced laboratory R&D activities associated with developing advanced separations methods.

  17. Development of the High-Pressure Direct-Injection ISX G Natural Gas Engine

    SciTech Connect (OSTI)

    Not Available

    2004-08-01

    Fact sheet details work by Cummins and Westport Innovations to develop a heavy-duty, low-NOx, high-pressure direct-injection natural gas engine for the Next Generation Natural Gas Vehicle activity.

  18. Research Developments and Directions in Speech Recognition and Understanding, Part 1

    E-Print Network [OSTI]

    Baker, Janet M.

    To advance research, it is important to identify promising future research directions, especially those that have not been adequately pursued or funded in the past. The working group producing this article was charged to ...

  19. Replacing cellular with WiFi direct communication for a highly interactive, high bandwidth multiplayer game

    E-Print Network [OSTI]

    Ortiz, Pablo (Pablo Jose)

    2013-01-01

    The objective of this work is to explore the benefits of replacing cellular with Wi-Fi Direct communication in mobile applications. Cellular connections consume significant power on mobile devices and are too slow for many ...

  20. Disordered amorphous calcium carbonate from direct precipitation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Farhadi Khouzani, Masoud; Chevrier, Daniel M.; Güttlein, Patricia; Hauser, Karin; Zhang, Peng; Hedin, Niklas; Gebauer, Denis

    2015-06-01

    Amorphous calcium carbonate (ACC) is known to play a prominent role in biomineralization. Different studies on the structure of biogenic ACCs have illustrated that they can have distinct short-range orders. However, the origin of so-called proto-structures in synthetic and additive-free ACCs is not well understood. In the current work, ACC has been synthesised in iso-propanolic media by direct precipitation from ionic precursors, and analysed utilising a range of different techniques. The data suggest that this additive-free type of ACC does not resemble clear proto-structural motifs relating to any crystalline polymorph. This can be explained by the undefined pH value inmore »iso-propanolic media, and the virtually instantaneous precipitation. Altogether, this work suggests that aqueous systems and pathways involving pre-nucleation clusters are required for the generation of clear proto-structural features in ACC. Experiments on the ACC-to-crystalline transformation in solution with and without ethanol highlight that polymorph selection is under kinetic control, while the presence of ethanol can control dissolution re-crystallisation pathways.« less

  1. Direct from CDC Environmental Health

    E-Print Network [OSTI]

    Direct from CDC Environmental Health Services Branch Mary Jean Brown, Sc.D., R that affects practically all systems in the human body (National Research Council, 1993). In children children in the United States decreased from 8.6 percent in 1988­1991 to 1.6 percent in 1999­2002, an 81

  2. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-19

    The order establishes DOE requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Cancels DOE O 413.3A. Admin Chg 1, dated 1-31-11, cancels DOE O 413.2B. Certified 7-14-2011.

  3. Direct from CDC Environmental Health

    E-Print Network [OSTI]

    Direct from CDC Environmental Health Services Branch CAPTMarkD.Miller U.S.P.H.S.,R.S.,M.P.H. Emergency Preparedness and Response Training for Environmental Health Practitioners Editor's note: NEHA strives to provide up- to-date and relevant information on en- vironmental health and to build partner

  4. Direct Hamiltonization for Nambu Systems

    E-Print Network [OSTI]

    Maria Lewtchuk Espindola

    2008-10-13

    The direct hamiltonization procedure applied to Nambu mechanical systems proves that the Nambu mechanics is an usual mechanics described by only one Hamiltonian. Thus a particular case of Hamiltonian mechanics. It is also proved that any mechanical system described by the equation d{\\bf r}/dt={\\bf A(r)} is a Nambu system.

  5. Direct from CDC Environmental Health

    E-Print Network [OSTI]

    Direct from CDC Environmental Health Services Branch Editor's note: NEHA strives to provide up-to-date and relevant information on environmental health and to build part nerships in the profession. In pursuit of these goals, we feature a column from the Environmental Health Services Branch (EHSB) of the Centers

  6. Direct from CDC Environmental Health

    E-Print Network [OSTI]

    of prec Direct from CDC Environmental Health Services Branch Martin A. Kalis, M and relevant information on environmen tal health and to build partnerships in the pro fession. In pursuit of these goals, we feature a column from the Environmental Health Ser vices Branch (EHSB) of the Centers for Dis

  7. Direct from CDC Environmental Health

    E-Print Network [OSTI]

    Direct from CDC Environmental Health Services Branch JeffreyS.Neistadt,M.S.,R.S. TimothyJ.Murphy,Ph.D.,R.E.H.S. Are We Really Saving Resources with Current Hiring Practices at Local Health Departments? Editor's note: NEHA strives to provide up-to-date and relevant information on environmental health and to build

  8. Direct from CDC Environmental Health

    E-Print Network [OSTI]

    Direct from CDC Environmental Health Services Branch HilaryHeishman,M.P.H. CAPTAndrew-date and relevant information on envi ronmental health and to build partnerships in the profession. In pursuit of these goals, we feature a column from the Environmen tal Health Services Branch (EHSB) of the Centers

  9. Direct from CDC Environmental Health

    E-Print Network [OSTI]

    Direct from CDC Environmental Health Services Branch CAPT John P. Sarisky, R.S., M.P.H. The Environmental Public Health Performance Standards: Strengthening the Nation's Environmental Public Health Infrastructure and Improving Environmental Health Practice Editor's note: NEHA strives to provide up

  10. Direct from CDC Environmental Health

    E-Print Network [OSTI]

    Direct from CDC Environmental Health Services Branch KateWright,M.P.H.,Ed.D. Environmental Public Health Leadership Development Editor's note: NEHA strives to provide up-to-date and relevant information on environmental health and to build part nerships in the profession. In pursuit of these goals, we feature

  11. Computing fractal dimension in supertransient systems directly, fast and reliable

    E-Print Network [OSTI]

    Romulus Breban; Helena E. Nusse

    2006-08-07

    Chaotic transients occur in many experiments including those in fluids, in simulations of the plane Couette flow, and in coupled map lattices and they are a common phenomena in dynamical systems. Superlong chaotic transients are caused by the presence of chaotic saddles whose stable sets have fractal dimensions that are close to phase-space dimension. For many physical systems chaotic saddles have a big impact on laboratory measurements, and it is important to compute the dimension of such stable sets including fractal basin boundaries through a direct method. In this work, we present a new method to compute the dimension of stable sets of chaotic saddles directly, fast, and reliable.

  12. Directions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6Aerosols | U.S. DOEU.S.DanDirections FusionDirections

  13. Enterprise Risk Management (ERM) Framework for Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-09-30

    Explains the new ERM framework for developing, revising, and reviewing directives. This memo directs the Office of Management to institutionalize ERM into the directives process no later than September 30, 2012.

  14. DIRECT PHOTONS FROM Y(3100) DECAY

    E-Print Network [OSTI]

    Ronan, M.T.

    2010-01-01

    to search for direct photons from 0(3100) decay. V* havedecay, but a sianal of high energy direct photons remains.this excess of direct photons wi*h OCD predictions and

  15. Future Directions in Spatial Demography, Position Papers

    E-Print Network [OSTI]

    Center for Spatial Studies (UCSB), Population Research Institute (Pennsylvania State University)

    2011-01-01

    2011 Specialist Meeting—Future Directions in Spatial3–13. 2011 Specialist Meeting—Future Directions in SpatialInc. 2011 Specialist Meeting—Future Directions in Spatial

  16. Work Force Planning for Public Power Utilities

    E-Print Network [OSTI]

    Work Force Planning for Public Power Utilities: Ensuring Resources to Meet Projected.............................................................................20 #12;ii Work Force Planning for Public Power Utilities #12;1 Work Force Planning for Public Power as a result of the aging work force; and · Public power utilities need to do more to plan for their future

  17. Current work in energy analysis

    SciTech Connect (OSTI)

    1998-03-01

    This report describes the work performed at Berkeley Lab most recently. One of the Labs accomplishments is the publication of Scenarios of US Carbon Reductions, an analysis of the potential of energy technologies to reduce carbon emissions in the US. This analysis is described and played a key role in shaping the US position on climate change in the Kyoto Protocol negotiations. The Labs participation in the fundamental characterization of the climate change issue by the IPCC is described. Described also is a study of leaking electricity, which is stimulating an international campaign for a one-watt ceiling for standby electricity losses from appliances. This ceiling has the potential to save two-thirds of the 5% of US residential electricity currently expended on standby losses. The 54 vignettes contained in the report summarize results of research activities ranging in scale from calculating the efficacy of individual lamp ballasts to estimating the cost-effectiveness of the national Energy Star{reg_sign} labeling program, and ranging in location from a scoping study of energy-efficiency market transformation in California to development of an energy-efficiency project in the auto parts industry in Shandong Province, China.

  18. Hadron Colliders Working Group Report

    SciTech Connect (OSTI)

    S. Peggs and M.J. Syphers

    2001-11-08

    The ''point design'' studied this year shows that a staged VLHC (40, {approx} 200 TeV) is feasible, with no insurmountable challenges. Further work can provide a more optimized design, by studying various alternative field strengths (e.g., superferric magnets for Stage 1) for improvements to vacuum, wall impedance, and other major performance parameters. It may be that a ''single-stage'' scenario for accessing higher energies sooner is the correct approach. A next-step design study should be considered to look at the two cases near to and complementary to the 2001 VLHC Design Study. The effectiveness of photon stops and their engineering design need to be addressed in the near future to truly determine if these devices can lead this effort to even higher luminosities and energies. The superbunch approach should continue to be studied, as well as IR designs, new instrumentation and diagnostics, and beam dynamics issues. Finally, a well organized VLHC-motivated beam studies effort should become part of the national program.

  19. Characterization of an FFDM unit based on a-Se direct conversion detector

    E-Print Network [OSTI]

    Lanconelli, Nico

    Characterization of an FFDM unit based on a-Se direct conversion detector Achille Albanese1 of this paper is to investigate the properties of a clinical FFDM unit (Giotto - Image MD, IMS Italy µm. The direct conversion of X-rays into charge provides excellent imaging performance. In this work

  20. Direct torque control of permanent magnet synchronous motors with non-sinusoidal back-EMF 

    E-Print Network [OSTI]

    Ozturk, Salih Baris

    2009-05-15

    This work presents the direct torque control (DTC) techniques, implemented in four- and six-switch inverter, for brushless dc (BLDC) motors with non-sinusoidal back- EMF using two and three-phase conduction modes. First of all, the classical direct...

  1. Direct Kinetic Measurements of a Criegee Intermediate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Kinetic Measurements of a Criegee Intermediate Direct Kinetic Measurements of a Criegee Intermediate Print Wednesday, 25 January 2012 00:00 In the earth's troposphere, which...

  2. Directional Drilling Systems | Open Energy Information

    Open Energy Info (EERE)

    Directional Drilling Systems Jump to: navigation, search Geothermal ARRA Funded Projects for Directional Drilling Systems Loading map... "format":"googlemaps3","type":"ROADMAP","t...

  3. Investigation of Direct Injection Vehicle Particulate Matter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct Injection Vehicle Particulate Matter Emissions Investigation of Direct Injection Vehicle Particulate Matter Emissions This study focuses primarily on particulate matter mass...

  4. Nano-engineering by optically directed self-assembly.

    SciTech Connect (OSTI)

    Furst, Eric; Dunn, Elissa; Park, Jin-Gyu; Brinker, C. Jeffrey; Sainis, Sunil; Merrill, Jason; Dufresne, Eric; Reichert, Matthew D.; Brotherton, Christopher M.; Bogart, Katherine Huderle Andersen; Molecke, Ryan A.; Koehler, Timothy P.; Bell, Nelson Simmons; Grillet, Anne Mary; Gorby, Allen D.; Singh, John; Lele, Pushkar; Mittal, Manish

    2009-09-01

    Lack of robust manufacturing capabilities have limited our ability to make tailored materials with useful optical and thermal properties. For example, traditional methods such as spontaneous self-assembly of spheres cannot generate the complex structures required to produce a full bandgap photonic crystals. The goal of this work was to develop and demonstrate novel methods of directed self-assembly of nanomaterials using optical and electric fields. To achieve this aim, our work employed laser tweezers, a technology that enables non-invasive optical manipulation of particles, from glass microspheres to gold nanoparticles. Laser tweezers were used to create ordered materials with either complex crystal structures or using aspherical building blocks.

  5. OM300 Direction Drilling Module

    SciTech Connect (OSTI)

    MacGugan, Doug

    2013-08-22

    OM300 – Geothermal Direction Drilling Navigation Tool: Design and produce a prototype directional drilling navigation tool capable of high temperature operation in geothermal drilling Accuracies of 0.1° Inclination and Tool Face, 0.5° Azimuth Environmental Ruggedness typical of existing oil/gas drilling Multiple Selectable Sensor Ranges High accuracy for navigation, low bandwidth High G-range & bandwidth for Stick-Slip and Chirp detection Selectable serial data communications Reduce cost of drilling in high temperature Geothermal reservoirs Innovative aspects of project Honeywell MEMS* Vibrating Beam Accelerometers (VBA) APS Flux-gate Magnetometers Honeywell Silicon-On-Insulator (SOI) High-temperature electronics Rugged High-temperature capable package and assembly process

  6. Size dependence of the Directional Scattering Conditions on Semiconductor Nanoparticles

    E-Print Network [OSTI]

    Garcia-Camara, Braulio; Cuadrado, Alexander; Urruchi, Virginia; Sanchez-Pena, Jose Manuel; Vergaz, Ricardo

    2015-01-01

    The resonant modes observed in semiconductor nanoparticles and the coherence interaction between them, producing directional light scattering, may be very interesting for CMOS integrated all-optical devices. In these systems the control over the light scattering should be crucial, as well as the strength of this control. Fabrication parameters such as the size and shape of the nanoparticles and the optical properties of the environment can strongly affect to the emergence of these phenomena. In this work, we numerically explore the size dependence of the directional scattering conditions of semiconductor nanoparticles. Several semiconductor materials and a large size range have been considered to be a reference for further works. An interesting and unexpected linear behavior has been observed.

  7. Wellbore inertial directional surveying system

    DOE Patents [OSTI]

    Andreas, R.D.; Heck, G.M.; Kohler, S.M.; Watts, A.C.

    1982-09-08

    A wellbore inertial directional surveying system for providing a complete directional survey of an oil or gas well borehole to determine the displacement in all three directions of the borehole path relative to the well head at the surface. The information generated by the present invention is especially useful when numerous wells are drilled to different geographical targets from a single offshore platform. Accurate knowledge of the path of the borehole allows proper well spacing and provides assurance that target formations are reached. The tool is lowered down into a borehole on an electrical cable. A computer positioned on the surface communicates with the tool via the cable. The tool contains a sensor block which is supported on a single gimbal, the rotation axis of which is aligned with the cylinder axis of the tool and, correspondingly, the borehole. The gyroscope measurement of the sensor block rotation is used in a null-seeking servo loop which essentially prevents rotation of the sensor block about the gimbal axis. Angular rates of the sensor block about axes which are perpendicular to te gimbal axis are measured by gyroscopes in a manner similar to a strapped-down arrangement. Three accelerometers provide acceleration information as the tool is lowered within the borehole. The uphole computer derives position information based upon acceleration information and angular rate information. Kalman estimation techniques are used to compensate for system errors. 25 figures.

  8. Wellbore inertial directional surveying system

    DOE Patents [OSTI]

    Andreas, Ronald D. (Albuquerque, NM); Heck, G. Michael (Albuquerque, NM); Kohler, Stewart M. (Albuquerque, NM); Watts, Alfred C. (Albuquerque, NM)

    1991-01-01

    A wellbore inertial directional surveying system for providing a complete directional survey of an oil or gas well borehole to determine the displacement in all three directions of the borehole path relative to the well head at the surface. The information generated by the present invention is especially useful when numerous wells are drilled to different geographical targets from a single off-shore platform. Accurate knowledge of the path of the borehole allows proper well spacing and provides assurance that target formations are reached. The tool is lowered down into a borehole on the electrical cable. A computer positioned on the surface communicates with the tool via the cable. The tool contains a sensor block which is supported on a single gimbal, the rotation axis of which is aligned with the cylinder axis of the tool and, correspondingly, the borehole. The gyroscope measurement of the sensor block rotation is used in a null-seeking servo loop which essentially prevents rotation of the sensor block aboutthe gimbal axis. Angular rates of the sensor block about axes which are perpendicular to the gimbal axis are measured by gyroscopes in a manner similar to a strapped-down arrangement. Three accelerometers provide acceleration information as the tool is lowered within the borehole. The uphole computer derives position information based upon acceleration information and anular rate information. Kalman estimation techniques are used to compensate for system errors.

  9. Direct linearization of continuous and hybrid dynamical systems 

    E-Print Network [OSTI]

    Parish, Julie Marie Jones

    2009-05-15

    of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, John E. Hurtado Committee Members, John L. Junkins Guy Battle Head of Department, Helen L. Reed December 2007 Major Subject: Aerospace Engineering iii ABSTRACT Direct... I was getting myself into! To my graduate committee members, Dr. John L. Junkins and Dr. Guy Battle, I am thankful for past research contributions, recent insights to my work, and lively entertainment. To my co-workers at Sandia and the Department...

  10. Directives Up for Review FY 2016 - DOE Directives, Delegations, and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB PacketDiesel prices continueDileepDirectionsRequirements

  11. Macroscopic and direct light propulsion of bulk graphene material

    E-Print Network [OSTI]

    Zhang, Tengfei; Wu, Yingpeng; Xiao, Peishuang; Yi, Ningbo; Lu, Yanhong; Ma, Yanfeng; Huang, Yi; Zhao, Kai; Yan, Xiao-Qing; Liu, Zhi-Bo; Tian, Jian-Guo; Chen, Yongsheng

    2015-01-01

    It has been a great challenge to achieve the direct light manipulation of matter on a bulk scale. In this work, the direct light propulsion of matter was observed on a macroscopic scale for the first time using a bulk graphene based material. The unique structure and properties of graphene and the morphology of the bulk graphene material make it capable of not only absorbing light at various wavelengths but also emitting energetic electrons efficiently enough to drive the bulk material following Newtonian mechanics. Thus, the unique photonic and electronic properties of individual graphene sheets are manifested in the response of the bulk state. These results offer an exciting opportunity to bring about bulk scale light manipulation with the potential to realize long-sought proposals in areas such as the solar sail and space transportation driven directly by sunlight.

  12. The Environment and Directed Technical Change

    E-Print Network [OSTI]

    Acemoglu, Daron

    This paper introduces endogenous and directed technical change in a growth model with environmental

  13. Performance Analysis: Work Control Events Identified January - August 2010

    SciTech Connect (OSTI)

    De Grange, C E; Freeman, J W; Kerr, C E; Holman, G; Marsh, K; Beach, R

    2011-01-14

    This performance analysis evaluated 24 events that occurred at LLNL from January through August 2010. The analysis identified areas of potential work control process and/or implementation weaknesses and several common underlying causes. Human performance improvement and safety culture factors were part of the causal analysis of each event and were analyzed. The collective significance of all events in 2010, as measured by the occurrence reporting significance category and by the proportion of events that have been reported to the DOE ORPS under the ''management concerns'' reporting criteria, does not appear to have increased in 2010. The frequency of reporting in each of the significance categories has not changed in 2010 compared to the previous four years. There is no change indicating a trend in the significance category and there has been no increase in the proportion of occurrences reported in the higher significance category. Also, the frequency of events, 42 events reported through August 2010, is not greater than in previous years and is below the average of 63 occurrences per year at LLNL since 2006. Over the previous four years, an average of 43% of the LLNL's reported occurrences have been reported as either ''management concerns'' or ''near misses.'' In 2010, 29% of the occurrences have been reported as ''management concerns'' or ''near misses.'' This rate indicates that LLNL is now reporting fewer ''management concern'' and ''near miss'' occurrences compared to the previous four years. From 2008 to the present, LLNL senior management has undertaken a series of initiatives to strengthen the work planning and control system with the primary objective to improve worker safety. In 2008, the LLNL Deputy Director established the Work Control Integrated Project Team to develop the core requirements and graded elements of an institutional work planning and control system. By the end of that year this system was documented and implementation had begun. In 2009, training of the workforce began and as of the time of this report more than 50% of authorized Integration Work Sheets (IWS) use the activity-based planning process. In 2010, LSO independently reviewed the work planning and control process and confirmed to the Laboratory that the Integrated Safety Management (ISM) System was implemented. LLNL conducted a cross-directorate management self-assessment of work planning and control and is developing actions to respond to the issues identified. Ongoing efforts to strengthen the work planning and control process and to improve the quality of LLNL work packages are in progress: completion of remaining actions in response to the 2009 DOE Office of Health, Safety, and Security (HSS) evaluation of LLNL's ISM System; scheduling more than 14 work planning and control self-assessments in FY11; continuing to align subcontractor work control with the Institutional work planning and control system; and continuing to maintain the electronic IWS application. The 24 events included in this analysis were caused by errors in the first four of the five ISMS functions. The most frequent cause was errors in analyzing the hazards (Function 2). The second most frequent cause was errors occurring when defining the work (Function 1), followed by errors during the performance of work (Function 4). Interestingly, very few errors in developing controls (Function 3) resulted in events. This leads one to conclude that if improvements are made to defining the scope of work and analyzing the potential hazards, LLNL may reduce the frequency or severity of events. Analysis of the 24 events resulted in the identification of ten common causes. Some events had multiple causes, resulting in the mention of 39 causes being identified for the 24 events. The most frequent cause was workers, supervisors, or experts believing they understood the work and the hazards but their understanding was incomplete. The second most frequent cause was unclear, incomplete or confusing documents directing the work. Together, these two causes were mentioned 17 times and co

  14. Elmira Stove Works: Order (2011-CE-1407)

    Broader source: Energy.gov [DOE]

    DOE ordered Elmira Stove Works to pay a $6,000 civil penalty after finding Elmira Stove Works had failed to certify that certain models of refrigerator-freezers comply with the applicable energy conservation standard.

  15. Selecting and Working with a Broker 

    E-Print Network [OSTI]

    Waller, Mark L.; McCorkle, Dean; Welch, Mark

    2008-10-17

    Producers who wish to trade futures or options contracts will need to work with a broker. These tips can help in selecting a broker and in forging a good working relationship....

  16. Work Plan FY 2015 | Department of Energy

    Energy Savers [EERE]

    Work Plan FY 2015 Work Plan FY 2015 Planned Audits and Inspections for FY 2015 A list of audits and inspections planned for FY 2015 by the U.S. Department of Energy, Office of...

  17. Car Ownership and Welfare-to-Work

    E-Print Network [OSTI]

    Ong, Paul M.

    2001-01-01

    Problems Related to Child Car, Transportation, and IllnessCar Ownership and Welfare-to-Work Paul M Ong Reprint UCTC Nofor conte~ts thereof oruse Car Ownership and Welfare-to-Work

  18. How Solar Works | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fusion Energy Works 33 likes Fusion energy is the energy source of the sun and all of the stars. As part of How Energy Works, we'll cover everything from fuel sources to plasma...

  19. Quality of work – concept and measurement 

    E-Print Network [OSTI]

    Dahlm, Svenn-Åge; Nesheim, Torstein; Olsen, Karen M

    2009-01-01

    In this paper we review some of the most essential literature on the concept and measurement of quality of work. We show that different academic fields have conceptualized quality of work in distinct ways however there has ...

  20. Groundwater Monitoring Well Installation Work Plan

    E-Print Network [OSTI]

    Groundwater Monitoring Well Installation Work Plan CSMRI Site Prepared for: Colorado School;CSMRI Site Groundwater Monitoring Well Installation Work Plan December 6, 2006 Page ii Table of Contents

  1. Direct measure of quantum correlation

    SciTech Connect (OSTI)

    Yu, Chang-shui [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Zhao, Haiqing [School of Science, Dalian Jiaotong University, Dalian 116028 (China)

    2011-12-15

    The quantumness of the correlation known as quantum correlation is usually measured by quantum discord. So far various quantum discords can be roughly understood as indirect measure by some special discrepancy of two quantities. We present a direct measure of quantum correlation by revealing the difference between the structures of classically and quantum correlated states. Our measure explicitly includes the contributions of the inseparability and local nonorthogonality of the eigenvectors of a density matrix. Besides its relatively easy computability, our measure can provide a unified understanding of quantum correlation of all the present versions.

  2. Direct application of geothermal energy

    SciTech Connect (OSTI)

    Reistad, G.M.

    1980-01-01

    An overall treatment of direct geothermal applications is presented with an emphasis on the above-ground engineering. The types of geothermal resources and their general extent in the US are described. The potential market that may be served with geothermal energy is considered briefly. The evaluation considerations, special design aspects, and application approaches for geothermal energy use in each of the applications are considered. The present applications in the US are summarized and a bibliography of recent studies and applications is provided. (MHR)

  3. DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB Packet Hanford AdvisoryEnergy LessonsDIRECTIVES,DOE

  4. DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB Packet Hanford AdvisoryEnergy LessonsDIRECTIVES,DOEJim McDonald

  5. DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB Packet Hanford AdvisoryEnergy LessonsDIRECTIVES,DOEJim

  6. DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB Packet Hanford AdvisoryEnergy LessonsDIRECTIVES,DOEJimPatricia

  7. DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB Packet Hanford AdvisoryEnergy LessonsDIRECTIVES,DOEJimPatriciaLost

  8. Sandia Energy - Direct Numerical Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumniProjectsCyberNot Chemistry Diamond PlatesDirect

  9. Sandia National Laboratories: Working with Sandia: Procurement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prop & Direct Change Attachments (MS Word) Posters Equal Employment Opportunity Davis-Bacon Wage Poster State DBA Poster Requirements (MS Excel) Safety The construction community...

  10. Catalysis Working Group Meeting: January 2015

    Broader source: Energy.gov [DOE]

    Agenda and presentations from the Catalysis Working Group meeting held January 21, 2015, in Los Alamos, New Mexico.

  11. Agenda: High Temperature Membrane Working Group Meeting

    Broader source: Energy.gov [DOE]

    Agenda for the High Temperature Membrane Working Group (HTMWG) meeting on May 18, 2009, in Arlington, Virginia

  12. Solar Industry at Work | Laila Mattos

    ScienceCinema (OSTI)

    Mattos, Laila

    2013-05-29

    Laila Mattos, a technology manager at Alta Devices, talks about what it means to work for a "disruptive" solar company.

  13. Catalysis Working Group Meeting: June 2015

    Broader source: Energy.gov [DOE]

    Agenda and presentations from the Catalysis Working Group meeting held on June 8, 2015, in Arlington, Virginia.

  14. @ work' video segment features Robotic Software Engineer

    ScienceCinema (OSTI)

    Idaho National Laboratory

    2010-01-08

    @ work highlights Idaho National Laboratory employees and the jobs they perform.This segment features Robotic Software Engineer Miles Walton.

  15. Solar Industry at Work | Laila Mattos

    SciTech Connect (OSTI)

    Mattos, Laila

    2012-01-01

    Laila Mattos, a technology manager at Alta Devices, talks about what it means to work for a "disruptive" solar company.

  16. Motivation : Information Work and Money Understanding entropy

    E-Print Network [OSTI]

    Cockshott, W. Paul

    Motivation : Information Work and Money Understanding entropy Our Results/Contribution Babbage,University of Glasgow SICSA Conf, 2011 Author, WPC Information and production #12;Motivation : Information Work and Money Understanding entropy Our Results/Contribution Outline 1 Motivation : Information Work and Money

  17. BACHELOR OF SOCIAL WORK STUDENT HANDBOOK

    E-Print Network [OSTI]

    Northern British Columbia, University of

    BACHELOR OF SOCIAL WORK STUDENT HANDBOOK & PROGRAM GUIDE 2015 ­ 2016 College of Arts, Social Website: www.unbc.ca/social-work #12;Student Handbook & Program Guide for the Bachelor of Social Work i Telephone: 250-960-6494 Email: amelia.kaiser@unbc.ca #12;Student Handbook & Program Guide for the Bachelor

  18. Staged direct injection diesel engine

    DOE Patents [OSTI]

    Baker, Quentin A. (San Antonio, TX)

    1985-01-01

    A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.

  19. Radial lean direct injection burner

    DOE Patents [OSTI]

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  20. Heat pump/refrigerator using liquid working fluid

    DOE Patents [OSTI]

    Wheatley, John C. (Del Mar, CA); Paulson, Douglas N. (Del Mar, CA); Allen, Paul C. (Solana Beach, CA); Knight, William R. (Corvallis, OR); Warkentin, Paul A. (San Diego, CA)

    1982-01-01

    A heat transfer device is described that can be operated as a heat pump or refrigerator, which utilizes a working fluid that is continuously in a liquid state and which has a high temperature-coefficient of expansion near room temperature, to provide a compact and high efficiency heat transfer device for relatively small temperature differences as are encountered in heating or cooling rooms or the like. The heat transfer device includes a pair of heat exchangers that may be coupled respectively to the outdoor and indoor environments, a regenerator connecting the two heat exchangers, a displacer that can move the liquid working fluid through the heat exchangers via the regenerator, and a means for alternately increasing and decreasing the pressure of the working fluid. The liquid working fluid enables efficient heat transfer in a compact unit, and leads to an explosion-proof smooth and quiet machine characteristic of hydraulics. The device enables efficient heat transfer as the indoor-outdoor temperature difference approaches zero, and enables simple conversion from heat pumping to refrigeration as by merely reversing the direction of a motor that powers the device.