National Library of Energy BETA

Sample records for direct solar radiation

  1. Passive-solar directional-radiating cooling system

    DOE Patents [OSTI]

    Hull, J.R.; Schertz, W.W.

    1985-06-27

    A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

  2. Passive-solar directional-radiating cooling system

    DOE Patents [OSTI]

    Hull, John R.; Schertz, William W.

    1986-01-01

    A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

  3. NREL: Solar Radiation Research - Solar Radiation Research Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Radiation Research Laboratory Photographs The Solar Radiation Research Laboratory (SRRL) houses more than 70 instruments to analyze and record solar radiation and surface ...

  4. ARM: Baseline Solar Radiation Network (BSRN): solar irradiances...

    Office of Scientific and Technical Information (OSTI)

    Baseline Solar Radiation Network (BSRN): solar irradiances Title: ARM: Baseline Solar Radiation Network (BSRN): solar irradiances Baseline Solar Radiation Network (BSRN): solar ...

  5. Relative Accuracy of 1-Minute and Daily Total Solar Radiation Data for 12 Global and 4 Direct Beam Solar Radiometers

    SciTech Connect (OSTI)

    Myers, D.; Wilcox, S. M.

    2009-01-01

    We evaluated the relative performance of 12 global and four direct beam solar radiometers deployed at a single site over a 12-month period. Test radiometer irradiances were compared with a reference irradiance consisting of either an absolute cavity radiometer (during calibrations) or a low uncertainty thermopile pyrheliometer (during the evaluation period) for pyrheliometers; and for pyranometers a reference global irradiance computed from the reference pyrheliometer and diffuse irradiance from a shaded pyranometer. One minute averages of 3-second data for 12 months from the test instrument measurements were compared with the computed reference data set. Combined uncertainty in the computed reference irradiance is 1.8% {+-} 0.5%. Total uncertainty in the pyranometer comparisons is {+-}2.5%. We show mean percent difference between reference global irradiance and test pyranometer 1 minute data as a function of zenith angle, and percent differences between daily totals for the reference and test irradiances as a function of day number. We offer no explicit conclusion about the performance of instrument models, as a general array of applications with a wide range of instrumentation and accuracy requirements could be addressed with any of the radiometers.

  6. Solar Radiation Empirical Quality Assessment

    Energy Science and Technology Software Center (OSTI)

    1994-03-01

    The SERIQC1 subroutine performs quality assessment of one, two, or three-component solar radiation data (global horizontal, direct normal, and diffuse horizontal) obtained from one-minute to one-hour integrations. Included in the package is the QCFIT tool to derive expected values from historical data, and the SERIQC1 subroutine to assess the quality of measurement data.

  7. Solar Position Algorithm for Solar Radiation Applications (Revised...

    Office of Scientific and Technical Information (OSTI)

    Solar Position Algorithm for Solar Radiation Applications (Revised) Citation Details In-Document Search Title: Solar Position Algorithm for Solar Radiation Applications (Revised) ...

  8. Solar and Infrared Radiation Station (SIRS) Handbook

    SciTech Connect (OSTI)

    Stoffel, T

    2005-07-01

    The Solar Infrared Radiation Station (SIRS) provides continuous measurements of broadband shortwave (solar) and longwave (atmospheric or infrared) irradiances for downwelling and upwelling components. The following six irradiance measurements are collected from a network of stations to help determine the total radiative flux exchange within the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Climate Research Facility: Direct normal shortwave (solar beam) Diffuse horizontal shortwave (sky) Global horizontal shortwave (total hemispheric) Upwelling shortwave (reflected) Downwelling longwave (atmospheric infrared) Upwelling longwave (surface infrared)

  9. Solar Radiation Research Laboratory | Energy Systems Integration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Radiation Research Laboratory Since 1981, NREL's Solar Radiation Research Laboratory (SRRL) has been collecting continuous measurements of basic solar radiation components, ...

  10. 20 Years of Solar Measurements: The Solar Radiation Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Years of Solar Measurements: The Solar Radiation Research Laboratory (SRRL) at NREL Tom ... * Continuous measurements of key solar radiation resources * Calibrations of instruments ...

  11. Relative Accuracy of 1-Minute and Daily Total Solar Radiation Data for 12 Global and 4 Direct Beam Solar Radiometers: Preprint

    SciTech Connect (OSTI)

    Myers, D. R.; Wilcox, S. M.

    2009-03-01

    This report evaluates the relative performance of 12 global and four direct beam solar radiometers deployed at a single site over a 12-month period. Test radiometer irradiances were compared with a reference irradiance consisting of either an absolute cavity radiometer (during calibrations) or a low uncertainty thermopile pyrheliometer (during the evaluation period) for pyrheliometers; and for pyranometers a reference global irradiance computed from the reference pyrheliometer and diffuse irradiance from a shaded pyranometer.

  12. Solar radiation absorbing material

    DOE Patents [OSTI]

    Googin, John M.; Schmitt, Charles R.; Schreyer, James M.; Whitehead, Harlan D.

    1977-01-01

    Solar energy absorbing means in solar collectors are provided by a solar selective carbon surface. A solar selective carbon surface is a microporous carbon surface having pores within the range of 0.2 to 2 micrometers. Such a surface is provided in a microporous carbon article by controlling the pore size. A thermally conductive substrate is provided with a solar selective surface by adhering an array of carbon particles in a suitable binder to the substrate, a majority of said particles having diameters within the range of about 0.2-10 microns.

  13. Fast All-sky Radiation Models for Solar applications (FARMS)...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Fast All-sky Radiation Models for Solar applications ... Radiative transfer (RT) models simulating broadband solar radiation have been widely used ...

  14. Solar Radiation Basics | Department of Energy

    Energy Savers [EERE]

    Solar radiation can be captured and turned into useful forms of energy, such as heat and electricity, using a variety of technologies. However, the technical feasibility and ...

  15. Turning collectors for solar radiation

    DOE Patents [OSTI]

    Barak, Amitzur Z.

    1976-01-01

    A device is provided for turning a solar collector about the polar axis so that the collector is directed toward the sun as the sun tracks the sky each day. It includes two heat-expansive elements and a shadow plate. In the morning a first expansive element is heated, expands to turn the collector to face the sun, while the second expansive element is shaded by the plate. In the afternoon the second element is heated, expands to turn the collector to face the sun, while the first is shaded by the plate.

  16. Estimation of solar radiation from Australian meteorological observations

    SciTech Connect (OSTI)

    Moriarty, W.W. )

    1991-01-01

    A carefully prepared set of Australian radiation and meteorological data was used to develop a system for estimating hourly or instantaneous broad direct, diffuse and global radiation from meteorological observations. For clear sky conditions relationships developed elsewhere were adapted to Australian data. For cloudy conditions the clouds were divided into two groups, high clouds and opaque (middle and low) clouds, and corrections were made to compensate for the bias due to reporting practices for almost clear and almost overcast skies. Careful consideration was given to the decrease of visible sky toward the horizon caused by the vertical extent of opaque clouds. Equations relating cloud and other meteorological observations to the direct and diffuse radiation contained four unknown quantities, functions of cloud amount and of solar elevation, which were estimated from the data. These were proportions of incident solar radiation passed on as direct and as diffuse radiation by high clouds, and as diffuse radiation by opaque clouds. When the resulting relationships were used to estimate global, direct and diffuse radiation on a horizontal surface, the results were good, especially for global radiation. Some discrepancies between estimates and measurements of diffuse and direct radiation were probably due to erroneously high measurements of diffuse radiation.

  17. Solar Radiation Research Laboratory (Poster)

    SciTech Connect (OSTI)

    Stoffel, T.; Andreas, A.; Reda, I.; Dooraghi, M.; Habte, A.; Kutchenreiter, M.; Wilcox, S.

    2012-07-01

    SunShot Initiative awardee posters describing the different technologies within the four subprograms of the DOE Solar Program (Photovoltaics, Concentrating Solar Power, Soft Costs, and Systems Integration).

  18. High efficiency, radiation-hard solar cells

    SciTech Connect (OSTI)

    Ager III, J.W.; Walukiewicz, W.

    2004-10-22

    The direct gap of the In{sub 1-x}Ga{sub x}N alloy system extends continuously from InN (0.7 eV, in the near IR) to GaN (3.4 eV, in the mid-ultraviolet). This opens the intriguing possibility of using this single ternary alloy system in single or multi-junction (MJ) solar cells of the type used for space-based surveillance satellites. To evaluate the suitability of In{sub 1-x}Ga{sub x}N as a material for space applications, high quality thin films were grown with molecular beam epitaxy and extensive damage testing with electron, proton, and alpha particle radiation was performed. Using the room temperature photoluminescence intensity as a indirect measure of minority carrier lifetime, it is shown that In{sub 1-x}Ga{sub x}N retains its optoelectronic properties at radiation damage doses at least 2 orders of magnitude higher than the damage thresholds of the materials (GaAs and GaInP) currently used in high efficiency MJ cells. This indicates that the In{sub 1-x}Ga{sub x}N is well-suited for the future development of ultra radiation-hard optoelectronics. Critical issues affecting development of solar cells using this material system were addressed. The presence of an electron-rich surface layer in InN and In{sub 1-x}Ga{sub x}N (0 < x < 0.63) was investigated; it was shown that this is a less significant effect at large x. Evidence of p-type activity below the surface in Mg-doped InN was obtained; this is a significant step toward achieving photovoltaic action and, ultimately, a solar cell using this material.

  19. Solar Radiation Data from the World Radiation Data Centre (WRDC) Online Archive

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The WRDC, located at the Main Geophysical Observatory in St. Petersburg, Russia, serves as a central depository for solar radiation data collected at over 1000 measurement sites throughout the world. The WRDC was established in accordance with Resolution 31 of WMO Executive Committee XVIII in 1964. The WRDC centrally collects, archives and published radiometric data from the world to ensure the availability of these data for research by the international scientific community. The WRDC archive contains the following measurements (not all observations are made at all sites): • Global solar radiation • Diffuse solar radiation • Downward atmospheric radiation • Sunshine duration • Direct solar radiation (hourly and instantaneous) • Net total radiation • Net terrestrial surface radiation (upward) • Terrestrial surface radiation • Reflected solar radiation • Spectral radiation components (instantaneous fluxes) At present, this online archive contains a subset of the data stored at the WRDC. As new measurements are received and processed, they are added to the archive. The archive currently contains all available data from 1964-1993.[From ôBackground on the WRDCö at http://wrdc-mgo.nrel.gov/html/about.html

  20. Historically Black Colleges and Universities (HBCU) Solar Radiation Monitoring Network

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Historically Black Colleges and Universities (HBCU) Solar Radiation Monitoring Network operated from November 1985 through December 1996. The six-station network provided 5-minute averaged measurements of global and diffuse horizontal solar irradiance. The data were processed at the National Renewable Energy Laboratory (NREL) to improve the assessment of the solar radiation resources in the southeastern United States. Three of the stations also measured the direct-normal solar irradiance with a pyrheliometer mounted in an automatic sun tracker. All data are archived in the Standard Broadband Format (SBF) with quality-assessment indicators. Monthly data summaries and plots are also available for each month. In January 1997 the HBCU sites became part of the CONFRRM solar monitoring network.

  1. Caprolactam production by direct solar flux

    SciTech Connect (OSTI)

    Talukdar, J.; Wong, E.H.S.; Mathur, V.K. )

    1991-01-01

    The use of solar energy for the photonitrozation of cyclohexane for the production of cyclohexanone oxime hydrochloride, an intermediate for the manufacture of caprolactam, is discussed. Experimental results show the technical feasibility of such a reaction in the presence of radiation of wavelength 350-550 nm simulating sunlight.

  2. Direct detector for terahertz radiation

    DOE Patents [OSTI]

    Wanke, Michael C.; Lee, Mark; Shaner, Eric A.; Allen, S. James

    2008-09-02

    A direct detector for terahertz radiation comprises a grating-gated field-effect transistor with one or more quantum wells that provide a two-dimensional electron gas in the channel region. The grating gate can be a split-grating gate having at least one finger that can be individually biased. Biasing an individual finger of the split-grating gate to near pinch-off greatly increases the detector's resonant response magnitude over prior QW FET detectors while maintaining frequency selectivity. The split-grating-gated QW FET shows a tunable resonant plasmon response to FIR radiation that makes possible an electrically sweepable spectrometer-on-a-chip with no moving mechanical optical parts. Further, the narrow spectral response and signal-to-noise are adequate for use of the split-grating-gated QW FET in a passive, multispectral terahertz imaging system. The detector can be operated in a photoconductive or a photovoltaic mode. Other embodiments include uniform front and back gates to independently vary the carrier densities in the channel region, a thinned substrate to increase bolometric responsivity, and a resistive shunt to connect the fingers of the grating gate in parallel and provide a uniform gate-channel voltage along the length of the channel to increase the responsivity and improve the spectral resolution.

  3. On the Results of Measurements of the Direct Sun Radiation Flux by Actinometer and of Maximal Polarization of Sky Brightness in the Solar Almucantar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On the Path to SunShot - Community Solar On the Path to SunShot - Community Solar On the Path to SunShot - Community Solar In the On the Path to SunShot report series, the Emerging Opportunities and Challenges in Financing Solar report highlights how community solar has the ability to greatly expand solar access to the general public and which states currently have legislation to support it. Learn more about the reports in the On the Path to SunShot series and view all of their associated

  4. Spectral Solar Radiation Data Base at NREL

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Solar Energy Research Institute (SERI)*, Electric Power Research Institute (EPRI), Florida Solar Energy Center (FSEC), and Pacific Gas and Electric Company (PG&E) cooperated to produce a spectral solar radiation data base representing a range of atmospheric conditions (or climates) that is applicable to several different types of solar collectors. Data that are included in the data base were collected at FSEC from October 1986 to April 1988, and at PG&E from April 1987 to April 1988. FSEC operated one EPRI and one SERI spectroradiometer almost daily at Cape Canaveral, which contributed nearly 2800 spectra to the data base. PG&E operated one EPRI spectroradiometer at San Ramon, Calif., as resources permitted, contributing nearly 300 spectra to the data base. SERI collected about 200 spectra in the Denver/Golden, Colo., area form November 1987 to February 1988 as part of a research project to study urban spectral solar radiation, and added these data to the data base. *In September 1991 the Solar Energy Research Institute became the National Renewable Energy Laboratory. [Description taken from http://rredc.nrel.gov/solar/old_data/spectral/

  5. Posters Mean Fluxes of Visible Solar Radiation in Broken Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Posters Mean Fluxes of Visible Solar Radiation in Broken Clouds V. E. Zuev, G. A. Titov, ... Introduction Generally, radiation codes for general circulation models (GCMs) include, ...

  6. Fast All-Sky Radiation Model for Solar Applications (FARMS):...

    Office of Scientific and Technical Information (OSTI)

    Fast All-Sky Radiation Model for Solar Applications (FARMS): A Brief Overview of ... Citation Details In-Document Search Title: Fast All-Sky Radiation Model for Solar ...

  7. NREL: Concentrating Solar Power Research - Concentrating Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Resource Maps These direct-normal solar radiation maps-filtered by solar resource and land availability-identify the most economically suitable lands ...

  8. Placement and efficiency effects on radiative forcing of solar installations

    SciTech Connect (OSTI)

    Burg, Brian R.; Ruch, Patrick; Paredes, Stephan; Michel, Bruno

    2015-09-28

    The promise for harnessing solar energy being hampered by cost, triggered efforts to reduce them. As a consequence low-efficiency, low-cost photovoltaics (PV) panels prevail. Conversely, in the traditional energy sector efficiency is extremely important due to the direct costs associated to fuels. This also affects solar energy due to the radiative forcing caused by the dark solar panels. In this paper we extend the concept of energy payback time by including the effect of albedo change, which gives a better assessment of the system sustainability. We present an analysis on the short and medium term climate forcing effects of different solar collectors in Riyadh, Saudi Arabia and demonstrate that efficiency is important to reduce the collector area and cost. This also influences the embodied energy and the global warming potential. We show that a placement of a high concentration photovoltaic thermal solar power station outside of the city using a district cooling system has a double beneficial effect since it improves the solar conversion efficiency and reduces the energy demand for cooling in the city. We also explain the mechanisms of the current economic development of solar technologies and anticipate changes.

  9. Absorption of solar radiation in broken clouds

    SciTech Connect (OSTI)

    Zuev, V.E.; Titov, G.A.; Zhuravleva, T.B.

    1996-04-01

    It is recognized now that the plane-parallel model unsatisfactorily describes the transfer of radiation through broken clouds and that, consequently, the radiation codes of general circulation models (GCMs) must be refined. However, before any refinement in a GCM code is made, it is necessary to investigate the dependence of radiative characteristics on the effects caused by the random geometry of cloud fields. Such studies for mean fluxes of downwelling and upwelling solar radiation in the visible and near-infrared (IR) spectral range were performed by Zuev et al. In this work, we investigate the mean spectral and integrated absorption of solar radiation by broken clouds (in what follows, the term {open_quotes}mean{close_quotes} will be implied but not used, for convenience). To evaluate the potential effect of stochastic geometry, we will compare the absorption by cumulus (0.5 {le} {gamma} {le} 2) to that by equivalent stratus ({gamma} <<1) clouds; here {gamma} = H/D, H is the cloud layer thickness and D the characteristic horizontal cloud size. The equivalent stratus clouds differ from cumulus only in the aspect ratio {gamma}, all the other parameters coinciding.

  10. NREL Updates National Solar Radiation Database - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Updates National Solar Radiation Database May 25, 2007 The Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) and collaborators have updated the National Solar Radiation Database, a planning tool that provides critical information about the amount of solar energy that is available at any given location. The database is widely used by solar system designers, building architects and engineers, renewable energy analysts and others to plan, size and site solar energy systems.

  11. Spectral and temperature correction of silicon photovoltaic solar radiation detectors

    SciTech Connect (OSTI)

    Michalsky, J.J.; Perez, R.; Harrison, L. ); LeBaron, B.A. )

    1991-01-01

    Silicon photovoltaic sensors are an inexpensive alternative to standard thermopile sensors for the measurement of solar radiation. However, their temperature and spectral response render them less accurate for global horizontal irradiance and unsuitable for direct beam and diffuse horizontal irradiance unless they can be reliably corrected. A correction procedure for the rotating shadowband radiometer, which measures all three components, based on a three-way parameterization of the solar position and sky conditions is proposed. After correction, root-mean-square errors for the global and diffuse horizontal irradiance and the direct normal irradiance are about 10, 12, and 13 W/m{sup 2} in comparison with coincident, 5-minute thermopile measurements. While the numerical results are specific to the rotating shadowband instrument, the correction algorithm should apply universally.

  12. Solar radiation on variously oriented sloping surfaces

    SciTech Connect (OSTI)

    Gopinathan, K.K. )

    1991-01-01

    Monthly average daily irradiation on surfaces tilted towards the equator and also inclined at various azimuth angles are estimated for two locations in Lesotho and the results are presented. The isotropic model suggested by Liu and Jordan (Trans. of Ashrae, 526, 1962) along with the modified equation of Klein (Solar Energy, 19, 4, 1977) are employed for the estimation purposes. Surface orientations are selected at three inclinations for six different azimuth angles. Conclusions are reached for optimum tilt and orientation for summer, winter and annual collection. Total annual radiation values are computed for all the slopes and orientations.

  13. Simulation of solar radiative transfer in cumulus clouds

    SciTech Connect (OSTI)

    Zuev, V.E.; Titov, G.A.

    1996-04-01

    This work presents a 3-D model of radiative transfer which is used to study the relationship between the spatial distribution of cumulus clouds and fluxes (albedo and transmittance) of visible solar radiation.

  14. Spectral Solar Radiation Data Base at NREL

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    *In September 1991 the Solar Energy Research Institute became the National Renewable Energy Laboratory. [Description taken from http://rredc.nrel.gov/solar/old_data/spectral/

  15. Future Directions in Simulating Solar Geoengineering

    SciTech Connect (OSTI)

    Kravitz, Benjamin S.; Robock, Alan; Boucher, Olivier

    2014-08-05

    Solar geoengineering is a proposed set of technologies to temporarily alleviate some of the consequences of anthropogenic greenhouse gas emissions. The Geoengineering Model Intercomparison Project (GeoMIP) created a framework of geoengineering simulations in climate models that have been performed by modeling centers throughout the world (B. Kravitz et al., The Geoengineering Model Intercomparison Project (GeoMIP), Atmospheric Science Letters, 12(2), 162-167, doi:10.1002/asl.316, 2011). These experiments use state-of-the-art climate models to simulate solar geoengineering via uniform solar reduction, creation of stratospheric sulfate aerosol layers, or injecting sea spray into the marine boundary layer. GeoMIP has been quite successful in its mission of revealing robust features and key uncertainties of the modeled effects of solar geoengineering.

  16. Measuring Broadband IR Irradiance in the Direct Solar Beam (Poster...

    Office of Scientific and Technical Information (OSTI)

    and infrared bands below and above 0.2 micrometers and 50 micrometers, respectively. ... the direct solar beam from 3 micrometers to 50 micrometers, as first step that might be ...

  17. Measuring Broadband IR Irradiance in the Direct Solar Beam (Presentati...

    Office of Scientific and Technical Information (OSTI)

    beyond the ultraviolet and infrared bands below and above 0.2 um and 50 um, respectively. ... in the direct solar beam from 3 um to 50 um, as a first step that might be used to ...

  18. Solar and Photovoltaic Data from the University of Oregon Solar Radiation Monitoring Laboratory (UO SRML)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The UO SRML is a regional solar radiation data center whose goal is to provide sound solar resource data for planning, design, deployment, and operation of solar electric facilities in the Pacific Northwest. The laboratory has been in operation since 1975. Solar data includes solar resource maps, cumulative summary data, daily totals, monthly averages, single element profile data, parsed TMY2 data, and select multifilter radiometer data. A data plotting program and other software tools are also provided. Shade analysis information and contour plots showing the effect of tilt and orientation on annual solar electric system perfomance make up a large part of the photovoltaics data.(Specialized Interface)

  19. Denoising solar radiation data using coiflet wavelets

    SciTech Connect (OSTI)

    Karim, Samsul Ariffin Abdul Janier, Josefina B. Muthuvalu, Mohana Sundaram; Hasan, Mohammad Khatim; Sulaiman, Jumat; Ismail, Mohd Tahir

    2014-10-24

    Signal denoising and smoothing plays an important role in processing the given signal either from experiment or data collection through observations. Data collection usually was mixed between true data and some error or noise. This noise might be coming from the apparatus to measure or collect the data or human error in handling the data. Normally before the data is use for further processing purposes, the unwanted noise need to be filtered out. One of the efficient methods that can be used to filter the data is wavelet transform. Due to the fact that the received solar radiation data fluctuates according to time, there exist few unwanted oscillation namely noise and it must be filtered out before the data is used for developing mathematical model. In order to apply denoising using wavelet transform (WT), the thresholding values need to be calculated. In this paper the new thresholding approach is proposed. The coiflet2 wavelet with variation diminishing 4 is utilized for our purpose. From numerical results it can be seen clearly that, the new thresholding approach give better results as compare with existing approach namely global thresholding value.

  20. National Solar Radiation Database 1991-2005 Update: User's Manual

    SciTech Connect (OSTI)

    Wilcox, S.

    2007-04-01

    This manual describes how to obtain and interpret the data products from the updated 1991-2005 National Solar Radiation Database (NSRDB). This is an update of the original 1961-1990 NSRDB released in 1992.

  1. National Solar Radiation Database 1991-2010 Update: User's Manual

    SciTech Connect (OSTI)

    Wilcox, S. M.

    2012-08-01

    This user's manual provides information on the updated 1991-2010 National Solar Radiation Database. Included are data format descriptions, data sources, production processes, and information about data uncertainty.

  2. Solar Kit Lessons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Kit Lessons Middle School Curriculum Created by Northeast Sustainable Energy Association (NESEA) Click on the links below to take you to the Chapter heading: Solar Cell Inquiry Sunshine Timer Parts of a Solar Panel Part 1 Parts of a Solar Panel Part 2 Build a Simple Ammeter Solar-Powered Battery Charger Positioning Solar Panels 1 Positioning Solar Panels 2 Properties of Solar Radiation: Reflection, Transmission, and Absorption Properties of Solar Radiation: Direct and Diffuse Light Power

  3. NREL Updates Solar Radiation Database - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Updates Solar Radiation Database November 27, 2012 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) and collaborators released a 20-year updated version of the U.S. National Solar Radiation Database, a web-based technical report that provides critical information about solar and meteorological data for 1,454 locations in the U.S. and its territories. The updated database covers 1991-2010 and includes data from 2006-2010 for the first time. It also features

  4. Control of solar radiation in buildings: a selected bibliography. [Over 70 references on fenestration design

    SciTech Connect (OSTI)

    Harmon, R.B.

    1982-01-01

    Fenestration design synthesizes many factors, including solar radiation control, daylight illumination, direct and reflected glare, the view out of the building, services, and the structure and fabric of the building in terms of energy conservation and costs. This bibliography includes books and articles related to these aspects of fenestration design in various types of structures.

  5. Estimation of diffuse from measured global solar radiation

    SciTech Connect (OSTI)

    Moriarty, W.W. )

    1991-01-01

    A data set of quality controlled radiation observations from stations scattered throughout Australia was formed and further screened to remove residual doubtful observations. It was then divided into groups by solar elevation, and used to find average relationships for each elevation group between relative global radiation (clearness index - the measured global radiation expressed as a proportion of the radiation on a horizontal surface at the top of the atmosphere) and relative diffuse radiation. Clear-cut relationships were found, which were then fitted by polynomial expressions giving the relative diffuse radiation as a function of relative global radiation and solar elevation. When these expressions were used to estimate the diffuse radiation from the global, the results had a slightly smaller spread of errors than those from an earlier technique given by Spencer. It was found that the errors were related to cloud amount, and further relationships were developed giving the errors as functions of global radiation, solar elevation, and the fraction of sky obscured by high cloud and by opaque (low and middle level) cloud. When these relationships were used to adjust the first estimates of diffuse radiation, there was a considerable reduction in the number of large errors.

  6. Progress Toward an Updated National Solar Radiation Data Base

    SciTech Connect (OSTI)

    Wilcox, S.; Anderberg, M.; George, R.; Marion, W.; Myers, D.; Renne, D.; Beckman, W.; DeGaetano, A.; Gueymard, C.; Perez, R.; Plantico, M.; Stackhouse, P.; Vignola, F.

    2005-01-01

    Progress is reported on an updated National Solar Radiation Database (NSRDB). Focus on this year's work was on preparing a test-year database for evaluating several solar radiation models that could be used to replace the METSTAT model used in the original 1961-1990 NSRDB. That model is no longer compatible with cloud observations reported by the National Weather Service. We have also included a satellite-based model that will increase the spatial resolution of solar radiation for GIS or mapping applications. Work also included development of improved estimates for aerosols, water vapor, and ozone. High-quality solar measurements were obtained for 33 sites near National Weather Service stations, and model runs were completed for test years 1999 and 2000.

  7. Physics-Based GOES Satellite Product for Use in NREL's National Solar Radiation Database: Preprint

    SciTech Connect (OSTI)

    Sengupta, M.; Habte, A.; Gotseff, P.; Weekley, A.; Lopez, A.; Molling, C.; Heidinger, A.

    2014-07-01

    The National Renewable Energy Laboratory (NREL), University of Wisconsin, and National Oceanic Atmospheric Administration are collaborating to investigate the integration of the Satellite Algorithm for Shortwave Radiation Budget (SASRAB) products into future versions of NREL's 4-km by 4-km gridded National Solar Radiation Database (NSRDB). This paper describes a method to select an improved clear-sky model that could replace the current SASRAB global horizontal irradiance and direct normal irradiances reported during clear-sky conditions.

  8. Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis

    SciTech Connect (OSTI)

    Li, W.; Thorne, R. M.; Bortnik, J.; Baker, D. N.; Reeves, G. D.; Kanekal, S. G.; Spence, H. E.; Green, J. C.

    2015-09-07

    In this study by determining preferential solar wind conditions leading to efficient radiation belt electron acceleration is crucial for predicting radiation belt electron dynamics. Using Van Allen Probes electron observations (>1 MeV) from 2012 to 2015, we identify a number of efficient and inefficient acceleration events separately to perform a superposed epoch analysis of the corresponding solar wind parameters and geomagnetic indices. By directly comparing efficient and inefficient acceleration events, we clearly show that prolonged southward Bz, high solar wind speed, and low dynamic pressure are critical for electron acceleration to >1 MeV energies in the heart of the outer radiation belt. We also evaluate chorus wave evolution using the superposed epoch analysis for the identified efficient and inefficient acceleration events and find that chorus wave intensity is much stronger and lasts longer during efficient electron acceleration events, supporting the scenario that chorus waves play a key role in MeV electron acceleration.

  9. Comparison of Historical Satellite-Based Estimates of Solar Radiation Resources with Recent Rotating Shadowband Radiometer Measurements: Preprint

    SciTech Connect (OSTI)

    Myers, D. R.

    2009-03-01

    The availability of rotating shadow band radiometer measurement data at several new stations provides an opportunity to compare historical satellite-based estimates of solar resources with measurements. We compare mean monthly daily total (MMDT) solar radiation data from eight years of NSRDB and 22 years of NASA hourly global horizontal and direct beam solar estimates with measured data from three stations, collected after the end of the available resource estimates.

  10. Curve fitting methods for solar radiation data modeling

    SciTech Connect (OSTI)

    Karim, Samsul Ariffin Abdul E-mail: balbir@petronas.com.my; Singh, Balbir Singh Mahinder E-mail: balbir@petronas.com.my

    2014-10-24

    This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R{sup 2}. The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods.

  11. Modeling and Analysis of Solar Radiation Potentials on Building Rooftops

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Kodysh, Jeffrey B; Bhaduri, Budhendra L

    2012-01-01

    The active application of photovoltaic for electricity generation could effectively transform neighborhoods and commercial districts into small, localized power plants. This application, however, relies heavily on an accurate estimation of the amount of solar radiation that is available on individual building rooftops. While many solar energy maps exist at higher spatial resolution for concentrated solar energy applications, the data from these maps are not suitable for roof-mounted photovoltaic for several reasons, including lack of data at the appropriate spatial resolution and lack of integration of building-specific characteristics into the models used to generate the maps. To address this problem, we have developed a modeling framework for estimating solar radiation potentials on individual building rooftops that is suitable for utility-scale applications as well as building-specific applications. The framework uses light detection and ranging (LIDAR) data at approximately 1-meter horizontal resolution and 0.3-meter vertical resolution as input for modeling a large number of buildings quickly. One of the strengths of this framework is the ability to parallelize its implementation. Furthermore, the framework accounts for building specific characteristics, such as roof slope, roof aspect, and shadowing effects, that are critical to roof-mounted photovoltaic systems. The resulting data has helped us to identify the so-called solar panel sweet spots on individual building rooftops and obtain accurate statistics of the variation in solar radiation as a function of time of year and geographical location.

  12. Progress on an Updated National Solar Radiation Data Base: Preprint

    SciTech Connect (OSTI)

    Wilcox, S.; Anderberg, M.; George, R.; Marion, W.; Myers, D.; Renne, D.; Beckman, W.; DeGaetano, A.; Gueymard, C.; Perez, R.; Plantico, M.; Stackhouse, P.; Vignola, F.

    2004-03-01

    In 1992, The National Renewable Energy Laboratory (NREL) released the 1961-1990 National Solar Radiation Data Base (NSRDB), a 30-year set of hourly solar radiation data. In April 2003, NREL convened a meeting of experts to investigate issues concerning a proposed update of the NSRDB. The panel determined that an important difficulty posed by the update was the shift from manual to automated cloud observations at National Weather Service stations in the United States. The solar model used in the original NSRDB relied heavily on the methodology and resolution of the manual cloud observations. The meeting participants recommended that NREL produce a plan for creating an update using currently available meteorological observations and satellite imagery. This paper describes current progress toward a plan for an updated NSRDB.

  13. Validation of the National Solar Radiation Database (NSRDB) (2005-2012): Preprint

    SciTech Connect (OSTI)

    Sengupta, Manajit; Weekley, Andrew; Habte, Aron; Lopez, Anthony; Molling, Christine

    2015-09-15

    Publicly accessible, high-quality, long-term, satellite-based solar resource data is foundational and critical to solar technologies to quantify system output predictions and deploy solar energy technologies in grid-tied systems. Solar radiation models have been in development for more than three decades. For many years, the National Renewable Energy Laboratory (NREL) developed and/or updated such models through the National Solar Radiation Data Base (NSRDB). There are two widely used approaches to derive solar resource data from models: (a) an empirical approach that relates ground-based observations to satellite measurements and (b) a physics-based approach that considers the radiation received at the satellite and creates retrievals to estimate clouds and surface radiation. Although empirical methods have been traditionally used for computing surface radiation, the advent of faster computing has made operational physical models viable. The Global Solar Insolation Project (GSIP) is an operational physical model from the National Oceanic and Atmospheric Administration (NOAA) that computes global horizontal irradiance (GHI) using the visible and infrared channel measurements from the Geostationary Operational Environmental Satellites (GOES) system. GSIP uses a two-stage scheme that first retrieves cloud properties and then uses those properties in the Satellite Algorithm for Surface Radiation Budget (SASRAB) model to calculate surface radiation. NREL, the University of Wisconsin, and NOAA have recently collaborated to adapt GSIP to create a high temporal and spatial resolution data set. The product initially generates the cloud properties using the AVHRR Pathfinder Atmospheres-Extended (PATMOS-x) algorithms [3], whereas the GHI is calculated using SASRAB. Then NREL implements accurate and high-resolution input parameters such as aerosol optical depth (AOD) and precipitable water vapor (PWV) to compute direct normal irradiance (DNI) using the DISC model. The AOD and

  14. NREL: MIDC/University of Texas Panamerican Solar Radiation Lab (26.49 N,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    98.17 W, 45 m, GMT-6) University of Texas Panamerican (UTPA) Solar Radiation Lab (SRL)

  15. Measuring Broadband IR Irradiance in the Direct Solar Beam (Presentation)

    SciTech Connect (OSTI)

    Reda, I.

    2015-03-01

    Solar and atmospheric science radiometers, e.g. pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to a consensus reference, which is maintained by Absolute Cavity Radiometers (ACRs). The ACR is an open cavity with no window, developed to measure extended broadband direct solar irradiance beyond the ultraviolet and infrared bands below and above 0.2 um and 50 um, respectively. On the other hand, pyranometers and pyrheliometers are developed to measure broadband shortwave irradiance from approximately 0.3 um to 3 um, while the present photovoltaic cells are limited to approximately 0.3 um to 1 um. The broadband mismatch of ACR versus such radiometers causes discrepancy in radiometers' calibration methods that has not been discussed or addressed in the solar and atmospheric science literature. Pyrgeometers are also used for solar and atmospheric science applications and are calibrated with traceability to consensus reference, yet are calibrated during nighttime only, because no consensus reference has yet been established for the daytime longwave irradiance. This poster shows a method to measure the broadband IR irradiance in the direct solar beam from 3 um to 50 um, as a first step that might be used to help develop calibration methods to address the mismatch between broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometers. The irradiance was measured from sunrise to sunset for 5 days when the sun disk was cloudless; the irradiance varied from approximately 1 Wm-2 to 16 Wm-2 for solar zenith angle from 80 degrees to 16 degrees respectively; estimated uncertainty is 1.5 Wm-2.

  16. Measuring Broadband IR Irradiance in the Direct Solar Beam (Poster)

    SciTech Connect (OSTI)

    Reda, I.; Konings, J.; Xie, Y.; Dooraghi, M.; Sengupta, M.

    2015-03-01

    Solar and atmospheric science radiometers, e.g. pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to a consensus reference, which is maintained by Absolute Cavity Radiometers (ACRs). The ACR is an open cavity with no window, developed to measure extended broadband direct solar irradiance beyond the ultraviolet and infrared bands below and above 0.2 micrometers and 50 micrometers, respectively. On the other hand, pyranometers and pyrheliometers are developed to measure broadband shortwave irradiance from approximately 0.3 micrometers to 3 micrcometers, while the present photovoltaic cells are limited to approximately 0.3 micrometers to 1 micrometers. The broadband mismatch of ACR versus such radiometers causes discrepancy in radiometers' calibration methods that has not been discussed or addressed in the solar and atmospheric science literature. Pyrgeometers are also used for solar and atmospheric science applications and calibrated with traceability to consensus reference, yet calibrated during nighttime only, because no consensus reference has yet been established for the daytime longwave irradiance. This poster shows a method to measure the broadband IR irradiance in the direct solar beam from 3 micrometers to 50 micrometers, as first step that might be used to help develop calibration methods to address the mismatch between broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometers. The irradiance was measured from sunrise to sunset for 5 days when the sun disk was cloudless; the irradiance varied from approximately 1 Wm-2 to 16 Wm-2 for solar zenith angle from 80 degres to 16 degrees respectively; estimated uncertainty is 1.5 Wm-2.

  17. Coastal-inland solar radiation difference study. Final report

    SciTech Connect (OSTI)

    Bach, W.D. Jr.; Vukovich, F.M.

    1980-04-01

    The purpose of this study was to quantify the characteristics of solar insolation in the coastal zone and to determine the effect of the sea breeze circulation on the global insolation. In order to satisfy these objectives, a six station sampling network was established in the coastal plain of southeastern North Carolina, where previous evidence has indicated that the sea breeze circulation is almost a daily occurrence from late May through October. Three sites (Sloop Point, Onslow Beach, and Cape Fear Technical Institute (CFTI)) were located near the coast (coastal sites) to assess the insolation at the coast. A site (Clinton) was located in an area seldom affected by the sea breeze (about 100 km from the coast). Two additional sites, Wallace and Ellis Airport, located between the coastal sites and the control site, were to be used to assess the transient impact of the sea breeze upon the insolation. Pyranometers were located at each site to measure the global insolation. Direct normal insolation measured by a pyrheliometer and ultraviolet radiation measured by uv radiometers were observed at the Sloop Point and Clinton sites only. Data were collected during the calendar year 1978. The results of the study indicated that the global insolation had greater variability over the network during the summer season (June, July, and August). During the summer, there was a systematicdiurnal variation of the difference in global insolation between the inland and the coastal sites.

  18. A comparison of data from SOLMET/ERSATZ and the National Solar Radiation Data Base

    SciTech Connect (OSTI)

    Marion, W.; Myers, D.

    1992-11-01

    This report compares data from the new National Solar Radiation Data Base (NSRDB) with data from the earlier SOLMET/ERSATZ data base. It compares the two data bases, station-by-station, with respect to their long-term average daily values of global horizontal and direct normal solar radiation. We conclude that on an annual basis, NSRDB values for global horizontal radiation are within {plus_minus}5% of SOLMET/ERSATZ values for 60% of the stations, more than 5% greater than the SOLMET/ERSATZ values for 30% of the stations, and more than 5% less than the SOLMET/ERSATZ values for 10% of the stations. On an annual basis for direct nominal radiation, the NSRDB values are with {plus_minus}5% of the SOLMET/ERSATZ data for only 40% of the stations, more than 5% greater than the SOLMET/ERSATZ values for 45% of the stations, and more than 5% less than the SOLMET/ERSATZ values for 15% of the stations. In general, the NSRDB shows higher values of solar radiation for the eastern United States, particularly the Northeast, and lower values for some of the western states (Arizona, Colorado, Idaho, Nevada, New Mexico, Utah, and Wyoming). However, because some of the stations within a state show higher values of solar radiation while others show lower values, this generalization may be misleading when concerned with a particular station. Consequently, the appendices provide tables showing a station-by-station comparison of the NSRDB and SOLMET/ERSATZ data. In addition to comparing annual values, the tables compare the two data bases for the months of August and December. This comparison shows larger differences between the two data bases for December.

  19. Evaluation of Radiometers Deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory

    SciTech Connect (OSTI)

    Habte, A.; Wilcox, S.; Stoffel, T.

    2014-02-01

    This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances and direct normal irradiances. These include pyranometers, pyrheliometers, rotating shadowband radiometers, and a pyranometer with fixed internal shading and are all deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. Data from 32 global horizontal irradiance and 19 direct normal irradiance radiometers are presented. The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference global horizontal irradiances and direct normal irradiances.

  20. Visual-SOLAR: Modeling and Visualization of Solar Radiation Potential on Individual Building Rooftops

    Energy Science and Technology Software Center (OSTI)

    2013-05-01

    We have developed a modeling framework for estimating solar radiation potentials on individual building rooftops that is suitable for utility-scale applications as well as building-specific applications. The framework uses light detection and ranging (LIDAR) data at approximately 1-meter horizontal resolution and 0.3-meter vertical resolution as input for modeling a large number of buildings quickly. One of the strengths of this framework is the ability to parallelize its implementation. Furthermore, the framework accounts for building specificmore » characteristics, such as roof slope, roof aspect, and shadowing effects, that are critical to roof-mounted photovoltaic system. The resulting data has helped us to identify the so-called "solar panel sweet spots" on individual building rooftops and obtain accurate statistics of the variation in solar radiation as a function of time of year and geographical location.« less

  1. Visual-SOLAR: Modeling and Visualization of Solar Radiation Potential on Individual Building Rooftops

    SciTech Connect (OSTI)

    2013-05-01

    We have developed a modeling framework for estimating solar radiation potentials on individual building rooftops that is suitable for utility-scale applications as well as building-specific applications. The framework uses light detection and ranging (LIDAR) data at approximately 1-meter horizontal resolution and 0.3-meter vertical resolution as input for modeling a large number of buildings quickly. One of the strengths of this framework is the ability to parallelize its implementation. Furthermore, the framework accounts for building specific characteristics, such as roof slope, roof aspect, and shadowing effects, that are critical to roof-mounted photovoltaic system. The resulting data has helped us to identify the so-called "solar panel sweet spots" on individual building rooftops and obtain accurate statistics of the variation in solar radiation as a function of time of year and geographical location.

  2. Solar radiation characteristics in Abu Dhabi

    SciTech Connect (OSTI)

    El-Nashar, A.M. )

    1991-01-01

    Based on the instantaneous global and diffuse radiation measurements made in Abu Dhabi, UAE, during 1987, the instantaneous values of the clearness index, diffuse fraction, atmospheric transmittance, and extinction coefficient were estimated and found to be strongly dependnet on the air mass and month of the year. Therefore, correlations between each of these parameters versus the air mass and month of the year were developed using the least-squares technique. The diffuse fraction may alternatively be correlated against the clearness index and the air mass with no seasonal influence. The beam transmittance was estimated theoretically using the two-layer atmospheric model and making use of the correlation developed previously for the extinction coefficient. The model was found to yield satisfactory results. The diffuse transmittance was also estimated theoretically using both the RSC model and the isotropic scattering model with good agreement with the data obtained.

  3. Direct probes of neutrino properties using solar-neutrino lines

    SciTech Connect (OSTI)

    Pakvasa, S.; Pantaleone, J. )

    1990-11-12

    The spectrum of neutrinos from the Sun contains large fluxes of monoenergetic neutrinos which could be observed in the next generation of solar-neutrino detectors. Such observations directly probe neutrino parameters independent of uncertainties in the standard solar model. Small neutrino mass differences, 10{sup {minus}11}{lt}{ital m}{sub 2}{sup 2}{minus}{ital m}{sub 1}{sup 2}{lt}10{sup {minus}8} eV{sup 2}, would cause the measured flux of {sup 7}Be-line neutrinos to oscillate with a period in the range of a week up to a year. A neutrino magnetic moment comparable to the present laboratory bound would produce large distortions in the spectrum of scattered electrons.

  4. Prediction of Solar Radiation on Building Rooftops: A Data-Mining Approach

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Bhaduri, Budhendra L; Kodysh, Jeffrey B

    2012-01-01

    Solar energy technologies offer a clean, renewable, and domestic energy source, and are essential components of a sustainable energy future. The accurate measurement of solar radiation data is essential for optimum site selection of future distributed solar power plants as well as sizing photovoltaic systems. However, solar radiation data are not readily available because measured sequences of radiation values are obtained for a few locations in a country. When the data are available, they are usually at different time periods and spatial scale. The availability of solar radiation data at hourly or daily time scale will enhance the integration of solar energy into electricity generation and promote a sustainable energy future. The ability to generate approximate solar radiation values is often the only practical way to obtain radiation data at hourly or daily time scale. As a result, several models have been developed for estimating solar radiation values based on analytical, numerical simulation, and statistical approaches. However, these models have inherent challenges. We will discuss some of those challenges in this paper. To enhance the prediction of solar radiation values, a novel approach is presented for estimating solar radiation values using support vector machine technique. The approach accounts for unique characteristics that influence solar radiation values. The preliminary results obtained offer useful insights for model enhancements.

  5. Estimation of total cloud cover from solar radiation observations at Lake Rotorua, New Zealand

    SciTech Connect (OSTI)

    Luo, Liancong; Hamilton, David; Han, Boping

    2010-03-15

    The DYRESM-CAEDYM model is a valuable tool for simulating water temperature for biochemical studies in aquatic ecosystem. The model requires inputs of surface short-wave radiation and long-wave radiation or total cloud cover fraction (TC). Long-wave radiation is often not measured directly so a method to determine TC from commonly measured short-wave solar irradiance (E{sub 0}) and theoretical short-wave solar irradiance under a clear sky (E{sub c}) has broad application. A more than 17-year (15 November 1991 to 20 February 2009) hourly solar irradiance data set was used to estimate the peak solar irradiance for each ordinal date over one year, which was assumed to be representative of solar irradiance in the absence of cloud. Comparison between these daily observed values and the modelled clear-sky solar radiation over one year was in close agreement (Pearson correlation coefficient, r = 0.995 and root mean squared error, RMSE = 12.54 W m{sup -2}). The downloaded hourly cloudiness measurements from 15 November 1991 to 20 February 2009 was used to calculate the daily values for this period and then the calculated daily values over the 17 years were used to calculate the average values for each ordinal date over one year. A regression equation between (1 - E{sub 0}/E{sub c}) and TC produced a correlation coefficient value of 0.99 (p > 0.01, n = 71). The validation of this cloud cover estimation model was conducted with observed short-wave solar radiation and TC at two sites. Values of TC derived from the model at the Lake Rotorua site gave a reasonable prediction of the observed values (RMSE = 0.10, r = 0.86, p > 0.01, n = 61). The model was also tested at Queenstown (South Island of New Zealand) and it provided satisfactory results compared to the measurements (RMSE = 0.16, r = 0.67, p > 0.01, n = 61). Therefore the model's good performance and broad applicability will contribute to the DYRESM-CAEDYM accuracy of water temperature simulation when long-wave radiation

  6. A method for estimating direct normal solar irradiation from satellite data for a tropical environment

    SciTech Connect (OSTI)

    Janjai, Serm

    2010-09-15

    In order to investigate a potential use of concentrating solar power technologies and select an optimum site for these technologies, it is necessary to obtain information on the geographical distribution of direct normal solar irradiation over an area of interest. In this work, we have developed a method for estimating direct normal irradiation from satellite data for a tropical environment. The method starts with the estimation of global irradiation on a horizontal surface from MTSAT-1R satellite data and other ground-based ancillary data. Then a satellite-based diffuse fraction model was developed and used to estimate the diffuse component of the satellite-derived global irradiation. Based on this estimated global and diffuse irradiation and the solar radiation incident angle, the direct normal irradiation was finally calculated. To evaluate its performance, the method was used to estimate the monthly average hourly direct normal irradiation at seven pyrheliometer stations in Thailand. It was found that values of monthly average hourly direct normal irradiation from the measurements and those estimated from the proposed method are in reasonable agreement, with a root mean square difference of 16% and a mean bias of -1.6%, with respect to mean measured values. After the validation, this method was used to estimate the monthly average hourly direct normal irradiation over Thailand by using MTSAT-1R satellite data for the period from June 2005 to December 2008. Results from the calculation were displayed as hourly and yearly irradiation maps. These maps reveal that the direct normal irradiation in Thailand was strongly affected by the tropical monsoons and local topography of the country. (author)

  7. Indirect detection of radiation sources through direct detection of radiolysis products

    DOE Patents [OSTI]

    Farmer, Joseph C.; Fischer, Larry E.; Felter, Thomas E.

    2010-04-20

    A system for indirectly detecting a radiation source by directly detecting radiolytic products. The radiation source emits radiation and the radiation produces the radiolytic products. A fluid is positioned to receive the radiation from the radiation source. When the fluid is irradiated, radiolytic products are produced. By directly detecting the radiolytic products, the radiation source is detected.

  8. The Effect of Gas Absorption on the Scattered Radiation in the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gas Absorption on the Scattered Radiation in the Solar Almucantar: Results of Numerical ... albedo) from diffuse and direct radiation measured in the solar almucantar has ...

  9. Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, W.; Thorne, R. M.; Bortnik, J.; Baker, D. N.; Reeves, G. D.; Kanekal, S. G.; Spence, H. E.; Green, J. C.

    2015-09-07

    In this study by determining preferential solar wind conditions leading to efficient radiation belt electron acceleration is crucial for predicting radiation belt electron dynamics. Using Van Allen Probes electron observations (>1 MeV) from 2012 to 2015, we identify a number of efficient and inefficient acceleration events separately to perform a superposed epoch analysis of the corresponding solar wind parameters and geomagnetic indices. By directly comparing efficient and inefficient acceleration events, we clearly show that prolonged southward Bz, high solar wind speed, and low dynamic pressure are critical for electron acceleration to >1 MeV energies in the heart of the outermore » radiation belt. We also evaluate chorus wave evolution using the superposed epoch analysis for the identified efficient and inefficient acceleration events and find that chorus wave intensity is much stronger and lasts longer during efficient electron acceleration events, supporting the scenario that chorus waves play a key role in MeV electron acceleration.« less

  10. National Solar Radiation Data Bases (NSRDB): 1961 to 1990 and 1991 to 2005

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Solar Radiation Data Base 1961-1990 (NSRDB) contains 30 years of solar radiation and supplementary meteorological data from 237 NWS sites in the U.S., plus sites in Guam and Puerto Rico. The updated 1991-2005 National Solar Radiation Database holds solar and meteorological data for 1,454 locations in the United States and its territories. See also the interactive data maps for the 1961 to 1990 data at http://rredc.nrel.gov/solar/old_data/nsrdb/1961-1990/redbook/atlas/.

  11. Effects of radiation on direct-drive laser fusion targets

    SciTech Connect (OSTI)

    Colombant, D. G.; Bodner, S. E.; Schmitt, A. J.; Klapisch, M.; Gardner, J. H.; Aglitskiy, Y.; Deniz, A. V.; Obenschain, S. P.; Pawley, C. J.; Serlin, V.

    2000-05-01

    The role played by radiation in the radiation-preheated direct-drive laser fusion target design is discussed. The soft x-rays emitted during the foot of the laser pulse--at a few 10{sup 12} W/cm{sup 2}--preheat the low-opacity foam ablator which helps to control the Rayleigh-Taylor instability. The foam opacity is, however, thick enough to stop that radiation, keeping the fuel on a low adiabat. Radiation effects are also important in the blow-off corona of the target because they establish a long scale-length plasma. This may help to shield the ablation region from the nonuniformities in the laser absorption. (c) 2000 American Institute of Physics.

  12. Chapter 1.12: Solar Radiation Resource Assessment for Renewable Energy Conversion

    SciTech Connect (OSTI)

    Myers, D. R.

    2012-01-01

    This chapter addresses measurements, modeling, and databases of solar energy potential that may serve as fuel for solar energy conversion systems. Developing innovative designs for capturing and converting solar radiation is only one part of the equation for solar system deployment. Identifying, locating, and prospecting for the appropriate quantity and quality of solar resources to fuel these systems is critical to system designers, investors, financial backers, utilities, governments, and owner/operators. This chapter addresses the fundamentals and state of the art for measuring, modeling, and applying solar radiation resource data to meet decision-making needs.

  13. Validation of the National Solar Radiation Database (NSRDB) ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To be presented at the European PV Solar Energy Conference and Exhibition Hamburg, ... satellite-based solar resource data is foundational and critical to solar ...

  14. Radiation Dry Bias in the TWP-ICE Radiosonde Soundings Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Dry Bias in the TWP-ICE Radiosonde Soundings Solar Zenith Angle Correction ... used in TWP-ICE, is known to be affected by a significant day-time radiation dry bias. ...

  15. GaAs quantum dot solar cell under concentrated radiation

    SciTech Connect (OSTI)

    Sablon, K.; Little, J. W.; Hier, H.; Li, Y.; Mitin, V.; Vagidov, N.; Sergeev, A.

    2015-08-17

    Effects of concentrated solar radiation on photovoltaic performance are investigated in well-developed GaAs quantum dot (QD) solar cells with 1-Sun efficiencies of 18%–19%. In these devices, the conversion processes are enhanced by nanoscale potential barriers and/or AlGaAs atomically thin barriers around QDs, which prevent photoelectron capture to QDs. Under concentrated radiation, the short circuit current increases proportionally to the concentration and the open circuit voltage shows the logarithmic increase. In the range up to hundred Suns, the contributions of QDs to the photocurrent are proportional to the light concentration. The ideality factors of 1.1–1.3 found from the V{sub OC}-Sun characteristics demonstrate effective suppression of recombination processes in barrier-separated QDs. The conversion efficiency shows the wide maximum in the range of 40–90 Suns and reaches 21.6%. Detailed analysis of I-V-Sun characteristics shows that at low intensities, the series resistance decreases inversely proportional to the concentration and, at ∼40 Suns, reaches the plateau determined mainly by the front contact resistance. Improvement of contact resistance would increase efficiency to above 24% at thousand Suns.

  16. Broken-cloud enhancement of solar radiation absorption

    SciTech Connect (OSTI)

    Byrne, R.N.; Somerville, R.C.; Subasilar, B.

    1996-04-01

    Two papers recently published in Science have shown that there is more absorption of solar radiation than estimated by current atmospheric general circulation models (GCMs) and that the discrepancy is associated with cloudy scenes. We have devised a simple model which explains this as an artifact of stochastic radiative transport. We first give a heuristic description, unencumbered by mathematical detail. Consider a simple case with clouds distributed at random within a single level whose upper and lower boundaries are fixed. The solar zenith angle is small to moderate; this is therefore an energetically important case. Fix the average areal liquid water content of the cloud layer, and take the statistics of the cloud distribution to be homogeneous within the layer. Furthermore, assume that all the clouds in the layer have the same liquid water content, constant throughout the cloud, and that apart from their droplet content they are identical to the surrounding clear sky. Let the clouds occupy on the average a fraction p{sub cld} of the volume of the cloudy layer, and let them have a prescribed distribution of sizes about some mean. This is not a fractal distribution, because it has a scale. Cloud shape is unimportant so long as cloud aspect ratios are not far from unity. Take the single-scattering albedo to be unity for the droplets in the clouds. All of the absorption is due to atmospheric gases, so the absorption coefficient at a point is the same for cloud and clear sky. Absorption by droplets is less than 10% effect in the numerical stochastic radiation calculations described below, so it is reasonable to neglect it at this level of idealization.

  17. Solar Circuitry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Circuitry" with the Solar Powered Energy Kit Curriculum: Solar Power- (lightelectromagnetic radiation, electricity, circuitry, efficiency, energy transformation, subatomic ...

  18. General circulation model calculations of the direct radiative forcing by anthropogenic sulfate and fossil-fuel soot aerosol

    SciTech Connect (OSTI)

    Haywood, J.M.; Roberts, D.L.; Slingo, A.

    1997-07-01

    A new radiation code within a general circulation model is used to assess the direct solar and thermal radiative forcing by sulfate aerosol of anthropogenic origin and soot aerosol from fossil-fuel burning. The radiative effects of different aerosol profiles, relative humidity parameterizations, chemical compositions, and internal and external mixtures of the two aerosol types are investigated. The contribution to the radiative forcing from cloudy sky regions is found to be negligible for sulfate aerosol; this is in contrast to recent studies where the cloudy sky contribution was estimated using a method in which the spatial correlation between cloud amount and sulfate burden was ignored. However, the radiative forcing due to fossil-fuel soot aerosol is enhanced in cloudy regions if soot aerosol exists within or above the cloud. The global solar radiative forcing due to sulfate aerosol is estimated to be -0.38 W m{sup -2} and the global thermal radiative forcing is estimated to be +0.01 W m{sup -2}. The hemispheric mean radiative forcings vary by only about 10% for reasonable assumptions about the chemical form of the sulfate aerosol and the relative humidity dependence; the uncertainties in the aerosol loading are far more significant. If a soot/sulfate mass ratio of 0.075 is assumed, then the global solar radiative forcing weakens to -0.18 W m{sup -2} for an external mixture and weakens further for an internal mixture. Additionally, the spatial distribution of the radiative forcing shows strong negative/positive forcing contrasts that may influence the dynamical response of the atmosphere. Although these results are extremely sensitive to the adopted soot/sulfate ratio and the assumed vertical profile, they indicate that fossil-fuel soot aerosol may exert a nonnegligible radiative forcing and emphasize the need to consider each anthropogenic aerosol species. 58 refs., 8 figs., 1 tab.

  19. Directional sky luminance versus cloud cover and solar position

    SciTech Connect (OSTI)

    Harrison, A.W. )

    1991-01-01

    Measurements of sky luminance at 121 equally spaced points ({theta},{phi}) over the sky dome under clear, partly cloudy and overcast skies have led to the following analytical expression for normalized sky luminance L{sub v}({theta},{phi},{theta}*,C) = CL {sub vc}{sup 0}({theta},{phi},{theta}*) + (1 {minus} C)L{sub vc}{sup c}({theta},{phi},{theta}*) L{sub vc}{sup 0}({theta},{phi},{theta}I) = 0.40 + 0.21{theta}* + 0.27 cos {theta} + 1.45 e{sup {minus}2.4l{psi}}L{sub vc}({theta},{phi},{theta}*) = (1.28 + 147e{sup {minus}11.1{phi}} + 4.28 cos{sup 2}{phi} cos{theta}*)*(1 {minus} e{sup {minus}0.42sec{theta}})*(1{minus}e{sup {minus}0.67sec{theta}}) where {theta} = sky point zenith angle, {phi} = sky point azimuth angle, {theta}* = solar zenith angle, {phi} = scattering angle between sky, and sun direction and C = opaque cloud cover ({theta}* and {phi} in radians).

  20. Solar: monthly and annual average direct normal (DNI) GIS data...

    Open Energy Info (EERE)

    Download Carribean Islands Central America DNI GIS Mexico NREL GEF SWERA UNEP atmospheric water v... solar Additional Info Field Value Source www.nrel.gov Author National Renewable...

  1. Directly-irradiated Two-zone Solar Thermochemical Reactor for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactor for H2OCO2 Splitting DOE Grant Recipients University of Minnesota Contact GRANT About This Technology Technology Marketing Summary Solar Thermochemical Reactor ...

  2. Laplace plane modifications arising from solar radiation pressure

    SciTech Connect (OSTI)

    Rosengren, Aaron J.; Scheeres, Daniel J.

    2014-05-01

    The dynamical effects of solar radiation pressure (SRP) in the solar system have been rigorously studied since the early 1900s. This non-gravitational perturbation plays a significant role in the evolution of dust particles in circumplanetary orbits, as well as in the orbital motion about asteroids and comets. For gravitationally dominated orbits, SRP is negligible and the resulting motion is largely governed by the oblateness of the primary and the attraction of the Sun. The interplay between these gravitational perturbations gives rise to three mutually perpendicular planes of equilibrium for circular satellite orbits. The classical Laplace plane lies between the equatorial and orbital planes of the primary, and is the mean reference plane about whose axis the pole of a satellite's orbit precesses. From a previously derived solution for the secular motion of an orbiter about a small body in a SRP dominated environment, we find that SRP acting alone will cause an initially circular orbit to precess around the pole of the primary's heliocentric orbital plane. When the gravitational and non-gravitational perturbations act in concert, the resulting equilibrium planes turn out to be qualitatively different, in some cases, from those obtained without considering the radiation pressure. The warping of the surfaces swept out by the modified equilibria as the semi-major axis varies depends critically on the cross-sectional area of the body exposed. These results, together with an adiabatic invariance argument on Poynting-Robertson drag, provide a natural qualitative explanation for the initial albedo dichotomy of Saturn's moon, Iapetus.

  3. Ground-level spectral distribution of solar direct-normal irradiance and marine aerosol attenuation coefficients at Reunion Island

    SciTech Connect (OSTI)

    Vaxelaire, P.; Leveau, J.; Baldy, S. ); Menguy, G. )

    1991-01-01

    The ground-level spectral distribution of direct solar irradiance at Reunion Island was measured for six bands covering the spectrum of solar radiation. The measurements, distributed over one year, were made under clear sky conditions with a pyrheliometer (Eppley, NIP) and six large pass-band flat filters. Good stability of spectral irradiances as a function of solar height allows us to propose approximate relationships which significantly characterize the irradiance into each spectral band. Measurements at Reunion vary significantly from data obtained with the same apparatus in a northern hemisphere continental area (Lyon). The determination of aerosol attenuation coefficients, for different spectral bands, allows the establish of a mean curve, for these coefficients as a function of wavelength, characteristic for marine aerosols.

  4. Study of global daily solar radiation and its relation to sunshine duration in Bahrain

    SciTech Connect (OSTI)

    Al-Sadah, F.H.; Ragab, F.M. )

    1991-01-01

    The regression coefficients a and b of Angstrom type correlation for the monthly daily average global solar radiation have been determined. The two constants a and b have been derived for different months during the period 1983-1987. The clearness index (H/H{sub 0}) based on predicted and measured values of global daily solar radiation is presented for different seasons of the year. The study depicts the various astronomical and meteorological parameters affecting the global radiation in Bahrain.

  5. Intermediate band solar cells: Recent progress and future directions

    SciTech Connect (OSTI)

    Okada, Y. Tamaki, R.; Farrell, D. J.; Yoshida, K.; Ahsan, N.; Shoji, Y.; Sogabe, T.; Ekins-Daukes, N. J. Yoshida, M.; Pusch, A.; Hess, O.; Phillips, C. C.; Kita, T.; Guillemoles, J.-F.

    2015-06-15

    Extensive literature and publications on intermediate band solar cells (IBSCs) are reviewed. A detailed discussion is given on the thermodynamics of solar energy conversion in IBSCs, the device physics, and the carrier dynamics processes with a particular emphasis on the two-step inter-subband absorption/recombination processes that are of paramount importance in a successful implementation high-efficiency IBSC. The experimental solar cell performance is further discussed, which has been recently demonstrated by using highly mismatched alloys and high-density quantum dot arrays and superlattice. IBSCs having widely different structures, materials, and spectral responses are also covered, as is the optimization of device parameters to achieve maximum performance.

  6. Direct Current Episode 1: Tackling the Hidden Costs of Rooftop Solar |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1: Tackling the Hidden Costs of Rooftop Solar Direct Current Episode 1: Tackling the Hidden Costs of Rooftop Solar Listen to episode 1 of Direct Current - An Energy.gov Podcast, then subscribe on iTunes or wherever you download podcasts! Ever considered getting solar panels for your home? If so, you're not alone. Rooftop solar is growing at an incredible rate, as more and more Americans look to save on their energy bills using clean, free power from sunshine. Sounds

  7. Evaluation of linear interpolation method for missing value on solar radiation dataset in Perlis

    SciTech Connect (OSTI)

    Saaban, Azizan; Zainudin, Lutfi; Bakar, Mohd Nazari Abu

    2015-05-15

    This paper intends to reveal the ability of the linear interpolation method to predict missing values in solar radiation time series. Reliable dataset is equally tends to complete time series observed dataset. The absence or presence of radiation data alters long-term variation of solar radiation measurement values. Based on that change, the opportunities to provide bias output result for modelling and the validation process is higher. The completeness of the observed variable dataset has significantly important for data analysis. Occurrence the lack of continual and unreliable time series solar radiation data widely spread and become the main problematic issue. However, the limited number of research quantity that has carried out to emphasize and gives full attention to estimate missing values in the solar radiation dataset.

  8. University of Texas Panamerican (UTPA): Solar Radiation Lab (SRL); Edinburg, Texas (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Ramos, J.; Andreas, A.

    2011-09-01

    This measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location.

  9. University of Texas Panamerican (UTPA): Solar Radiation Lab (SRL); Edinburg, Texas (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Ramos, J.; Andreas, A.

    This measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location.

  10. Solar Radiation Monitoring Station (SoRMS): Humboldt State University, Arcata, California (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    2007-05-02

    A partnership with HSU and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location.

  11. Solar Radiation Monitoring Station (SoRMS): Humboldt State University, Arcata, California (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    A partnership with HSU and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location.

  12. A path to practical Solar Pumped Lasers via Radiative Energy Transfer

    SciTech Connect (OSTI)

    Reusswig, Philip D.; Nechayev, Sergey; Scherer, Jennifer M.; Hwang, Gyu Weon; Bawendi, Moungi G.; Baldo, Marc. A.; Rotschild, Carmel

    2015-10-05

    The optical conversion of incoherent solar radiation into a bright, coherent laser beam enables the application of nonlinear optics to solar energy conversion and storage. Here, we present an architecture for solar pumped lasers that uses a luminescent solar concentrator to decouple the conventional trade-off between solar absorption efficiency and the mode volume of the optical gain material. We report a 750-μm-thick Nd 3+ -doped YAG planar waveguide sensitized by a luminescent CdSe/CdZnS (core/shell) colloidal nanocrystal, yielding a peak cascade energy transfer of 14%, a broad spectral response in the visible portion of the solar spectrum, and an equivalent quasi-CW solar lasing threshold of 23 W-cm-2, or approximately 230 suns. The efficient coupling of incoherent, spectrally broad sunlight in small gain volumes should allow the generation of coherent laser light from intensities of less than 100 suns.

  13. A path to practical Solar Pumped Lasers via Radiative Energy Transfer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Reusswig, Philip D.; Nechayev, Sergey; Scherer, Jennifer M.; Hwang, Gyu Weon; Bawendi, Moungi G.; Baldo, Marc. A.; Rotschild, Carmel

    2015-10-05

    The optical conversion of incoherent solar radiation into a bright, coherent laser beam enables the application of nonlinear optics to solar energy conversion and storage. Here, we present an architecture for solar pumped lasers that uses a luminescent solar concentrator to decouple the conventional trade-off between solar absorption efficiency and the mode volume of the optical gain material. We report a 750-μm-thick Nd 3+ -doped YAG planar waveguide sensitized by a luminescent CdSe/CdZnS (core/shell) colloidal nanocrystal, yielding a peak cascade energy transfer of 14%, a broad spectral response in the visible portion of the solar spectrum, and an equivalent quasi-CWmore » solar lasing threshold of 23 W-cm-2, or approximately 230 suns. The efficient coupling of incoherent, spectrally broad sunlight in small gain volumes should allow the generation of coherent laser light from intensities of less than 100 suns.« less

  14. Analysis of experimental solar radiation data for Rio de Janeiro, Brazil

    SciTech Connect (OSTI)

    Cavalcanti, E.S.C. )

    1991-01-01

    An analysis of measured global solar radiation in Rio de Janeiro (lat = 22{degree} 55{prime}S, long = 43{degree} 12{prime} W, sea level) is presented in the form of hourly means, decadic means, monthly means and percentage frequency distribution. The experimental data corresponds to the period from June 1979 to August 1983. The results are compared with prior predicted values found in the literature. The yearly averaged daily total global solar radiation was 16.71 MJ/m{sup 2} and the average yearly total global solar radiation was 6,099 MJ/m{sup 2}. Furthermore, these results can be used with the f-chart method by architects and heating engineers to determine the long-term thermal performance of solar heating systems.

  15. Some Results of Joint Measurements of Aerosol Extinction of Solar Radiation on Horizontal and Slant Paths

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Results of Joint Measurements of Aerosol Extinction of Solar Radiation on Horizontal and Slant Paths S. M. Sakerin, D. M. Kabanov, Yu. A. Pkhalagov, and V. N. Uzhegov Institute of Atmospheric Optics Tomsk, Russia Introduction It's a well-known fact that the contribution atmospheric aerosol makes in the total extinction of radiation in calculations and models of radiation must be considered; the quantitative measure of this contribution is the aerosol optical thickness of the atmosphere. The

  16. Planar photovoltaic solar concentrator module

    DOE Patents [OSTI]

    Chiang, C.J.

    1992-12-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.

  17. Planar photovoltaic solar concentrator module

    DOE Patents [OSTI]

    Chiang, Clement J.

    1992-01-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

  18. Predicting Aerosol Direct Radiative Forcing over Mexico using...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Use Weather Research and Forecasting (WRF) model as the foundation of computational framework * Fully-coupled aerosol-radiation-cloud-chemistry interactions * Handles multiple ...

  19. On piecewise interpolation techniques for estimating solar radiation missing values in Kedah

    SciTech Connect (OSTI)

    Saaban, Azizan; Zainudin, Lutfi; Bakar, Mohd Nazari Abu

    2014-12-04

    This paper discusses the use of piecewise interpolation method based on cubic Ball and Bézier curves representation to estimate the missing value of solar radiation in Kedah. An hourly solar radiation dataset is collected at Alor Setar Meteorology Station that is taken from Malaysian Meteorology Deparment. The piecewise cubic Ball and Bézier functions that interpolate the data points are defined on each hourly intervals of solar radiation measurement and is obtained by prescribing first order derivatives at the starts and ends of the intervals. We compare the performance of our proposed method with existing methods using Root Mean Squared Error (RMSE) and Coefficient of Detemination (CoD) which is based on missing values simulation datasets. The results show that our method is outperformed the other previous methods.

  20. Radiation resistance of thin-film solar cells for space photovoltaic power

    SciTech Connect (OSTI)

    Woodyard, J.R.; Landis, G.A.

    1991-01-01

    Copper indium diselenide, cadmium telluride, and amorphous silicon alloy solar cells have achieved noteworthy performance and are currently being studied for space power applications. Cadmium sulfide cells had been the subject of much effort but are no longer considered for space applications. A review is presented of what is known about the radiation degradation of thin film solar cells in space. Experimental cadmium telluride and amorphous silicon alloy cells are reviewed. Damage mechanisms and radiation induced defect generation and passivation in the amorphous silicon alloy cell are discussed in detail due to the greater amount of experimental data available.

  1. Extraterrestrial Materials: The Role of Synchrotron Radiation Analyses in the Study of Our Solar System

    ScienceCinema (OSTI)

    Sutton, Stephen R. [University of Chicago, Chicago, Illinois, United States

    2010-01-08

    Sample-return missions and natural collection processes have provided us with a surprisingly extensive collection of matter from Solar System bodies other than the Earth. These collections include samples from the Moon, Mars, asteroids, interplanetary dust, and, recently, from the Sun (solar wind) and a comet. This presentation will describe some of these materials, how they were collected, and what we have learned from them. Synchrotron radiation analyses of these materials are playing an increasingly valuable role in unraveling the histories and properities of the parent Solar System bodies.

  2. Solar collector roof

    SciTech Connect (OSTI)

    Marossy, G.; Mueller, W.E.

    1983-07-19

    A solar roof is disclosed for providing air heated by solar energy to the interior of a prefabricated building of the type having a relatively low pitched roof structure formed by a plurality of interlocking ribbed roof panels. A solar radiation transmissive glazing is attached between the roof panel ribs or other support members to form air passageways. A duct-like inlet plenum communicates with the inlet of each passageway for selectively directing air from inside or outside of the building passageways. A duct-like exhaust plenum communicates with the outlet of each passageway for directing heated air to the building interior. The roof surface may be provided with a darkened coating to increase the absorptivity of the surface and increase the collecting efficiency. The glazing material may be thin flexible solar radiation transmissive sheets or relatively rigid panels of solar radiation transmissive material. The solar roof may be retrofitted to an existing roof structure to provide supplemental solar heating capability.

  3. Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish: 2, Modeling and analysis

    SciTech Connect (OSTI)

    Skocypec, R.D.; Hogan, R.E. Jr.; Muir, J.F.

    1991-01-01

    The CAtalytically Enhanced Solar Absorption Receiver (CAESAR) experiment was conducted to determine the thermal, chemical, and mechanical performance of a commercial-scale, dish-mounted, direct catalytic absorption receiver (DCAR) reactor over a range of steady state and transient (cloud) operating conditions. The focus of the experiment is on global performance such as receiver efficiencies and overall methane conversion; it was not intended to provide data for code validation. A numerical model was previously developed to provide guidance in the design of the absorber. The one-dimensional, planar and steady-state model incorporates, the following energy transfer mechanisms: solar and infrared radiation, heterogeneous chemical reaction, conduction in the solid phase, and convection between the fluid and solid phases. A number of upgrades to the model and improved property values are presented here. Model predictions are shown to bound the experimental axial thermocouple data when experimental uncertainties are included. Global predictions are made using a technique in which the incident solar flux distribution is subdivided into flux contour bands. Model predictions for each band are then spatially integrated to provide global predictions such as reactor efficiencies and methane conversions. Global predictions are shown to compare well with experimental data. Reactor predictions for anticipated operating conditions suggest a further decrease in optical density at the front of the absorber inner disk may be beneficial. The need to conduct code-validation experiments is identified as essential to improve the confidence in the capability to predict large-scale reactor operation.

  4. A comparison of the radiation tolerance characteristics of multijunction solar cells with series and voltage-matched configurations

    SciTech Connect (OSTI)

    Gee, J.M; Curtis, H.B.

    1988-01-01

    The effect of series and voltage-matched configurations on the performance of multijunction solar cells in a radiation environment was investigated. It was found that the configuration of the multijunction solar cell can have a significant impact on its radiation tolerence characteristics.

  5. Future directions in therapy of whole body radiation injury

    SciTech Connect (OSTI)

    Cronkite, E.P.

    1989-01-01

    Clinicians have long known that marked granulocytopenia predisposed patients to bacterial infections either from pathogens or commensal organisms with which an individual usually lives in harmony. Evidence that infection was of major importance derives from several observations: (a) clinical observations of bacterial infection in human beings exposed to atomic bomb radiation in Hiroshima and Nagasaki, in reactor accidents, and in large animals dying from radiation exposure, (b) correlative studies on mortality rate, time of death, and incidence of positive culture in animals, (c) challenge of irradiated animals with normally non-virulent organisms, (d) studies of germ free mice and rats, and (e) studies of the effectiveness of antibiotics in reducing mortality rate. General knowledge and sound experimental data on animals and man clearly demonstrated that the sequelae of pancytopenia (bacterial infection, thrombopenic hemorrhage, and anemia) are the lethal factors. A lot of research was required to demonstrate that there were no mysterious radiations toxins, that hyperheparinemia was not a cause of radiation hemorrhage and that radiation hemorrhage could be prevented by fresh platelet transfusions.

  6. An analysis of interplanetary space radiation exposure for various solar cycles

    SciTech Connect (OSTI)

    Badhwar, G.D.; O`Neill, P.M.; Cucinotta, F.A.

    1994-05-01

    The radiation dose received by crew members in interplanetary space is influenced by the stage of the solar cycle. Using the recently developed models of the galactic cosmic radiation (GCR) environment and the energy-dependent radiation transport code, we have calculated the dose at 0 and 5 cm water depth; using a computerized anatomical man (CAM) model, we have calculated the skin, eye and blood-forming organ (BFO) doses as a function of aluminum shielding for various solar minima and maxima between 1954 and 1989. These results show that the equivalent dose is within about 15% of the mean for the various solar minima (maxima). The maximum variation between solar minimum and maximum equivalent dose is about a factor of three. We have extended these calculations for the 1967-1977 solar minimum to five practical shielding geometries: Apollo Command Module, the least and most heavily shielded locations in the U.S. space shuttle mid-deck, center of the proposed Space Station Freedom cluster and sleeping compartment of the Skylab. These calculations, using the quality factor of ICRP 60, show that the average CAM BFO equivalent dose is 0.46 Sv/year. Based on an approach that takes fragmentation into account, we estimate a calculation uncertainty of 15% if the uncertainty in the quality factor is neglected. 25 refs., 11 figs., 1 tab.

  7. Radiation damage of GaAs thin-film solar cells on Si substrates

    SciTech Connect (OSTI)

    Itoh, Y.; Yamaguchi, M.; Nishioka, T.; Yamamoto, A.

    1987-01-15

    1-MeV electron irradiation damages in GaAs thin-film solar cells on Si substrates are examined for the first time. Damage constant for minority-carrier diffusion length in GaAs heteroepitaxial films on Si substrates is found to be the same as that in GaAs homoepitaxial films on GaAs substrates. This agreement suggests that GaAs/Si has the same defect introduction rate with radiation as GaAs/GaAs. The degradation of GaAs solar cells on Si with electron irradiation is less than that of GaAs solar cells on GaAs, because in the present, GaAs films on Si substrates have lower minority-carrier diffusion length compared to GaAs films on GaAs and these films are insensitive to radiation. The p/sup +/-p/sup +/-n AlGaAs-GaAs heteroface solar cell with junction depth of about 0.3 ..mu..m is concluded to be useful for a high-efficiency and radiation-resistant solar cell fabricated on a Si substrate.

  8. Direct Detector for Terahertz Radiation - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Current's Energy Unit Calculator Direct Current's Energy Unit Calculator June 23, 2016 - 4:40pm Addthis This interactive map is not viewable in your browser. Please view it in a modern browser. Data, Methodology and Sources can be found here. Map by Daniel Wood. Daniel Wood Daniel Wood Data Visualization and Cartographic Specialist, Office of Public Affairs Learn More Check out Direct Current, Episode 2 to learn hear our story about our newly proposed energy units. Want to learn more

  9. Equivalent circuit analysis of radiative coupling in monolithic tandem solar cells

    SciTech Connect (OSTI)

    Lan, Dongchen E-mail: d.lan@unswalumni.com; Green, Martin A.

    2015-06-29

    As solar cell efficiency improves towards the Shockley-Queisser limit, so does the radiative efficiency of the cell. For tandem stacks of cells where energy conversion efficiency now exceeds 46%, radiative coupling between the cells is becoming increasingly important to consider in cell design, measurement, and performance prediction. We show how an equivalent circuit model can capture the complex radiative interactions between cells in such tandem stacks, allowing more insight into the impact on cell performance. The circuit's use is demonstrated by deriving results relevant to the critical step of eliminating coupling effects from measured cell spectral responses.

  10. Solar radiation data manual for flat-plate and concentrating...

    Office of Scientific and Technical Information (OSTI)

    Visit OSTI to utilize additional information resources in energy science and technology. A ... The data in the manual were modeled using hourly values of direct beam and diffuse ...

  11. Method and apparatus for measuring solar radiation in a vegetative canopy

    DOE Patents [OSTI]

    Gutschick, Vincent P.; Barron, Michael H.; Waechter, David A.; Wolf, Michael A.

    1987-01-01

    An apparatus and method for measuring solar radiation received in a vegetative canopy. A multiplicity of sensors selectively generates electrical signals in response to impinging photosynthetically active radiation in sunlight. Each sensor is attached to a plant within the canopy and is electrically connected to a separate port in a junction box having a multiplicity of ports. Each port is connected to an operational amplifier. Each amplifier amplifies the signals generated by the sensors. Each amplifier is connected to an analog-to-digital convertor which digitizes each signal. A computer is connected to the convertors and accumulates and stores solar radiation data. A data output device such as a printer is connected to the computer and displays the data.

  12. Method and apparatus for measuring solar radiation in a vegetative canopy

    DOE Patents [OSTI]

    Gutschick, V.P.; Barron, M.H.; Waechter, D.A.; Wolf, M.A.

    1985-04-30

    An apparatus and method for measuring solar radiation received in a vegetative canopy. A multiplicity of sensors selectively generates electrical signals in response to impinging photosynthetically active radiation in sunlight. Each sensor is attached to a plant within the canopy and is electrically connected to a separate port in a junction box having a multiplicity of ports. Each port is connected to an operational amplifier. Each amplifier amplifies the signals generated by the sensors. Each amplifier is connected to an analog-to-digital convertor which digitizes each signal. A computer is connected to the convertors and accumulates and stores solar radiation data. A data output device such as a printer is connected to the computer and displays the data.

  13. Apparatuses and method for converting electromagnetic radiation to direct current

    DOE Patents [OSTI]

    Kotter, Dale K; Novack, Steven D

    2014-09-30

    An energy conversion device may include a first antenna and a second antenna configured to generate an AC current responsive to incident radiation, at least one stripline, and a rectifier coupled with the at least one stripline along a length of the at least one stripline. An energy conversion device may also include an array of nanoantennas configured to generate an AC current in response to receiving incident radiation. Each nanoantenna of the array includes a pair of resonant elements, and a shared rectifier operably coupled to the pair of resonant elements, the shared rectifier configured to convert the AC current to a DC current. The energy conversion device may further include a bus structure operably coupled with the array of nanoantennas and configured to receive the DC current from the array of nanoantennas and transmit the DC current away from the array of nanoantennas.

  14. Solar retorting of oil shale

    DOE Patents [OSTI]

    Gregg, David W.

    1983-01-01

    An apparatus and method for retorting oil shale using solar radiation. Oil shale is introduced into a first retorting chamber having a solar focus zone. There the oil shale is exposed to solar radiation and rapidly brought to a predetermined retorting temperature. Once the shale has reached this temperature, it is removed from the solar focus zone and transferred to a second retorting chamber where it is heated. In a second chamber, the oil shale is maintained at the retorting temperature, without direct exposure to solar radiation, until the retorting is complete.

  15. Multi-criteria analysis on how to select solar radiation hydrogen production system

    SciTech Connect (OSTI)

    Badea, G.; Naghiu, G. S. Felseghi, R.-A.; Giurca, I.; Răboacă, S.; Aşchilean, I.

    2015-12-23

    The purpose of this article is to present a method of selecting hydrogen-production systems using the electric power obtained in photovoltaic systems, and as a selecting method, we suggest the use of the Advanced Multi-Criteria Analysis based on the FRISCO formula. According to the case study on how to select the solar radiation hydrogen production system, the most convenient alternative is the alternative A4, namely the technical solution involving a hydrogen production system based on the electrolysis of water vapor obtained with concentrated solar thermal systems and electrical power obtained using concentrating photovoltaic systems.

  16. NRC TLD Direct Radiation Monitoring Network. Progress report, October--December 1996

    SciTech Connect (OSTI)

    Struckmeyer, R.

    1997-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1996. It provides the ambient radiation levels measured in the vicinity of 74 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program. 3 figs., 4 tabs.

  17. NRC TLD Direct Radiation Monitoring Network progress report, October--December 1994. Volume 14, No. 4

    SciTech Connect (OSTI)

    Struckmeyer, R.

    1995-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1994. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program.

  18. A Fully Integrated Nanosystem of Semiconductor Nanowires for Direct Solar Water Splitting

    SciTech Connect (OSTI)

    Liu, Chong; Tang, Jinyao; Chen, HaoMing; Liu, Bin; Yang, Peidong

    2013-02-21

    Artificial photosynthesis, the biomimetic approach to converting sunlight?s energy directly into chemical fuels, aims to imitate nature by using an integrated system of nanostructures, each of which plays a specific role in the sunlight-to-fuel conversion process. Here we describe a fully integrated system of nanoscale photoelectrodes assembled from inorganic nanowires for direct solar water splitting. Similar to the photosynthetic system in a chloroplast, the artificial photosynthetic system comprises two semiconductor light absorbers with large surface area, an interfacial layer for charge transport, and spatially separated cocatalysts to facilitate the water reduction and oxidation. Under simulated sunlight, a 0.12percent solar-to-fuel conversion efficiency is achieved, which is comparable to that of natural photosynthesis. The result demonstrates the possibility of integrating material components into a functional system that mimics the nanoscopic integration in chloroplasts. It also provides a conceptual blueprint of modular design that allows incorporation of newly discovered components for improved performance.

  19. NRC TLD direct radiation monitoring network: Progress report, July--September 1997. Volume 17, Number 3

    SciTech Connect (OSTI)

    Struckmeyer, R.

    1998-01-01

    The US Nuclear Regulatory Commission (NRC) Direct Radiation Monitoring Network is operated by the NRC in cooperation with participating states to provide continuous measurement of the ambient radiation levels around licensed NRC facilities, primarily power reactors. Ambient radiation levels result from naturally occurring radionuclides present in the soil, cosmic radiation constantly bombarding the earth from outer space, and the contribution, if any, from the monitored facilities and other man-made sources. The Network is intended to measure radiation levels during routine facility operations and to establish background radiation levels used to assess the radiological impact of an unusual condition, such as an accident. This report presents the radiation levels measured around all facilities in the Network for the third quarter of 1996. A complete listing of the site facilities monitored is included. In some instances, two power reactor facilities are monitored by the same set of dosimeters (e.g., Kewaunee and Point Beach).

  20. Prediction of internal temperature swings in direct-gain passive-solar buildings

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1983-01-01

    The diurnal heat capacity method is presented for estimating inside-temperature swings attributable to direct winter solar gain. The procedures are simplified to be suitable for hand analysis, aided by tables of diurnal heat capacity for various materials. The method has been spot checked against computer simulation and has been used successfully by a group of 20 builders in New Mexico to analyze whether temperature swings would be excessive in their designs.

  1. Space radiation dose analysis for solar flare of August 1989

    SciTech Connect (OSTI)

    Nealy, J.E.; Simonsen, L.C.; Sauer, H.H.; Wilson, J.W.; Townsend, L.W.

    1990-12-01

    Potential dose and dose rate levels to astronauts in deep space are predicted for the solar flare event which occurred during the week of August 13, 1989. The Geostationary Operational Environmental Satellite (GOES-7) monitored the temporal development and energy characteristics of the protons emitted during this event. From these data, differential fluence as a function of energy was obtained in order to analyze the flare using the Langley baryon transport code, BRYNTRN, which describes the interactions of incident protons in matter. Dose equivalent estimates for the skin, ocular lens, and vital organs for 0.5 to 20 g/sq cm of aluminum shielding were predicted. For relatively light shielding (less than 2 g/sq cm), the skin and ocular lens 30-day exposure limits are exceeded within several hours of flare onset. The vital organ (5 cm depth) dose equivalent is exceeded only for the thinnest shield (0.5 g/sq cm). Dose rates (rem/hr) for the skin, ocular lens, and vital organs are also computed.

  2. The effect of microscopic texture on the direct plasma surface passivation of Si solar cells

    SciTech Connect (OSTI)

    Mehrabian, S.; Xu, S.; Qaemi, A. A.; Shokri, B.; Chan, C. S.; Ostrikov, K.

    2013-04-15

    Textured silicon surfaces are widely used in manufacturing of solar cells due to increasing the light absorption probability and also the antireflection properties. However, these Si surfaces have a high density of surface defects that need to be passivated. In this study, the effect of the microscopic surface texture on the plasma surface passivation of solar cells is investigated. The movement of 10{sup 5} H{sup +} ions in the texture-modified plasma sheath is studied by Monte Carlo numerical simulation. The hydrogen ions are driven by the combined electric field of the plasma sheath and the textured surface. The ion dynamics is simulated, and the relative ion distribution over the textured substrate is presented. This distribution can be used to interpret the quality of the Si dangling bonds saturation and consequently, the direct plasma surface passivation.

  3. NREL Solar Radiation Research Laboratory (SRRL): Baseline Measurement System (BMS); Golden, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    The SRRL was established at the Solar Energy Research Institute (now NREL) in 1981 to provide continuous measurements of the solar resources, outdoor calibrations of pyranometers and pyrheliometers, and to characterize commercially available instrumentation. The SRRL is an outdoor laboratory located on South Table Mountain, a mesa providing excellent solar access throughout the year, overlooking Denver. Beginning with the basic measurements of global horizontal irradiance, direct normal irradiance and diffuse horizontal irradiance at 5-minute intervals, the SRRL Baseline Measurement System now produces more than 130 data elements at 1-min intervals that are available from the Measurement & Instrumentation Data Center Web site. Data sources include global horizontal, direct normal, diffuse horizontal (from shadowband and tracking disk), global on tilted surfaces, reflected solar irradiance, ultraviolet, infrared (upwelling and downwelling), photometric and spectral radiometers, sky imagery, and surface meteorological conditions (temperature, relative humidity, barometric pressure, precipitation, snow cover, wind speed and direction at multiple levels). Data quality control and assessment include daily instrument maintenance (M-F) with automated data quality control based on real-time examinations of redundant instrumentation and internal consistency checks using NREL's SERI-QC methodology. Operators are notified of equipment problems by automatic e-mail messages generated by the data acquisition and processing system. Radiometers are recalibrated at least annually with reference instruments traceable to the World Radiometric Reference (WRR).

  4. NREL Solar Radiation Research Laboratory (SRRL): Baseline Measurement System (BMS); Golden, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    1981-07-15

    The SRRL was established at the Solar Energy Research Institute (now NREL) in 1981 to provide continuous measurements of the solar resources, outdoor calibrations of pyranometers and pyrheliometers, and to characterize commercially available instrumentation. The SRRL is an outdoor laboratory located on South Table Mountain, a mesa providing excellent solar access throughout the year, overlooking Denver. Beginning with the basic measurements of global horizontal irradiance, direct normal irradiance and diffuse horizontal irradiance at 5-minute intervals, the SRRL Baseline Measurement System now produces more than 130 data elements at 1-min intervals that are available from the Measurement & Instrumentation Data Center Web site. Data sources include global horizontal, direct normal, diffuse horizontal (from shadowband and tracking disk), global on tilted surfaces, reflected solar irradiance, ultraviolet, infrared (upwelling and downwelling), photometric and spectral radiometers, sky imagery, and surface meteorological conditions (temperature, relative humidity, barometric pressure, precipitation, snow cover, wind speed and direction at multiple levels). Data quality control and assessment include daily instrument maintenance (M-F) with automated data quality control based on real-time examinations of redundant instrumentation and internal consistency checks using NREL's SERI-QC methodology. Operators are notified of equipment problems by automatic e-mail messages generated by the data acquisition and processing system. Radiometers are recalibrated at least annually with reference instruments traceable to the World Radiometric Reference (WRR).

  5. Modeling tropical Pacific sea surface temperature with satellite-derived solar radiative forcing

    SciTech Connect (OSTI)

    Seager, R.; Blumenthal, M.B.

    1994-12-01

    Two independent datasets for the solar radiation at the surface derived from satellites are compared. The data derived from the Earth Radiation Budget Experiment (ERBE) is for the net solar radiation at the surface whereas the International Satellite Cloud Climatology Project (ISCCP) data is for the downward flux only and was corrected with a space- and time-varying albedo. The ISCCP net flux is at all times higher than the ERBE flux. The difference can be divided into an offset that decreases with latitude and another component that correlates with high tropical cloud cover. With this latter exception the two datasets provide spatial patterns of solar flux that are very similar. A tropical Pacific Ocean model is forced with these two datasets and observed climatological winds. The upward heat flux is parameterized taking into account separately the longwave radiative, latent, and sensible heat fluxes. Best fit values for the uncertain parameters are found using an optimization procedure that seeks to minimize the difference between model and observed SST by varying the parameters within a reasonable range of uncertainty. The SST field the model produces with the best fit parameters is the best the model can do. If the differences between the model and data are larger than can be accounted for by remaining uncertainties in the heat flux parameterization and forcing data then the ocean model must be held to be at fault. Using this method of analysis, a fundamental model fault is identified. Inadequate treatment of mixed layer/entrainment processes in upwelling regions of the eastern tropical Pacific leads to a large and seasonally varying error in the model SST. Elsewhere the model SST is insufficiently different from observed to be able to identify model errors.

  6. Data Quality Objectives Supporting the Environmental Direct Radiation Monitoring Program for the INL Site

    SciTech Connect (OSTI)

    Lundell, J. F.; Magnuson, S. O.; Scherbinske, P.; Case, M. J.

    2015-07-01

    This document presents the development of the data quality objectives (DQOs) for the Idaho National Laboratory (INL) Environmental Direct Radiation Monitoring Program and follows the Environmental Protection Agency (EPA) DQO process (EPA 2006). This document also develops and presents the logic to determine the specific number of direct radiation monitoring locations around INL facilities on the desert west of Idaho Falls and in Idaho Falls, at locations bordering the INL Site, and in the surrounding regional area. The selection logic follows the guidance from the Department of Energy (DOE) (2015) for environmental surveillance of DOE facilities.

  7. Simulations of hybrid system varying solar radiation and microturbine response time

    SciTech Connect (OSTI)

    Fernández Ribaya, Yolanda Álvarez, Eduardo; Paredes Sánchez, José Pablo; Xiberta Bernat, Jorge

    2015-07-15

    Hybrid power systems, such as combinations of renewable power sources with intermittent power production and non-renewable power sources, theoretically increase the reliability and thus integration of renewable sources in the electrical system. However, a recent increase in the number of hybrid installations has sparked interest in the effects of their connection to the grid, especially in remote areas. This paper analyses a photovoltaic-gas microturbine hybrid system dimensioned to be installed in La Paz (Mexico).The research presented in this paper studies and quantifies the effects on the total electric power produced, varying both the solar radiation and the gas microturbine response time. The gas microturbine and the photovoltaic panels are modelled using Matlab/Simulink software, obtaining a platform where different tests to simulate real conditions have been executed. They consist of diverse ramps of irradiance that replicate solar radiation variations, and different microturbine response times reproduced by the time constants of a first order transfer function that models the microturbine dynamic response. The results obtained show that when radiation varies quickly it does not produce significant differences in the power guarantee or the microturbine gas consumption, to any microturbine response time. However, these two parameters are highly variable with smooth radiance variations. The maximum total power variation decreases greatly as the radiation variation gets lower. In addition, by decreasing the microturbine response time, it is possible to appreciably increase the power guarantee although the maximum power variation and gas consumption increase. Only in cases of low radiation variation is there no appreciable difference in the maximum power variation obtained by the different turbine response times.

  8. Cost-Effective Silicon Wafers for Solar Cells: Direct Wafer Enabling Terawatt Photovoltaics

    SciTech Connect (OSTI)

    2010-01-15

    Broad Funding Opportunity Announcement Project: 1366 is developing a process to reduce the cost of solar electricity by up to 50% by 2020from $0.15 per kilowatt hour to less than $0.07. 1366s process avoids the costly step of slicing a large block of silicon crystal into wafers, which turns half the silicon to dust. Instead, the company is producing thin wafers directly from molten silicon at industry-standard sizes, and with efficiencies that compare favorably with todays state-of-the-art technologies. 1366s wafers could directly replace wafers currently on the market, so there would be no interruptions to the delivery of these products to market. As a result of 1366s technology, the cost of silicon wafers could be reduced by 80%.

  9. On the relationship factor between the PV module temperature and the solar radiation on it for various BIPV configurations

    SciTech Connect (OSTI)

    Kaplanis, S. Kaplani, E.

    2014-10-06

    Temperatures of c-Si, pc-Si and a-Si PV modules making part of a roof in a building or hanging outside windows with various inclinations were measured with respect to the Intensity of the solar radiation on them under various environmental conditions. A relationship coefficient f was provided whose values are compared to those from a PV array operating in a free standing mode on a terrace. A theoretical model to predict f was elaborated. According to the analysis, the coefficient f takes higher values for PV modules embedded on a roof compared to the free standing PV array. The wind effect is much stronger for the free standing PV than for any BIPV configuration, either the PV is part of the roof, or placed upon the roof, or is placed outside a window like a shadow hanger. The f coefficient depends on various parameters such as angle of inclination, wind speed and direction, as well as solar radiation. For very low wind speeds the effect of the angle of inclination, ?, of the PV module with respect to the horizontal on PV temperature is clear. As the wind speed increases, the heat transfer from the PV module shifts from natural flow to forced flow and this effect vanishes. The coefficient f values range from almost 0.01 m{sup 2}C/W for free standing PV arrays at strong wind speeds, v{sub W}>7m/s, up to around 0.05 m{sup 2}C/W for the case of flexible PV modules which make part of the roof in a BIPV system.

  10. Solar heating panel arrangement

    SciTech Connect (OSTI)

    Chang, M.K.

    1983-07-12

    A solar heating panel arrangement and method are disclosed wherein a plurality of spherical lenses transmit and focus solar radiation onto the upper surface of a fluid passage for various relative positions of the sun. The upper surface of the passage is in heat transfer proximity to the fluid therein, causing solar radiation focused thereon to be transferred to the fluid in the form of heat. Solar radiation not directly incident on the lenses may be reflected onto them to increase the amount of solar energy available for transfer to the fluid. A supplementary insulating flow of fluid may also be provided above the passage to absorb heat passing upwardly therefrom and retain the heat within the system.

  11. VISUAL-SOLAR

    Energy Science and Technology Software Center (OSTI)

    003661IBMPC00 Visual-SOLAR: Modeling and Visualization of Solar Radiation Potential on Individual Building Rooftops

  12. Radiation response of multi-quantum well solar cells: Electron-beam-induced current analysis

    SciTech Connect (OSTI)

    Maximenko, S. I. Scheiman, D. A.; Jenkins, P. P.; Walters, R. J.; Lumb, M. P.; Hoheisel, R.; Gonzalez, M.; Messenger, S. R.; Tibbits, T. N. D.; Imaizumi, M.; Ohshima, T.; Sato, S. I.

    2015-12-28

    Solar cells utilizing multi-quantum well (MQW) structures are considered promising candidate materials for space applications. An open question is how well these structures can resist the impact of particle irradiation. The aim of this work is to provide feedback about the radiation response of In{sub 0.01}Ga{sub 0.99}As solar cells grown on Ge with MQWs incorporated within the i-region of the device. In particular, the local electronic transport properties of the MQW i-regions of solar cells subjected to electron and proton irradiation were evaluated experimentally using the electron beam induced current (EBIC) technique. The change in carrier collection distribution across the MQW i-region was analyzed using a 2D EBIC diffusion model in conjunction with numerical modeling of the electrical field distribution. Both experimental and simulated findings show carrier removal and type conversion from n- to p-type in MQW i-region at a displacement damage dose as low as ∼6.06–9.88 × 10{sup 9} MeV/g. This leads to a redistribution of the electric field and significant degradation in charge carrier collection.

  13. Solar Energy Resource Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Solar Solar Energy Resource Basics Solar Energy Resource Basics August 21, 2013 - 11:40am Addthis Solar radiation, often called the solar resource, is a ...

  14. Hodges residence: performance of a direct gain passive solar home in Iowa

    SciTech Connect (OSTI)

    Hodges, L.

    1980-01-01

    Results are presented for the performance of the Hodges residence, a 2200-square-foot earth-sheltered direct gain passive solar home in Ames, Iowa, during the 1979-80 heating season, its first occupied season. No night insulation was used on its 500 square feet of double-pane glass. Total auxiliary heat required was 43 GJ (41 MBtu) gross and 26 GJ (25 MBtu) net, amounting, respectively, to 60 and 36 kJ/C/sup 0/-day-m/sup 2/ (2.9 and 1.8 Btu/F/sup 0/-day-ft/sup 2/). The heating season was unusually cloudy and included the cloudiest January in the 21 years of Ames insolation measurements. Results are also presented for the performance of the hollowcore floor which serves as the main storage mass and for the comfort range in the house.

  15. Hodges residence: performance of a direct gain passive solar home in Iowa

    SciTech Connect (OSTI)

    Hodges, L.

    1980-01-01

    Results are presented for the performance of the Hodges Residence, a 2200-square-foot earth-sheltered direct gain passive solar home in Ames, Iowa, during the 1979-80 heating season, its first occupied season. No night insulation was used on its 500 square feet of double-pane glass. Total auxiliary heat required was 43 GJ (41 MBTU) gross and 26 GJ (25 MBTU) net, amounting, respectively, to 60 and 36 kJ/C/sup 0/-day-m/sup 2/ (2.9 and 1.8 BTU/F/sup 0/-day-ft/sup 2/). The heating season was unusually cloudy and included the cloudiest January in the 21 years of Ames insolation measurements. Results are also presented for the performance of the hollow-core floor which serves as the main storage mass and for the comfort range in the house.

  16. Two-dimensional model of direct solar slab-on-grade heating floor

    SciTech Connect (OSTI)

    Youcef, L. )

    1991-01-01

    The altering direction implicit (ADI) method is used to solve the two-dimensional heat equation applied to the system described in this paper. The coupling equations between flat-plate collectors, heating floor and ground had been developed. The model also takes into account the solar flux falling on the floor through the south oriented glazed wall. The theoretical results were compared to the experimental data performed in Bassens (southwest of France) during the period of September 1981 to May 1982. It was shown that the model outputs were in good agreement with the measured data. However, some doubts are considered concerning lower boundary conditions. Also is given a simple technique to evaluate the most appropriate initial conditions to drive the computational program developed here. Finally a study of some main parameters was carried out.

  17. Biofuels from Solar Energy and Bacteria: Electrofuels Via Direct Electron Transfer from Electrodes to Microbes

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: UMass is feeding renewable electricity to bacteria to provide the microorganisms with the energy they need to turn carbon dioxide (CO2) directly into liquid fuels. UMass’ energy-to-fuels conversion process is anticipated to be more efficient than current biofuels approaches in part because this process will leverage the high efficiency of photovoltaics to convert solar energy into electricity. UMass is using bacteria already known to produce biofuel from electric current and CO2 and working to increase the amount of electric current those microorganisms will accept and use for biofuels production. In collaboration with scientists at University of California, San Diego, the UMass team is also investigating the use of hydrogen sulfide as a source of energy to power biofuel production.

  18. Measurement of the solar ultraviolet radiation at ground level in Bangi, Malaysia

    SciTech Connect (OSTI)

    Aljawi, Ohoud; Gopir, Geri; Duay, Abdul Basit

    2015-04-24

    Understanding the amount of ultraviolet (UV) radiation received by human, plant, and animal organisms near the earth’s surface is important to a wide range of fields such as cancer research, agriculture and forestry. The solar ultraviolet spectral irradiance at ground level was measured using the Avantes spectrometer for the period of January to March 2014 at Bangi (2°55´N, 101°46´E, 50 m above sea level) in Malaysia. These data were used to estimate the diurnal variation of UV irradiance (300 – 400 nm). The maximum irradiance of UV radiation was 45 W m{sup −2} on horizontal surface. The maximum irradiance of UV received in the local noon time, and the minimum values of UV irradiance was received in the local morning time. It is found a bigger value of UV radiation was observed on clear sky in January. The estimation of daily flux average of UV irradiance was (921± 91) kJ m{sup −2}.

  19. Simulation of aerosol direct radiative forcing with RAMS-CMAQ in East Asia

    SciTech Connect (OSTI)

    Han, Xiao; Zhang, Meigen; Han, Zhiewi; Xin, Jin-Yuan; Liu, Xiaohong

    2011-11-14

    The air quality modeling system RAMS-CMAQ is developed to assess aerosol direct radiative forcing by linking simulated meteorological parameters and aerosol mass concentration with the aerosol optical properties/radiative transfer module in this study. The module is capable of accounting for important factors that affect aerosol optical properties and radiative effect, such as incident wave length, aerosol size distribution, water uptake, and internal mixture. Subsequently, the modeling system is applied to simulate the temporal and spatial variations in mass burden, optical properties, and direct radiative forcing of diverse aerosols, including sulfate, nitrate, ammonium, black carbon, organic carbon, dust, and sea salt over East Asia throughout 2005. Model performance is fully evaluated using various observational data, including satellite monitoring of MODIS and surface measurements of EANET (Acid Deposition Monitoring Network), AERONET (Aerosol Robotic Network), and CSHNET (Chinese Sun Hazemeter Network). The correlation coefficients of the comparisons of daily average mass concentrations of sulfate, PM2.5, and PM10 between simulations and EANET measurements are 0.70, 0.61, and 0.64, respectively. It is also determined that the modeled aerosol optical depth (AOD) is in congruence with the observed results from the AERONET, the CSHNET, and the MODIS. The model results suggest that the high AOD values ranging from 0.8 to 1.2 are mainly distributed over the Sichuan Basin as well as over central and southeastern China, in East Asia. The aerosol direct radiative forcing patterns generally followed the AOD patterns. The strongest forcing effect ranging from -12 to -8 W m-2 was mainly distributed over the Sichuan Basin and the eastern China's coastal regions in the all-sky case at TOA, and the forcing effect ranging from -8 to -4 W m-2 could be found over entire eastern China, Korea, Japan, East China Sea, and the sea areas of Japan

  20. Coupled modeling of a directly heated tubular solar receiver for supercritical carbon dioxide Brayton cycle: Optical and thermal-fluid evaluation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ortega, Jesus; Khivsara, Sagar; Christian, Joshua; Ho, Clifford; Yellowhair, Julius; Dutta, Pradip

    2016-05-30

    In single phase performance and appealing thermo-physical properties supercritical carbon dioxide (s-CO2) make a good heat transfer fluid candidate for concentrating solar power (CSP) technologies. The development of a solar receiver capable of delivering s-CO2 at outlet temperatures ~973 K is required in order to merge CSP and s-CO2 Brayton cycle technologies. A coupled optical and thermal-fluid modeling effort for a tubular receiver is undertaken to evaluate the direct tubular s-CO2 receiver’s thermal performance when exposed to a concentrated solar power input of ~0.3–0.5 MW. Ray tracing, using SolTrace, is performed to determine the heat flux profiles on the receivermore » and computational fluid dynamics (CFD) determines the thermal performance of the receiver under the specified heating conditions. Moreover, an in-house MATLAB code is developed to couple SolTrace and ANSYS Fluent. CFD modeling is performed using ANSYS Fluent to predict the thermal performance of the receiver by evaluating radiation and convection heat loss mechanisms. Understanding the effects of variation in heliostat aiming strategy and flow configurations on the thermal performance of the receiver was achieved through parametric analyses. Finally, a receiver thermal efficiency ~85% was predicted and the surface temperatures were observed to be within the allowable limit for the materials under consideration.« less

  1. Evaluation of two Vaisala RS92 radiosonde solar radiative dry bias correction algorithms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dzambo, Andrew M.; Turner, David D.; Mlawer, Eli J.

    2016-04-12

    Solar heating of the relative humidity (RH) probe on Vaisala RS92 radiosondes results in a large dry bias in the upper troposphere. Two different algorithms (Miloshevich et al., 2009, MILO hereafter; and Wang et al., 2013, WANG hereafter) have been designed to account for this solar radiative dry bias (SRDB). These corrections are markedly different with MILO adding up to 40 % more moisture to the original radiosonde profile than WANG; however, the impact of the two algorithms varies with height. The accuracy of these two algorithms is evaluated using three different approaches: a comparison of precipitable water vapor (PWV), downwellingmore » radiative closure with a surface-based microwave radiometer at a high-altitude site (5.3 km m.s.l.), and upwelling radiative closure with the space-based Atmospheric Infrared Sounder (AIRS). The PWV computed from the uncorrected and corrected RH data is compared against PWV retrieved from ground-based microwave radiometers at tropical, midlatitude, and arctic sites. Although MILO generally adds more moisture to the original radiosonde profile in the upper troposphere compared to WANG, both corrections yield similar changes to the PWV, and the corrected data agree well with the ground-based retrievals. The two closure activities – done for clear-sky scenes – use the radiative transfer models MonoRTM and LBLRTM to compute radiance from the radiosonde profiles to compare against spectral observations. Both WANG- and MILO-corrected RHs are statistically better than original RH in all cases except for the driest 30 % of cases in the downwelling experiment, where both algorithms add too much water vapor to the original profile. In the upwelling experiment, the RH correction applied by the WANG vs. MILO algorithm is statistically different above 10 km for the driest 30 % of cases and above 8 km for the moistest 30 % of cases, suggesting that the MILO correction performs better than the WANG in clear-sky scenes

  2. Evaluation of two Vaisala RS92 radiosonde solar radiative dry bias correction algorithms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dzambo, A. M.; Turner, D. D.; Mlawer, E. J.

    2015-10-20

    Solar heating of the relative humidity (RH) probe on Vaisala RS92 radiosondes results in a large dry bias in the upper troposphere. Two different algorithms (Miloshevich et al., 2009, MILO hereafter; and Wang et al., 2013, WANG hereafter) have been designed to account for this solar radiative dry bias (SRDB). These corrections are markedly different with MILO adding up to 40 % more moisture to the original radiosonde profile than WANG; however, the impact of the two algorithms varies with height. The accuracy of these two algorithms is evaluated using three different approaches: a comparison of precipitable water vapor (PWV),moredownwelling radiative closure with a surface-based microwave radiometer at a high-altitude site (5.3 km MSL), and upwelling radiative closure with the space-based Atmospheric Infrared Sounder (AIRS). The PWV computed from the uncorrected and corrected RH data is compared against PWV retrieved from ground-based microwave radiometers at tropical, mid-latitude, and arctic sites. Although MILO generally adds more moisture to the original radiosonde profile in the upper troposphere compared to WANG, both corrections yield similar changes to the PWV, and the corrected data agree well with the ground-based retrievals. The two closure activities done for clear-sky scenes use the radiative transfer models MonoRTM and LBLRTM to compute radiance from the radiosonde profiles to compare against spectral observations. Both WANG- and MILO-corrected RH are statistically better than original RH in all cases except for the driest 30 % of cases in the downwelling experiment, where both algorithms add too much water vapor to the original profile. In the upwelling experiment, the RH correction applied by the WANG vs. MILO algorithm is statistically different above 10 km for the driest 30 % of cases and above 8 km for the moistest 30 % of cases, suggesting that the MILO correction performs better than the WANG in clear-sky scenes. The cause of this

  3. Evaluation of two Vaisala RS92 radiosonde solar radiative dry bias correction algorithms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dzambo, Andrew M.; Turner, David D.; Mlawer, Eli J.

    2016-04-12

    Solar heating of the relative humidity (RH) probe on Vaisala RS92 radiosondes results in a large dry bias in the upper troposphere. Two different algorithms (Miloshevich et al., 2009, MILO hereafter; and Wang et al., 2013, WANG hereafter) have been designed to account for this solar radiative dry bias (SRDB). These corrections are markedly different with MILO adding up to 40 % more moisture to the original radiosonde profile than WANG; however, the impact of the two algorithms varies with height. The accuracy of these two algorithms is evaluated using three different approaches: a comparison of precipitable water vapor (PWV),more » downwelling radiative closure with a surface-based microwave radiometer at a high-altitude site (5.3 km m.s.l.), and upwelling radiative closure with the space-based Atmospheric Infrared Sounder (AIRS). The PWV computed from the uncorrected and corrected RH data is compared against PWV retrieved from ground-based microwave radiometers at tropical, midlatitude, and arctic sites. Although MILO generally adds more moisture to the original radiosonde profile in the upper troposphere compared to WANG, both corrections yield similar changes to the PWV, and the corrected data agree well with the ground-based retrievals. The two closure activities – done for clear-sky scenes – use the radiative transfer models MonoRTM and LBLRTM to compute radiance from the radiosonde profiles to compare against spectral observations. Both WANG- and MILO-corrected RHs are statistically better than original RH in all cases except for the driest 30 % of cases in the downwelling experiment, where both algorithms add too much water vapor to the original profile. In the upwelling experiment, the RH correction applied by the WANG vs. MILO algorithm is statistically different above 10 km for the driest 30 % of cases and above 8 km for the moistest 30 % of cases, suggesting that the MILO correction performs better than the WANG in clear-sky scenes. Lastly, the

  4. Lattice-Mismatched GaAs/InGaAs Two-Junction Solar Cells by Direct Wafer Bonding

    SciTech Connect (OSTI)

    Tanabe, K.; Aiken, D. J.; Wanlass, M. W.; Morral, A. F.; Atwater, H. A.

    2006-01-01

    Direct bonded interconnect between subcells of a lattice-mismatched III-V compound multijunction cell would enable dislocation-free active regions by confining the defect network needed for lattice mismatch accommodation to tunnel junction interfaces, while metamorphic growth inevitably results in less design flexibility and lower material quality than is desirable. The first direct-bond interconnected multijunction solar cell, a two-terminal monolithic GaAs/InGaAs two-junction solar cell, is reported and demonstrates viability of direct wafer bonding for solar cell applications. The tandem cell open-circuit voltage was approximately the sum of the subcell open-circuit voltages. This achievement shows direct bonding enables us to construct lattice-mismatched III-V multijunction solar cells and is extensible to an ultrahigh efficiency InGaP/GaAs/InGaAsP/InGaAs four-junction cell by bonding a GaAs-based lattice-matched InGaP/GaAs subcell and an InP-based lattice-matched InGaAsP/InGaAs subcell. The interfacial resistance experimentally obtained for bonded GaAs/InP smaller than 0.10 Ohm-cm{sup 2} would result in a negligible decrease in overall cell efficiency of {approx}0.02%, under 1-sun illumination.

  5. User`s manual for TMY2s: Derived from the 1961--1990 National Solar Radiation Data Base

    SciTech Connect (OSTI)

    Marion, W.; Urban, K.

    1995-06-01

    This report is a user`s manual that describes typical meteorological year (TMY) data sets derived from the 1961-1990 National Solar Radiation Data Base. The TMY is a data set of hourly values of solar radiation and meteorological elements for a 1-year period. The intended use if for computer simulations of solar energy conversion systems and building systems. Section 1 of the manual provides general information about the TMYs; Section 2 lists the stations and provides station identifying information and classification; Section 3 details the contents of the TMY2 files and provides the hourly records of data values; Section 4 compares TMY2 with 30-year data sets; Appendices provide procedures used to develop TMYs and a table to convert SI data to other units.

  6. Status of the direct absorption receiver panel research experiment: Salt flow and solar test requirements and plans

    SciTech Connect (OSTI)

    Tyner, C.E.

    1989-03-01

    The Panel Research Experiment (PRE) is the first large-scale solar test of the molten nitrate salt direct absorption receiver (DAR) concept. The purpose of the PRE is to demonstrate the engineering feasibility and practicality of the DAR. We will conduct the test at the Central Receiver Test Facility in Albuquerque in two phases: salt flow testing and solar testing. This is a working document to define PRE test objectives and requirements, document the test hardware design, and define test plans. 13 refs., 12 figs., 1 tab.

  7. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas ...

  8. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water ...

  9. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & ...

  10. Solar Energy Science Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Projects Curriculum: Solar Power -(thermodynamics, lightelectromagnetic, radiation, energy transformation, conductionconvection, seasons, trigonometry) Grade Level: ...

  11. Solar Neutrinos

    DOE R&D Accomplishments [OSTI]

    Davis, R. Jr.; Harmer, D. S.

    1964-12-01

    The prospect of studying the solar energy generation process directly by observing the solar neutrino radiation has been discussed for many years. The main difficulty with this approach is that the sun emits predominantly low energy neutrinos, and detectors for observing low fluxes of low energy neutrinos have not been developed. However, experimental techniques have been developed for observing neutrinos, and one can foresee that in the near future these techniques will be improved sufficiently in sensitivity to observe solar neutrinos. At the present several experiments are being designed and hopefully will be operating in the next year or so. We will discuss an experiment based upon a neutrino capture reaction that is the inverse of the electron-capture radioactive decay of argon-37. The method depends upon exposing a large volume of a chlorine compound, removing the radioactive argon-37 and observing the characteristic decay in a small low-level counter.

  12. SOLAR RADIATION PRESSURE AND LOCAL INTERSTELLAR MEDIUM FLOW PARAMETERS FROM INTERSTELLAR BOUNDARY EXPLORER LOW ENERGY HYDROGEN MEASUREMENTS

    SciTech Connect (OSTI)

    Schwadron, N. A.; Moebius, E.; Kucharek, H.; Lee, M. A.; French, J.; Saul, L.; Wurz, P.; Bzowski, M.; Fuselier, S. A.; Livadiotis, G.; McComas, D. J.; Frisch, P.; Gruntman, M.; Mueller, H. R.

    2013-10-01

    Neutral hydrogen atoms that travel into the heliosphere from the local interstellar medium (LISM) experience strong effects due to charge exchange and radiation pressure from resonant absorption and re-emission of Ly?. The radiation pressure roughly compensates for the solar gravity. As a result, interstellar hydrogen atoms move along trajectories that are quite different than those of heavier interstellar species such as helium and oxygen, which experience relatively weak radiation pressure. Charge exchange leads to the loss of primary neutrals from the LISM and the addition of new secondary neutrals from the heliosheath. IBEX observations show clear effects of radiation pressure in a large longitudinal shift in the peak of interstellar hydrogen compared with that of interstellar helium. Here, we compare results from the Lee et al. interstellar neutral model with IBEX-Lo hydrogen observations to describe the distribution of hydrogen near 1 AU and provide new estimates of the solar radiation pressure. We find over the period analyzed from 2009 to 2011 that radiation pressure divided by the gravitational force (?) has increased slightly from ? = 0.94 0.04 in 2009 to ? = 1.01 0.05 in 2011. We have also derived the speed, temperature, source longitude, and latitude of the neutral H atoms and find that these parameters are roughly consistent with those of interstellar He, particularly when considering the filtration effects that act on H in the outer heliosheath. Thus, our analysis shows that over the period from 2009 to 2011, we observe signatures of neutral H consistent with the primary distribution of atoms from the LISM and a radiation pressure that increases in the early rise of solar activity.

  13. Effects of stratospheric ozone depletion, solar UV radiation, and climate change on biogeochemical cycling: interactions and feedbacks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Erickson III, David J.; Sulzberger, Barbara; Zepp, Richard G.; Austin, Amy T.

    2014-11-07

    Climate change modulates the effects of solar UV radiation on biogeochemical cycles in terrestrial and aquatic ecosystems, particularly for carbon cycling, resulting in UV-mediated positive or negative feedbacks on climate. Possible positive feedbacks discussed in this assessment include: (i) enhanced UV-induced mineralisation of above ground litter due to aridification; (ii) enhanced UV-induced mineralisation of photoreactive dissolved organic matter (DOM) in aquatic ecosystems due to changes in continental runoff and ice melting; (iii) reduced efficiency of the biological pump due to UV-induced bleaching of coloured dissolved organic matter (CDOM) in stratified aquatic ecosystems, where CDOM protects phytoplankton from the damaging solarmore » UV-B radiation. Mineralisation of organic matter results in the production and release of CO2, whereas the biological pump is the main biological process for CO2 removal by aquatic ecosystems. This research also assesses the interactive effects of solar UV radiation and climate change on the biogeochemical cycling of aerosols and trace gases other than CO2, as well as of chemical and biological contaminants. Lastly,, interacting effects of solar UV radiation and climate change on biogeochemical cycles are particularly pronounced at terrestrial-aquatic interfaces.« less

  14. More Frequent Cloud-Free Sky and Less Surface Solar Radiation in China from 1955 to 2000

    SciTech Connect (OSTI)

    Qian, Yun; Kaiser, Dale P.; Leung, Lai R.; Xu, Ming

    2006-01-11

    Newly available data from extended weather stations and time period reveal that much of China has experienced statistically significant decreases in total cloud cover and low cloud cover over roughly the last half of the Twentieth century. This conclusion is supported by our recent analysis of the more reliably observed frequency of cloud-free sky and overcast sky. The total cloud cover and low cloud cover have decreased 0.88% and 0.33% per decade, respectively, and cloud-free days have increased 0.60% and overcast days decreased 0.78% per decade in China from 1954-2001. Meanwhile, both solar radiation and pan evaporation have decreased in most parts of China, with solar radiation decreasing 3.1 W/m2 and pan evaporation decreasing 39 mm per decade. Combined with other evidences documented in previous studies, we conjectured that increased air pollution may have produced a fog-like haze that reflected/absorbed radiation from the sun and resulted in less solar radiation reaching the surface, despite concurrent upward trends in cloud-free skies over China.

  15. NRC TLD Direct Radiation Monitoring Network. Volume 15, No. 4: Quarterly progress report, October--December 1995

    SciTech Connect (OSTI)

    Struckmeyer, R.

    1996-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1995. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program.

  16. Multi-satellite simultaneous observations of magnetopause and atmospheric losses of radiation belt electrons during an intense solar wind dynamic pressure pulse

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiang, Zheng; Ni, Binbin; Zhou, Chen; Zou, Zhengyang; Gu, Xudong; Zhao, Zhengyu; Zhang, Xianguo; Zhang, Xiaoxin; Zhang, Shenyi; Li, Xinlin; et al

    2016-05-03

    Radiation belt electron flux dropouts are a kind of drastic variation in the Earth's magnetosphere, understanding of which is of both scientific and societal importance. We report multi-satellite simultaneous observations of magnetopause and atmospheric losses of radiation belt electrons during an event of intense solar wind dynamic pressure pulse, using electron flux data from a group of 14 satellites. Moreover, when the pulse occurred, magnetopause and atmospheric loss could take effect concurrently contributing to the electron flux dropout. Losses through the magnetopause were observed to be efficient and significant at L ≳ 5, owing to the magnetopause intrusion into Lmore » ~6 and outward radial diffusion associated with sharp negative gradient in electron phase space density. Losses to the atmosphere were directly identified from the precipitating electron flux observations, for which pitch angle scattering by plasma waves could be mainly responsible. While the convection and substorm injections strongly enhanced the energetic electron fluxes up to hundreds of keV, they could delay other than avoid the occurrence of electron flux dropout at these energies. Finally, we demonstrate that the pulse-time radiation belt electron flux dropout depends strongly on the specific interplanetary and magnetospheric conditions and that losses through the magnetopause and to the atmosphere and enhancements of substorm injection play an essential role in combination, which should be incorporated as a whole into future simulations for comprehending the nature of radiation belt electron flux dropouts.« less

  17. Direct imaging of enhanced current collection on grain boundaries of Cu(In,Ga)Se{sub 2} solar cells

    SciTech Connect (OSTI)

    Kim, JunHo; Kim, SeongYeon; Jiang, Chun-Sheng; Ramanathan, Kannan; Al-Jassim, Mowafak M.

    2014-02-10

    We report on direct imaging of current collection by performing conductive atomic force microscopy (C-AFM) measurement on a complete Cu(In,Ga)Se{sub 2} solar cell. The localized current was imaged by milling away the top conductive layer of the device by repeated C-AFM scans. The result exhibits enhanced photocurrent collection on grain boundaries (GBs) of CIGS films, consistent with the argument for electric-field-assisted carrier collection on the GBs.

  18. Instrument development for atmospheric radiation measurement (ARM): Status of the Atmospheric Emitted Radiance Interferometer - extended Resolution (AERI-X), the Solar Radiance Transmission Interferometer (SORTI), and the Absolute Solar Transmission Inferometer (ASTI)

    SciTech Connect (OSTI)

    Murcray, F.; Stephen, T.; Kosters, J.

    1996-04-01

    This paper describes three instruments currently under developemnt for the Atmospheric Radiation Measurement (ARM) Program at the University of Denver: the AERI-X (Atmospheric Emitted Radiance Interferometer-Extended Resolution) and the SORTI (Solar R adiance Transmission Interferometer), and ASTI (Absolute Solar transmission Interferometer).

  19. Solar Energy Educational Material, Activities and Science Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Educational Materials Solar with glasses "The sun has produced energy for billions of years. Solar energy is the solar radiation that reaches the earth. Solar energy ...

  20. solar

    National Nuclear Security Administration (NNSA)

    2%2A en Solar power purchase for DOE laboratories http:nnsa.energy.govmediaroompressreleasessolarpower

  1. Solar Rights

    Broader source: Energy.gov [DOE]

    Cities and counties in North Carolina generally may not adopt ordinances prohibiting the installation of "a solar collector that gathers solar radiation as a substitute for traditional energy for...

  2. Anisotropic Margin Expansions in 6 Anatomic Directions for Oropharyngeal Image Guided Radiation Therapy

    SciTech Connect (OSTI)

    Yock, Adam D. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas (United States); Garden, Adam S. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Court, Laurence E. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas (United States); Beadle, Beth M. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Zhang, Lifei [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Dong, Lei, E-mail: dong.lei@scrippshealth.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas (United States)

    2013-11-01

    Purpose: The purpose of this work was to determine the expansions in 6 anatomic directions that produced optimal margins considering nonrigid setup errors and tissue deformation for patients receiving image-guided radiation therapy (IGRT) of the oropharynx. Methods and Materials: For 20 patients who had received IGRT to the head and neck, we deformably registered each patient's daily images acquired with a computed tomography (CT)-on-rails system to his or her planning CT. By use of the resulting vector fields, the positions of volume elements within the clinical target volume (CTV) (target voxels) or within a 1-cm shell surrounding the CTV (normal tissue voxels) on the planning CT were identified on each daily CT. We generated a total of 15,625 margins by dilating the CTV by 1, 2, 3, 4, or 5 mm in the posterior, anterior, lateral, medial, inferior, and superior directions. The optimal margins were those that minimized the relative volume of normal tissue voxels positioned within the margin while satisfying 1 of 4 geometric target coverage criteria and 1 of 3 population criteria. Results: Each pair of geometric target coverage and population criteria resulted in a unique, anisotropic, optimal margin. The optimal margin expansions ranged in magnitude from 1 to 5 mm depending on the anatomic direction of the expansion and on the geometric target coverage and population criteria. Typically, the expansions were largest in the medial direction, were smallest in the lateral direction, and increased with the demand of the criteria. The anisotropic margin resulting from the optimal set of expansions always included less normal tissue than did any isotropic margin that satisfied the same pair of criteria. Conclusions: We demonstrated the potential of anisotropic margins to reduce normal tissue exposure without compromising target coverage in IGRT to the head and neck.

  3. Directions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directions Directions to HAZMAT Challenge LANL's HAZMAT Reesponse Ready Room and Training Facility are ready to welcome this year's Challengers Technical Area 64 - HAZMAT Response...

  4. Solar interior and atmosphere

    SciTech Connect (OSTI)

    Cox, A.N.; Livingston, W.C.; Matthews, M.S. National Solar Observatory, Tucson, AZ )

    1991-01-01

    The present work discusses nuclear energy generation in the solar interior, solar neutrino experiments, solar premain-sequence evolution, the computation of standard solar models, radiative-zone mixing, solar element separation by atomic diffusion, the observation and theory of solar oscillations, the solar internal rotation and magnetism implications of oscillations, solar gravity modes, and solar oscillation-mode excitation. Also discussed are the solar spectrum, the role of the solar photosphere and a radiative boundary, high spatial-resolution techniques for solar study, high-resolution observations of the solar granulation, large-scale velocity fields, the solar activity cycle, the magnetic fields of active regions and sunspots, the physics of flux tubes and filigrees, the heating of the solar chromosphere, the fine structure of the solar transition region, coronal activity, the coronal origins of the solar winds, and postmain sequence solar evolution.

  5. Norathyriol Suppresses Skin Cancers Induced by Solar Ultraviolet Radiation by Targeting ERK Kinases

    SciTech Connect (OSTI)

    Li, Jixia; Malakhova, Margarita; Mottamal, Madhusoodanan; Reddy, Kanamata; Kurinov, Igor; Carper, Andria; Langfald, Alyssa; Oi, Naomi; Kim, Myoung Ok; Zhu, Feng; Sosa, Carlos P.; Zhou, Keyuan; Bode, Ann M.; Dong, Zigang

    2012-06-27

    Ultraviolet (UV) irradiation is the leading factor in the development of skin cancer, prompting great interest in chemopreventive agents for this disease. In this study, we report the discovery of norathyriol, a plant-derived chemopreventive compound identified through an in silico virtual screening of the Chinese Medicine Library. Norathyriol is a metabolite of mangiferin found in mango, Hypericum elegans, and Tripterospermum lanceolatum and is known to have anticancer activity. Mechanistic investigations determined that norathyriol acted as an inhibitor of extracellular signal-regulated kinase (ERK)1/2 activity to attenuate UVB-induced phosphorylation in mitogen-activated protein kinases signaling cascades. We confirmed the direct and specific binding of norathyriol with ERK2 through a cocrystal structural analysis. The xanthone moiety in norathyriol acted as an adenine mimetic to anchor the compound by hydrogen bonds to the hinge region of the protein ATP-binding site on ERK2. Norathyriol inhibited in vitro cell growth in mouse skin epidermal JB6 P+ cells at the level of G{sub 2}-M phase arrest. In mouse skin tumorigenesis assays, norathyriol significantly suppressed solar UV-induced skin carcinogenesis. Further analysis indicated that norathyriol mediates its chemopreventive activity by inhibiting the ERK-dependent activity of transcriptional factors AP-1 and NF-{kappa}B during UV-induced skin carcinogenesis. Taken together, our results identify norathyriol as a safe new chemopreventive agent that is highly effective against development of UV-induced skin cancer.

  6. Directions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directions Directions Call Hilton Santa Fe Buffalo Thunder at (505) 455-5555 for shuttle information from the airport and downtown Santa Fe. Driving Directions to Hilton Santa Fe Buffalo Thunder Hilton Santa Fe Buffalo Thunder is located 15 minutes north of Santa Fe. Directions from Albuquerque (bypassing downtown Santa Fe) Take Interstate 25 north towards Santa Fe for approximately 50 miles. From Interstate 25, exit right onto the 599 Northbound Bypass for approximately 14 miles and continue to

  7. Solar Radiation Map of the U.S. - Annual (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2009-01-18

    Maps that provide monthly average daily total solar resource information on grid cells of approximately 40 km by 40 km in size.

  8. Solar UV radiation exposure of seamen - Measurements, calibration and model calculations of erythemal irradiance along ship routes

    SciTech Connect (OSTI)

    Feister, Uwe; Meyer, Gabriele; Kirst, Ulrich

    2013-05-10

    Seamen working on vessels that go along tropical and subtropical routes are at risk to receive high doses of solar erythemal radiation. Due to small solar zenith angles and low ozone values, UV index and erythemal dose are much higher than at mid-and high latitudes. UV index values at tropical and subtropical Oceans can exceed UVI = 20, which is more than double of typical mid-latitude UV index values. Daily erythemal dose can exceed the 30-fold of typical midlatitude winter values. Measurements of erythemal exposure of different body parts on seamen have been performed along 4 routes of merchant vessels. The data base has been extended by two years of continuous solar irradiance measurements taken on the mast top of RV METEOR. Radiative transfer model calculations for clear sky along the ship routes have been performed that use satellite-based input for ozone and aerosols to provide maximum erythemal irradiance and dose. The whole data base is intended to be used to derive individual erythemal exposure of seamen during work-time.

  9. Study of the processes of degradation of the optical properties of mesoporous and macroporous silicon upon exposure to simulated solar radiation

    SciTech Connect (OSTI)

    Levitskii, V. S.; Lenshin, A. S. Seredin, P. V.; Terukov, E. I.

    2015-11-15

    The effect of solar radiation on the surface composition of mesoporous and macroporous silicon is studied by infrared spectroscopy, Raman spectroscopy, and photoluminescence measurements in order to analyze the possibility of using these materials as a material for solar-power engineering. The studies are conducted in the laboratory environment, with the use of a solar-radiation simulator operating under conditions close to the working conditions of standard silicon solar cells. The studies show that, in general, the materials meet the requirements of solar-power engineering, if it is possible to preclude harmful effects associated with the presence of heat-sensitive and photosensitive bonds at the nanomaterial surface by standard processing methods.

  10. A direct-heating energy-storage receiver for dish-Stirling solar energy systems

    SciTech Connect (OSTI)

    Lund, K.O.

    1996-02-01

    Dish-Stirling solar receiver designs are investigated and evaluated for possible use with sensible energy storage in single-phase materials. The designs differ from previous receivers in utilizing axial conduction in the storage material for attenuation of the solar flux transients due to intermittent cloud cover, and in having convective heat removal at the base of the receiver. One-dimensional, time-dependent heat transfer equations are formulated for the storage material temperature field, including losses to the environment, and a general heat exchange effectiveness boundary condition at the base. The solar source flux is represented as the sum of steady and periodic cloud-transient components, with the steady component solved subject to specified receiver thermal efficiency. For the transient cloud-cover component the Fast Fourier Transform algorithm (FFT) is applied, and the complex transfer function of the receiver is obtained as a filter for the input flux spectrum. Inverse transformation results in the amplitudes and mode shapes of the transient temperature component. By adjustment of design parameters, the cloud-cover amplitude variations of the outlet gas temperature can be limited to acceptable magnitudes, thus simplifying control systems.

  11. Determination of the distribution of incident solar radiation in cavity receivers with approximately real parabolic dish collectors

    SciTech Connect (OSTI)

    Bammert, K.; Lange, H. ); Hegazy, A. )

    1990-11-01

    The absorption of solar heat and the attendant thermal and mechanical loadings on the tubes of cavity receivers depend predominantly on the flux distribution of the incident solar radiation. For an axially symmetric cavity receiver with a parabolic dish collector, it is simple to determine the insolation pattern on the receiver internal surfaces if the system is ideal. In such a system the surface of the dish is perfectly parabolic (no contour flaws are present), and the sun's central ray impinges on the dish surface parallel to the focal axis (no sun tracking flaws are present). These two conditions cannot be achieved in practice, and therefore the feasible parabolic dish system is referred to as a real system although, in actual fact, it is only an approximation to any actual system. The purpose of this paper is to devise calculation principles which permit analysis of a receiver designed for ideal conditions to verify its structural adequacy under the nonideal conditions to be expected in reality. Of the many possible imperfections in real collectors, two were selected which increase the loadings sustained. The first case concerns flaws in the contour of the dish surface. These locally increase the radiation concentration on the receiver inside walls and tubing. In the second case, sun-tracking errors give rise to axially asymmetric radiation distributions. In both examples, greater than design basis loadings will occur in the receiver tubing. Both kinds of flaws considered in this paper are of a purely deterministic nature.

  12. The radiated energy budget of chromospheric plasma in a major solar flare deduced from multi-wavelength observations

    SciTech Connect (OSTI)

    Milligan, Ryan O.; Mathioudakis, Mihalis; Keenan, Francis P.; Kerr, Graham S.; Hudson, Hugh S.; Fletcher, Lyndsay; Dennis, Brian R.; Allred, Joel C.; Chamberlin, Phillip C.; Ireland, Jack

    2014-10-01

    This paper presents measurements of the energy radiated by the lower solar atmosphere, at optical, UV, and EUV wavelengths, during an X-class solar flare (SOL2011-02-15T01:56) in response to an injection of energy assumed to be in the form of nonthermal electrons. Hard X-ray observations from RHESSI were used to track the evolution of the parameters of the nonthermal electron distribution to reveal the total power contained in flare accelerated electrons. By integrating over the duration of the impulsive phase, the total energy contained in the nonthermal electrons was found to be >2 × 10{sup 31} erg. The response of the lower solar atmosphere was measured in the free-bound EUV continua of H I (Lyman), He I, and He II, plus the emission lines of He II at 304 Å and H I (Lyα) at 1216 Å by SDO/EVE, the UV continua at 1600 Å and 1700 Å by SDO/AIA, and the white light continuum at 4504 Å, 5550 Å, and 6684 Å, along with the Ca II H line at 3968 Å using Hinode/SOT. The summed energy detected by these instruments amounted to ∼3 × 10{sup 30} erg; about 15% of the total nonthermal energy. The Lyα line was found to dominate the measured radiative losses. Parameters of both the driving electron distribution and the resulting chromospheric response are presented in detail to encourage the numerical modeling of flare heating for this event, to determine the depth of the solar atmosphere at which these line and continuum processes originate, and the mechanism(s) responsible for their generation.

  13. Assessment of multi-decadal WRF-CMAQ simulations for understanding direct aerosol effects on radiation "brightening" in the United States

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gan, C.-M.; Pleim, J.; Mathur, R.; Hogrefe, C.; Long, C. N.; Xing, J.; Wong, D.; Gilliam, R.; Wei, C.

    2015-07-01

    Multi-decadal simulations with the coupled WRF-CMAQ model have been conducted to systematically investigate the changes in anthropogenic emissions of SO2 and NOx over the past 21 years (1990–2010) across the United States (US), their impacts on anthropogenic aerosol loading over North America, and subsequent impacts on regional radiation budgets. In particular, this study attempts to determine the consequences of the changes in tropospheric aerosol burden arising from substantial reductions in emissions of SO2 and NOx associated with control measures under the Clean Air Act (CAA) especially on trends in solar radiation. Extensive analyses conducted by Gan et al. (2014) utilizingmore » observations (e.g. SURFRAD, CASTNET, IMPROVE and ARM) over the past 16 years (1995–2010) indicate a shortwave (SW) radiation (both all-sky and clear-sky) "brightening" in the US. The relationship of the radiation brightening trend with decreases in the aerosol burden is less apparent in the western US. One of the main reasons for this is that the emission controls under the CAA were aimed primarily at reducing pollutants in areas violating national air quality standards, most of which were located in the eastern US while the relatively less populated areas in the western US were less polluted at the beginning of this study period. Comparisons of model results with observations of aerosol optical depth (AOD), aerosol concentration, and radiation demonstrate that the coupled WRF-CMAQ model is capable of replicating the trends well even through it tends to underestimate the AOD. In particular, the sulfate concentration predictions were well matched with the observations. The discrenpancies found in the clear-sky diffuse SW radiation are likely due to several factors such as potential increase of ice particles associated with increasing air traffic, the definition of "clear-sky" in the radiation retrieval methodology and aerosol semi-direct and/or indirect effects which cannot be

  14. Assessment of long-term WRF–CMAQ simulations for understanding direct aerosol effects on radiation "brightening" in the United States

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gan, C.-M.; Pleim, J.; Mathur, R.; Hogrefe, C.; Long, C. N.; Xing, J.; Wong, D.; Gilliam, R.; Wei, C.

    2015-11-03

    Long-term simulations with the coupled WRF–CMAQ (Weather Research and Forecasting–Community Multi-scale Air Quality) model have been conducted to systematically investigate the changes in anthropogenic emissions of SO2 and NOx over the past 16 years (1995–2010) across the United States (US), their impacts on anthropogenic aerosol loading over North America, and subsequent impacts on regional radiation budgets. In particular, this study attempts to determine the consequences of the changes in tropospheric aerosol burden arising from substantial reductions in emissions of SO2 and NOx associated with control measures under the Clean Air Act (CAA) especially on trends in solar radiation. Extensive analysesmore » conducted by Gan et al. (2014a) utilizing observations (e.g., SURFRAD, CASTNET, IMPROVE, and ARM) over the past 16 years (1995–2010) indicate a shortwave (SW) radiation (both all-sky and clear-sky) "brightening" in the US. The relationship of the radiation brightening trend with decreases in the aerosol burden is less apparent in the western US. One of the main reasons for this is that the emission controls under the CAA were aimed primarily at reducing pollutants in areas violating national air quality standards, most of which were located in the eastern US, while the relatively less populated areas in the western US were less polluted at the beginning of this study period. Comparisons of model results with observations of aerosol optical depth (AOD), aerosol concentration, and radiation demonstrate that the coupled WRF–CMAQ model is capable of replicating the trends well even though it tends to underestimate the AOD. In particular, the sulfate concentration predictions were well matched with the observations. The discrepancies found in the clear-sky diffuse SW radiation are likely due to several factors such as the potential increase of ice particles associated with increasing air traffic, the definition of "clear-sky" in the radiation retrieval

  15. Dark matter production from Goldstone boson interactions and implications for direct searches and dark radiation

    SciTech Connect (OSTI)

    Garcia-Cely, Camilo; Ibarra, Alejandro; Molinaro, Emiliano E-mail: alejandro.ibarra@ph.tum.de

    2013-11-01

    The stability of the dark matter particle could be attributed to the remnant Z{sub 2} symmetry that arises from the spontaneous breaking of a global U(1) symmetry. This plausible scenario contains a Goldstone boson which, as recently shown by Weinberg, is a strong candidate for dark radiation. We show in this paper that this Goldstone boson, together with the CP-even scalar associated to the spontaneous breaking of the global U(1) symmetry, plays a central role in the dark matter production. Besides, the mixing of the CP-even scalar with the Standard Model Higgs boson leads to novel Higgs decay channels and to interactions with nucleons, thus opening the possibility of probing this scenario at the LHC and in direct dark matter search experiments. We carefully analyze the latter possibility and we show that there are good prospects to observe a signal at the future experiments LUX and XENON1T provided the dark matter particle was produced thermally and has a mass larger than ? 25 GeV.

  16. A hybrid approach for rapid, accurate, and direct kilovoltage radiation dose calculations in CT voxel space

    SciTech Connect (OSTI)

    Kouznetsov, Alexei; Tambasco, Mauro

    2011-03-15

    Purpose: To develop and validate a fast and accurate method that uses computed tomography (CT) voxel data to estimate absorbed radiation dose at a point of interest (POI) or series of POIs from a kilovoltage (kV) imaging procedure. Methods: The authors developed an approach that computes absorbed radiation dose at a POI by numerically evaluating the linear Boltzmann transport equation (LBTE) using a combination of deterministic and Monte Carlo (MC) techniques. This hybrid approach accounts for material heterogeneity with a level of accuracy comparable to the general MC algorithms. Also, the dose at a POI is computed within seconds using the Intel Core i7 CPU 920 2.67 GHz quad core architecture, and the calculations are performed using CT voxel data, making it flexible and feasible for clinical applications. To validate the method, the authors constructed and acquired a CT scan of a heterogeneous block phantom consisting of a succession of slab densities: Tissue (1.29 cm), bone (2.42 cm), lung (4.84 cm), bone (1.37 cm), and tissue (4.84 cm). Using the hybrid transport method, the authors computed the absorbed doses at a set of points along the central axis and x direction of the phantom for an isotropic 125 kVp photon spectral point source located along the central axis 92.7 cm above the phantom surface. The accuracy of the results was compared to those computed with MCNP, which was cross-validated with EGSnrc, and served as the benchmark for validation. Results: The error in the depth dose ranged from -1.45% to +1.39% with a mean and standard deviation of -0.12% and 0.66%, respectively. The error in the x profile ranged from -1.3% to +0.9%, with standard deviations of -0.3% and 0.5%, respectively. The number of photons required to achieve these results was 1x10{sup 6}. Conclusions: The voxel-based hybrid method evaluates the LBTE rapidly and accurately to estimate the absorbed x-ray dose at any POI or series of POIs from a kV imaging procedure.

  17. Towards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping and non-radiative recombinations

    SciTech Connect (OSTI)

    Bozzola, A. Kowalczewski, P.; Andreani, L. C.

    2014-03-07

    Thin-film solar cells based on silicon have emerged as an alternative to standard thick wafers technology, but they are less efficient, because of incomplete absorption of sunlight, and non-radiative recombinations. In this paper, we focus on the case of crystalline silicon (c-Si) devices, and we present a full analytic electro-optical model for p-n junction solar cells with Lambertian light trapping. This model is validated against numerical solutions of the drift-diffusion equations. We use this model to investigate the interplay between light trapping, and bulk and surface recombination. Special attention is paid to surface recombination processes, which become more important in thinner devices. These effects are further amplified due to the textures required for light trapping, which lead to increased surface area. We show that c-Si solar cells with thickness of a few microns can overcome 20% efficiency and outperform bulk ones when light trapping is implemented. The optimal device thickness in presence of light trapping, bulk and surface recombination, is quantified to be in the range of 1080??m, depending on the bulk quality. These results hold, provided the effective surface recombination is kept below a critical level of the order of 100?cm/s. We discuss the possibility of meeting this requirement, in the context of state-of-the-art techniques for light trapping and surface passivation. We show that our predictions are within the capability of present day silicon technologies.

  18. Gamma Radiation Aging Study of a Dow Corning SE 1700 Porous Structure Made by Direct Ink Writing

    SciTech Connect (OSTI)

    Small, Ward; Alviso, Cindy T.; Metz, Tom R.

    2015-11-13

    Dow Corning SE 1700 (reinforced polydimethylsiloxane) porous structures were made by direct ink writing (DIW). The specimens (~50% porosity) were subjected to a compressive strain of ~25% while exposed to a gamma radiation dose of 1, 5, or 10 Mrad under vacuum. Compression set and load retention of the aged specimens were measured after a ~24 h relaxation period. Compression set (relative to deflection) increased with radiation dose: 11, 35, and 51% after 1, 5, and 10 Mrad, respectively. Load retention was 96-97% for the doses tested. The SE 1700 compared favorably to M9763 cellular silicone tested under the same conditions.

  19. Direct evidence of an eruptive, filament-hosting magnetic flux rope leading to a fast solar coronal mass ejection

    SciTech Connect (OSTI)

    Chen, Bin; Gary, D. E.; Bastian, T. S.

    2014-10-20

    Magnetic flux ropes (MFRs) are believed to be at the heart of solar coronal mass ejections (CMEs). A well-known example is the prominence cavity in the low corona that sometimes makes up a three-part white-light (WL) CME upon its eruption. Such a system, which is usually observed in quiet-Sun regions, has long been suggested to be the manifestation of an MFR with relatively cool filament material collecting near its bottom. However, observational evidence of eruptive, filament-hosting MFR systems has been elusive for those originating in active regions. By utilizing multi-passband extreme-ultraviolet (EUV) observations from Solar Dynamics Observatory/Atmospheric Imaging Assembly, we present direct evidence of an eruptive MFR in the low corona that exhibits a hot envelope and a cooler core; the latter is likely the upper part of a filament that undergoes a partial eruption, which is later observed in the upper corona as the coiled kernel of a fast, WL CME. This MFR-like structure exists more than 1 hr prior to its eruption, and displays successive stages of dynamical evolution, in which both ideal and non-ideal physical processes may be involved. The timing of the MFR kinematics is found to be well correlated with the energy release of the associated long-duration C1.9 flare. We suggest that the long-duration flare is the result of prolonged energy release associated with the vertical current sheet induced by the erupting MFR.

  20. Contribution to energy conservation of opaque building materials exposed to solar radiation

    SciTech Connect (OSTI)

    Dilmac, S.; Akman, M.S.

    1990-12-01

    In the study, effects of opaque building materials on the heating of buildings by the passive solar energy system have been investigated. The quantity of solar energy absorbed by surfaces and its transfer indoors have been the main subjects of the research. Relevant surface properties and structures of opaque building skin materials have been determined experimentally and theoretically according to the meteorological, geographical and atmospheric characteristics of the regions. A laminar composite building element made of light and heavy materials has been suggested to obtain an efficient solution.

  1. Direct

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct removal of edge-localized pollutant emission in a near-infrared bremsstrahlung measurement J. K. Anderson, a) P. L. Andrew, b) B. E. Chapman, D. Craig, and D. J. Den Hartog Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, Wisconsin 53706 ͑Presented on 10 July 2002͒ Visible and near-infrared electron-ion bremsstrahlung measurements in fusion research devices, used to determine the effective ionic charge (Z eff ), are often plagued by pollutant emission

  2. Enhancing VHTR Passive Safety and Economy with Thermal Radiation Based Direct Reactor Auxiliary Cooling System

    SciTech Connect (OSTI)

    Haihua Zhao; Hongbin Zhang; Ling Zou; Xiaodong Sun

    2012-06-01

    One of the most important requirements for Gen. IV Very High Temperature Reactor (VHTR) is passive safety. Currently all the gas cooled version of VHTR designs use Reactor Vessel Auxiliary Cooling System (RVACS) for passive decay heat removal. The decay heat first is transferred to the core barrel by conduction and radiation, and then to the reactor vessel by thermal radiation and convection; finally the decay heat is transferred to natural circulated air or water systems. RVACS can be characterized as a surface based decay heat removal system. The RVACS is especially suitable for smaller power reactors since small systems have relatively larger surface area to volume ratio. However, RVACS limits the maximum achievable power level for modular VHTRs due to the mismatch between the reactor power (proportional to volume) and decay heat removal capability (proportional to surface area). When the relative decay heat removal capability decreases, the peak fuel temperature increases, even close to the design limit. Annular core designs with inner graphite reflector can mitigate this effect; therefore can further increase the reactor power. Another way to increase the reactor power is to increase power density. However, the reactor power is also limited by the decay heat removal capability. Besides the safety considerations, VHTRs also need to be economical in order to compete with other reactor concepts and other types of energy sources. The limit of decay heat removal capability set by using RVACS has affected the economy of VHTRs. A potential alternative solution is to use a volume-based passive decay heat removal system, called Direct Reactor Auxiliary Cooling Systems (DRACS), to remove or mitigate the limitation on decay heat removal capability. DRACS composes of natural circulation loops with two sets of heat exchangers, one on the reactor side and another on the environment side. For the reactor side, cooling pipes will be inserted into holes made in the outer or

  3. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mccomiskey, Allison

    2008-01-15

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  4. Aluminoborosilicate glasses codoped with rare-earth elements as radiation-protective covers for solar cells

    SciTech Connect (OSTI)

    Malchukova, E. V. Abramov, A. S.; Nepomnyashchikh, A. I.; Terukov, E. I.

    2015-06-15

    The radiation hardness of aluminoborosilicate glasses codoped with rare-earth ions of Sm, Gd or Sm, Eu in various ratios is studied. The effect of codoping and β irradiation at a dose of 10{sup 9} Gr on the optical transmission and electron paramagnetic resonance spectra is examined. It is found that the introduction of Sm and Gd codopants in a 1 : 1 ratio reduces the number of radiation defects and raises the transmission of irradiated glasses in the visible spectral range.

  5. Diurnal heat storage in direct-gain passive-solar buildings

    SciTech Connect (OSTI)

    Balcomb, J.D.; Neeper, D.A.

    1983-01-01

    This paper presents a simplified method for predicting temperature swings in direct-gain buildings. It is called the DHC method due to the use of a diurnal heat capacity (DHC). Diurnal heat capacity is a measure of the effective amount of heat stored during a sunny day and then released at night - the typical 24-hour diurnal cycle. This enables prediction of the maximum temperature swings experienced in the building and can be calculated using a single 24-hour harmonic. The advantage is that closed-form analytic solutions can be obtained for a variety of simple and layered-wall configurations. Higher harmonic components are accounted for by a correction factor. The method is suitable for us by hand or on a programmable calculator.

  6. An evaluation of the effect of volcanic eruption on the solar radiation at Australian and Canadian stations

    SciTech Connect (OSTI)

    Yatko, B.R.; Garrison, J.D.

    1996-11-01

    Peak (most probable) and average values of {angstrom}`s turbidity coefficient {beta} and peak (most probable) and average values of the diffuse index k{sub d} are obtained from the solar radiation data from 21 stations in Australia and 5 stations in Canada. These data exhibit clear increases in their values when the volcanic aerosols in the stratosphere increase following volcanic eruptions of sufficient magnitude. The effect of the eruptions of Fuego (1974), El Chichon (1982) and Pinatubo (1991) are seen most clearly in the data. The effect of lesser eruptions is also seen. The store of volcanic aerosols in the stratosphere shifts with the season so that scattering by volcanic aerosols in the spring half of the year is stronger than in the fall.

  7. DIRECT OBSERVATIONS OF TETHER-CUTTING RECONNECTION DURING A MAJOR SOLAR EVENT FROM 2014 FEBRUARY 24 TO 25

    SciTech Connect (OSTI)

    Chen, Huadong; Zhang, Jun; Yang, Shuhong; Li, Ting; Cheng, Xin; Ma, Suli

    2014-12-20

    Using multi-wavelength data from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, we investigated two successive solar flares, a C5.1 confined flare and an X4.9 ejective flare with a halo coronal mass ejection, in NOAA active region 11990 from 2014 February 24 to 25. Before the confined flare onset, EUV brightening beneath the filament was detected. As the flare began, a twisted helical flux rope (FR) wrapping around the filament moved upward and then stopped, and in the meantime an obvious X-ray source below it was observed. Prior to the ejective X4.9 flare, some pre-existing loop structures in the active region interacted with each other, which produced a brightening region beneath the filament. Meanwhile, a small flaring loop appeared below the interaction region and some new helical lines connecting the far ends of the loop structures were gradually formed and continually added into the former twisted FR. Then, due to the resulting imbalance between the magnetic pressure and tension, the new FR, together with the filament, erupted outward. Our observations coincide well with a tether-cutting model, suggesting that the two flares probably have the same triggering mechanism, i.e., tether-cutting reconnection. To our knowledge, this is the first direct observation of tether-cutting reconnection occurring between pre-existing loops in an active region. In the ejective flare case, the erupting filament exhibited an ?-like kinked structure and underwent an exponential rise after a slow-rise phase, indicating that the kink instability might be also responsible for the eruption initiation.

  8. Impacts, Effectiveness and Regional Inequalities of the GeoMIP G1 to G4 Solar Radiation Management Scenarios

    SciTech Connect (OSTI)

    Yu, Xiaoyong; Moore, John; Cui, Xuefeng; Rinke, Annette; Ji, Duoying; Kravitz, Benjamin S.; Yoon, Jin-Ho

    2015-06-01

    We evaluate the regional effectiveness of solar radiation management (SRM) to compensate for simultaneous changes in temperature and precipitation induced by increased greenhouse gas concentrations. We analyze results from multiple earth system models under four Geoengineering Model Intercomparison Project(GeoMIP) experiments with a modified form of the Residual Climate Response approach. Under the solar dimming geoengineering experiments G1(4xCO2) and G2(increasing CO2 by 1% per year), global average temperature is successfully restored to pre-industrial level over 50 years simulations. However, these two SRM experiments also produce a robust global precipitation decrease. The stratospheric aerosol GeoMIP geoengineering experiment, G4 has significantly greater regional inequality and lower effectiveness for compensating temperature change than G1 and G2. G4 also has significantly larger regional inequality for compensating precipitation change than G1and G2. However, there is no significant difference between precipitation change compensation effectiveness of G4 and G2, though there is much larger across model variability in G4 results. G3 has significant greater regional inequality for compensating temperature change than G1 and G2, and has significant lower effectiveness than G1. The effectiveness of four SRMs to compensate for temperature change is much higher than for precipitation. The large cross-model variation in adjustment percentage of compensated SAT and precipitation change by SRM to achieve optimal compensation effectiveness shed a light on the uncertainty accumulation effect in optimizing compensation effectiveness of SRM.

  9. Multigroup Three-Dimensional Direct Integration Method Radiation Transport Analysis Code System.

    Energy Science and Technology Software Center (OSTI)

    1987-09-18

    Version 00 TRISTAN solves the three-dimensional, fixed-source, Boltzmann transport equation for neutrons or gamma rays in rectangular geometry. The code can solve an adjoint problem as well as a usual transport problem. TRISTAN is a suitable tool to analyze radiation shielding problems such as streaming and deep penetration problems.

  10. MHK ISDB/Sensors/Solar Radiation Sensor 2770 | Open Energy Information

    Open Energy Info (EERE)

    Velocity Planar Measurement (Current), 3D Velocity Volumetric Measurement (Current), Density (Ice), Direction (Ice), Speed (Ice), Thickness (Ice), Pressure (Tidal), Sea Surface...

  11. Development of RAMS-CMAQ to Simulate Aerosol Optical Depth and Aerosol Direct Radiative Forcing and Its Application to East Asia

    SciTech Connect (OSTI)

    Han, Xiao; Zhang, Meigen; Liu, Xiaohong; Ghan, Steven J.; Xin, Jin-Yuan; Wang, Li-Li

    2009-11-16

    The air quality modeling system RAMS (Regional Atmospheric Modeling System)-CMAQ (Models-3 Community Multi-scale Air Quality) is developed to simulate the aerosol optical depth (AOD) and aerosol direct forcing (DF). The aerosol-specific extinction, single scattering albedo, and asymmetry factor are parameterized based on Mie theory taking into account the aerosol size distribution, composition, refractive index, and water uptake of solution particles. A two-stream solar radiative model considers all gaseous molecular absorption, Rayleigh scattering, and aerosols and clouds. RAMSCMAQ is applied to simulate all major aerosol concentrations (e.g., sulfate, nitrate, ammonium, organic carbon, black carbon, fine soil, and sea salt) and AOD and DF over East Asia in 2005. To evaluate its performance, the simulated AOD values were compared with ground-based in situ measurements. The comparison shows that RAMSCMAQ performed well in most of the model domain and generally captured the observed variations. High AOD values (0.2−1.0) mainly appear in the Sichuan Basin as well as in central and southeastern China. The geographic distribution of DF generally follows the AOD distribution patterns, and the DF at the top-of-the-atmosphere is less than −25 and −20 W m−2 in clear-sky and all-sky over the Sichuan Basin. Both AOD and DF exhibit seasonal variations with lower values in July and higher ones in January. The DF could obviously be impacted by high cloud fractions.

  12. The effect of initial conditions on the electromagnetic radiation generation in type III solar radio bursts

    SciTech Connect (OSTI)

    Schmitz, H.; Tsiklauri, D.

    2013-06-15

    Extensive particle-in-cell simulations of fast electron beams injected in a background magnetised plasma with a decreasing density profile were carried out. These simulations were intended to further shed light on a newly proposed mechanism for the generation of electromagnetic waves in type III solar radio bursts [D. Tsiklauri, Phys. Plasmas, 18, 052903 (2011)]. The numerical simulations were carried out using different density profiles and fast electron distribution functions. It is shown that electromagnetic L and R modes are excited by the transverse current, initially imposed on the system. In the course of the simulations, no further interaction of the electron beam with the background plasma could be observed.

  13. Direct Measurement of the Radiative Lifetime of Vibrationally Excited OH Radicals

    SciTech Connect (OSTI)

    Meerakker, Sebastiaan Y.T. van de; Vanhaecke, Nicolas; Meijer, Gerard; Loo, Mark P.J. van der; Groenenboom, Gerrit C.

    2005-07-01

    Neutral molecules, isolated in the gas phase, can be prepared in a long-lived excited state and stored in a trap. The long observation time afforded by the trap can then be exploited to measure the radiative lifetime of this state by monitoring the temporal decay of the population in the trap. This method is demonstrated here and used to benchmark the Einstein A coefficients in the Meinel system of OH. A pulsed beam of vibrationally excited OH radicals is Stark decelerated and loaded into an electrostatic quadrupole trap. The radiative lifetime of the upper {lambda}-doublet component of the X {sup 2}{pi}{sub 3/2}, v=1, J=3/2 level is determined as 59.0{+-}2.0 ms, in good agreement with the calculated value of 58.0{+-}1.0 ms.

  14. Passive solar design handbook. Volume two of two volumes: passive solar design analysis

    SciTech Connect (OSTI)

    Balcomb, J.D.; Barley, D.; McFarland, R.; Perry, J. Jr.; Wray, W.; Noll, S.

    1980-01-01

    A manual for the design and performance evaluation and analysis of passive solar heating systems is presented. Two passive solar building types are analyzed: direct gain and thermal storage walls. Rules of thumb for the schematic design phase and simplified procedures for the design development phase are described. Analysis methods for the construction documents phase are given. The design procedure for fan-forced rock beds for hybrid systems is presented. Economic analysis methods for passive solar buildings are described. Tables of monthly average solar radiation, temperature, and degree-days for various locations in the US and southern Canada are included. (WHK)

  15. Improved light extraction with nano-particles offering directional radiation diagrams

    SciTech Connect (OSTI)

    Jouanin, A.; Hugonin, J. P.; Besbes, M.; Lalanne, P.

    2014-01-13

    We propose a unique approach for light extraction, using engineered nano-particles to efficiently decouple the light guided in transverse-magnetic guided modes into free-space radiation modes that leak out normally to the thin-film stacks. The underlying mechanism takes advantage of a small electric field variation at the nano-particle scale and induces a polarization conversion, which renders the induced dipole moment perpendicular to the polarization of the incident light. Our analysis is supported by 2D fully vectorial computational results. Potential applications for light emitting or photovoltaic devices are outlined.

  16. Increasing the solar photovoltaic energy capture on sunny and cloudy days

    SciTech Connect (OSTI)

    Kelly, Nelson A.; Gibson, Thomas L.

    2011-01-15

    This report analyzes an extensive set of measurements of the solar irradiance made using four identical solar arrays and associated solar sensors (collectively referred to as solar collectors) with different tilt angles relative to the earth's surface, and thus the position of the sun, in order to determine an optimal tracking algorithm for capturing solar radiation. The study included a variety of ambient conditions including different seasons and both cloudy and cloud-free conditions. One set of solar collectors was always approximately pointed directly toward the sun (DTS) for a period around solar noon. These solar collectors thus captured the direct beam component of the solar radiation that predominates on sunny days. We found that on sunny days, solar collectors with a DTS configuration captured more solar energy in accordance with the well-known cosine dependence for the response of a flat-surfaced solar collector to the angle of incidence with direct beam radiation. In particular, a DTS orientation was found to capture up to twice as much solar energy as a horizontal (H) orientation in which the array is tilted toward the zenith. Another set of solar collectors always had an H orientation, and this best captured the diffuse component of the solar radiation that predominates on cloudy days. The dependence of the H/DTS ratio on the solar-collector tilt angle was in approximate agreement with the Isotropic Diffuse Model derived for heavily overcast conditions. During cloudy periods, we found that an H configuration increased the solar energy capture by nearly 40% compared to a DTS configuration during the same period, and we estimate the solar energy increase of an H configuration over a system that tracks the obscured solar disk could reach 50% over a whole heavily-overcast day. On an annual basis the increase is predicted to be much less, typically only about 1%, because the contribution of cloudy days to the total annual solar energy captured by a

  17. Atmospheric Radiation Measurement Program Science Plan. Current Status and Future Directions of the ARM Science Program

    SciTech Connect (OSTI)

    Ackerman, Thomas P.; Del Genio, Anthony D.; Ellingson, Robert G.; Ferrare, Richard A.; Klein, Steve A.; McFarquhar, Gregory M.; Lamb, Peter J.; Long, Charles M.; Verlinde, Johannes

    2004-10-30

    The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: Maintain the data record at the fixed ARM sites for at least the next five years; Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square; Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds; Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations; Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites; Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale; and, Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote

  18. Highly directional thermal emitter

    DOE Patents [OSTI]

    Ribaudo, Troy; Shaner, Eric A; Davids, Paul; Peters, David W

    2015-03-24

    A highly directional thermal emitter device comprises a two-dimensional periodic array of heavily doped semiconductor structures on a surface of a substrate. The array provides a highly directional thermal emission at a peak wavelength between 3 and 15 microns when the array is heated. For example, highly doped silicon (HDSi) with a plasma frequency in the mid-wave infrared was used to fabricate nearly perfect absorbing two-dimensional gratings structures that function as highly directional thermal radiators. The absorption and emission characteristics of the HDSi devices possessed a high degree of angular dependence for infrared absorption in the 10-12 micron range, while maintaining high reflectivity of solar radiation (.about.64%) at large incidence angles.

  19. Solar Sales Tax Exemption

    Broader source: Energy.gov [DOE]

    For both residential and non-residential systems, the exemption applies to solar-energy systems that utilize solar radiation to produce energy designed to provide heating, cooling, hot water and/or...

  20. Dealing with the size-of-source effect in the calibration of direct-reading radiation thermometer

    SciTech Connect (OSTI)

    Saunders, P.

    2013-09-11

    The majority of general-purpose low-temperature handheld radiation thermometers are severely affected by the size-of-source effect (SSE). Calibration of these instruments is pointless unless the SSE is accounted for in the calibration process. Traditional SSE measurement techniques, however, are costly and time consuming, and because the instruments are direct-reading in temperature, traditional SSE results are not easily interpretable, particularly by the general user. This paper describes a simplified method for measuring the SSE, suitable for second-tier calibration laboratories and requiring no additional equipment, and proposes a means of reporting SSE results on a calibration certificate that should be easily understood by the non-specialist user.

  1. NREL: Concentrating Solar Power Research - Data and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data and Resources For concentrating solar power technologies, NREL features the following online solar radiation resource data and solar resource maps, as well as data for ...

  2. Energy balance studies over varying ground cover of the Colorado River riparian zone below Glen Canyon Dam, Part II. Modeling of solar and net radiation

    SciTech Connect (OSTI)

    Brazel, A.J.; Brazel, S.W.; Marcus, M.G.

    1995-06-01

    A numerical radiation model was utilized to investigate the diurnal and seasonal variability of solar input at four sites along the Colorado River below Glen Canyon Dam: river miles -14.5, 43, 55, and 194. These simulations were compared to observations made during the spring growing season (April, 1994), the pre-monsoon dry season (June-July, 1994), the monsoon season (August, 1994), and winter (January 1995). At each river mile above, a main station was established for a 24-36 hour period observing radiation components. This station serves as a reference point to compare with simulations. The model requires specifications of sky horizon effects, albedo, atmospheric attentuation, and nearby terrain emissivity and reflectivity. A combination of field data, surveying information, and radiation theory provides an adequate methodology to yield close agreement between observations and simulations in the canyon environment. Solar shading by canyon topography can be responsible for as much 40% loss of potential photosynthetic radiation in summer months, even more at the equinoxes, and a near total reduction at some sites in winter.

  3. Solar spectral measurements and modeling

    SciTech Connect (OSTI)

    Bird, R.E.; Hulstrom, R.L.

    1981-01-01

    A newly developed spectroradiometer for routine measurement of the solar spectra is described. This instrument measures the solar spectrum between 300 and 2500 nm in less than 2.5 min, with 0.7-nm resolution in the visible and 10-nm resolution in the infrared. Many examples of global, direct, and diffuse spectra are illustrated for Bedford, Mass. and Golden, Colo. The effects of air mass, turbidity, and sun tracking on the spectrum are presented, and radiative transfer modeling capabilities and comparisons between models and between models and experiment are discussed.

  4. Reconstruction and Prediction of Variations of Total Ozone and Associated Variations of UV-B Solar Radiation for Subarctic Regions Based of Dendrochronologic Data

    SciTech Connect (OSTI)

    Zuev, V.V.; Bondarenko, S.L.

    2005-03-18

    Variations of dendrochronologic parameters, especially annual ring density, significantly reflect the physiological tree response to systematic variations of solar UV-B radiation, taking place on monthly and longer timescales during growing season. Such variations of UV-B radiation are totally governed by variations of total ozone (TO). Thus, in any dendrochronologic signal, especially for coniferous trees, there is also a recorded response to TO variations, characterizing variations of UV-B radiation. Because a monitoring of global TO distribution is regularly performed since 1979 using TOMS satellite instrumentation, there appears a possibility to reconstruct TO behavior in the past practically at any point of dendrochronologic monitoring network. The reconstruction is performed by the method of linear regression, based on significant correlation of annual ring density of coniferous trees and TO for coordinates of denrochronologic signal. The present report considers the Subarctic latitudes, which are characterized by considerable TO variations in the second half of twentieth century.

  5. Prism Solar Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    Prism Solar Technologies Inc Jump to: navigation, search Name: Prism Solar Technologies Inc Place: Stone Ridge, New York Zip: 12484 Sector: Solar Product: JV formed between Direct...

  6. The influences of solar wind pressure and interplanetary magnetic field on global magnetic field and outer radiation belt electrons

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yu, J.; Li, L. Y.; Cao, J. B.; Reeves, Geoffrey D.; Baker, D. N.; Spence, H.

    2016-07-22

    Using the Van Allen Probe in situ measured magnetic field and electron data, we examine the solar wind dynamic pressure and interplanetary magnetic field (IMF) effects on global magnetic field and outer radiation belt relativistic electrons (≥1.8 MeV). The dynamic pressure enhancements (>2 nPa) cause the dayside magnetic field increase and the nightside magnetic field reduction, whereas the large southward IMFs (Bz-IMF < –2nT) mainly lead to the decrease of the nightside magnetic field. In the dayside increased magnetic field region (magnetic local time (MLT) ~ 06:00–18:00, and L > 4), the pitch angles of relativistic electrons are mainly pancakemore » distributions with a flux peak around 90° (corresponding anisotropic index A > 0.1), and the higher-energy electrons have stronger pancake distributions (the larger A), suggesting that the compression-induced betatron accelerations enhance the dayside pancake distributions. However, in the nighttime decreased magnetic field region (MLT ~ 18:00–06:00, and L ≥ 5), the pitch angles of relativistic electrons become butterfly distributions with two flux peaks around 45° and 135° (A < 0). The spatial range of the nighttime butterfly distributions is almost independent of the relativistic electron energy, but it depends on the magnetic field day-night asymmetry and the interplanetary conditions. The dynamic pressure enhancements can make the nighttime butterfly distribution extend inward. The large southward IMFs can also lead to the azimuthal expansion of the nighttime butterfly distributions. As a result, these variations are consistent with the drift shell splitting and/or magnetopause shadowing effect.« less

  7. Solar Radiometric Data Quality Assessment of SIRS, SKYRAD and GNDRAD Measurements (Poster)

    SciTech Connect (OSTI)

    Habte, A.; Stoffel, T.; Reda, I.; Wilcox, S.; Kutchenreiter, M.; Gotseff, P.; Anderberg, M.

    2014-03-01

    Solar radiation is the driving force for the earth's weather and climate. Understanding the elements of this dynamic energy balance requires accurate measurements of broadband solar irradiance. Since the mid-1990's the ARM Program has deployed pyrheliometers and pyranometers for the measurement of direct normal irradiance (DNI), global horizontal irradiance (GHI), diffuse horizontal irradiance (DHI), and upwelling shortwave (US) radiation at permanent and mobile field research sites. This poster summarizes the basis for assessing the broadband solar radiation data available from the SIRS, SKYRAD, and GNDRAD measurement systems and provides examples of data inspections.

  8. MULTIFUNCTIONAL SOLAR ENERGY SYSTEMS RESEARCH PROJECT

    SciTech Connect (OSTI)

    Byard Wood, Lance Seefeldt, Ronald Sims, Bradley Wahlen, and Dan Dye

    2012-06-29

    The solar energy available within the visible portion of the solar spectrum is about 300 W/m2 (43%) and that available in the UV and IR portion is about 400 W/m2 (57%). This provides opportunities for developing integrated energy systems that capture and use specific wavelengths of the solar spectrum for different purposes. For example: biofuels from photosynthetic microbes use only the visible light; solar cells use a narrow band of the solar spectrum that could be either mostly in the visible or in the IR regions of the solar spectrum, depending on the photovoltaic materials, e.g., gallium antimonide (GaSb) cells utilize predominately IR radiation; and finally, solar panels that heat water utilize a broad range of wavelengths (visible plus IR). The basic idea of this research is that sunlight has many possible end-use applications including both direct use and energy conversion schemes; it is technically feasible to develop multifunctional solar energy systems capable of addressing several end-use needs while increasing the overall solar energy utilization efficiency when compared to single-purpose solar technologies. Such a combination of technologies could lead to more cost-competitive ?multifunctional? systems that add value and broaden opportunities for integrated energy systems. The goal of this research is to increase the overall energy efficacy and cost competitiveness of solar systems. The specific objectives of this research were: 1) Evaluate the efficacy of a combined photobioreactor and electric power system; 2) Improve the reliability and cost effectiveness of hybrid solar lighting systems ? a technology in which sunlight is collected and distributed via optical fibers into the interior of a building; 3) Evaluate the efficacy of using filtered light to increase the production of biomass in photobioreactors and provide more solar energy for other uses; 4) Evaluates several concepts for wavelength shifting such that a greater percentage of the solar

  9. Solar Selective Absorption Coatings - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of solar selective absorber coatings that significantly improve the thermal conversion efficiency of solar units by reducing radiative energy losses from the absorbing elements. ...

  10. A New Solar Irradiance Reference Spectrum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Solar Irradiance Reference Spectrum Pilewskie, Peter University of Colorado ... We describe the development of a new solar reference spectrum for radiation and climate ...

  11. NREL: Concentrating Solar Power Research - Laboratory Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To research, develop, and test a variety of concentrating solar power technologies, NREL features the following laboratory capabilities: Concentrated Solar Radiation Facility Large ...

  12. Sunlight Direct | Open Energy Information

    Open Energy Info (EERE)

    Sector: Solar Product: Developed a system that tracks and concentrates solar energy for distributed power generation Website: www.sunlight-direct.com Coordinates: 33.0013938,...

  13. Observation of early shell-dopant mix in OMEGA direct-drive implosions and comparisons with radiation-hydrodynamic simulations

    SciTech Connect (OSTI)

    Baumgaertel, J. A.; Bradley, P. A.; Hsu, S. C.; Cobble, J. A.; Hakel, P.; Tregillis, I. L.; Krasheninnikova, N. S.; Murphy, T. J.; Schmitt, M. J.; Shah, R. C.; Obrey, K. D.; Batha, S.; Johns, H.; Joshi, T.; Mayes, D.; Mancini, R. C.; Nagayama, T.

    2014-05-15

    Temporally, spatially, and spectrally resolved x-ray image data from direct-drive implosions on OMEGA were interpreted with the aid of radiation-hydrodynamic simulations. Neither clean calculations nor those using a turbulent mix model can explain fully the observed migration of shell-dopant material (titanium) into the core. Shell-dopant migration was observed via time-dependent, spatially integrated spectra, and spatially and spectrally resolved x-ray images of capsule implosions and resultant dopant emissions. The titanium emission was centrally peaked in narrowband x-ray images. In post-processed clean simulations, the peak titanium emission forms in a ring in self-emission images as the capsule implodes. Post-processed simulations with mix reproduce trends in time-dependent, spatially integrated spectra, as well having centrally peaked Ti emission in synthetic multiple monochromatic imager. However, mix simulations still do not transport Ti to the core as is observed in the experiment. This suggests that phenomena in addition to the turbulent mix must be responsible for the transport of Ti. Simple diffusion estimates are unable to explain the early Ti mix into the core. Mechanisms suggested for further study are capsule surface roughness, illumination non-uniformity, and shock entrainment.

  14. Solar Photovoltaic Technology Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Technology Basics Solar cells, also called photovoltaic (PV) cells by scientists, convert sunlight directly into electricity. PV gets its name from the process ...

  15. Solar Easements | Department of Energy

    Office of Environmental Management (EM)

    Maine Program Type SolarWind Access Policy Summary Maine allows for the creation of easements to ensure access to direct sunlight. Instruments creating a solar easement may ...

  16. Insolation data manual: long-term monthly averages of solar radiation, temperature, degree-days and global anti K/sub T/ for 248 national weather service stations

    SciTech Connect (OSTI)

    Knapp, C L; Stoffel, T L; Whitaker, S D

    1980-10-01

    Monthly averaged data is presented which describes the availability of solar radiation at 248 National Weather Service stations. Monthly and annual average daily insolation and temperature values have been computed from a base of 24 to 25 years of data. Average daily maximum, minimum, and monthly temperatures are provided for most locations in both Celsius and Fahrenheit. Heating and cooling degree-days were computed relative to a base of 18.3/sup 0/C (65/sup 0/F). For each station, global anti K/sub T/ (cloudiness index) were calculated on a monthly and annual basis. (MHR)

  17. Effect of number of stack on the thermal escape and non-radiative and radiative recombinations of photoexcited carriers in strain-balanced InGaAs/GaAsP multiple quantum-well-inserted solar cells

    SciTech Connect (OSTI)

    Aihara, Taketo; Fukuyama, Atsuhiko; Ikari, Tetsuo; Suzuki, Hidetoshi; Fujii, Hiromasa; Nakano, Yoshiaki; Sugiyama, Masakazu

    2015-02-28

    Three non-destructive methodologies, namely, surface photovoltage (SPV), photoluminescence, and piezoelectric photothermal (PPT) spectroscopies, were adopted to detect the thermal carrier escape from quantum well (QW) and radiative and non-radiative carrier recombinations, respectively, in strain-balanced InGaAs/GaAsP multiple-quantum-well (MQW)-inserted GaAs p-i-n solar cell structure samples. Although the optical absorbance signal intensity was proportional to the number of QW stack, the signal intensities of the SPV and PPT methods decreased at high number of stack. To explain the temperature dependency of these signal intensities, we proposed a model that considers the three carrier dynamics: the thermal escape from the QW, and the non-radiative and radiative carrier recombinations within the QW. From the fitting procedures, it was estimated that the activation energies of the thermal escape ΔE{sub barr} and non-radiative recombination ΔE{sub NR} were 68 and 29 meV, respectively, for a 30-stacked MQW sample. The estimated ΔE{sub barr} value agreed well with the difference between the first electron subband and the top of the potential barrier in the conduction band. We found that ΔE{sub barr} remained constant at approximately 70 meV even with increasing QW stack number. However, the ΔE{sub NR} value monotonically increased with the increase in the number of stack. Since this implies that non-radiative recombination becomes improbable as the number of stack increases, we found that the radiative recombination probability for electrons photoexcited within the QW increased at a large number of QW stack. Additional processes of escaping and recapturing of carriers at neighboring QW were discussed. As a result, the combination of the three non-destructive methodologies provided us new insights for optimizing the MQW components to further improve the cell performance.

  18. Hybrid solar central receiver for combined cycle power plant

    DOE Patents [OSTI]

    Bharathan, Desikan; Bohn, Mark S.; Williams, Thomas A.

    1995-01-01

    A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

  19. Hybrid solar central receiver for combined cycle power plant

    DOE Patents [OSTI]

    Bharathan, D.; Bohn, M.S.; Williams, T.A.

    1995-05-23

    A hybrid combined cycle power plant is described including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production. 1 figure.

  20. Direct imaging of Cl- and Cu-induced short-circuit efficiency changes in CdTe solar cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Poplawsky, Jonathan D.; Parish, Chad M.; Leonard, Donovan N.; Li, Chen; Paudel, Naba; Yan, Yanfa; Pennycook, Stephen J.

    2014-05-30

    To achieve high-efficiency polycrystalline CdTe-based thin-film solar cells, the CdTe absorbers must go through a post-deposition CdCl2 heat treatment followed by a Cu diffusion step. To better understand the roles of each treatment with regard to improving grains, grain boundaries, and interfaces, CdTe solar cells with and without Cu diffusion and CdCl2 heat treatments are investigated using cross-sectional electron beam induced current, electron backscatter diffraction, and scanning transmission electron microscope techniques. The evolution of the cross-sectional carrier collection profile due to these treatments that cause an increase in short-circuit current and higher open-circuit voltage are identified. Additionally, an increased carriermore » collection in grain boundaries after either/both of these treatments is revealed. The increased current at the grain boundaries is shown to be due to the presence of a space charge region with an intrinsic carrier collection profile width of ≈350 nm. Scanning transmission electron microscope electron-energy loss spectroscopy shows a decreased Te and increased Cl concentration in grain boundaries after treatment, which causes the inversion. Furthermore, each treatment improves the overall carrier collection efficiency of the cell separately, and, therefore, the benefits realized by each treatment are shown to be independent of each other.« less

  1. Solar selective absorption coatings

    DOE Patents [OSTI]

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2004-08-31

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  2. Solar selective absorption coatings

    DOE Patents [OSTI]

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2003-10-14

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  3. International Solar Energy Conference

    SciTech Connect (OSTI)

    Rhatigan, J.L.; Christiansen, E.L.; Fleming, M.L.

    1991-01-01

    Presented here are results of a test program undertaken to further define the response of the solar dynamic radiator to hypervelocity impact (HVI). Tests were conducted on representative radiator panels (under ambient, nonoperating conditions) over a range of velocity. Target parameters are also varied. Data indicate that analytical penetration predictions are conservative (i.e., pessimistic) for the specific configuration of the solar dynamic radiator. Test results are used to define the solar dynamic radiator reliability with respect to HVI more rigorously than previous studies. Test data, reliability, and survivability results are presented.

  4. Utility-Scale Solar Power Converter: Agile Direct Grid Connect Medium Voltage 4.7-13.8 kV Power Converter for PV Applications Utilizing Wide Band Gap Devices

    SciTech Connect (OSTI)

    2012-01-25

    Solar ADEPT Project: Satcon is developing a compact, lightweight power conversion device that is capable of taking utility-scale solar power and outputting it directly into the electric utility grid at distribution voltage levels—eliminating the need for large transformers. Transformers “step up” the voltage of the power that is generated by a solar power system so it can be efficiently transported through transmission lines and eventually “stepped down” to usable voltages before it enters homes and businesses. Power companies step up the voltage because less electricity is lost along transmission lines when the voltage is high and current is low. Satcon’s new power conversion devices will eliminate these heavy transformers and connect a utility-scale solar power system directly to the grid. Satcon’s modular devices are designed to ensure reliability—if one device fails it can be bypassed and the system can continue to run.

  5. DIRECT IMAGING OF QUASI-PERIODIC FAST PROPAGATING WAVES OF {approx}2000 km s{sup -1} IN THE LOW SOLAR CORONA BY THE SOLAR DYNAMICS OBSERVATORY ATMOSPHERIC IMAGING ASSEMBLY

    SciTech Connect (OSTI)

    Liu Wei; Title, Alan M.; Schrijver, Carolus J.; Aschwanden, Markus J.; De Pontieu, Bart; Tarbell, Theodore D.; Zhao Junwei; Ofman, Leon

    2011-07-20

    Quasi-periodic propagating fast mode magnetosonic waves in the solar corona were difficult to observe in the past due to relatively low instrument cadences. We report here evidence of such waves directly imaged in EUV by the new Atmospheric Imaging Assembly instrument on board the Solar Dynamics Observatory. In the 2010 August 1 C3.2 flare/coronal mass ejection event, we find arc-shaped wave trains of 1%-5% intensity variations (lifetime {approx}200 s) that emanate near the flare kernel and propagate outward up to {approx}400 Mm along a funnel of coronal loops. Sinusoidal fits to a typical wave train indicate a phase velocity of 2200 {+-} 130 km s{sup -1}. Similar waves propagating in opposite directions are observed in closed loops between two flare ribbons. In the k-{omega} diagram of the Fourier wave power, we find a bright ridge that represents the dispersion relation and can be well fitted with a straight line passing through the origin. This k-{omega} ridge shows a broad frequency distribution with power peaks at 5.5, 14.5, and 25.1 mHz. The strongest signal at 5.5 mHz (period 181 s) temporally coincides with quasi-periodic pulsations of the flare, suggesting a common origin. The instantaneous wave energy flux of (0.1-2.6) x 10{sup 7} erg cm{sup -2} s{sup -1} estimated at the coronal base is comparable to the steady-state heating requirement of active region loops.

  6. Solar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Solar Rooftop solar is growing rapidly, but red tape and additional costs can still get in the way. We explore the reasons why -- and how the Energy Department is working to make going solar easier -- in this episode of our podcast, Direct Current. Rooftop solar is growing rapidly, but red tape and additional costs can still get in the way. We explore the reasons why -- and how the Energy Department is working to make going solar easier -- in this episode of our podcast, Direct Current.

  7. Dramatic enhancement of fullerene anion formation in polymer solar cells by thermal annealing: Direct observation by electron spin resonance

    SciTech Connect (OSTI)

    Liu, Dong; Nagamori, Tatsuya; Yabusaki, Masaki; Yasuda, Takeshi; Han, Liyuan; Marumoto, Kazuhiro

    2014-06-16

    Using electron spin resonance (ESR), we clarified the origin of the efficiency degradation of polymer solar cells containing a lithium-fluoride (LiF) buffer layer created by a thermal annealing process after the deposition of an Al electrode (post-annealing). The device structure was indium-tin-oxide/ poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)/poly (3-hexylthiophene):phenyl-C{sub 61}-butyric acid methyl ester (P3HT:PCBM)/LiF/Al. Three samples consisting of quartz/P3HT:PCBM/LiF/Al, quartz/P3HT:PCBM/Al, and quartz/PCBM/LiF/Al were investigated and compared. A clear ESR signal from radical anions on the PCBM was observed after LiF/Al was deposited onto a P3HT:PCBM layer because of charge transfer at the interface between the PCBM and the LiF/Al, which indicated the formation of PCBM{sup −}Li{sup +} complexes. The number of radical anions on the PCBM was enhanced remarkably by the post-annealing process; this enhancement was caused by the surface segregation of PCBM and by the dissociation of LiF at the Al interface by the post-annealing process. The formation of a greater number of anions enhanced the electron scattering, decreased the electron-transport properties of the PCBM molecules, and caused an energy-level shift at the interface. These effects led to degradation in the device performance.

  8. Direct Comparison of Inverted and Non-Inverted Growths of GaInP Solar Cells: Preprint

    SciTech Connect (OSTI)

    Steiner, M. A.; Geisz, J. F.; Reedy Jr, R.C.; Kurtz, S.

    2008-05-01

    The inverted growth of III-V solar cells presents some specific challenges that are not present in regular, non-inverted growths. Because the highly doped top contact layer is grown first, followed by the lengthy high-temperature growth of the remainder of the structure, there is ample time for the dopants in the contact layer to diffuse away. This leads to an increase in the contact resistance to the top layer, and a corresponding drop in voltage. The diffusion of dopants in other layers is similarly altered with respect to the non-inverted configuration because of the change in growth sequence. We compare the dopant profiles of inverted and non-inverted structures by using secondary ion mass spectroscopy and correlate the results with the observed performance of the devices. We also describe a technique for growing a GaInAsN contact layer in the inverted configuration and show that it achieves a specific contact resistance comparable to what is normally observed in non-inverted cells.

  9. Frequency locking and monitoring based on Bi-directional terahertz radiation of a 3rd-order distributed feedback quantum cascade laser

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    van Marrewijk, N.; Mirzaei, B.; Hayton, D.; Gao, J. R.; Kao, T. Y.; Hu, Q.; Reno, J. L.

    2015-10-07

    In this study, we have performed frequency locking of a dual, forward reverse emitting third-order distributed feedback quantum cascade laser (QCL) at 3.5 THz. By using both directions of THz emission in combination with two gas cells and two power detectors, we can for the first time perform frequency stabilization, while monitor the frequency locking quality independently. We also characterize how the use of a less sensitive pyroelectric detector can influence the quality of frequency locking, illustrating experimentally that the sensitivity of the detectors is crucial. Using both directions of terahertz (THz) radiation has a particular advantage for the applicationmore » of a QCL as a local oscillator, where radiation from one side can be used for frequency/phase stabilization, leaving the other side to be fully utilized as a local oscillator to pump a mixer.« less

  10. Frequency locking and monitoring based on Bi-directional terahertz radiation of a 3rd-order distributed feedback quantum cascade laser

    SciTech Connect (OSTI)

    van Marrewijk, N.; Mirzaei, B.; Hayton, D.; Gao, J. R.; Kao, T. Y.; Hu, Q.; Reno, J. L.

    2015-10-07

    In this study, we have performed frequency locking of a dual, forward reverse emitting third-order distributed feedback quantum cascade laser (QCL) at 3.5 THz. By using both directions of THz emission in combination with two gas cells and two power detectors, we can for the first time perform frequency stabilization, while monitor the frequency locking quality independently. We also characterize how the use of a less sensitive pyroelectric detector can influence the quality of frequency locking, illustrating experimentally that the sensitivity of the detectors is crucial. Using both directions of terahertz (THz) radiation has a particular advantage for the application of a QCL as a local oscillator, where radiation from one side can be used for frequency/phase stabilization, leaving the other side to be fully utilized as a local oscillator to pump a mixer.

  11. NREL: Energy Analysis - Concentrating Solar Power Results - Life...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... technologies. Solar Fraction is the percentage of electricity produced only from solar energy Direct Normal Irradiance is the amount of solar energy per unit area incident upon ...

  12. Surface Radiation from GOES: A Physical Approach; Preprint

    SciTech Connect (OSTI)

    Habte, A.; Sengupta, M.; Wilcox, S.

    2012-09-01

    Models to compute Global Horizontal Irradiance (GHI) and Direct Normal Irradiance (DNI) have been in development over the last 3 decades. These models can be classified as empirical or physical, based on the approach. Empirical models relate ground based observations with satellite measurements and use these relations to compute surface radiation. Physical models consider the radiation received from the earth at the satellite and create retrievals to estimate surface radiation. While empirical methods have been traditionally used for computing surface radiation for the solar energy industry the advent of faster computing has made operational physical models viable. The Global Solar Insolation Project (GSIP) is an operational physical model from NOAA that computes GHI using the visible and infrared channel measurements from the GOES satellites. GSIP uses a two-stage scheme that first retrieves cloud properties and uses those properties in a radiative transfer model to calculate surface radiation. NREL, University of Wisconsin and NOAA have recently collaborated to adapt GSIP to create a 4 km GHI and DNI product every 30 minutes. This paper presents an outline of the methodology and a comprehensive validation using high quality ground based solar data from the National Oceanic and Atmospheric Administration (NOAA) Surface Radiation (SURFRAD) (http://www.srrb.noaa.gov/surfrad/sitepage.html) and Integrated Surface Insolation Study (ISIS) http://www.srrb.noaa.gov/isis/isissites.html), the Solar Radiation Research Laboratory (SRRL) at National Renewable Energy Laboratory (NREL), and Sun Spot One (SS1) stations.

  13. Evaluation of Arctic Broadband Surface Radiation Measurements

    SciTech Connect (OSTI)

    Matsui, N.; Long, Charles N.; Augustine, J. A.; Halliwell, D.; Uttal, Taneil; Longenecker, D.; Niebergale, J.; Wendell, J.; Albee, R.

    2012-02-24

    The Arctic is a challenging environment for making in-situ radiation measurements. A standard suite of radiation sensors is typically designed to measure the total, direct and diffuse components of incoming and outgoing broadband shortwave (SW) and broadband thermal infrared, or longwave (LW) radiation. Enhancements can include various sensors for measuring irradiance in various narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers) that rotate sensors and shading devices that track the sun. High quality measurements require striking a balance between locating sensors in a pristine undisturbed location free of artificial blockage (such as buildings and towers) and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data include solar tracker malfunctions, rime/frost/snow deposition on the instruments and operational problems due to limited operator access in extreme weather conditions. In this study, a comparison is made between the global and component sum (direct [vertical component] + diffuse) shortwave measurements. The difference between these two quantities (that theoretically should be zero) is used to illustrate the magnitude and seasonality of radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both shortwave and longwave measurements. Solutions to these operational problems are proposed that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols.

  14. Highly relativistic radiation belt electron acceleration, transport, and loss: Large solar storm events of March and June 2015

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Baker, Daniel N.; Jaynes, A. N.; Kanekal, S. G.; Foster, J. C.; Erickson, P. J.; Fennell, J. F.; Blake, J. B.; Zhao, H.; Li, X.; Elkington, S. R.; et al

    2016-07-26

    Two of the largest geomagnetic storms of the last decade were witnessed in 2015. On 17 March 2015, a coronal mass ejection-driven event occurred with a Dst (storm time ring current index) value reaching –223 nT. On 22 June 2015 another strong storm (Dst reaching –204 nT) was recorded. These two storms each produced almost total loss of radiation belt high-energy (E ≳ 1 MeV) electron fluxes. Following the dropouts of radiation belt fluxes there were complex and rather remarkable recoveries of the electrons extending up to nearly 10 MeV in kinetic energy. The energized outer zone electrons showed amore » rich variety of pitch angle features including strong “butterfly” distributions with deep minima in flux at α = 90°. However, despite strong driving of outer zone earthward radial diffusion in these storms, the previously reported “impenetrable barrier” at L ≈ 2.8 was pushed inward, but not significantly breached, and no E ≳ 2.0 MeV electrons were seen to pass through the radiation belt slot region to reach the inner Van Allen zone. Altogether, these intense storms show a wealth of novel features of acceleration, transport, and loss that are demonstrated in the present detailed analysis.« less

  15. Solar resources

    SciTech Connect (OSTI)

    Hulstrom, R.L.

    1989-01-01

    Following the 1973 oil embargo, the US government initiated a program to develop and use solar energy. This led to individual programs devoted to developing various solar radiation energy conversion technologies: photovoltaic and solar-thermal conversion devices. Nearly concurrently, it was recognized that understanding the available insolation resources was required to develop and deploy solar energy devices and systems. It was also recognized that the insolation information available at that time (1973) was not adequate to meet the specific needs of the solar energy community. Federal efforts were initiated and conducted to produce new and more extensive information and data. The primary federal agencies that undertook such efforts were the Department of Energy (DOE) and the National Oceanic and Atmospheric Administration (NOAA). NOAA's efforts included activities performed by the National Weather Service (NWS) and the National Climatic Data Center (NCDC). This book has two man objectives: to report some of the insolation energy data, information, and products produced by the federal efforts and to describe how they were produced. Products include data bases, models and algorithms, monitoring networks, instrumentation, and scientific techniques. The scope of products and results does not include all those produced by past federal efforts. The book's scope and subject matter are oriented to support the intent and purpose of the other volumes in this series. In some cases, other pertinent material is presented to provide a more complete coverage of a given subject. 385 refs., 149 figs., 50 tabs.

  16. Solar collection

    SciTech Connect (OSTI)

    Cole, S.L.

    1984-08-01

    This report contains summaries and pictures of projects funded by the Appropriate Technology Small Grants Program which include the following solar technologies: solar dish; photovoltaics; passive solar building and solar hot water system; Trombe wall; hot air panel; hybrid solar heating system; solar grain dryer; solar greenhouse; solar hot water workshops; and solar workshops.

  17. On Correction of Diffuse Radiation Measured by MFRSR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On Correction of Diffuse Radiation Measured by MFRSR T. B. Zhuravleva Institute of Atmospheric Optics, SB RAS Tomsk, Russia M. A. Sviridenkov and P. P. Anikin A. M. Obukhov Institute of Atmospheric Physics, RAS Moscow, Russia Introduction The multi-filter rotated shadowband radiometer (MFRSR) provides spectral direct, diffuse, and total horizontal solar irradiance measurements. Because the MFRSR's receiver has a non-Lambertian response, for a correct interpretation of measured radiation an

  18. Solar Irradiances Measured using SPN1 Radiometers: Uncertainties and Clues for Development

    SciTech Connect (OSTI)

    Badosa, Jordi; Wood, John; Blanc, Philippe; Long, Charles N.; Vuilleumier, Laurent; Demengel, Dominique; Haeffelin, Martial

    2014-12-08

    The fast development of solar radiation and energy applications, such as photovoltaic and solar thermodynamic systems, has increased the need for solar radiation measurement and monitoring, not only for the global component but also the diffuse and direct. End users look for the best compromise between getting close to state-of-the-art measurements and keeping capital, maintenance and operating costs to a minimum. Among the existing commercial options, SPN1 is a relatively low cost solar radiometer that estimates global and diffuse solar irradiances from seven thermopile sensors under a shading mask and without moving parts. This work presents a comprehensive study of SPN1 accuracy and sources of uncertainty, which results from laboratory experiments, numerical modeling and comparison studies between measurements from this sensor and state-of-the art instruments for six diverse sites. Several clues are provided for improving the SPN1 accuracy and agreement with state-of-the-art measurements.

  19. Evaluating Solar Resource Data Obtained from Multiple Radiometers Deployed at the National Renewable Energy Laboratory: Preprint

    SciTech Connect (OSTI)

    Habte, A.; Sengupta, M.; Andreas, A.; Wilcox, S.; Stoffel, T.

    2014-09-01

    Solar radiation resource measurements from radiometers are used to predict and evaluate the performance of photovoltaic and concentrating solar power systems, validate satellite-based models for estimating solar resources, and advance research in solar forecasting and climate change. This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances (GHI) and direct normal irradiances (DNI). These include pyranometers, pyrheliometers, rotating shadowband irradiometers, and a pyranometer with a shading ring deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory (SRRL). The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference GHI and DNI.

  20. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly ...

  1. Community Shared Solar with Solarize | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community Shared Solar with Solarize Community Shared Solar with Solarize

  2. Direct photo-etching of poly(methyl methacrylate) using focused extreme ultraviolet radiation from a table-top laser-induced plasma source

    SciTech Connect (OSTI)

    Barkusky, Frank; Peth, Christian; Bayer, Armin; Mann, Klaus

    2007-06-15

    In order to perform material interaction studies with intense extreme ultraviolet (EUV) radiation, a Schwarzschild mirror objective coated with Mo/Si multilayers was adapted to a compact laser-based EUV plasma source (pulse energy 3 mJ at {lambda}=13.5 nm, plasma diameter {approx}300 {mu}m). By 10x demagnified imaging of the plasma a pulse energy density of {approx}75 mJ/cm{sup 2} at a pulse length of 6 ns can be achieved in the image plane of the objective. As demonstrated for poly(methyl methacrylate) (PMMA), photoetching of polymer surfaces is possible at this EUV fluence level. This paper presents first results, including a systematic determination of PMMA etching rates under EUV irradiation. Furthermore, the contribution of out-of-band radiation to the surface etching of PMMA was investigated by conducting a diffraction experiment for spectral discrimination from higher wavelength radiation. Imaging of a pinhole positioned behind the plasma accomplished the generation of an EUV spot of 1 {mu}m diameter, which was employed for direct writing of surface structures in PMMA.

  3. Direct photoetching of polymers using radiation of high energy density from a table-top extreme ultraviolet plasma source

    SciTech Connect (OSTI)

    Barkusky, Frank; Bayer, Armin; Peth, Christian; Mann, Klaus

    2009-01-01

    In order to perform material interaction studies with intense extreme ultraviolet (EUV) radiation, a Schwarzschild mirror objective coated with Mo/Si multilayers was adapted to a compact laser-driven EUV plasma source utilizing a solid Au target. By 10x demagnified imaging of the plasma a maximum pulse energy density of {approx}0.73 J/cm{sup 2} at a wavelength of 13.5 nm can be achieved in the image plane of the objective at a pulse duration of 8.8 ns. In this paper we present EUV photoetching rates measured for polymethyl methacrylate, polycarbonate, and polytetrafluoroethylene at various fluence levels. A linear dependence between etch depth and applied EUV pulse number could be observed without the necessity for any incubation pulses. By evaluating the slope of these data, etch rates were determined, revealing also a linear behavior for low fluences. A threshold energy density could not be observed. The slope of the linear etch regime as well as deviations from the linear trend at higher energy densities are discussed and compared to data known from deep UV laser ablation. Furthermore, the surface roughness of the structured polymers was measured by atomic force microscopy and compared to the nonirradiated polymer surface, indicating a rather smooth etch process (roughness increase of 20%-30%). The different shapes of the etch craters observed for the three polymers at high energy densities can be explained by the measured fluence dependence of the etch rates, having consequences for the proper use of polymer ablation for beam profiling of focused EUV radiation.

  4. Improved photovoltaic energy output for cloudy conditions with a solar tracking system

    SciTech Connect (OSTI)

    Kelly, Nelson A.; Gibson, Thomas L.

    2009-11-15

    This work describes measurements of the solar irradiance made during cloudy periods in order to improve the amount of solar energy captured during such periods. It is well-known that 2-axis tracking, in which solar modules are pointed at the sun, improves the overall capture of solar energy by a given area of modules by 30-50% versus modules with a fixed tilt. On sunny days the direct sunshine accounts for up to 90% of the total solar energy, with the other 10% from diffuse (scattered) solar energy. However, during overcast conditions nearly all of the solar irradiance is diffuse radiation that is isotropically-distributed over the whole sky. An analysis of our data shows that during overcast conditions, tilting a solar module or sensor away from the zenith reduces the irradiance relative to a horizontal configuration, in which the sensor or module is pointed toward the zenith (horizontal module tilt), and thus receives the highest amount of this isotropically-distributed sky radiation. This observation led to an improved tracking algorithm in which a solar array would track the sun during cloud-free periods using 2-axis tracking, when the solar disk is visible, but go to a horizontal configuration when the sky becomes overcast. During cloudy periods we show that a horizontal module orientation increases the solar energy capture by nearly 50% compared to 2-axis solar tracking during the same period. Improving the harvesting of solar energy on cloudy days is important to using solar energy on a daily basis for fueling fuel-cell electric vehicles or charging extended-range electric vehicles because it improves the energy capture on the days with the lowest hydrogen generation, which in turn reduces the system size and cost. (author)

  5. CLOUDS, AEROSOLS, RADIATION AND THE AIR-SEA INTERFACE OF THE SOUTHERN OCEAN: ESTABLISHING DIRECTIONS FOR FUTURE RESEARCH

    SciTech Connect (OSTI)

    Wood, Robert; Bretherton, Chris; McFarquhar, Greg; Protat, Alain; Quinn, Patricia; Siems, Steven; Jakob, Christian; Alexander, Simon; Weller, Bob

    2014-09-29

    A workshop sponsored by the Department of Energy was convened at the University of Washington to discuss the state of knowledge of clouds, aerosols and air-sea interaction over the Southern Ocean and to identify strategies for reducing uncertainties in their representation in global and regional models. The Southern Ocean plays a critical role in the global climate system and is a unique pristine environment, yet other than from satellite, there have been sparse observations of clouds, aerosols, radiation and the air-sea interface in this region. Consequently, much is unknown about atmospheric and oceanographic processes and their linkage in this region. Approximately 60 scientists, including graduate students, postdoctoral fellows and senior researchers working in atmospheric and oceanic sciences at U.S. and foreign universities and government laboratories, attended the Southern Ocean Workshop. It began with a day of scientific talks, partly in plenary and partly in two parallel sessions, discussing the current state of the science for clouds, aerosols and air-sea interaction in the Southern Ocean. After the talks, attendees broke into two working groups; one focused on clouds and meteorology, and one focused on aerosols and their interactions with clouds. This was followed by more plenary discussion to synthesize the two working group discussions and to consider possible plans for organized activities to study clouds, aerosols and the air-sea interface in the Southern Ocean. The agenda and talk slides, including short summaries of the highlights of the parallel session talks developed by the session chars, are available at http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/.

  6. Solar Energy International Solar PV 101 Training

    Broader source: Energy.gov [DOE]

    Solar Energy International is offering a five-day training that provides an overview of the three basic PV system applications, primarily focusing on grid-direct systems. The goal of the course is...

  7. Solar Easements | Department of Energy

    Office of Environmental Management (EM)

    Tennessee Program Type SolarWind Access Policy Summary Tennessee law allows for the creation of easements for the purpose of ensuring access to direct sunlight for solar energy ...

  8. Utility Scale Solar Incentive Program

    Broader source: Energy.gov [DOE]

    HB 4037 of 2016 created the Solar Incentive Program for utility-scale solar development. The bill directs Oregon's Business Development Department (the Department) to establish and administer a...

  9. Multi-facet concentrator of solar setup for irradiating the objects placed in a target plane with solar light

    DOE Patents [OSTI]

    Lewandowski, Allan A.; Yampolskiy, Vladislav; Alekseev, Valerie; Son, Valentin

    2001-01-01

    According to the proposed invention, this technical result is achieved so that many-facet concentrator of a solar setup for exposure of objects, placed in a target plane, to the action of solar radiation containing a supporting frame and facets differing by that the facets of the concentrator are chosen with spherical focusing reflective surfaces of equal focal lengths and with selective coatings reflecting a desired spectral fraction of solar radiation, and are arranged on the supporting frame symmetrically with respect to the common axis of the concentrator, their optical axes being directed to the single point on the optical axis of the concentrator located before the nominal focus point of the concentrator and determining the position of arranging the target plane.

  10. Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Labs Contributes to Solar Industry Innovation: A Partnership Story Customers & Partners, News, Partnership, Photovoltaic, Renewable Energy, Solar, Solar Newsletter Sandia ...

  11. RADIATION DETECTOR

    DOE Patents [OSTI]

    Wilson, H.N.; Glass, F.M.

    1960-05-10

    A radiation detector of the type is described wherein a condenser is directly connected to the electrodes for the purpose of performing the dual function of a guard ring and to provide capacitance coupling for resetting the detector system.

  12. Progress in solar engineering

    SciTech Connect (OSTI)

    Yogi Goswami, D.

    1987-01-01

    This book presents reviews of various areas of solar energy technology, including wind energy technology and ocean thermal energy conversion (OTEC). It also identifies and suggests needs and future directions of research and development. The subjects covered in this book include solar thermal power technology, solar thermal storage, solar ponds, industrial process heat, solar water heating, active and passive solar cooling methods, low-cost collector development, photovoltaic research and applications, wind energy technology, and OTEC. Also covered are the status of the technology, basic and applied research, design and analysis methods, and performance and operational experiences of various systems. The book will thus be helpful as a review of various solar, wind, and OTEC technologies.

  13. Shedding light on Nature's nanoscale control of solar energy | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory light on Nature's nanoscale control of solar energy July 30, 2012 Tweet EmailPrint Across billions of years of evolution, nature has retained a common light-absorbing hexameric cofactor core for carrying out the very first chemical reaction of photosynthesis, the light-induced electron transfer across approximately 3 nanometers. This process has direct analogies to light-driven charge separation in photovoltaic devices. A team of users from the Notre Dame Radiation

  14. Solar thermoelectric generator

    DOE Patents [OSTI]

    Toberer, Eric S.; Baranowski, Lauryn L.; Warren, Emily L.

    2016-05-03

    Solar thermoelectric generators (STEGs) are solid state heat engines that generate electricity from concentrated sunlight. A novel detailed balance model for STEGs is provided and applied to both state-of-the-art and idealized materials. STEGs can produce electricity by using sunlight to heat one side of a thermoelectric generator. While concentrated sunlight can be used to achieve extremely high temperatures (and thus improved generator efficiency), the solar absorber also emits a significant amount of black body radiation. This emitted light is the dominant loss mechanism in these generators. In this invention, we propose a solution to this problem that eliminates virtually all of the emitted black body radiation. This enables solar thermoelectric generators to operate at higher efficiency and achieve said efficient with lower levels of optical concentration. The solution is suitable for both single and dual axis solar thermoelectric generators.

  15. Portable solar heater

    SciTech Connect (OSTI)

    Kilar, L.J.

    1981-08-18

    A portable solar heater combines a self-contained hot air and heat storage system having a collector area with adjustable reflectors in a unit that can be moved from room to room as needed. The heater has fans for circulation of the solar heater air and provides both direct and indirect heat transfer to the ambient room air.

  16. Solar heating panel

    SciTech Connect (OSTI)

    Ellsworth, R.L.

    1983-01-18

    A solar heating panel for collecting solar heat energy and method for making same having a heat insulative substrate with a multiplicity of grooves and structural supporting ribs formed therein covered by a thin, flexible heat conductive film to form fluid conducting channels which in turn are connected to manifolds from which fluid is directed into the channels and heated fluid is removed therefrom.

  17. PROCEEDINGS OF THE SOLAR 99 CONFERENCE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SOLAR 99 CONFERENCE Including Proceedings of ASES Annual Conference Proceedings of 24 th National Passive Solar Conference Portland, Maine June 12 -16, 1999 Editors: R. Campbell-Howe B. Wilkins-Crowder American Solar Energy Society American Institute of Architects Committee on the Environment Printed on recycled paper HIGH-RESOLUTION MAPS OF SOLAR COLLECTOR PERFORMANCE USING A CLIMATOLOGICAL SOLAR RADIATION MODEL Raymond L. George National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO

  18. Director, Solar Energy Technologies Office

    Broader source: Energy.gov [DOE]

    The mission of the Solar Energy Technologies Office (SETO) is to provide the overall programmatic and technical oversight, policy, management, and strategic direction necessary for a balanced...

  19. Apparatus for solar coal gasification

    DOE Patents [OSTI]

    Gregg, D.W.

    1980-08-04

    Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials is described. Incident solar radiation is focused from an array of heliostats through a window onto the surface of a moving bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called synthesis gas, which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam in one embodiment at the rear surface of a secondary mirror used to redirect the focused sunlight. Another novel feature of the invention is the location and arrangement of the array of mirrors on an inclined surface (e.g., a hillside) to provide for direct optical communication of said mirrors and the carbonaceous feed without a secondary redirecting mirror.

  20. Search for: "atmospheric radiation measurement" | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    (320) radiations (284) solar radiation (237) climate models (206) radar reflectivity (194) aerosols (188) climatic change (168) research programs (157) vertical velocity ...

  1. Influence of Extraterrestrial Radiation on Radiation Portal Monitors

    SciTech Connect (OSTI)

    Keller, Paul E.; Kouzes, Richard T.

    2009-06-01

    Cosmic radiation and solar flares can be a major source of background radiation at the Earths surface. This paper examines the relationship between extraterrestrial radiation and the detectable background in radiation portal monitors used for homeland security applications. Background radiation data from 13 radiation portal monitor facilities are examined and compared against external sources of data related to extraterrestrial radiation, including measurements at neutron monitors located at 53 cosmic-ray observatories around the Earth, four polar orbiting satellites, three geostationary satellites, ground-based geomagnetic field data from observatories around the Earth, a solar magnetic index, solar radio flux data, and sunspot activity data. Four-years (January 2003 through December 2006) of data are used in this study, which include the latter part of Solar Cycle 23 as solar activity was on the decline. The analysis shows a significant relationship between some extraterrestrial radiation and the background detected in the radiation portal monitors. A demonstrable decline is shown in the average gamma ray and neutron background at the radiation portal monitors as solar activity declined over the period of the study.

  2. Solar-Geophysical Data Number 557, January 1991. Part 2 (comprehensive reports). Data for July 1990 and miscellaneous

    SciTech Connect (OSTI)

    Coffey, H.E.

    1991-01-01

    ;Contents: Detailed index for 1990; Data for July 1990--Solar flares, Solar radio bursts at fixed frequencies, Interplanetary solar particles and plasma, Solar x-ray radiation from GOES satellite, Mass ejections from the sun, Active prominences and filaments.

  3. Understanding S-shaped current-voltage characteristics of organic solar cells: Direct measurement of potential distributions by scanning Kelvin probe

    SciTech Connect (OSTI)

    Saive, Rebecca Kowalsky, Wolfgang; Institut fr Hochfrequenztechnik, TU Braunschweig, 38106 Braunschweig; Kirchhoff-Institute for Physics, Heidelberg University, 69120 Heidelberg ; Mueller, Christian; Kirchhoff-Institute for Physics, Heidelberg University, 69120 Heidelberg ; Schinke, Janusz; Lovrincic, Robert; Institut fr Hochfrequenztechnik, TU Braunschweig, 38106 Braunschweig

    2013-12-09

    We present a comparison of the potential distribution along the cross section of bilayer poly(3-hexylthiophene)/1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C61 (P3HT/PCBM) solar cells, which show normal and anomalous, S-shaped current-voltage (IV) characteristics. We expose the cross sections of the devices with a focussed ion beam and measure them with scanning Kelvin probe microscopy. We find that in the case of S-shaped IV-characteristics, there is a huge potential drop at the PCBM/Al top contact, which does not occur in solar cells with normal IV-characteristics. This behavior confirms the assumption that S-shaped curves are caused by hindered charge transport at interfaces.

  4. Compact dark matter objects, asteroseismology, and gravitational waves radiated by sun

    SciTech Connect (OSTI)

    Pokrovsky, Yu. E.

    2015-12-15

    The solar surface oscillations observed by Crimean Astrophysical Observatory and Solar Helioseismic Observatory are considered to be excited by a small fraction of Dark Matter in form of Compact Dark Matter Objects (CDMO) in the solar structure. Gravitational Waves (GW) radiated by these CDMO are predicted to be the strongest at the Earth and are easily detectable by European Laser Interferometer Space Antenna or by Gravitational-Wave Observatory “Dulkyn” which can solve two the most challenging tasks in the modern physics: direct detection of GW and DM.

  5. DIRECTIONAL ANTENNA

    DOE Patents [OSTI]

    Bittner, B.J.

    1958-05-20

    A high-frequency directional antenna of the 360 d scaring type is described. The antenna has for its desirable features the reduction in both size and complexity of the mechanism for rotating the antenna through its scanning movement. These advantages result from the rotation of only the driven element, the reflector remaining stationary. The particular antenna structure comprises a refiector formed by a plurality of metallic slats arranged in the configuration of an annular cage having the shape of a zone of revolution. The slats are parallel to each other and are disposed at an angle of 45 d to the axis of the cage. A directional radiator is disposed inside the cage at an angle of 45 d to the axis of the cage in the same direction as the reflecting slats which it faces. As the radiator is rotated, the electromagnetic wave is reflected from the slats facing the radiator and thereafter passes through the cage on the opposite side, since these slats are not parallel with the E vector of the wave.

  6. Method for processing silicon solar cells

    DOE Patents [OSTI]

    Tsuo, Y. Simon; Landry, Marc D.; Pitts, John R.

    1997-01-01

    The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystallline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation.

  7. Method for processing silicon solar cells

    DOE Patents [OSTI]

    Tsuo, Y.S.; Landry, M.D.; Pitts, J.R.

    1997-05-06

    The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystalline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation. 2 figs.

  8. Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Energy Conversion Efficiency/Solar Energy/Solar Newsletter Solar Newsletter Tara Camacho-Lopez 2016-07-11T20:14:36+00:00

  9. Solar Easements

    Broader source: Energy.gov [DOE]

    New Hampshire's "solar skyspace easement" provisions allow property owners to create solar easements in order to create and preserve a right to unobstructed access to solar energy. Easements remain...

  10. Electricity production using solar energy

    SciTech Connect (OSTI)

    Demirbas, M.F.

    2007-07-01

    In this study, a solar-powered development project is used to identify whether it is possible to utilize solar technologies in the electricity production sector. Electricity production from solar energy has been found to be a promising method in the future. Concentrated solar energy can be converted to chemical energy via high-temperature endothermic reactions. Coal and biomass can be pyrolyzed or gasified by using concentrated solar radiation for generating power. Conventional energy will not be enough to meet the continuously increasing need for energy in the future. In this case, renewable energy sources will become important. Solar energy is an increasing need for energy in the future. Solar energy is a very important energy source because of its advantages. Instead of a compressor system, which uses electricity, an absorption cooling system, using renewable energy and kinds of waste heat energy, may be used for cooling.

  11. Coupled modeling of a directly heated tubular solar receiver for supercritical carbon dioxide Brayton cycle: Structural and creep-fatigue evaluation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ortega, Jesus; Khivsara, Sagar; Christian, Joshua; Ho, Clifford; Dutta, Pradip

    2016-06-06

    A supercritical carbon dioxide (sCO2) Brayton cycle is an emerging high energy-density cycle undergoing extensive research due to the appealing thermo-physical properties of sCO2 and single phase operation. Development of a solar receiver capable of delivering sCO2 at 20 MPa and 700 °C is required for implementation of the high efficiency (~50%) solar powered sCO2 Brayton cycle. In this work, extensive candidate materials are review along with tube size optimization using the ASME Boiler and Pressure Vessel Code. Moreover, temperature and pressure distribution obtained from the thermal-fluid modeling (presented in a complementary publication) are used to evaluate the thermal andmore » mechanical stresses along with detailed creep-fatigue analysis of the tubes. For resulting body stresses were used to approximate the lifetime performance of the receiver tubes. A cyclic loading analysis is performed by coupling the Strain-Life approach and the Larson-Miller creep model. The structural integrity of the receiver was examined and it was found that the stresses can be withstood by specific tubes, determined by a parametric geometric analysis. The creep-fatigue analysis display the damage accumulation due to cycling and the permanent deformation on the tubes showed that the tubes can operate for the full lifetime of the receiver.« less

  12. Radiation detector

    DOE Patents [OSTI]

    Fultz, B.T.

    1980-12-05

    Apparatus is provided for detecting radiation such as gamma rays and x-rays generated in backscatter Moessbauer effect spectroscopy and x-ray spectrometry, which has a large window for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  13. Radiation detector

    DOE Patents [OSTI]

    Fultz, Brent T.

    1983-01-01

    Apparatus is provided for detecting radiation such as gamma rays and X-rays generated in backscatter Mossbauer effect spectroscopy and X-ray spectrometry, which has a large "window" for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  14. Portable solar water heater

    SciTech Connect (OSTI)

    Borodulin, G.; Baron, R.; Shkolnik, A.

    1985-11-12

    A combined table and portable solar water heater comprises a suitcase-like rigid casing molded from a rigid plastic material which contains a pair of solar collector panels and connected in series. The panels can be exposed to solar radiation when the casing is opened. Each collector panel or is formed by a copper plate with the solar radiation absorbing surface and copper pipe coil or in heat-transferring relationship with said copper plate. The casing is provided with compartments for accessories, such as adjustable legs for supporting the casing, adjusting its angle to incident sunlight, and for converting the casing into a table; containers for feeding cold water to the solar collector and for receiving hot water from the collector; and a tripod stand for supporting the feeding container at the level above the collector and for arranging a shower set. Temperature-insulating layers of the collectors are formed by separate pieces of rigid material which can be removed from the casing and assembled into a box-shaped container which can be utilized for maintaining water heated by means of the solar water heater at an elevated temperature.

  15. Thermophotovoltaics | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermophotovoltaics Solar Thermophotovoltaics (STPVs) are solar driven heat engines which extract electrical power from thermal radiation. The overall goal is to absorb and convert the broadband solar radiation spectrum into a narrowband thermal emission spectrum tuned to the spectral response of a photovoltaic cell (PV) [1]. STPVs are of significant interest as they have the potential to overcome the well-known Shockley-Queisser limit for single junction PV given sufficient spectral control.

  16. Solar panel with interconnects and masking structure, and method

    SciTech Connect (OSTI)

    Gaddy, E.M.; Dominguez, R.

    1991-04-30

    This patent describes a solar panel. It includes: solar cells having radiation absorbing surface and opposed back surfaces; conducting means for interconnecting the solar cells; a transparent superstrate upon one surface of which radiation absorbing surfaces are mounted; and means upon a surface of the transparent superstrate for masking the interconnecting means.

  17. First Solar Manufacturing Solar Modules

    Broader source: Energy.gov [DOE]

    In this photograph, a First Solar associate handles photovoltaic materials at the company's Ohio manufacturing plant. First Solar is an industry partner with the U.S. Department of Energy Solar...

  18. Region Solar Inc Solar Inc California Renewable Energy Solar...

    Open Energy Info (EERE)

    Point Drive Fort Collins Colorado Solar Solar cell passive solar architectural glass solar grid tie inverter semiconductor flat panel display data storage http www advanced...

  19. NREL: Solar Research - Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Newsletter Subscribe: To receive new issues by email, subscribe to the newsletter. The Solar Newsletter is a monthly electronic newsletter that provides information on NREL's ...

  20. Improved performance in GaInNAs solar cells by hydrogen passivation

    SciTech Connect (OSTI)

    Fukuda, M.; Whiteside, V. R.; Keay, J. C.; Meleco, A.; Sellers, I. R.; Hossain, K.; Golding, T. D.; Leroux, M.; Al Khalfioui, M.

    2015-04-06

    The effect of UV-activated hydrogenation on the performance of GaInNAs solar cells is presented. A proof-of-principle investigation was performed on non-optimum GaInNAs cells, which allowed a clearer investigation of the role of passivation on the intrinsic nitrogen-related defects in these materials. Upon optimized hydrogenation of GaInNAs, a significant reduction in the presence of defect and impurity based luminescence is observed as compared to that of unpassivated reference material. This improvement in the optical properties is directly transferred to an improved performance in solar cell operation, with a more than two-fold improvement in the external quantum efficiency and short circuit current density upon hydrogenation. Temperature dependent photovoltaic measurements indicate a strong contribution of carrier localization and detrapping processes, with non-radiative processes dominating in the reference materials, and evidence for additional strong radiative losses in the hydrogenated solar cells.

  1. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce...

  2. Direct normal irradiance related definitions and applications: The circumsolar issue

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Blanc, P.; Espinar, B.; Geuder, N.; Gueymard, C.; Meyer, R.; Pitz-Paal, R.; Reinhardt, B.; Renne, D.; Segupta, M.; Wald, L.; et al

    2014-10-21

    The direct irradiance received on a plane normal to the sun, called direct normal irradiance (DNI), is of particular relevance to concentrated solar technologies, including concentrating solar thermal plants and concentrated photovoltaic systems. Following various standards from the International Organization for Standardization (ISO), the DNI definition is related to the irradiance from a small solid angle of the sky, centered on the position of the sun. Half-angle apertures of pyrheliometers measuring DNI have varied over time, up to ≈10°. The current recommendation of the World Meteorological Organization (WMO) for this half-angle is 2.5°. Solar concentrating collectors have an angular acceptancemore » function that can be significantly narrower, especially for technologies with high concentration ratios. The disagreement between the various interpretations of DNI, from the theoretical definition used in atmospheric physics and radiative transfer modeling to practical definitions corresponding to specific measurements or conversion technologies is significant, especially in the presence of cirrus clouds or large concentration of aerosols. Under such sky conditions, the circumsolar radiation—i.e. the diffuse radiation coming from the vicinity of the sun—contributes significantly to the DNI ground measurement, although some concentrating collectors cannot utilize the bulk of it. These issues have been identified in the EU-funded projects MACC-II (Monitoring Atmospheric Composition and Climate-Interim Implementation) and SFERA (Solar Facilities for the European Research Area), and have been discussed within a panel of international experts in the framework of the Solar Heating and Cooling (SHC) program of the International Energy Agency’s (IEA’s) Task 46 “Solar Resource Assessment and Forecasting”. In accordance with these discussions, the terms of reference related to DNI are specified here. The important role of circumsolar radiation is

  3. Direct normal irradiance related definitions and applications: The circumsolar issue

    SciTech Connect (OSTI)

    Blanc, P.; Espinar, B.; Geuder, N.; Gueymard, C.; Meyer, R.; Pitz-Paal, R.; Reinhardt, B.; Renne, D.; Segupta, M.; Wald, L.; Wilbert, S.

    2014-10-21

    The direct irradiance received on a plane normal to the sun, called direct normal irradiance (DNI), is of particular relevance to concentrated solar technologies, including concentrating solar thermal plants and concentrated photovoltaic systems. Following various standards from the International Organization for Standardization (ISO), the DNI definition is related to the irradiance from a small solid angle of the sky, centered on the position of the sun. Half-angle apertures of pyrheliometers measuring DNI have varied over time, up to ≈10°. The current recommendation of the World Meteorological Organization (WMO) for this half-angle is 2.5°. Solar concentrating collectors have an angular acceptance function that can be significantly narrower, especially for technologies with high concentration ratios. The disagreement between the various interpretations of DNI, from the theoretical definition used in atmospheric physics and radiative transfer modeling to practical definitions corresponding to specific measurements or conversion technologies is significant, especially in the presence of cirrus clouds or large concentration of aerosols. Under such sky conditions, the circumsolar radiation—i.e. the diffuse radiation coming from the vicinity of the sun—contributes significantly to the DNI ground measurement, although some concentrating collectors cannot utilize the bulk of it. These issues have been identified in the EU-funded projects MACC-II (Monitoring Atmospheric Composition and Climate-Interim Implementation) and SFERA (Solar Facilities for the European Research Area), and have been discussed within a panel of international experts in the framework of the Solar Heating and Cooling (SHC) program of the International Energy Agency’s (IEA’s) Task 46 “Solar Resource Assessment and Forecasting”. In accordance with these discussions, the terms of reference related to DNI are specified here. The important role of circumsolar radiation is evidenced

  4. Sea shell solar collector

    DOE Patents [OSTI]

    Rabl, Ari

    1976-01-01

    A device is provided for the collection and concentration of solar radiant energy including a longitudinally extending structure having a wall for directing radiant energy. The wall is parabolic with its focus along a line parallel to an extreme ray of the sun at one solstice and with its axis along a line parallel to an extreme ray of the sun at the other solstice. An energy absorber is positioned to receive the solar energy thereby collected.

  5. Module level solutions to solar cell polarization

    DOE Patents [OSTI]

    Xavier, Grace , Li; Bo

    2012-05-29

    A solar cell module includes interconnected solar cells, a transparent cover over the front sides of the solar cells, and a backsheet on the backsides of the solar cells. The solar cell module includes an electrical insulator between the transparent cover and the front sides of the solar cells. An encapsulant protectively packages the solar cells. To prevent polarization, the insulator has resistance suitable to prevent charge from leaking from the front sides of the solar cells to other portions of the solar cell module by way of the transparent cover. The insulator may be attached (e.g., by coating) directly on an underside of the transparent cover or be a separate layer formed between layers of the encapsulant. The solar cells may be back junction solar cells.

  6. Solar powered Stirling engine

    SciTech Connect (OSTI)

    Meijer, R.J.

    1987-11-24

    In a solar dish module which comprises a dish which receives incident solar rays and reflects them to a focus at which is located the combination of a receiver and a heat engine organized and arranged so that the heat energy of the reflected solar rays collected at the receiver powers the engine, and wherein the receiver and heat engine are supported from the dish by a framework, the improvement is described which comprises journal means for journaling at least the engine on the framework to maintain certain predetermined spatial orientation for the engine in relation to the direction of gravity irrespective of spatial orientation of the dish.

  7. Inverted amorphous silicon solar cell utilizing cermet layers

    DOE Patents [OSTI]

    Hanak, Joseph J.

    1979-01-01

    An amorphous silicon solar cell incorporating a transparent high work function metal cermet incident to solar radiation and a thick film cermet contacting the amorphous silicon opposite to said incident surface.

  8. Solar skylight

    DOE Patents [OSTI]

    Adamson, James C.

    1984-01-01

    A reflective shutter rotates within a skylight housing in such a fashion as to control solar energy thereby providing a combination of heating, lighting, and ventilation. The skylight housing has three faces: a glazed southern face, a glazed northern face, and an open downwardly oriented face to the interior of the structure. Counter-weighted pivot arms support the shutter at either end causing the center of rotation to pass through the center of gravity. The shutter has three basic positions: In the first position, during the winter day, the shutter closes off the northern face, allowing solar energy to enter directly into the supporting structure providing heat gain and daylighting. In the second position, during the winter night, the shutter closes off the open face to the interior, providing insulation between the structure and the skylight housing. In the third position, during the non-heating season, the shutter closes off the southern face blocking unwanted heat gain but allowing diffuse northern light to penetrate for daylighting. In this last position, a means is provided for ventilating by natural convection. The apparatus can be operated either manually or by motor.

  9. Nevada Solar One Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Solar One Solar Power Plant Jump to: navigation, search Name Nevada Solar One Solar Power Plant Facility Nevada Solar One Sector Solar Facility Type Concentrating Solar Power...

  10. Mojave Solar Park Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Solar Park Solar Power Plant Jump to: navigation, search Name Mojave Solar Park Solar Power Plant Facility Mojave Solar Park Sector Solar Facility Type Concentrating Solar Power...

  11. Starwood Solar I Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Starwood Solar I Solar Power Plant Jump to: navigation, search Name Starwood Solar I Solar Power Plant Facility Starwood Solar I Sector Solar Facility Type Concentrating Solar...

  12. ARM - Measurement - Photosynthetically Active Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsPhotosynthetically Active Radiation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Photosynthetically Active Radiation Photosynthetically Active Radiation (PAR) designates the spectral range (wave band) of solar radiation from 400 to 700 nanometers that photosynthetic organisms are able to use in the process of photosynthesis Categories Radiometric Instruments The above measurement is

  13. Radiation receiver

    DOE Patents [OSTI]

    Hunt, Arlon J.

    1983-01-01

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

  14. Radiation receiver

    DOE Patents [OSTI]

    Hunt, A.J.

    1983-09-13

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles. 5 figs.

  15. Directional fast-neutron detector

    DOE Patents [OSTI]

    Byrd, Roger C. (Albuquerque, NM)

    1994-01-01

    A plurality of omnidirectional radiation detectors are arranged in a close packed symmetrical pattern to form a segmented detector. The output radiation counts from these detectors are arithmetically combined to provide the direction of a source of incident radiation. Directionality is achieved without the use of shielding to provide collimation and background reduction effects. Indeed, output counts from paired detectors are simply subtracted to yield a vector direction toward the radiation source. The counts from all of the detectors can be combined to yield an output signal functionally related to the radiation source strength.

  16. Direct nuclear pumped laser

    DOE Patents [OSTI]

    Miley, George H.; Wells, William E.; DeYoung, Russell J.

    1978-01-01

    There is provided a direct nuclear pumped gas laser in which the lasing mechanism is collisional radiated recombination of ions. The gas laser active medium is a mixture of the gases, with one example being neon and nitrogen.

  17. Parameterization and analysis of 3-D radiative transfer in clouds

    SciTech Connect (OSTI)

    Varnai, Tamas

    2012-03-16

    This report provides a summary of major accomplishments from the project. The project examines the impact of radiative interactions between neighboring atmospheric columns, for example clouds scattering extra sunlight toward nearby clear areas. While most current cloud models don't consider these interactions and instead treat sunlight in each atmospheric column separately, the resulting uncertainties have remained unknown. This project has provided the first estimates on the way average solar heating is affected by interactions between nearby columns. These estimates have been obtained by combining several years of cloud observations at three DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility sites (in Alaska, Oklahoma, and Papua New Guinea) with simulations of solar radiation around the observed clouds. The importance of radiative interactions between atmospheric columns was evaluated by contrasting simulations that included the interactions with those that did not. This study provides lower-bound estimates for radiative interactions: It cannot consider interactions in cross-wind direction, because it uses two-dimensional vertical cross-sections through clouds that were observed by instruments looking straight up as clouds drifted aloft. Data from new DOE scanning radars will allow future radiative studies to consider the full three-dimensional nature of radiative processes. The results reveal that two-dimensional radiative interactions increase overall day-and-night average solar heating by about 0.3, 1.2, and 4.1 Watts per meter square at the three sites, respectively. This increase grows further if one considers that most large-domain cloud simulations have resolutions that cannot specify small-scale cloud variability. For example, the increases in solar heating mentioned above roughly double for a fairly typical model resolution of 1 km. The study also examined the factors that shape radiative interactions between atmospheric columns and

  18. Directional gamma detector

    DOE Patents [OSTI]

    LeVert, Francis E.; Cox, Samson A.

    1981-01-01

    An improved directional gamma radiation detector has a collector sandwiched etween two layers of insulation of varying thicknesses. The collector and insulation layers are contained within an evacuated casing, or emitter, which releases electrons upon exposure to gamma radiation. Delayed electrons and electrons entering the collector at oblique angles are attenuated as they pass through the insulation layers on route to the collector.

  19. Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Power Solar Power Project Opportunities Abound in the Region The WIPP site is receives abundant solar energy with 6-7 kWh/sq meter power production potential As the accompanying map of New Mexico shows, the WIPP site enjoys abundant year-round sunshine. With an average solar power production potential of 6-7 kWh/sq meter per day, one exciting project being studied for location at WIPP is a 30-50 MW Solar Power Tower: The American Solar Energy Society (ASES) is is a national trade

  20. Direct Aerosol Forcing: Calculation from Observables and Sensitivities...

    Office of Scientific and Technical Information (OSTI)

    ... Language: English Subject: 54 ENVIRONMENTAL SCIENCES; AEROSOLS; ... SOLAR RADIATION; MATHEMATICAL MODELS Word Cloud More Like This Full Text Journal Articles DOI: 10.1029...

  1. Solar heated rotary kiln

    DOE Patents [OSTI]

    Shell, Pamela K. (Tracy, CA)

    1984-01-01

    A solar heated rotary kiln utilized for decomposition of materials, such as zinc sulfate. The rotary kiln has an open end and is enclosed in a sealed container having a window positioned for directing solar energy into the open end of the kiln. The material to be decomposed is directed through the container into the kiln by a feed tube. The container is also provided with an outlet for exhaust gases and an outlet for spent solids, and rests on a tiltable base. The window may be cooled and kept clear of debris by coolant gases.

  2. ImagineSolar | Open Energy Information

    Open Energy Info (EERE)

    Workforce training, Corporate consulting - Solar projects, Solar sales, Solar marketing, Solar business development, Solar policy, Solar advocacy, Solar government...

  3. Solar Manufacturing Projects | Department of Energy

    Office of Environmental Management (EM)

    Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects SOLAR ...

  4. Solar Radiometric Data Quality Assessment of SIRS, SKYRAD and...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Office of Science Country of Publication: United States Language: ... DIFFUSE HORIZONTAL IRRADIANCE; DIRECT NORMAL IRRADIANCE; Solar Energy - ...

  5. Solar Energy Education. Renewable energy activities for junior high/middle school science

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    Some basic topics on the subject of solar energy are outlined in the form of a teaching manual. The manual is geared toward junior high or middle school science students. Topics include solar collectors, solar water heating, solar radiation, insulation, heat storage, and desalination. Instructions for the construction of apparatus to demonstrate the solar energy topics are provided. (BCS)

  6. ARESE (ARM Enhanced Shortwave Experiment) Science Plan [Atmospheric Radiation Program

    SciTech Connect (OSTI)

    Valero, F.P.J.; Schwartz, S.E.; Cess, R.D.; Ramanathan, V.; Collins, W.D.; Minnis, P.; Ackerman, T.P.; Vitko, J.; Tooman, T.P.

    1995-09-27

    Several recent studies have indicated that cloudy atmospheres may absorb significantly more solar radiation than currently predicted by models. The magnitude of this excess atmospheric absorption, is about 50% more than currently predicted and would have major impact on our understanding of atmospheric heating. Incorporation of this excess heating into existing general circulation models also appears to ameliorate some significant shortcomings of these models, most notably a tendency to overpredict the amount of radiant energy going into the oceans and to underpredict the tropopause temperature. However, some earlier studies do not show this excess absorption and an underlying physical mechanism that would give rise to such absorption has yet to be defined. Given the importance of this issue, the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program is sponsoring the ARM Enhanced Shortwave Experiment (ARESE) to study the absorption of solar radiation by clear and cloudy atmospheres. The experimental results will be compared with model calculations. Measurements will be conducted using three aircraft platforms (ARM-UAV Egrett, NASA ER-2, and an instrumented Twin Otter), as well as satellites and the ARM central and extended facilities in North Central Oklahoma. The project will occur over a four week period beginning in late September, 1995. Spectral broadband, partial bandpass, and narrow bandpass (10nm) solar radiative fluxes will be measured at different altitudes and at the surface with the objective to determine directly the magnitude and spectral characteristics of the absorption of shortwave radiation by the atmosphere (clear and cloudy). Narrow spectral channels selected to coincide with absorption by liquid water and ice will help in identifying the process of absorption of radiation. Additionally, information such as water vapor profiles, aerosol optical depths, cloud structure and ozone profiles, needed to use as input in radiative

  7. Solar Rights

    Broader source: Energy.gov [DOE]

    A solar energy system is defined as "a system affixed to a building or buildings that uses solar devices, which are thermally isolated from living space or any other area where the energy is used...

  8. Solar Blog

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    96426 Solar Blog en Solar Energy Jobs Outpace U.S. Economy http:energy.govarticlessolar-energy-jobs-outpace-us-economy

  9. Solar Rights

    Broader source: Energy.gov [DOE]

    In the context of this law, a solar energy device is a system "manufactured and sold for the sole purpose of facilitating the collection and beneficial use of solar energy, including passive...

  10. Solar Forecasting

    Broader source: Energy.gov [DOE]

    On December 7, 2012, DOE announced $8 million to fund two solar projects that are helping utilities and grid operators better forecast when, where, and how much solar power will be produced at U.S....

  11. Solar collectors

    SciTech Connect (OSTI)

    Cassidy, V.M.

    1981-11-01

    Practical applications of solar energy in commercial, industrial and institutional buildings are considered. Two main types of solar collectors are described: flat plate collectors and concentrating collectors. Efficiency of air and hydronic collectors among the flat plate types are compared. Also several concentrators are described, including their sun tracking mechanisms. Descriptions of some recent solar installations are presented and a list representing the cross section of solar collector manufacturers is furnished.

  12. Commercializing solar hydrogen production

    SciTech Connect (OSTI)

    Holmes, J.T.; Prairie, M.R.

    1991-01-01

    This paper discusses the need for a government-supported program to commercialize hydrogen production methods which use solar energy as the main source of energy. Current methods use hydrocarbons and generate large amounts of carbon dioxide. The paper describes results from a literature survey performed to identify technologies using direct solar energy that were likely to succeed on an industrial scale in the near term. Critical parameters included calculated efficiencies, measured efficiencies, and development status. The cost of solar collectors is cited as the reason most promising solar hydrogen research is not taken to the pilot plant stage. The author recommends use of existing DOE facilities already in operation for pilot plant testing. 14 refs. (CK)

  13. Solar Energy Education. Renewable energy activities for earth science

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    A teaching manual is provided to aid teachers in introducing renewable energy topics to earth science students. The main emphasis is placed on solar energy. Activities for the student include a study of the greenhouse effect, solar gain for home heating, measuring solar radiation, and the construction of a model solar still to obtain fresh water. Instructions for the construction of apparatus to demonstrate a solar still, the greenhouse effect and measurement of the altitude and azimuth of the sun are included. (BCS)

  14. Smart Solar Rooftops - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Marketing Summary Solar panels, or photovoltaic panels, use photovoltaic cells to create energy. These cells create direct current through absorption of sunlight's ...

  15. Austin Energy- Value of Solar Residential Rate

    Broader source: Energy.gov [DOE]

    Note: In August 2014, the City Council of Austin, Texas, enacted Resolution No. 20140828, which directed program changes to the Value of Solar Tariff as follows:

  16. Solar optics: light as energy; energy as light

    SciTech Connect (OSTI)

    Bennett, D.J.; Eijadi, D.A.

    1980-05-01

    a prominent characteristic of earth-sheltered and underground buildings, as well as buildings designed to accommodate more uses within the same perimeters, is the prominence of interior space without direct access to natural light and view opportunities. Solar Optics, a technique for illuminating interior spaces with natural light, offers a way to satisfy the well-documented human affinity for natural light. The system, which uses a heliostat to track the sun and lenses and mirrors to direct the light to remote interior spaces, is more efficient than converting solar radiation into electricity. Through the use of cold mirrors, it is also possible to separate the infrared portion of the spectrum from visible light, thereby creating a cool light source that can reduce a building's space cooling demand. Solar Optics also offers energy savings by transmitting light through a small aperture, as opposed to a large window. Several design problems must still be addressed. The system will be demonstrated in a new building at the University of Minnesota. Because this is a limited demonstration, it does not include the integration of a natural light system with a central source light system...another promising application of Solar Optics.

  17. Central solar energy receiver

    DOE Patents [OSTI]

    Drost, M. Kevin

    1983-01-01

    An improved tower-mounted central solar energy receiver for heating air drawn through the receiver by an induced draft fan. A number of vertically oriented, energy absorbing, fin-shaped slats are radially arranged in a number of concentric cylindrical arrays on top of the tower coaxially surrounding a pipe having air holes through which the fan draws air which is heated by the slats which receive the solar radiation from a heliostat field. A number of vertically oriented and wedge-shaped columns are radially arranged in a number of concentric cylindrical clusters surrounding the slat arrays. The columns have two mirror-reflecting sides to reflect radiation into the slat arrays and one energy absorbing side to reduce reradiation and reflection from the slat arrays.

  18. Apparatus for solar coal gasification

    DOE Patents [OSTI]

    Gregg, D.W.

    Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials is described. Incident solar radiation is focused from an array of heliostats onto a tower-mounted secondary mirror which redirects the focused solar radiation down through a window onto the surface of a vertically-moving bed of coal, or a fluidized bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called synthesis gas, which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam at the rear surface of the secondary mirror.

  19. Purchasing Solar Collectively with Solarize

    Broader source: Energy.gov [DOE]

    This video provides an overview of the concept behind The Solarize Guidebook, which offers neighborhoods a plan for getting volume discounts when making group purchases of rooftop solar energy...

  20. Solar heat receiver

    DOE Patents [OSTI]

    Hunt, Arlon J.; Hansen, Leif J.; Evans, David B.

    1985-01-01

    A receiver for converting solar energy to heat a gas to temperatures from 700.degree.-900.degree. C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  1. Solar heat receiver

    DOE Patents [OSTI]

    Hunt, A.J.; Hansen, L.J.; Evans, D.B.

    1982-09-29

    A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  2. High-Flux Microchannel Solar Receiver

    Broader source: Energy.gov [DOE]

    This fact sheet describes a high-flux, microchannel solar receiver project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by Oregon State University, is working to demonstrate a microchannel-based solar receiver capable of absorbing high solar flux, while using a variety of liquid and gaseous working fluids. High-flux microchannel receivers have the potential to dramatically reduce the size and cost of a solar receiver by minimizing re-radiation and convective losses.

  3. Project Profile: Sensible Heat, Direct, Dual-Media Thermal Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sensible Heat, Direct, Dual-Media Thermal Energy Storage Module Project Profile: Sensible Heat, Direct, Dual-Media Thermal Energy Storage Module Acciona logo Acciona Solar, under ...

  4. Sensitivity of fenestration solar gain to source spectrum and angle of incidence

    SciTech Connect (OSTI)

    McCluney, W.R.

    1996-12-31

    The solar heat gain coefficient (SHGC) is the fraction of solar radiant flux incident on a fenestration system entering a building as heat gain. In general it depends on both the angle of incidence and the spectral distribution of the incident solar radiation. In attempts to improve energy performance and user acceptance of high-performance glazing systems, manufacturers are producing glazing systems with increasing spectral selectivity. This poses potential difficulties for calculations of solar heat gain through windows based upon the use of a single solar spectral weighting function. The sensitivity of modern high-performance glazing systems to both the angle of incidence and the shape of the incident solar spectrum is examined using a glazing performance simulation program. It is found that as the spectral selectivity of the glazing system increases, the SHGC can vary as the incident spectral distribution varies. The variations can be as great as 50% when using several different representative direct-beam spectra. These include spectra having low and high air masses and a standard spectrum having an air mass of 1.5. The variations can be even greater if clear blue diffuse skylight is considered. It is recommended that the current broad-band shading coefficient method of calculating solar gain be replaced by one that is spectral based.

  5. Method and global relationship for estimation of transmitted solar energy distribution in passive solar rooms

    SciTech Connect (OSTI)

    Athienitis, A.K.; Stylianou, M. )

    1991-01-01

    Estimation of the distribution of transmitted solar radiation within a room with large windows is required for correct prediction of building thermal performance and for optimal positioning of the thermal storage mass. This article presents a detailed computer method that determines the instantaneous solar radiation transmitted through a window and absorbed by each room interior surface, and a correlation for estimating the fraction of daily total transmitted solar radiation absorbed by the floor for several latitudes, for different shapes of enclosures, and for varying surface solar absorptances. The correlation was developed by fitting an exponential relationship to results obtained from a numerical study of the variation of the following parameters influencing the distribution of solar radiation: latitude, day of year, geometry of enclosure (width-to-depth ratio and window azimuth angle), window-to-floor area ratio, and surface absorptances.

  6. Passive-solar construction handbook

    SciTech Connect (OSTI)

    Levy, E.; Evans, D.; Gardstein, C.

    1981-02-01

    Many of the basic elements of passive solar design are reviewed. Passive solar construction is covered according to system type, each system type discussion including a general discussion of the important design and construction issues which apply to the particular system and case studies illustrating designed and built examples of the system type. The three basic types of passive solar systems discussed are direct gain, thermal storage wall, and attached sunspace. Thermal performance and construction information is presented for typical materials used in passive solar collector components, storage components, and control components. Appended are an overview of analysis methods and a technique for estimating performance. (LEW)

  7. RADIATION INTEGRATOR

    DOE Patents [OSTI]

    Glass, F.M.; Wilson, H.N.

    1959-02-17

    Radiation detecting and measuring systems, particularly a compact, integrating, background monitor, are discussed. One of the principal features of the system is the use of an electrometer tube where the input of the tube is directly connected to an electrode of the radiation detector and a capacitor is coupled to the tube input. When a predetermined quantity of radiation has been integrated, a trigger signal is fed to a recorder and a charge is delivered to the capacitor to render the tube inoperative. The capacitor is then recharged for the next period of operation. With this arrangement there is a substantial reduction in lead lengths and the principal components may be enclosed and hermetically sealed to insure low leakage.

  8. Solar Policy Environment: Knoxville

    Broader source: Energy.gov [DOE]

    The City of Knoxville is “beginning at the beginning” of the transition to solar energy utilization. With limited public information and experience, it is important for Knoxville to focus extensively on public outreach and workforce development. The City will also commence a direct incentive and embark on a massive educational program.

  9. Directives Tools

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    Useful links and resources for Directives Writers, Directives Point of Contact (DPCs), Subject Matter Experts (SMEs), and Draft Directive Reviewers.

  10. Atmospheric Radiation Measurement Program Science Plan. Current...

    Office of Scientific and Technical Information (OSTI)

    Radiation Measurement Program Science Plan. Current Status and Future Directions of the ARM Science Program Citation Details In-Document Search Title: Atmospheric Radiation ...

  11. Beacon Solar Energy Project Solar Power Plant | Open Energy Informatio...

    Open Energy Info (EERE)

    Solar Energy Project Solar Power Plant Jump to: navigation, search Name Beacon Solar Energy Project Solar Power Plant Facility Beacon Solar Energy Project Sector Solar Facility...

  12. Prescott Airport Solar Plant Solar Power Plant | Open Energy...

    Open Energy Info (EERE)

    Prescott Airport Solar Plant Solar Power Plant Jump to: navigation, search Name Prescott Airport Solar Plant Solar Power Plant Facility Prescott Airport Solar Plant Sector Solar...

  13. Deming Solar Plant Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Deming Solar Plant Solar Power Plant Jump to: navigation, search Name Deming Solar Plant Solar Power Plant Facility Deming Solar Plant Sector Solar Facility Type Photovoltaic...

  14. SES Calico Solar One Project Solar Power Plant | Open Energy...

    Open Energy Info (EERE)

    Calico Solar One Project Solar Power Plant Jump to: navigation, search Name SES Calico Solar One Project Solar Power Plant Facility SES Calico Solar One Project Sector Solar...

  15. Nvision.Solar - Ravnishte Solar PV Plant | Open Energy Information

    Open Energy Info (EERE)

    Solar - Ravnishte Solar PV Plant Jump to: navigation, search Name Nvision.Solar - Ravnishte Solar PV Plant Facility Ravishte roof and facade mounted solar power plant Sector Solar...

  16. Solar Millenium Palen Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Palen Solar Power Plant Jump to: navigation, search Name Solar Millenium Palen Solar Power Plant Facility Solar Millenium Palen Sector Solar Facility Type Concentrating Solar Power...

  17. SES Solar Two Project Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Two Project Solar Power Plant Jump to: navigation, search Name SES Solar Two Project Solar Power Plant Facility SES Solar Two Project Sector Solar Facility Type Concentrating Solar...

  18. Carrizo Energy Solar Farm Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Carrizo Energy Solar Farm Solar Power Plant Jump to: navigation, search Name Carrizo Energy Solar Farm Solar Power Plant Facility Carrizo Energy Solar Farm Sector Solar Facility...

  19. El Dorado Solar Project Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Solar Project Solar Power Plant Jump to: navigation, search Name El Dorado Solar Project Solar Power Plant Facility El Dorado Solar Project Sector Solar Facility Type Photovoltaic...

  20. Proton depth-dose distribution: 3-D calculation of dose distributions from solar-flare irradiation. Interim report, May-Nov 88

    SciTech Connect (OSTI)

    Leavitt, D.D.

    1990-11-01

    Relative depth-dose distribution to the head from 3 typical solar flare proton events were calculated for 3 different exposure geometries: (1) single directional radiation incident upon a fixed head; (2) single directional radiation incident upon head rotating axially (2-D rotation); and (3) omnidirectional radiation incident upon head (3-D rotation). Isodose distributions in the transverse plane intersecting isocenter are presented for each of the 3 solar flare events in all 3 exposure geometries. In all 3 calculation configurations the maximum predicted dose occurred on the surface of the head. The dose at the isocenter of the head relative to the surface dose for the 2-D and 3-D rotation geometries ranged from 2% to 19%, increasing with increasing energy of the event. The calculations suggest the superficially located organs (lens of the eye and skin) are at greatest risk for the proton events studied here.

  1. Solar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation Energy Sources Renewable Energy Solar Solar How much do you know about solar power? Take our quiz and test your solar energy IQ. | Photo courtesy of ...

  2. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most cost-effective solar cells are not high-end, high-efficiency single-crystal

  3. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most cost-effective solar cells are not high-end, high-efficiency single-crystal

  4. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most cost-effective solar cells are not high-end, high-efficiency single-crystal

  5. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most cost-effective solar cells are not high-end, high-efficiency single-crystal

  6. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimetic Dye Molecules for Solar Cells Biomimetic Dye Molecules for Solar Cells Print Wednesday, 28 April 2010 00:00 Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most

  7. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most cost-effective solar cells are not high-end, high-efficiency single-crystal

  8. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most cost-effective solar cells are not high-end, high-efficiency single-crystal

  9. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most cost-effective solar cells are not high-end, high-efficiency single-crystal

  10. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most cost-effective solar cells are not high-end, high-efficiency single-crystal

  11. Direct Thin Film Path to Low Cost, Large Area III-V Photovoltaics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Advanced Materials Advanced Materials Find More Like This Return to Search Direct Thin Film Path to Low Cost, Large Area III-V Photovoltaics ...

  12. Amorphous silicon solar cell allowing infrared transmission

    DOE Patents [OSTI]

    Carlson, David E.

    1979-01-01

    An amorphous silicon solar cell with a layer of high index of refraction material or a series of layers having high and low indices of refraction material deposited upon a transparent substrate to reflect light of energies greater than the bandgap energy of the amorphous silicon back into the solar cell and transmit solar radiation having an energy less than the bandgap energy of the amorphous silicon.

  13. Studying the Solar System's Chemical Recipe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studying the Solar System's Chemical Recipe Studying the Solar System's Chemical Recipe Print Tuesday, 26 March 2013 00:00 To study the origins of different isotope ratios among the elements that make up today's smorgasbord of planets, moons, comets, asteroids, and interplanetary ice and dust, a team of scientists from the University of California, San Diego is using ALS Chemical Dynamics Beamline 9.0.2 to mimic radiation from the protosun when the solar system was forming. For more than three

  14. Solar cell with a gallium nitride electrode

    DOE Patents [OSTI]

    Pankove, Jacques I.

    1979-01-01

    A solar cell which comprises a body of silicon having a P-N junction therein with a transparent conducting N-type gallium nitride layer as an ohmic contact on the N-type side of the semiconductor exposed to solar radiation.

  15. Heat exchanger for concentrating solar collectors and method for making the heat exchanger

    SciTech Connect (OSTI)

    Stultz, R.A.

    1983-08-09

    nment of the flow passages with the A heat exchanger assembly is disclosed for use with concentrating solar collectors of the type employing an elongated conduit for transporting a heat exchange fluid, the heat exchanger being positioned within an opening in the upper surface of the conduit and operating to transfer heat to the heat exchange fluid. The heat exchanger includes a plurality of stacked heat conducting heat exchanger plates having grooves oriented to form flow passage extending in the direction of fluid flow. The heat direction of heat exchange fluid flow. The grooved heat exchange plates may be fabricated by stamp from a sheet of heat conducting material to facilitate manufacturing of the heat exchanger. In another embodiment, the plates are positioned normal to the fluid flow direction with openings in the plates serving to form flow channels. The heat exchanger is usuable with collectors employing either photovoltaic cells or a solar radiation absorbing flat plate collector.

  16. Biomass gasification at the focus of the Odeillo (France 1-MW (thermal) solar furnace

    SciTech Connect (OSTI)

    Antal, M.J. Jr.; Royere, C.; Vialaron, A.

    1980-01-01

    Experiments described in this paper were undertaken to explore the use of concentrated solar radiation for the flash pyrolysis of biomass. Biomass materials (powdered, microcrystalline cellulose and ground corn cob material) have been successfully gasified in a windowed chemical reactor operating at the focus of the Odeillo 1 MW/sub th/ solar furnace. The quartz window survived radiant flux levels in excess of 1000 W/cm/sup 2/; however impurities carried by the steam flow into the reactor ultimately clouded the window. Pyrolytic char yields of the Odeillo experimetns were quite low: ranging between one and four percent. Gas yields were also relatively low, but condensible yields were high. These results reflect the important role played by the gas phase chemistry (largely unaffected by the high solar flux) in the production of permanent gases from biomass. A consideration of the characteristic times for chemical kinetic and heat transfer phenomenon within a rapidly pyrolyzing particle indicate that heat transfer (not chemical kinetics) is the rate limiting step. However, the thermochemical and optical properties of biomass materials are poorly understood and much more experimental work must be completed before definitive conclusions in this important area can be made. Because the use of concentrated solar radiation for direct gasification of biomass materials results in the formation of little or no char without reliance on the water gas or Boudourad reactions, solar flash pyrolysis of biomass holds unusual promise for the economical production of liquid and gaseous fuels from renewable resources.

  17. Integrated solar thermal energy collector system

    SciTech Connect (OSTI)

    Garrison, J.D.

    1987-08-18

    A solar thermal collector system is described one of a class of devices which converts solar radiation into heat and transmits this heat to storage from whence it is utilized, comprising: an evacuated glass solar collector, the evacuated glass solar collector having a glass vacuum envelope, the upper portion of the glass vacuum envelope also serving as window to pass solar radiation, the evacuated glass solar collector having a multiplicity of substantially parallel linear adjacent concentrating troughs, each trough shaped and mirror surfaced so as concentrate solar radiation in the vacuum, the mirror surface inside the vacuum and the concentration approximately ideal, the multiplicity of substantially parallel linear adjacent troughs extending substantially over the entire length and width of the evacuated glass solar collector; a heat storage system, the heat storage system adjacent to the evacuated glass solar collector, the heat storage system having a heat storage tank which is thermally insulated, the heat storage tank containing a heat storage medium, and the heat storage system including means of removal of heat from the heat storage tank for utilization.

  18. Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas ...

  19. Solar Mapper

    Broader source: Energy.gov [DOE]

    Interactive, online mapping tool providing access to spatial data related to siting utility-scale solar facilities in the southwestern United States.

  20. Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water ...

  1. Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & ...

  2. Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Administration and DOE EERE International Program: Solar Decathlon China 2013 16 | Building Technologies Office eere.energy.gov Project Integration, Collaboration & Market Impact ...

  3. Solar Rights

    Broader source: Energy.gov [DOE]

    Ordinances, bylaws, or regulations may reasonably restrict the installation and use of solar energy devices to protect public health and safety, buildings from damage, historic/aesthetic values (...

  4. Solar Dish/Engine Power Plant Illustration

    Office of Energy Efficiency and Renewable Energy (EERE)

    This graphic illustrates a parabolic dish of mirrors directs and concentrates sunlight onto a central engine that produces electricity. The solar concentrator, or dish, gathers the solar energy coming directly from the sun. The resulting beam of concentrated sunlight is reflected onto a thermal receiver that collects the solar heat. The dish is mounted on a structure that tracks the sun continuously throughout the day to reflect the highest percentage of sunlight possible onto the thermal receiver.

  5. Alpha Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basics of Radiation Gamma Radiation and X-Rays Beta Radiation Alpha Radiation Irradiation Radioactive Contamination Definitions Detection Measurement Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Basics of Radiation Characteristics of Alpha Radiation 1. Alpha radiation is not able to penetrate skin. 2. Alpha-emitting materials can be harmful to humans if the materials are inhaled, swallowed, or absorbed through open wounds. 3. A variety of instruments

  6. Radiation Effects In Space

    SciTech Connect (OSTI)

    Tripathi, Ram K.

    2011-06-01

    Protecting space missions from severe exposures from radiation, in general, and long duration/deep space human missions, in particular, is a critical design driver, and could be a limiting factor. The space radiation environment consists of galactic cosmic rays (GCR), solar particle events (SPE), trapped radiation, and includes ions of all the known elements over a very broad energy range. These ions penetrate spacecraft materials producing nuclear fragments and secondary particles that damage biological tissues and microelectronic devices. One is required to know how every element (and all isotopes of each element) in the periodic table interacts and fragments on every other element in the same table as a function of kinetic energy ranging over many decades. In addition, the accuracy of the input information and database, in general and nuclear data in particular, impacts radiation exposure health assessments and payload penalty. After a brief review of effects of space radiation on materials and electronics, human space missions to Mars is discussed.

  7. A U. S. Department of Energy User Facility Atmospheric Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U. S. Department of Energy User Facility Atmospheric ... INCOMING SOLAR RADIATION Surface Instruments REFLECTED ... Unfortunately, many of these useful datasets reside with the ...

  8. Deep-level defects introduced by 1 MeV electron radiation in AlInGaP for multijunction space solar cells

    SciTech Connect (OSTI)

    Lee, H.S.; Yamaguchi, M.; Ekins-Daukes, N. J.; Khan, A.; Takamoto, T.; Agui, T.; Kamimura, K.; Kaneiwa, M.; Imaizumi, M.; Ohshima, T.; Itoh, H.

    2005-11-01

    Presented in this paper are 1 MeV electron irradiation effects on wide-band-gap (1.97 eV) (Al{sub 0.08}Ga{sub 0.92}){sub 0.52}In{sub 0.48}P diodes and solar cells. The carrier removal rate estimated in p-AlInGaP with electron fluence is about 1 cm{sup -1}, which is lower than that in InP and GaAs. From high-temperature deep-level transient spectroscopy measurements, a deep-level defect center such as majority-carrier (hole) trap H2 (E{sub {nu}}+0.90{+-}0.05 eV) was observed. The changes in carrier concentrations ({delta}p) and trap densities as a function of electron fluence were compared, and as a result the total introduction rate, 0.39 cm{sup -1}, of majority-carrier trap centers (H1 and H2) is different from the carrier removal rate, 1 cm{sup -1}, in p-AlInGaP. From the minority-carrier injection annealing (100 mA/cm{sup 2}), the annealing activation energy of H2 defect is {delta}E=0.60 eV, which is likely to be associated with a vacancy-phosphorus Frenkel pair (V{sub p}-P{sub i}). The recovery of defect concentration and carrier concentration in the irradiated p-AlInGaP by injection relates that a deep-level defect H2 acts as a recombination center as well as compensator center.

  9. Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat: Preprint

    SciTech Connect (OSTI)

    Parsons, B.; Hummon, M.; Cochran, J.; Stoltenberg, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-04-01

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  10. Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat (Presentation)

    SciTech Connect (OSTI)

    Parsons, B.; Hummon, M.; Cochran, J.; Stoltenberg, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-04-01

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  11. Variability of Photovoltaic Power in the State of Gujarat Using High Resolution Solar Data

    SciTech Connect (OSTI)

    Hummon, M.; Cochran, J.; Weekley, A.; Lopez, A.; Zhang, J.; Stoltenberg, B.; Parsons, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-03-01

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  12. Design and operation of a solar fired biomass flash pyrolysis reactor

    SciTech Connect (OSTI)

    Antal, M.J.; Hofmann, L.; Brown, C.T.; Steenblick, R.

    1981-01-01

    The results of continuing research on the radiant flash pyrolysis of biomass as a source of fluid fuels, industrial feedstocks, and chemicals are described. Bench-scale sources of intense, visible radiant energy were used to simulate the concentrated solar flux available at the focus of solar towers. Windowed transport reactors were developed, which act as cavity receivers for the focused radiant energy and provide a means for direct use of the radiation to rapidly pyrolyze the entering biomass. Detailed result of both bench scale experiments and experiments using the Georgia Tech 400 kW (thermal) solar furnace are presented. These results suggest the use of concentrated radiant energy as a selective means for the production of either a hydrocarbon-rich synthesis gas or sugar related syrups from biomass by flash pyrolysis. Sawdust, ground corncobs, and powdered microcrystal cellulose were the biomass feedstocks in this work.

  13. Solar-Geophysical Data Number 537, May 1989. Part 2 (comprehensive reports). Data for November 1988 and miscellaneous

    SciTech Connect (OSTI)

    Coffey, H.E.

    1987-07-01

    Solar data are presented for November 1988. The data include solar flares in the H-alpha line; solar radio bursts at fixed frequencies; interplanetary solar particles and plasma; solar x-ray radiation as seen from the GOES-7 artificial satellite; mass ejections from the sun; and active prominences and filaments.

  14. Unified Solar

    Broader source: Energy.gov [DOE]

    Unified Solar is an MIT startup that is commercializing an integrated circuit solution that eliminates most of the adverse effects caused by partial shading in photovoltaic power systems. With its patent-pending design, Unified Solar's solution is smaller, cheaper and more powerful than any competing power optimizer in the market.

  15. Thermal efficiency of single-pass solar air collector

    SciTech Connect (OSTI)

    Ibrahim, Zamry; Ibarahim, Zahari; Yatim, Baharudin; Ruslan, Mohd Hafidz

    2013-11-27

    Efficiency of a finned single-pass solar air collector was studied. This paper presents the experimental study to investigate the effect of solar radiation and mass flow rate on efficiency. The fins attached at the back of absorbing plate to improve the thermal efficiency of the system. The results show that the efficiency is increased proportional to solar radiation and mass flow rate. Efficiency of the collector archived steady state when reach to certain value or can be said the maximum performance.

  16. UNIVERSITY RESEARCH PROGRAMS IN ROBOTICS, TECHNOLOGIES FOR MICROELECTROMECHANICAL SYSTEMS IN DIRECTED STOCKPILE WORK RADIATION AND ENGINEERING CAMPAIGNS - 2005-06 FINAL ANNUAL REPORT

    SciTech Connect (OSTI)

    James S. Tulenko; Dean Schoenfeld; David Hintenlang; Carl Crane; Shannon Ridgeway; Jose Santiago; Charles Scheer

    2006-11-30

    The research performed by the University of Florida (UF) is directed to the development of technologies that can be utilized at a micro-scale in varied environments. Work is focused on micro-scale energy systems, visualization, and mechanical devices. This work will impact the NNSA need related to micro-assembly operations. The URPR activities are executed in a University environment, yet many applications of the resulting technologies may be classified or highly restrictive in nature. The NNSA robotics technologists apply an NNSA needs focus to the URPR research, and actively work to transition relevant research into the deployment projects in which they are involved. This provides a Research to Development to Application structure within which innovative research has maximum opportunity for impact without requiring URPR researchers to be involved in specific NNSA projects. URPR researchers need to be aware of the NNSA applications in order to ensure the research being conducted has relevance, the URPR shall rely upon the NNSA sites for direction.

  17. Sandia Energy - Solar Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Resource Assessment Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Resource Assessment Solar Resource AssessmentTara...

  18. Sandia Energy - Solar Market Transformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Market Transformation Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Solar Market TransformationTara...

  19. A new method for predicting the solar heat gain of complex fenestration systems

    SciTech Connect (OSTI)

    Klems, J.H.; Warner, J.L.

    1992-10-01

    A new method of predicting the solar heat gain through complex fenestration systems involving nonspecular layers such as shades or blinds has been examined in a project jointly sponsored by ASHRAE and DOE. In this method, a scanning radiometer is used to measure the bidirectional radiative transmittance and reflectance of each layer of a fenestration system. The properties of systems containing these layers are then built up computationally from the measured layer properties using a transmission/multiple-reflection calculation. The calculation produces the total directional-hemispherical transmittance of the fenestration system and the layer-by-layer absorptances. These properties are in turn combined with layer-specific measurements of the inward-flowing fractions of absorbed solar energy to produce the overall solar heat gain coefficient. This method has been used to determine the solar heat gain coefficient of a double-glazed window with an interior white shade. The resulting solar heat gain coefficient was compared to a direct measurement of the same system using the Mobile Window Thermal Test (MoWiTT) Facility for measuring window energy performance, and the two results agreed. This represents the first in a series of planned validations and applications of the new method.

  20. LOCAL INTERSTELLAR HYDROGEN'S DISAPPEARANCE AT 1 AU: FOUR YEARS OF IBEX IN THE RISING SOLAR CYCLE

    SciTech Connect (OSTI)

    Saul, Lukas; Rodriguez, Diego; Scheer, Juergen; Wurz, Peter; Bzowski, Maciej; Kubiak, Marzena; Sokol, Justina; Fuselier, Stephen; McComas, Dave; Moebius, Eberhard

    2013-04-20

    NASA's Interstellar Boundary Explorer (IBEX) mission has recently opened a new window on the interstellar medium (ISM) by imaging neutral atoms. One ''bright'' feature in the sky is the interstellar wind flowing into the solar system. Composed of remnants of stellar explosions as well as primordial gas and plasma, the ISM is by no means uniform. The interaction of the local ISM with the solar wind shapes our heliospheric environment with hydrogen being the dominant component of the very local ISM. In this paper, we report on direct sampling of the neutral hydrogen of the local ISM over four years of IBEX observations. The hydrogen wind observed at 1 AU has decreased and nearly disappeared as the solar activity has increased over the last four years; the signal at 1 AU has dropped off in 2012 by a factor of {approx}8 to near background levels. The longitudinal offset has also increased with time presumably due to greater radiation pressure deflecting the interstellar wind. We present longitudinal and latitudinal arrival direction measurements of the bulk flow as measured over four years beginning at near solar minimum conditions. The H distribution we observe at 1 AU is expected to be different from that outside the heliopause due to ionization, photon pressure, gravity, and filtration by interactions with heliospheric plasma populations. These observations provide an important benchmark for modeling of the global heliospheric interaction. Based on these observations we suggest a further course of scientific action to observe neutral hydrogen over a full solar cycle with IBEX.

  1. Detailed and simplified nonequilibrium helium ionization in the solar atmosphere

    SciTech Connect (OSTI)

    Golding, Thomas Peter; Carlsson, Mats; Leenaarts, Jorrit E-mail: mats.carlsson@astro.uio.no

    2014-03-20

    Helium ionization plays an important role in the energy balance of the upper chromosphere and transition region. Helium spectral lines are also often used as diagnostics of these regions. We carry out one-dimensional radiation-hydrodynamics simulations of the solar atmosphere and find that the helium ionization is set mostly by photoionization and direct collisional ionization, counteracted by radiative recombination cascades. By introducing an additional recombination rate mimicking the recombination cascades, we construct a simplified three-level helium model atom consisting of only the ground states. This model atom is suitable for modeling nonequilibrium helium ionization in three-dimensional numerical models. We perform a brief investigation of the formation of the He I 10830 and He II 304 spectral lines. Both lines show nonequilibrium features that are not recovered with statistical equilibrium models, and caution should therefore be exercised when such models are used as a basis for interpretating observations.

  2. Nanocrystal Solar Cells

    SciTech Connect (OSTI)

    Gur, Ilan

    2006-12-15

    This dissertation presents the results of a research agenda aimed at improving integration and stability in nanocrystal-based solar cells through advances in active materials and device architectures. The introduction of 3-dimensional nanocrystals illustrates the potential for improving transport and percolation in hybrid solar cells and enables novel fabrication methods for optimizing integration in these systems. Fabricating cells by sequential deposition allows for solution-based assembly of hybrid composites with controlled and well-characterized dispersion and electrode contact. Hyperbranched nanocrystals emerge as a nearly ideal building block for hybrid cells, allowing the controlled morphologies targeted by templated approaches to be achieved in an easily fabricated solution-cast device. In addition to offering practical benefits to device processing, these approaches offer fundamental insight into the operation of hybrid solar cells, shedding light on key phenomena such as the roles of electrode-contact and percolation behavior in these cells. Finally, all-inorganic nanocrystal solar cells are presented as a wholly new cell concept, illustrating that donor-acceptor charge transfer and directed carrier diffusion can be utilized in a system with no organic components, and that nanocrystals may act as building blocks for efficient, stable, and low-cost thin-film solar cells.

  3. Direct 2-Arm Comparison Shows Benefit of High-Dose-Rate Brachytherapy Boost vs External Beam Radiation Therapy Alone for Prostate Cancer

    SciTech Connect (OSTI)

    Khor, Richard; Duchesne, Gillian; Monash University, Melbourne ; Tai, Keen-Hun; Foroudi, Farshad; Chander, Sarat; Van Dyk, Sylvia; Garth, Margaret; Williams, Scott

    2013-03-01

    Purpose: To evaluate the outcomes of patients treated for intermediate- and high-risk prostate cancer with a single schedule of either external beam radiation therapy (EBRT) and high-dose-rate brachytherapy (HDRB) boost or EBRT alone. Methods and Materials: From 2001-2006, 344 patients received EBRT with HDRB boost for definitive treatment of intermediate- or high-risk prostate cancer. The prescribed EBRT dose was 46 Gy in 23 fractions, with a HDR boost of 19.5 Gy in 3 fractions. This cohort was compared to a contemporaneously treated cohort who received EBRT to 74 Gy in 37 fractions, using a matched pair analysis. Three-dimensional conformal EBRT was used. Matching was performed using a propensity score matching technique. High-risk patients constituted 41% of the matched cohorts. Five-year clinical and biochemical outcomes were analyzed. Results: Initial significant differences in prognostic indicators between the unmatched treatment cohorts were rendered negligible after matching, providing a total of 688 patients. Median biochemical follow-up was 60.5 months. The 5-year freedom from biochemical failure was 79.8% (95% confidence interval [CI], 74.3%-85.0%) and 70.9% (95% CI, 65.4%-76.0%) for the HDRB and EBRT groups, respectively, equating to a hazard ratio of 0.59 (95% CI, 0.43-0.81, P=.0011). Interaction analyses showed no alteration in HDR efficacy when planned androgen deprivation therapy was administered (P=.95), but a strong trend toward reduced efficacy was shown compared to EBRT in high-risk cases (P=.06). Rates of grade 3 urethral stricture were 0.3% (95% CI, 0%-0.9%) and 11.8% (95% CI, 8.1%-16.5%) for EBRT and HDRB, respectively (P<.0001). No differences in clinical outcomes were observed. Conclusions: This comparison of 2 individual contemporaneously treated HDRB and EBRT approaches showed improved freedom from biochemical progression with the HDR approach. The benefit was more pronounced in intermediate- risk patients but needs to be weighed against

  4. EERE Success Story-Reaching New Limits with Solar Storage | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Reaching New Limits with Solar Storage EERE Success Story-Reaching New Limits with Solar Storage February 25, 2016 - 10:49am Addthis Sunlight reflected from heliostats is shining directly on the particle receiver, which is currently being tested on top of the solar tower at the National Solar Thermal Test Facility. Sunlight reflected from heliostats is shining directly on the particle receiver, which is currently being tested on top of the solar tower at the National Solar Thermal

  5. RHOBOT: Radiation hardened robotics

    SciTech Connect (OSTI)

    Bennett, P.C.; Posey, L.D.

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program.

  6. NREL: International Activities - India Solar Resource Maps & Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    International Activities Printable Version A button that leads to NREL's National Solar Radiation Database (NSRDB) India Solar Resoource - Annual Average DNI Map Annual Average DNI Map JPG 12.5 MB India Annual Average GHI Map - Annual Average GHI Map Annual Average GHI Map JPG 13.3 MB The cover page of the India Solar Resource Data Fact Sheet India Solar Resource Data Fact Sheet PDF 395 KB India Solar Resource Maps & Data (updated March 2016) This page provides solar resource maps and data

  7. Solar Two

    SciTech Connect (OSTI)

    Not Available

    1998-04-01

    Solar Two is a concentrating solar power plant that can supply electric power on demand to the local utility, Southern California Edison Company. It can do so because it operates not only during sunny parts of the day, but it can store enough thermal energy from the sun to operate during cloudy periods and after dark, for up to three hours, at its rated output of 10 megawatts (MW). For the first time ever, a utility scale solar power plant can supply electricity when the utility needs it most, to satisfy the energy requirements of its customers.

  8. Solar Energy System and Cogeneration System Personal Property Tax Credit

    Broader source: Energy.gov [DOE]

    Eligible solar systems Solar energy is defined by D.C. Code § 34-1431 to mean "radiant energy, direct, diffuse, or reflected, received from the sun at wavelengths suitable for conversion into the...

  9. Lowry Range Solar Station: Arapahoe County, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Yoder, M.; Andreas, A.

    2008-05-30

    A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  10. Lowry Range Solar Station: Arapahoe County, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Yoder, M.; Andreas, A.

    A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  11. Solar Millenium Ridgecrest Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Ridgecrest Solar Power Plant Jump to: navigation, search Name Solar Millenium Ridgecrest Solar Power Plant Facility Solar Millenium Ridgecrest Sector Solar Facility Type...

  12. SES Solar Three Project Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Three Project Solar Power Plant Jump to: navigation, search Name SES Solar Three Project Solar Power Plant Facility SES Solar Three Project Sector Solar Facility Type Photovoltaics...

  13. Renewable Energy Concepts Solar Inc REC Solar | Open Energy Informatio...

    Open Energy Info (EERE)

    Concepts Solar Inc REC Solar Jump to: navigation, search Name: Renewable Energy Concepts Solar Inc (REC Solar) Place: San Luis Obispo, California Zip: 93401 Sector: Solar Product:...

  14. Direct Numerical Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Numerical Simulation - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  15. Concentrated Solar Thermoelectric Power

    SciTech Connect (OSTI)

    Chen, Gang; Ren, Zhifeng

    2015-07-09

    The goal of this project is to demonstrate in the lab that solar thermoelectric generators (STEGs) can exceed 10% solar-to-electricity efficiency, and STEGs can be integrated with phase-change materials (PCM) for thermal storage, providing operation beyond daylight hours. This project achieved significant progress in many tasks necessary to achieving the overall project goals. An accurate Themoelectric Generator (TEG) model was developed, which included realistic treatment of contact materials, contact resistances and radiative losses. In terms of fabricating physical TEGs, high performance contact materials for skutterudite TE segments were developed, along with brazing and soldering methods to assemble segmented TEGs. Accurate measurement systems for determining device performance (in addition to just TE material performance) were built for this project and used to characterize our TEGs. From the optical components’ side, a spectrally selective cermet surface was developed with high solar absorptance and low thermal emittance, with thermal stability at high temperature. A measurement technique was also developed to determine absorptance and total hemispherical emittance at high temperature, and was used to characterize the fabricated spectrally selective surfaces. In addition, a novel reflective cavity was designed to reduce radiative absorber losses and achieve high receiver efficiency at low concentration ratios. A prototype cavity demonstrated that large reductions in radiative losses were possible through this technique. For the overall concentrating STEG system, a number of devices were fabricated and tested in a custom built test platform to characterize their efficiency performance. Additionally, testing was performed with integration of PCM thermal storage, and the storage time of the lab scale system was evaluated. Our latest testing results showed a STEG efficiency of 9.6%, indicating promising potential for high performance concentrated STEGs.

  16. HOMEOWNERS GUIDE TO SOLAR FINANCING

    Broader source: Energy.gov [DOE]

    The Clean Energy States Alliance has released a guide to help homeowners navigate the complex landscape of residential solar PV system financing. The free online publication helps help homeowners make sound decisions and select the best financing option for their needs. The guide describes leases, loans, and power purchase agreements (PPAs) and explains the advantages and disadvantages of each, as well as how they compare to a direct cash purchase. It clarifies key solar financing terms and provides a list of questions homeowners should ask before deciding if and how to proceed with installing a solar system.

  17. Solar Rights

    Broader source: Energy.gov [DOE]

    In June of 2015, SB 1626 was signed into law. It provides that during the development period, the developer may only prohibit  a property owner from installing solar in developments with 50 or...

  18. solar energy

    National Nuclear Security Administration (NNSA)

    8%2A en Solar power purchase for DOE laboratories http:nnsa.energy.govmediaroompressreleasessolarpower

  19. solar power

    National Nuclear Security Administration (NNSA)

    9%2A en Solar power purchase for DOE laboratories http:nnsa.energy.govmediaroompressreleasessolarpower

  20. Detection of solar events

    DOE Patents [OSTI]

    Fischbach, Ephraim; Jenkins, Jere

    2013-08-27

    A flux detection apparatus can include a radioactive sample having a decay rate capable of changing in response to interaction with a first particle or a field, and a detector associated with the radioactive sample. The detector is responsive to a second particle or radiation formed by decay of the radioactive sample. The rate of decay of the radioactive sample can be correlated to flux of the first particle or the field. Detection of the first particle or the field can provide an early warning for an impending solar event.

  1. Oxford Solar | Open Energy Information

    Open Energy Info (EERE)

    Oxford Solar Jump to: navigation, search Name: Oxford Solar Place: Randolph, New Jersey Zip: 7869 Sector: Solar Product: Oxford Solar provides solar energy consulting and...

  2. SBM Solar | Open Energy Information

    Open Energy Info (EERE)

    search Name: SBM Solar Place: North Carolina Sector: Solar Product: SBM Solar is a solar panel manufacturer based in North Carolina. References: SBM Solar1 This article is...

  3. Akeena Solar | Open Energy Information

    Open Energy Info (EERE)

    Akeena Solar Jump to: navigation, search Logo: Akeena Solar Name: Akeena Solar Address: 16005 Los Gatos Blvd. Place: Los Gatos, California Zip: 95032 Sector: Solar Product: Solar...

  4. Adobe Solar | Open Energy Information

    Open Energy Info (EERE)

    Adobe Solar Jump to: navigation, search Logo: Adobe Solar Name: Adobe Solar Place: Denver, Colorado Region: Rockies Area Sector: Solar Product: solar electric systems Phone Number:...

  5. Climatic Solar | Open Energy Information

    Open Energy Info (EERE)

    Climatic Solar Jump to: navigation, search Logo: Climatic Solar Name: Climatic Solar Address: 650 2nd Lane Place: Vero Beach, Florida Zip: 32962 Sector: Solar Product: solar energy...

  6. Tejas Solares | Open Energy Information

    Open Energy Info (EERE)

    Tejas Solares Jump to: navigation, search Name: Tejas Solares Place: Spain Sector: Solar Product: Tejas Solares is a Spain-based company focused on providing solar solutions for...

  7. Kenya Hourly DNI, GHI and Diffuse Solar Data - Datasets - OpenEI...

    Open Energy Info (EERE)

    Kenya Hourly DNI, GHI and Diffuse Solar Data Abstract Each data file is a set of hourly values of solar radiation (DNI, GHI and diffuse) and meteorological elements for a 1-year...

  8. Front contact solar cell with formed emitter

    DOE Patents [OSTI]

    Cousins, Peter John

    2014-11-04

    A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

  9. Front contact solar cell with formed emitter

    DOE Patents [OSTI]

    Cousins, Peter John

    2012-07-17

    A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

  10. NREL: Solar STAT Blog -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outreach Policy Basics Publications Request Assistance Technical Assistance Project Map Solar STAT Blog The Solar STAT blog discusses state and local efforts to develop solar...

  11. Solar Resource Assessment

    Broader source: Energy.gov [DOE]

    DOE solar resource research focuses on understanding historical solar resource patterns and making future predictions, both of which are needed to support reliable power system operation. As solar...

  12. Numerical simulation of solar heat absorption within indoor space by means of composite grid method

    SciTech Connect (OSTI)

    Omori, Toshiaki; Murakami, Shuzo; Kato, Shinsuke

    1997-12-31

    This paper describes the method for numerical simulation of solar radiation entering indoor spaces through fenestration. The proposed method can systematically deal with the interception of sunlight by buildings in the outdoor space and obstacles in the indoor space by tracing a large number of particles directed toward the sun. Configuration factors from the fenestration to the sky are also three-dimensionally treated by accounting for outdoor geometries. Distribution of the solar heat absorption in the indoor space is calculated by assuming radiation equilibrium. After the solar heat absorption analysis is carried out, heat transfer analysis in the space is conducted taking account of longwave radiation, convective heat transfer, thermal conduction, and cooling/heating by air conditioning. Then, the indoor thermal environment is evaluated using the resulting temperature distribution of air and indoor surfaces. To evaluate the applicability of these procedures, the thermal environment in a model hall with large glass windows and an overhang is predicted. The analyzed hall is assumed to be located near a tall building.

  13. Solar Position Algorithm for Solar Radiation Applications (Revised...

    Office of Scientific and Technical Information (OSTI)

    agency thereof. Available electronically at http:www.osti.govbridge Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S....

  14. ARM - PI Product - Direct Aerosol Forcing Uncertainty

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsDirect Aerosol Forcing Uncertainty ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Direct Aerosol Forcing Uncertainty Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement

  15. Solar solids reactor

    DOE Patents [OSTI]

    Yudow, Bernard D.

    1987-01-01

    A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

  16. Solar solids reactor

    DOE Patents [OSTI]

    Yudow, B.D.

    1986-02-24

    A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

  17. Solar-heated rotary kiln

    DOE Patents [OSTI]

    Shell, P.K.

    1982-04-14

    A solar heated rotary kiln utilized for decomposition of materials, such as zinc sulfate is disclosed. The rotary kiln has an open end and is enclosed in a sealed container having a window positioned for directing solar energy into the open end of the kiln. The material to be decomposed is directed through the container into the kiln by a feed tube. The container is also provided with an outlet for exhaust gases and an outlet for spent solids, and rests on a tiltable base. The window may be cooled and kept clear of debris by coolant gases.

  18. CONFRRM Solar Energy Resource Data: Data from the Cooperative Network for Renewable Resource Measurements

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Cooperative Network for Renewable Resource Measurements (CONFRRM) is a cooperative effort between NREL and other agencies to conduct long-term solar radiation and wind measurements at selected locations in the United States. CONFRRM expands the geographic coverage of measurement locations and provides high quality data for determining site-specific resources, as well as data for the validation and testing of models to predict available resources based on meteorological or satellite data. Twelve sites are currently active in the CONFRRM network. CONFRRM complements and provides additional geographic coverage to the National Oceanic and Atmospheric Administration's (NOAA's) Integrated Surface Irradiance Study (ISIS) network. Solar data elements measured and reported by the CONFRRM sites include global horizontal irradiance (GHI), direct normal irradiance (DNI), diffuse horizontal irradiance (DHI), and global horizontal irradiance measured with a LI-COR pyranometer. Meteorological data include air temperature, relative humidity, pressure, wind speed, wind direction and peak wind speed. Data logger temperature and battery voltage may also be reported. Prior to January 1, 1996, five CONFRRM sites together with South Caroline State College in Orangeburg, South Carolina, made up the Historically Black Colleges and Universities (HBCU) Solar Radiation Monitoring Network, located in the Southeastern United States. In January 1997 the HBCU sites became part of CONFRRM.

  19. Federal technology alert. Parabolic-trough solar water heating

    SciTech Connect (OSTI)

    1998-04-01

    Parabolic-trough solar water heating is a well-proven renewable energy technology with considerable potential for application at Federal facilities. For the US, parabolic-trough water-heating systems are most cost effective in the Southwest where direct solar radiation is high. Jails, hospitals, barracks, and other facilities that consistently use large volumes of hot water are particularly good candidates, as are facilities with central plants for district heating. As with any renewable energy or energy efficiency technology requiring significant initial capital investment, the primary condition that will make a parabolic-trough system economically viable is if it is replacing expensive conventional water heating. In combination with absorption cooling systems, parabolic-trough collectors can also be used for air-conditioning. Industrial Solar Technology (IST) of Golden, Colorado, is the sole current manufacturer of parabolic-trough solar water heating systems. IST has an Indefinite Delivery/Indefinite Quantity (IDIQ) contract with the Federal Energy Management Program (FEMP) of the US Department of Energy (DOE) to finance and install parabolic-trough solar water heating on an Energy Savings Performance Contract (ESPC) basis for any Federal facility that requests it and for which it proves viable. For an ESPC project, the facility does not pay for design, capital equipment, or installation. Instead, it pays only for guaranteed energy savings. Preparing and implementing delivery or task orders against the IDIQ is much simpler than the standard procurement process. This Federal Technology Alert (FTA) of the New Technology Demonstration Program is one of a series of guides to renewable energy and new energy-efficient technologies.

  20. Method for microbeam radiation therapy

    DOE Patents [OSTI]

    Slatkin, Daniel N.; Dilmanian, F. Avraham; Spanne, Per O.

    1994-01-01

    A method of performing radiation therapy on a patient, involving exposing a target, usually a tumor, to a therapeutic dose of high energy electromagnetic radiation, preferably X-ray radiation, in the form of at least two non-overlapping microbeams of radiation, each microbeam having a width of less than about 1 millimeter. Target tissue exposed to the microbeams receives a radiation dose during the exposure that exceeds the maximum dose that such tissue can survive. Non-target tissue between the microbeams receives a dose of radiation below the threshold amount of radiation that can be survived by the tissue, and thereby permits the non-target tissue to regenerate. The microbeams may be directed at the target from one direction, or from more than one direction in which case the microbeams overlap within the target tissue enhancing the lethal effect of the irradiation while sparing the surrounding healthy tissue.

  1. Method for microbeam radiation therapy

    DOE Patents [OSTI]

    Slatkin, D.N.; Dilmanian, F.A.; Spanne, P.O.

    1994-08-16

    A method is disclosed of performing radiation therapy on a patient, involving exposing a target, usually a tumor, to a therapeutic dose of high energy electromagnetic radiation, preferably X-ray radiation. The dose is in the form of at least two non-overlapping microbeams of radiation, each microbeam having a width of less than about 1 millimeter. Target tissue exposed to the microbeams receives a radiation dose during the exposure that exceeds the maximum dose that such tissue can survive. Non-target tissue between the microbeams receives a dose of radiation below the threshold amount of radiation that can be survived by the tissue, and thereby permits the non-target tissue to regenerate. The microbeams may be directed at the target from one direction, or from more than one direction in which case the microbeams overlap within the target tissue enhancing the lethal effect of the irradiation while sparing the surrounding healthy tissue. No Drawings

  2. Solar Equipment Certification

    Broader source: Energy.gov [DOE]

    Under the Solar Energy Standards Act of 1976, the Florida Solar Energy Center (FSEC) is responsible for certifying all solar equipment sold in Florida. A manufacturer who wishes to have their solar...

  3. Creating solar media nets solar tools, publicity

    SciTech Connect (OSTI)

    Brewer, B.

    1980-01-01

    The utilization of locally produced solar tool to gain more access to commercial media is discussed. Central is a strategy of (1) giving commercial media something to report, (2) helping educate the media, and (3) simultaneously impacting that portion of the public which is likely to be most interested. Methods for reaching several target audiences include a Solar Calendar, a Passive Solar Film, a local Solar Directory, a local Solar Information Center, an Emergency Coolth brochure and a Conservation/Solar Retrofit Guide.

  4. Solar ADEPT: Efficient Solar Energy Systems

    SciTech Connect (OSTI)

    2011-01-01

    Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

  5. Solar Cells: Spin-Cast Bulk Heterojunction Solar Cells: A Dynamical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigation Solar Cells: Spin-Cast Bulk Heterojunction Solar Cells: A Dynamical Investigation Solar Cells: Spin-Cast Bulk Heterojunction Solar Cells: A Dynamical Investigation Print Wednesday, 03 April 2013 13:32 Spin-coating is extensively used in the lab-based manufacturing of organic solar cells, including most of the record-setting cells. Aram Amassian and co-workers report in this study the first direct observation of photoactive layer formation as it occurs during spin-coating. The

  6. Concentrating Solar Power

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  7. Solar Easements & Local Option Solar Rights Laws

    Broader source: Energy.gov [DOE]

    Utah's solar easement provision is similar to easement provisions in many other states. Parties may voluntarily enter into written solar easement contracts that are enforceable by law. An...

  8. Solar Energy Technologies Program: Concentrating Solar Power

    SciTech Connect (OSTI)

    2009-10-26

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  9. Concentrating Solar Power Projects | Concentrating Solar Power...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SolarPACES, an international program of the International Energy Agency, furthers collaborative development, testing, and marketing of concentrating solar power plants. Activities ...

  10. The time-dependent chemistry of cometary debris in the solar corona

    SciTech Connect (OSTI)

    Pesnell, W. D.; Bryans, P.

    2014-04-10

    Recent improvements in solar observations have greatly progressed the study of sungrazing comets. They can now be imaged along the entirety of their perihelion passage through the solar atmosphere, revealing details of their composition and structure not measurable through previous observations in the less volatile region of the orbit further from the solar surface. Such comets are also unique probes of the solar atmosphere. The debris deposited by sungrazers is rapidly ionized and subsequently influenced by the ambient magnetic field. Measuring the spectral signature of the deposited material highlights the topology of the magnetic field and can reveal plasma parameters such as the electron temperature and density. Recovering these variables from the observable data requires a model of the interaction of the cometary species with the atmosphere through which they pass. The present paper offers such a model by considering the time-dependent chemistry of sublimated cometary species as they interact with the solar radiation field and coronal plasma. We expand on a previous simplified model by considering the fully time-dependent solutions of the emitting species' densities. To compare with observations, we consider a spherically symmetric expansion of the sublimated material into the corona and convert the time-dependent ion densities to radial profiles. Using emissivities from the CHIANTI database and plasma parameters derived from a magnetohydrodynamic simulation leads to a spatially dependent emission spectrum that can be directly compared with observations. We find our simulated spectra to be consistent with observation.

  11. Quasi-Direct Optical Transitions in Silicon Nanocrystals with...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Quasi-Direct Optical Transitions in Silicon ... Language: English Subject: 14 SOLAR ENERGY; 36 MATERIALS SCIENCE silicon nanocrystals; ...

  12. Biomass and Solar Technologies Lauded - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chemicals, and a thin-film solar cell that produces electricity directly from sunlight, which has greater efficiency, and is lighter weight and more flexible than previous devices. ...

  13. Central solar-energy receiver

    DOE Patents [OSTI]

    Not Available

    1981-10-27

    An improved tower-mounted central solar energy receiver for heating air drawn through the receiver by an induced draft fan is described. A number of vertically oriented, energy absorbing, fin-shaped slats are radially arranged in a number of concentric cylindrical arrays on top of the tower coaxially surrounding a pipe having air holes through which the fan draws air which is heated by the slats which receive the solar radiation from a heliostat field. A number of vertically oriented and wedge-shaped columns are radially arranged in a number of concentric cylindrical clusters surrounding the slat arrays. The columns have two mirror-reflecting sides to reflect radiation into the slat arrays and one energy absorbing side to reduce reradiation and reflection from the slat arrays.

  14. National Solar Radiation Database | Open Energy Information

    Open Energy Info (EERE)

    Program Website4 Program Website5 References http:www.nrel.govnewspress2007516.html http:rredc.nrel.govsolarpubsNSRDBbackground.html http:...

  15. Apparatus and method for solar coal gasification

    DOE Patents [OSTI]

    Gregg, David W.

    1980-01-01

    Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials. Incident solar radiation is focused from an array of heliostats onto a tower-mounted secondary mirror which redirects the focused solar radiation down through a window onto the surface of a vertically-moving bed of coal, or a fluidized bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called "synthesis gas", which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam at the rear surface of the secondary mirror.

  16. Solar thermophotovoltaic system using nanostructures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ungaro, Craig; Gray, Stephen K.; Gupta, Mool C.

    2015-08-20

    This paper presents results on a highly efficient experimental solar thermophotovoltaic (STPV) system using simulated solar energy. An overall power conversion efficiency of 6.2% was recorded under solar simulation. This was matched with a thermodynamic model, and the losses within the system, as well as a path forward to mitigate these losses, have been investigated. The system consists of a planar, tungsten absorbing/emitting structure with an anti-reflection layer coated laser-microtextured absorbing surface and single-layer dielectric coated emitting surface. A GaSb PV cell was used to capture the emitted radiation and convert it into electrical energy. This simple structure is bothmoreeasy to fabricate and temperature stable, and contains no moving parts or heat exchange fluids.less

  17. Passive solar design handbook. Volume III. Passive solar design analysis

    SciTech Connect (OSTI)

    Jones, R.W.; Balcomb, J.D.; Kosiewicz, C.E.; Lazarus, G.S.; McFarland, R.D.; Wray, W.O.

    1982-07-01

    Simple analytical methods concerning the design of passive solar heating systems are presented with an emphasis on the average annual heating energy consumption. Key terminology and methods are reviewed. The solar load ratio (SLR) is defined, and its relationship to analysis methods is reviewed. The annual calculation, or Load Collector Ratio (LCR) method, is outlined. Sensitivity data are discussed. Information is presented on balancing conservation and passive solar strategies in building design. Detailed analysis data are presented for direct gain and sunspace systems, and details of the systems are described. Key design parameters are discussed in terms of their impact on annual heating performance of the building. These are the sensitivity data. The SLR correlations for the respective system types are described. The monthly calculation, or SLR method, based on the SLR correlations, is reviewed. Performance data are given for 9 direct gain systems and 15 water wall and 42 Trombe wall systems. (LEW)

  18. Beta Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beta Radiation 1. Beta radiation may travel meters in air and is moderately penetrating. 2. Beta radiation can penetrate human skin to the "germinal layer," where new skin cells ...

  19. Passive solar construction handbook

    SciTech Connect (OSTI)

    Levy, E.; Evans, D.; Gardstein, C.

    1981-08-01

    Many of the basic elements of passive solar design are reviewed. The unique design constraints presented in passive homes are introduced and many of the salient issues influencing design decisions are described briefly. Passive solar construction is described for each passive system type: direct gain, thermal storage wall, attached sunspace, thermal storage roof, and convective loop. For each system type, important design and construction issues are discussed and case studies illustrating designed and built examples of the system type are presented. Construction details are given and construction and thermal performance information is given for the materials used in collector components, storage components, and control components. Included are glazing materials, framing systems, caulking and sealants, concrete masonry, concrete, brick, shading, reflectors, and insulators. The Load Collector Ratio method for estimating passive system performance is appended, and other analysis methods are briefly summarized. (LEW)

  20. The Solar Development Corporation

    SciTech Connect (OSTI)

    Singer, C.E.

    1997-12-01

    This paper describes a proposed stand alone company, the Solar Development Corporation (SDC), to be a business development and financing entity for photovoltaic operations with the potential to be commercially sustainable. SDC will have a fully integrated policy advocacy link to the World Bank. SDC will define target countries where the potential exists for significant early market expansion. In those countries it will provide: market and business development services that will accelerate the growth of private firms and deepen the penetration of Solar Home Systems (SHS) and other rural PV applications in the market; and access to pre-commercial and parallel financing for private firms to (1) expand their capability in PV distribution businesses, and (2) strengthen their ability to provide credit to end users. SDC itself will not engage in direct financing of the final consumer. It is intended that as far as possible SDC`s finance will be provided in parallel with financing from Financial Intermediaries.

  1. Energy savings obtainable through passive solar techniques

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1980-01-01

    A passive solar energy system is one in which the thermal energy flow is by natural means, that is by radiation, conduction, or natural convection. The purpose of the paper is to provide a survey of passive solar heating experience, especially in the US. Design approaches are reviewed and examples shown. Misconceptions are discussed. Advantages are listed. The Los Alamos program of performance simulation and evaluation is described and a simplified method of performance estimation is outlined.

  2. Studying the Solar System's Chemical Recipe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studying the Solar System's Chemical Recipe Print To study the origins of different isotope ratios among the elements that make up today's smorgasbord of planets, moons, comets, asteroids, and interplanetary ice and dust, a team of scientists from the University of California, San Diego is using ALS Chemical Dynamics Beamline 9.0.2 to mimic radiation from the protosun when the solar system was forming. For more than three decades, Mark Thiemens, Dean of the Division of Physical Sciences at UCSD,

  3. Studying the Solar System's Chemical Recipe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studying the Solar System's Chemical Recipe Print To study the origins of different isotope ratios among the elements that make up today's smorgasbord of planets, moons, comets, asteroids, and interplanetary ice and dust, a team of scientists from the University of California, San Diego is using ALS Chemical Dynamics Beamline 9.0.2 to mimic radiation from the protosun when the solar system was forming. For more than three decades, Mark Thiemens, Dean of the Division of Physical Sciences at UCSD,

  4. Studying the Solar System's Chemical Recipe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studying the Solar System's Chemical Recipe Print To study the origins of different isotope ratios among the elements that make up today's smorgasbord of planets, moons, comets, asteroids, and interplanetary ice and dust, a team of scientists from the University of California, San Diego is using ALS Chemical Dynamics Beamline 9.0.2 to mimic radiation from the protosun when the solar system was forming. For more than three decades, Mark Thiemens, Dean of the Division of Physical Sciences at UCSD,

  5. Studying the Solar System's Chemical Recipe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studying the Solar System's Chemical Recipe Print To study the origins of different isotope ratios among the elements that make up today's smorgasbord of planets, moons, comets, asteroids, and interplanetary ice and dust, a team of scientists from the University of California, San Diego is using ALS Chemical Dynamics Beamline 9.0.2 to mimic radiation from the protosun when the solar system was forming. For more than three decades, Mark Thiemens, Dean of the Division of Physical Sciences at UCSD,

  6. Current and lattice matched tandem solar cell

    DOE Patents [OSTI]

    Olson, Jerry M.

    1987-01-01

    A multijunction (cascade) tandem photovoltaic solar cell device is fabricated of a Ga.sub.x In.sub.1-x P (0.505.ltoreq.X.ltoreq.0.515) top cell semiconductor lattice matched to a GaAs bottom cell semiconductor at a low-resistance heterojunction, preferably a p+/n+ heterojunction between the cells. The top and bottom cells are both lattice matched and current matched for high efficiency solar radiation conversion to electrical energy.

  7. STATIONARITY IN SOLAR WIND FLOWS

    SciTech Connect (OSTI)

    Perri, S.; Balogh, A. E-mail: a.balogh@imperial.ac.u

    2010-05-01

    By using single-point measurements in space physics it is possible to study a phenomenon only as a function of time. This means that we cannot have direct access to information about spatial variations of a measured quantity. However, the investigation of the properties of turbulence and of related phenomena in the solar wind widely makes use of an approximation frequently adopted in hydrodynamics under certain conditions, the so-called Taylor hypothesis; indeed, the solar wind flow has a bulk velocity along the radial direction which is much higher than the velocity of a single turbulent eddy embedded in the main flow. This implies that the time of evolution of the turbulent features is longer than the transit time of the flow through the spacecraft position, so that the turbulent field can be considered frozen into the solar wind flow. This assumption allows one to easily associate time variations with spatial variations and stationarity to homogeneity. We have investigated, applying criteria for weak stationarity to Ulysses magnetic field data in different solar wind regimes, at which timescale and under which conditions the hypothesis of stationarity, and then of homogeneity, of turbulence in the solar wind is well justified. We extend the conclusions of previous studies by Matthaeus and Goldstein to different parameter ranges in the solar wind. We conclude that the stationarity assumption in the inertial range of turbulence on timescales of 10 minutes to 1 day is reasonably satisfied in fast and uniform solar wind flows, but that in mixed, interacting fast, and slow solar wind streams the assumption is frequently only marginally valid.

  8. Toward the Development of Multi-Year Total and Special Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Multi-Year Total and Special Solar Radiation Budgets at the Three ARM Locales Z. Li ... has been collected at Atmospheric Radiation Measurement (ARM) locales around the globe. ...

  9. AV Solar Ranch I Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AV Solar Ranch I Solar Power Plant Jump to: navigation, search Name AV Solar Ranch I Solar Power Plant Facility AV Solar Ranch I Sector Solar Facility Type Photovoltaic Developer...

  10. Foaming of aluminium-silicon alloy using concentrated solar energy

    SciTech Connect (OSTI)

    Cambronero, L.E.G.; Ruiz-Roman, J.M.; Canadas, I.; Martinez, D.

    2010-06-15

    Solar energy is used for the work reported here as a nonconventional heating system to produce aluminium foam from Al-Si alloy precursors produced by powder metallurgy. A commercial precursor in cylindrical bars enclosed in a stainless-steel mould was heated under concentrated solar radiation in a solar furnace with varied heating conditions (heating rate, time, and temperature). Concentrated solar energy close to 300 W/cm{sup 2} on the mould is high enough to achieve complete foaming after heating for only 200 s. Under these conditions, the density and pore distribution in the foam change depending on the solar heating parameters and mould design. (author)

  11. Building and using the solar greenhouse

    SciTech Connect (OSTI)

    1983-01-01

    Thorough directions are given for planning, constructing and using a solar greenhouse attached to a house. Included is a method of calculating the savings accruing from the use of the greenhouse. (LEW)

  12. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to ...

  13. Solar Eclipse Monitoring for Solar Energy Applications Using the Solar and Moon Position Algorithms

    SciTech Connect (OSTI)

    Reda, I.

    2010-03-01

    This report includes a procedure for implementing an algorithm (described by Jean Meeus) to calculate the moon's zenith angle with uncertainty of +/-0.001 degrees and azimuth angle with uncertainty of +/-0.003 degrees. The step-by-step format presented here simplifies the complicated steps Meeus describes to calculate the Moon's position, and focuses on the Moon instead of the planets and stars. It also introduces some changes to accommodate for solar radiation applications.

  14. Solar energy thermalization and storage device

    DOE Patents [OSTI]

    McClelland, J.F.

    A passive solar thermalization and thermal energy storage assembly which is visually transparent is described. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  15. SERI QC Solar Data Quality Assessment Software

    Energy Science and Technology Software Center (OSTI)

    1994-12-31

    SERI QC is a mathematical software package that assesses the quality of solar radiation data. The SERI QC software is a function written in the C programming language. IT IS NOT A STANDALONE SOFTWARE APPLICATION. The user must write the calling application that requires quality assessment of solar data. The C function returns data quality flags to the calling program. A companion program, QCFIT, is a standalone Windows application that provides support files for themore » SERI QC function (data quality boundaries). The QCFIT software can also be used as an analytical tool for visualizing solar data quality independent of the SERI QC function.« less

  16. Solar energy thermalization and storage device

    DOE Patents [OSTI]

    McClelland, John F.

    1981-09-01

    A passive solar thermalization and thermal energy storage assembly which is visually transparent. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  17. Orlando, Florida: Solar in Action (Brochure), Solar America Cities...

    Office of Environmental Management (EM)

    Orlando, Florida: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Orlando, Florida: Solar in Action (Brochure), Solar America Cities,...

  18. Denver, Colorado: Solar in Action (Brochure), Solar America Cities...

    Office of Environmental Management (EM)

    Denver, Colorado: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Denver, Colorado: Solar in Action (Brochure), Solar America Cities,...

  19. Kings River Conservation District (KRCD) Solar Farm Solar Power...

    Open Energy Info (EERE)

    River Conservation District (KRCD) Solar Farm Solar Power Plant Jump to: navigation, search Name Kings River Conservation District (KRCD) Solar Farm Solar Power Plant Facility...

  20. Space Coast Next Generation Solar Energy Center Solar Power Plant...

    Open Energy Info (EERE)

    Coast Next Generation Solar Energy Center Solar Power Plant Jump to: navigation, search Name Space Coast Next Generation Solar Energy Center Solar Power Plant Facility Space Coast...

  1. Martin Next Generation Solar Energy Center Solar Power Plant...

    Open Energy Info (EERE)

    Next Generation Solar Energy Center Solar Power Plant Jump to: navigation, search Name Martin Next Generation Solar Energy Center Solar Power Plant Facility Martin Next Generation...

  2. Portland, Oregon: Solar in Action (Brochure), Solar America Cities...

    Office of Environmental Management (EM)

    Portland, Oregon: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Portland, Oregon: Solar in Action (Brochure), Solar America Cities, ...

  3. EE Solar Energy Efficiency Solar | Open Energy Information

    Open Energy Info (EERE)

    EE Solar Energy Efficiency Solar Jump to: navigation, search Name: EE Solar (Energy Efficiency Solar) Place: Ponoma, California Zip: 91768 Product: PV systems installer based in...

  4. Willard Kelsey Solar Group WK Solar | Open Energy Information

    Open Energy Info (EERE)

    Willard Kelsey Solar Group WK Solar Jump to: navigation, search Name: Willard & Kelsey Solar Group (WK Solar) Place: Perrysburg, Ohio Zip: 43551 Product: Manufacturer of CdTe...

  5. Innotech Solar AS formerly known as Solar Cell Repower | Open...

    Open Energy Info (EERE)

    Innotech Solar AS formerly known as Solar Cell Repower Jump to: navigation, search Name: Innotech Solar AS (formerly known as Solar Cell Repower) Place: Narvik, Norway Zip: 8512...

  6. Wuxi Jiacheng Solar Energy Technology Co JC Solar | Open Energy...

    Open Energy Info (EERE)

    JC Solar Jump to: navigation, search Name: Wuxi Jiacheng Solar Energy Technology Co (JC Solar) Place: Yixing, Jiangsu Province, China Zip: 214200 Sector: Solar Product: A Chinese...

  7. Innovative Systems Engineering Solar LLC ISE Solar LLC | Open...

    Open Energy Info (EERE)

    Systems Engineering Solar LLC ISE Solar LLC Jump to: navigation, search Name: Innovative Systems Engineering Solar LLC (ISE Solar LLC) Place: Warminster, Pennsylvania Zip:...

  8. First Solar Electric LLC formerly DT Solar | Open Energy Information

    Open Energy Info (EERE)

    Electric LLC formerly DT Solar Jump to: navigation, search Name: First Solar Electric LLC (formerly DT Solar) Place: Branchburg, New Jersey Zip: 8876 Sector: Solar Product: PV...

  9. Aide Solar Jiangsu Aide Solar Energy Technology Co Ltd | Open...

    Open Energy Info (EERE)

    Aide Solar Jiangsu Aide Solar Energy Technology Co Ltd Jump to: navigation, search Name: Aide Solar (Jiangsu Aide Solar Energy Technology Co Ltd) Place: Xuzhou, Jiangsu Province,...

  10. AET Solar formerly solar division of GGAM Electrical Services...

    Open Energy Info (EERE)

    Solar formerly solar division of GGAM Electrical Services Jump to: navigation, search Name: AET Solar (formerly solar division of GGAM Electrical Services) Place: Limassol, Cyprus...

  11. Creative Energy Solar Investments SA formerly Hellenic Solar...

    Open Energy Info (EERE)

    Solar Investments SA formerly Hellenic Solar Jump to: navigation, search Name: Creative Energy Solar Investments SA (formerly Hellenic Solar) Place: 18538 Piraeus, Greece Product:...

  12. China Glass Solar aka CG Solar formerly Weihai Bluestar Terra...

    Open Energy Info (EERE)

    Glass Solar aka CG Solar formerly Weihai Bluestar Terra Photovoltaic Co Ltd Jump to: navigation, search Name: China Glass Solar (aka CG Solar, formerly Weihai Bluestar Terra...

  13. Siemens Solar formerly ARCO Solar Corporation | Open Energy Informatio...

    Open Energy Info (EERE)

    Solar formerly ARCO Solar Corporation Jump to: navigation, search Name: Siemens Solar (formerly ARCO Solar Corporation) Place: Arizona Product: Built a 6MW CPV project in 1984,...

  14. Siemens Concentrated Solar Power Ltd previously Solel Solar Systems...

    Open Energy Info (EERE)

    Siemens Concentrated Solar Power Ltd previously Solel Solar Systems Jump to: navigation, search Name: Siemens Concentrated Solar Power Ltd (previously Solel Solar Systems) Place:...

  15. Guodian Jintech Solar Energy formerly Yixing Jintech Solar Energy...

    Open Energy Info (EERE)

    Jintech Solar Energy formerly Yixing Jintech Solar Energy Co Ltd Jump to: navigation, search Name: Guodian Jintech Solar Energy (formerly Yixing Jintech Solar Energy Co Ltd) Place:...

  16. Shanghai Comtec Solar Technology Ltd aka Comtec Solar System...

    Open Energy Info (EERE)

    Comtec Solar Technology Ltd aka Comtec Solar System Group Ltd Jump to: navigation, search Name: Shanghai Comtec Solar Technology Ltd (aka Comtec Solar System Group Ltd) Place:...

  17. Ecosystem Solar Electric Corp aka Solar MW Energy Inc | Open...

    Open Energy Info (EERE)

    Solar Electric Corp aka Solar MW Energy Inc Jump to: navigation, search Name: Ecosystem Solar Electric Corp, aka Solar MW Energy Inc Place: Ontario, California Zip: 91761 Product:...

  18. ET Solar Group Formerly CNS Solar Industry | Open Energy Information

    Open Energy Info (EERE)

    Solar Group Formerly CNS Solar Industry Jump to: navigation, search Name: ET Solar Group (Formerly CNS Solar Industry) Place: Nanjing, Jiangsu Province, China Zip: 210009 Sector:...

  19. Entech Solar Inc formerly WorldWater Solar Technologies | Open...

    Open Energy Info (EERE)

    Solar Inc formerly WorldWater Solar Technologies Jump to: navigation, search Name: Entech Solar Inc. (formerly WorldWater & Solar Technologies) Place: Fort Worth, Texas Zip: 76177...

  20. Milwaukee, Wisconsin: Solar in Action (Brochure), Solar America...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Milwaukee, Wisconsin: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Milwaukee, Wisconsin: Solar in Action (Brochure), Solar America ...

  1. Houston, Texas: Solar in Action (Brochure), Solar America Cities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Houston, Texas: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Houston, Texas: Solar in Action (Brochure), Solar America Cities, ...

  2. edition Not Available 14 SOLAR ENERGY; SOLAR ENERGY; EDUCATIONAL...

    Office of Scientific and Technical Information (OSTI)

    Home economics: student activities. Field test edition Not Available 14 SOLAR ENERGY; SOLAR ENERGY; EDUCATIONAL TOOLS; CURRICULUM GUIDES; GLAZING; HOUSES; SOLAR COOKERS; SOLAR...

  3. Solar Utility Networks: Replicable Innovations in Solar Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Utility Networks: Replicable Innovations in Solar Energy (SUNRISE) Funding Opportunity Solar Utility Networks: Replicable Innovations in Solar Energy (SUNRISE) Funding ...

  4. PROJECT PROFILE: The Solar Foundation - Solar Training Network...

    Energy Savers [EERE]

    Training Network PROJECT PROFILE: The Solar Foundation - Solar Training Network Project Name: Solar Training Network Funding Opportunity: Solar Training and Education for ...

  5. Seattle, Washington: Solar in Action (Brochure), Solar America...

    Energy Savers [EERE]

    Seattle, Washington: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Seattle, Washington: Solar in Action (Brochure), Solar America ...

  6. EIS-0449: Solar Millennium Blythe Solar Power Project in Riverside...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: Solar Millennium Blythe Solar Power Project in Riverside County, CA EIS-0449: Solar Millennium Blythe Solar Power Project in Riverside County, CA December 10, 2010 EIS-0449: ...

  7. Early solar mass loss, opacity uncertainties, and the solar abundance...

    Office of Scientific and Technical Information (OSTI)

    Early solar mass loss, opacity uncertainties, and the solar abundance problem Citation Details In-Document Search Title: Early solar mass loss, opacity uncertainties, and the solar ...

  8. EA-1798: Abengoa Solar's Mojave Solar Project near Barstow, CA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8: Abengoa Solar's Mojave Solar Project near Barstow, CA EA-1798: Abengoa Solar's Mojave Solar Project near Barstow, CA July 1, 2011 EA-1798: Final Environmental Assessment Loan ...

  9. San Antonio, Texas: Solar in Action (Brochure), Solar America...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Antonio, Texas: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) San Antonio, Texas: Solar in Action (Brochure), Solar America Cities, ...

  10. Solar Impulse's Solar-Powered Plane

    ScienceCinema (OSTI)

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2014-01-07

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  11. Solar Impulse's Solar-Powered Plane

    SciTech Connect (OSTI)

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2013-07-08

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  12. Stellate solar collector

    SciTech Connect (OSTI)

    Womack, R. R.

    1981-02-03

    A solar collector device of the type adapted for heating water and the like is disclosed. An elongated, opaque collector is provided with a plurality of radially extending vanes so as to define a hollow interior of stellate cross-section. Water is sprayed through a feeding conduit which extends through the hollow interior. As the sprayed water accumulates upon the interior vane surfaces, the collector wheel is rotated according to the weight of the deposited water. As the vane tips are rotated downwardly, the water is heated by conductive contact with the interior vane surfaces and by convection and radiation within the hollow interior. The heated water is then discharged downwardly through apertures in the vane tips into a collector pan. The invention is distinguished from the prior art in its introduction of the water upon the interior surfaces of collector vanes within a paddle wheel of stellate configuration, rather than upon the exterior surfaces of the vanes. The stellate configuration provides an increased area of exposure to the radiation of the sun within a compact unit and provides heating of the water by conduction, convection and radiation.

  13. Concentrating Solar Power Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects

  14. Solar engineering 1991

    SciTech Connect (OSTI)

    Mancini, T.R. ); Watanabe, K. ); Klett, D.E. )

    1991-01-01

    This book contains paper presented at the second ASME-JSES-JSME international solar energy conference. It is organized under the following headings: Solar ponds, Energy fundamentals in solar systems, General solar energy, Solar powered cars, Distributed receiver components and systems, Central receiver components and systems, Chemical processes and waste destruction, High flux and innovative applications, Solar thermal space propulsion, Solar dynamic power systems, Analysis methods for monitored building use. Photovoltaics, Testing and measurement.

  15. Zero Carryover Liquid-Desiccant Air Conditioner for Solar Applications...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... less expensive, but they supply thermal energy at a lower temperature: ... they will deliver between 50% and 60% of the incident solar radiation as hot water at 180F (82C). ...

  16. Solar collector

    SciTech Connect (OSTI)

    Wilhelm, W.G.

    1982-05-04

    The field of this invention is solar collectors, and more particularly, the invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame. A thin film window is bonded to one planar side of the frame. An absorber of laminate construction is comprised of two thin film layers that are sealed perimetrically. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. Absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  17. Solar thermal power systems. Summary report

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The work accomplished by the Aerospace Corporation from April 1973 through November 1979 in the mission analysis of solar thermal power systems is summarized. Sponsorship of this effort was initiated by the National Science Foundation, continued by the Energy Research and Development Administration, and most recently directed by the United States Department of Energy, Division of Solar Thermal Systems. Major findings and conclusions are sumarized for large power systems, small power systems, solar total energy systems, and solar irrigation systems, as well as special studies in the areas of energy storage, industrial process heat, and solar fuels and chemicals. The various data bases and computer programs utilized in these studies are described, and tables are provided listing financial and solar cost assumptions for each study. An extensive bibliography is included to facilitate review of specific study results and methodology.

  18. Shell Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Jump to: navigation, search Name: Shell Solar Place: The Hague, Netherlands Zip: 2501 AN Sector: Solar Product: Shell Solar is developing non-crystalline PV technology,...

  19. Apex Solar | Open Energy Information

    Open Energy Info (EERE)

    Name: Apex Solar Place: Sofia, Bulgaria Zip: 1616 Sector: Solar Product: Bulgarian PV and solar thermal project developer and installer. References: Apex Solar1 This article is a...

  20. Atlantic Solar | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Logo: Atlantic Solar Name: Atlantic Solar Place: Cape Town, South Africa Sector: Solar Product: Solar Thermal Technology Year Founded: 1985 Phone Number:...