Sample records for direct tecate group

  1. Tecate Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained By FaultSunpodsSweetwaterTMATalbotTaunton,Tecate Group Jump

  2. TECATE - a code for anisotropic thermoelasticity in high-average-power laser technology. Phase 1 final report

    SciTech Connect (OSTI)

    Gelinas, R.J.; Doss, S.K.; Carlson, N.N.

    1985-01-01T23:59:59.000Z

    This report describes a totally Eulerian code for anisotropic thermoelasticity (code name TECATE) which may be used in evaluations of prospective crystal media for high-average-power lasers. The present TECATE code version computes steady-state distributions of material temperatures, stresses, strains, and displacement fields in 2-D slab geometry. Numerous heat source and coolant boundary condition options are available in the TECATE code for laser design considerations. Anisotropic analogues of plane stress and plane strain evaluations can be executed for any and all crystal symmetry classes. As with all new and/or large physics codes, it is likely that some code imperfections will emerge at some point in time.

  3. Unitary Representations of the Canonical Group, the Semi Direct Product of the Unitary and WeylHeisenberg Group

    E-Print Network [OSTI]

    ­Heisenberg group represents the eight physical degrees of freedom, time, position, momentum and energyUnitary Representations of the Canonical Group, the Semi­ Direct Product of the Unitary and Weyl­Heisenberg Group: # #1, 3# # # #1, 3# # s # #1, 3# Stephen G. Low Compaq Computers 14231 Tandem Blvd, Austin, TX

  4. Directions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directions Where We Are Directions The Bradbury Science Museum is located at 1350 Central Avenue Los Alamos, NM 87544 Los Alamos (elevation 7,355 feet) is perched high atop the...

  5. Digital Strategies Group Provide direction and strategic planning for the libraries' development of digital activities that focus on

    E-Print Network [OSTI]

    Schweik, Charles M.

    Digital Strategies Group Charge: Provide direction and strategic planning for the libraries' development of digital activities that focus on digital content that is created or collected by the libraries within the libraries of current and emerging issues related to digital content such as rights management

  6. Group B Streptococcal b-Hemolysin/Cytolysin Directly Impairs Cardiomyocyte Viability and Function

    E-Print Network [OSTI]

    Nizet, Victor

    of California San Diego, La Jolla, California, United States of America, 2 Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California, United States of America, 3 Skaggs, United States of America Abstract Background: Group B Streptococcus (GBS) is a leading cause of neonatal

  7. Groups

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/ExplorationGoods | OpenInformationMagnetics

  8. Direct

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: Potential ApplicationYu,EnergyDimitriDirac ChargeDiracDirect

  9. Oxidation of Methanol on 2nd and 3rd Row Group VIII Transition Metals (Pt, Ir, Os, Pd, Rh, and Ru): Application to Direct Methanol

    E-Print Network [OSTI]

    Goddard III, William A.

    Oxidation of Methanol on 2nd and 3rd Row Group VIII Transition Metals (Pt, Ir, Os, Pd, Rh, and Ru): Application to Direct Methanol Fuel Cells Jeremy Kua and William A. Goddard III* Contribution from functional theory (B3LYP)], we calculated the 13 most likely intermediate species for methanol oxidation

  10. CASE STUDY -- LEAN 94-02: A Case Study of Self-Directed Work Teams at Boeing Defense and Space Group - Corinth

    E-Print Network [OSTI]

    Klein, Janice

    1994-02-24T23:59:59.000Z

    Boeing Defense & Space Group - Corinth (BD&SG-C) is a self-directed team based unionized facility in the defense and commercial aircraft industry. The plant was a greenfield start-up in 1987. Due to the nature of the defense ...

  11. PP-49 SDG&E Tijuana & Tecate

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartmentGas and OilGeothermal andof Fuels P -1 1 1 1234PP-35

  12. The effect of spacing transverse to the wave direction on the Morison force coefficients in two cylinder groups

    SciTech Connect (OSTI)

    Haritos, N.; Smith, D.J. [Univ. of Melbourne, Victoria (Australia). Dept. of Civil and Environmental Engineering

    1995-12-31T23:59:59.000Z

    This paper provides some results from an experimental study currently being carried out in the Michell laboratory at the University of Melbourne. The principal purpose of the study is to investigate the Morison in-line hydrodynamic force characteristics of slender surface-piercing multi-cylinder structures. The test program has been tailored to provide more detailed observations within the close-spaced region (Separation/Diameter ratio, s/D < 2) of the group interference effect in such multi-cylinder structures over the Keulegan Carpenter range 0 < KC < 20 which encompasses the inertia force dominant Morison regime (KC < 5), as well as the so-called troublesome region (5 < KC < 15) where both drag and inertia force components are significant. Results currently in hand for the side-by-side two-cylinder group configuration are presented which clearly depict the characteristics of this interference effect.

  13. Manika Prasad is currently Associate Professor of Petroleum Engineering at the Colorado School of Mines. She directs the O-CLASSH (Organic, Clay, Sand, Shale) research group and the

    E-Print Network [OSTI]

    of Mines. She directs the O-CLASSH (Organic, Clay, Sand, Shale) research group and the co interested to understand how the ant-sized phenomena control elephant-sized features. She has published

  14. Combustion Group Group members

    E-Print Network [OSTI]

    Wang, Wei

    Combustion Group Group members: Thierry Poinsot, Emilien Courtine, Luc Vervisch, Benjamin Farcy 2014 #12;Combustion Group Combustion Physics and Modeling Pollutants, Emissions, and Soot Formation Thermoacoustics and Combustion Dynamics Research focus § Examine mechanisms responsible for flame stabilization

  15. Combustion Group Group members

    E-Print Network [OSTI]

    Wang, Wei

    Combustion Group Group members: Thierry Poinsot, Emilien Courtine, Luc Vervisch, Benjamin Farcy § New combustion and energy-conversion concepts #12;Introduction Combustion research thrusts Combustion Dynamics and Flame-Stabilization Research objectives § Obtain fundamental understanding of combustion

  16. Directives Tools

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    Useful links and resources for Directives Writers, Directives Point of Contact (DPCs), Subject Matter Experts (SMEs), and Draft Directive Reviewers.

  17. Group X

    SciTech Connect (OSTI)

    Fields, Susannah

    2007-08-16T23:59:59.000Z

    This project is currently under contract for research through the Department of Homeland Security until 2011. The group I was responsible for studying has to remain confidential so as not to affect the current project. All dates, reference links and authors, and other distinguishing characteristics of the original group have been removed from this report. All references to the name of this group or the individual splinter groups has been changed to 'Group X'. I have been collecting texts from a variety of sources intended for the use of recruiting and radicalizing members for Group X splinter groups for the purpose of researching the motivation and intent of leaders of those groups and their influence over the likelihood of group radicalization. This work included visiting many Group X websites to find information on splinter group leaders and finding their statements to new and old members. This proved difficult because the splinter groups of Group X are united in beliefs, but differ in public opinion. They are eager to tear each other down, prove their superiority, and yet remain anonymous. After a few weeks of intense searching, a list of eight recruiting texts and eight radicalizing texts from a variety of Group X leaders were compiled.

  18. Refrigerant directly cooled capacitors

    DOE Patents [OSTI]

    Hsu, John S. (Oak Ridge, TN); Seiber, Larry E. (Oak Ridge, TN); Marlino, Laura D. (Oak Ridge, TN); Ayers, Curtis W. (Kingston, TN)

    2007-09-11T23:59:59.000Z

    The invention is a direct contact refrigerant cooling system using a refrigerant floating loop having a refrigerant and refrigeration devices. The cooling system has at least one hermetic container disposed in the refrigerant floating loop. The hermetic container has at least one electronic component selected from the group consisting of capacitors, power electronic switches and gating signal module. The refrigerant is in direct contact with the electronic component.

  19. Directives System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-01-30T23:59:59.000Z

    The Department of Energy (DOE) Directives System is the means by which DOE policies, requirements, and responsibilities are developed and communicated throughout the Department. Directives are used to inform, direct, and guide employees in the performance of their jobs, and to enable employees to work effectively within the Department and with agencies, contractors, and the public. Cancels: DOE O 251.1, DOE M 251.1-1

  20. Directives Help

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    All DOE directives are available through this site. While it may seem overwhelming, given the number of documents, we have provided a number of ways in which you may get to the information you need.

  1. Automata groups

    E-Print Network [OSTI]

    Muntyan, Yevgen

    2010-01-16T23:59:59.000Z

    automata over the alphabet of 2 letters and 2-state automata over the 3-letter alphabet. We continue the classification work started by the research group at Texas A&M University ([BGK+07a, BGK+07b]) and further reduce the number of pairwise nonisomorphic...

  2. Illinois Wind Workers Group

    SciTech Connect (OSTI)

    David G. Loomis

    2012-05-28T23:59:59.000Z

    The Illinois Wind Working Group (IWWG) was founded in 2006 with about 15 members. It has grown to over 200 members today representing all aspects of the wind industry across the State of Illinois. In 2008, the IWWG developed a strategic plan to give direction to the group and its activities. The strategic plan identifies ways to address critical market barriers to the further penetration of wind. The key to addressing these market barriers is public education and outreach. Since Illinois has a restructured electricity market, utilities no longer have a strong control over the addition of new capacity within the state. Instead, market acceptance depends on willing landowners to lease land and willing county officials to site wind farms. Many times these groups are uninformed about the benefits of wind energy and unfamiliar with the process. Therefore, many of the project objectives focus on conferences, forum, databases and research that will allow these stakeholders to make well-educated decisions.

  3. Marseglia Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group JumpNew Hampshire:Marin EnergyChoiceMarseglia Group

  4. Microsystems and Nanotechnology Group

    E-Print Network [OSTI]

    Pulfrey, David L.

    Microsystems and Nanotechnology Group Microsystems and Nanotechnology Group 1 Microsystems and Nanotechnology Research Group The University of British Columbia Microsystems and Nanotechnology Research Group The University of British Columbia Annual Report ­ 2007 Microsystems and Nanotechnology Research Group 1 About

  5. Microsystems and Nanotechnology Group

    E-Print Network [OSTI]

    Pulfrey, David L.

    Microsystems and Nanotechnology Group Microsystems and Nanotechnology Group 1 Microsystems and Nanotechnology Research Group The University of British Columbia Microsystems and Nanotechnology Research Group The University of British Columbia Annual Report ­ 2008 Microsystems and Nanotechnology Research Group 1 About

  6. Directed assembly of discrete gold nanoparticle groupings usingbranched DNA scaffolds

    SciTech Connect (OSTI)

    Claridge, Shelley A.; Goh, Sarah L.; Frechet, Jean M.J.; Williams, Shara C.; Micheel, Christine M.; Alivisatos, A. Paul

    2004-09-14T23:59:59.000Z

    The concept of self-assembled dendrimers is explored for the creation of discrete nanoparticle assemblies. Hybridization of branched DNA trimers and nanoparticle-DNA conjugates results in the synthesis of nanoparticle trimer and tetramer complexes. Multiple tetramer architectures are investigated, utilizing Au-DNA conjugates with varying secondary structural motifs. Hybridization products are analyzed by gel electrophoresis, and discrete bands are observed corresponding to structures with increasing numbers of hybridization events. Samples extracted from each band are analyzed by transmission electron microscopy, and statistics compiled from micrographs are used to compare assembly characteristics for each architecture. Asymmetric structures are also produced in which both 5 and 10 nm Au particles are assembled on branched scaffolds.

  7. Properties of Group Five and Group Seven transactinium elements

    E-Print Network [OSTI]

    Wilk, Philip A.

    2001-01-01T23:59:59.000Z

    of Group Five and Group Seven Transactinium Elementsof Group Five and Group Seven Transactinium Elements byof Group Five and Group Seven Transactinium Elements by

  8. Hanergy Holdings Group Company Ltd formerly Farsighted Group aka Huarui

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open Energy Information Hanergy Holdings Group Company Ltd

  9. Departmental Directives Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-08-16T23:59:59.000Z

    The Order is the primary directive for administering the Department's directives Program. Cancels: DOE O 251.1A

  10. Pohlen Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergy InternationalInformationPlacerPlexus SolPohlen Group

  11. Poyry Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformation toPower andPoyry Group Jump to: navigation,

  12. Paro group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympiaAnalysis) JumpPalcan sPaquinPark andParo group

  13. Jinglong Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou New Energy Co Ltd Jump to:Jinglong Group Jump to:

  14. Kedco Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou New Energy CoKERAFOLKarlsruheKauaiKedco Group Jump

  15. Humus Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open EnergyInformationHorizonEnergyHubeiHumus Group Jump to:

  16. GROUP THERAPY Syracuse University

    E-Print Network [OSTI]

    McConnell, Terry

    your individual needs. In a group, up to eight students meet with one or two group therapists. MostGROUP THERAPY Syracuse University Counseling Center 200 Walnut Place Phone: 315-443-4715 Fax: 315-443-4276 counselingcenter.syr.edu WHAT STUDENTS SAY ABOUT GROUP THERAPY I was really anxious about joining a group

  17. Great Basin College Direct Use Geothermal Demonstration Project

    SciTech Connect (OSTI)

    Rice, John

    2014-10-21T23:59:59.000Z

    This is the final technical report for the Great Basin College Direct Use Geothermal Demonstration Project, outlining the technical aspects of the User Group System.

  18. Specific Group Hardware

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Group Hardware Specific Group Hardware ALICE palicevo1 The Virtual Organization (VO) server. Serves as gatekeeper for ALICE jobs. It's duties include getting assignments from...

  19. Directions and Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directions & Maps Plan Your Visit Visit About the Museum Museum Hours Directions & Maps When to Visit Arrange for a Visit Around Los Alamos Contact Us invisible utility element...

  20. QEP WORKING GROUP CHARGES Assessment Working Group

    E-Print Network [OSTI]

    Liu, Paul

    and a framework that details timelines, leadership, resource allocation, and an assessment plan that is clearlyQEP WORKING GROUP CHARGES Assessment Working Group The topic of the QEP should fit should be supported by a thorough understanding of the institutional context and by assessment data

  1. Selmer groups as flat cohomology groups

    E-Print Network [OSTI]

    ?esnavi?ius, K?stutis

    2014-01-01T23:59:59.000Z

    Given a prime number p, Bloch and Kato showed how the p Selmer group of an abelian variety A over a number field K is determined by the p-adic Tate module. In general, the pm1-Selmer group Selpmn A need not be determined ...

  2. 1. Tsubono Group 1 1 Tsubono Group

    E-Print Network [OSTI]

    Ejiri, Shinji

    optical fiber ­ Test of the law of gravitation at extremely small distance references [1] Y. Aso, M. Ando1. Tsubono Group 1 1 Tsubono Group Research Subjects: Experimental Relativity, Gravitational Wave Physics, Laser Inter- ferometer Member: Kimio TSUBONO and Masaki ANDO The detection of gravitational waves

  3. Moltech Power Systems Group MPS Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreen PolymersModular Energy DevicesMola(EC-LEDS)

  4. TEC Working Group Topic Groups Archives Communications Meeting...

    Office of Environmental Management (EM)

    TEC Working Group Topic Groups Archives Communications Conference Call Summaries TEC Meeting Summaries - January 1997 TEC Working Group Topic Groups Tribal Conference Call...

  5. Long Term by Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Running Jobs by Group Running Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2011-04-05 13:59:48...

  6. Mechanical Engineering & Thermal Group

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Mechanical Engineering & Thermal Group The Mechanical Engineering (ME) & Thermal Group at LASP has · STOP (Structural, Thermal, and Optical Performance) analyses of optical systems Thermal engineers lead evolved with the complexity of instrument design demands, LASP mechanical engineers develop advanced

  7. Energetix Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to:Emminol Jump to:Energ tica Campos de CimaEnergetix Group

  8. Ensus Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to:Emminol JumpEnergyEnerleyEnglehard/ICCEnoliaEnsus Group

  9. Ferrari Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGerman AerospaceEfficiencyInformationFengningFerrari Group

  10. Ramky Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook iconQuito,Jump to:Radiant ElectricRamky Group Jump to:

  11. Rowan Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump to: navigation,Rolls RoyceRosaRowan Group Jump

  12. Mouratoglou Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreenMoon LakeMountain Electric Coop,

  13. Junqueira Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou New Energy Co LtdJinzhouJoeSolar,Junco NovoJunqueira

  14. Klebl Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou New EnergyKenosistecKilara PowerKiotoKlasing

  15. Sova Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern IL Elec Coop, IncSouthwestern Electric PowerSova Group Jump

  16. Tongwei Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin Hydropower Station Jump to:TiogaTongdao YaolaitanTongwei Group

  17. Citizenre Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDataset CountryChoosEV JumpCircleCitizenre Group

  18. Heolo Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open Energy InformationHebeiProgram JumpHennecke GmbH JumpHeolo

  19. Elecnor Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open JumpEcologyEl DoradoEldora-NewElecnor Group

  20. Interagency Sustainability Working Group

    Broader source: Energy.gov [DOE]

    The Interagency Sustainability Working Group (ISWG) is the coordinating body for sustainable buildings in the federal government.

  1. Hydrogen Analysis Group

    SciTech Connect (OSTI)

    Not Available

    2008-03-01T23:59:59.000Z

    NREL factsheet that describes the general activites of the Hydrogen Analysis Group within NREL's Hydrogen Technologies and Systems Center.

  2. Direct/Indirect Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    This chapter provides recommended categories for direct and indirect elements developed by the Committee for Cost Methods Development (CCMD) and describes various estimating techniques for direct and indirect costs.

  3. Direct Loan Program (Connecticut)

    Broader source: Energy.gov [DOE]

    The Connecticut Development Authority’s Direct Loan Program provides direct senior and subordinated loans and mezzanine investments to companies creating or maintaining jobs. Up to $20,000 per job...

  4. Directives System Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-01-30T23:59:59.000Z

    This Manual provides detailed requirements to supplement DOE O 251.1A, Directives System, dated 1-30-98.

  5. Grouped exposed metal heaters

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Coit, William George (Bellaire, TX); Griffin, Peter Terry (Brixham, GB); Hamilton, Paul Taylor (Houston, TX); Hsu, Chia-Fu (Granada Hills, CA); Mason, Stanley Leroy (Allen, TX); Samuel, Allan James (Kular Lumpar, MY); Watkins, Ronnie Wade (Cypress, TX)

    2010-11-09T23:59:59.000Z

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  6. Grouped exposed metal heaters

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Coit, William George (Bellaire, TX); Griffin, Peter Terry (Brixham, GB); Hamilton, Paul Taylor (Houston, TX); Hsu, Chia-Fu (Granada Hills, CA); Mason, Stanley Leroy (Allen, TX); Samuel, Allan James (Kular Lumpar, ML); Watkins, Ronnie Wade (Cypress, TX)

    2012-07-31T23:59:59.000Z

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  7. GROUP 1 GROUP 2 GROUP 3 GROUP 4 GROUP 5 GROUP 6 ANDERSON, JENNIFER AYENI, MARY ABATE BESSOMO, ANNA BARRETT, CIAN ADAMS, NICOLE BARTON, MICHAEL

    E-Print Network [OSTI]

    O'Mahony, Donal E.

    GROUP 1 GROUP 2 GROUP 3 GROUP 4 GROUP 5 GROUP 6 ANDERSON, JENNIFER AYENI, MARY ABATE BESSOMO, ANNA ANDERSON FITZSIMONS, DENISEBINCHY, SUSAN CARLEY, JESSE CONWAY, AILBHE BROOKE, HENRY CONLAN, DEIRDRE, CAOIMHE HESKIN, CLODAGH MC GOVERN, MARIE-CLAIREMURRAY, AINE GROGAN, CLARE GERARD, ALLISON MC QUAID, RACHEL

  8. Directives Templates - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both theDirectives Review

  9. Lu an Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group Jump to: navigation, search Name: Lu'an Group Place:

  10. SPPR Group Proposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    members will execute in August 2011. Facilities Use Charge agreements are drafted: In review stage by customer group; Proposal specifies annual update of charge amount...

  11. Hydrogen Technologies Group

    SciTech Connect (OSTI)

    Not Available

    2008-03-01T23:59:59.000Z

    The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

  12. Directional intraoperative probe

    DOE Patents [OSTI]

    Majewski, Stanislaw; Popov, Vladimir; Loutts, Georgii

    2003-11-04T23:59:59.000Z

    An introperative surgical probe incorporating both a fiber optic imaging system and multi-element beta/gamma radiation directional indicating system is described.

  13. Departmental Directives Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-10-16T23:59:59.000Z

    To establish directives as the primary means to set, communicate, and institutionalize policies, requirements, responsibilities, and procedures for Departmental elements and contractors.

  14. Directives System Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-16T23:59:59.000Z

    This Manual provides detailed requirements to supplement DOE O 251.1, which establishes requirements for the development, coordination, and sunset review of DOE directives.

  15. Cancellation of Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-26T23:59:59.000Z

    Effective immediately the following Department of Energy directive is canceled. DOE M 452.2-2, Nuclear Explosive Safety Evaluation Processes, dated 04-14-2009.

  16. Fermilab | Employee Advisory Group | Focus Group Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13, 2013Focus Group Report A random sampling of

  17. Departmental Directives System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1983-04-07T23:59:59.000Z

    The order establishes the directives system to be used for publishing permanent and temporary directives issued by DOE Headquarters and addressed to Headquarters and/or field elements. Chg 1 dated 3-14-85. Cancels DOE 1321.1A.

  18. Working group report: Neutrino physics

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    Working group report: Neutrino physics Acknowledgements TheWorking group report: Neutrino physics Coordinators: SANDHYAthe report of the neutrino physics working group at WHEPP-X.

  19. Power Systems Group Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Information ASD Groups ESHQA Operations Argonne Home > Advanced Photon Source > Power Systems Group This page is currently under construction. Old PS Group Site (visible...

  20. Directives - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both the Fermilab box

  1. Directives Quarterly Updates - DOE Directives, Delegations, and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both the

  2. Directives Tools - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: PotentialFederalDirections Basic Energy SciencesDirections


  3. ASRAC Fans and Blower Working Group Creation Notice of Intent

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    consensus on the 7 terms of a proposed rule. Representation on the advisory committee or working group may be direct; that is, each member may represent a specific interest, or...

  4. Direct Discharge Permit (Vermont)

    Broader source: Energy.gov [DOE]

    A direct discharge permit is required if a project involves the discharge of pollutants to state waters. For generation purposes, this involves the withdrawal of surface water for cooling purposes...

  5. Art Directable Tornadoes

    E-Print Network [OSTI]

    Dwivedi, Ravindra

    2011-08-08T23:59:59.000Z

    of the Twisters? [Bond 1996], ?Tornado? [Nosseck 1996] and ?Hancock? [Berg 2008]. 5 (a) (b) Figure 4: Simulated tornadoes in "The Day After Tomorrow". (a) Twin tornadoes [Emmerich 2004]. (b) Tornado with a huge funnel [Emmerich 2004...]. The film "The Day after Tomorrow" [Emmerich 2004], had a variety of tornadoes with different shapes and sizes and the shots required a lot of art direct-ability to make it visually appealing and believable (Figure 4). In 2009, an animated movie ?Cloudy...

  6. Strangulation in Galaxy Groups

    E-Print Network [OSTI]

    Kawata, Daisuke

    2007-01-01T23:59:59.000Z

    We use a cosmological chemodynamical simulation to study how the group environment impacts the star formation properties of disk galaxies. The simulated group has a total mass of M~8x10^12 Msun and a total X-ray luminosity of L_X~10^41 erg s^-1. Our simulation suggests that ram pressure is not sufficient in this group to remove the cold disk gas from a V_rot~150 km s^-1 galaxy. However, the majority of the hot gas in the galaxy is stripped over a timescale of approximately 1 Gyr. Since the cooling of the hot gas component provides a source for new cold gas, the stripping of the hot component effectively cuts off the supply of cold gas. This in turn leads to a quenching of star formation. The galaxy maintains the disk component after the cold gas is consumed leading to a galaxy with S0 properties. Our self-consistent simulation suggests that this strangulation mechanism works even in low mass groups, providing an explanation for the lower star formation rates in group galaxies relative to galaxies in the field...

  7. Strangulation in Galaxy Groups

    E-Print Network [OSTI]

    Daisuke Kawata; John S. Mulchaey

    2007-11-20T23:59:59.000Z

    We use a cosmological chemodynamical simulation to study how the group environment impacts the star formation properties of disk galaxies. The simulated group has a total mass of M~8x10^12 Msun and a total X-ray luminosity of L_X~10^41 erg s^-1. Our simulation suggests that ram pressure is not sufficient in this group to remove the cold disk gas from a V_rot~150 km s^-1 galaxy. However, the majority of the hot gas in the galaxy is stripped over a timescale of approximately 1 Gyr. Since the cooling of the hot gas component provides a source for new cold gas, the stripping of the hot component effectively cuts off the supply of cold gas. This in turn leads to a quenching of star formation. The galaxy maintains the disk component after the cold gas is consumed, which may lead to a galaxy similar to an S0. Our self-consistent simulation suggests that this strangulation mechanism works even in low mass groups, providing an explanation for the lower star formation rates in group galaxies relative to galaxies in the field.

  8. Finite group symmetry breaking

    E-Print Network [OSTI]

    G. Gaeta

    2005-10-02T23:59:59.000Z

    Finite group symmetry is commonplace in Physics, in particular through crystallographic groups occurring in condensed matter physics -- but also through the inversions (C,P,T and their combinations) occurring in high energy physics and field theory. The breaking of finite groups symmetry has thus been thoroughly studied, and general approaches exist to investigate it. In Landau theory, the state of a system is described by a finite dimensional variable (the {\\it order parameter}), and physical states correspond to minima of a potential, invariant under a group. In this article we describe the basics of symmetry breaking analysis for systems described by a symmetric polynomial; in particular we discuss generic symmetry breakings, i.e. those determined by the symmetry properties themselves and independent on the details of the polynomial describing a concrete system. We also discuss how the plethora of invariant polynomials can be to some extent reduced by means of changes of coordinates, i.e. how one can reduce to consider certain types of polynomials with no loss of generality. Finally, we will give some indications on extension of this theory, i.e. on how one deals with symmetry breakings for more general groups and/or more general physical systems.

  9. Orchid Bioenergy Group Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympia GreenThe communityOrchid Bioenergy Group Ltd

  10. LBNL China Energy Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea Parts andKunshanGroup Name China Energy

  11. LBNL China Energy Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea Parts andKunshanGroup Name China EnergyLBNL

  12. M Torres Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group Jump to: navigation,LushuiLyme, NewLyonLysandaM J MM

  13. Magnetek Power Electronics Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group Jump to:Macquarie Energy LLC JumpMadkiniMagnetek Power

  14. Maximum Performance Group MPG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group JumpNewMassachusetts BayMatinicusOpen

  15. Upgraded Coal Interest Group

    SciTech Connect (OSTI)

    Evan Hughes

    2009-01-08T23:59:59.000Z

    The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

  16. Bell, group and tangle

    SciTech Connect (OSTI)

    Solomon, A. I., E-mail: a.i.solomon@open.ac.u [Open University, Department of Physics (United Kingdom)

    2010-03-15T23:59:59.000Z

    The 'Bell' of the title refers to bipartite Bell states, and their extensions to, for example, tripartite systems. The 'Group' of the title is the Braid Group in its various representations; while 'Tangle' refers to the property of entanglement which is present in both of these scenarios. The objective of this note is to explore the relation between Quantum Entanglement and Topological Links, and to show that the use of the language of entanglement in both cases is more than one of linguistic analogy.

  17. Magnetism Theory Group / POSTECH Magnetism Theory Group / POSTECH

    E-Print Network [OSTI]

    Min, Byung Il

    Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH J.H . Park et al. #12;'s of FeinCsm e tal The chargeandorbitalordering geom etryin YB a C o 2 O 5 S. K. Kwon etal .Magnetism Theory

  18. GROUPED'ANALYSEETDETHORIECONOMIQUELYONSTTIENNE Stabilitcroissanceetperformanceconomique

    E-Print Network [OSTI]

    Boyer, Edmond

    GROUPED'ANALYSEETDETHÉORIEÉCONOMIQUELYONSTÉTIENNE WP1026 économique, stabilité, canal d'investissement. Classification JEL : B22, E32, O42 1 Dr. Zied Ftiti. Université de Lyon, Université Lyon 2, F - 69007, Lyon, France. CNRS, GATE Lyon-St Etienne, UMR n° 5824

  19. GROUPED'ANALYSEETDETHORIECONOMIQUELYONSTTIENNE Sectorbasedexplanationofverticalintegrationin

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    GROUPED'ANALYSEETDETHÉORIEÉCONOMIQUELYONSTÉTIENNE WP1136, France CNRS, GATE Lyon-St Etienne, UMR n° 5824, 69130, Ecully, France Université de Saint-Etienne, Jean. Reif, G. Solard, 2009 ; B. Mura, 2010). A network relates to a network of downstream firms using

  20. GROUPED'ANALYSEETDETHORIECONOMIQUELYONSTTIENNE Dynamicmodelsofresidentialsgrgation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    GROUPED'ANALYSEETDETHÉORIEÉCONOMIQUELYONSTÉTIENNE WP1017 #12;DYNAMIC MODELS OF RESIDENTIAL SEGREGATION: AN ANALYTICAL SOLUTION S´ebastian GRAUWINa,b,c , Florence GOFFETTE-NAGOTa,d, , Pablo JENSENa,b,c,e aUniversit´e de Lyon, Lyon, F-69007, France bInstitut rh

  1. Group Analysis Jean Daunizeau

    E-Print Network [OSTI]

    Daunizeau, Jean

    ) is measurement error True response magnitude is fixed 111 Xy Fixed effect #12;Random effects-sphericity modelling Examples Power and efficiency: summary Overview #12;Group analysis: fixed versus random effects Two RFX methods: Holmes & Friston (HF) approach non-sphericity modelling Examples Power

  2. TKN Telecommunication Networks Group

    E-Print Network [OSTI]

    Wichmann, Felix

    consumption. Quite some effort has already been undertaken to address this issue, striving for low-energy trends in the power consumption, the NICs and APs are classified according to the following aspects Group Power consumption of WLAN network elements Salvatore Chiaravalloti, Filip Idzikowski, Lukasz

  3. Directional spherical multipole wavelets

    SciTech Connect (OSTI)

    Hayn, Michael; Holschneider, Matthias [Institute for Mathematics, University Potsdam, Am Neuen Palais 10, 144 69 Potsdam (Germany)

    2009-07-15T23:59:59.000Z

    We construct a family of admissible analysis reconstruction pairs of wavelet families on the sphere. The construction is an extension of the isotropic Poisson wavelets. Similar to those, the directional wavelets allow a finite expansion in terms of off-center multipoles. Unlike the isotropic case, the directional wavelets are not a tight frame. However, at small scales, they almost behave like a tight frame. We give an explicit formula for the pseudodifferential operator given by the combination analysis-synthesis with respect to these wavelets. The Euclidean limit is shown to exist and an explicit formula is given. This allows us to quantify the asymptotic angular resolution of the wavelets.

  4. Directed Relativistic Blast Wave

    E-Print Network [OSTI]

    Andrei Gruzinov

    2007-04-23T23:59:59.000Z

    A spherically symmetrical ultra-relativistic blast wave is not an attractor of a generic asymmetric explosion. Spherical symmetry is reached only by the time the blast wave slows down to non-relativistic velocities, when the Sedov-Taylor-von Neumann attractor solution sets in. We show however, that a directed relativistic explosion, with the explosion momentum close to the explosion energy, produces a blast wave with a universal intermediate asymptotic -- a selfsimilar directed ultra-relativistic blast wave. This universality might be of interest for the astrophysics of gamma-ray burst afterglows.

  5. Directional gamma detector

    DOE Patents [OSTI]

    LeVert, Francis E. (Downers Grove, Knoxville, TN); Cox, Samson A. (Downers Grove, IL)

    1981-01-01T23:59:59.000Z

    An improved directional gamma radiation detector has a collector sandwiched etween two layers of insulation of varying thicknesses. The collector and insulation layers are contained within an evacuated casing, or emitter, which releases electrons upon exposure to gamma radiation. Delayed electrons and electrons entering the collector at oblique angles are attenuated as they pass through the insulation layers on route to the collector.

  6. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-02-24T23:59:59.000Z

    This Notice extends the following directives until 2/16/04: DOE N 205.2, Foreign National Access to DOE Cyber Systems, and DOE N 205.3, Password Generation, Protection, and Use, dated 11/23/99-7/1/00.

  7. Directed Diffusion Fabio Silva

    E-Print Network [OSTI]

    Heidemann, John

    nodes can cache, or transform data, and may direct interests based on previously cached data (Section 3 University of Southern California Los Angeles, CA, USA 90089 ¶ Computer Science Department University of California, Los Angeles Los Angeles, CA, USA 90095 {fabio,johnh,govindan,estrin}@isi.edu February 10, 2004 1

  8. Turnitin Moodle Direct Integration

    E-Print Network [OSTI]

    de Lijser, Peter

    Turnitin Moodle® Direct Integration Instructor User Manual Turnitin Moodle Integration Manual: 1. Turnitin Moodle Integration Manual: 2 Contents Instructor User Manual 1 Creating a Turnitin Assignment 3 Accessing GradeMark® 15 Glossary 16 #12;Instructor User Manual Turnitin Moodle Integration Manual: 3

  9. Direct from CDC's Environmental

    E-Print Network [OSTI]

    Direct from CDC's Environmental Health Services Branch CAPT Daniel M. Harper, M.P.H. A Diverse Environmental Public Health Workforce to Meet the Diverse Environmental Health Challenges on environmental health and to build part nerships in the profession. In pursuit of these goals, we will feature

  10. Direct from CDC's Environmental

    E-Print Network [OSTI]

    Direct from CDC's Environmental Health Services Branch CAPT John Sarisky, R.S., M.P.H. Developing Environmental Public Health Leadership Editor's note: NEHA strives to provide up to of these goals, we will feature a column from the Environmental Health Services Branch (EHSB) of the Centers

  11. Direct from CDC's Environmental

    E-Print Network [OSTI]

    Direct from CDC's Environmental Health Services Branch Daneen Farrow Collier, M.S.P.H. Editor's note: NEHA strives to pro vide up-to-date and relevant informa tion on environmental health the Environmental Health Services Branch (EHSB) of the Centers for Disease Control and Pre vention (CDC) in every

  12. Direct from CDC's Environmental

    E-Print Network [OSTI]

    Direct from CDC's Environmental Health Services Branch Brian Hubbard, M.P.H. Editor the Environmental Health Services Branch (EHSB) of the Centers for Disease Con trol and Prevention (CDC) in every environmental health programs and professionals to antici pate, identify, and respond to adverse envi ronmental

  13. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-02-12T23:59:59.000Z

    The following directives are extended until 8-12-04. DOE N 205.2, Foreign National Access to DOE Cyber Systems, dated 11/1/99. DOE N 205.3, Password Generation, Protection, and Use, dated 11/23/99.

  14. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-08-12T23:59:59.000Z

    The following directives are extended until 8-12-05: DOE N 205.2, Foreign National Access to DOE Cyber Security Systems, dated 11-1-99 and DOE N 205.3, Password Generation, Protection, and Use, dated 11-23-99. No cancellations.

  15. KKG Group Paraffin Removal

    SciTech Connect (OSTI)

    Schulte, Ralph

    2001-12-01T23:59:59.000Z

    The Rocky Mountain Oilfield Testing Center (RMOTC) has recently completed a test of a paraffin removal system developed by the KKG Group utilizing the technology of two Russian scientists, Gennady Katzyn and Boris Koggi. The system consisting of chemical ''sticks'' that generate heat in-situ to melt the paraffin deposits in oilfield tubing. The melted paraffin is then brought to the surface utilizing the naturally flowing energy of the well.

  16. Future directions for QCD

    SciTech Connect (OSTI)

    Bjorken, J.D.

    1996-10-01T23:59:59.000Z

    New directions for exploring QCD at future high-energy colliders are sketched. These include jets within jets. BFKL dynamics, soft and hard diffraction, searches for disoriented chiral condensate, and doing a better job on minimum bias physics. The new experimental opportunities include electron-ion collisions at HERA, a new collider detector at the C0 region of the TeVatron, and the FELIX initiative at the LHC.

  17. Direct hydrocarbon fuel cells

    DOE Patents [OSTI]

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04T23:59:59.000Z

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  18. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2006-10-10T23:59:59.000Z

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  19. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-07-11T23:59:59.000Z

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  20. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett Lee; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-09-19T23:59:59.000Z

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  1. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2007-02-27T23:59:59.000Z

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  2. Directional drilling sub

    SciTech Connect (OSTI)

    Benoit, L.F.

    1980-09-02T23:59:59.000Z

    A directional drilling ''sub'' provides a shifting end portion which allows the sub to be rotated from a first in-line axially straight orientation with the drill string to a second angled or ''bent'' position which second position is normally associated with conventional bent ''subs'' which are permanently structured in the bent position. The device shifts from the first (In-line) position to the second (Bent) position upon the application of torsional force thereto which torsional force can be applied, for example, by the actuation of a ''turbodrill'' (Normally attached thereto in operation). The device can be manufactured or machined to provide varying angles to the sub in its bent position to satisfy differing directional drilling situations. The axially aligned first position allows easy entry of the drill string, sub , and turbodrill into the well hole, while the second bend position is used to commence directional drilling. The sub will return gradually to its original axially aligned position when the device is withdrawn from the wellhole, as such position is the path of minimum resistance for the withdrawing drill string and torsion is not present to hold the sub in the bent position.

  3. IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 9, SEPTEMBER 2010 4321 Group Codes Outperform Binary-Coset Codes on

    E-Print Network [OSTI]

    Como, Giacomo

    the cyclic group of order eight, but not the direct product of three copies of the binary groupIEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 9, SEPTEMBER 2010 4321 Group Codes Outperform ensembles with different algebraic structure. It is proved that the typical group code over the cyclic group

  4. Research Groups - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliabilityPrincipalResearch Finds VitaminResearch Groups

  5. ALS Communications Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartmentNeutrino-Induced1ALS Communications Group Print

  6. # Energy Measuremenfs Group

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -KWatertown Arsenal -Center05Sites »ri

  7. Environmental/Interest Groups

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNew 1325.8.Enaineer;/:4,4 (; ...)369s ..T

  8. Specific Group Hardware

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund3Biology|SolarSpeakers BureauSpecialSpecific Group

  9. Digital Technology Group Computer Laboratory

    E-Print Network [OSTI]

    Cambridge, University of

    Digital Technology Group 1/20 Computer Laboratory Digital Technology Group Computer Laboratory William R Carson Building on the presentation by Francisco Monteiro Matlab #12;Digital Technology Group 2/20 Computer Laboratory Digital Technology Group Computer Laboratory The product: MATLAB® - The Language

  10. High Temperature Membrane Working Group

    Broader source: Energy.gov [DOE]

    This presentation provides an overview of the High Temperature Membrane Working Group Meeting in May 2007.

  11. Winter 2015 Positive Parenting Group

    E-Print Network [OSTI]

    Winter 2015 Positive Parenting Group This is an eight-week parent group series starting Monday, January 12, 2015 Future parent group sessions to be held: January 26 (no group 19th ) February 2, 9 and 23 (no group 16th ) and March 2, 9 and 16 6:00 p.m. to 8:00 p.m. Room 145 of the Clinical Services

  12. DSRP, direct sulfur production

    SciTech Connect (OSTI)

    McMichael, W.J.; Agarwal, S.K.; Jang, B.L.; Howe, G.B. [Research Triangle Institute, Research Triangle Park, NC (United States); Chen, D.H.; Hopper, J.R. [Lamar Univ., Beaumont, TX (United States)

    1993-06-01T23:59:59.000Z

    The objective of this work is to demonstrate on a bench-scale the Direct Sulfur Recovery Process (DSRP) for up to 99 percent or higher recovery of sulfur (as elemental sulfur) from regeneration off-gases and coal-gas produced in integrated gasification combined cycle (IGCC) power generating systems. Fundamental kinetic and thermodynamic studies will also be conducted to enable development of a model to predict DSRP performance in large-scale reactors and to shed light on the mechanism of DSRP reactions. The ultimate goal of the project is to advance the DSRP technology to the point where industry is willing to support its further development.

  13. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-03-18T23:59:59.000Z

    The following directives are extended until 3-18-06: DOE N 205.8, Cyber Security Requirements for Wireless Devices and Information Systems, dated 2-11-04; DOE N 205.9, Certification and Accreditation Process for Information Systems Including National Security Systems, dated 02-19-04; DOE N 205.10, Cyber Security Requirements for Risk Management, dated 02-19-04; DOE N 205.11, Security Requirements for Remote Access to DOE and Applicable Contractor Information Technology Systems, dated 2-19-04. DOE N 205.12, Clearing, Sanitizing, and Destroying Information System Storage Media, Memory Devices, and Other Related Hardware, dated 2-19-04.

  14. Direct Federal Financial

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear21CompanySFoot)YearD e s cDirect

  15. Directions & Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDiesel pricesDiesel28,CollapseDirections &

  16. Directives Points of Contact

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both the Fermilab

  17. Directives Quarterly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both the Fermilab Management's

  18. Directives Quarterly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both the Fermilab

  19. Directives Quarterly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both the

  20. Directives Quarterly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both the

  1. Directives Quarterly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both the

  2. Directives Quarterly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both the

  3. Directions_Crossroads_Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: PotentialFederalDirections Basic Energy SciencesDirections


  4. Working Group Report: Sensors

    SciTech Connect (OSTI)

    Artuso, M.; et al.,

    2013-10-18T23:59:59.000Z

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

  5. Remote direct memory access

    DOE Patents [OSTI]

    Archer, Charles J.; Blocksome, Michael A.

    2012-12-11T23:59:59.000Z

    Methods, parallel computers, and computer program products are disclosed for remote direct memory access. Embodiments include transmitting, from an origin DMA engine on an origin compute node to a plurality target DMA engines on target compute nodes, a request to send message, the request to send message specifying a data to be transferred from the origin DMA engine to data storage on each target compute node; receiving, by each target DMA engine on each target compute node, the request to send message; preparing, by each target DMA engine, to store data according to the data storage reference and the data length, including assigning a base storage address for the data storage reference; sending, by one or more of the target DMA engines, an acknowledgment message acknowledging that all the target DMA engines are prepared to receive a data transmission from the origin DMA engine; receiving, by the origin DMA engine, the acknowledgement message from the one or more of the target DMA engines; and transferring, by the origin DMA engine, data to data storage on each of the target compute nodes according to the data storage reference using a single direct put operation.

  6. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mccomiskey, Allison

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  7. Site directed recombination

    DOE Patents [OSTI]

    Jurka, Jerzy W. (Los Altos, CA)

    1997-01-01T23:59:59.000Z

    Enhanced homologous recombination is obtained by employing a consensus sequence which has been found to be associated with integration of repeat sequences, such as Alu and ID. The consensus sequence or sequence having a single transition mutation determines one site of a double break which allows for high efficiency of integration at the site. By introducing single or double stranded DNA having the consensus sequence flanking region joined to a sequence of interest, one can reproducibly direct integration of the sequence of interest at one or a limited number of sites. In this way, specific sites can be identified and homologous recombination achieved at the site by employing a second flanking sequence associated with a sequence proximal to the 3'-nick.

  8. Conclusions and Policy Directions,

    SciTech Connect (OSTI)

    Wilbanks, Thomas J [ORNL; Romero-Lankao, Paty [National Center for Atmospheric Research (NCAR); Gnatz, P [National Center for Atmospheric Research (NCAR)

    2011-01-01T23:59:59.000Z

    This chapter briefly revisits the constraints and opportunities of mitigation and adaptation, and highlights and the multiple linkages, synergies and trade-offs between mitigation, adaptation and urban development. The chapter then presents future policy directions, focusing on local, national and international principles and policies for supporting and enhancing urban responses to climate change. In summary, policy directions for linking climate change responses with urban development offer abundant opportunities; but they call for new philosophies about how to think about the future and how to connect different roles of different levels of government and different parts of the urban community. In many cases, this implies changes in how urban areas operate - fostering closer coordination between local governments and local economic institutions, and building new connections between central power structures and parts of the population who have often been kept outside of the circle of consultation and discourse. The difficulties involved in changing deeply set patterns of interaction and decision-making in urban areas should not be underestimated. Because it is so difficult, successful experiences need to be identified, described and widely publicized as models for others. However, where this challenge is met, it is likely not only to increase opportunities and reduce threats to urban development in profoundly important ways, but to make the urban area a more effective socio-political entity, in general - a better city in how it works day to day and how it solves a myriad of problems as they emerge - far beyond climate change connections alone. It is in this sense that climate change responses can be catalysts for socially inclusive, economically productive and environmentally friendly urban development, helping to pioneer new patterns of stakeholder communication and participation.

  9. Data Management Group Annual Report

    E-Print Network [OSTI]

    Toronto, University of

    Data Management Group Annual Report 2001 prepared by: Data Management Group Joint Program..............................................................................2 Text Based Data Retrieval System `drs' ..........................................................2 Internet Browser Data Retrieval System (iDRS)..............................................3 Complex Data

  10. Data Management Group Annual Report

    E-Print Network [OSTI]

    Toronto, University of

    Data Management Group Annual Report 1999 prepared by: Data Management Group Joint Program................................................................. 1 INFORMATION PROCESSING ............................................. 2 Text Based Data Retrieval System `drs' ........................ 2 Internet Browser Data Retrieval System (iDRS) ............ 3

  11. Data Management Group Annual Report

    E-Print Network [OSTI]

    Toronto, University of

    iv Data Management Group Annual Report 2003 City of Hamilton City of Toronto GO Transit Regional of York Toronto Transit Commission The Data Management Group is a research program located ........................................................................................................ 3 Text-based Data Retrieval System `drs

  12. Weighter Long Term by Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weighted Running Jobs by Group Weighted Running Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2011-04-05 14:00:02...

  13. INTERNATIONAL SPACE EXPLORATION COORDINATION GROUP

    E-Print Network [OSTI]

    space exploration infrastructure standards facilitating interoperability through an international with relevant existing international working groups/ organisations. · Preparation and Organization of a WS1 INTERNATIONAL SPACE EXPLORATION COORDINATION GROUP WORKPLAN Update following 3rd ISECG Meeting

  14. Ford Electric Battery Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information HydroFontana, California:Group Jump to:

  15. Pilot Power Group Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergy International LimitedPhoenixPhotovoltechMauna

  16. ReEnergy Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook iconQuito,Jump to:RadiantRappaportRayReEnergy Group

  17. Sichuan Giastar Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AGShandongShirke Biofuels JumpSiSichuan Giastar Group

  18. Centrosolar Group AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: China DatangCentral ElCentralCentrosolar Group AG Jump

  19. Gaviota Energy Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms A SUK Place: Newport,Gate SolarGroups Jump

  20. OPG Power Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorth AmericaNorthwest RuralNujiraSolar ThermalOPG Power

  1. Jiangsu Shunda Group Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunanInformationJames WatkinsTianlong Mechanical

  2. Jiangsu Sumec Group Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunanInformationJames WatkinsTianlong MechanicalJiangsu

  3. Jiansu Tianshengda Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunanInformationJamesManufacturing |Jiangyin AlcomJiansu

  4. Jose Bunlai Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou New Energy Co LtdJinzhouJoeSolar, WindJorn

  5. Kore Group Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou New EnergyKenosistecKilaraKoRentaKorchip Corp

  6. Krass Capital Group AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea Parts and FastenersKowloon Power LtdKrass

  7. LOT Oriel Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea PartsLLNL Energy FlowLOD

  8. Laidlaw Energy Group Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea PartsLLNL EnergyLafargeNiguel,Laidlaw

  9. Liaoning Gaoke Energy Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKoreaLaorLeopold KostalLiaoning Energy

  10. Lighting Science Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin ZhongdiantouLichuan City Yujiang River ValleyLighting Science

  11. Subocean Group Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern IL ElecStrategic CapitalEnergyStrutturaSubeiSubocean Group

  12. Sunlight Group Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern IL ElecStrategicStoriesSunJoiSunergie JumpSunlight Group

  13. Sunpower Group Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern IL ElecStrategicStoriesSunJoiSunergieJumpSunpower Group Ltd

  14. Tanfield Group Formerly Comeleon | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern ILSunseekerTallahatchie Valley E P ATanfield Group Formerly

  15. The Marc Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheasternInformationPolicyREDD+ Book Jump to: navigation,Group

  16. The Remington Group Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheasternInformationPolicyREDD+ Book Jump to:TheRemington Group

  17. United Group Limited | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AG UMaAG Jump to:UnipersonalUnited Group

  18. Warana Group of Cooperatives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillageGraph HomeWarana Group of Cooperatives Jump to:

  19. X Group Spa | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjin PolysiliconWuxiWyomingWyomingX FABX Group

  20. Heilongjiang Fengrui Chemical Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open Energy InformationHebei Qindao PhotovoltaicHeidrich Gera o

  1. Hero Group Electrovaya JV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open Energy InformationHebeiProgram JumpHennecke GmbHHeres

  2. Horrocks Group Plc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open EnergyInformationHorizon Fuel Cell Technologies Pte Ltd

  3. Inductotherm Group Consarc Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan Runhua NewSmallholderEconomy CountriesIndosolar

  4. Inner Mongolia Shanlu Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan RunhuaInner Mongolia Fengwei New Energy Mining

  5. Air Liquide Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwikiAgoura Hills,Oeste PaulistaLiquide Group Place:

  6. Energy Ventures Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision|LLC Place: Ketchum,SPARQLFailedEnergyII Jump to:Group

  7. Excess Group Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BV Jump to: navigation, searchCleanExcess Group Ltd Jump

  8. Military Munitions Waste Working Group report

    SciTech Connect (OSTI)

    Not Available

    1993-11-30T23:59:59.000Z

    This report presents the findings of the Military Munitions Waste Working Group in its effort to achieve the goals directed under the Federal Advisory Committee to Develop On-Site Innovative Technologies (DOIT Committee) for environmental restoration and waste management. The Military Munitions Waste Working Group identified the following seven areas of concern associated with the ordnance (energetics) waste stream: unexploded ordnance; stockpiled; disposed -- at known locations, i.e., disposal pits; discharged -- impact areas, unknown disposal sites; contaminated media; chemical sureties/weapons; biological weapons; munitions production; depleted uranium; and rocket motor and fuel disposal (open burn/open detonation). Because of time constraints, the Military Munitions Waste Working Group has focused on unexploded ordnance and contaminated media with the understanding that remaining waste streams will be considered as time permits. Contents of this report are as follows: executive summary; introduction; Military Munitions Waste Working Group charter; description of priority waste stream problems; shortcomings of existing approaches, processes and technologies; innovative approaches, processes and technologies, work force planning, training, and education issues relative to technology development and cleanup; criteria used to identify and screen potential demonstration projects; list of potential candidate demonstration projects for the DOIT committee decision/recommendation and appendices.

  9. ASD Groups | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ASD Groups Accelerator Operations and Physics Applies integrated expertise in accelerator physics, operations techniques, safety systems, software development, and numerical...

  10. Data Management Group Annual Report

    E-Print Network [OSTI]

    Toronto, University of

    Data Management Group Annual Report 2000 prepared by: Data Management Group Joint Program the operation of the EMME/2 simu- lation package on the Data Management Group's computer system. During the year computing resource at the DMG. A major challenge in 2000 was to maintain this service while operating out

  11. Data Management Group Annual Report

    E-Print Network [OSTI]

    Toronto, University of

    Data Management Group Annual Report 2004 City of Hamilton City of Toronto GO Transit Regional of York Toronto Transit Commission The Data Management Group is a research program located of the funding partners: Ministry of Transportation, Ontario #12;SUMMARY The Data Management Group (DMG

  12. Data Management Group Annual Report

    E-Print Network [OSTI]

    Toronto, University of

    Data Management Group Annual Report 1997 #12;Data Management Group Annual Report 1997 A co-operative project that is jointly funded by members of the Toronto Area Transportation Planning Data Collection: (416) 978-3941 #12;Data Management Group 1997 Annual Report Table of Contents 1 INTRODUCTION

  13. Water Resources Working Group Report

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Water Resources Working Group Report This report provided content for the Wisconsin Initiative in February 2011. #12;Water Resources Working Group Wisconsin Initiative on Climate Change Impacts October 2010 #12;Water Resources Working Group Members ­ WICCI Tim Asplund (Co-Chair) - Wisconsin Department

  14. Fermilab Steering Group Report

    SciTech Connect (OSTI)

    Beier, Eugene; /Pennsylvania U.; Butler, Joel; /Fermilab; Dawson, Sally; /Brookhaven; Edwards, Helen; /Fermilab; Himel, Thomas; /SLAC; Holmes, Stephen; /Fermilab; Kim, Young-Kee; /Fermilab /Chicago U.; Lankford, Andrew; /UC, Irvine; McGinnis, David; /Fermilab; Nagaitsev, Sergei; /Fermilab; Raubenheimer, Tor; /SLAC /Fermilab

    2007-01-01T23:59:59.000Z

    The Fermilab Steering Group has developed a plan to keep U.S. accelerator-based particle physics on the pathway to discovery, both at the Terascale with the LHC and the ILC and in the domain of neutrinos and precision physics with a high-intensity accelerator. The plan puts discovering Terascale physics with the LHC and the ILC as Fermilab's highest priority. While supporting ILC development, the plan creates opportunities for exciting science at the intensity frontier. If the ILC remains near the Global Design Effort's technically driven timeline, Fermilab would continue neutrino science with the NOVA experiment, using the NuMI (Neutrinos at the Main Injector) proton plan, scheduled to begin operating in 2011. If ILC construction must wait somewhat longer, Fermilab's plan proposes SNuMI, an upgrade of NuMI to create a more powerful neutrino beam. If the ILC start is postponed significantly, a central feature of the proposed Fermilab plan calls for building an intense proton facility, Project X, consisting of a linear accelerator with the currently planned characteristics of the ILC combined with Fermilab's existing Recycler Ring and the Main Injector accelerator. The major component of Project X is the linac. Cryomodules, radio-frequency distribution, cryogenics and instrumentation for the linac are the same as or similar to those used in the ILC at a scale of about one percent of a full ILC linac. Project X's intense proton beams would open a path to discovery in neutrino science and in precision physics with charged leptons and quarks. World-leading experiments would allow physicists to address key questions of the Quantum Universe: How did the universe come to be? Are there undiscovered principles of nature: new symmetries, new physical laws? Do all the particles and forces become one? What happened to the antimatter? Building Project X's ILC-like linac would offer substantial support for ILC development by accelerating the industrialization of ILC components in the U.S. and creating an engineering opportunity for ILC cost reductions. It offers an early and tangible application for ILC R&D in superconducting technology, attracting participation from accelerator scientists worldwide and driving forward the technology for still higher-energy accelerators of the future, such as a muon collider. To prepare for a future decision, the Fermilab Steering Group recommends that the laboratory seek R&D support for Project X, in order to produce an overall design of Project X and to spur the R&D and industrialization of ILC linac components needed for Project X. Advice from the High Energy Physics Advisory Panel will guide any future decision to upgrade the Fermilab accelerator complex, taking into account developments affecting the ILC schedule and the continuing evaluation of scientific priorities for U.S. particle physics. Fermilab should also work toward increased resources for longer-term future accelerators such as a muon collider, aiming at higher energies than the ILC would provide.

  15. Extracting metals directly from metal oxides

    DOE Patents [OSTI]

    Wai, C.M.; Smart, N.G.; Phelps, C.

    1997-02-25T23:59:59.000Z

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of {beta}-diketones, halogenated {beta}-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs.

  16. Extracting metals directly from metal oxides

    DOE Patents [OSTI]

    Wai, Chien M. (Moscow, ID); Smart, Neil G. (Moscow, ID); Phelps, Cindy (Moscow, ID)

    1997-01-01T23:59:59.000Z

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones, halogenated .beta.-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process.

  17. 1999 LDRD Laboratory Directed Research and Development

    SciTech Connect (OSTI)

    Rita Spencer; Kyle Wheeler

    2000-06-01T23:59:59.000Z

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  18. Multiple direction vibration fixture

    DOE Patents [OSTI]

    Cericola, Fred (Albuquerque, NM); Doggett, James W. (Albuquerque, NM); Ernest, Terry L. (Albuquerque, NM); Priddy, Tommy G. (Rockville, MD)

    1991-01-01T23:59:59.000Z

    An apparatus for simulating a rocket launch environment on a test item undergoing centrifuge testing by subjecting the item simultaneously or separately to vibration along an axis of centripetal force and along an axis perpendicular to the centripetal force axis. The apparatus includes a shaker motor supported by centrifuge arms and a right angle fixture pivotally connected to one of the shaker motor mounts. When the shaker motor vibrates along the centripetal force axis, the vibrations are imparted to a first side of the right angle fixture. The vibrations are transmitted 90 degrees around the pivot and are directed to a second side of the right angle fixture which imparts vibrations perpendicular to the centripetal force axis. The test item is in contact with a third side of the right angle fixture and receives both centripetal-force-axis vibrations and perpendicular axis vibrations simultaneously. A test item can be attached to the third side near the flexible coupling or near the air bag to obtain vibrations along the centripetal force axis or transverse to the centripetal force axis.

  19. Supplemental Directives | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City,EnrichedSupplemental Directives | National Nuclear Security

  20. Correlation properties of loose groups

    SciTech Connect (OSTI)

    Maia, M.A.G.; Da Costa, L.N. (Observatorio Nacional do Brasil, Rio de Janeiro (Brazil))

    1990-02-01T23:59:59.000Z

    The two-point spatial correlation function for loose groups of galaxies is computed, using the recently compiled catalog of groups in the southern hemisphere. It is found that the correlation function for groups has a similar slope to that of galaxies but with a smaller amplitude, confirming an earlier result obtained from a similar analysis of the CfA group catalog. This implies that groups of galaxies are more randomly distributed than galaxies, which may be consistent with the predictions of Kashlinsky (1987) for a gravitational clustering scenario for the formation of large-scale structures. 21 refs.

  1. Technical Geologic Overview of Long Valley Caldera for the Casa Diablo IV

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained By FaultSunpodsSweetwaterTMATalbotTaunton,Tecate Group

  2. TEC Working Group Topic Groups Rail Conference Call Summaries...

    Office of Environmental Management (EM)

    September 11, 1998 Meeting June 22, 1998 Meeting May 27, 1998 Meeting November 3, 1997 Meeting September 18, 1997 Meeting More Documents & Publications TEC Working Group...

  3. Luoyang Century New Source Group Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group Jump to: navigation, searchCentury New Source Group Co

  4. MX Group SpA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group Jump to: navigation,LushuiLyme,MDLMPMX Group SpA Jump

  5. On The Harmonic Oscillator Group

    E-Print Network [OSTI]

    Raquel M. Lopez; Sergei K. Suslov; Jose M. Vega-Guzman

    2011-12-04T23:59:59.000Z

    We discuss the maximum kinematical invariance group of the quantum harmonic oscillator from a view point of the Ermakov-type system. A six parameter family of the square integrable oscillator wave functions, which seems cannot be obtained by the standard separation of variables, is presented as an example. The invariance group of generalized driven harmonic oscillator is shown to be isomorphic to the corresponding Schroedinger group of the free particle.

  6. EXTRAGALACTIC DARK MATTER AND DIRECT DETECTION EXPERIMENTS

    SciTech Connect (OSTI)

    Baushev, A. N., E-mail: baushev@gmail.com [DESY, D-15738 Zeuthen (Germany); Institut fuer Physik und Astronomie, Universitaet Potsdam, D-14476 Potsdam-Golm (Germany)

    2013-07-10T23:59:59.000Z

    Recent astronomical data strongly suggest that a significant part of the dark matter content of the Local Group and Virgo Supercluster is not incorporated into the galaxy halos and forms diffuse components of these galaxy clusters. A portion of the particles from these components may penetrate the Milky Way and make an extragalactic contribution to the total dark matter containment of our Galaxy. We find that the particles of the diffuse component of the Local Group are apt to contribute {approx}12% to the total dark matter density near Earth. The particles of the extragalactic dark matter stand out because of their high speed ({approx}600 km s{sup -1}), i.e., they are much faster than the galactic dark matter. In addition, their speed distribution is very narrow ({approx}20 km s{sup -1}). The particles have an isotropic velocity distribution (perhaps, in contrast to the galactic dark matter). The extragalactic dark matter should provide a significant contribution to the direct detection signal. If the detector is sensitive only to the fast particles (v > 450 km s{sup -1}), then the signal may even dominate. The density of other possible types of the extragalactic dark matter (for instance, of the diffuse component of the Virgo Supercluster) should be relatively small and comparable with the average dark matter density of the universe. However, these particles can generate anomaly high-energy collisions in direct dark matter detectors.

  7. Safarevic's Theorem on Solvable Groups as Galois Groups

    E-Print Network [OSTI]

    extension Kjk with Galois group G(Kjk) ¸ = G. Ÿ SafareviŸc proved this result in 1954. The intricate proof ) are embedable into G. Then there exists a Galois extension Kjk with Galois group isomorphic to G, which

  8. Neil 65 Group Picture Neil 65 Group Picture

    E-Print Network [OSTI]

    Mohar, Bojan

    Neil 65 Group Picture Neil 65 Group Picture December 14, 2003 Row 1: Tom Dowling, Nolan Mc-Marie Belcastro, Chris Stephens, Rajneesh Hegde Row 2: Paul Wollan, Bruce Richter, Mike Plummer, Xiaoya Zha, Dan Bannai, Mike Albertson, Joan Hutchinson, Matt Devos, Tom Zaslovsky, Mark Ellingham, Sandra Kingan, James

  9. Presentation SCA Group 1 SCA Group 2007-03-15

    E-Print Network [OSTI]

    -03-15 Every day, millions of people use our products We are here to develop and improve everyday lives. People SCA Group 2007-03-15 SCA is a global consumer goods and paper company We offer personal care products #12;4 SCA Group 2007-03-15 Personal Care Tissue Packaging Forest Products Business areas Operations

  10. Catalyst Working Group Kick-off Meeting: Personal Commentary

    Broader source: Energy.gov [DOE]

    Personal commentary on future directions in fuel cell electrocatalysis, presented by Mark Debe, 3M, at the kick-off meeting of the U.S. Department of Energy Fuel Cell Technologies Program's Catalysis Working Group, held May 14, 2012, in Arlington, Virginia.

  11. Infrared Thermography (IRT) Working Group

    Broader source: Energy.gov (indexed) [DOE]

    Infrared Thermography (IRT) Working Group Sco McWilliams U.S. Photovoltaic Manufacturing Consor;um (PVMC) Infrared Thermography Infrared Thermography (IRT) has been demonstrated...

  12. Lorentz Group in Ray Optics

    E-Print Network [OSTI]

    S. Baskal; E. Georgieva; Y. S. Kim; M. E. Noz

    2004-01-18T23:59:59.000Z

    It has been almost one hundred years since Einstein formulated his special theory of relativity in 1905. He showed that the basic space-time symmetry is dictated by the Lorentz group. It is shown that this group of Lorentz transformations is not only applicable to special relativity, but also constitutes the scientific language for optical sciences. It is noted that coherent and squeezed states of light are representations of the Lorentz group. The Lorentz group is also the basic underlying language for classical ray optics, including polarization optics, interferometers, the Poincare\\'e sphere, one-lens optics, multi-lens optics, laser cavities, as well multilayer optics.

  13. Physics Division: Subatomic Physics Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subatomic Physics Physics home Subatomic Physics Site Home About Us Groups Applied Modern Physics, P-21 Neutron Science and Technology, P-23 Plasma Physics, P-24 Subatomic...

  14. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-30T23:59:59.000Z

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation

  15. Direct cooled power electronics substrate

    DOE Patents [OSTI]

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W. (Kingston, TN) [Kingston, TN; Lowe, Kirk T. (Knoxville, TN) [Knoxville, TN

    2010-09-14T23:59:59.000Z

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  16. Policy Procedure Administrative Directive Title: _____________________________________

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Policy ­ Procedure ­ Administrative Directive Title: _____________________________________ Policy-President _____________ See also: Related Policies, Procedures and Agreements: Relevant Legislation and Regulations: ____________________________________________________________________________ Background and Purpose: ____________________________________________________________________________ Policy

  17. alternating direction optimization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alternating direction optimization First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 GROUP SPARSE...

  18. Federal Utility Partnership Working Group

    Broader source: Energy.gov [DOE]

    The Federal Utility Partnership Working Group (FUPWG) establishes partnerships and facilitates communications among Federal agencies, utilities, and energy service companies. The group develops strategies to implement cost-effective energy efficiency and water conservation projects through utility incentive programs at Federal sites.

  19. Research documentation per participating group

    E-Print Network [OSTI]

    Franssen, Michael

    Research documentation per participating group #12;2. RESEARCH DOCUMENTATION OF THE GROUP SYSTEM Management Hybrid trucks StDy Steen, R. v.d. (PhD 3) FEM Tyre Modelling StDy 5.4 Mechanical Design Bedem, Ir

  20. Direct/Indirect Costs - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (CCMD) and describes various estimating techniques for direct and indirect costs. g4301-1chp7.pdf -- PDF Document, 41 KB Writer: John Makepeace Subjects: ID: DOE G 430.1-1 Chp 7...

  1. Midwest Hydro Users Group Meeting

    Broader source: Energy.gov [DOE]

    The Midwest Hydro Users Group will be holding their annual Fall meeting on November 12th and 13th in Wausau, Wisconsin.  An Owners-only meeting on the afternoon of the 12th followed by a full...

  2. Directions - HPMC Occupational Health Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: PotentialFederal FinancialDirectDirect-WriteDirections About

  3. Galois Groups of Schubert Problems

    E-Print Network [OSTI]

    Martin Del Campo Sanchez, Abraham

    2012-10-19T23:59:59.000Z

    GALOIS GROUPS OF SCHUBERT PROBLEMS A Dissertation by ABRAHAM MARTIN DEL CAMPO SANCHEZ Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY... August 2012 Major Subject: Mathematics GALOIS GROUPS OF SCHUBERT PROBLEMS A Dissertation by ABRAHAM MARTIN DEL CAMPO SANCHEZ Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements...

  4. HTS Wire Development Group: Achievements, technology transfer, and plans

    SciTech Connect (OSTI)

    Riley, G.N. Jr. [American Superconductor Corp., Westborough, MA (United States)

    1994-07-29T23:59:59.000Z

    The objective of the HTS wire development group is to develop high performance HTS wire for use in electric power systems. The HTS wire development group personnel is listed. The HTS wire development group achievements are outlined. These achievements include: focusing on the development of high performance and cost effective HTS wire; HTS wires were fabricated in laboratory scale and production scale lengths; ACS has fabricated the only conductor in the world to meet or surpass the DOE FY94 goals for electric power applications development; these wire fabrication successes at ASC are a direct result of the long-term collaboration between ASC and the other HTS Wire Development Group members; and plans are in place for a successful FY95 program.

  5. Ladder Polyether Synthesis via Epoxide-Opening Cascades Directed by a Disappearing Trimethylsilyl Group

    E-Print Network [OSTI]

    Heffron, Timothy P.

    Epoxide-opening cascades offer the potential to construct complex polyether natural products expeditiously and in a manner that emulates the biogenesis proposed for these compounds. Herein we provide a full account of our ...

  6. Water Overcomes Methyl Group Directing Effects in Epoxide-Opening Cascades

    E-Print Network [OSTI]

    Morten, Christopher J.

    Water is an effective promoter of the endo-selective opening of trisubstituted epoxides, enabling related cascades leading to a variety of substituted ladder polyether structures. When used in conjunction with a ...

  7. Directing group-free endo-selective epoxide-opening cascades

    E-Print Network [OSTI]

    Vilotijevi?, Ivan

    2010-01-01T23:59:59.000Z

    [image] The proposed biogenesis of the ladder polyethers features a dramatic series of epoxide opening reactions, elegantly accounts for the structural and stereochemical features of all related natural products, and, in ...

  8. Liguid and Solid Carriers Group- Strategic Directions for Hydrogen Delivery Workshop

    Broader source: Energy.gov [DOE]

    Targets, barriers and research and development priorities for solid and liquid hydrogen storage and delivery materials.

  9. Offshoring and Directed Technical Change

    E-Print Network [OSTI]

    Acemoglu, Daron

    2012-11-24T23:59:59.000Z

    To study the short-run and long-run implications on wage inequality, we introduce directed technical change into a Ricardian model of offshoring. A unique final good is produced by combining a skilled and an unskilled ...

  10. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08T23:59:59.000Z

    To establish the Department's, including the NNSA's, requirements for laboratory-directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Cancels DOE O 413.2. Canceled by DOE O 413.2B.

  11. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-19T23:59:59.000Z

    The Order establishes DOE requirements and responsibilities for laboratory directed research and development while providing laboratory directors with broad flexibility for program implementation. Cancels DOE O 413.2A. Admin Chg 1, 1-31-11.

  12. Directional impedance of geared transmissions

    E-Print Network [OSTI]

    Wang, Albert Duan

    2012-01-01T23:59:59.000Z

    The purpose of this research is to develop a design tool for geared actuation systems that experience bidirectional exchange of energy with the environment. Despite the asymmetry of efficiency depending on the direction ...

  13. Regional 166 Direct Loan (Ohio)

    Broader source: Energy.gov [DOE]

    The Ohio Development Services Agency's (ODSA) Regional 166 Direct Loan provides low-interest loans to businesses creating new jobs or preserving existing employment opportunities in the State of Ohio.

  14. Project Profile: Direct Supercritical Carbon Dioxide Receiver...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct Supercritical Carbon Dioxide Receiver Development Project Profile: Direct Supercritical Carbon Dioxide Receiver Development National Renewable Energy Laboratory logo The...

  15. Gaseous Hydrogen Delivery Breakout - Strategic Directions for...

    Broader source: Energy.gov (indexed) [DOE]

    Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop...

  16. Quantum direct communication with authentication

    SciTech Connect (OSTI)

    Lee, Hwayean [Center for Information Security Technologies (CIST) and Graduate School of Information Security (GSIS), Korea University, Anam Dong, Sungbuk Gu, Seoul (Korea, Republic of); Institut fuer Experimentalphysik, Universitaet Wien (Austria); Lim, Jongin [Center for Information Security Technologies (CIST) and Graduate School of Information Security (GSIS), Korea University, Anam Dong, Sungbuk Gu, Seoul (Korea, Republic of); Yang, HyungJin [Center for Information Security Technologies (CIST) and Graduate School of Information Security (GSIS), Korea University, Anam Dong, Sungbuk Gu, Seoul (Korea, Republic of); Department of Physics, Korea University, Chochiwon, Choongnam (Korea, Republic of)

    2006-04-15T23:59:59.000Z

    We propose two quantum direct communication (QDC) protocols with user authentication. Users can identify each other by checking the correlation of Greenberger-Horne-Zeilinger (GHZ) states. Alice can directly send a secret message to Bob without any previously shared secret using the remaining GHZ states after authentication. Our second QDC protocol can be used even though there is no quantum link between Alice and Bob. The security of the transmitted message is guaranteed by properties of entanglement of GHZ states.

  17. Directions

    E-Print Network [OSTI]

    Apr 13, 2013 ... Another Option is to fly to Chicago O'Hare International Airport (ORD), and then either rent a car and drive (about 2 to 2.5 hours) to Purdue, ...

  18. Star Formation Histories in the Local Group

    E-Print Network [OSTI]

    Thomas M. Brown

    2004-07-09T23:59:59.000Z

    Deep color magnitude diagrams extending to the main sequence provide the most direct measure of the detailed star formation history in a stellar population. With large investments of observing time, HST can obtain such data for populations out to 1 Mpc, but its field of view is extremely small in comparison to the size of Local Group galaxies. This limitation severely constrains our understanding of galaxy formation. For example, the largest galaxy in the Local Group, Andromeda, offers an ideal laboratory for studying the formation of large spiral galaxies, but the galaxy shows substructure on a variety of scales, presumably due to its violent merger history. Within its remaining lifetime, HST can only sample a few sight-lines through this complex galaxy. In contrast, a wide field imager could provide a map of Andromeda's halo, outer disk, and tidal streams, revealing the spatially-dependent star formation history in each structure. The same data would enable many secondary studies, such as the age variation in Andromeda's globular cluster system, gigantic samples of variable stars, and microlensing tracers of the galaxy's dark matter distribution.

  19. TEC Working Group Topic Groups Routing | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon the PassingRouting TEC Working Group Topic Groups Routing

  20. TEC Working Group Topic Groups Section 180(c) Meeting Summaries |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon the PassingRouting TEC Working Group Topic Groups

  1. Four-dimensional deformed special relativity from group field theories

    SciTech Connect (OSTI)

    Girelli, Florian [SISSA, Via Beirut 2-4, 34014 Trieste, Italy and INFN, Sezione di Trieste (Italy); School of Physics, University of Sydney, Sydney, New South Wales 2006 (Australia); Livine, Etera R. [Laboratoire de Physique, ENS Lyon, CNRS UMR 5672, 46 Allee d'Italie, 69007 Lyon (France); Oriti, Daniele [Perimeter Institute for Theoretical Physics, 31 Caroline St, Waterloo, Ontario N2L 2Y5 (Canada); Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, Utrecht 3584 TD (Netherlands); Albert Einstein Institute, Am Muehlenberg 4, Golm (Germany)

    2010-01-15T23:59:59.000Z

    We derive a scalar field theory of the deformed special relativity type, living on noncommutative {kappa}-Minkowski space-time and with a {kappa}-deformed Poincare symmetry, from the SO(4,1) group field theory defining the transition amplitudes for topological BF theory in 4 space-time dimensions. This is done at a nonperturbative level of the spin foam formalism working directly with the group field theory (GFT). We show that matter fields emerge from the fundamental model as perturbations around a specific phase of the GFT, corresponding to a solution of the fundamental equations of motion, and that the noncommutative field theory governs their effective dynamics.

  2. Hunan Huaihua Power Group Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open EnergyInformationHorizonEnergyHubeiHumus Group|

  3. Directives Review Board - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both theDirectives Review Board

  4. CFCC working group meeting: Proceedings

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    This report is a compilation of the vugraphs presented at this meeting. Presentations covered are: CFCC Working Group; Overview of study on applications for advanced ceramics in industries for the future; Design codes and data bases: The CFCC program and its involvement in ASTM, ISO, ASME, and military handbook 17 activities; CFCC Working Group meeting (McDermott Technology); CFCC Working Group meeting (Textron); CFCC program for DMO materials; Developments in PIP-derived CFCCs; Toughened Silcomp (SiC-Si) composites for gas turbine engine applications; CFCC program for CVI materials; Self-lubricating CFCCs for diesel engine applications; Overview of the CFCC program`s supporting technologies task; Life prediction methodologies for CFCC components; Environmental testing of CFCCs in combustion gas environments; High-temperature particle filtration ORNL/DCC CRADA; HSCT CMC combustor; and Case study -- CFCC shroud for industrial gas turbines.

  5. The power graph of a finite group, II Peter J. Cameron

    E-Print Network [OSTI]

    Cameron, Peter

    The power graph of a finite group, II Peter J. Cameron School of Mathematical Sciences Queen Mary, University of London Mile End Road London E1 4NS, U.K. Abstract The directed power graph of a group G is the digraph with vertex set G, having an arc from y to x whenever x is a power of y; the undirected power

  6. CEMENT RELATED RESEARCH HYDROGEOCHEMISTRY GROUP

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    CEMENT RELATED RESEARCH HYDROGEOCHEMISTRY GROUP Josep M. Soler Jordi Cama Carles Ayora Ana Trapote.soler@idaea.csic.es #12;NOMECLATURE cement + water = hardened cement paste cement + water + sand = mortar cement + waterC) clinker + gypsum portland cement PORTLAND CEMENT #12;GTS-HPF Core Infiltration Experiment Experimental

  7. Data Management Group Annual Report

    E-Print Network [OSTI]

    Toronto, University of

    of Civil Engineering, Uni- versity of Toronto Data Management Groups Web Site http Susanna Choy, B.A.Sc. (Industrial Engineering), M.Eng. (Civil Engineering) Uni- versity of Toronto, P.Eng. Reuben Briggs, B.A.Sc. (Civil Engineering), M.A.Sc. (Civil Engineering) Univer- sity of Toronto, P

  8. Systems Biology Group Decision Making

    E-Print Network [OSTI]

    entities (e.g., molecular, cellular, organism, ecological) #12;OHIO STATE T . H . E UNIVERSITY Systems/analysis of perception, attention, choice, learning, optimality,... #12;OHIO STATE T . H . E UNIVERSITY Group decision making, evolution and ecology Current work: Modeling/analysis of coordinated motion, foraging, choice

  9. FEATURE ARTICLES Group Decision Making

    E-Print Network [OSTI]

    with respect to human groups, which ha\\'e developed a variety of voting pro- cedures to single out one option'iorami commuiiiai- tion. Kevin M. Passino is a professor of electrical and computer aigineering at Tlie Ohio State of observational, experimental and mathematical-model- ing studies. This work has revealed a set of behavioral

  10. Group Motion Editing Taesoo Kwon

    E-Print Network [OSTI]

    Takahashi, Shigeo

    : I.3.7 [Three-Dimensional Graphics and Realism]: Animation--Virtual reality Keywords: Group Motion Editing, Crowd Simulation, Human Motion, Character Animation 1 Introduction Crowd scenes appear frequently in crowd animation make it possible to synthesize convincing animations of virtual crowds by simulating

  11. Policy Groups Winfried E. Kuhnhauser

    E-Print Network [OSTI]

    Kühnhauser, Winfried

    1 Policy Groups Winfried E. Kuhnhauser GMD National Research Center For Information Technology D: Systems that support a multitude of independent security domains in which an individual security policy domains consti- tutes a major problem. While security policies are capable of controlling the applications

  12. Task Group 9 Update (Presentation)

    SciTech Connect (OSTI)

    Bosco, N.

    2014-04-01T23:59:59.000Z

    This presentation is a brief update of IEC TC82 QA Task Force, Group 9. Presented is an outline of the recently submitted New Work Item Proposal (NWIP) for a Comparative Thermal Cycling Test for CPV Modules to Differentiate Thermal Fatigue Durability.

  13. Direct estimation of decoherence rates

    E-Print Network [OSTI]

    Vladimír Bužek; Peter Rapcan; Jochen Rau; Mario Ziman

    2012-07-30T23:59:59.000Z

    The decoherence rate is a nonlinear channel parameter that describes quantitatively the decay of the off-diagonal elements of a density operator in the decoherence basis. We address the question of how to experimentally access such a nonlinear parameter directly without the need of complete process tomography. In particular, we design a simple experiment working with two copies of the channel, in which the registered mean value of a two-valued measurement directly determines the value of the average decoherence rate. No prior knowledge of the decoherence basis is required.

  14. September 8, 2011, HSS/Union Focus Group Work Group Telecom - Work Group Charter

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of EnergyFocus Group HSS/Union Work Group Telecom

  15. September 8, 2011, HSS/Union Focus Group Work Group Telecom - Work Group Guidance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of EnergyFocus Group HSS/Union Work Group Telecom7-29-11

  16. September 8, 2011, HSS/Union Focus Group Work Group Telecom - Work Group matrix

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of EnergyFocus Group HSS/Union Work Group Telecom7-29-11Rev

  17. Laboratory Directed Research and Development FY 2000 Annual Progress Report

    SciTech Connect (OSTI)

    Los Alamos National Laboratory

    2001-05-01T23:59:59.000Z

    This is the FY00 Annual Progress report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes progress on each project conducted during FY00, characterizes the projects according to their relevance to major funding sources, and provides an index to principal investigators. Project summaries are grouped by LDRD component: Directed Research and Exploratory Research. Within each component, they are further grouped into the ten technical categories: (1) atomic, molecular, optical, and plasma physics, fluids, and beams, (2) bioscience, (3) chemistry, (4) computer science and software engineering, (5) engineering science, (6) geoscience, space science, and astrophysics, (7) instrumentation and diagnostics, (8) materials science, (9) mathematics, simulation, and modeling, and (10) nuclear and particle physics.

  18. ccsd00001636, GEOMETRIC PRESENTATIONS FOR THOMPSON'S GROUPS

    E-Print Network [OSTI]

    ccsd­00001636, version 3 ­ 4 Feb 2005 GEOMETRIC PRESENTATIONS FOR THOMPSON'S GROUPS PATRICK DEHORNOY Abstract. Starting from the observation that Thompson's groups F and V are the geometry groups]. In the case of associativity [6], the geometry group turns out to be Thompson's group F , not a surprise

  19. Future Directions for Magnetic Sensors

    E-Print Network [OSTI]

    and Engineering Laboratory Magnetic tunnel junction (MTJ) sensors are rapidly becoming the technology of choiceFuture Directions for Magnetic Sensors: HYBRIDMATERIALS Our goal is to develop the scientific expertise needed to allow modeling and simulation to become the driving force in improving magnetic sensors

  20. Laser Direct Drive: Scientific Advances,

    E-Print Network [OSTI]

    1 Laser Direct Drive: Scientific Advances, Technical Achievements, and the Road To Fusion Energy energy gain ( 40) at 1 MJ laser energy · Advanced lasers/ target designs overcome uniformity requirements, medical applications) Gas laser medium is easy to cool (tough to break gas) Nike single beam focus #12

  1. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-19T23:59:59.000Z

    The order establishes DOE requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Cancels DOE O 413.3A. Admin Chg 1, dated 1-31-11, cancels DOE O 413.3B. Certified 7-14-2011.

  2. Direct from CDC Environmental Health

    E-Print Network [OSTI]

    and the Caribbean, an estimated 50 million persons lack access to an improved water supply. WSPs are a preventive Direct from CDC Environmental Health Services Branch CAPT Rick Gelting, PhD, PE Water leader of the Global Water, Sanitation, and Hygiene Team in CDC's En vironmental Health Services Branch

  3. Direct Hamiltonization for Nambu Systems

    E-Print Network [OSTI]

    Maria Lewtchuk Espindola

    2008-10-13T23:59:59.000Z

    The direct hamiltonization procedure applied to Nambu mechanical systems proves that the Nambu mechanics is an usual mechanics described by only one Hamiltonian. Thus a particular case of Hamiltonian mechanics. It is also proved that any mechanical system described by the equation d{\\bf r}/dt={\\bf A(r)} is a Nambu system.

  4. Direct detection of dark matter axions with directional sensitivity

    SciTech Connect (OSTI)

    Irastorza, Igor G.; García, Juan A., E-mail: Igor.Irastorza@cern.ch, E-mail: jagarpas@unizar.es [Laboratorio de Física Nuclear y Astropartículas, Departamento de Física Teórica, Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza (Spain)

    2012-10-01T23:59:59.000Z

    We study the directional effect of the expected axion dark matter signal in a resonant cavity of an axion haloscope detector, for cavity geometries not satisfying the condition that the axion de Broglie wavelength ?{sub a} is sufficiently larger than the cavity dimensions L for a fully coherent conversion, i.e. ?{sub a}?>2?L. We focus on long thin cavities immersed in dipole magnets and find, for appropriately chosen cavity lengths, an O(1) modulation of the signal with the cavity orientation with respect the momentum distribution of the relic axion background predicted by the isothermal sphere model for the galactic dark matter halo. This effect can be exploited to design directional axion dark matter detectors, providing an unmistakable signature of the extraterrestrial origin of a possible positive detection. Moreover, the precise shape of the modulation may give information of the galactic halo distribution and, for specific halo models, give extra sensitivity for higher axion masses.

  5. DAQO Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentratingEnergyCoosaPage

  6. Alignments of Galaxy Group Shapes with Large Scale Structure

    E-Print Network [OSTI]

    Paz, Dante J; Merchán, Manuel; Padilla, Nelson

    2011-01-01T23:59:59.000Z

    In this paper we analyse the alignment of galaxy groups with the surrounding large scale structure traced by spectroscopic galaxies from the Sloan Digital Sky Survey Data Release 7. We characterise these alignments by means of an extension of the classical two-point cross-correlation function, developed by Paz et al. 2008 (arXiv:0804.4477, MNRAS 389 1127). We find a strong alignment signal between the projected major axis of group shapes and the surrounding galaxy distribution up to scales of 30 Mpc/h. This observed anisotropy signal becomes larger as the galaxy group mass increases, in excellent agreement with the corresponding predicted alignment obtained from mock catalogues and LCDM cosmological simulations. These measurements provide new direct evidence of the adequacy of the gravitational instability picture to describe the large-scale structure formation of our Universe.

  7. Summary of the particle physics and technology working group

    SciTech Connect (OSTI)

    Stephan Lammel et al.

    2002-12-10T23:59:59.000Z

    Progress in particle physics has been tightly related to technological advances during the past half century. Progress in technologies has been driven in many cases by the needs of particle physics. Often, these advances have benefited fields beyond particle physics: other scientific fields, medicine, industrial development, and even found commercial applications. The particle physics and technology working group of Snowmass 2001 reviewed leading-edge technologies recently developed or in the need of development for particle physics. The group has identified key areas where technological advances are vital for progress in the field, areas of opportunities where particle physics may play a principle role in fostering progress, and areas where advances in other fields may directly benefit particle physics. The group has also surveyed the technologies specifically developed or enhanced by research in particle physics that benefit other fields and/or society at large.

  8. Parabolic curves in Lie groups

    SciTech Connect (OSTI)

    Pauley, Michael [School of Mathematics and Statistics, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009 (Australia)

    2010-05-15T23:59:59.000Z

    To interpolate a sequence of points in Euclidean space, parabolic splines can be used. These are curves which are piecewise quadratic. To interpolate between points in a (semi-)Riemannian manifold, we could look for curves such that the second covariant derivative of the velocity is zero. We call such curves Jupp and Kent quadratics or JK-quadratics because they are a special case of the cubic curves advocated by Jupp and Kent. When the manifold is a Lie group with bi-invariant metric, we can relate JK-quadratics to null Lie quadratics which arise from another interpolation problem. We solve JK-quadratics in the Lie groups SO(3) and SO(1,2) and in the sphere and hyperbolic plane, by relating them to the differential equation for a quantum harmonic oscillator00.

  9. Schrödinger group and quantum finance

    E-Print Network [OSTI]

    Juan M. Romero; Ulises Lavana; Elio Martínez

    2013-04-18T23:59:59.000Z

    Using the one dimensional free particle symmetries, the quantum finance symmetries are obtained. Namely, it is shown that Black-Scholes equation is invariant under Schr\\"odinger group. In order to do this, the one dimensional free non-relativistic particle and its symmetries are revisited. To get the Black-Scholes equation symmetries, the particle mass is identified as the inverse of square of the volatility. Furthermore, using financial variables, a Schr\\"odinger algebra representation is constructed.

  10. Energy Systems Group Annual Report

    E-Print Network [OSTI]

    Anand, N. K.; Caton, J.; Heffington, W. M.; O'Neal, D. L.; Somasundaram, S.; Turner, W. D.

    1986-01-01T23:59:59.000Z

    in this project. Annual expenditures for energy use in Texas State Agencies in 1984 was over two hundred million dollars. This study has four major tasks. First, the Energy Systems Laboratory is the data collection center for monthly energy data from each... by the Energy Systems Group is improving the efficiency of energy use. Currently, the research focuses on improving energy efficiency in heating and air conditioning equipment, improving thermal efficiency of buildings, implementation of Cogeneration systems...

  11. Pollutant Assessments Group Procedures Manual

    SciTech Connect (OSTI)

    Chavarria, D.E.; Davidson, J.R.; Espegren, M.L.; Kearl, P.M.; Knott, R.R.; Pierce, G.A.; Retolaza, C.D.; Smuin, D.R.; Wilson, M.J.; Witt, D.A. (Oak Ridge National Lab., TN (USA)); Conklin, N.G.; Egidi, P.V.; Ertel, D.B.; Foster, D.S.; Krall, B.J.; Meredith, R.L.; Rice, J.A.; Roemer, E.K. (Oak Ridge Associated Universities, Inc., TN (USA))

    1991-02-01T23:59:59.000Z

    This procedures manual combines the existing procedures for radiological and chemical assessment of hazardous wastes used by the Pollutant Assessments Group at the time of manuscript completion (October 1, 1990). These procedures will be revised in an ongoing process to incorporate new developments in hazardous waste assessment technology and changes in administrative policy and support procedures. Format inconsistencies will be corrected in subsequent revisions of individual procedures.

  12. ENN Group aka XinAo Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrict ofDongjinDynetek42 EIAELOEMeter JumpENERENN

  13. Good Energy Group Plc previously Monkton Group Plc | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/Exploration <GlacialGolden SpreadGomti Biotech

  14. Mechanical Engineering & Design Group (AES-MED)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Techniques Sectors Directory Status and Schedule Safety and Training Divisions APS Engineering Support Division AES Groups Accelerator Systems Division ASD Groups X-ray Science...

  15. Nick Wright Named Advanced Technologies Group Lead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nick Wright Named Advanced Technologies Group Lead Nick Wright Named Advanced Technologies Group Lead February 4, 2013 Nick Nick Wright has been named head of the National Energy...

  16. Federal Utility Partnership Working Group Meeting Chairman's...

    Office of Environmental Management (EM)

    Meeting Chairman's Corner Federal Utility Partnership Working Group Meeting Chairman's Corner Presentation-given at the Fall 2012 Federal Utility Partnership Working Group (FUPWG)...

  17. Federal Utility Partnership Working Group Meeting: Washington...

    Broader source: Energy.gov (indexed) [DOE]

    Federal Utility Partnership Working Group Meeting: Washington Update fupwgspring12unruh.pdf More Documents & Publications Federal Utility Partnership Working Group Meeting:...

  18. Federal Utility Partnership Working Group Participants | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Participants Federal Utility Partnership Working Group Participants The following Federal agencies have participated in the Federal Utility Partnership Working Group or engaged in...

  19. Federal Utility Partnership Working Group Seminar: Chairman's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Utility Partnership Working Group Seminar: Chairman's Corner Federal Utility Partnership Working Group Seminar: Chairman's Corner Presentation covers the Federal Utility...

  20. Federal Utility Partnership Working Group Meeting: Washington...

    Energy Savers [EERE]

    Federal Utility Partnership Working Group Meeting: Washington Update Federal Utility Partnership Working Group Meeting: Washington Update Presentation-given at the Fall 2012...

  1. NERSC seeks Computational Systems Group Lead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    seeks Computational Systems Group Lead NERSC seeks Computational Systems Group Lead January 6, 2011 by Katie Antypas Note: This position is now closed. The Computational Systems...

  2. TEC Working Group Topic Groups Security | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon the PassingRouting TEC Working Group Topic

  3. TEC Working Group Topic Groups Tribal | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon the PassingRouting TEC Working Group TopicDepartmentTribal

  4. Technical Direction and Laboratories FY 1999 Annual Report

    SciTech Connect (OSTI)

    CRAWFORD, B.A.

    2000-09-07T23:59:59.000Z

    This annual report summarize achievements and list reports issued by members of TD&L, NHC group during Fiscal Year (FY) 1999, (October 1, 1998 through September 30, 1999). This report, issued by this organization, describes work in support of the Hanford Site and other U S . Department of Energy, Richland Operations Office (DOE-RL) programs. It includes information on the organization make-up, interfaces, and mission of the group. The TD&L is a group of highly qualified personnel with diverse disciplines (primarily chemistry specialties) that provide process, analytical, and in-situ chemistry services to engineering customers. This year of operation and interfaces with other contract organizations consumed considerable administrative efforts. Attention was directed to the technical challenges presented by the changing roles, responsibilities, and priorities of Hanford programs.

  5. Sandia National Laboratories: direct measurement of combustion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    direct measurement of combustion intermediate Direct Measurement of Key Molecule Will Increase Accuracy of Combustion Models On March 3, 2015, in Computational Modeling &...

  6. Direct calibration of PICKY-designed microarrays.

    E-Print Network [OSTI]

    Chou, Hui-Hsien; Trisiriroj, Arunee; Park, Sunyoung; Hsing, Yue-Ie C; Ronald, Pamela C; Schnable, Patrick S

    2009-01-01T23:59:59.000Z

    Methodology article Direct calibration of P ICKY -designedtest a direct microarray calibration method based on the Pconcentrations. The microarray calibration method reported

  7. Direct calibration of PICKY-designed microarrays

    E-Print Network [OSTI]

    Chou, Hui-Hsien; Trisiriroj, Arunee; Park, Sunyoung; Hsing, Yue-Ie C; Ronald, Pamela C; Schnable, Patrick S

    2009-01-01T23:59:59.000Z

    Methodology article Direct calibration of P ICKY -designedtest a direct microarray calibration method based on the Pconcentrations. The microarray calibration method reported

  8. Liquid Hydrogen Delivery - Strategic Directions for Hydrogen...

    Broader source: Energy.gov (indexed) [DOE]

    Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

  9. OM300 Direction Drilling Module

    SciTech Connect (OSTI)

    MacGugan, Doug

    2013-08-22T23:59:59.000Z

    OM300 – Geothermal Direction Drilling Navigation Tool: Design and produce a prototype directional drilling navigation tool capable of high temperature operation in geothermal drilling Accuracies of 0.1° Inclination and Tool Face, 0.5° Azimuth Environmental Ruggedness typical of existing oil/gas drilling Multiple Selectable Sensor Ranges High accuracy for navigation, low bandwidth High G-range & bandwidth for Stick-Slip and Chirp detection Selectable serial data communications Reduce cost of drilling in high temperature Geothermal reservoirs Innovative aspects of project Honeywell MEMS* Vibrating Beam Accelerometers (VBA) APS Flux-gate Magnetometers Honeywell Silicon-On-Insulator (SOI) High-temperature electronics Rugged High-temperature capable package and assembly process

  10. Wellbore inertial directional surveying system

    DOE Patents [OSTI]

    Andreas, R.D.; Heck, G.M.; Kohler, S.M.; Watts, A.C.

    1982-09-08T23:59:59.000Z

    A wellbore inertial directional surveying system for providing a complete directional survey of an oil or gas well borehole to determine the displacement in all three directions of the borehole path relative to the well head at the surface. The information generated by the present invention is especially useful when numerous wells are drilled to different geographical targets from a single offshore platform. Accurate knowledge of the path of the borehole allows proper well spacing and provides assurance that target formations are reached. The tool is lowered down into a borehole on an electrical cable. A computer positioned on the surface communicates with the tool via the cable. The tool contains a sensor block which is supported on a single gimbal, the rotation axis of which is aligned with the cylinder axis of the tool and, correspondingly, the borehole. The gyroscope measurement of the sensor block rotation is used in a null-seeking servo loop which essentially prevents rotation of the sensor block about the gimbal axis. Angular rates of the sensor block about axes which are perpendicular to te gimbal axis are measured by gyroscopes in a manner similar to a strapped-down arrangement. Three accelerometers provide acceleration information as the tool is lowered within the borehole. The uphole computer derives position information based upon acceleration information and angular rate information. Kalman estimation techniques are used to compensate for system errors. 25 figures.

  11. Wellbore inertial directional surveying system

    DOE Patents [OSTI]

    Andreas, Ronald D. (Albuquerque, NM); Heck, G. Michael (Albuquerque, NM); Kohler, Stewart M. (Albuquerque, NM); Watts, Alfred C. (Albuquerque, NM)

    1991-01-01T23:59:59.000Z

    A wellbore inertial directional surveying system for providing a complete directional survey of an oil or gas well borehole to determine the displacement in all three directions of the borehole path relative to the well head at the surface. The information generated by the present invention is especially useful when numerous wells are drilled to different geographical targets from a single off-shore platform. Accurate knowledge of the path of the borehole allows proper well spacing and provides assurance that target formations are reached. The tool is lowered down into a borehole on the electrical cable. A computer positioned on the surface communicates with the tool via the cable. The tool contains a sensor block which is supported on a single gimbal, the rotation axis of which is aligned with the cylinder axis of the tool and, correspondingly, the borehole. The gyroscope measurement of the sensor block rotation is used in a null-seeking servo loop which essentially prevents rotation of the sensor block aboutthe gimbal axis. Angular rates of the sensor block about axes which are perpendicular to the gimbal axis are measured by gyroscopes in a manner similar to a strapped-down arrangement. Three accelerometers provide acceleration information as the tool is lowered within the borehole. The uphole computer derives position information based upon acceleration information and anular rate information. Kalman estimation techniques are used to compensate for system errors.

  12. BNL Direct Wind Superconducting Magnets

    SciTech Connect (OSTI)

    Parker, B.; Anerella, M.; Escallier, J.; Ghosh, A.; Jain, A.; Marone, A.; Muratore, A.; Wanderer, P.

    2011-09-12T23:59:59.000Z

    BNL developed Direct Wind magnet technology is used to create a variety of complex multi-functional multi-layer superconducting coil structures without the need for creating custom production tooling and fixturing for each new project. Our Direct Wind process naturally integrates prestress into the coil structure so external coil collars and yokes are not needed; the final coil package transverse size can then be very compact. Direct Wind magnets are produced with very good field quality via corrections applied during the course of coil winding. The HERA-II and BEPC-II Interaction Region (IR) magnet, J-PARC corrector and Alpha antihydrogen magnetic trap magnets and our BTeV corrector magnet design are discussed here along with a full length ILC IR prototype magnet presently in production and the coils that were wound for an ATF2 upgrade at KEK. A new IR septum magnet design concept for a 6.2 T combined-function IR magnet for eRHIC, a future RHIC upgrade, is introduced here.

  13. ERIC Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrict ofDongjinDynetek42EOPEPOD RenewableEPVERIC

  14. Electrocell Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to: navigation, searchElectric FundElectricityElectrocell

  15. MLS Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPower CoLongxing Wind PowerMCF Advisors LLCMHKMLS

  16. MTorres Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPower CoLongxing Wind PowerMCF AdvisorsMTorres

  17. Martifer Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPower CoLongxing WindMaoming Zhong ao

  18. Winslow Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifang Swisselectronic CoWindward Engineering JumpWinslow

  19. Rioglass Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History FacebookRegenesysRenewableStrategiesRhodesRideRio

  20. Schaffner Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump638324°, -122.0230146°Scarlatti Jump

  1. Schulthess Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump638324°,Schnell Z ndstrahlmotoren AG Co

  2. Shenergy Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AGShandong LusaShelby, Ohio: Energy Resources

  3. Anel Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORT Americium/CuriumAgua Caliente SolarAltenoASES

  4. Sunvim Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern ILSunseeker Energy Holding AG Jump to:SunstroomSunvie

  5. Swatch Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern ILSunseeker EnergySuzhou SmallSwasti Power

  6. TRITEC Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern ILSunseeker EnergySuzhouSynergy Biofuels LLCTTKXTPATRITEC

  7. Tinna Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin Hydropower Station Jump to:

  8. Tonon Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin Hydropower Station Jump to:TiogaTongdao YaolaitanTongwei

  9. Copelouzos Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs and Heat Islands Jump to: navigation,Coors

  10. Copisa Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs and Heat Islands Jump to:

  11. USJ Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin HydropowerTrinityTurnbullGlobal

  12. Vaillant Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AGUserVHF Technologies SA akaVadium

  13. Valesul Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AGUserVHF Technologies SA

  14. Vandana Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AGUserVHF TechnologiesVan Ness Feldman

  15. Venika Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AGUserVHFcaption=NREL helps

  16. Greenko Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/ExplorationGoods | Open Energy Information

  17. Balta Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtriaPower Systems Jump to: navigation,Balta

  18. Bazan Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtriaPower SystemsRhodeBayfield Electric

  19. Bumlai Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in CarbonofBiotinsBostonBridgerBuckeyeEnergyBuilt

  20. Daesung Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs andCrops Ltd Jump1-EA Jump to:

  1. Delaney Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision hasda62829c05b NoCounty, Nevada |DehlsenRanch

  2. Emte Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| OpenElectromagneticElmwood CUSD8 Sector:Open

  3. Westly Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills, NewWestbrook,WestfieldOhio: EnergyWestly Group Jump

  4. Samaras Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBYSalton Sea Geothermal Area Jump to:SamSamaras Group

  5. Zeppini Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Projectsource History ViewZAP JumpZenergyZeppini Group

  6. Ostwind Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, New York: Energy Resources Jump to:Ostwind Group Jump

  7. Lucas Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07) WindLow VoltageGroup Jump to:

  8. David Turner! User Services Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OFSupplementalC. L. MartinGraduatesUser Services Group

  9. ESV Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, NewDyerTier2 Submit SoftwareEPBSinosphereESV Group

  10. Noribachi Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: Energy Resources Jump to:Nigeria:LLCNon-TectonicNordexNoribachi Group

  11. Altira Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place: Wayne,EnergyInfrastructureAltira Group LLC Jump to:Altira

  12. BOC Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to: Jump to:ManagementBOC Group Jump

  13. On subgroups of R. Thompson's group F and other diagram groups

    E-Print Network [OSTI]

    Sapir, Mark

    On subgroups of R. Thompson's group F and other diagram groups V. S. Guba, M. V. Sapir Abstract groups including the famous R. Thompson group F (it corresponds to the simplest set of relations f x = x of a diagram group is abelian, every abelian subgroup is free, but even the Thompson group contains solvable

  14. JSAC SPECIAL ISSUE ON NETWORK SUPPORT FOR GROUP COMMUNICATION 1 Scalable Secure Group Communication over IP

    E-Print Network [OSTI]

    Banerjee, Suman

    JSAC SPECIAL ISSUE ON NETWORK SUPPORT FOR GROUP COMMUNICATION 1 Scalable Secure Group Communication our scheme is completely end­host based, it can be used to implement group security over IP multicast­enabled untrusted, insecure networks. A. Group Keys and Re­keying Groups Many secure group communication systems [12

  15. Group tele-immersion:enabling natural interactions between groups at distant sites.

    SciTech Connect (OSTI)

    Yang, Christine L. (Sandia National Laboratories, Livermore, CA); Stewart, Corbin (Sandia National Laboratories, Livermore, CA); Nashel, Andrew (University of North Carolina at Chapel Hill, Chapel Hill, NC)

    2005-08-01T23:59:59.000Z

    We present techniques and a system for synthesizing views for video teleconferencing between small groups. In place of replicating one-to-one systems for each pair of users, we create a single unified display of the remote group. Instead of performing dense 3D scene computation, we use more cameras and trade-off storage and hardware for computation. While it is expensive to directly capture a scene from all possible viewpoints, we have observed that the participants viewpoints usually remain at a constant height (eye level) during video teleconferencing. Therefore, we can restrict the possible viewpoint to be within a virtual plane without sacrificing much of the realism, and in cloning so we significantly reduce the number of required cameras. Based on this observation, we have developed a technique that uses light-field style rendering to guarantee the quality of the synthesized views, using a linear array of cameras with a life-sized, projected display. Our full-duplex prototype system between Sandia National Laboratories, California and the University of North Carolina at Chapel Hill has been able to synthesize photo-realistic views at interactive rates, and has been used to video conference during regular meetings between the sites.

  16. OBSTRUCTIONS FOR SUBGROUPS OF THOMPSON'S GROUP V

    E-Print Network [OSTI]

    Röver, Claas

    OBSTRUCTIONS FOR SUBGROUPS OF THOMPSON'S GROUP V JOS'E BURILLO, SEAN CLEARY, AND CLAAS E. R"OVER Abstract.Thompson's group V has a rich for a given group to be a subgroup of V . Thompson constructed a finitely presented group now known as V

  17. Lessons learned from facilitating the state and tribal government working group

    SciTech Connect (OSTI)

    Kurstedt, H.A. Jr.

    1994-12-31T23:59:59.000Z

    Thirteen lessons learned from my experience in facilitating the State and Tribal Government Working Group for the U.S. Department of Energy have been identified. The conceptual base for supporting the veracity of each lesson has been developed and the lessons are believed to be transferable to any stakeholder group. The crux of stakeholder group success if the two-directional, two-mode empowerment required in this case. Most of the lessons learned deal with the scope of that empowerment. A few of the lessons learned deal with the operations of the group.

  18. Direct application of geothermal energy

    SciTech Connect (OSTI)

    Reistad, G.M.

    1980-01-01T23:59:59.000Z

    An overall treatment of direct geothermal applications is presented with an emphasis on the above-ground engineering. The types of geothermal resources and their general extent in the US are described. The potential market that may be served with geothermal energy is considered briefly. The evaluation considerations, special design aspects, and application approaches for geothermal energy use in each of the applications are considered. The present applications in the US are summarized and a bibliography of recent studies and applications is provided. (MHR)

  19. Directions to Wilson Hall, Fermilab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirections Both the Fermilab box office

  20. DOE Directives | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010Conferencing andContactsCriminalTraining

  1. Payroll Check Direct Deposit Authorization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTestPhysicsParticipantsPartnersC.Payroll Check Direct

  2. Urologic robots and future directions

    E-Print Network [OSTI]

    Mozer, Pierre; Stoianovici, Dan; 10.1097/MOU.0b013e32831cc1ba

    2008-01-01T23:59:59.000Z

    PURPOSE OF REVIEW: Robot-assisted laparoscopic surgery in urology has gained immense popularity with the daVinci system, but a lot of research teams are working on new robots. The purpose of this study is to review current urologic robots and present future development directions. RECENT FINDINGS: Future systems are expected to advance in two directions: improvements of remote manipulation robots and developments of image-guided robots. SUMMARY: The final goal of robots is to allow safer and more homogeneous outcomes with less variability of surgeon performance, as well as new tools to perform tasks on the basis of medical transcutaneous imaging, in a less invasive way, at lower costs. It is expected that improvements for a remote system could be augmented in reality, with haptic feedback, size reduction, and development of new tools for natural orifice translumenal endoscopic surgery. The paradigm of image-guided robots is close to clinical availability and the most advanced robots are presented with end-use...

  3. Radial lean direct injection burner

    DOE Patents [OSTI]

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04T23:59:59.000Z

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  4. Staged direct injection diesel engine

    DOE Patents [OSTI]

    Baker, Quentin A. (San Antonio, TX)

    1985-01-01T23:59:59.000Z

    A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.

  5. Heisenberg groups and noncommutative fluxes

    SciTech Connect (OSTI)

    Freed, Daniel S. [Department of Mathematics, University of Texas at Austin, TX 78712 (United States)]. E-mail: dafr@math.utexas.edu; Moore, Gregory W. [Department of Physics, Rutgers University, Piscataway, NJ 08854-8019 (United States); Segal, Graeme [All Souls College, Oxford (United Kingdom)

    2007-01-15T23:59:59.000Z

    We develop a group-theoretical approach to the formulation of generalized abelian gauge theories, such as those appearing in string theory and M-theory. We explore several applications of this approach. First, we show that there is an uncertainty relation which obstructs simultaneous measurement of electric and magnetic flux when torsion fluxes are included. Next, we show how to define the Hilbert space of a self-dual field. The Hilbert space is Z{sub 2}-graded and we show that, in general, self-dual theories (including the RR fields of string theory) have fermionic sectors. We indicate how rational conformal field theories associated to the two-dimensional Gaussian model generalize to (4k+2)-dimensional conformal field theories. When our ideas are applied to the RR fields of string theory we learn that it is impossible to measure the K-theory class of a RR field. Only the reduction modulo torsion can be measured.

  6. Renormalization group aspects of graphene

    E-Print Network [OSTI]

    Maria A. H. Vozmediano

    2010-10-25T23:59:59.000Z

    Graphene is a two dimensional crystal of carbon atoms with fascinating electronic and morphological properties. The low energy excitations of the neutral, clean system are described by a massless Dirac Hamiltonian in (2+1) dimensions which also captures the main electronic and transport properties. A renormalization group analysis sheds light on the success of the free model: due to the special form of the Fermi surface which reduces to two single points in momentum space, short range interactions are irrelevant and only gauge interactions like long range Coulomb or effective disorder can play a role in the low energy physics. We review these features and discuss briefly other aspects related to disorder and to the bilayer material along the same lines.

  7. Diffeomorphisms in group field theories

    SciTech Connect (OSTI)

    Baratin, Aristide [Triangle de la Physique, CPHT Ecole Polytechnique, IPhT Saclay, LPT Orsay and Laboratoire de Physique Theorique, CNRS UMR 8627, Universite Paris XI, F-91405 Orsay Cedex (France); Girelli, Florian [School of Physics, University of Sydney, Sydney, New South Wales 2006 (Australia); Oriti, Daniele [Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Am Muehlenberg 1, 14467 Golm (Germany)

    2011-05-15T23:59:59.000Z

    We study the issue of diffeomorphism symmetry in group field theories (GFT), using the noncommutative metric representation introduced by A. Baratin and D. Oriti [Phys. Rev. Lett. 105, 221302 (2010).]. In the colored Boulatov model for 3d gravity, we identify a field (quantum) symmetry which ties together the vertex translation invariance of discrete gravity, the flatness constraint of canonical quantum gravity, and the topological (coarse-graining) identities for the 6j symbols. We also show how, for the GFT graphs dual to manifolds, the invariance of the Feynman amplitudes encodes the discrete residual action of diffeomorphisms in simplicial gravity path integrals. We extend the results to GFT models for higher-dimensional BF theories and discuss various insights that they provide on the GFT formalism itself.

  8. Direct synthesis of magnesium borohydride

    DOE Patents [OSTI]

    Ronnebro, Ewa Carin Ellinor (Kennewick, WA); Severa, Godwin (Honolulu, HI); Jensen, Craig M. (Kailua, HI)

    2012-04-03T23:59:59.000Z

    A method is disclosed for directly preparing an alkaline earth metal borohydride, i.e. Mg(BH.sub.4).sub.2, from the alkaline earth metal boride MgB.sub.2 by hydrogenating the MgB.sub.2 at an elevated temperature and pressure. The boride may also be doped with small amounts of a metal chloride catalyst such as TiCl.sub.3 and/or NiCl.sub.2. The process provides for charging MgB.sub.2 with high pressure hydrogen above at least 70 MPa while simultaneously heating the material to about 350.degree. C. to about 400.degree. C. The method is relatively simple and inexpensive and provides a reversible hydride compound having a hydrogen capacity of at least 11 wt %.

  9. Direct synthesis of calcium borohydride

    DOE Patents [OSTI]

    Ronnebro, Ewa Carin Ellinor (Dublin, CA); Majzoub, Eric H. (Pleasanton, CA)

    2009-10-27T23:59:59.000Z

    A method is disclosed for directly preparing an alkaline earth metal borohydride, i.e. Ca(BH.sub.4).sub.2, from the alkaline earth metal hydride and the alkaline earth metal boride. The borohydride thus prepared is doped with a small portion of a metal chloride catalyst compound, such as RuCl.sub.3, TiCl.sub.3, or a mixture of TiCl.sub.3 and palladium metal. The process provides for mechanically mixing the dry reagents under an inert atmosphere followed by charging the mixed materials with high pressure hydrogen at about 70 MPa while heating the mixture to about 400.degree. C. The method is relatively simple and inexpensive and provides reversible hydride compounds which are free of the usual contamination introduced by prior art wet chemical methods.

  10. Colloidal Micromotors: Controlled Directed Motion

    E-Print Network [OSTI]

    Baraban, Larysa; Makarov, Denys; Leiderer, Paul; Erbe, Artur

    2008-01-01T23:59:59.000Z

    Here we demonstrate a synthetic micro-engine, based on long-range controlled movement of colloidal particles, which is induced by a local catalytic reaction. The directed motion at long timescales was achieved by placing specially designed magnetic capped colloids in a hydrogen peroxide solution at weak magnetic fields. The control of the motion of the particles was provided by changes of the concentration of the solution and by varying the strength of the applied magnetic field. Such synthetic objects can then be used not only to understand the fundamental driving processes but also be employed as small motors in biological environments, for example, for the transportation of molecules in a controllable way.

  11. Colloidal Micromotors: Controlled Directed Motion

    E-Print Network [OSTI]

    Larysa Baraban; Christian Kreidler; Denys Makarov; Paul Leiderer; Artur Erbe

    2008-07-10T23:59:59.000Z

    Here we demonstrate a synthetic micro-engine, based on long-range controlled movement of colloidal particles, which is induced by a local catalytic reaction. The directed motion at long timescales was achieved by placing specially designed magnetic capped colloids in a hydrogen peroxide solution at weak magnetic fields. The control of the motion of the particles was provided by changes of the concentration of the solution and by varying the strength of the applied magnetic field. Such synthetic objects can then be used not only to understand the fundamental driving processes but also be employed as small motors in biological environments, for example, for the transportation of molecules in a controllable way.

  12. Direct laser initiation of PETN

    SciTech Connect (OSTI)

    Early, J. W. (James W.); Kennedy, J. E. (James E.)

    2001-01-01T23:59:59.000Z

    In the early 1970s Yang and Menichelli demonstrated that direct laser illumination of low-density secondary explosive prr:ssings through a transparent window could produce detonation. 'The energy requirement for threshold initiation of detonation was reduced when a thin metal coating of metal covered the side of the window against which the low-density explosive was pressed. We have obtained experimental results that are in general agreement with the results of Renllund, Stanton and Trott (1 989) and recent: work by Nagayama, hou and Nakahara (2001). We report exploration of the effects of laser beam diameter, PEiTN density and specific surface area, and thickness of a titanium coating on the window.

  13. Method for directional hydraulic fracturing

    DOE Patents [OSTI]

    Swanson, David E. (West St. Paul, MN); Daly, Daniel W. (Crystal, MN)

    1994-01-01T23:59:59.000Z

    A method for directional hydraulic fracturing using borehole seals to confine pressurized fluid in planar permeable regions, comprising: placing a sealant in the hole of a structure selected from geologic or cemented formations to fill the space between a permeable planar component and the geologic or cemented formation in the vicinity of the permeable planar component; making a hydraulic connection between the permeable planar component and a pump; permitting the sealant to cure and thereby provide both mechanical and hydraulic confinement to the permeable planar component; and pumping a fluid from the pump into the permeable planar component to internally pressurize the permeable planar component to initiate a fracture in the formation, the fracture being disposed in the same orientation as the permeable planar component.

  14. Laboratory directed research and development

    SciTech Connect (OSTI)

    Not Available

    1991-11-15T23:59:59.000Z

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  15. Delayed neutron data and group parameters for 43 fissioning systems

    SciTech Connect (OSTI)

    Brady, M.C. (Oak Ridge National Lab., TN (USA)); England, T.R. (Los Alamos National Lab., NM (USA))

    1989-10-01T23:59:59.000Z

    The quality and quantity of delayed neutron precursor data have greatly improved over the past decade and a half. Supplementation of the data with model calculations and the use of models to extend the number of precursors to 271 is now practical. These data, along with other improved fission product parameters, permit direct calculations of aggregate behavior for many fissioning nuclides. The results can still be approximated using a few (usually six) temporal groups, including corresponding spectra, as in past practice for reactor physics. An extensive effort to provide a complete set of evaluated data is summarized, with an emphasis on its use to generate the temporal approximations; precursor data and group values are intended for inclusion in ENDF/B-VI.

  16. Howe Group LLC | Open Energy Information

    Open Energy Info (EERE)

    Name: Howe Group LLC Place: Santa Fe, New Mexico Phone Number: +1 505 216 5119 Website: net http:www.hd-group. net Coordinates: 35.6869752, -105.937799 Show Map Loading...

  17. Harmonic measurements from a group connected generator HVdc converter scheme

    SciTech Connect (OSTI)

    Macdonald, S.J.; Enright, W.; Arrillaga, J. [Univ. of Canterbury, Christchurch (New Zealand)] [Univ. of Canterbury, Christchurch (New Zealand); O`Brien, M.T.

    1995-10-01T23:59:59.000Z

    A recent CIGRE document published in ELECTRA has described the potential benefits of a direct connection of generators to HVdc converters. While many theoretical contributions have been made, no practical test data has become available so far. This paper reports on harmonic tests carried out at the Benmore end of the New Zealand HVdc link operating as a group connected scheme. It was found that the measured harmonic current levels were well below specified generator ratings. Dynamic simulation accurately predicted the harmonic currents whereas the results of a steady state formulation were less reliable.

  18. Z Group Steel Holding Zelezarny Veseli | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanenYongzhouYunnan DiqingZ Group Steel Holding Zelezarny

  19. test document for group | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind Hometcdb Home Graham7781's picturedocument for group

  20. United States-Japan Nuclear Security Working Group | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City,EnrichedSupplemental Directives |and

  1. Process Technology Group of Warwick School of Engineering | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformation toPowerPrinceton Public

  2. Gamesa and Daniel Alonso Group JV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms A SUK Place: Newport, Wales,Daniel Alonso Group JV

  3. PNC Bank Equipment Finance and Energy Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympia GreenThesourceOvertonPEPCOPERI GreenPLGPMUPNC

  4. PNNL Technology Planning and Deployment Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympia GreenThesourceOvertonPEPCOPERIPNNL)Deployment

  5. PNNL Technology Planning and Deployment Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympia

  6. PNNL Technology Systems Analysis Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympiaAnalysis) Jump to: navigation, search Logo:

  7. Jiaozuo Coal Group Hejing Technique Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunanInformationJamesManufacturing |JiangyinJianyangJiaozuo

  8. Krempel Group aka August Krempel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea Parts and FastenersKowloon PowerKrempel

  9. Lianyungang Zhongfu Lianzhong Composites Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKoreaLaorLeopold Kostal

  10. Liaoning Energy Investment Group Co Ltd Liaoneng | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKoreaLaorLeopold KostalLiaoning Energy Investment

  11. Liupanshui Tuoyuan Group Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin ZhongdiantouLichuan CityLiqcrytech LLC JumpListLittleLiupanshui

  12. London Climate Change Service Providers Group LCCSPG | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin ZhongdiantouLichuan CityLiqcrytech LLCLiuzhouLoganLondon

  13. Longnan Dongcheng Construction Group Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin ZhongdiantouLichuan CityLiqcrytechLongLongkou Dongyi WindLongnan

  14. Groups in Energy Data Initiative (EDI) | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/ExplorationGoods | OpenInformationMagneticsFeatured groups

  15. Heilongjiang Shuaiyi Group Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open Energy InformationHebei Qindao

  16. Hengdian Group DMEGC Magnetics Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open Energy InformationHebeiProgram Jump to:HelpTianguanHeng

  17. Huaiji County Huilian Hydro electric Group Company Limited | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open EnergyInformationHorizon Fuel

  18. Huanghe Hydropower Development Co Ltd Yellow River Group | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open EnergyInformationHorizon FuelHuaijiInformation Huanghe

  19. Inner Mongolia Sanwei Resources Group Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan RunhuaInner Mongolia Fengwei New Energy Mining CoInnerInner

  20. Inner Mongolia Yitai Group Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan RunhuaInner Mongolia Fengwei New EnergyInner Mongolia Yitai

  1. International Power Group Ltd IPWG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunanInformation source History View NewInternational

  2. Group Study Room Policy and Reservation Form

    E-Print Network [OSTI]

    Reynolds, Albert C.

    to the Group Study Reservation Form. Fill out the web form and click "Send" to submit the request. A confirming

  3. University of Amsterdam Programming Research Group

    E-Print Network [OSTI]

    Amsterdam, Universiteit van

    : A Domotics Application D. Staudt Report PRG0811 August 2008 #12; D. Staudt Programming Research Group Faculty

  4. University of Amsterdam Programming Research Group

    E-Print Network [OSTI]

    Amsterdam, Universiteit van

    : A Domotics Application D. Staudt Report PRG0811 August 2008 #12;D. Staudt Programming Research Group Faculty

  5. Program Building Committee's Central Planning Group.

    E-Print Network [OSTI]

    Richardson, Burl B.; Marshall, Mary G.

    1982-01-01T23:59:59.000Z

    Tooe ZTA245.7 8873 Y)O./3~ The Texas A&M (stem r ultural ~ion ~ervrce Damet C Plannstlel. Director College Stallon Program Building Committee's CENTRAL PLANNING GROUP 8-1344 Authors: Burl B. Richardson , Extension Program Specialist... and Mary G. Marshall, Extension Program Specialist Program -Building Committee's CENTRAL PLANNING GROUP This leaflet describes the role of the central planning group in the program development process_ The central planning group is the highest...

  6. Agenda: High Temperature Membrane Working Group Meeting

    Broader source: Energy.gov [DOE]

    Agenda for the High Temperature Membrane Working Group (HTMWG) meeting on May 18, 2009, in Arlington, Virginia

  7. UCIME Group Meeting January 18, 2001

    E-Print Network [OSTI]

    Clarke, Keith

    a presentation of SCOPE to the Flowers Growers Association in Carpinteria to a very interested and lively group

  8. West Virginia Direct Loan Program (West Virginia)

    Broader source: Energy.gov [DOE]

    The West Virginia Direct Loan Program, provides up to 45 percent in financing fixed assets through low-interest, direct loans to businesses expanding or locating in West Virginia. Proceeds from the...

  9. Packing Directed Joins Aaron Michael Williams

    E-Print Network [OSTI]

    Williams, Aaron

    that the conjecture does hold for directed graphs with directed paths from every source to every sink. Schrijver [13 a mathematician. Bad decisions kept me out the game." "Rock over London, Rock on Chicago!" iv #12;Contents 1

  10. Certifying Solutions to Permutation Group Problems

    E-Print Network [OSTI]

    Sorge, Volker

    the integration of permutation group algorithms with proof planning. We consider eight basic questions arising planning. We consider eight basic questions arising in computational permutation group theory, for whichCertifying Solutions to Permutation Group Problems Arjeh Cohen 1 , Scott H. Murray 1#3; , Martin

  11. Certifying Solutions to Permutation Group Problems

    E-Print Network [OSTI]

    Murray, Scott H.

    of permutation group algorithms with proof planning. We consider eight basic questions arising in com- putational the integration of permutation group algorithms from computer algebra with proof planning. We consider eight basicCertifying Solutions to Permutation Group Problems Arjeh Cohen1 , Scott H. Murray1, , Martin Pollet

  12. Proof Planning some Permutation Group Problems | Abstract |

    E-Print Network [OSTI]

    Sorge, Volker

    of permutation group algorithms from computer algebra with proof planning. We consider eight basic questions handle eight basic queries, ranging from \\Is this permutation in that permutation group?" to \\What suÃ?cient information. In detail we concentrate on the following eight problems: Let G be a group

  13. IY5512: Part 2 Information Security Group

    E-Print Network [OSTI]

    Mitchell, Chris

    Information Security Group The principles · The eight principles are: 1. Economy of mechanism 2. FailIY5512: Part 2 1 Information Security Group IY5512 Computer Security Part 2: Design & evaluation Chris Mitchell me@chrismitchell.net http://www.chrismitchell.net 1 Information Security Group Objectives

  14. Group Blind Digital Signatures: Theory and Applications

    E-Print Network [OSTI]

    Goldwasser, Shafi

    Group Blind Digital Signatures: Theory and Applications by Zul kar Amin Ramzan Submitted Committee on Graduate Students #12;Group Blind Digital Signatures: Theory and Applications by Zul kar Amin Blind Digital Signature. This construct combines the already existing notions of a Group Digital

  15. Group Blind Digital Signatures: Theory and Applications

    E-Print Network [OSTI]

    Goldwasser, Shafi

    Group Blind Digital Signatures: Theory and Applications by Zulfikar Amin Ramzan Submitted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Arthur C. Smith Chairman, Departmental Committee on Graduate Students #12; Group Blind Digital Signatures cryptographic construct called a Group Blind Digital Signature. This construct combines the already existing

  16. GREEN FUNCTIONS ASSOCIATED TO COMPLEX REFLECTION GROUPS

    E-Print Network [OSTI]

    Shoj, Toshiaki

    GREEN FUNCTIONS ASSOCIATED TO COMPLEX REFLECTION GROUPS TOSHIAKI SHOJI Department of Mathematics Science University of Tokyo Noda, Chiba 278­8510, Japan Abstract. Green functions of classical groups this, we define Green functions associated to complex reflection groups G(e, 1, n), and study

  17. Computer Graphics Group Leif KobbeltAACHEN

    E-Print Network [OSTI]

    Kobbelt, Leif

    Computer Graphics Group Leif KobbeltAACHEN Computer Graphics Leif Kobbelt Computer Graphics Group Leif KobbeltAACHEN Public Perception of CG · Games · Movies Computer Graphics Group Leif KobbeltAACHEN Computer Graphics Research · fundamental algorithms & data structures - continuous & discrete mathematics

  18. Information Security Group IY5512 Computer Security

    E-Print Network [OSTI]

    Mitchell, Chris

    Information Security Group IY5512 Computer Security Part 7b: Windows securityPart 7b: Windows security Chris Mitchell me@chrismitchell.net http://www.chrismitchell.net 1 Information Security Group) of Windows machines. 2 Information Security Group Objectives II · Focus on Active Directory, authentication

  19. Preferences, Information, and Group Decision Making

    E-Print Network [OSTI]

    Espinoza, Alejandro

    2009-05-15T23:59:59.000Z

    This study will examine how the structure of preferences of group members in a decision-making group, as well as the information they have, affects the collection and the processing of information by individual members of a decision making group...

  20. Preferences, Information, and Group Decision Making 

    E-Print Network [OSTI]

    Espinoza, Alejandro

    2009-05-15T23:59:59.000Z

    This study will examine how the structure of preferences of group members in a decision-making group, as well as the information they have, affects the collection and the processing of information by individual members of a decision making group...

  1. 303:20130618.1036 Thermal Engineering Group

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    303:20130618.1036 Thermal Engineering Group LASP's Thermal Engineering Group is involved in all of the component, as well as on-orbit trending and operations planning. Design Experience The Thermal Engineering Systems Engineering The group has formulated general thermal design and thermal interface requirements

  2. Theory of Lie Groups Claude Chevalley

    E-Print Network [OSTI]

    Landweber, Laura

    Theory of Lie Groups Claude Chevalley French mathematician Claude Chevalley had a major influence on the development of several areas of mathematics, but his most important con- tribution is his work on group theory. In Theory of Lie Groups, Chevalley fur- ther developed the ideas that Hermann Weyl pre- sented

  3. university-logo Beyond quasisplit groups

    E-Print Network [OSTI]

    Nevins, Monica

    university-logo Motivation Rappels Beyond quasisplit groups On the dual of a reductive algebraic Meeting Adler Duals #12;university-logo Motivation Rappels Beyond quasisplit groups Motivation Let G groups? Let's recall what's known... Adler Duals #12;university-logo Motivation Rappels Beyond quasisplit

  4. Sustainability Peer Educator Group Lead Positions Position: Sustainability Peer Educators Group Lead

    E-Print Network [OSTI]

    Boonstra, Rudy

    Sustainability Peer Educator Group Lead Positions Position: Sustainability Peer Educators Group times) Term of position: September 2013 ­ April 2014 Position Summary: Working with the Sustainability Project Coordinator, the Sustainability Peer Educator Group Leads will be responsible

  5. Utility Variable Generation Integration Group Fall O&M User Group...

    Broader source: Energy.gov (indexed) [DOE]

    O&M User Group Meeting Utility Variable Generation Integration Group Fall O&M User Group Meeting October 1, 2014 7:00AM CDT to October 2, 2014 3:00PM CDT The Utility Variable...

  6. What Happens When Low Status Groups Start Moving Up? Prejudice and Threat to Group Position

    E-Print Network [OSTI]

    Nierman, Angela J.

    2007-11-20T23:59:59.000Z

    Does threat operate as a cause or a consequence of prejudice? Three studies investigated how high status groups respond to low status groups' advances. I hypothesized that gays' status gains are threatening to heterosexuals' privileged group...

  7. Extension of DOE Directives on Security

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-12-31T23:59:59.000Z

    This Notice extends 15 Office of Security and Emergency Operation directives that have expired or will expire until December 31, 2001. This Notice will remain in effect until its expiration date or until new/revised directives are published. The following statement will be added to the summary of the extended directives-DOE N 251.40, dated 5/3/01, extends this directive until 12/31/01.

  8. Direct Electrochemistry and Electrocatalysis of Myoglobin Immobilized...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrochemistry and Electrocatalysis of Myoglobin Immobilized on Graphene-CTAB-Ionic Liquid Nanocomposite Film. Direct Electrochemistry and Electrocatalysis of Myoglobin...

  9. Hydrothermal industrialization: direct heat development. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-05-01T23:59:59.000Z

    A description of hydrothermal resources suitable for direct applications, their associated temperatures, geographic distribution and developable capacity are given. An overview of the hydrothermal direct-heat development infrastructure is presented. Development activity is highlighted by examining known and planned geothermal direct-use applications. Underlying assumptions and results for three studies conducted to determine direct-use market penetration of geothermal energy are discussed.

  10. Strategic Directions for Hydrogen Delivery Workshop Proceedings

    Broader source: Energy.gov [DOE]

    Proceedings from the Strategic Directions for Hydrogen Delivery Workshop held May 7-8, 2003 in Washington, DC. Author: Energetics

  11. Laboratory Directed Research and Development FY 1998 Progress Report

    SciTech Connect (OSTI)

    John Vigil; Kyle Wheeler

    1999-04-01T23:59:59.000Z

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  12. Laboratory directed research and development: FY 1997 progress report

    SciTech Connect (OSTI)

    Vigil, J.; Prono, J. [comps.

    1998-05-01T23:59:59.000Z

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  13. Air breathing direct methanol fuel cell

    DOE Patents [OSTI]

    Ren, Xiaoming (Los Alamos, NM)

    2002-01-01T23:59:59.000Z

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source.

  14. Micro Fuel Cells Direct Methanol Fuel Cells

    E-Print Network [OSTI]

    Micro Fuel Cells TM Direct Methanol Fuel Cells for Portable Power A Fuel Cell System Developer-17, 2002 Phoenix, Arizona #12;Micro Fuel Cells Direct Methanol Fuel Cells for Portable Power Outline (1 Energy Content (Wh) Volume(cm^3) Li-Ion Battery DMFC #12;Direct Methanol Fuel Cell Technology

  15. DIRECTED ENERGY WEAPONS (DEWs): A BIBLIOGRAPHY

    E-Print Network [OSTI]

    DIRECTED ENERGY WEAPONS (DEWs): A BIBLIOGRAPHY Compiled by Greta E. Marlatt Dudley Knox Library://www.nps.edu/Library/Research%20Tools/Bibliographies/index.html #12;DIRECTED ENERGY WEAPONS (DEWs): A BIBLIOGRAPHY Complied INTENTIONALLY LEFT BLANK #12;4 Table of Contents DIRECTED ENERGY WEAPONS GENERAL

  16. Direct detector for terahertz radiation

    DOE Patents [OSTI]

    Wanke, Michael C. (Albuquerque, NM); Lee, Mark (Albuquerque, NM); Shaner, Eric A. (Albuquerque, NM); Allen, S. James (Santa Barbara, CA)

    2008-09-02T23:59:59.000Z

    A direct detector for terahertz radiation comprises a grating-gated field-effect transistor with one or more quantum wells that provide a two-dimensional electron gas in the channel region. The grating gate can be a split-grating gate having at least one finger that can be individually biased. Biasing an individual finger of the split-grating gate to near pinch-off greatly increases the detector's resonant response magnitude over prior QW FET detectors while maintaining frequency selectivity. The split-grating-gated QW FET shows a tunable resonant plasmon response to FIR radiation that makes possible an electrically sweepable spectrometer-on-a-chip with no moving mechanical optical parts. Further, the narrow spectral response and signal-to-noise are adequate for use of the split-grating-gated QW FET in a passive, multispectral terahertz imaging system. The detector can be operated in a photoconductive or a photovoltaic mode. Other embodiments include uniform front and back gates to independently vary the carrier densities in the channel region, a thinned substrate to increase bolometric responsivity, and a resistive shunt to connect the fingers of the grating gate in parallel and provide a uniform gate-channel voltage along the length of the channel to increase the responsivity and improve the spectral resolution.

  17. Low backlash direct drive actuator

    DOE Patents [OSTI]

    Kuklo, T.C.

    1994-10-25T23:59:59.000Z

    A low backlash direct drive actuator is described which comprises a motor such as a stepper motor having at least 200 steps per revolution; a two part hub assembly comprising a drive hub coaxially attached to the shaft of the motor and having a plurality of drive pins; a driven hub having a plurality of bores in one end thereof in alignment with the drive pins in the drive hub and a threaded shaft coaxially mounted in an opposite end of the driven hub; and a housing having a central bore therein into which are fitted the drive hub and driven hub, the housing having a motor mount on one end thereof to which is mounted the stepper motor, and a closed end portion with a threaded opening therein coaxial with the central bore in the housing and receiving therein the threaded shaft attached to the driven hub. Limit switches mounted to the housing cooperate with an enlarged lip on the driven hub to limit the lateral travel of the driven hub in the housing, which also acts to limit the lateral travel of the threaded shaft which functions as a lead screw. 10 figs.

  18. 1997 Laboratory directed research and development. Annual report

    SciTech Connect (OSTI)

    Meyers, C.E.; Harvey, C.L.; Chavez, D.L.; Whiddon, C.P. [comps.

    1997-12-31T23:59:59.000Z

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1997. In addition to a programmatic and financial overview, the report includes progress reports from 218 individual R&D projects in eleven categories. Theses reports are grouped into the following areas: materials science and technology; computer sciences; electronics and photonics; phenomenological modeling and engineering simulation; manufacturing science and technology; life-cycle systems engineering; information systems; precision sensing and analysis; environmental sciences; risk and reliability; national grand challenges; focused technologies; and reserve.

  19. Laboratory-directed research and development: FY 1996 progress report

    SciTech Connect (OSTI)

    Vigil, J.; Prono, J. [comps.

    1997-05-01T23:59:59.000Z

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences.

  20. Method of manufacturing semiconductor having group II-group VI compounds doped with nitrogen

    DOE Patents [OSTI]

    Compaan, Alvin D.; Price, Kent J.; Ma, Xianda; Makhratchev, Konstantin

    2005-02-08T23:59:59.000Z

    A method of making a semiconductor comprises depositing a group II-group VI compound onto a substrate in the presence of nitrogen using sputtering to produce a nitrogen-doped semiconductor. This method can be used for making a photovoltaic cell using sputtering to apply a back contact layer of group II-group VI compound to a substrate in the presence of nitrogen, the back coating layer being doped with nitrogen. A semiconductor comprising a group II-group VI compound doped with nitrogen, and a photovoltaic cell comprising a substrate on which is deposited a layer of a group II-group VI compound doped with nitrogen, are also included.

  1. Structure formation upon reactive direct current magnetron sputtering of transition metal oxide films

    SciTech Connect (OSTI)

    Ngaruiya, J.M.; Kappertz, O.; Mohamed, S.H.; Wuttig, M. [I. Physikalisches Institut der RWTH Aachen, D-52056 Aachen, Germany and Jomo Kenyatta University of Agriculture and Technology, Box 62000 Nairobi (Kenya); I. Physikalisches Institut der RWTH Aachen, D-52056 Aachen (Germany)

    2004-08-02T23:59:59.000Z

    A comparative study of reactive direct current magnetron sputtering for different transition metal oxides reveals crystalline films at room temperature for group 4 and amorphous films for groups 5 and 6. This observation cannot be explained by the known growth laws and is attributed to the impact of energetic particles, originating from the oxidized target, on the growing film. This scenario is supported by measured target characteristics, the evolution of deposition stress of the films, and the observed backsputtering.

  2. Direct Energy Services | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro SiteDaytonDestilariaDirect EnergyDirectDirectDirect

  3. Nonlinear optics determination of the symmetry group of a crystal using structured light

    E-Print Network [OSTI]

    Jauregui, Rocio

    2015-01-01T23:59:59.000Z

    We put forward a technique to unveil to which symmetry group a nonlinear crystal belongs, making use of nonlinear optics with structured light. We consider as example the process of spontaneous parametric down-conversion. The crystal, which is illuminated with a special type of Bessel beam, is characterized by a nonlinear susceptibility tensor whose structure is dictated by the symmetry group of the crystal. The observation of the spatial angular dependence of the lower-frequency generated light provides direct information about the symmetry group of the crystal.

  4. DIRECT LIQUEFACTION PROOF OF CONCEPT

    SciTech Connect (OSTI)

    NONE

    1998-09-01T23:59:59.000Z

    The eighth bench scale test of POC program, Run PB-08, was successfully completed from August 8 to August 26, 1997. A total of five operating conditions were tested aiming at evaluating the reactivity of different pyrolysis oils in liquefaction of a Wyoming sub-bituminous coal (Black Thunder coal). For the first time, water soluble promoters were incorporated into the iron-based GelCat to improve the dispersion of the promoter metals in the feed blend. The concentration of the active metals, Mo and Fe, was 100 and 1000 ppm of moisture-free coal, respectively. Black Thunder coal used in this run was the same batch as tested in HTI?s Run POC-02. Similar to Runs PB-01 through 7, this run employed two back mixed slurry reactors, an interstage gas/slurry separator and a direct-coupled hydrotreater. In addition to the hot vapor from the second stage separator, the first stage separator overhead liquid was also fed to the hydrotreater, which was packed with Criterion C-411 hydrotreating catalyst. Pyrolysis oil was produced off-line from a pyrolysis unit acquired from University of Wyoming. Solids rejection was achieved by purging out pressure filter solid. The recycle solvents consisted of O-6 separator bottoms and pressure filter liquid (PFL). The Run PB-08 proceeded very smoothly without any interruptions. Coal conversion consistently above 90W% was achieved. High resid conversion and distillate yield have been obtained from co-processing of coal and 343°C+ (650°F+) pyrolysis oil. Light gas (C1-C3 ) yield was minimized and hydrogen consumption was reduced due to the introduction of pyrolysis oil, compared with conventional coal-derived solvent. Catalytic activity was improved by incorporating a promoter metal into the iron-based GelCat. It seemed that lowering the first stage temperature to 435°C might increase the hydrogenation function of the promoter metal. In comparison with previous coal-waste coprocessing run (PB-06), significant improvements in the process performance were achieved due to catalyst modification and integration of pyrolysis technique into liquefaction.

  5. Health Research Groups 2013 Research Group Leaders and Co-leaders are in Bold font

    E-Print Network [OSTI]

    Saskatchewan, University of

    Therapy/Medicine Gerdts, Volker Western College of Veterinary Medicine/VIDO #12;Health Research Groups

  6. Automatically Identifying Groups Based on Content and Collective Behavioral Patterns of Group Members

    SciTech Connect (OSTI)

    Gregory, Michelle L.; Engel, David W.; Bell, Eric B.; Piatt, Andrew W.; Dowson, Scott T.; Cowell, Andrew J.

    2011-07-17T23:59:59.000Z

    Online communities, or groups, have largely been defined based on links, page rank, and eigenvalues. In this paper we explore identifying abstract groups, groups where member's interests and online footprints are similar but they are not necessarily connected to one another explicitly. We use a combination of structural information and content information from posts and their comments to build a footprint for groups. We find that these variables do a good job at identifying groups, placing members within a group, and help determine the appropriate granularity for group boundaries.

  7. Effective Hamiltonian Constraint from Group Field Theory

    E-Print Network [OSTI]

    Etera R. Livine; Daniele Oriti; James P. Ryan

    2011-04-28T23:59:59.000Z

    Spinfoam models provide a covariant formulation of the dynamics of loop quantum gravity. They are non-perturbatively defined in the group field theory (GFT) framework: the GFT partition function defines the sum of spinfoam transition amplitudes over all possible (discretized) geometries and topologies. The issue remains, however, of explicitly relating the specific form of the group field theory action and the canonical Hamiltonian constraint. Here, we suggest an avenue for addressing this issue. Our strategy is to expand group field theories around non-trivial classical solutions and to interpret the induced quadratic kinematical term as defining a Hamiltonian constraint on the group field and thus on spin network wave functions. We apply our procedure to Boulatov group field theory for 3d Riemannian gravity. Finally, we discuss the relevance of understanding the spectrum of this Hamiltonian operator for the renormalization of group field theories.

  8. Automatic identification of abstract online groups

    DOE Patents [OSTI]

    Engel, David W; Gregory, Michelle L; Bell, Eric B; Cowell, Andrew J; Piatt, Andrew W

    2014-04-15T23:59:59.000Z

    Online abstract groups, in which members aren't explicitly connected, can be automatically identified by computer-implemented methods. The methods involve harvesting records from social media and extracting content-based and structure-based features from each record. Each record includes a social-media posting and is associated with one or more entities. Each feature is stored on a data storage device and includes a computer-readable representation of an attribute of one or more records. The methods further involve grouping records into record groups according to the features of each record. Further still the methods involve calculating an n-dimensional surface representing each record group and defining an outlier as a record having feature-based distances measured from every n-dimensional surface that exceed a threshold value. Each of the n-dimensional surfaces is described by a footprint that characterizes the respective record group as an online abstract group.

  9. Direct Assembly of Hydrophobic Nanoparticles to Multifunctional Structures

    SciTech Connect (OSTI)

    Lu, Zhenda [University of California, Riverside; Yin, Yadong [University of California, Riverside; Chi, Miaofang [ORNL

    2011-01-01T23:59:59.000Z

    We present a general process that allows convenient production of multifunctional composite particles by direct self-assembly of hydrophobic nanoparticles on host nanostructures containing high-density surface thiol groups. Hydrophobic nanoparticles of various compositions and combinations can be directly assembled onto the host surface through the strong coordination interactions between metal cations and thiol groups. The resulting structures can be further conveniently overcoated with a layer of normal silica to stabilize the assemblies and render them highly dispersible in water for biomedical applications. As the entire fabrication process does not involve complicated surface modification procedures, the hydrophobic ligands on the nanoparticles are not disturbed significantly so that they retain their original properties such as highly efficient luminescence. Many complex composite nanostructures with tailored functions can be efficiently produced by using this versatile approach. For example, multifunctional nonspherical nanostructures can be efficiently produced by using mercapto-silica coated nano-objects of arbitrary shapes as hosts for immobilizing functional nanoparticles. Multilayer structures can also be achieved by repeating the mercapto-silica coating and nanoparticle immobilization processes. Such assembly approach will provide the research community a highly versatile, configurable, scalable, and reproducible process for the preparation of various multifunctional structures.

  10. Report of the President's Blue Ribbon Task Group on Nuclear Weapons Program Management

    SciTech Connect (OSTI)

    Not Available

    1985-07-01T23:59:59.000Z

    The President established the Blue Ribbon Task Group on Nuclear Weapons Program Management at the direction of the Congress to address fiscal accountability and discipline in the nation's nuclear weapons program. The Task Group was asked to ''examine the procedures used by DOD and DOE in establishing requirements for, and providing resources for, the research, development, testing, production, surveillance, and retirement of nuclear weapons,'' and to recommend any needed change in coordination, budgeting, or management procedures. The Task Group was also asked to address ''whether DOD should assume the responsibility for funding current DOE weapon activities and material production programs.'' The Task Group found that the present relationship between DOD and DOE for managing the nuclear weapons program is sound. Accordingly, the Task Group sought a process for improving the integrated determination of nuclear weapon requirements and the management of nuclear weapon production.

  11. USD Catalysis Group for Alternative Energy

    SciTech Connect (OSTI)

    James D. Hoefelmeyer, Ranjit Koodali, Grigoriy Sereda, Dan Engebretson, Hao Fong, Jan Puszynski, Rajesh Shende, Phil Ahrenkiel

    2012-03-13T23:59:59.000Z

    The South Dakota Catalysis Group (SDCG) is a collaborative project with mission to develop advanced catalysts for energy conversion with two primary goals: (1) develop photocatalytic systems in which polyfunctionalized TiO2 are the basis for hydrogen/oxygen synthesis from water and sunlight (solar fuels group), (2) develop new materials for hydrogen utilization in fuel cells (fuel cell group). In tandem, these technologies complete a closed chemical cycle with zero emissions.

  12. 2006 Nature Publishing Group Controlled multiple reversals of a ratchet effect

    E-Print Network [OSTI]

    Moshchalkov, Victor V.

    © 2006 Nature Publishing Group Controlled multiple reversals of a ratchet effect Cle´cio C. de confined in an asymmetric potential demon- strates an anticipated ratchet effect by drifting along the `easy' ratchet direction when subjected to non-equilibrium fluctu- ations1­3 . This well-known effect

  13. Federal Utility Partnership Working Group Participants

    Broader source: Energy.gov [DOE]

    The following Federal agencies have participated in the Federal Utility Partnership Working Group or engaged in a utility energy service contract project.

  14. Distributed Energy Systems Integration Group (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01T23:59:59.000Z

    Factsheet developed to describe the activites of the Distributed Energy Systems Integration Group within NREL's Electricity, Resources, and Buildings Systems Integration center.

  15. Joint Outreach Task Group Calendar: September 2013

    Broader source: Energy.gov [DOE]

    Joint Outreach Task Group (JOTG)has created a monthly calendar of community events to facilitate interagency and community involvement in these events. September 2013

  16. . . . . . 85 . . . . . International Deep Drawing Research Group

    E-Print Network [OSTI]

    . . . . . 85 . . . . . International Deep Drawing Research Group IDDRG 2009 International 20899-855 USA e-mail: mark.iadicola@nist.gov, Web page: www

  17. More about Permutations and Symmetry Groups

    E-Print Network [OSTI]

    Donu Arapura

    2013-04-03T23:59:59.000Z

    Page 1 ... groups than what we did previously. First recall that a ... The most efficient notation is cycle notation, which we will explain. ... Now repeat for numbers ...

  18. Convolution type operators on locally compact groups

    E-Print Network [OSTI]

    Shtein--~erg, Convolution Type Operators on Locally Compact Groups [in Russian],. Manuscript Deposited in the All-Union Institute of Scientific and Technical ...

  19. Clark Energy Group ESCO Qualification Sheet

    Broader source: Energy.gov [DOE]

    Document outlines the energy service company (ESCO) qualifications for Clark Energy Group in relation to the U.S. Department of Energy's (DOEs) energy savings performance contracts (ESPC).

  20. Enforcement Letter, Parsons Infrastructure & Technology Group...

    Broader source: Energy.gov (indexed) [DOE]

    and Technology Group, Inc. related to a form wood timber fire caused by nearby propane heaters during construction of the Salt Waste Processing Facility at DOE's Savannah...

  1. Federal Utility Partnership Working Group Utility Partners

    Broader source: Energy.gov [DOE]

    Federal Utility Partnership Working Group (FUPWG) utility partners are eager to work closely with Federal agencies to help achieve energy management goals.

  2. Federal Utility Partnership Working Group Industry Commitment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry Commitment Federal Utility Partnership Working Group Industry Commitment Investor-owned electric utility industry members of the Edison Electric Institute pledge to assist...

  3. Group 3: Humidity, Temperature, and Voltage (Presentation)

    SciTech Connect (OSTI)

    Wohlgemuth, J.

    2013-05-01T23:59:59.000Z

    Group 3 is chartered to develop accelerated stress tests that can be used as comparative predictors of module lifetime versus stresses associated with humidity, temperature and voltage.

  4. Group-theoretical approach to reflectionless potentials

    SciTech Connect (OSTI)

    Kerimov, G. A.; Ventura, A. [International Centre for Physics and Applied Mathematics, Trakya University, 22050 Edirne (Turkey); Ente Nuove Tecnologie, Energia e Ambiente and Istituto Nazionale di Fisica Nucleare, Bologna (Italy)

    2006-08-15T23:59:59.000Z

    We examine the general form of potentials with zero reflection coefficient in one-dimensional Hamiltonians connected with Casimir invariants of non-compact groups.

  5. Institut Eurecom1 Institut Eurecom research is partially supported by its industrial members: BMW Group Research & Technology BMW Group

    E-Print Network [OSTI]

    Gesbert, David

    : BMW Group Research & Technology ­ BMW Group Company, Bouygues Telecom, Cisco Systems, France Telecom

  6. Effects of Oxygen-Containing Functional Groups on Supercapacitor Performance

    SciTech Connect (OSTI)

    Kerisit, Sebastien N.; Schwenzer, Birgit; Vijayakumar, M.

    2014-07-03T23:59:59.000Z

    Molecular dynamics (MD) simulations of the interface between graphene and the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BMIM OTf) were carried out to gain molecular-level insights into the performance of graphene-based supercapacitors and, in particular, determine the effects of the presence of oxygen-containing defects at the graphene surface on their integral capacitance. The MD simulations predict that increasing the surface coverage of hydroxyl groups negatively affects the integral capacitance, whereas the effect of the presence of epoxy groups is much less significant. The calculated variations in capacitance are found to be directly correlated to the interfacial structure. Indeed, hydrogen bonding between hydroxyl groups and SO3 anion moieties prevents BMIM+ and OTf- molecules from interacting favorably in the dense interfacial layer and restrains the orientation and mobility of OTf- ions, thereby reducing the permittivity of the ionic liquid at the interface. The results of the molecular simulations can facilitate the rational design of electrode materials for supercapacitors.

  7. Air breathing direct methanol fuel cell

    DOE Patents [OSTI]

    Ren, Xiaoming (Los Alamos, NM); Gottesfeld, Shimshon (Los Alamos, NM)

    2002-01-01T23:59:59.000Z

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source. Water loss from the cell is minimized by making the conductive cathode assembly hydrophobic and the conductive anode assembly hydrophilic.

  8. Direct conversion of algal biomass to biofuel

    DOE Patents [OSTI]

    Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

    2014-10-14T23:59:59.000Z

    A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

  9. Estimating Methods - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    direct costs, and other estimating considerations are discussed in this chapter. g4301-1chp15.pdf -- PDF Document, 28 KB Writer: John Makepeace Subjects: Administration Management...

  10. Direct-Cooled Power Electronic Substrate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    70C standalone cooling loop * Three dimensional inverter packaging and eliminating the heat exchanger volume by directly cooling the DBC result in compact, light weight design...

  11. Direct Observation of Aggregative Nanoparticle Growth: Kinetic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aggregative Nanoparticle Growth: Kinetic Modeling of the Size Distribution and Growth Rate. Direct Observation of Aggregative Nanoparticle Growth: Kinetic Modeling of the Size...

  12. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Broader source: Energy.gov (indexed) [DOE]

    "Advancing The Technology" Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Corey E. Weaver Ford Research and Advanced Engineering 05132011 Project...

  13. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Broader source: Energy.gov (indexed) [DOE]

    "Advancing The Technology" Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Corey E. Weaver Ford Research and Advanced Engineering 05182012 Project...

  14. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Broader source: Energy.gov (indexed) [DOE]

    "Advancing The Technology" Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Corey E. Weaver Ford Research and Advanced Engineering 06192014 Project...

  15. High Temperature 300°C Directional Drilling System

    Broader source: Energy.gov (indexed) [DOE]

    300C Directional Drilling System John Macpherson Baker Hughes Oilfield Operations DE-EE0002782 May 19, 2010 This presentation does not contain any proprietary confidential, or...

  16. MANUFACTURING LOGISTICS RESEARCH: TAXONOMY AND DIRECTIONS

    E-Print Network [OSTI]

    Wu, David

    MANUFACTURING LOGISTICS RESEARCH: TAXONOMY AND DIRECTIONS S. DAVID WU Lehigh University, Bethlehem formed in the workshop. To convey this vision we suggest a taxonomy that characterizes research problems

  17. ORNL microscopy directly images problematic lithium dendrites...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    865.574.7308 ORNL microscopy directly images problematic lithium dendrites in batteries ORNL electron microscopy captured the first real-time nanoscale images of the nucleation and...

  18. Ionization based multi-directional flow sensor

    DOE Patents [OSTI]

    Chorpening, Benjamin T. (Morgantown, WV); Casleton, Kent H. (Morgantown, WV)

    2009-04-28T23:59:59.000Z

    A method, system, and apparatus for conducting real-time monitoring of flow (airflow for example) in a system (a hybrid power generation system for example) is disclosed. The method, system and apparatus measure at least flow direction and velocity with minimal pressure drop and fast response. The apparatus comprises an ion source and a multi-directional collection device proximate the ion source. The ion source is configured to generate charged species (electrons and ions for example). The multi-directional collection source is configured to determine the direction and velocity of the flow in real-time.

  19. Direct electrochemistry and electrocatalysis of horseradish peroxidase...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    activity toward hydrogen peroxide. Citation: Kang X, J Wang, Z Tang, H Wu, and Y Lin.2009."Direct electrochemistry and electrocatalysis of horseradish peroxidase...

  20. High Temperature 300°C Directional Drilling System

    Broader source: Energy.gov [DOE]

    Project objective: provide a directional drilling system that can be used at environmental temperatures of up to 300°C; and at depths of 10; 000 meters.

  1. Future Directions in Engines and Fuels

    Broader source: Energy.gov (indexed) [DOE]

    parties Future Directions in Engines and Fuels 9 HP-EGR Cooler: Shell and tubes heat exchanger with optimised gas tube design High thermal exchange and resistance to...

  2. Direct Energy Services (Maine) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro SiteDaytonDestilariaDirect Energy ServicesDirectDirect

  3. Direct Energy Services (Pennsylvania) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro SiteDaytonDestilariaDirect EnergyDirectDirect Energy

  4. Collaborative Estimation of Gradient Direction by a Formation of AUVs under Communication Constraints

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of Autonomous Underwater Vehicles (AUVs). The present paper proposes a distributed solution in which a group], and autonomous systems as underwater and unmanned air ve- hicles (AUVs and UAVs) [6], [7]. Cooperative formation of vehicles uniformly distributed in a fixed circular formation, estimates the gradient direction

  5. Annals of Nuclear Energy 38 (2011) 808816 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Demazière, Christophe

    2011-01-01T23:59:59.000Z

    Keywords: Neutron noise ANM Power reactor approximation 2-Group theory Diffusion theory In this study of Nuclear Engineering, Chalmers University of Technology (Dema zière, 2004). The reactor transfer functionAnnals of Nuclear Energy 38 (2011) 808­816 Contents lists available at ScienceDirect Annals

  6. Toward Structural Dynamics: Protein Motions Viewed by Chemical Shift Modulations and Direct Detection of CN

    E-Print Network [OSTI]

    Toward Structural Dynamics: Protein Motions Viewed by Chemical Shift Modulations and Direct of anti-correlated fluctuations) in R-helices. This extends the prospects of structure- dynamics, several groups have proposed to investigate the existence of structure-dynamics relationships. We like

  7. Direct-Coupling O? Bond Forming Pathway in Cobalt Oxide Water Oxidation Catalysts

    E-Print Network [OSTI]

    Wang, Lee-Ping

    We report a catalytic mechanism for water oxidation in a cobalt oxide cubane model compound, in which the crucial O–O bond formation step takes place by direct coupling between two CoIV(O) metal oxo groups. Our results are ...

  8. DIRECT STEAM GENERATION USING THE SG4 500m2 PARABOLOIDAL DISH CONCENTRATOR

    E-Print Network [OSTI]

    steam turbine power block. As well as DSG, the ANU group is investigating energy conversion options conveyed the steam to our 50 kWe steam turbine; the new dish is oversized for the current engine, so someDIRECT STEAM GENERATION USING THE SG4 500m2 PARABOLOIDAL DISH CONCENTRATOR Greg Burgess 1 , Keith

  9. Structured Sparsity via Alternating Direction Methods

    E-Print Network [OSTI]

    2011-12-14T23:59:59.000Z

    minimizing the squared-error loss with a regularization term to induce group sparsity: ..... regardless of the loss function L(x). ..... Due to the excessive running.

  10. DIRECTIONAL RECRYSTALLISATION IN DISPERSION STRENGTHENED ALLOYS

    E-Print Network [OSTI]

    Cambridge, University of

    in the Phase Transformations Group at the Department of Materials Science and Metallurgy, University metallurgy of this particular process, and t

  11. hat does a group of 30 "sustainabil-

    E-Print Network [OSTI]

    Handy, Susan L.

    hat does a group of 30 "sustainabil- ity" professionals do when they run into a pair of two's greenest athledc facility. The group includes planners, environmental and sustainability directors a testament to humanity's constant threat to biodiversity. Eight pairs of sparrows were first released

  12. 1Nanomaterials for Energy Group Byungwoo Park

    E-Print Network [OSTI]

    Cho, Jaephil

    Fuel Cell Solar Panel Portable Devices Solar Cell Phosphor Li+ Battery #12;4Nanomaterials for Energy://bp.snu.ac.kr Cutting-Edge Nanomaterials for Energy: Solar Cell · Li+ Battery #12;2Nanomaterials for Energy Group- Sensitized Solar Cells DSSC SONY DSSC KIST #12;6Nanomaterials for Energy Group e-e- h

  13. University of Paderborn Software Engineering Group

    E-Print Network [OSTI]

    Kindler, Ekkart

    University of Paderborn Software Engineering Group 1 Subversion Configuration with Eclipse Softwaretechnikpraktikum 2006 #12;University of Paderborn Software Engineering Group 2 Installing SubclipseInstalling Subclipse Find and install new feature Use the Subclipse update site #12;University of Paderborn Software

  14. Fusion Technology Working Group Presented by

    E-Print Network [OSTI]

    Abdou, Mohamed

    Snowmass Fusion Technology Working Group Summary Presented by M. Abdou, S. Milora Snowmass July 23, 1999 #12;Technology Working Group Subgroup # 1 Subgroup # 2 Solid Walls Ulrickson / Mattas Liquid Walls / Ying Chamber Technology Abdou / Ulrickson Heating/CD/Fueling Swain / Temkin Magnets Schultz / Woolley

  15. THREE THEOREMS ON LINEAR GROUPS BOGDAN NICA

    E-Print Network [OSTI]

    Nica, Bogdan

    1960). A finitely generated linear group over a field of zero characteristic is virtually torsion) a subgroup of GLn(K), where K is a field. If we want to specify the field, we say that the group is linear torsion-free if some finite-index subgroup is torsion-free. As a matter of further termi- nology, Selberg

  16. Terms of Reference Information Security Group

    E-Print Network [OSTI]

    Haase, Markus

    Terms of Reference Information Security Group Version 3.1 8 March 2011 © University of Leeds 2011 Security Group Information Security Management 3.1 (8/3/11) Page 2 of 4 Document Control Owner: Kevin Darley, IT Security Co-ordinator, Information Systems Services, University of Leeds Source Location: V

  17. IY5512: Part 1 Information Security Group

    E-Print Network [OSTI]

    Mitchell, Chris

    IY5512: Part 1 1 Information Security Group IY5512 Computer Security Part 1: Introduction to computer security Chris Mitchell me@chrismitchell.net http://www.chrismitchell.net 1 Information Security) ... 2 Information Security Group Agenda · Overview · Security goals · Security approaches ­ prevention

  18. RENEWABLE ENERGY GROUPS COVET FUSION'S BUDGET

    E-Print Network [OSTI]

    RENEWABLE ENERGY GROUPS COVET FUSION'S BUDGET A group called the Energy Efficiency Education-effective and environmentally sound energy- efficiency and renewable energy programs." Rep. Philip R. Sharp (D-IN) and chair the resolution, H. Con. Res. 188). Sharp said "For too long, cost-effectiveefficiencyand renewable energy

  19. BREAST CANCER GROUP WOMEN'S HEALTH INTERDISCIPLINARY

    E-Print Network [OSTI]

    Spence, Harlan Ernest

    BREAST CANCER GROUP May 2009 WOMEN'S HEALTH INTERDISCIPLINARY RESEARCH CENTER [WHIRC] #12;2 Table: Breast Cancer Research and Treatment 4 Basic/Translational Research Carcinogenesis and Signaling Group 5R) Signaling in Breast Cancer 6 NF-B Family of Transcription Factors in Breast Cancer 7 Transgenic Mouse

  20. Active Learning of Group-Structured Environments

    E-Print Network [OSTI]

    Szepesvari, Csaba

    Active Learning of Group-Structured Environments G´abor Bart´ok, Csaba Szepesv´ari , Sandra Zilles with their environment. We investigate learning environments that have a group structure. We introduce a learning model an environment from partial information is far from trivial. However, positive results for special subclasses

  1. Group 3: Humidity, Temperature and Voltage (Presentation)

    SciTech Connect (OSTI)

    Wohlgemuth, J.

    2013-09-01T23:59:59.000Z

    This is a summary of the work of Group 3 of the International PV QA Task Force. Group 3 is chartered to develop accelerated stress tests that can be used as comparative predictors of module lifetime versus stresses associated with humidity, temperature and voltage.

  2. Permutation groups, minimal degrees and quantum computing

    E-Print Network [OSTI]

    Julia Kempe; Laszlo Pyber; Aner Shalev

    2006-07-28T23:59:59.000Z

    We study permutation groups of given minimal degree without the classical primitivity assumption. We provide sharp upper bounds on the order of a permutation group of minimal degree m and on the number of its elements of any given support. These results contribute to the foundations of a non-commutative coding theory. A main application of our results concerns the Hidden Subgroup Problem for the symmetric group in Quantum Computing. We completely characterize the hidden subgroups of the symmetric group that can be distinguished from identity with weak Quantum Fourier Sampling, showing these are exactly the subgroups with bounded minimal degree. This implies that the weak standard method for the symmetric group has no advantage whatsoever over classical exhaustive search.

  3. On perfect order subsets in finite groups

    E-Print Network [OSTI]

    Tuan, Nguyen Trong

    2010-01-01T23:59:59.000Z

    If $G$ is a finite group and $x\\in G$ then the set of all elements of $G$ having the same order as $x$ is called {\\em an order subset of $G$ determined by $x$} (see [2]). We say that $G$ is a {\\em group with perfect order subsets} or briefly, $G$ is a {\\em $POS$-group} if the number of elements in each order subset of $G$ is a divisor of $|G|$. In this paper we prove that for any $n\\geq 4$, the symmetric group $S_n$ is not $POS$-group. This gives the positive answer to one of two questions rising from Conjecture 5.2 in [3].

  4. DIRECTING THE MOVEMENT OF FISH WITH ELECTRICITY

    E-Print Network [OSTI]

    DIRECTING THE MOVEMENT OF FISH WITH ELECTRICITY Marine Biological Laboratory APR 21 1953 WOODS HOLE, Albert M. Day, Director DIRECTING THE MOVH-IENT OF FISH WITH ELECTRICITY by Alberton L. McLain Fishery of an electrical leading device 21 Literature cited. ..,...,..,..........·· 2k ILLUSTRATIONS Figure Page 1. Diagram

  5. Edge Direction and the Structure of Networks

    E-Print Network [OSTI]

    Foster, Jacob G; Grassberger, Peter; Paczuski, Maya

    2009-01-01T23:59:59.000Z

    Directed networks are ubiquitous, from food webs to the World Wide Web, but the directionality of their interactions has been disregarded in most studies of global network structure. One important global property is the tendency of nodes with similar numbers of edges to be connected. This tendency, called assortativity, affects crucial structural and dynamic properties of real-world networks. Here we demonstrate the importance of edge direction by studying assortativity in directed networks. We define a set of four directed assortativity measures. By comparison to randomized networks, we discover significant features of three network classes: online/social networks, food webs, and word-adjacency networks. The full set of measures is needed to reveal patterns common to the class or to separate networks that have been previously classified together. Our measures expose limitations of existing theoretical models, and show that many networks are not purely assortative or disassortative but a mixture of the two.

  6. Unitary reflection groups for quantum fault tolerance

    E-Print Network [OSTI]

    Michel Planat; Maurice R. Kibler

    2009-02-24T23:59:59.000Z

    This paper explores the representation of quantum computing in terms of unitary reflections (unitary transformations that leave invariant a hyperplane of a vector space). The symmetries of qubit systems are found to be supported by Euclidean real reflections (i.e., Coxeter groups) or by specific imprimitive reflection groups, introduced (but not named) in a recent paper [Planat M and Jorrand Ph 2008, {\\it J Phys A: Math Theor} {\\bf 41}, 182001]. The automorphisms of multiple qubit systems are found to relate to some Clifford operations once the corresponding group of reflections is identified. For a short list, one may point out the Coxeter systems of type $B_3$ and $G_2$ (for single qubits), $D_5$ and $A_4$ (for two qubits), $E_7$ and $E_6$ (for three qubits), the complex reflection groups $G(2^l,2,5)$ and groups No 9 and 31 in the Shephard-Todd list. The relevant fault tolerant subsets of the Clifford groups (the Bell groups) are generated by the Hadamard gate, the $\\pi/4$ phase gate and an entangling (braid) gate [Kauffman L H and Lomonaco S J 2004 {\\it New J. of Phys.} {\\bf 6}, 134]. Links to the topological view of quantum computing, the lattice approach and the geometry of smooth cubic surfaces are discussed.

  7. Unitary reflection groups for quantum fault tolerance

    E-Print Network [OSTI]

    Planat, Michel

    2008-01-01T23:59:59.000Z

    This paper explores the representation of quantum computing in terms of unitary reflections (unitary transformations that leaves invariant a hyperplane of a vector space). The symmetries of qubit systems are found to be supported by Euclidean real reflections (i.e., Coxeter groups) or by specific imprimitive reflection groups, introduced (but not named) in a recent paper [Planat M and Jorrand Ph 2008, J Phys A: Math Theor 41, 182001]. The automorphisms of multiple qubit systems are found to relate to some Clifford operations once the corresponding group of reflections is identified. For a short list, one may point out the Coxeter systems of type B3 and G2 (for single qubits), D5 and A4 (for two qubits), E7 and E6 (for three qubits), and the complex reflection groups G(2l, 2, 5). The relevant fault tolerant groups of reflections (the Bell groups) are generated, as subgroups of the Clifford groups, by the Hadamard gate, the $\\pi$/4 phase gate and an entangling (braid) gate [Kauffman L H and Lomonaco S J 2004 Ne...

  8. D-branes on group manifolds and fusion rings

    E-Print Network [OSTI]

    P. Bouwknegt; P. Dawson; D. Ridout

    2002-10-31T23:59:59.000Z

    In this paper we compute the charge group for symmetry preserving D-branes on group manifolds for all simple, simply-connected, connected compact Lie groups G.

  9. Contrasting the direct radiative effect and direct radiative forcing of aerosols

    E-Print Network [OSTI]

    Heald, Colette L.

    The direct radiative effect (DRE) of aerosols, which is the instantaneous radiative impact of all atmospheric particles on the Earth's energy balance, is sometimes confused with the direct radiative forcing (DRF), which ...

  10. Group action in topos quantum physics

    SciTech Connect (OSTI)

    Flori, C. [Perimeter Institute for Theoretical Physics, 31 Caroline Street N, Waterloo, Ontario N2L 2Y5 (Canada)] [Perimeter Institute for Theoretical Physics, 31 Caroline Street N, Waterloo, Ontario N2L 2Y5 (Canada)

    2013-03-15T23:59:59.000Z

    Topos theory has been suggested first by Isham and Butterfield, and then by Isham and Doering, as an alternative mathematical structure within which to formulate physical theories. In particular, it has been used to reformulate standard quantum mechanics in such a way that a novel type of logic is used to represent propositions. In this paper, we extend this formulation to include the notion of a group and group transformation in such a way that we overcome the problem of twisted presheaves. In order to implement this we need to change the type of topos involved, so as to render the notion of continuity of the group action meaningful.

  11. Representations of the groups of order 64

    E-Print Network [OSTI]

    Hansen, Roger Finn

    1967-01-01T23:59:59.000Z

    -seven groups of order 64 are divided into twenty-seven families, . The families are denoted by 0, i = 1 2, . . . , 27. 1 Definition 2. 9. Two groups belong to the same ~famil if they are isoclinic. Definition 2. 10. The groups of lowest order in a family.... Then Z (G) = C 0( C and G/Z (G) = 16 I'2 al. As in the previous example G/2 (G) consists of the following cosets: g ' = (1, 2, 3, 4) g ' = (5678) 16' = (61, 62, 63, 64) 15 The following table was calculated using a representative ele- ment from...

  12. Topological Quantum Hashing with the Icosahedral Group

    SciTech Connect (OSTI)

    Burrello, Michele [International School for Advanced Studies (SISSA), Via Beirut 2-4, I-34014 Trieste (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Trieste (Italy); Xu Haitan [Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou 310027 (China); Mussardo, Giuseppe [International School for Advanced Studies (SISSA), Via Beirut 2-4, I-34014 Trieste (Italy); International Centre for Theoretical Physics (ICTP), I-34014 Trieste (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Trieste (Italy); Wan Xin [Asia Pacific Center for Theoretical Physics (APCTP), Pohang, Gyeongbuk 790-784 (Korea, Republic of); Department of Physics, Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou 310027 (China)

    2010-04-23T23:59:59.000Z

    We study an efficient algorithm to hash any single-qubit gate into a braid of Fibonacci anyons represented by a product of icosahedral group elements. By representing the group elements by braid segments of different lengths, we introduce a series of pseudogroups. Joining these braid segments in a renormalization group fashion, we obtain a Gaussian unitary ensemble of random-matrix representations of braids. With braids of length O(log{sup 2}(1/{epsilon})), we can approximate all SU(2) matrices to an average error {epsilon} with a cost of O(log(1/{epsilon})) in time. The algorithm is applicable to generic quantum compiling.

  13. Hunton Group core workshop and field trip

    SciTech Connect (OSTI)

    Johnson, K.S. [ed.

    1993-12-31T23:59:59.000Z

    The Late Ordovician-Silurian-Devonian Hunton Group is a moderately thick sequence of shallow-marine carbonates deposited on the south edge of the North American craton. This rock unit is a major target for petroleum exploration and reservoir development in the southern Midcontinent. The workshop described here was held to display cores, outcrop samples, and other reservoir-characterization studies of the Hunton Group and equivalent strata throughout the region. A field trip was organized to complement the workshop by allowing examination of excellent outcrops of the Hunton Group of the Arbuckle Mountains.

  14. Spinning Fluids: A Group Theoretical Approach

    E-Print Network [OSTI]

    Dario Capasso; Debajyoti Sarkar

    2014-04-07T23:59:59.000Z

    We extend the Lagrangian formulation of relativistic non-abelian fluids in group theory language. We propose a Mathisson-Papapetrou equation for spinning fluids in terms of the reduction limit of de Sitter group. The equation we find correctly boils down to the one for non-spinning fluids. We study the application of our results for an FRW cosmological background for fluids with no vorticity and for dusts in the vicinity of a Kerr black hole. We also explore two alternative approaches based on a group theoretical formulation of particles dynamics.

  15. Working Group 5 Applying Mathematics in Realistic Situations Group Leaders: Ivan Meznik & Enrica Lemut

    E-Print Network [OSTI]

    Spagnolo, Filippo

    Working Group 5 ­ Applying Mathematics in Realistic Situations Group Leaders: Ivan Meznik & Enrica Lemut Seven papers have been presented and discussed out of the 9 announced and the 8 included people presenting a contribution participated to all the Working Group sessions; also other people

  16. Promoting Self Directed Learning 1 Running head: PROMOTING SELF DIRECTED LEARNING

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    as incompatible. This is due to the origins of both types of learning environments which, when consideredPromoting Self Directed Learning 1 Running head: PROMOTING SELF DIRECTED LEARNING Promoting Self Directed Learning in Simulation Based Discovery Learning Environments through Intelligent Support Koen

  17. Records Management Vice-Chancellor's Directive 1 Records Management Vice-Chancellor's Directive

    E-Print Network [OSTI]

    University of Technology, Sydney

    Records Management Vice-Chancellor's Directive 1 Records Management Vice-Chancellor's Directive-Chancellor's Directive Privacy Management Plan Intellectual Property Policy UTS Records Management Procedures Privacy Access) Act 2009 (NSW) (GIPA Act) File number UR07/1205 Superseded documents Records Management Vice

  18. La conversion lectromcanique directe. 4 fvrier 1999 -ENS Cachan -SEE LES ENTRANEMENTS LECTROMCANIQUES DIRECTS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    La conversion électromécanique directe. 4 février 1999 - ENS Cachan - SEE LES ENTRA�NEMENTS direct drives represent ultimate simplification of the electromechanical conversion systems because'entraînement électromécanique direct représente la simplification ultime des systèmes de conversion électromécanique d

  19. Direct and semi-direct aerosol effects of Southern African1 biomass burning aerosol2

    E-Print Network [OSTI]

    Wood, Robert

    , negative top of atmosphere (TOA)13 semi-direct radiative effects associated with increased low cloud cover dominate over a weaker14 positive all-sky direct radiative effect (DRE). In contrast, over the land where positive semi-direct radiative effect that dominates over a near-zero DRE. Over the ocean, the17 cloud

  20. Group-V elemental monolayers: the case of antimonene

    E-Print Network [OSTI]

    Wang, Gaoxue; Karna, Shashi P

    2015-01-01T23:59:59.000Z

    Group-V elemental monolayers including phosphorene are emerging as promising 2D materials with semiconducting electronic properties. Here, we present the results of first principles calculations on stability, mechanical and electronic properties of 2D antimony, antimonene. Our calculations show that {\\alpha} and \\b{eta} allotropes of antimonene are stable and semiconducting. The {\\alpha}-Sb has a distorted atomic structure with two atomic sub-layers and \\b{eta}-Sb has a buckled hexagonal lattice. The calculated Raman spectra and STM images have distinct features identifying in-plane and out-of-plane vibrating modes in both allotropes. The \\b{eta}-Sb has nearly isotropic mechanical properties while {\\alpha}-Sb shows strongly anisotropic characteristics. An indirect-direct band gap transition is expected with moderate tensile strains applied to antimonene monolayers. Since the mechanical exfoliation (scotch tape) approach will be difficult to fabricate antimonene due to large binding energy of bilayers, the sta...