Powered by Deep Web Technologies
Note: This page contains sample records for the topic "direct radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Direct radiative forcing of anthropogenic organic aerosol  

E-Print Network (OSTI)

[1] This study simulates the direct radiative forcing of organic aerosol using the GFDL AM2 GCM. The aerosol climatology is provided by the MOZART chemical transport model (CTM). The approach to calculating aerosol optical properties explicitly considers relative humidity–dependent hygroscopic growth by employing a functional group– based thermodynamic model, and makes use of the size distribution derived from AERONET measurements. The preindustrial (PI) and present-day (PD) global burdens of organic carbon are 0.17 and 1.36 Tg OC, respectively. The annual global mean total-sky and clear-sky top-of-the atmosphere (TOA) forcings (PI to PD) are estimated as 0.34 and 0.71 W m 2, respectively. Geographically the radiative cooling largely lies over the source regions, namely part of South America, Central Africa, Europe and South and East Asia. The annual global mean total-sky and clear-sky surface forcings are 0.63 and 0.98 W m 2, respectively. A series of sensitivity analyses shows that the treatments of hygroscopic growth and optical properties of organic aerosol are intertwined in the determination of the global organic aerosol forcing. For example, complete deprivation of water uptake by hydrophilic organic particles reduces the standard (total-sky) and clearsky TOA forcing estimates by 18 % and 20%, respectively, while the uptake by a highly soluble organic compound (malonic acid) enhances them by 18 % and 32%, respectively. Treating particles as non-absorbing enhances aerosol reflection and increases the total-sky and clear-sky TOA forcing by 47 % and 18%, respectively, while neglecting the scattering brought about by the water associated with particles reduces them by 24% and 7%, respectively.

Yi Ming; V. Ramaswamy; Paul A. Ginoux; Larry H. Horowitz

2005-01-01T23:59:59.000Z

2

Direct Aerosol Radiative Forcing Uncertainty Based on a Radiative Perturbation Analysis  

Science Conference Proceedings (OSTI)

To provide a lower bound for the uncertainty in measurement-based clear- and all-sky direct aerosol radiative forcing (DARF), a radiative perturbation analysis is performed for the ideal case in which the perturbations in global mean aerosol ...

Norman G. Loeb; Wenying Su

2010-10-01T23:59:59.000Z

3

Atmospheric Circulation Trends, 1950–2000: The Relative Roles of Sea Surface Temperature Forcing and Direct Atmospheric Radiative Forcing  

Science Conference Proceedings (OSTI)

The relative roles of direct atmospheric radiative forcing (due to observed changes in well-mixed greenhouse gases, tropospheric and stratospheric ozone, sulfate and volcanic aerosols, and solar output) and observed sea surface temperature (SST) ...

Clara Deser; Adam S. Phillips

2009-01-01T23:59:59.000Z

4

Daytime Variation of Shortwave Direct Radiative Forcing of Biomass Burning Aerosols from GOES-8 Imager  

Science Conference Proceedings (OSTI)

Hourly Geostationary Operational Environmental Satellite-8 (GOES-8) imager data (1344–1944 UTC) from 20 July–31 August 1998 were used to study the daytime variation of shortwave direct radiative forcing (SWARF) of smoke aerosols over biomass ...

Sundar A. Christopher; Jianglong Zhang

2002-02-01T23:59:59.000Z

5

General Circulation Model Calculations of the Direct Radiative Forcing by Anthropogenic Sulfate and Fossil-Fuel Soot Aerosol  

Science Conference Proceedings (OSTI)

A new radiation code within a general circulation model is used to assess the direct solar and thermal radiative forcing by sulfate aerosol of anthropogenic origin and soot aerosol from fossil-fuel burning. The radiative effects of different ...

J. M. Haywood; D. L. Roberts; A. Slingo; J. M. Edwards; K. P. Shine

1997-07-01T23:59:59.000Z

6

Seasonal Variation of Aerosol Direct Radiative Forcing and Optical Properties Estimated from Ground-Based Solar Radiation Measurements  

Science Conference Proceedings (OSTI)

The surface direct radiative forcing and optical properties of aerosols have been analyzed from a ground-based solar radiation measurement, which was made under clear-sky conditions in Tsukuba, Japan, over two years from April 1997 to March 1999. ...

Tomoaki Nishizawa; Shoji Asano; Akihiro Uchiyama; Akihiro Yamazaki

2004-01-01T23:59:59.000Z

7

The sensitivity of tropical convective precipitation to the direct radiative forcings of black carbon aerosols emitted from major regions  

E-Print Network (OSTI)

Previous works have suggested that the direct radiative forcing (DRF) of black carbon (BC) aerosols are able to force a significant change in tropical convective precipitation ranging from the Pacific and Indian Ocean to ...

Wang, Chien

8

Toward a Minimal Representation of Aerosols in Climate Models: Comparative Decomposition of Aerosol Direct, Semidirect, and Indirect Radiative Forcing  

Science Conference Proceedings (OSTI)

The authors have decomposed the anthropogenic aerosol radiative forcing into direct contributions from each aerosol species to the planetary energy balance through absorption and scattering of solar radiation, indirect effects of anthropogenic ...

S. J. Ghan; X. Liu; R. C. Easter; R. Zaveri; P. J. Rasch; J.-H. Yoon; B. Eaton

2012-10-01T23:59:59.000Z

9

Radiative Forcing of Climate Change  

SciTech Connect

Chapter 6 of the IPCC Third Assessment Report Climate Change 2001: The Scientific Basis. Sections include: Executive Summary 6.1 Radiative Forcing 6.2 Forcing-Response Relationship 6.3 Well-Mixed Greenhouse Gases 6.4 Stratospheric Ozone 6.5 Radiative Forcing By Tropospheric Ozone 6.6 Indirect Forcings due to Chemistry 6.7 The Direct Radiative Forcing of Tropospheric Aerosols 6.8 The Indirect Radiative Forcing of Tropospheric Aerosols 6.9 Stratospheric Aerosols 6.10 Land-use Change (Surface Albedo Effect) 6.11 Solar Forcing of Climate 6.12 Global Warming Potentials hydrocarbons 6.13 Global Mean Radiative Forcings 6.14 The Geographical Distribution of the Radiative Forcings 6.15 Time Evolution of Radiative Forcings Appendix 6.1 Elements of Radiative Forcing Concept References.

Ramaswamy, V.; Boucher, Olivier; Haigh, J.; Hauglustaine, D.; Haywood, J.; Myhre, G.; Nakajima, Takahito; Shi, Guangyu; Solomon, S.; Betts, Robert E.; Charlson, R.; Chuang, C. C.; Daniel, J. S.; Del Genio, Anthony D.; Feichter, J.; Fuglestvedt, J.; Forster, P. M.; Ghan, Steven J.; Jones, A.; Kiehl, J. T.; Koch, D.; Land, C.; Lean, J.; Lohmann, Ulrike; Minschwaner, K.; Penner, Joyce E.; Roberts, D. L.; Rodhe, H.; Roelofs, G.-J.; Rotstayn, Leon D.; Schneider, T. L.; Schumann, U.; Schwartz, Stephen E.; Schwartzkopf, M. D.; Shine, K. P.; Smith, Steven J.; Stevenson, D. S.; Stordal, F.; Tegen, I.; van Dorland, R.; Zhang, Y.; Srinivasan, J.; Joos, Fortunat

2001-10-01T23:59:59.000Z

10

Intercomparison of Radiation Transfer Models Representing Direct Shortwave Forcing by Sulfate Aerosols  

E-Print Network (OSTI)

A study has been conducted, involving 15 models by 12 groups, to compare modeled forcing (change in shortwave radiation budget) due to sulfate aerosol for a wide range of values of particle radius, optical depth, surface albedo, and solar zenith angle (SZA). The models included high- and low-spectral resolution models, incorporating a variety of radiative transfer approximations, as well as a line-by-line model. The normalized forcings (forcing per sulfate column burden) obtained with the radiative transfer models were examined and the differences characterized. All models simulate forcings of comparable amplitude and exhibit a similar dependence on input parameters. As expected for a non-light-absorbing aerosol, forcings were negative (cooling influence), except at high surface albedo combined with low SZA. The relative standard deviation of the zenith-angle-average normalized broadband forcing for 15 models was 8% for particle radius near the maximum in magnitude of this forcing (ca....

Sulfate Aerosols; Stephen E Schwartz

1998-01-01T23:59:59.000Z

11

Estimation of Shortwave Direct Radiative Forcing of Biomass-Burning Aerosols Using New Angular Models  

Science Conference Proceedings (OSTI)

Using a new angular distribution model (ADM) for smoke aerosols, the instantaneous top-of-atmosphere (TOA) shortwave aerosol radiative forcing (SWARF) is calculated for selected days over biomass-burning regions in South America. The visible and ...

Xiang Li; Sundar A. Christopher; Joyce Chou; Ronald M. Welch

2000-12-01T23:59:59.000Z

12

Radiative Forcing of a Tropical Direct Circulation by Soil Dust Aerosols  

Science Conference Proceedings (OSTI)

The effect of soil dust aerosols upon the tropical climate is estimated by forcing a simple model of a tropical direct circulation. The model consists of a region vertically mixed by deep convection and a nonconvecting region, for which budgets ...

R. L. Miller; I. Tegen

1999-07-01T23:59:59.000Z

13

Toward a Minimal Representation of Aerosols in Climate Models: Comparative Decomposition of Aerosol Direct, Semidirect, and Indirect Radiative Forcing  

SciTech Connect

The authors have decomposed the anthropogenic aerosol radiative forcing into direct contributions from each aerosol species to the planetary energy balance through absorption and scattering of solar radiation, indirect effects of anthropogenic aerosol on solar and infrared radiation through droplet and crystal nucleation on aerosol, and semidirect effects through the influence of solar absorption on the distribution of clouds. A three-mode representation of the aerosol in version 5.1 of the Community Atmosphere Model (CAM5.1) yields global annual mean radiative forcing estimates for each of these forcing mechanisms that are within 0.1 W m–2 of estimates using a more complex seven-mode representation that distinguishes between fresh and aged black carbon and primary organic matter. Simulating fresh black carbon particles separately from internally mixed accumulation mode particles is found to be important only near fossil fuel sources. In addition to the usual large indirect effect on solar radiation, this study finds an unexpectedly large positive longwave indirect effect (because of enhanced cirrus produced by homogenous nucleation of ice crystals on anthropogenic sulfate), small shortwave and longwave semidirect effects, and a small direct effect (because of cancelation and interactions of direct effects of black carbon and sulfate). Differences between the threemode and seven-mode versions are significantly larger (up to 0.2 W m–2) when the hygroscopicity of primary organic matter is decreased from 0.1 to 0 and transfer of the primary carbonaceous aerosol to the accumulation mode in the seven-mode version requires more hygroscopic material coating the primary particles. Radiative forcing by cloudborne anthropogenic black carbon is only 20.07 W m–2.

Ghan, Steven J.; Liu, Xiaohong; Easter, Richard C.; Zaveri, Rahul A.; Rasch, Philip J.; Yoon, Jin-Ho; Eaton, Brian

2012-10-01T23:59:59.000Z

14

ARM - PI Product - Direct Aerosol Forcing Uncertainty  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsDirect Aerosol Forcing Uncertainty ProductsDirect Aerosol Forcing Uncertainty Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Direct Aerosol Forcing Uncertainty Site(s) NSA SGP TWP General Description Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in

15

The Impact of Direct Aerosol Radiative Forcing on Surface Insolation and Spring Snowmelt in the Southern Sierra Nevada  

Science Conference Proceedings (OSTI)

To understand the regional impact of the atmospheric aerosols on the surface energy and water cycle in the southern Sierra Nevada characterized by extreme variations in terrain elevation, the authors examine the aerosol radiative forcing on ...

Jinwon Kim; Yu Gu; K. N. Liou

2006-10-01T23:59:59.000Z

16

Effect of Direct Radiative Forcing of Asian Dust on the Meteorological Fields in East Asia during an Asian Dust Event Period  

Science Conference Proceedings (OSTI)

Coupled and noncoupled models in a grid of 60 × 60 km2 in the eastern Asian domain have been employed to examine the effect of the direct radiative forcing of the Asian dust aerosol on meteorological fields for an intense Asian dust event ...

Hyun-Ju Ahn; Soon-Ung Park; Lim-Seok Chang

2007-10-01T23:59:59.000Z

17

Evolution of Ozone, Particulates, and Aerosol Direct Radiative Forcing in the Vicinity of Houston Using a Fully Coupled Meteorology-Chemistry-Aerosol Model  

SciTech Connect

A new fully-coupled meteorology-chemistry-aerosol model is used to simulate the urban to regional scale variations in trace gases, particulates, and aerosol direct radiative forcing in the vicinity of Houston over a five day summer period. Model performance is evaluated using a wide range of meteorological, chemistry, and particulate measurements obtained during 2000 Texas Air Quality Study. The predicted trace gas and particulate distributions were qualitatively similar to the surface and aircraft measurements with considerable spatial variations resulting from urban, power plant, and industrial sources of primary pollutants. Sulfate, organic carbon, and other inorganics were the largest constituents of the predicted particulates. The predicted shortwave radiation was 30 to 40 W m-2 closer to the observations when the aerosol optical properties were incorporated into the shortwave radiation scheme; however, the predicted hourly aerosol radiative forcing was still under-estimated by 10 to 50 W m-2. The predicted aerosol radiative forcing was larger over Houston and the industrial ship channel than over the rural areas, consistent with surface measurements. The differences between the observed and simulated aerosol radiative forcing resulted from transport errors, relative humidity errors in the upper convective boundary layer that affect aerosol water content, secondary organic aerosols that were not yet included in the model, and uncertainties in the primary particulate emission rates. The current model was run in a predictive mode and demonstrates the challenges of accurately simulating all of the meteorological, chemical, and aerosol parameters over urban to regional scales that can affect aerosol radiative forcing.

Fast, Jerome D.; Gustafson, William I.; Easter, Richard C.; Zaveri, Rahul A.; Barnard, James C.; Chapman, Elaine G.; Grell, Georg; Peckham, S. E.

2006-11-11T23:59:59.000Z

18

Downscaling Aerosols and the Impact of Neglected Subgrid Processes on Direct Aerosol Radiative Forcing for a Representative Global Climate Model Grid Spacing  

Science Conference Proceedings (OSTI)

Recent improvements to many global climate models include detailed, prognostic aerosol calculations intended to better reproduce the observed climate. However, the trace gas and aerosol fields are treated at the grid-cell scale with no attempt to account for sub-grid impacts on the aerosol fields. This paper begins to quantify the error introduced by the neglected sub-grid variability for the shortwave aerosol radiative forcing for a representative climate model grid spacing of 75 km. An analysis of the value added in downscaling aerosol fields is also presented to give context to the WRF-Chem simulations used for the sub-grid analysis. We found that 1) the impact of neglected sub-grid variability on the aerosol radiative forcing is strongest in regions of complex topography and complicated flow patterns, and 2) scale-induced differences in emissions contribute strongly to the impact of neglected sub-grid processes on the aerosol radiative forcing. The two of these effects together, when simulated at 75 km vs. 3 km in WRF-Chem, result in an average daytime mean bias of over 30% error in top-of-atmosphere shortwave aerosol radiative forcing for a large percentage of central Mexico during the MILAGRO field campaign.

Gustafson, William I.; Qian, Yun; Fast, Jerome D.

2011-07-13T23:59:59.000Z

19

Total aerosol effect: forcing or radiative flux perturbation?  

Science Conference Proceedings (OSTI)

Uncertainties in aerosol forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of rain formation. Traditionally these feedbacks were not included in estimates of total aerosol forcing. Here we argue that they should be included because these feedbacks act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases) the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations (RFP), that takes these fast feedbacks and interactions into account. Thus we propose replacing the direct and indirect aerosol forcing in the IPCC forcing chart with RFP estimates. This implies that it is better to evaluate the total anthropogenic aerosol effect as a whole.

Lohmann, Ulrike; Storelvmo, Trude; Jones, Andy; Rotstayn, Leon; Menon, Surabi; Quaas, Johannes; Ekman, Annica; Koch, Dorothy; Ruedy, Reto

2009-09-25T23:59:59.000Z

20

Direct Atmospheric Forcing of Geostrophic Eddies  

Science Conference Proceedings (OSTI)

To assess the role of direct stochastic wind forcing in generating oceanic geostrophic eddies we calculate analytically the response of a simple ocean model to a realistic model wind-stress spectrum and compare the results with observations. The ...

Peter Müller; Claude Frankignoul

1981-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "direct radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Attractive Optical Forces from Blackbody Radiation  

E-Print Network (OSTI)

Blackbody radiation around hot objects induces ac Stark shifts of the energy levels of nearby atoms and molecules. These shifts are roughly proportional to the fourth power of the temperature and induce a force decaying with the third power of the distance from the object. We explicitly calculate the resulting attractive blackbody optical dipole force for ground state hydrogen atoms. Surprisingly, this force can surpass the repulsive radiation pressure and actually pull the atoms against the radiation energy flow towards the surface with a force stronger than gravity. We exemplify the dominance of the "blackbody force" over gravity for hydrogen in a cloud of hot dust particles. This overlooked force appears relevant in various astrophysical scenarios, in particular, since analogous results hold for a wide class of other broadband radiation sources.

Matthias Sonnleitner; Monika Ritsch-Marte; Helmut Ritsch

2013-02-13T23:59:59.000Z

22

Direct Aerosol Forcing in the Infrared at the SGP Site?  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Aerosol Forcing in the Infrared at the SGP Site? Direct Aerosol Forcing in the Infrared at the SGP Site? D. D. Turner and C. N. Long Pacific Northwest National Laboratory Richland, Washington Introduction Low level haze is often observed during the night and early morning hours in many locations. This haze is typically formed during quiescent conditions by radiative cooling of the surface, which lowers the ambient temperature and consequently increases the near-surface relative humidity (RH). Many aerosols start to deliquesce around 75% relative humidity (RH) (depending on their chemical composition), and thus if the near surface RH increases above this level, haze will form. The Atmospheric Radiation Measurement (ARM) Program's ultimate goal, stated simply, is to improve the treatment of radiative transfer in global climate models. Global climate models typically do not

23

Radiative Forcing of Stationary Planetary Waves  

Science Conference Proceedings (OSTI)

The stationary wave components of the planetary-scale circulation are maintained by topographic forcing and by latent and sensible heat transfers and radiation. These waves have a potential vorticity balance mainly due to vertically differential ...

Leo J. Donner; Hsiao-Lan Kuo

1984-10-01T23:59:59.000Z

24

Radiative Forcing Due to Reactive Gas Emissions  

Science Conference Proceedings (OSTI)

Reactive gas emissions (CO, NOx, VOC) have indirect radiative forcing effects through their influences on tropospheric ozone and on the lifetimes of methane and hydrogenated halocarbons. These effects are quantified here for the full set of ...

T. M. L. Wigley; S. J. Smith; M. J. Prather

2002-09-01T23:59:59.000Z

25

Direct Detector for Terahertz Radiation - Energy ...  

Patent 7,420,225: Direct detector for terahertz radiation A direct detector for terahertz radiation comprises a grating-gated field-effect transistor ...

26

High Resolution Aerosol Modeling: Decadal Changes in Radiative Forcing  

Science Conference Proceedings (OSTI)

The Atmospheric Science Division of LLNL has performed high-resolution calculations of direct sulfate forcing using a DOE-provided computer resource at NERSC. We integrated our global chemistry-aerosol model (IMPACT) with the LLNL high-resolution global climate model (horizontal resolution as high as 100 km) to examine the temporal evolution of sulfate forcing since 1950. We note that all previous assessments of sulfate forcing reported in IPCC (2001) were based on global models with coarse spatial resolutions ({approx} 300 km or even coarser). However, the short lifetime of aerosols ({approx} days) results in large spatial and temporal variations of radiative forcing by sulfate. As a result, global climate models with coarse resolutions do not accurately simulate sulfate forcing on regional scales. It requires much finer spatial resolutions in order to address the effects of regional anthropogenic SO{sub 2} emissions on the global atmosphere as well as the effects of long-range transport of sulfate aerosols on the regional climate forcing. By taking advantage of the tera-scale computer resources at NERSC, we simulated the historic direct sulfate forcing at much finer spatial resolutions than ever attempted before. Furthermore, we performed high-resolution chemistry simulations and saved monthly averaged oxidant fields, which will be used in subsequent simulations of sulfate aerosol formation and their radiative impact.

Bergmann, D J; Chuang, C C; Govindasamy, B; Cameron-Smith, P J; Rotman, D A

2005-02-01T23:59:59.000Z

27

Longwave radiative forcing by aqueous aerosols  

SciTech Connect

Recently, a great deal of interest has been focused on the role of aerosols in climatic change because of their potential cooling impacts due to light scattering. Recent advances in infrared spectroscopy using cylindrical internal reflectance have allowed the longwave absorption of dissolved aerosol species and the associated liquid water to be accurately determined and evaluated. Experimental measurements using these techniques have shown that dissolved sulfate, nitrate, and numerous other aerosol species will act to cause greenhouse effects. Preliminary calculations indicate that the longwave climate forcing (i.e., heating) for sulfate aerosol will be comparable in magnitude to the cooling effect produced by light scattering. However, more detailed modeling will clearly be needed to address the impact of the longwave forcing due to aerosols as a function of atmospheric height and composition. Their work has shown that aerosol composition will be important in determining longwave forcing, while shortwave forcing will be more related to the physical size of the aerosol droplets. On the basis of these studies, it is increasingly apparent that aerosols, fogs, and clouds play a key role in determining the radiative balance of the atmosphere and in controlling regional and global climates.

Gaffney, J.S.; Marley, N.A. [Argonne National Lab., IL (United States). Environmental Research Div.

1995-01-01T23:59:59.000Z

28

Sensitivity of aerosol radiative forcing calculations to spectral resolution  

DOE Green Energy (OSTI)

Potential impacts of aerosol radiative forcing on climate have generated considerable recent interest. An important consideration in estimating the forcing from various aerosol components is the spectral resolution used for the solar radiative transfer calculations. This paper examines the spectral resolution required from the viewpoint of overlapping spectrally varying aerosol properties with other cross sections. A diagnostic is developed for comparing different band choices, and the impact of these choices on the radiative forcing calculated for typical sulfate and biomass aerosols was investigated.

Grant, K.E.

1996-10-01T23:59:59.000Z

29

Longwave Cloud Radiative Forcing as Determined from Nimbus-7 Observations  

Science Conference Proceedings (OSTI)

Collocated and coincident cloud and outgoing longwave radiation observations taken by experiments on board the Nimbus-7 satellite have been used to infer the daytime longwave cloud-radiative forcing. Through the specification of a time-series of ...

Philip E. Ardanuy; Larry L. Stowe; Arnold Gruber; Mitchell Weiss; Craig S. Long

1989-08-01T23:59:59.000Z

30

Influence of cloud-radiative forcing on tropical cyclone structure  

Science Conference Proceedings (OSTI)

We demonstrate how and why cloud-radiative forcing (CRF), the interaction of hydrometeors with longwave and shortwave radiation, can influence tropical cyclone structure through “semi-idealized” integrations of the Hurricane Weather Research and ...

Yizhe Peggy Bu; Robert G. Fovell; Kristen L. Corbosiero

31

Radiative forcing for changes in tropospheric O{sub 3}  

Science Conference Proceedings (OSTI)

We have evaluated the radiative forcing for assumed changes in tropospheric O{sub 3} in the 500-1650 cm{sup {minus}1} wavenumber range. The radiative forcing calculations were performed as a function of latitude as well as for a globally and seasonally averaged model atmosphere, both in a clear sky approximation and in a model containing a representative cloud distribution. The scenarios involved radiative forcing calculations for O{sub 3} at normal atmospheric abundance and at a tropospheric abundance depleted by 25 ppbv, at each altitude, for all northern hemisphere latitudes. Normal abundances of H{sub 2}O, CO{sub 2}, CH{sub 4}, and N{sub 2}O were included in the calculations. The IR radiative forcing was calculated using a correlated k-distribution radiative transfer model. The tropospheric radiative forcing values are compared to the IPCC formulae for ozone tropospheric forcing as well as other published values to determine the validity of the correlated k-distribution approach to the radiative forcing calculations. The results for the global average atmosphere show agreement with previous results to the order of 10 percent. We conclude that the O{sub 3} forcing is linear in the background abundance and that the radiative forcing for ozone for the globally averaged atmosphere and the latitude averaged radiative forcing in the clear sky approximation are in agreement to within 10 percent. For the case of an atmosphere in which the tropospheric ozone has been depleted by 25 ppbv at all altitudes in the northern hemisphere, the mid latitude zone contributes {approximately}50 percent of the forcing, tropic zone contributes {approximately}37 percent of the forcing and the polar zone contributes {approximately}13 percent of the total forcing.

Grossman, A.S.; Wuebbles, D.J.; Grant, K.E.

1994-06-01T23:59:59.000Z

32

Climate Forcing by Changing Solar Radiation  

Science Conference Proceedings (OSTI)

By how much does changing radiation from the sun influence the earth’s climate, presently and in the recent past, compared with other natural and anthropogenic processes? Current knowledge of the amplitudes and timescales of solar radiative ...

Judith Lean; David Rind

1998-12-01T23:59:59.000Z

33

Saharan Dust Aerosol Radiative Forcing Measured from Space  

Science Conference Proceedings (OSTI)

This study uses data collected from the Clouds and the Earth's Radiant Energy System (CERES) and the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments to determine Saharan dust broadband shortwave aerosol radiative forcing over ...

F. Li; A. M. Vogelmann; V. Ramanathan

2004-07-01T23:59:59.000Z

34

A Parametric Radiative Forcing Model for Contrail Cirrus  

Science Conference Proceedings (OSTI)

A new parameterized analytical model is presented to compute the instantaneous radiative forcing (RF) at the top of the atmosphere (TOA) produced by an additional thin contrail cirrus layer (called “contrail” below). The model calculates the RF ...

U. Schumann; B. Mayer; K. Graf; H. Mannstein

2012-07-01T23:59:59.000Z

35

RADIATIVE FORCING OF CLIMATE CHANGE BY AEROSOLS  

E-Print Network (OSTI)

nonbelievers. #12;Level of Scientific Understanding 2 1 0 1 2 3 Radiativeforcing(Wattspersquaremetre) Cooling scattering -- Cooling influence Light absorption -- Warming influence, depending on surface Indirect Effects is highly sensitive to modest aerosol loadings. Global-average AOT 0.1 corresponds to global-average forcing

Schwartz, Stephen E.

36

Radiative Forcing of Simulated Tropical Cloud Clusters  

Science Conference Proceedings (OSTI)

A number of field experiments and subsequent studies in the 1970s and 1980s have led to the belief that radiative processes play a more significant role in the evolution of tropical mesoscale convective systems (MCSS) than was once thought. In ...

Rosemary Auld Miller; William M. Frank

1993-02-01T23:59:59.000Z

37

Climatic effects of 1950–2050 changes in US anthropogenic aerosols – Part 1: Aerosol trends and radiative forcing  

E-Print Network (OSTI)

We use the GEOS-Chem chemical transport model combined with the GISS general circulation model to calculate the aerosol direct and indirect (warm cloud) radiative forcings from US anthropogenic sources over the 1950–2050 ...

Leibensperger, Eric Michael

38

Engineering details of a stable force-directed placer  

E-Print Network (OSTI)

Analytic placement methods that simultaneously minimize wire length and spread cells are receiving renewed attention from both academia and industry. In this paper, we describe the implementation details of a force-directed placer, FDP. Specifically, we provide (1) a description of efficient force computation for spreading cells, (2) an illustration of numerical instability in these methods and a means by which these instabilities are avoided, (3) spread metrics for measuring cell distribution throughout the placement region and (4) a complementary technique which aids in directly minimizing HPWL. We present results comparing our analytic placer to other academic tools for both standard cell and mixed-size designs. Compared to Kraftwerk and Capo 8.7, our tool produces results with an average improvement of 9 % and 3%, respectively.

Kristofer Vorwerk

2004-01-01T23:59:59.000Z

39

ARM - Publications: Science Team Meeting Documents: Cloud Radiative Forcing  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud Radiative Forcing at the ARM Climate Research Facility: Part 2. The Cloud Radiative Forcing at the ARM Climate Research Facility: Part 2. The Vertical Redistribution of Radiant Energy by Clouds. Mace, Gerald University of Utah Benson, Sally University of Utah Kato, Seiji Hampton University/NASA Langley Research Center Documentation with data of the effects of clouds on the radiant energy balance of the surface and atmosphere represent a critical shortcoming in the set of observations that are needed to ascertain the validity of model simulations of the earth's climate. While clouds are known to cool the climate system from TOA radiation budget studies, the redistribution of energy between the surface and atmosphere and within the atmosphere by clouds has not been examined in detail. Using data collected at the Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP)

40

The Effects of Hand Motion on Haptic Perception of Force Direction  

E-Print Network (OSTI)

Most studies on the haptic perception of force direction have been conducted without hand movements, whereas hand movements are normally required in real-world applications. This paper reports a study on the perception of haptic force direction during hand movement. Discrimination thresholds for force direction were determined for two hand movement speeds, slow and fast, and for five reference force directions. The results show that the perception of force direction is not affected by hand movement speed. We also found that the perception of force direction was not impaired by the hand motion, nor by the direction of the reference force.

Xing-dong Yang; Walter F. Bischof; Pierre Boulanger

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "direct radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

The whitehouse effect: Shortwave radiative forcing of climate by anthropogenic aerosols, an overview  

E-Print Network (OSTI)

Abstraet--Loadings of tropospheric aerosols have increased substantially over the past 150 yr as a consequence of industrial activities. These aerosols enhance reflection of solar radiation by the Earth-atmosphere system both directly, by scattering light in clear air and, indirectly, by increasing the reflectivity of clouds. The magnitude of the resultant decrease in absorption of solar radiation is estimated to be comparable on global average to the enhancement in infrared forcing at the tropopause due to increases in concentrations of CO2 and other greenhouse gases over the same time period. Estimates of the aerosol shortwave forcing are quite uncertain, by more than a factor of two about the current best estimates. This article reviews the atmospheric chemistry and microphysical processes that govern the loading and light scattering properties of the aerosol particles responsible for the direct effect and delineates the basis for the present estimates of the magnitude and uncertainty in the resultant radiative forcing. The principal sources of uncertainty are in the loading of anthropogenic aerosols, which is highly variable spatially and temporally because of the relatively short residence time of these aerosols (ca. 1 week) and the episodic removal in precipitation, and in the dependence of light scattering on particle size, and in turn on relative humidity. Uncertainty in aerosol forcing is the greatest source of uncertainty in radiative forcing of climate

Stephen E. Schwartz

1996-01-01T23:59:59.000Z

42

Surface Solar Radiation Flux and Cloud Radiative Forcing for the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP): A Satellite, Surface Observations, and Radiative Transfer Model Study  

Science Conference Proceedings (OSTI)

This study presents surface solar radiation flux and cloud radiative forcing results obtained by using a combination of satellite and surface observations interpreted by means of a simple plane-parallel radiative transfer model called 2001. This ...

Catherine Gautier; Martin Landsfeld

1997-05-01T23:59:59.000Z

43

Direct and Indirect Shortwave Radiative Effects of Sea Salt Aerosols  

Science Conference Proceedings (OSTI)

Sea salt aerosols play a dual role in affecting the atmospheric radiative balance. Directly, sea salt particles scatter the incoming solar radiation and absorb the outgoing terrestrial radiation. By acting as cloud condensation nuclei, sea salt ...

Tarek Ayash; Sunling Gong; Charles Q. Jia

2008-07-01T23:59:59.000Z

44

Aerosol Radiative Forcing and Forcing Efficiency in the UVB for Regions Affected by Saharan and Asian Mineral Dust  

Science Conference Proceedings (OSTI)

The influence of mineral dust on ultraviolet energy transfer is studied for two different mineralogical origins. The aerosol radiative forcing ?F and the forcing efficiency at the surface ?Feff in the range 290–325 nm were estimated in ground-...

O. E. García; A. M. Díaz; F. J. Expósito; J. P. Díaz; A. Redondas; T. Sasaki

2009-04-01T23:59:59.000Z

45

Indirect radiative forcing by ion-mediated nucleation of aerosol  

Science Conference Proceedings (OSTI)

A clear understanding of particle formation mechanisms is critical for assessing aerosol indirect radiative forcing and associated climate feedback processes. Recent studies reveal the importance of ion-mediated nucleation (IMN) in generating new particles and cloud condensation nuclei (CCN) in the atmosphere. Here we implement for the first time a physically based treatment of IMN into the Community Atmosphere Model version 5. Our simulations show that, compared to globally averaged results based on binary homogeneous nucleation (BHN), the presence of ionization (i.e., IMN) halves H2SO4 column burden, but increases the column integrated nucleation rate by around one order of magnitude, total particle number burden by a factor of ~ 3, CCN burden by ~ 10% (at 0.2% supersaturation) to 65% (at 1.0% supersaturation), and cloud droplet number burden by ~ 18%. Compared to BHN, IMN increases cloud liquid water path by 7.5%, decreases precipitation by 1.1%, and increases total cloud cover by 1.9%. This leads to an increase of total shortwave cloud radiative forcing by 3.67 W/m2 (more negative) and longwave cloud forcing by 1.78 W/m2 (more positive), resulting in a -1.9 W/m2 net change in cloud radiative forcing associated with IMN. The significant impacts of ionization on global aerosol formation, CCN abundance, and cloud radiative forcing may provide an important physical mechanism linking the global energy balance to various processes affecting atmospheric ionization, which should be properly represented in climate models.

Yu, Fangqun; Luo, Gan; Liu, Xiaohong; Easter, Richard C.; Ma, Xiaoyan; Ghan, Steven J.

2012-12-03T23:59:59.000Z

46

The whitehouse effect: shortwave radiative forcing of climate by anthropogenic aerosols  

SciTech Connect

Increases in atmospheric concentrations of carbon dioxide and other infrared active gases over the industrial period are thought to have increased the average flux of longwave (thermal infrared) radiation between the surface of the earth and the lower atmosphere, leading to an increase in global mean temperature. Over the same period it is though that concentrations of aerosol particles in the troposphere have similarly increased as a consequence of industrial emissions and that these increased concentrations of particles have increased the earth`s reflectivity of shortwave (solar) radiation incident on the planet both directly, by scattering radiation, and indirectly, by increasing the reflectivity of clouds. The term ``whitehouse effect`` is introduced to refer to this increased scattering of shortwave radiation by analogy to the term ``greenhouse effect,`` which refers to the enhanced trapping of longwave radiation resulting from increased concentrations of infrared active gases. Each of these phenomena is referred to as a ``forcing`` of the earth`s climate, that is a secular change imposed on the system; such a forcing is to be distinguished from a ``response`` of the system, such as a change in global mean temperature or other index of global climate. The forcing due to the direct and indirect effects induced by anthropogenic aerosols has been estimated to be comparable in global- average magnitude to that due to increased concentrations of greenhouse gases, but it is of opposite direction, that is exerting a cooling influence. The shortwave radiative influence of anthropogenic aerosols may thus be considered to be offsetting some, perhaps a great fraction, of the longwave radiative influence of anthropogenic greenhouse gases.

Schwartz, S.E.

1994-12-31T23:59:59.000Z

47

The Link between Summertime Cloud Radiative Forcing and Extratropical Cyclones in the North Pacific  

Science Conference Proceedings (OSTI)

This paper examines the role of extratropical cyclones in determining the cloud radiative forcing over the North Pacific during summer. Specifically, this study uses daily and monthly ERBE cloud radiative forcing, monthly ISCCP cloud-type ...

C. P. Weaver; V. Ramanathan

1996-09-01T23:59:59.000Z

48

Radiative Forcing of Climate By Ice-Age Atmospheric Dust  

E-Print Network (OSTI)

During glacial periods, dust deposition rates and inferred atmospheric concentrations were globally much higher than present. According to recent model results, the large enhancement of atmospheric dust content at the last glacial maximum (LGM) can be explained only if increases in the potential dust source areas are taken into account. Such increases are to be expected, due to e#ects of low precipitation and low atmospheric (CO 2 ) on plant growth. Here the modelled three-dimensional dust fields from Mahowald et al. and modelled seasonally varying surface-albedo fields derived in a parallel manner, are used to quantify the mean radiative forcing due to modern (non-anthropogenic) and LGM dust. The e#ect of mineralogical provenance on the radiative properties of the dust is taken into account, as is the range of optical properties associated with uncertainties about the mixing state of the dust particles. The high-latitude (poleward of 45#) mean change in forcing (LGM minus modern) is estimated to be small (--0.9 to +0.2 W m ), especially when compared to nearly --20 W m due to reflection from the extended ice sheets. Although the net e#ect of dust over ice sheets is a positive forcing (warming), much of the simulated high-latitude dust was not over the ice sheets, but over unglaciated regions close to the expanded dust source region in central Asia. In the tropics the change in forcing is estimated to be overall negative, and of similarly large magnitude (--2.2 to --3.2 W m ) to the radiative cooling e#ect of low atmospheric (CO 2 ). Thus, the largest long-term climatic e#ect of the LGM dust is likely to have been a cooling of the tropics. Low tropical sea-surface temperatures, low atmospheric (CO 2 ) and high atmospheric dust loading may be mutually reinforcin...

T. Claquin; C. Roelandt; K.E. Kohfeld; S.P. Harrison; I. Tegen; I.C. Prentice; Y. Balkanski; Prentice Æ Y. Balkanski; G. Bergametti; Æ N. Mahowald; Æ M. Schulz; M. Schulz; Æ K. E. Kohfeld; Æ K. E. Kohfeld; C. Roelandt; C. Roelandt; Æ S. P. Harrison; Æ S. P. Harrison; Æ S. P. Harrison; G. Bergametti; H. Rodhe; Æ H. Rodhe; M. Hansson; M. Hansson; N. Mahowald; N. Mahowald

2003-01-01T23:59:59.000Z

49

Direct Atmospheric Forcing of Geostrophic Eddies. Part II: Coherence Maps  

Science Conference Proceedings (OSTI)

The theory of stochastic atmospheric forcing of quasigeostrophic eddies is applied to calculate coherence maps, that is, the coherence between the oceanic response at one location and the atmospheric forcing at another location as a function of ...

Angelika Lippert; Peter Müller

1995-01-01T23:59:59.000Z

50

A Method to Estimate Aerosol Radiative Forcing from Spectral Optical Depths  

Science Conference Proceedings (OSTI)

Radiative forcing of aerosols is much more difficult to estimate than that of well-mixed gases due to the large spatial variability of aerosols and the lack of an adequate database on their radiative properties. Estimation of aerosol radiative ...

S. K. Satheesh; J. Srinivasan

2006-03-01T23:59:59.000Z

51

THE EFFECT OF CIRCUMSOLAR RADIATION ON THE ACCURACY OF PYRHELIOMETER MEASUREMENTS OF THE DIRECT SOLAR RADIATION  

E-Print Network (OSTI)

Diffuse, and Total Solar Radiation," Solar Energy, vol. 4,r Presented at the Solar Radiation workshop of Solar Rising,MEASUREMENTS OF THE DIRECT SOLAR RADIATION D. Grether, D.

Grether, D.

2012-01-01T23:59:59.000Z

52

NIST Ionizing Radiation Division 1999 - Current Directions  

Science Conference Proceedings (OSTI)

... effect relationships for radiation-induced stochastic ... validate the EPR dose assessment methods ... Calibration of Low-Energy Photon Brachytherapy ...

53

NIST Ionizing Radiation Division 1999 - Future Directions  

Science Conference Proceedings (OSTI)

... to test the applicability of EPR tooth enamel retrospective dosimetry to dose assessment of background radiation. The low-dose threshold (dose ...

54

NIST Ionizing Radiation Division 2001 - Program Directions  

Science Conference Proceedings (OSTI)

... seen a tremendous increase in the use of low-energy photon ... for the high levels of absorbed dose used in the industrial radiation processing of ...

55

NIST Ionizing Radiation Division 1998 - Current Directions  

Science Conference Proceedings (OSTI)

... Cs gamma-ray ranges, and the low-energy photon ... beam, and a high-dose- rate Gammacell used in our radiation-processing dosimetry ...

56

NIST Ionizing Radiation Division 2000 - Future Directions  

Science Conference Proceedings (OSTI)

... will enable dose-reconstruction studies for populations exposed at the natural background levels of ionizing radiation. Calibrations of Low-Energy ...

57

Impact of Desert Dust Radiative Forcing on Sahel Precipitation: Relative Importance of Dust Compared to Sea Surface Temperature Variations, Vegetation Changes, and Greenhouse Gas Warming  

Science Conference Proceedings (OSTI)

The role of direct radiative forcing of desert dust aerosol in the change from wet to dry climate observed in the African Sahel region in the last half of the twentieth century is investigated using simulations with an atmospheric general ...

Masaru Yoshioka; Natalie M. Mahowald; Andrew J. Conley; William D. Collins; David W. Fillmore; Charles S. Zender; Dani B. Coleman

2007-04-01T23:59:59.000Z

58

Implications of Representative Concentration Pathway 4.5 Methane Emissions to Stabilize Radiative Forcing  

SciTech Connect

Increases in the abundance of methane (CH4) in the Earth’s atmosphere are responsible for significant radiative forcing of climate change (Forster et al., 2007; Wuebbles and Hayhoe, 2002). Since 1750, a 2.5 fold increase in atmospheric CH4 contributed 0.5 W/m2 to direct radiative forcing and an additional 0.2 W/m2 indirectly through changes in atmospheric chemistry. Next to water and carbon dioxide (CO2), methane is the most abundant greenhouse gas in the troposphere. Additionally, CH4 is significantly more effective as a greenhouse gas on a per molecule basis than is CO2, and increasing atmospheric CH4 has been second only to CO2 in radiative forcing (Forster et al., 2007). The chemical reactivity of CH4 is important to both tropospheric and stratospheric chemistry. Along with carbon monoxide, methane helps control the amount of the hydroxyl radical (OH) in the troposphere where oxidation of CH4 by OH leads to the formation of formaldehyde, carbon monoxide, and ozone.

Emanuel, William R.; Janetos, Anthony C.

2013-02-01T23:59:59.000Z

59

Subtropical Climatology of Direct Beam Solar Radiation  

Science Conference Proceedings (OSTI)

A climatology of direct beam irradiance has been compiled for Mauna Loa Observatory. A broadband transmittance, calculated from the direct-beam data, has been stratified into clear sky and optically thin and thick cloud regimes; statistics of ...

T. M. Thompson; S. K. Cox

1982-03-01T23:59:59.000Z

60

A Multiple Direction Radiation Sensor, DIRAM  

Science Conference Proceedings (OSTI)

The Directional Radiance Distribution Measurement (DIRAM) device was designed and built to determine the angular distribution of shortwave radiance as a function of height in cloudy and clear-sky conditions at various surface albedos. The ...

J. C. H. van der Hage; H. van Dop; A. Los; W. Boot; D. van As

2001-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "direct radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Aerosols in Central California: Unexpectedly Large Contribution of Coarse Mode to Aerosol Radiative Forcing  

Science Conference Proceedings (OSTI)

The majority of previous studies dealing with effect of coarse-mode aerosols on the radiation budget have focused primary on polluted regions with substantial aerosol loadings. We reexamine this effect for a relatively "pristine" area using a unique 1-month dataset collected during recent Carbonaceous Aerosol and Radiative Effects Study (CARES). We demonstrate that the coarse-mode (supermicron) particles can contribute substantially (more than 50%) and frequently (up to 85% of time) to the total volume. In contrast to the conventional expectations that the radiative impact of coarse-mode aerosols should be small for "pristine" regions, we find that the neglecting of the large particles may lead to significant overestimation (up to 45%) of direct aerosol radiative forcing at the top-of atmosphere despite of very small aerosol optical depth (about 0.05 at 0.5 ). Our findings highlight the potential for widespread impacts of the coarse-mode aerosols on the pristine radiative properties over land and the need for more explicit inclusion of the coarse-mode aerosols in climate-related observational and model studies.

Kassianov, Evgueni I.; Pekour, Mikhail S.; Barnard, James C.

2012-10-20T23:59:59.000Z

62

Predicting Aerosol Direct Radiative Forcing over Mexico using...  

NLE Websites -- All DOE Office Websites (Extended Search)

* Computationally expensive biomass burning mobile area point Two Primary Components Use Weather Research and Forecasting (WRF) model as the foundation of computational framework...

63

TROPOSPHERIC AEROSOLS: THE WILD CARD IN RADIATIVE FORCING OF CLIMATE CHANGE  

E-Print Network (OSTI)

forcings of climate change over the industrial period. Cooling forcings of tens of watts per square meter Understanding 2 1 0 1 2 3 Radiativeforcing(Wattspersquaremetre) CoolingWarming The global mean radiative forcing scattering -- Cooling influence Light absorption -- Warming influence, depending on surface Indirect Effects

Schwartz, Stephen E.

64

Anthropogenic Aerosol Radiative Forcing in Asia Derived From Regional Models With Atmospheric and Aerosol Data Assimilation  

DOE Green Energy (OSTI)

A high-resolution estimate of monthly 3D aerosol solar heating rates and surface solar fluxes in Asia from 2001 to 2004 is described here. This product stems from an Asian aerosol assimilation project, in which a) the PNNL regional model bounded by the NCEP reanalyses was used to provide meteorology, b) MODIS and AERONET data were integrated for aerosol observations, c) the Iowa aerosol/chemistry model STEM-2K1 used the PNNL meteorology and assimilated aerosol observations, and d) 3D (X-Y-Z) aerosol simulations from the STEM-2K1 were used in the Scripps Monte-Carlo Aerosol Cloud Radiation (MACR) model to produce total and anthropogenic aerosol direct solar forcing for average cloudy skies. The MACR model and STEM both used the PNNL model resolution of 0.45º×0.4º in the horizontal and of 23 layers in the troposphere. The 2001–2004 averaged anthropogenic all-sky aerosol forcing is ?1.3 Wm-2 (TOA), +7.3 Wm-2 (atmosphere) and ?8.6 Wm-2 (surface) averaged in Asia (60?138°E & Eq. ?45°N). In the absence of AERONET SSA assimilation, absorbing aerosol concentration (especially BC aerosol) is much smaller, giving ?2.3 Wm-2 (TOA), +4.5 Wm-2 (atmosphere) and ?6.8 Wm-2 (surface), averaged in Asia. In the vertical, monthly forcing is mainly concentrated below 600hPa with maxima around 800hPa. Seasonally, low-level forcing is far larger in dry season than in wet season in South Asia, whereas the wet season forcing exceeds the dry season forcing in East Asia. The anthropogenic forcing in the present study is similar to that in Chung et al.’s [2005] in overall magnitude but the former offers fine-scale features and simulated vertical profiles. The interannual variability of the computed anthropogenic forcing is significant and extremely large over major emission outflow areas. In view of this, the present study’s estimate is within the implicated range of the 1999 INDOEX result. However, NCAR/CCSM3’s anthropogenic aerosol forcing is much smaller than the present study’s estimate at the surface, and is outside of what the INDOEX findings can support.

Chung, Chul Eddy; Ramanathan, V.; Carmichael, Gregory; Kulkarni, S.; Tang, Youhua; Adhikary, Bhupesh; Leung, Lai-Yung R.; Qian, Yun

2010-07-05T23:59:59.000Z

65

Uncertainties in the Radiative Forcing Due to Sulfate Aerosols  

Science Conference Proceedings (OSTI)

Radiative transfer calculations based on a new sulfate distribution from a chemistry-transport model simulation have been performed. A wide range of sensitivity experiments have been performed to illustrate the large uncertainty in the radiative ...

Gunnar Myhre; Frode Stordal; Tore F. Berglen; Jostein K. Sundet; Ivar S. A. Isaksen

2004-03-01T23:59:59.000Z

66

An “A-Train” Strategy for Quantifying Direct Climate Forcing by Anthropogenic Aerosols  

Science Conference Proceedings (OSTI)

This document outlines a practical strategy for achieving an observationally based quantification of direct climate forcing by anthropogenic aerosols. The strategy involves a four-step program for shifting the current assumption-laden estimates ...

Theodore L. Anderson; Robert J. Charlson; Nicolas Bellouin; Olivier Boucher; Mian Chin; Sundar A. Christopher; Jim Haywood; Yoram J. Kaufman; Stefan Kinne; John A. Ogren; Lorraine A. Remer; Toshihiko Takemura; Didier Tanré; Omar Torres; Charles R. Trepte; Bruce A. Wielicki; David M. Winker; Hongbin Yu

2005-12-01T23:59:59.000Z

67

Indirect detection of radiation sources through direct detection of radiolysis products  

DOE Patents (OSTI)

A system for indirectly detecting a radiation source by directly detecting radiolytic products. The radiation source emits radiation and the radiation produces the radiolytic products. A fluid is positioned to receive the radiation from the radiation source. When the fluid is irradiated, radiolytic products are produced. By directly detecting the radiolytic products, the radiation source is detected.

Farmer, Joseph C. (Tracy, CA); Fischer, Larry E. (Los Gatos, CA); Felter, Thomas E. (Livermore, CA)

2010-04-20T23:59:59.000Z

68

Total aerosol effect: forcing or radiative flux perturbation?  

E-Print Network (OSTI)

of the ?rst indirect aerosol effect, Atmos. Chem. Phys. , 5,Cloud susceptibility and the ?rst aerosol indirect forcing:to black carbon and aerosol concentrations, J. Geophys.

Lohmann, Ulrike

2010-01-01T23:59:59.000Z

69

Sensitivity of shortwave radiative flux density, forcing, and heating rates to the aerosol vertical profile  

SciTech Connect

The effect of the aerosol vertical distribution on the solar radiation profiles, for idealized and measured profiles of optical properties (extinction and single-scattering albedo (SSA)) during the May 2003 Atmospheric Radiation Measurement (ARM) Aerosol Intensive Observation Period (AIOP), has been investigated using the Rapid Radiative Transfer Model Shortwave (RRTM_SW) code. Calculated profiles of down-welling and up-welling solar fluxes during the AIOP have been compared with the data measured by up- and down-looking solar broadband radiometers aboard a profiling research aircraft. The measured profiles of aerosol extinction, SSA, and water vapor obtained from the same aircraft that carried the radiometers served as the inputs for the model calculations. It is noteworthy that for this study, the uplooking radiometers were mounted on a stabilized platform that kept the radiometers parallel with respect to the earth’s horizontal plane. The results indicate that the shape of the aerosol extinction profiles has very little impact on direct radiative forcings at the top of atmosphere and surface in a cloud-free sky. However, as long as the aerosol is not purely scattering, the shape of the extinction profiles is important for forcing profiles. Identical extinction profiles with different absorption profiles drastically influence the forcing and heating rate profiles. Using aircraft data from 19 AIOP profiles over the Southern Great Plains (SGP), we are able to achieve broadband down-welling solar flux closure within 0.8% (bias difference) or 1.8% (rms difference), well within the expected measurement uncertainty of 1 to 3%. The poorer agreement in up-welling flux (bias -3.7%, rms 10%) is attributed to the use of inaccurate surface albedo data. The sensitivity tests reveal the important role accurate, vertically resolved aerosol extinction data plays in tightening flux closure. This study also suggests that in the presence of a strongly absorbing substance, aircraft flux measurements from a stabilized platform have the potential to determine heating rate profiles. These measurement-based heating rate profiles provide useful data for heating rate closure studies and indirect estimates of single scattering albedo assumed in radiative transfer calculations.

Guan, Hong; Schmid, Beat; Bucholtz, Anthony; Bergstrom, Robert

2010-03-31T23:59:59.000Z

70

Analysis of a direct radiation solar dehumidification system  

DOE Green Energy (OSTI)

SERI researchers investigated a desiccant dehumidifier that is regenerated by direct absorption of solar radiation using a simplified numerical model (DESSIM) of the adsorption and desorption processes. This paper presents estimates of the performance of a solar-fired air conditioning system (ventilation cycle) containing the dehumidifier/collector. The researchers also considered the effects of dehumidifier NTUs, heat exchanger performance, and insolation levels. The direct radiation system can operate effectively at low insolation levels and thus may have some advantages in some geographic areas.

Schultz, K.; Barlow, R.; Pesaran, A.; Kreith, F.

1985-06-01T23:59:59.000Z

71

Surface shortwave aerosol radiative forcing during the Atmospheric Radiation Measurement Mobile Facility deployment in Niamey, Niger  

SciTech Connect

This study presents ground-based remote sensing measurements of aerosol optical properties and corresponding shortwave surface radiative effect calculations for the deployment of the Atmospheric Radiation Measurement (ARM) Program’s Mobile Facility (AMF) to Niamey, Niger during 2006. Aerosol optical properties including aerosol optical depth (AOD), single scattering albedo (SSA), and asymmetry parameter (AP) were derived from multi-filter rotating shadowband radiometer (MFRSR) measurements during the two dry seasons (Jan-Apr and Oct-Dec) at Niamey. The vertical distribution of aerosol extinction was derived from the collocated micropulse lidar (MPL). The aerosol optical properties and vertical distribution of extinction varied significantly throughout the year, with higher AOD, lower SSA, and deeper aerosol layers during the Jan-Apr time period, when biomass burning aerosol layers were more frequent. Using the retrieved aerosol properties and vertical extinction profiles, broadband shortwave surface fluxes and atmospheric heating rate profiles were calculated. Corresponding calculations with no aerosol were used to estimate the aerosol direct radiative effect at the surface. Comparison of the calculated surface fluxes to observed fluxes for non-cloudy periods indicated that the remote sensing retrievals provided a reasonable estimation of the optical properties, with mean differences between calculated and observed fluxes of less than 5 W/m2 and RMS differences less than 25 W/m2. Sensitivity tests for a particular case study showed that the observed fluxes could be matched with variations of < 10% in the inputs to the radiative transfer model. We estimated the daily-averaged aerosol radiative effect at the surface by subtracting the clear calculations from the aerosol calculations. The average daily SW aerosol radiative effect over the study period was -27 W/m2, which is comparable to values estimated from satellite data and from climate models with sophisticated dust parameterizations.

McFarlane, Sally A.; Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.; Ackerman, Thomas P.

2009-03-18T23:59:59.000Z

72

Wave–Current Interaction: A Comparison of Radiation-Stress and Vortex-Force Representations  

Science Conference Proceedings (OSTI)

The vortex-force representation of the wave-averaged effects on currents is compared to the radiation-stress representation in a scaling regime appropriate to coastal and shelf waters. Three-dimensional and vertically integrated expressions for ...

E. M. Lane; J. M. Restrepo; J. C. McWilliams

2007-05-01T23:59:59.000Z

73

Simulations of Contrail Optical Properties and Radiative Forcing for Various Crystal Shapes  

Science Conference Proceedings (OSTI)

The aim of this study is to investigate the sensitivity of radiative-forcing computations to various contrail crystal shape models. Contrail optical properties in the shortwave and longwave ranges are derived using a ray-tracing geometric method ...

Krzysztof M. Markowicz; Marcin L. Witek

2011-08-01T23:59:59.000Z

74

The Role of Longwave Radiation and Boundary Layer Thermodynamics in Forcing Tropical Surface Winds  

Science Conference Proceedings (OSTI)

This paper reveals major deficiencies of the existing intermediate climate models for tropical surface winds and elaborates the important roles of cloud-longwave radiational forcing and boundary layer thermodynamics in driving the tropical ...

Xiouhua Fu; Bin Wang

1999-04-01T23:59:59.000Z

75

Radiative Forcing of Saharan Dust: GOCART Model Simulations Compared with ERBE Data  

Science Conference Proceedings (OSTI)

This study uses information on Saharan aerosol from a dust transport model to calculate radiative forcing values. The transport model is driven by assimilated meteorological fields from the Goddard Earth Observing System Data Assimilation System. ...

Clark J. Weaver; Paul Ginoux; N. Christina Hsu; Ming-Dah Chou; Joanna Joiner

2002-02-01T23:59:59.000Z

76

Adjustment to Radiative Forcing in a Simple Coupled Ocean–Atmosphere Model  

Science Conference Proceedings (OSTI)

This study calculates the adjustment to radiative forcing in a simple model of a mixed layer ocean coupled to the overlying atmosphere. One application of the model is to calculate how dust aerosols perturb the temperature of the atmosphere and ...

R. L. Miller

2012-11-01T23:59:59.000Z

77

Reproducibility by Climate Models of Cloud Radiative Forcing Associated with Tropical Convection  

Science Conference Proceedings (OSTI)

In this study, cloud radiative forcing (CRF) associated with convective activity over tropical oceans is analyzed for monthly mean data from twentieth-century simulations of 18 climate models participating in phase 3 of the Coupled Model ...

Hiroki Ichikawa; Hirohiko Masunaga; Yoko Tsushima; Hiroshi Kanzawa

2012-02-01T23:59:59.000Z

78

Observations and Modeling of the Surface Aerosol Radiative Forcing during UAE2  

Science Conference Proceedings (OSTI)

Aerosol radiative forcing in the Persian Gulf region is derived from data collected during the United Arab Emirates (UAE) Unified Aerosol Experiment (UAE2). This campaign took place in August and September of 2004. The land–sea-breeze circulation ...

K. M. Markowicz; P. J. Flatau; J. Remiszewska; M. Witek; E. A. Reid; J. S. Reid; A. Bucholtz; B. Holben

2008-09-01T23:59:59.000Z

79

Temporal Variability of Aerosol Properties during TCAP: Impact on Radiative Forcing  

SciTech Connect

Ground-based remote sensing and in situ observations of aerosol microphysical and optical properties have been collected during summertime (June-August, 2012) as part of the Two-Column Aerosol Project (TCAP; http://campaign.arm.gov/tcap/), which was supported by the U.S. Department of Energy’s (DOE’s) Atmospheric Radiation Measurement (ARM) Program (http://www.arm.gov/). The overall goal of the TCAP field campaign is to study the evolution of optical and microphysical properties of atmospheric aerosol transported from North America to the Atlantic and their impact on the radiation energy budget. During TCAP, the ground-based ARM Mobile Facility (AMF) was deployed on Cape Cod, an arm-shaped peninsula situated on the easternmost portion of Massachusetts (along the east coast of the United States) and that is generally downwind of large metropolitan areas. The AMF site was equipped with numerous instruments for sampling aerosol, cloud and radiative properties, including a Multi-Filter Rotating Shadowband Radiometer (MFRSR), a Scanning Mobility Particle Sizer (SMPS), an Aerodynamic Particle Sizer (APS), and a three-wavelength nephelometer. In this study we present an analysis of diurnal and day-to-day variability of the column and near-surface aerosol properties obtained from remote sensing (MFRSR data) and ground-based in situ measurements (SMPS, APS, and nephelometer data). In particular, we show that the observed diurnal variability of the MFRSR aerosol optical depth is strong and comparable with that obtained previously from the AERONET climatology in Mexico City, which has a larger aerosol loading. Moreover, we illustrate how the variability of aerosol properties impacts the direct aerosol radiative forcing at different time scales.

Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.; Berg, Larry K.; Fast, Jerome D.; Michalsky, Joseph J.; Lantz, K.; Hodges, G. B.

2013-11-01T23:59:59.000Z

80

COLUMBIA RADIATION LABORATORY RESEARCH INVESTIGATION DIRECTED TOWARD EXTENDING  

NLE Websites -- All DOE Office Websites (Extended Search)

iVP-^"^^? iVP-^"^^? COLUMBIA RADIATION LABORATORY RESEARCH INVESTIGATION DIRECTED TOWARD EXTENDING THE USEFUL RANGE OF THE ELECTROMAGNETIC SPECTRUM Special Technical Report Signal Corps Contract DA-36-039 SC-64630 DA Project No. 3-99-10-022 SC Project No. 102B U. S. Army Laboratory Procurement Office Signal Corps Supply Agency Fort Monmouth, New Jersey The Trustees of Columbia University in the City of New York Box 6, Low Memorial Library New York 27, New York March 1, 1956 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. COLUMBIA RADIATION LABORATORY Collected Papers on the AAASER (Microwave Amplification by Stimulated Emission of Radiation) Special Technical Report

Note: This page contains sample records for the topic "direct radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Using Surface Remote Sensors to Derive Mixed-Phase Cloud Radiative Forcing:  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Surface Remote Sensors to Derive Mixed-Phase Cloud Radiative Forcing: Using Surface Remote Sensors to Derive Mixed-Phase Cloud Radiative Forcing: An Example from M-PACE Title Using Surface Remote Sensors to Derive Mixed-Phase Cloud Radiative Forcing: An Example from M-PACE Publication Type Journal Article Year of Publication 2011 Authors de Boer, Gijs, William D. Collins, Surabi Menon, and Charles N. Long Journal Atmospheric Chemistry and Physics Volume 11 Start Page 11937 Pagination 11937-11949 Abstract Measurements from ground-based cloud radar, high spectral resolution lidar and microwave radiometer are used in conjunction with a column version of the Rapid Radiative Transfer Model (RRTMG) and radiosonde measurements to derive the surface radiative properties under mixed-phase cloud conditions. These clouds were observed during the United States Department of Energy (US DOE) Atmospheric Radiation Measurement (ARM) Mixed-Phase Arctic Clouds Experiment (M-PACE) between September and November of 2004. In total, sixteen half hour time periods are reviewed due to their coincidence with radiosonde launches. Cloud liquid (ice) water paths are found to range between 11.0-366.4 (0.5-114.1) gm-2, and cloud physical thicknesses fall between 286-2075 m. Combined with temperature and hydrometeor size estimates, this information is used to calculate surface radiative flux densities using RRTMG, which are demonstrated to generally agree with measured flux densities from surface-based radiometric instrumentation. Errors in longwave flux density estimates are found to be largest for thin clouds, while shortwave flux density errors are generally largest for thicker clouds. A sensitivity study is performed to understand the impact of retrieval assumptions and uncertainties on derived surface radiation estimates. Cloud radiative forcing is calculated for all profiles, illustrating longwave dominance during this time of year, with net cloud forcing generally between 50 and 90 Wm-2.

82

Estimation and Model Validation of Surface Solar Radiation and Cloud Radiative Forcing Using TOGA COARE Measurements  

Science Conference Proceedings (OSTI)

The Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) radiation measurements in the western Pacific warm pool are used to estimate surface solar radiation budgets and to validate radiation model ...

Ming-Dah Chou; Wenzhong Zhao

1997-04-01T23:59:59.000Z

83

Aerosol Radiative Forcing Under Cloudless Conditions.in Winter ZCAREX-2001  

NLE Websites -- All DOE Office Websites (Extended Search)

Forcing Under Cloudless Conditions Forcing Under Cloudless Conditions in Winter ZCAREX-2001 G. S. Golitsyn, I. A. Gorchakova, and I. I. Mokhov Institute of Atmospheric Physic Moscow, Russia Introduction Aerosol radiative forcing (ARF) is estimated for winter clear-sky conditions from measurements during ZCAREX-2001-Cloud-Aerosol-Radiation Experiment in February-March, 2001 at the Zvenigorod Scientific Station (ZSS) of the A.M. Obukhov Institute of Atmospheric Physics RAS. ARF in the shortwave range is determined by the difference between the net fluxes of the solar radiation, calculated with and without the aerosol component of the atmosphere. The estimates of ARF are made for conditions with high surface albedo. Data Used The following data of atmospheric characteristics observed during winter are used for the

84

Direct patterning of surface quantum wells with an atomic force J. Cortes Rosa, M. Wendel, H. Lorenz,a)  

E-Print Network (OSTI)

Direct patterning of surface quantum wells with an atomic force microscope J. Cortes Rosa, MAs­AlSb surface quantum wells. Sharp and sturdy electron beam deposited tips are developed to withstand the comparatively high N forces in the direct patterning process. By direct patterning the InAs surface quantum well

Ludwig-Maximilians-Universität, München

85

Anthropogenic NO2 in the Atmosphere: Estimates of the Column Content and Radiative Forcing  

NLE Websites -- All DOE Office Websites (Extended Search)

Anthropogenic NO Anthropogenic NO 2 in the Atmosphere: Estimates of the Column Content and Radiative Forcing A. N. Rublev Institution of Molecular Physics Russian Research Center Kurchatov Institute Moscow, Russia N Chubarova Meteorological Observatory of Moscow State University Moscow, Russia G. Gorchakov Obukhov Institute of Atmospheric Physics Russian Academy of Sciences Moscow, Russia Introduction The work summarizes the different methodical aspects, firstly, the use of atmosphere optical depths presented in Aerosol Robotic Network (AERONET) data for NO 2 column retrievals, and, secondly, its radiative forcing calculated as difference between integral solar fluxes absorbed in the atmosphere with and without NO 2 under given air mass or the sun zenith angle.

86

Periodicity, Thermal Effects, and Vacuum Force: Rotation in Random Classical Zero-Point Radiation  

E-Print Network (OSTI)

We show that for a detector rotating in a random classical zero-point electromagnetic or massless scalar field at T=0 thermal effects exist. The rotating reference system is constructed as an infinite set of Frenet-Seret tetrads defined so that the detector is at rest in a tetrad at each proper time. Correlation functions, more exactly their frequency spectrum, contain the Planck thermal factor, and the energy density the rotating detector observes is proportional to the sum of energy densities of Planck's spectrum at the temperature T_rot = \\hbar \\Omega / (2 \\pi k_B) and zero-point radiation. The proportionality factor is (2/3)(4\\gamma^2 - 1) for an electromagnetic field and (2/9)(4\\gamma^2 - 1) for a massless scalar field, where \\gamma = (1 - (\\Omega r/c)^2)^(-1/2), and r is a detector rotation radius. The origin of these thermal effects is the periodicity of the correlation functions and their discrete spectrum, both following rotation with angular velocity \\Omega. The thermal energy can also be interpreted as a source of a vacuum force, f_vac, applied to the rotating detector from the vacuum field. The f_vac depends on the size of neither the charge nor the mass, like the force in the Casimir model for a charged particle, but, contrary to the last one, it is directed to the center of the circular orbit. The f_vac infinitely grows by magnitude when r \\to r_0 = c/\\Omega, with a fixed \\Omega. The orbits with a radius greater than r_0 do not exist simply because the returning vacuum force becomes infinite. On the uttermost orbit with the radius r_0, a linear velocity of the rotating particle would have become c. The f_vac becomes very small and proportional to r when r is small, r << c/\\aOmega. Such vacuum force dependence on radius, at large and small r, can be associated respectively with so called confinement and asymptotic freedom, known in QCD, and provide a new explanation for them.

Yefim Semenovitch Levin

2010-03-22T23:59:59.000Z

87

Insolation data manual and direct normal solar radiation data manual  

DOE Green Energy (OSTI)

The Insolation Data Manual presents monthly averaged data which describes the availability of solar radiation at 248 National Weather Service (NWS) stations, principally in the United States. Monthly and annual average daily insolation and temperature values have been computed from a base of 24--25 years of data, generally from 1952--1975, and listed for each location. Insolation values represent monthly average daily totals of global radiation on a horizontal surface and are depicted using the three units of measurement: kJ/m{sup 2} per day, Btu/ft{sup 2} per day and langleys per day. Average daily maximum, minimum and monthly temperatures are provided for most locations in both Celsius and Fahrenheit. Heating and cooling degree-days were computed relative to a base of 18.3 C (65 F). For each station, global {bar K}{sub T} (cloudiness index) values were calculated on a monthly and annual basis. Global {bar K}{sub T} is an index of cloudiness and indicates fractional transmittance of horizontal radiation, from the top of the atmosphere to the earth's surface. The second section of this volume presents long-term monthly and annual averages of direct normal solar radiation for 235 NWS stations, including a discussion of the basic derivation process. This effort is in response to a generally recognized need for reliable direct normal data and the recent availability of 23 years of hourly averages for 235 stations. The relative inaccessibility of these data on microfiche further justifies reproducing at least the long-term averages in a useful format. In addition to a definition of terms and an overview of the ADIPA model, a discussion of model validation results is presented.

none,

1990-07-01T23:59:59.000Z

88

A Climatology of Midlatitude Continental Clouds from the ARM SGP Central Facility. Part II: Cloud Fraction and Surface Radiative Forcing  

Science Conference Proceedings (OSTI)

Data collected at the Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Central Facility (SCF) are analyzed to determine the monthly and hourly variations of cloud fraction and radiative forcing between ...

Xiquan Dong; Baike Xi; Patrick Minnis

2006-05-01T23:59:59.000Z

89

The Significance of Cloud–Radiative Forcing to the General Circulation on Climate Time Scales—A Satellite Interpretation  

Science Conference Proceedings (OSTI)

Cloud–radiative forcing calculations based on Nimbus-7 radiation budget and cloudiness measurements reveal that cloud-induced longwave (LW) warming (cloud greenhouse influence) is dominant over the tropics, whereas cloud-induced shortwave (SW) ...

Byung-Ju Sohn; Eric A. Smith

1992-05-01T23:59:59.000Z

90

Periodicity, Thermal Effects, and Vacuum Force: Rotation in Random Classical Zero-Point Radiation  

E-Print Network (OSTI)

We show that, for a detector rotating in a random classical zero-point electromagnetic or massless scalar field at zero temperature, thermal effects exist. The rotating reference system is constructed as an infinite set of Frenet-Seret tetrads so that the detector is at rest in a tetrad at each proper time. Frequency spectrum of correlation functions contains the Planck thermal factor with temperature $T_{rot} = \\frac{\\hbar \\Omega}{2 \\pi k_B} $. The energy density the rotating detector observes is proportional to the sum of energy densities of Planck's spectrum at the temperature $T_{rot}$ and zero-point radiation. The proportionality factor is $2/3 (4 \\gamma^2 -1)$ for an EMF and $2/9 (4 \\gamma^2 -1)$ for a MSF, where $\\gamma = (1 - (\\frac{\\Omega r}{c})^2)^{-1/2}$, and r is a rotation radius. The origin of these thermal effects is the periodicity of the correlation functions and their discrete spectrum, both following rotation with angular velocity $\\Omega$. The thermal energy can also be interpreted as a source of a vacuum force (VF) applied to the rotating detector from the vacuum field. The VF depends on the size of neither the charge nor the mass, like the force in the Casimir model for a charged particle, but, contrary to the last one, VF is attractive and directed to the center of the circular orbit. VF infinitely grows in magnitude with orbit radius. The orbits with a radius greater than $c/ \\Omega$ do not exist because the returning VF becomes infinite. On the uttermost orbit with the radius $c / \\Omega$, a linear velocity of the rotating particle would have become c. The VF becomes very small and proportional to radius when r is very small. Such VF dependence on radius, at large and small radii, can be associated respectively with so called confinement and asymptotic freedom, known in quantum chromodynamics, and provide a new explanation for them.

Yefim Semenovitch Levin

2010-03-23T23:59:59.000Z

91

RCP4.5: A Pathway for Stabilization of Radiative Forcing by 2100  

SciTech Connect

Representative Concentration Pathway (RCP) 4.5 is a scenario that stabilizes radiative forcing at 4.5 W m{sup -2} in the year 2100 without ever exceeding that value. Simulated with the Global Change Assessment Model (GCAM), RCP4.5 includes long-term, global emissions of greenhouse gases, short-lived species, and land-use-land-cover in a global economic framework. RCP4.5 was updated from earlier GCAM scenarios to incorporate historical emissions and land cover information common to the RCP process and follows a cost-minimizing pathway to reach the target radiative forcing. The imperative to limit emissions in order to reach this target drives changes in the energy system, including shifts to electricity, to lower emissions energy technologies and to the deployment of carbon capture and geologic storage technology. In addition, the RCP4.5 emissions price also applies to land use emissions; as a result, forest lands expand from their present day extent. The simulated future emissions and land use were downscaled from the regional simulation to a grid to facilitate transfer to climate models. While there are many alternative pathways to achieve a radiative forcing level of 4.5 W m{sup -2}, the application of the RCP4.5 provides a common platform for climate models to explore the climate system response to stabilizing the anthropogenic components of radiative forcing.

Thomson, Allison M.; Calvin, Katherine V.; Smith, Steven J.; Kyle, G. Page; Volke, April C.; Patel, Pralit L.; Delgado Arias, Sabrina; Bond-Lamberty, Benjamin; Wise, Marshall A.; Clarke, Leon E.; Edmonds, James A.

2011-07-29T23:59:59.000Z

92

Numerical Simulation of Transient Boundary-Forced Radiation. Part II: The Modon Regime  

Science Conference Proceedings (OSTI)

In Part I of the present work we studied the transient Rossby wave radiation excited in the far field by a northern boundary forcing. We proposed as a possible mechanism responsible for transient pulses of Rossby waves the sudden growth to finite ...

Paola Malanotte-Rizzoli; Roberta E. Young; Dale B. Haidvogel

1988-11-01T23:59:59.000Z

93

Dynamic Effects on the Tropical Cloud Radiative Forcing and Radiation Budget  

Science Conference Proceedings (OSTI)

Vertical velocity is used to isolate the effect of large-scale dynamics on the observed radiation budget and cloud properties in the tropics, using the methodology suggested by Bony et al. Cloud and radiation budget quantities in the tropics show ...

Jian Yuan; Dennis L. Hartmann; Robert Wood

2008-06-01T23:59:59.000Z

94

Global Distribution and Climate Forcing of Marine Organic Aerosol - Part 2: Effects on Cloud Properties and Radiative Forcing  

Science Conference Proceedings (OSTI)

A series of simulations with the Community Atmosphere Model version 5 (CAM5) with a 7-mode Modal Aerosol Model were conducted to assess the changes in cloud microphysical properties and radiative forcing resulting from marine organic aerosols. Model simulations show that the anthropogenic aerosol indirect forcing (AIF) predicted by CAM5 is decreased in absolute magnitude by up to 0.09 Wm{sup -2} (7 %) when marine organic aerosols are included. Changes in the AIF from marine organic aerosols are associated with small global increases in low-level incloud droplet number concentration and liquid water path of 1.3 cm{sup -3} (1.5 %) and 0.22 gm{sup -2} (0.5 %), respectively. Areas especially sensitive to changes in cloud properties due to marine organic aerosol include the Southern Ocean, North Pacific Ocean, and North Atlantic Ocean, all of which are characterized by high marine organic emission rates. As climate models are particularly sensitive to the background aerosol concentration, this small but non-negligible change in the AIF due to marine organic aerosols provides a notable link for ocean-ecosystem marine low-level cloud interactions and may be a candidate for consideration in future earth system models.

Gantt, Brett; Xu, Jun; Meskhidze, N.; Zhang, Yang; Nenes, Athanasios; Ghan, Steven J.; Liu, Xiaohong; Easter, Richard C.; Zaveri, Rahul A.

2012-07-25T23:59:59.000Z

95

Tonehole radiation directivity: A comparison of theory to measurements  

E-Print Network (OSTI)

Measurements have been conducted in an anechoic chamber for comparison to current linear acoustic theory for radiation directivity from a cylindrical pipe with toneholes. Time-delay spectrometry using an exponentially swept sine signal was employed to determine impulse responses at points external to the experimental air column. This technique is effective in clearly isolating nonlinear artifacts from the desired linear system response along the time axis, allowing the use of a strong driving signal without fear of nonlinear distortion. The experimental air column was positioned through a wall conduit into the anechoic chamber such that the driver and pipe input were located outside the chamber while the open pipe end and toneholes were inside the chamber, effectively isolating the source from the pickup. Measured results are compared to both frequency-domain, transmissionnetwork simulations, as well as time-domain, digital waveguide calculations. 1

Gary P. Scavone; Matti Karjalainen

2002-01-01T23:59:59.000Z

96

Passive-solar directional-radiating cooling system  

DOE Patents (OSTI)

A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

Hull, J.R.; Schertz, W.W.

1985-06-27T23:59:59.000Z

97

Passive-solar directional-radiating cooling system  

DOE Patents (OSTI)

A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

Hull, John R. (Hinsdale, IL); Schertz, William W. (Batavia, IL)

1986-01-01T23:59:59.000Z

98

Antarctic Cloud Radiative Forcing at the Surface Estimated from the AVHRR Polar Pathfinder and ISCCP D1 Datasets, 1985–93  

Science Conference Proceedings (OSTI)

Surface cloud radiative forcing from the newly extended Advanced Very High Resolution Radiometer (AVHRR) Polar Pathfinder (APP-x) dataset and surface cloud radiative forcing calculated using cloud and surface properties from the International ...

Michael J. Pavolonis; Jeffrey R. Key

2003-06-01T23:59:59.000Z

99

Field Comparisons of Direct and Component Measurements of Net Radiation under Clear Skies  

Science Conference Proceedings (OSTI)

Accurate measurements of net radiation are basic to all studies of the surface energy budget. In preparation for an energy budget experiment significant differences were found between direct and component measurement of net radiation, which ...

Claude E. Duchon; Gregory E. Wilk

1994-02-01T23:59:59.000Z

100

Human Impact on Direct and Diffuse Solar Radiation during the Industrial Era  

Science Conference Proceedings (OSTI)

In this study the direct and diffuse solar radiation changes are estimated, and they contribute to the understanding of the observed global dimming and the more recent global brightening during the industrial era. Using a multistream radiative ...

Maria M. Kvalevåg; Gunnar Myhre

2007-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "direct radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Multi-Dimensional Effects in Longwave Radiative Forcing of PBL Clouds  

NLE Websites -- All DOE Office Websites (Extended Search)

Multi-Dimensional Effects in Longwave Radiative Forcing of PBL Clouds D. B. Mechem and Y. L. Kogan Cooperative Institute for Mesoscale Meteorological Studies University of Oklahoma Norman, Oklahoma M. Ovtchinnikov Pacific Northwest National Laboratory Richland, Washington K. F. Evans University of Colorado Boulder, Colorado A. B. Davis Los Alamos National Laboratory Los Alamos, New Mexico R. F. Cahalan National Aeronautic and Space Administration Goddard Space Flight Center Greenbelt, Maryland E. E. Takara and R. G. Ellingson Florida State University Tallahassee, Florida 1. Introduction Numerical cloud models nearly universally employ one-dimensional (1D) treatments of radiative transfer (RT). Radiative transfer is typically implemented as a 2- or 4-stream approximation to the

102

Electrostatic Potentials in Rhodopseudomonas Wiridis Reaction Centers: Implications for the Driving Force and Directionality of Electron Transfer  

E-Print Network (OSTI)

Force and Directionality of Electron Transfer M. R. Gunner* Department of Physics, City College of New membrane protein to have a structure solved to atomic resolu- tion.4,5 Since then a higher resolution

Gunner, Marilyn

103

Top-of-Atmosphere Direct Radiative Effect of Aerosols over Global Oceans from Merged CERES and MODIS Observations  

Science Conference Proceedings (OSTI)

The direct radiative effect of aerosols (DREA) is defined as the difference between radiative fluxes in the absence and presence of aerosols. In this study, the direct radiative effect of aerosols is estimated for 46 months (March 2000–December ...

Norman G. Loeb; Natividad Manalo-Smith

2005-09-01T23:59:59.000Z

104

The Sensitivity of Latent Heat Flux to Changes in the Radiative Forcing: A Framework for Comparing Models and Observations  

Science Conference Proceedings (OSTI)

A climate model must include an accurate surface physics scheme in order to examine the interactions between the land and atmosphere. Given an increase in the surface radiative forcing, the sensitivity of latent heat flux to available energy ...

Jonathan M. Winter; Elfatih A. B. Eltahir

2010-05-01T23:59:59.000Z

105

The Interactions among Cyclone Dynamics, Vertical Thermodynamic Structure, and Cloud Radiative Forcing in the North Atlantic Summertime Storm Track  

Science Conference Proceedings (OSTI)

This study investigates the changes in the vertical thermodynamic structure of the troposphere associated with the passage of cyclones and the corresponding influence on cloud radiative forcing (CRF). The focus is the synoptic-scale evolution of ...

C. P. Weaver

1999-08-01T23:59:59.000Z

106

Arctic Ocean Radiative Fluxes and Cloud Forcing Estimated from the ISCCP C2 Cloud Dataset, 1983?1990  

Science Conference Proceedings (OSTI)

Radiative fluxes and cloud forcings for the ocean areas of the Arctic are computed from the monthly cloud product of the International Satellite Cloud Climatology Project (ISCCP) for 1983?90. Spatially averaged short-wave fluxes compare well with ...

Axel J. Schweiger; Jeffrey R. Key

1994-08-01T23:59:59.000Z

107

The Sensitivity of Latent Heat Flux to Changes in the Radiative Forcing: A Framework for Comparing Models and Observations  

E-Print Network (OSTI)

A climate model must include an accurate surface physics scheme in order to examine the interactions between the land and atmosphere. Given an increase in the surface radiative forcing, the sensitivity of latent heat flux ...

Winter, Jonathan (Jonathan Mark)

108

Role of radiation reaction forces in the dynamics of centrifugally accelerated particles  

Science Conference Proceedings (OSTI)

In this paper we study the influence of radiation reaction (RR) forces on the dynamics of centrifugally accelerated particles. It is assumed that the particles move along magnetic field lines anchored in the rotating central object. The common 'bead-on-the-wire' approximation is used. The solutions are found and analyzed for cases when the form of the prescribed trajectory (rigidly rotating field line) is approximated by: (a) straight line, and (b) Archimedes spiral. Dynamics of neutral and charged particles are compared with the emphasis on the role of RR forces in the latter case. It is shown that for charged particles there exist locations of stable equilibrium. It is demonstrated that for particular initial conditions RR forces cause centripetal motion of the particles: their 'falling' on the central rotating object. It is found that in the case of Archimedes spiral both neutral and charged particles can reach infinity where their motion has asymptotically force-free character. The possible importance of these processes for the acceleration of relativistic, charged particles by rotating magnetospheres in the context of the generation of nonthermal, high-energy emission of AGN and pulsars is discussed.

Dalakishvili, G. T.; Rogava, A. D.; Berezhiani, V. I. [Eugene Kharadze Georgian National Astrophysical Observatory, 2a Kazbegi Avenue, Tbilisi-0160(Georgia); Ivane Javakhishvili Tbilisi State University, Faculty of Natural and Exact Sciences, Physics Department, 3, Chavchavadze Avenue, 0128 Tbilisi (Georgia); Centre for Plasma Astrophysics, K.U. Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium) and Abdus Salam International Centre for Theoretical Physics, Trieste I-34014 (Italy); Graduate School of Frontier Sciences, University of Tokyo, 5-1-5-Kashiwanoha, Kashiwa-shi, Chiba 277-8561 (Japan); Institute of Physics, 6 Tamarashvili Street., 0177 Tbilisi (Georgia)

2007-08-15T23:59:59.000Z

109

Future directions in therapy of whole body radiation injury  

Science Conference Proceedings (OSTI)

Clinicians have long known that marked granulocytopenia predisposed patients to bacterial infections either from pathogens or commensal organisms with which an individual usually lives in harmony. Evidence that infection was of major importance derives from several observations: (a) clinical observations of bacterial infection in human beings exposed to atomic bomb radiation in Hiroshima and Nagasaki, in reactor accidents, and in large animals dying from radiation exposure, (b) correlative studies on mortality rate, time of death, and incidence of positive culture in animals, (c) challenge of irradiated animals with normally non-virulent organisms, (d) studies of germ free mice and rats, and (e) studies of the effectiveness of antibiotics in reducing mortality rate. General knowledge and sound experimental data on animals and man clearly demonstrated that the sequelae of pancytopenia (bacterial infection, thrombopenic hemorrhage, and anemia) are the lethal factors. A lot of research was required to demonstrate that there were no mysterious radiations toxins, that hyperheparinemia was not a cause of radiation hemorrhage and that radiation hemorrhage could be prevented by fresh platelet transfusions.

Cronkite, E.P.

1989-01-01T23:59:59.000Z

110

Thermal correction to the Casimir force, radiative heat transfer, and an experiment  

E-Print Network (OSTI)

The low-temperature asymptotic expressions for the Casimir interaction between two real metals described by Leontovich surface impedance are obtained in the framework of thermal quantum field theory. It is shown that the Casimir entropy computed using the impedance of infrared optics vanishes in the limit of zero temperature. By contrast, the Casimir entropy computed using the impedance of the Drude model attains at zero temperature a positive value which depends on the parameters of a system, i.e., the Nernst heat theorem is violated. Thus, the impedance of infrared optics withstands the thermodynamic test, whereas the impedance of the Drude model does not. We also perform a phenomenological analysis of the thermal Casimir force and of the radiative heat transfer through a vacuum gap between real metal plates. The characterization of a metal by means of the Leontovich impedance of the Drude model is shown to be inconsistent with experiment at separations of a few hundred nanometers. A modification of the impedance of infrared optics is suggested taking into account relaxation processes. The power of radiative heat transfer predicted from this impedance is several times less than previous predictions due to different contributions from the transverse electric evanescent waves. The physical meaning of low frequencies in the Lifshitz formula is discussed. It is concluded that new measurements of radiative heat transfer are required to find out the adequate description of a metal in the theory of electromagnetic fluctuations.

V. B. Bezerra; G. Bimonte; G. L. Klimchitskaya; V. M. Mostepanenko; C. Romero

2007-08-18T23:59:59.000Z

111

State-Space Realization of the Wave-Radiation Force within FAST: Preprint  

DOE Green Energy (OSTI)

Several methods have been proposed in the literature to find a state-space model for the wave-radiation forces. In this paper, four methods were compared, two in the frequency domain and two in the time domain. The frequency-response function and the impulse response of the resulting state-space models were compared against the ones derived by the numerical code WAMIT. The implementation of the state-space module within the FAST offshore wind turbine computer-aided engineering (CAE) tool was verified, comparing the results against the previously implemented numerical convolution method. The results agreed between the two methods, with a significant reduction in required computational time when using the state-space module.

Duarte, T.; Sarmento, A.; Alves, M.; Jonkman, J.

2013-06-01T23:59:59.000Z

112

Future Direction of Supersonic Combustion Research: Air Force/NASA Workshop on Supersonic Combustion  

Science Conference Proceedings (OSTI)

The Air Force Office of Scientific Research, the Air Force Wright Laboratory Aero Propulsion and Power Directorate, and the NASA Langley Research Center held a joint supersonic combustion workshop on 14-16 May 1996. The intent of this meeting was to: ...

Tishkoff Julian M.; Drummond J. Philip; Edwards T.; Nejad A. S.

1997-01-01T23:59:59.000Z

113

Potential Aerosol Indirect Effects on Atmospheric Circulation and Radiative Forcing through Deep Convection  

Science Conference Proceedings (OSTI)

Aerosol indirect effects, i.e., the interactions of aerosols with clouds by serving as cloud condensation nuclei (CCN) or ice nuclei (IN), constitute the largest uncertainty in climate forcing and projection. Previous IPCC reported aerosol indirect forcing is negative, which does not account for aerosol-convective cloud interactions because the complex processes involved are poorly understood and represented in climate models. Here we report that aerosol indirect effect on deep convective cloud systems can lead to enhanced regional convergence and a strong top-of atmosphere (TOA) warming. Aerosol invigoration effect on convection can result in a strong radiative warming in the atmosphere (+5.6 W m-2) due to strong night-time warming, a lofted latent heating, and a reduced diurnal temperature difference, all of which could remarkably impact regional circulation and modify weather systems. We further elucidated how aerosols change convective intensity, diabatic heating, and regional circulation under different environmental conditions and concluded that wind shear and cloud base temperature play key roles in determining the significance of aerosol invigoration effect for convective systems.

Fan, Jiwen; Rosenfeld, Daniel; Ding, Yanni; Leung, Lai-Yung R.; Li, Zhanqing

2012-05-10T23:59:59.000Z

114

Clear-Sky Direct-Beam Solar Radiation Versus Altitude: A Proposal for Standard Soundings  

Science Conference Proceedings (OSTI)

The author reexamines Klein's (1948) quantitative statements relating clear-sky direct-beam solar radiation to altitude for the lower troposphere, which are of the form (transmissivity) = B + A log (altitude). Klein's summaries are judged to be ...

William P. Lowry

1980-11-01T23:59:59.000Z

115

Realistic assessment of direct radiolysis for synthetic fuels production using fusion radiation sources  

DOE Green Energy (OSTI)

These studies indicate that synthetic fuel production by direct radiolysis cannot compete economically with other production methods. Low G-values and radiation contamination of products are given as reasons. (MOW)

Pendergrass, J.H.; Booth, L.A.; Finch, F.T.; Frank, T.G.

1979-01-01T23:59:59.000Z

116

On the Results of Measurements of the Direct Sun Radiation Flux...  

NLE Websites -- All DOE Office Websites (Extended Search)

On the Results of Measurements of the Direct Sun Radiation Flux by Actinometer and of Maximal Polarization of Sky Brightness in the Solar Almucantar A. Kh. Shukurov, K. A....

117

NRC TLD Direct Radiation Monitoring Network. Progress report, October--December 1996  

SciTech Connect

This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1996. It provides the ambient radiation levels measured in the vicinity of 74 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program. 3 figs., 4 tabs.

Struckmeyer, R.

1997-03-01T23:59:59.000Z

118

NRC TLD Direct Radiation Monitoring Network progress report, October--December 1994. Volume 14, No. 4  

Science Conference Proceedings (OSTI)

This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1994. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program.

Struckmeyer, R.

1995-03-01T23:59:59.000Z

119

The effect of horizontal resolution on cloud radiative forcing in the ECMWF model. PCMDI report No. 22  

SciTech Connect

With expanding computer capability and capacity there has been considerable interest in increasing the resolution in GCMs. The primary driving force behind this are two fold: (1) increased resolution may reduce the systematic errors inherent in parameterization of sub-grid scale processes, and (2) higher resolution may improve confidence in regional scale studies of climatic features that are orographically influenced -- such as the effect of the Tibetan Plateau on the East Asian Monsoon. This study focuses on the effect of horizontal resolution on the spatial and temporal systematic errors of cloud radiative forcing and its components. In this paper, the top-of-the-atmosphere radiation fields are taken from a series of simulations using the European Centre for Medium Range Forecasts (ECMWF) general circulation model (cycle 33), run at four different horizontal resolutions. Section 2 discusses the concept of cloud radiative forcing and describes the simulations from the ECMWF model. The observed global field of cloud forcing from ERBE is presented in section 3 along with the model-produced fields of the net solar and longwave cloud forcing. The seasonal effect of forcing is described in section 4, and the results are summarized in section 5.

Potter, G.L.

1995-05-01T23:59:59.000Z

120

On Aerosol Direct Shortwave Forcing and the Henyey–Greenstein Phase Function  

Science Conference Proceedings (OSTI)

This technical note extends previous Mie calculations to show that there are complex relationships between the asymmetry parameter g and the upscatter fractions for monodirectional incident radiation ?(?0). Except for intermediate zenith angles ...

Olivier Boucher

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "direct radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

The Effect of Directional Radiation Models on the Interpretation of Earth Radiation Budget Measurements  

Science Conference Proceedings (OSTI)

A parameter estimation technique is presented to estimate the radiative flux density distribution over the earn from a set of radiometer measurements at satellite altitude. The technique analyzes measurements from a wide field of view, horizon to ...

Richard N. Green

1980-10-01T23:59:59.000Z

122

Evaluation of Cloud Type Occurrences and Radiative Forcings Simulated by a Cloud Resolving Model Using Observations from Sa...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud Type Occurrences Cloud Type Occurrences and Radiative Forcings Simulated by a Cloud Resolving Model Using Observations from Satellite and Cloud Radar Y. Luo and S. K. Krueger University of Utah Salt Lake City, Utah Introduction Because of both the various effects clouds exert on the earth-atmospheric system and the cloud feedback, correct representations of clouds in numerical models are critical for accurate climate modeling and weather forecast. Unfortunately, determination of clouds and their radiative feedback processes is still the weakest component of current general circulation models (e.g., Senior and Mitchell 1993, Cess et al. 1996). Using radiative fluxes at the top of atmosphere (TOA) available from satellite observations made by the Earth Radiation Budget Experiment (ERBE; Barkstrom 1984), one could assess cloud radiative effects

123

Direct observation and localization of colloidal nanoparticles on patterned surface by capillary forces  

Science Conference Proceedings (OSTI)

Precise localization of nanoparticles is often required to fully exploit the intrinsic physical properties as well as to develop methodologies for large-scale integration of nanodevice building-blocks with the macroscopic world. In this work, a simple ... Keywords: Indexing nanoparticles, Interfacial capillary forces, Nanoparticles wall, Tracking nanoparticles

D. Peyrade; M. Gordon; G. Hyvert; K. Berton; J. Tallal

2006-04-01T23:59:59.000Z

124

Investigation of Aerosol Sources, Lifetime and Radiative Forcing through Multi-Instrument Data Assimilation  

E-Print Network (OSTI)

as clouds reflect solar radiation and trap outgoing CHAPTEReffectively scatter solar radiation, such as sulfate, reduceF o = 1361W/m 2 (Solar Radiation and Climate Experiement (

Rubin, Juli Irene

2012-01-01T23:59:59.000Z

125

Modeling Tropical Pacific Sea Surface Temperature with Satellite-Derived Solar Radiative Forcing  

Science Conference Proceedings (OSTI)

Two independent datasets for the solar radiation at the surface derived from satellites are compared. The data derived from the Earth Radiation Budget Experiment (ERBE) is for the net solar radiation at the surface whereas the International ...

Richard Seager; M. Benno Blumenthal

1994-12-01T23:59:59.000Z

126

Higher Fourier Harmonics of the Directional Distribution of an Equilibrium Wave Field under Steady Wind Forcing  

Science Conference Proceedings (OSTI)

Recently, directional wave spectra have been obtained by applying the two-dimensional fast Fourier transform (2D FFT) to the three-dimensional spatial topography of ocean surface waves collected by an airborne scanning laser ranging system during ...

David W. Wang; Paul A. Hwang

2003-01-01T23:59:59.000Z

127

Massively parallel direct numerical simulations of forced compressible turbulence: a hybrid MPI/OpenMP approach  

Science Conference Proceedings (OSTI)

A highly scalable simulation code for turbulent flows which solves the fully compressible Navier-Stokes equations is presented. The code, which supports one, two and three dimensional domain decompositions is shown to scale well on up to 262,144 cores. ... Keywords: direct numerical simulations, multilevel parallelism, parallel performance, turbulent flows

Shriram Jagannathan; Diego A. Donzis

2012-07-01T23:59:59.000Z

128

Direct Environmental Penetrating Radiation Data Summaries from DPRNET at Los Alamos National Laboratory  

DOE Data Explorer (OSTI)

Naturally occurring external penetrating radiation originates from terrestrial and cosmic sources in the form of gamma rays, neutral particles, and charged particles. Human-made radiation consists of the same types of radiation. To evaluate natural and human-made direct penetrating radiation (DPR) in the ambient environment, LANL's environmental monitoring program uses thermoluminescent dosimeters (TLDs). Read the overview (from which this text is copied) at http://www.lanl.gov/environment/air/dprnet.shtml for an understanding of cosmic, terrestrial, and man-made DPR. LANL maintains a network of more than 100 data collecting stations. These stations are on-site, at the perimeters of the site, and in communities located throughout the region. They also include seven albedo TLDs. Quarterly dose summaries for each station are available in tabular form 1999 through the present. Annual dose summaries date back to 1974.

129

Aerosol Characterization and Direct Radiative Forcing Assessment over the Ocean. Part I: Methodology and Sensitivity Analysis  

Science Conference Proceedings (OSTI)

A method based on the synergistic use of low earth orbit (LEO) and geostationary earth orbit (GEO) satellite data for aerosol-type characterization, as well as aerosol optical thickness (AOT) retrieval and monitoring over the ocean, is presented. ...

Maria João Costa; Ana Maria Silva; Vincenzo Levizzani

2004-12-01T23:59:59.000Z

130

The Competition of Freshwater and Radiation in Forcing the Ocean during El Niño  

Science Conference Proceedings (OSTI)

The relative roles of heat and freshwater fluxes in forcing the tropical Pacific on interannual timescales are investigated using sophisticated atmospheric and oceanic general circulation models.

Niklas Schneider; Tim P. Barnett

1995-05-01T23:59:59.000Z

131

Using an AGCM to diagnose historical effective radiative forcing and mechanisms of recent decadal climate change  

Science Conference Proceedings (OSTI)

An atmospheric general circulation model is forced with observed monthly sea-surface-temperature and sea-ice boundary conditions, as well as forcing agents that vary in time, for the period 1979-2008. The simulations are then repeated with various ...

Timothy Andrews

132

Hydrothermal research and development assessment. Task Force report: projections for direct-heat applications  

DOE Green Energy (OSTI)

Low and moderate temperature hydrothermal resources suitable for direct-heat applications have been identified in 37 states. The extent to which three resources might be used over the next 20 years were evaluated and the probable impact of Federal programs on hydrothermal resource utilization was assessed. The use types that comprise the bulk of the market were determined. Representative firms and municipalities were interviewed to determine their willingness to use hydrothermal energy, and to determine the investment decision criteria that would influence their actions. (MHR)

Not Available

1982-04-01T23:59:59.000Z

133

An Improved Multipyranometer Array for the Measurement of Direct and Diffuse Solar Radiation  

E-Print Network (OSTI)

This paper describes an improved multipyranometer array (MPA) for the continuous remote measurement of direct and diffuse solar radiation. The MPA described in this paper is an improvement over previously published MPA studies due to the incorporation of an artificial horizon that prevents reflected ground radiation from striking the tilted sensors. In this paper a description of the NIST-traceable calibration facility is provided and preliminary results are presented that compare the MPA predicted beam to beam measurements from a precision normal incidence pyrheliometer and diffuse measurements from a precision shadow-band pyranometer respectively.

Munger, B.; Haberl, J. S.

1994-01-01T23:59:59.000Z

134

Radiation Stress Estimators  

Science Conference Proceedings (OSTI)

The radiation stresses Sij associated with the propagation of wind-generated waves are principal driving forces for several important surf-zone processes. The accurate estimation of the onshore flux of longshore-directed mean momentum Syx, using ...

S. S. Pawka; D. L. Inman; R. T. Guza

1983-09-01T23:59:59.000Z

135

An improved multipyranometer array for the measurement of direct and diffuse solar radiation  

E-Print Network (OSTI)

This thesis describes the development of an improved multipyranometer array (NDA) for the continuous remote measurement of direct and diff-use solar radiation. The NWA described in this thesis is an improvement over previously published MPA studies due to the incorporation of an artificial horizon that prevents reflected ground radiation from striking the tilted sensors, the development of an improved solution scheme for the calculation of the beam and diff-use solar radiation components, and the development of an empirical spectral correction for the photovoltaic-type sensors used in the NWA. In this thesis a description of the NIST-traceable calibration facility is provided and results are presented that compare the NWA predicted beam to beam measurements from a precision normal incidence pyrheliometer.

Munger, Bryce Kirtley

1997-01-01T23:59:59.000Z

136

An Improved Multipyranometer Array for the Measurement of Direct and Diffuse Solar Radiation  

E-Print Network (OSTI)

This thesis describes the development of an improved multipyranometer array (MPA) for the continuous remote measurement of direct and diffuse solar radiation. The MPA described in this thesis is an improvement over previously published MPA studies due to the incorporation of an artificial horizon that prevents reflected ground radiation from striking the tilted sensors, the development of an improved solution scheme for the calculation of the beam and diffuse solar radiation components, and the development of an empirical spectral correction for the photovoltaic-type sensors used in the MPA. In this thesis a description of the NIST-traceable calibration facility is provided and results are presented that compare the MPA predicted beam to beam measurements from a precision normal incidence pyrheliometer.

Munger, Bryce Kirtley

1997-12-01T23:59:59.000Z

137

The Response of the Southern Hemisphere Atmospheric Circulation to an Enhanced Greenhouse Gas Forcing  

Science Conference Proceedings (OSTI)

The response of the atmospheric circulation to an enhanced radiative greenhouse gas forcing is investigated. It has been proposed that the response of the climate system to an enhanced forcing projects directly onto the preexisting natural modes ...

Jenny Brandefelt; Erland Källén

2004-11-01T23:59:59.000Z

138

Comparison of Direct Normal Irradiance Derived from Silicon and Thermopile Global Hemispherical Radiation Detectors: Preprint  

DOE Green Energy (OSTI)

Concentrating solar applications utilize direct normal irradiance (DNI) radiation, a measurement rarely available. The solar concentrator industry has begun to deploy numerous measurement stations to prospect for suitable system deployment sites. Rotating shadowband radiometers (RSR) using silicon photodiodes as detectors are typically deployed. This paper compares direct beam estimates from RSR to a total hemispherical measuring radiometer (SPN1) multiple fast thermopiles. These detectors simultaneously measure total and diffuse radiation from which DNI can be computed. Both the SPN1 and RSR-derived DNI are compared to DNI measured with thermopile pyrheliometers. Our comparison shows that the SPN1 radiometer DNI estimated uncertainty is somewhat greater than, and on the same order as, the RSR DNI estimates for DNI magnitudes useful to concentrator technologies.

Myers, D. R.

2010-01-01T23:59:59.000Z

139

A scattering approach to Casimir forces and radiative heat transfer for nanostructured surfaces out of thermal equilibrium  

E-Print Network (OSTI)

We develop an exact method for computing Casimir forces and the power of radiative heat transfer between two arbitrary nanostructured surfaces out of thermal equilibrium. The method is based on a generalization of the scattering approach recently used in investigations on the Casimir effect. Analogously to the equilibrium case, we find that also out of thermal equilibrium the shape and composition of the surfaces enter only through their scattering matrices. The expressions derived provide exact results in terms of the scattering matrices of the intervening surfaces.

Giuseppe Bimonte

2009-09-11T23:59:59.000Z

140

Radiation Control Coatings Installed on Federal Buildings at Tyndall Air Force Base  

DOE Green Energy (OSTI)

The technical objectives of this CRADA comprise technology deployment and energy conservation efforts with the radiation control coatings industry and the utility sector. The results of this collaboration include a high-level data reporting, analysis and management system to support the deployment efforts. The technical objectives include successfully install, commission, operate, maintain and document the performance of radiation control coatings on roofs at Tyndall AFB and the Buildings Technology Center at the Oak Ridge National Laboratory; determine the life cycle savings that can be achieved by using radiation control coatings on entire roofs at Tyndall AFB, based on documented installed cost and operating maintenance costs with and without the coatings; determine if any specific improvements are required in the coatings before they can be successfully deployed in the federal sector; determine the most effective way to facilitate the widespread and rapid deployment of radiation control coatings in the federal sector; and clearly define any barriers to deployment.

Kaba, R.L.; Petrie, T.W.

1999-03-16T23:59:59.000Z

Note: This page contains sample records for the topic "direct radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Relationship between Cloud Radiative Forcing and Sea Surface Temperatures over the Entire Tropical Oceans  

Science Conference Proceedings (OSTI)

Satellite measurements from January 1985 to December 1989 show that warmer tropical oceans as a whole are associated with less longwave greenhouse effect of clouds and less cloud reflection of solar radiation to the space. The regression slopes ...

M. H. Zhang; R. D. Cess; S. C. Xie

1996-06-01T23:59:59.000Z

142

An Aerosol Climatology at Kyoto: Observed Local Radiative Forcing and Columnar Optical Properties  

Science Conference Proceedings (OSTI)

In order to evaluate the radiative effect of the atmospheric aerosol at Kyoto, Japan, surface solar irradiance and columnar aerosol optical properties were observed in the period between September 1998 and December 2001. The aerosol optical ...

Takahiro Yabe; Robert Höller; Susumu Tohno; Mikio Kasahara

2003-06-01T23:59:59.000Z

143

Gravity Wave Radiation and Mean Responses to Local Body Forces in the Atmosphere  

Science Conference Proceedings (OSTI)

The authors determine the spectral linear solutions that arise in response to local 3D body forces and heatings in an idealized environment that turn on and off smoothly but not necessarily slowly over a finite interval in time. The solutions ...

Sharon L. Vadas; David C. Fritts

2001-08-01T23:59:59.000Z

144

Role of aerosols in radiative forcing of climate change: Global mean and uncertainties  

SciTech Connect

Anthropogenically induced climate change is of great current interest because of increases in atmospheric loading of infrared active (greenhouse) gases over the past 150 years and the inferred resultant increase in infrared radiation flux in the troposphere. However, the climate change ascribed to such increases, not to mention predictions of future climate change in response to prospective changes in the earth`s radiation budget, is based virtually entirely on climate model simulations of how the earth`s climate would respond to changes in radiation rather than on empirically established relationships between changes in the earth`s radiation budget and climate change. There is thus an urgent need to evaluate the performance of climate models to ascertain the accuracy with which they represent the changes in temperature and other indicia of climate that have been observed over the industrial period. Such an evaluation, however, requires an accurate assessment of the totality of changes in the earth`s radiation budget in both the longwave (thermal infrared) and shortwave (solar) spectral regions, not just of changes in the longwave due to increased concentrations of long-lived greenhouse gases.

Schwartz, S.E.

1998-10-01T23:59:59.000Z

145

Cloud shading direct solar radiation model for the Crosbyton Solar Power Project  

DOE Green Energy (OSTI)

The CSPP was initiated to study the feasibility of using hemispheric bowl solar collectors for power generation. A non-spectral direct solar radiation (DSR) model was developed to aid in determining whether there exists a preferred spacing of these solar collectors based solely on meteorological considerations. The DSR model is applicable to the Northern Hemisphere and, with a few adjustments, to the Southern Hemisphere. The DSR model considers the reduction of direct insolation through the atmosphere due to Rayleigh scattering, uniformly mixed gases, ozone, precipitable water, and aerosols. It incorporates geographical information along with temperature, dew point, barometric pressure, and visibility data, updated every 15 minutes. This clear sky DSR model was verified against actual direct insolation data.

Peterson, R.E.; Smalley, D.J.

1985-06-01T23:59:59.000Z

146

Atmospheric Teleconnection over Eurasia Induced by Aerosol Radiative Forcing during Boreal Spring  

Science Conference Proceedings (OSTI)

The direct effects of aerosols on global and regional climate during boreal spring are investigated based on numerical simulations with the NASA Global Modeling and Assimilation Office finite-volume general circulation model (fvGCM) with ...

Maeng-Ki Kim; William K. M. Lau; Mian Chin; Kyu-Myong Kim; Y. C. Sud; Greg K. Walker

2006-09-01T23:59:59.000Z

147

Computation of Domain-Averaged Shortwave Irradiance by a One-Dimensional Algorithm Incorporating Correlations between Optical Thickness and Direct Incident Radiation  

Science Conference Proceedings (OSTI)

A one-dimensional radiative transfer algorithm that accounts for correlations between the optical thickness and the incident direct solar radiation is developed to compute the domain-averaged shortwave irradiance profile. It divides the direct ...

Seiji Kato

2003-01-01T23:59:59.000Z

148

Variation of Direct Beam Solar Radiation in the United States Due to the El Chichon Debris Cloud  

Science Conference Proceedings (OSTI)

Direct beam hourly solar radiation values, measured near solar noon under clear skies, were used to show the decrease in radiation in the United States caused by the debris cloud from the El Chichon volcanic eruption of March/April 1982. Maximum ...

W. H. Hoecker; G. F. Cotton; E. C. Flowers

1985-01-01T23:59:59.000Z

149

NRC TLD Direct Radiation Monitoring Network. Volume 15, No. 4: Quarterly progress report, October--December 1995  

Science Conference Proceedings (OSTI)

This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1995. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program.

Struckmeyer, R.

1996-03-01T23:59:59.000Z

150

On the Theory of Continuous-Spin Particles: Helicity Correspondence in Radiation and Forces  

E-Print Network (OSTI)

We have recently shown that continuous-spin particles (CSPs) have covariant single-emission amplitudes with the requisite properties to mediate long-range forces. CSPs, the most general massless particle type consistent with Lorentz symmetry, are characterized by a scale \\rho. Here, we demonstrate a helicity correspondence at CSP energies larger than \\rho, in which these amplitudes are well approximated by the familiar ones for particles of helicity 0, 1, or 2. These properties follow from Lorentz invariance. We also construct tree-level multi-emission and CSP-exchange amplitudes that are unitary, appropriately analytic, and consistent with helicity-0 correspondence. We propose sewing rules from which these amplitudes and others can be obtained. We also exhibit a candidate CSP-graviton matrix element, which shows that the Weinberg-Witten theorem does not apply to CSPs. These results raise the surprising possibility that the known long-range forces might be mediated by CSPs with very small \\rho, rather than by...

Schuster, Philip

2013-01-01T23:59:59.000Z

151

On the Theory of Continuous-Spin Particles: Helicity Correspondence in Radiation and Forces  

E-Print Network (OSTI)

We have recently shown that continuous-spin particles (CSPs) have covariant single-emission amplitudes with the requisite properties to mediate long-range forces. CSPs, the most general massless particle type consistent with Lorentz symmetry, are characterized by a scale \\rho. Here, we demonstrate a helicity correspondence at CSP energies larger than \\rho, in which these amplitudes are well approximated by the familiar ones for particles of helicity 0, 1, or 2. These properties follow from Lorentz invariance. We also construct tree-level multi-emission and CSP-exchange amplitudes that are unitary, appropriately analytic, and consistent with helicity-0 correspondence. We propose sewing rules from which these amplitudes and others can be obtained. We also exhibit a candidate CSP-graviton matrix element, which shows that the Weinberg-Witten theorem does not apply to CSPs. These results raise the surprising possibility that the known long-range forces might be mediated by CSPs with very small \\rho, rather than by helicity 1 and 2 particles.

Philip Schuster; Natalia Toro

2013-02-06T23:59:59.000Z

152

Brazil Direct Normal Solar Radiation Model (40km) from INPE and LABSOLAR |  

Open Energy Info (EERE)

40km) from INPE and LABSOLAR 40km) from INPE and LABSOLAR Dataset Summary Description (Abstract): Normal direct solar radiation in kWh/m2/day for 1 year organized into cells with 40km x 40km (Purpose): To provide a set of consistent, reliable, verifiable, and accessible global data sets for international and in-country investors and other stakeholders (Supplemental Information): The BRASIL-SR model and the SPRING software (both developed by INPE - National Institute for Space Research) were used to produce the dataset and SHAPE files. The assessment of reliability levels of the BRASIL-SR model were performed through the evaluation of the deviations shown by the estimated values for solar radiation flux vis-à-vis the values measured at the surface (ground truth). This evaluation was done in two phases. The first phase consisted in an inter-comparison between the core radiation transfer models adopted by the SWERA Project to map the solar energy in the various countries participating in the project. The HELIOSAT model took part in this phase like benchmark due to its employment to map solar energy resources in countries from European Union. In the second phase, the solar flux estimates provided by the BRASIL-SR model were compared with measured values acquired at several solarimetric stations spread along the Brazilian territory.

153

Brazil Direct Normal Solar Radiation Model (10km) from INPE and LABSOLAR |  

Open Energy Info (EERE)

10km) from INPE and LABSOLAR 10km) from INPE and LABSOLAR Dataset Summary Description (Abstract): Normal direct solar radiation in kWh/m2/day for 1 year organized into cells with 10km x 10km (Purpose): The BRASIL-SR model and the SPRING software (both developed by INPE - National Institute for Space Research) were used to produce the dataset and SHAPE files (Supplemental Information): The assessment of reliability levels of the BRASIL-SR model were performed through the evaluation of the deviations shown by the estimated values for solar radiation flux vis-à-vis the values measured at the surface (ground truth). This evaluation was done in two phases. The first phase consisted in an inter-comparison between the core radiation transfer models adopted by the SWERA Project to map the solar energy in the various countries participating in the project. The HELIOSAT model took part in this phase like benchmark due to its employment to map solar energy resources in countries from European Union. In the second phase, the solar flux estimates provided by the BRASIL-SR model were compared with measured values acquired at several solarimetric stations spread along the Brazilian territory

154

DIRECT NUMERICAL SIMULATION OF RADIATION PRESSURE-DRIVEN TURBULENCE AND WINDS IN STAR CLUSTERS AND GALACTIC DISKS  

SciTech Connect

The pressure exerted by the radiation of young stars may be an important feedback mechanism that drives turbulence and winds in forming star clusters and the disks of starburst galaxies. However, there is great uncertainty in how efficiently radiation couples to matter in these high optical depth environments. In particular, it is unclear what levels of turbulence the radiation can produce, and whether the infrared radiation trapped by the dust opacity can give rise to heavily mass-loaded winds. In this paper, we report a series of two-dimensional flux-limited diffusion radiation-hydrodynamics calculations performed with the code ORION in which we drive strong radiation fluxes through columns of dusty matter confined by gravity in order to answer these questions. We consider both systems where the radiation flux is sub-Eddington throughout the gas column, and those where it is super-Eddington at the midplane but sub-Eddington in the atmosphere. In the latter, we find that the radiation-matter interaction gives rise to radiation-driven Rayleigh-Taylor instability, which drives supersonic turbulence at a level sufficient to fully explain the turbulence seen in Galactic protocluster gas clouds, and to make a non-trivial contribution to the turbulence observed in starburst galaxy disks. However, the instability also produces a channel structure in which the radiation-matter interaction is reduced compared to time-steady analytic models because the radiation field is not fully trapped. For astrophysical parameters relevant to forming star clusters and starburst galaxies, we find that this effect reduces the net momentum deposition rate in the dusty gas by a factor of {approx}2-6 compared to simple analytic estimates, and that in steady state the Eddington ratio reaches unity and there are no strong winds. We provide an approximation formula, appropriate for implementation in analytic models and non-radiative simulations, for the force exerted by the infrared radiation field in this regime.

Krumholz, Mark R. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Thompson, Todd A., E-mail: krumholz@ucolick.org, E-mail: thompson@astronomy.ohio-state.edu [Department of Astronomy and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210-1173 (United States)

2012-12-01T23:59:59.000Z

155

Self-Force in the Radiation Reaction Formula -- Adiabatic Approximation of a Metric Perturbation and an Orbit --  

E-Print Network (OSTI)

We propose a new metric perturbation scheme under a possible constraint of the gauge conditions in which we obtain a physically expected prediction of the orbital evolution caused by the MiSaTaQuWa self-force. In this new scheme of a metric perturbation, an adiabatic approximation is applied to both the metric perturbation and the orbit. As a result, we are able to predict the gravitational evolution of the system in the so-called radiation reaction time scale, which is longer than the dephasing time scale. However, for gravitational wave detection by LISA, this may still be insufficient. We further consider a gauge transformation in this new metric perturbation scheme, and find a special gauge condition with which we can calculate the gravitational waveform of a time scale long enough for gravitational wave detection by LISA.

Yasushi Mino

2005-05-31T23:59:59.000Z

156

Determination of the most probable slip surface in 3D slopes considering the effect of earthquake force direction  

Science Conference Proceedings (OSTI)

Considering the effect of earthquake forces on stability of slopes has always been of crucial importance in seismic analysis of geotechnical structures like dams, roads and embankments and there has been much concern about stability of cuts, fills and ... Keywords: 3D slopes, Earthquake force inclination, Stability analysis

A. Ahangar-Asr; M. M. Toufigh; A. Salajegheh

2012-08-01T23:59:59.000Z

157

Original article: Lumped-parameter-based thermal analysis of a doubly radial forced-air-cooled direct-driven permanent magnet wind generator  

Science Conference Proceedings (OSTI)

A lumped-parameter-based thermal analysis of a direct-driven permanent magnet wind generator with double radial forced-air cooling is presented. In the proposed thermal model, the thermal conduction and convection as well as the heating of the cooling ... Keywords: Air cooling, Permanent magnet synchronous generator, Thermal analysis, Thermal resistance networks

Janne Nerg, Vesa Ruuskanen

2013-04-01T23:59:59.000Z

158

The spatial distribution of mineral dust and its shortwave radiative forcing over North Africa: Modeling sensitivities to dust emissions and aerosol size treatments  

Science Conference Proceedings (OSTI)

A fully coupled meteorology-chemistry-aerosol model (WRF-Chem) with the implementation of two dust emission schemes (GOCART and DUSTRAN) into two aerosol models (MADE/SORGAM and MOSAIC) is applied over North Africa to investigate the modeling sensitivities to dust emissions and aerosol size treatments in simulating mineral dust and its shortwave (SW) radiative forcing. Model results of the spatial distribution of mineral dust and its radiative forcing are evaluated using measurements from the AMMA SOP0 campaign in January and February of 2006 over North Africa. Our study suggests that the size distribution of emitted dust can result in significant differences (up to 100%) in simulating mineral dust and its SW radiative forcing. With the same dust emission and dry deposition processes, two aerosol models, MADE/SORGAM and MOSAIC, can yield large difference in size distributions of dust particles due to their different aerosol size treatments using modal and sectional approaches respectively. However, the difference between the two aerosol models in simulating the mass concentrations and the SW radiative forcing of mineral dust is small (< 10%). The model simulations show that mineral dust increases AOD by a factor of 2, heats the lower atmosphere (1-3 km) with a maximum rate of 0.7?0.5 K day-1 below 1 km, and reduces the downwelling SW radiation by up to 25 W m-2 on 24-hour average at surface, highlighting the importance of including dust radiative impact in understanding the regional climate of North Africa. When compared to the available measurements, WRF-Chem simulations can generally capture the measured features of mineral dust and its radiative properties over North Africa, suggesting that the model can be used to perform more extensive simulations of regional climate over North Africa.

Zhao, Chun; Liu, Xiaohong; Leung, Lai-Yung R.; Johnson, Ben; McFarlane, Sally A.; Gustafson, William I.; Fast, Jerome D.; Easter, Richard C.

2010-09-20T23:59:59.000Z

159

Direct measurements of the effects of salt and surfactant on interaction forces between colloidal particles at water-oil interfaces  

E-Print Network (OSTI)

The forces between colloidal particles at a decane-water interface, in the presence of low concentrations of a monovalent salt (NaCl) and of the surfactant sodium dodecylsulfate (SDS) in the aqueous subphase, have been studied using laser tweezers. In the absence of electrolyte and surfactant, particle interactions exhibit a long-range repulsion, yet the variation of the interaction for different particle pairs is found to be considerable. Averaging over several particle pairs was hence found to be necessary to obtain reliable assessment of the effects of salt and surfactant. It has previously been suggested that the repulsion is consistent with electrostatic interactions between a small number of dissociated charges in the oil phase, leading to a decay with distance to the power -4 and an absence of any effect of electrolyte concentration. However, the present work demonstrates that increasing the electrolyte concentration does yield, on average, a reduction of the magnitude of the interaction force with electrolyte concentration. This implies that charges on the water side also contribute significantly to the electrostatic interactions. An increase in the concentration of SDS leads to a similar decrease of the interaction force. Moreover the repulsion at fixed SDS concentrations decreases over longer times. Finally, measurements of three-body interactions provide insight into the anisotropic nature of the interactions. The unique time-dependent and anisotropic interactions between particles at the oil-water interface allow tailoring of the aggregation kinetics and structure of the suspension structure.

B. J. Park; J. P. Pantina; E. Furst; M. Oettel; S. Reynaert; J. Vermant

2007-09-07T23:59:59.000Z

160

Greenhouse impact due to the use of combustible fuels: Life cycle viewpoint and relative radiative forcing commitment  

SciTech Connect

Extensive information on the greenhouse impacts of various human actions is important in developing effective climate change mitigation strategies. The greenhouse impacts of combustible fuels consist not only of combustion emissions but also of emissions from the fuel production chain and possible effects on the ecosystem carbon storages. It is important to be able to assess the combined, total effect of these different emissions and to express the results in a comprehensive way. In this study, a new concept called relative radiative forcing commitment (RRFC) is presented and applied to depict the greenhouse impact of some combustible fuels currently used in Finland. RRFC is a ratio that accounts for the energy absorbed in the Earth system due to changes in greenhouse gas concentrations (production and combustion of fuel) compared to the energy released in the combustion of fuel. RRFC can also be expressed as a function of time in order to give a dynamic cumulative picture on the caused effect. Varying time horizons can be studied separately, as is the case when studying the effects of different climate policies on varying time scales. The RRFC for coal for 100 years is about 170, which means that in 100 years 170 times more energy is absorbed in the atmosphere due to the emissions of coal combustion activity than is released in combustion itself. RRFC values of the other studied fuel production chains varied from about 30 (forest residues fuel) to 190 (peat fuel) for the 100-year study period. The length of the studied time horizon had an impact on the RRFC values and, to some extent, on the relative positions of various fuels.

Kirkinen, J.; Palosuo, T.; Holmgren, K.; Savolainen, I. [VTT Technical Research Center Finland, Espoo (Finland)

2008-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "direct radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Inertia–Gravity Wave and Neutral Eady Wave Trains Forced by Directionally Sheared Flow over Isolated Hills  

Science Conference Proceedings (OSTI)

Analytical solutions are obtained to the linearized equations describing a particular class of directionally sheared flow over isolated hills or ridges. The flows are characterized by constant buoyancy frequency and vertical wind shear, though ...

Glenn Shutts

2003-02-01T23:59:59.000Z

162

Ionizing Radiation Dosimetry  

Science Conference Proceedings (OSTI)

Ionizing Radiation Dosimetry. ... OH. US Air Force Radiation Dosimetry Laboratory, Wright-Patterson - Base, OH [100548- 0] PA. ...

2013-09-06T23:59:59.000Z

163

Radiative Effects on Particle Acceleration via Relativistic Electromagnetic Expansion  

E-Print Network (OSTI)

We study the radiation effect on the diamagnetic relativistic pulse accelerator (DPRA) in two-and-half-dimensional particle-in-cell (PIC) plasma simulation with magnetized electron-positron plasmas. Radiation damping force is self-consistently calculated for each particle, which reduces the acceleration force and converts particle energy to radiation. The emitted radiation is strongly linearly polarized and peaked within few degrees from the direction of Poynting flux due to the relativistic acceleration by the DPRA.

Noguchi, K; Nishimura, K; Noguchi, Koichi; Liang, Edison; Nishimura, Kazumi

2004-01-01T23:59:59.000Z

164

Enhancing VHTR Passive Safety and Economy with Thermal Radiation Based Direct Reactor Auxiliary Cooling System  

Science Conference Proceedings (OSTI)

One of the most important requirements for Gen. IV Very High Temperature Reactor (VHTR) is passive safety. Currently all the gas cooled version of VHTR designs use Reactor Vessel Auxiliary Cooling System (RVACS) for passive decay heat removal. The decay heat first is transferred to the core barrel by conduction and radiation, and then to the reactor vessel by thermal radiation and convection; finally the decay heat is transferred to natural circulated air or water systems. RVACS can be characterized as a surface based decay heat removal system. The RVACS is especially suitable for smaller power reactors since small systems have relatively larger surface area to volume ratio. However, RVACS limits the maximum achievable power level for modular VHTRs due to the mismatch between the reactor power (proportional to volume) and decay heat removal capability (proportional to surface area). When the relative decay heat removal capability decreases, the peak fuel temperature increases, even close to the design limit. Annular core designs with inner graphite reflector can mitigate this effect; therefore can further increase the reactor power. Another way to increase the reactor power is to increase power density. However, the reactor power is also limited by the decay heat removal capability. Besides the safety considerations, VHTRs also need to be economical in order to compete with other reactor concepts and other types of energy sources. The limit of decay heat removal capability set by using RVACS has affected the economy of VHTRs. A potential alternative solution is to use a volume-based passive decay heat removal system, called Direct Reactor Auxiliary Cooling Systems (DRACS), to remove or mitigate the limitation on decay heat removal capability. DRACS composes of natural circulation loops with two sets of heat exchangers, one on the reactor side and another on the environment side. For the reactor side, cooling pipes will be inserted into holes made in the outer or inner graphite reflector blocks. There will be gaps between these cooling pipes and their corresponding surrounding graphite surfaces. Graphite has an excellent heat conduction property. By taking advantage of this feature, we can have a volume-based method to remove decay heat. The scalability can be achieved, if needed, by employing more rows of cooling pipes to accommodate higher decay heat rates. Since heat can easily conduct through the graphite regions between the holes made for the cooling pipes, those cooling pipes located further away from the active core region can still be very effective in removing decay heat. By removing the limit on the decay heat removal capability due to the limited available surface area as in a RVACS, the reactor power and power density can be significantly increased, without losing the passive heat removal feature. This paper will introduce the concept of using DRACS to enhance VHTR passive safety and economics. Three design options will be discussed, depending on the cooling pipe locations. Analysis results from a lumped volume based model and CFD simulations will be presented.

Haihua Zhao; Hongbin Zhang; Ling Zou; Xiaodong Sun

2012-06-01T23:59:59.000Z

165

Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. III. Radiation reaction for binary systems with spinning bodies  

E-Print Network (OSTI)

Using post-Newtonian equations of motion for fluid bodies that include radiation-reaction terms at 2.5 and 3.5 post-Newtonian (PN) order (O[(v/c)^5] and O[(v/c)^7] beyond Newtonian order), we derive the equations of motion for binary systems with spinning bodies. In particular we determine the effects of radiation-reaction coupled to spin-orbit effects on the two-body equations of motion, and on the evolution of the spins. For a suitable definition of spin, we reproduce the standard equations of motion and spin-precession at the first post-Newtonian order. At 3.5PN order, we determine the spin-orbit induced reaction effects on the orbital motion, but we find that radiation damping has no effect on either the magnitude or the direction of the spins. Using the equations of motion, we find that the loss of total energy and total angular momentum induced by spin-orbit effects precisely balances the radiative flux of those quantities calculated by Kidder et al. The equations of motion may be useful for evolving inspiraling orbits of compact spinning binaries.

Clifford M. Will

2005-02-09T23:59:59.000Z

166

Model Assessment of the Ability of MODIS to Measure Top-of-Atmosphere Direct Radiative Forcing from Smoke Aerosols  

Science Conference Proceedings (OSTI)

The new generation of satellite sensors such as the moderate resolution imaging spectroradiometer (MODIS) will be able to detect and characterize global aerosols with an unprecedented accuracy. The question remains whether this accuracy will be ...

Lorraine A. Remer; Yoram J. Kaufman; Zev Levin; Steven Ghan

2002-02-01T23:59:59.000Z

167

Recommended mission directed goals for electric vehicle battery research and development. The task force on electric vehicle battery goals  

SciTech Connect

Research and development goal packages were developed for the state-of-the-art, flow-through, and bipolar lead-acid batteries, nickel/iron, nickel/zinc, nickel/cadmium, zinc/bromine, iron/air, lithium/iron sulfide, and sodium/sulfur technologies. Since each battery must satisfy mission power/energy requirements throughout every cycle of its operating life, the principal ''design point'' is the end-of-life condition. Since all batteries exhibit deteriorating performance with age, excess kWh capacity of 20 to 30 percent is required early in life. The Battery Panel first identified present state-of-the-art performance characteristics and design interrelationships for each battery technology, and projected the degree of advance expected by 1995. Near-term and 1995 design tradeoffs were modeled using the EVA computerized system developed by ANL. The next step was to target each battery system for a single range (80, 120 or 160 km), depending on its projected 1995 capabilities. For each battery, baseline calculations were carried out assuming the maximum battery weight (695 kg) to be on board. In addition to performance, life, and cost goals, development targets were also established for efficiency, maintenance, and allowable self-discharge rate. The Task Force attempted to establish battery cost requirements, assuming economic parity (in 1995) with other modes of transportation.

Not Available

1986-03-01T23:59:59.000Z

168

Equilibrium Response of an Atmosphere–Mixed Layer Ocean Model to Different Radiative Forcing Agents: Global and Zonal Mean Response  

Science Conference Proceedings (OSTI)

The equilibrium response to various forcing agents, including CO2, solar irradiance, tropospheric ozone, black carbon, organic carbon, sulfate, and volcanic aerosols, is investigated using an atmospheric general circulation model coupled to a ...

Masakazu Yoshimori; Anthony J. Broccoli

2008-09-01T23:59:59.000Z

169

Comparison of Spectrally Resolved Outgoing Longwave Radiation over the Tropical Pacific between 1970 and 2003 Using IRIS, IMG, and AIRS  

Science Conference Proceedings (OSTI)

The observation of changes in the earth’s spectrally resolved outgoing longwave radiation (OLR) provides a direct method of determining changes in the radiative forcing of the climate system. An earlier study showed that satellite-observed ...

J. A. Griggs; J. E. Harries

2007-08-01T23:59:59.000Z

170

Transmission of Solar Radiation by Clouds over Snow and Ice Surfaces. Part II: Cloud Optical Depth and Shortwave Radiative Forcing from Pyranometer Measurements in the Southern Ocean  

Science Conference Proceedings (OSTI)

Downward solar irradiance at the sea surface, measured on several voyages of an icebreaker in the Southern Ocean, is used to infer transmittance of solar radiation by clouds. Together with surface albedo estimated from coincident hourly sea ice ...

Melanie F. Fitzpatrick; Stephen G. Warren

2005-11-01T23:59:59.000Z

171

3-D nonlinear force-free field reconstruction of solar active region 11158 by direct boundary integral equation  

E-Print Network (OSTI)

A 3-D coronal magnetic field is reconstructed for NOAA 11158 on Feb 14, 2011. A GPU-accelerated direct boundary integral equation (DBIE) method is implemented. This is about 1000 times faster than the original DBIE used on solar NLFFF modeling. Using the SDO/HMI vector magnetogram as the bottom boundary condition, the reconstructed magnetic field lines are compared with the projected EUV loop structures from different views three-dimensionally by SDO/AIA and STEREO A/B spacecraft simultaneously for the first time. They show very good agreement so that the topological configurations of the magnetic fields can be analyzed, thus its role in the flare process of the active region can be better understood. A quantitative comparison with some stereoscopically reconstructed coronal loops shows that the present averaged misalignment angles are at the same order as the state-of-the-art results obtained with reconstructed coronal loops as prescribed conditions and better than other NLFFF methods. It is found that the o...

Wang, Rui; Tan, Baolin

2013-01-01T23:59:59.000Z

172

Annual Forcing of the Surface Radiation Balance Diurnal Cycle Measured from a High Tower near Boulder, Colorado  

Science Conference Proceedings (OSTI)

The radiation balance consisting of upward and downward components of solar and thermal infrared broadband irradiances is continuously measured from the top of a 300-m tower situated on the Colorado high plains. The data are representative of a ...

Ellsworth G. Dutton

1990-12-01T23:59:59.000Z

173

The Influence of the 1998 El Niño upon Cloud-Radiative Forcing over the Pacific Warm Pool  

Science Conference Proceedings (OSTI)

Clouds cool the climate system by reflecting shortwave radiation and warm it by increasing the atmospheric greenhouse. Previous studies have shown that in tropical regions of deep convection there is a near cancellation between cloud-induced ...

Robert D. Cess; Minghua Zhang; Bruce A. Wielicki; David F. Young; Xue-Long Zhou; Yuri Nikitenko

2001-05-01T23:59:59.000Z

174

The Influence of Solar Zenith Angle and Cloud Type on Cloud Radiative Forcing at the Surface in the Arctic  

Science Conference Proceedings (OSTI)

Measurements of the long- and shortwave incident radiation taken from the USCGC Polar Sea during a research cruise to the Northeast Water Polynya during the summer of 1993 are analyzed together with observations of cloud type and amount to ...

Peter J. Minnett

1999-01-01T23:59:59.000Z

175

Response of the NCAR Community Climate Model to the Radiative Forcing by the Naturally Occurring Tropospheric Aerosol  

Science Conference Proceedings (OSTI)

We insert the effect of naturally occurring tropospheric aerosols on solar radiation into the NCAR Community Climate Model (CCM). The effect of the aerosol depends on concentration and type (continental, maritime), surface albedo, solar zenith ...

James A. Coakley Jr.; Robert D. Cess

1985-08-01T23:59:59.000Z

176

Optical Radiation  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Optical Radiation Measurements. Fees for services are located directly below the technical contacts ...

2013-04-09T23:59:59.000Z

177

Ionizing Radiation  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Ionizing Radiation Measurements. Fees for services are located directly below the technical contacts ...

2013-04-09T23:59:59.000Z

178

Development of Simplified Calculations for a Multipyranometer Array for the Measurement of Direct and Diffuse Solar Radiation  

E-Print Network (OSTI)

This paper describes the development of simplified procedures for a multipyranometer array (MPA) for the continuous measurement of direct and diffuse solar radiation. The MPA described in this paper is an improvement over previously published MPA studies due several new features, including: the incorporation of an artificial horizon that prevents reflected ground radiation from striking the tilted sensors, and a routine that corrects the spectral response of photovoltaic-type sensors used in the MPA. An optimal solution procedure has also been developed that eliminates invalid data which are inherent in the simultaneous solution of the solar equations from the four MPA sensors. In this paper a description of the NIST-traceable calibration facility is provided and results are presented that compare the improved MPA-predicted beam to side-by-side measurements from a precision Normal Incidence Pyrheliometer (NIP).

Munger, B. K.; Haberl, J. S.

2000-01-01T23:59:59.000Z

179

Robustness of Dynamical Feedbacks from Radiative Forcing: 2% Solar versus 2 × CO2 Experiments in an Idealized GCM  

Science Conference Proceedings (OSTI)

Despite the differences in the spatial patterns of the external forcing associated with a doubling CO2 and with a 2% solar variability, the final responses in the troposphere and at the surface in a three-dimensional general circulation model ...

Ming Cai; Ka-Kit Tung

2012-07-01T23:59:59.000Z

180

The direct measurement of ablation pressure driven by 351-nm laser radiation  

Science Conference Proceedings (OSTI)

The instantaneous scaling of ablation pressure to laser intensity is directly inferred for ramp compression of diamond targets irradiated by 351-nm light. Continuously increasing pressure profiles from 100 to 970 GPa are produced by direct-drive laser ablation at intensities up to 7 x 10{sup 13} W/cm{sup 2}. The free-surface velocity on the rear of the target is used to directly infer the instantaneous ablation-pressure profile at the front of the target. The laser intensity on target is determined by laser power measurements and fully characterized laser spots. The ablation pressure is found to depend on the laser intensity as P(GPa)=42({+-}3)[I(TW/cm{sup 2})]{sup 0.71({+-}0.01)}.

Fratanduono, D. E. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Mechanical Engineering, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Boehly, T. R. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Celliers, P. M.; Eggert, J. H.; Smith, R. F.; Hicks, D. G.; Collins, G. W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Barrios, M. A. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Physics and Astronomy, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Meyerhofer, D. D. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Mechanical Engineering, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Physics and Astronomy, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States)

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "direct radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Arctic Stratus Cloud Properties and Radiative Forcing Derived from Ground-Based Data Collected at Barrow, Alaska  

Science Conference Proceedings (OSTI)

A record of single-layer and overcast low-level Arctic stratus cloud properties has been generated using data collected from May to September 2000 at the Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) (71.3°N, 156.6°W) site ...

Xiquan Dong; Gerald G. Mace

2003-02-01T23:59:59.000Z

182

Influence of the Upper-Tropospheric Wind Shear upon Cloud Radiative Forcing in the Asian Monsoon Region  

Science Conference Proceedings (OSTI)

Using the top-of-the-atmosphere radiative flux and cloud data from satellites, as well as atmospheric data from NCEP–NCAR reanalysis, this paper investigates the reason for the unusually large high-cloud amount in the Asian monsoon region during ...

V. Sathiyamoorthy; P. K. Pal; P. C. Joshi

2004-07-01T23:59:59.000Z

183

Atmospheric Radiation Measurement Program Science Plan Current Status and Future Directions of the ARM Science Program  

SciTech Connect

The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: • Maintain the data record at the fixed ARM sites for at least the next five years. • Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square. • Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds. • Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations. • Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites. • Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale. • Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote facilities at ARM’s Tropical Western Pacific and the North Slope of Alaska sites. Over time, this new facility will extend ARM science to a much broader range of conditions for model testing.

TP Ackerman; AD Del Genio; RG Ellingson; RA Ferrare; SA Klein; GM McFarquhar; PJ Lamb; CN Long; J Verlinde

2004-10-30T23:59:59.000Z

184

Electron acceleration and emission in a field of a plane and converging dipole wave of relativistic amplitudes with the radiation reaction force taken into account  

SciTech Connect

A comparative analysis is performed of the electron emission characteristics as the electrons move in laser fields with ultra-relativistic intensity and different configurations corresponding to a plane or tightly focused wave. For a plane travelling wave, analytical expressions are derived for the emission characteristics, and it is shown that the angular distribution of the radiation intensity changes qualitatively even when the wave intensity is much less than that in the case of the radiation-dominated regime. An important conclusion is drawn that the electrons in a travelling wave tend to synchronised motion under the radiation reaction force. The characteristic features of the motion of electrons are found in a converging dipole wave, associated with the curvature of the phase front and nonuniformity of the field distribution. The values of the maximum achievable longitudinal momenta of electrons accelerated to the centre, as well as their distribution function are determined. The existence of quasi-periodic trajectories near the focal region of the dipole wave is shown, and the characteristics of the emission of both accelerated and oscillating electrons are analysed. (extreme light fields and their applications)

Bashinov, Aleksei V; Gonoskov, Arkady A; Kim, A V; Marklund, Mattias; Mourou, G; Sergeev, Aleksandr M

2013-04-30T23:59:59.000Z

185

DIRECT EVIDENCE FOR TERMINATION OF OBSCURED STAR FORMATION BY RADIATIVELY DRIVEN OUTFLOWS IN REDDENED QSOs  

SciTech Connect

We present optical to far-infrared photometry of 31 reddened QSOs that show evidence for radiatively driven outflows originating from active galactic nuclei (AGNs) in their rest-frame UV spectra. We use these data to study the relationships between the AGN-driven outflows, and the AGN and starburst infrared luminosities. We find that FeLoBAL QSOs are invariably IR-luminous, with IR luminosities exceeding 10{sup 12} L{sub Sun} in all cases. The AGN supplies 76% of the total IR emission, on average, but with a range from 20% to 100%. We find no evidence that the absolute luminosity of obscured star formation is affected by the AGN-driven outflows. Conversely, we find an anticorrelation between the strength of AGN-driven outflows, as measured from the range of outflow velocities over which absorption exceeds a minimal threshold, and the contribution from star formation to the total IR luminosity, with a much higher chance of seeing a starburst contribution in excess of 25% in systems with weak outflows than in systems with strong outflows. Moreover, we find no convincing evidence that this effect is driven by the IR luminosity of the AGN. We conclude that radiatively driven outflows from AGNs can have a dramatic, negative impact on luminous star formation in their host galaxies. We find that such outflows act to curtail star formation such that star formation contributes less than {approx}25% of the total IR luminosity. We also propose that the degree to which termination of star formation takes place is not deducible from the IR luminosity of the AGN.

Farrah, Duncan [Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH (United Kingdom); Urrutia, Tanya [Leibniz Institute for Astrophysics, An der Sternwarte 16, 14482 Potsdam (Germany); Lacy, Mark; Lonsdale, Carol [NRAO, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Efstathiou, Andreas [School of Sciences, European University Cyprus, Diogenes Street, Engomi, Nicosia (Cyprus); Afonso, Jose [Observatorio Astronomico de Lisboa, Faculdade de Ciencias, Universidade de Lisboa, Tapada da Ajuda, 1349-018 Lisbon (Portugal); Coppin, Kristen [Department of Physics, McGill University, Ernest Rutherford Building, 3600 Rue University, Montreal, Quebec, H3A 2T8 (Canada); Hall, Patrick B. [Department of Physics and Astronomy, York University, 4700 Keele Street, Toronto, ON M3J 1P3 (Canada); Jarrett, Tom; Borys, Colin [Infrared Processing and Analysis Center, MS220-6, California Institute of Technology, Pasadena, CA 91125 (United States); Bridge, Carrie [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Petty, Sara [UCLA, Physics and Astronomy Building, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095 (United States)

2012-02-01T23:59:59.000Z

186

Radiation Shielding Analysis for Direct Use of Spent Pressurized Water Reactor Fuel in CANDU Reactors (DUPIC)  

Science Conference Proceedings (OSTI)

As a part of the compatibility analysis of DUPIC fuel in Canada deuterium uranium (CANDU) reactors, the radiation physics calculations have been performed for the CANDU primary shielding system, which was originally designed for natural uranium core. At first, the conventional CANDU primary shield analysis method was validated using the Monte Carlo code MCNP-4B in order to assess the current analysis code system and the cross-section data. The computational benchmark calculation was performed for the CANDU end shield system, which has shown that the conventional method produces results consistent with the reference calculations as far as the total dose rate and total heat deposition rate are concerned. Second, the primary shield system analysis was performed for the DUPIC fuel core based on the power distribution obtained from the time-average core model, and the results have shown that the dose rates and heat deposition rates through the primary shield of the DUPIC fuel core are not much different from those of the natural uranium core because the power levels on the core periphery are similar for both cores. This study has shown that the current primary shield system is adaptable for the DUPIC fuel CANDU core without design modification.

Roh, Gyuhong; Choi, Hangbok [Korea Atomic Energy Research Institute (Korea, Republic of)

2004-06-15T23:59:59.000Z

187

Radiative Effects on Particle Acceleration in Electromagnetic Dominated Outflows  

E-Print Network (OSTI)

Plasma outflows from gamma-ray bursts (GRB), pulsar winds, relativistic jets, and ultra-intense laser targets radiate high energy photons. However, radiation damping is ignored in conventional PIC simulations. In this letter, we study the radiation damping effect on particle acceleration via Poynting fluxes in two-and-half-dimensional particle-in-cell (PIC) plasma simulation of electron-positron plasmas. Radiation damping force is self-consistently calculated for each particle and reduces the net acceleration force. The emitted radiation is peaked within a few degrees from the direction of Poynting flux and strongly linear-polarized.

Koichi Noguchi; Edison Liang; Kazumi Nishimura

2004-12-14T23:59:59.000Z

188

Influence of 21st century atmospheric and sea surface temperature forcing on West African climate  

SciTech Connect

he persistence of extended drought events throughout West Africa during the 20th century has motivated a substantial effort to understand the mechanisms driving African climate variability, as well as the possible response to elevated greenhouse gas (GHG) forcing. We use an ensemble of global climate model experiments to examine the relative roles of future direct atmospheric radiative forcing and SST forcing in shaping potential future changes in boreal summer precipitation over West Africa. We find that projected increases in precipitation throughout the Western Sahel result primarily from direct atmospheric radiative forcing. The changes in atmospheric forcing generate a slight northward displacement and weakening of the African easterly jet (AEJ), a strengthening of westward monsoon flow onto West Africa and an intensification of the tropical easterly jet (TEJ). Alternatively, we find that the projected decreases in precipitation over much of the Guinea Coast region are caused by SST changes that are induced by the atmospheric radiative forcing. The changes in SSTs generate a weakening of the monsoon westerlies and the TEJ, as well as a decrease in low-level convergence and resultant rising air throughout the mid levels of the troposphere. Our experiments suggest a potential shift in the regional moisture balance of West Africa should global radiative forcing continue to increase, highlighting the importance of climate system feedbacks in shaping the response of regional-scale climate to global-scale changes in radiative forcing.

Skinner, Chris B [Stanford University; Ashfaq, Moetasim [ORNL; Diffenbaugh, Noah [Stanford University

2011-01-01T23:59:59.000Z

189

Radiators  

SciTech Connect

A heat-exchange radiator is connected to a fluid flow circuit by a connector which provides one member of an interengageable spigot and socket pair for push-fit, fluid-tight, engagement between the connector and the radiator, with latching formations at least one of which is resilient. Preferably the connector carries the spigot which tapers and engages with a socket of corresponding shape, the spigot carrying an O-ring seal and either latching fingers or a resilient latching circlip.

Webster, D. M.

1985-07-30T23:59:59.000Z

190

Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. IV. Radiation reaction for binary systems with spin-spin coupling  

E-Print Network (OSTI)

Using post-Newtonian equations of motion for fluid bodies that include radiation-reaction terms at 2.5 and 3.5 post-Newtonian (PN) order O[(v/c)^5] and O[(v/c)^7] beyond Newtonian order), we derive the equations of motion for binary systems with spinning bodies, including spin-spin effects. In particular we determine the effects of radiation-reaction coupled to spin-spin effects on the two-body equations of motion, and on the evolution of the spins. We find that radiation damping causes a 3.5PN order, spin-spin induced precession of the individual spins. This contrasts with the case of spin-orbit coupling, where there is no effect on the spins at 3.5PN order. Employing the equations of motion and of spin precession, we verify that the loss of total energy and total angular momentum induced by spin-spin effects precisely balances the radiative flux of those quantities calculated by Kidder et al.

Han Wang; Clifford M. Will

2007-01-08T23:59:59.000Z

191

Nuclear forces  

Science Conference Proceedings (OSTI)

These lectures present an introduction into the theory of nuclear forces. We focus mainly on the modern approach

2013-01-01T23:59:59.000Z

192

A study of longwave radiation codes for climate studies: Validation with ARM observations and tests in general circulation models. Final report, September 15, 1990--October 31, 1994  

SciTech Connect

DOE has launched a major initiative -- the Atmospheric Radiation Measurements (ARM) Program -- directed at improving the parameterization of the physics governing cloud and radiative processes in general circulation models (GCMs). One specific goal of ARM is to improve the treatment of radiative transfer in GCMs under clear-sky, general overcast and broken cloud conditions. In 1990, the authors proposed to contribute to this goal by attacking major problems connected with one of the dominant radiation components of the problem -- longwave radiation. In particular, their long-term research goals are to: develop an optimum longwave radiation model for use in GCMs that has been calibrated with state-of-the-art observations, assess the impact of the longwave radiative forcing in a GCM, determine the sensitivity of a GCM to the radiative model used in it, and determine how the longwave radiative forcing contributes relatively when compared to shortwave radiative forcing, sensible heating, thermal advection and expansion.

Ellingson, R.G.; Baer, F.

1998-09-01T23:59:59.000Z

193

Inherent fluctuation-mediated equivalent force drives directional motions of nanoscale asymmetric particles -- Surf-riding of asymmetric molecules in thermal fluctuations  

E-Print Network (OSTI)

Using a simple theoretical model of a nanoscale asymmetric particle/molecule with asymmetric structure or/and asymmetric charge distribution, here using a charge dipole as an example, we show that there is unidirectional transportation mediated by non-white fluctuations if the asymmetric orientation of the particle/molecule is constrained. This indicates the existence of an inherent equivalent force, which drives the particle/molecule itself along the orientation of the asymmetric particle in the environment of fluctuations. In practical systems, equivalent force also exist in the asymmetric molecules, such as water and ethanol, at the ambient condition since thermal fluctuations are not white anymore at nanoscale [Wan, R., J. Hu, and H. Fang, Sci. China Phys. Mech. Astron. 2012, 55, 751]. Molecular dynamic simulations show that there is unidirectional transportation of an ultrathin water layer on solid surface at room temperature when the orientations of water molecules have a preference. The finding will play an essential role in the understanding of the world from a molecular view and the developing of novel technology for various nanoscale and bulk applications, such as chemical separation, water treatment, sensing and drug delivery.

Yusong Tu; Nan Sheng; Rongzheng Wan; Haiping Fang

2013-07-23T23:59:59.000Z

194

Surface Forcing of the Infrared Cooling Profile over the Tibetan Plateau. Part I: Influence of Relative Longwave Radiative Heating at High Altitude  

Science Conference Proceedings (OSTI)

The role of the Tibetan Plateau on the behavior of the surface longwave radiation budget is examined, and the behavior of the vertical profile of longwave cooling over the plateau, including its diurnal variation, is quantified. The investigation ...

Eric A. Smith; Lei Shi

1992-05-01T23:59:59.000Z

195

The Vertical Structure of Cloud Occurrence and Radiative Forcing at the SGP ARM Site as Revealed by 8 Years of Continuous Data  

Science Conference Proceedings (OSTI)

Data collected at the Atmospheric Radiation Measurement (ARM) Program ground sites allow for the description of the atmospheric thermodynamic state, cloud occurrence, and cloud properties. This information allows for the derivation of estimates ...

Gerald G. Mace; Sally Benson

2008-06-01T23:59:59.000Z

196

Radiation and Ozone  

Science Conference Proceedings (OSTI)

Radiation is the driving force for the general circulation of the atmosphere and controls the Earth's climate. Ozone is responsible for the warm stratosphere and protects life on Earth from harmful solar ultraviolet radiation. In July 1959, the ...

G. Ohring; R. D. Bojkov; H-J. Bolle; R. D. Hudson; H. Volkert

2009-11-01T23:59:59.000Z

197

OOTW Force Design Tools  

Science Conference Proceedings (OSTI)

This report documents refined requirements for tools to aid the process of force design in Operations Other Than War (OOTWs). It recommends actions for the creation of one tool and work on other tools relating to mission planning. It also identifies the governmental agencies and commands with interests in each tool, from whom should come the user advisory groups overseeing the respective tool development activities. The understanding of OOTWs and their analytical support requirements has matured to the point where action can be taken in three areas: force design, collaborative analysis, and impact analysis. While the nature of the action and the length of time before complete results can be expected depends on the area, in each case the action should begin immediately. Force design for OOTWs is not a technically difficult process. Like force design for combat operations, it is a process of matching the capabilities of forces against the specified and implied tasks of the operation, considering the constraints of logistics, transport and force availabilities. However, there is a critical difference that restricts the usefulness of combat force design tools for OOTWs: the combat tools are built to infer non-combat capability requirements from combat capability requirements and cannot reverse the direction of the inference, as is required for OOTWs. Recently, OOTWs have played a larger role in force assessment, system effectiveness and tradeoff analysis, and concept and doctrine development and analysis. In the first Quadrennial Defense Review (QDR), each of the Services created its own OOTW force design tool. Unfortunately, the tools address different parts of the problem and do not coordinate the use of competing capabilities. These tools satisfied the immediate requirements of the QDR, but do not provide a long-term cost-effective solution.

Bell, R.E.; Hartley, D.S.III; Packard, S.L.

1999-05-01T23:59:59.000Z

198

Relative Accuracy of 1-Minute and Daily Total Solar Radiation Data for 12 Global and 4 Direct Beam Solar Radiometers  

Science Conference Proceedings (OSTI)

We evaluated the relative performance of 12 global and four direct beam solar radiometers deployed at a single site over a 12-month period. Test radiometer irradiances were compared with a reference irradiance consisting of either an absolute cavity radiometer (during calibrations) or a low uncertainty thermopile pyrheliometer (during the evaluation period) for pyrheliometers; and for pyranometers a reference global irradiance computed from the reference pyrheliometer and diffuse irradiance from a shaded pyranometer. One minute averages of 3-second data for 12 months from the test instrument measurements were compared with the computed reference data set. Combined uncertainty in the computed reference irradiance is 1.8% {+-} 0.5%. Total uncertainty in the pyranometer comparisons is {+-}2.5%. We show mean percent difference between reference global irradiance and test pyranometer 1 minute data as a function of zenith angle, and percent differences between daily totals for the reference and test irradiances as a function of day number. We offer no explicit conclusion about the performance of instrument models, as a general array of applications with a wide range of instrumentation and accuracy requirements could be addressed with any of the radiometers.

Myers, D.; Wilcox, S. M.

2009-01-01T23:59:59.000Z

199

Radiation dose reconstruction US occupation forces in Hiroshima and Nagasaki, Japan, 1945-1946. Final report 1 March-6 August 80  

Science Conference Proceedings (OSTI)

Upper limit dose estimates (internal and external) are determined for those units of the U.S. occupation forces assigned to Hiroshima or Nagasaki following the detonations of atomic weapons in those two cities. In the absence of specific maneuver and patrol data, these dose estimates are based on the maximum recorded activity levels with exposure over the entire stay period for each unit. The upper limit external dose is .03 rem for Hiroshima and .08 rem for Nagasaki. For the Nishiyama area, the upper limit is 0.63 rem. The dose from internal emitters (inhalation and ingestion) is considerably less. There is no basis for assuming that any individual in the occupation units received these upper limit doses.

McRaney, W.; McGahan, J.

1980-08-06T23:59:59.000Z

200

Radiation properties of cavity Cerenkov radiation  

SciTech Connect

Cerenkov radiation from cavities has been analyzed by quantum electrodynamic theory. Analytical expressions of basic radiation properties such as the Einstein's A and B coefficients are derived and shown to be directly modified by the cavities. The analysis leads to the conclusion that the coherent radiation from the Cerenkov radiation devices is due to super radiance of spontaneous emission instead of stimulated emission. Coherent and incoherent radiations are analyzed in the THz radiation range.

Gao Ju; Shen Fang [Electrical and Computer Engineering Department, University of Illinois, Urbana, Illinois 61801 (United States)

2006-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "direct radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

RADIATION DETECTOR  

DOE Patents (OSTI)

A radiation detector of the type is described wherein a condenser is directly connected to the electrodes for the purpose of performing the dual function of a guard ring and to provide capacitance coupling for resetting the detector system.

Wilson, H.N.; Glass, F.M.

1960-05-10T23:59:59.000Z

202

Possible Influence of Anthropogenic Aerosols on Cirrus Clouds and Anthropogenic Forcing  

DOE Green Energy (OSTI)

Cirrus clouds have a net warming effect on the atmosphere and cover about 30% of the Earth’s area. Aerosol particles initiate ice formation in the upper troposphere through modes of action that include homogeneous freezing of solution droplets, heterogeneous nucleation on solid particles immersed in a solution, and deposition nucleation of vapor onto solid particles. Here, we examine the possible change in ice number concentration from anthropogenic soot originating from surface sources of fossil fuel and biomass burning, from anthropogenic sulfate aerosols, and from aircraft that deposit their aerosols directly in the upper troposphere. We find that fossil fuel and biomass burning soot aerosols exert a radiative forcing of -0.68 to 0.01 Wm-2 while anthropogenic sulfate aerosols exert a forcing of -0.01 to 0.18 Wm-2. Our calculations show that the sign of the forcing by aircraft soot depends on the model configuration and can be both positive or negative, ranging from -0.16 to 0.02 Wm-2. The magnitude of the forcing in cirrus clouds can be comparable to the forcing exerted by anthropogenic aerosols on warm clouds, but this forcing has not been included in past assessments of the total anthropogenic radiative forcing of climate.

Penner, Joyce E.; Chen, Yang; Wang, Minghuai; Liu, Xiaohong

2009-02-03T23:59:59.000Z

203

MEASUREMENT AND ANALYSIS OF CIRCUMSOLAR RADIATION  

E-Print Network (OSTI)

Character of Solar and Circumsolar Radiation. Proceedings ~all of the direct solar radiation (that originating from thethat attenuate the solar radiation available to terres-

Grether, Donald

2013-01-01T23:59:59.000Z

204

MEASUREMENT AND ANALYSIS OF CIRCUMSOLAR RADIATION  

E-Print Network (OSTI)

all of the direct solar radiation (that originating from thea suitable site for solar radiation measurements. A requestused to estimate the solar radiation per unit wavelength at

Grether, D.F.

2013-01-01T23:59:59.000Z

205

Climate Feedbacks in CCSM3 under Changing CO2 Forcing. Part II: Variation of Climate Feedbacks and Sensitivity with Forcing  

Science Conference Proceedings (OSTI)

Are equilibrium climate sensitivity and the associated radiative feedbacks a constant property of the climate system, or do they change with forcing magnitude and base climate? Using the radiative kernel technique, feedbacks and climate ...

Alexandra K. Jonko; Karen M. Shell; Benjamin M. Sanderson; Gokhan Danabasoglu

2013-05-01T23:59:59.000Z

206

What is Force  

Science Conference Proceedings (OSTI)

... force may be balanced by an opposing force so that no energy is expended ... The unit of force is the Newton (N). By definition, the newton is the force ...

2011-10-03T23:59:59.000Z

207

Registration, Force Protection Equipment Demonstration - May 2009 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Registration, Force Protection Equipment Demonstration - May 2009 Registration, Force Protection Equipment Demonstration - May 2009 Registration, Force Protection Equipment Demonstration - May 2009 May 2009 Demonstrating commercially availale physical security/force protection soultions around the world The bombing of Khobar Towers in Saudi Arabia on 25 June 1996 revealed the need for continal vigilance and protection againist terrorist forces intent on harming US personnel and interests. The Chairman if the Joint Chiefs of Staff directed the Services to investigate COTS equipments solutions for physical security/force protection needs. The Office of the Under Secretary of Defense for Acquistion, Technology, and Logistics (OUSD {at&l}) tasked the Office of the US Army Product Manager, force Protection Systems (PM-FPS), to coordiante and facilitate a Force Protection Equipment

208

Direct nuclear pumped laser  

DOE Patents (OSTI)

There is provided a direct nuclear pumped gas laser in which the lasing mechanism is collisional radiated recombination of ions. The gas laser active medium is a mixture of the gases, with one example being neon and nitrogen.

Miley, George H. (Champagne, IL); Wells, William E. (Urbana, IL); DeYoung, Russell J. (Hampton, VA)

1978-01-01T23:59:59.000Z

209

Directional gamma detector  

DOE Patents (OSTI)

An improved directional gamma radiation detector has a collector sandwiched etween two layers of insulation of varying thicknesses. The collector and insulation layers are contained within an evacuated casing, or emitter, which releases electrons upon exposure to gamma radiation. Delayed electrons and electrons entering the collector at oblique angles are attenuated as they pass through the insulation layers on route to the collector.

LeVert, Francis E. (Downers Grove, Knoxville, TN); Cox, Samson A. (Downers Grove, IL)

1981-01-01T23:59:59.000Z

210

Boundary-Forced Nonlinear Planetary Radiation  

Science Conference Proceedings (OSTI)

In recent years there has been renewed interest in the Gulf Stream system and its interaction with the mesoscale oceanic eddy field. An important question, not yet adequately addressed, concern the possible generation mechanisms of the mesoscale ...

Paola Malanotte-Rizzoli

1984-06-01T23:59:59.000Z

211

Observed Aerosol Radiative Forcings: Comparison for Natural...  

NLE Websites -- All DOE Office Websites (Extended Search)

are from 1997, when the El Nio suppressed the rainfall in that region and biomass burning was widespread in the area. These observations are compared to those observed during...

212

426 JOURNAL OF CLIMATE VOLUME 16 Solar and Greenhouse Gas Forcing and Climate Response in the Twentieth Century  

E-Print Network (OSTI)

Ensemble experiments with a global coupled climate model are performed for the twentieth century with time-evolving solar, greenhouse gas, sulfate aerosol (direct effect), and ozone (tropospheric and stratospheric) forcing. Observed global warming in the twentieth century occurred in two periods, one in the early twentieth century from about the early 1900s to the 1940s, and one later in the century from, roughly, the late 1960s to the end of the century. The model’s response requires the combination of solar and anthropogenic forcing to approximate the early twentieth-century warming, while the radiative forcing from increasing greenhouse gases is dominant for the response in the late twentieth century, confirming previous studies. Of particular interest here is the model’s amplification of solar forcing when this acts in combination with anthropogenic forcing. This difference is traced to the fact that solar forcing is more spatially heterogeneous (i.e., acting most strongly in areas where sunlight reaches the surface) while greenhouse gas forcing is more spatially uniform. Consequently, solar forcing is subject to coupled regional feedbacks involving the combination of temperature gradients, circulation regimes, and clouds. The magnitude of these feedbacks depends on the climate’s base state. Over relatively cloud-free oceanic regions in the subtropics, the enhanced solar forcing produces greater evaporation. More moisture then converges into the precipitation convergence zones, intensifying the regional monsoon and

unknown authors

2001-01-01T23:59:59.000Z

213

Application of Improved Radiation Modeling to General Circulation Models  

SciTech Connect

This research has accomplished its primary objectives of developing accurate and efficient radiation codes, validating them with measurements and higher resolution models, and providing these advancements to the global modeling community to enhance the treatment of cloud and radiative processes in weather and climate prediction models. A critical component of this research has been the development of the longwave and shortwave broadband radiative transfer code for general circulation model (GCM) applications, RRTMG, which is based on the single-column reference code, RRTM, also developed at AER. RRTMG is a rigorously tested radiation model that retains a considerable level of accuracy relative to higher resolution models and measurements despite the performance enhancements that have made it possible to apply this radiation code successfully to global dynamical models. This model includes the radiative effects of all significant atmospheric gases, and it treats the absorption and scattering from liquid and ice clouds and aerosols. RRTMG also includes a statistical technique for representing small-scale cloud variability, such as cloud fraction and the vertical overlap of clouds, which has been shown to improve cloud radiative forcing in global models. This development approach has provided a direct link from observations to the enhanced radiative transfer provided by RRTMG for application to GCMs. Recent comparison of existing climate model radiation codes with high resolution models has documented the improved radiative forcing capability provided by RRTMG, especially at the surface, relative to other GCM radiation models. Due to its high accuracy, its connection to observations, and its computational efficiency, RRTMG has been implemented operationally in many national and international dynamical models to provide validated radiative transfer for improving weather forecasts and enhancing the prediction of global climate change.

Michael J Iacono

2011-04-07T23:59:59.000Z

214

Blackbody radiation drag on a relativistically moving mirror  

E-Print Network (OSTI)

We compute the drag force on a mirror moving at relativistic velocity relative to blackbody radiation background.

N. R. Balasanyan; V. E. Mkrtchian

2009-07-14T23:59:59.000Z

215

Efficiency of Mixing Forced by Unsteady Shear Flow  

Science Conference Proceedings (OSTI)

The dependence of mixing efficiency on time-varying forcing is studied by direct numerical simulation (DNS) of Kelvin–Helmholtz (KH) instability. Time-dependent forcing fields are designed to reproduce a wavelike oscillation by solving the ...

Ryuichiro Inoue; William D. Smyth

2009-05-01T23:59:59.000Z

216

TEST PLAN CHARACTERIZATION OF JET FORCES UPON WASTE TANK COMPONENTS  

Science Conference Proceedings (OSTI)

Westinghouse Hanford Company plans to install mixer pumps in double-shell waste tanks to mobilize and suspend settled sludge to allow eventual retrieval for treatment and permanent storage. The mixer pumps produce high momentum, horizontally directed jets that impact and mobilize the sludge and mix it into slurry for removal. There is concern that the force of the jet may damage tank internal components in its path. This test plan describes scaled experiments designed to characterize the velocity profiles of a near floor jet and to quantify the impact farces and drag coefficients of three tank components: radiation dry well, airlift circulator, and steam coil. The experiments will be conducted in water, at approximately 1/6-scale, using one stationary nozzle to simulate the jet. To measure and confirm the velocity profile of the free, submerged jet, the horizontal and vertical velocity profiles will be measured at several distances from the nozzle. The profile will also be measured after the jet impinges upon the tank floor to determine the·extent of the change in the profile caused by impingement. The jet forces upon the test articles will be measured at a maximum of four velocities and a variety of test article orientations. Each orientation will represent a unique position of the test article relative to the jet and the tank floor. In addition, the steam coil will be tested in three rotational orientations because it is not symmetric. The highest jet velocity will be selected so that the Reynolds number of the test article in the model will match that of the prototype when operating at design conditions. The forces measured upon the model components will be used to calculate the force on the prototype components using geometric scaling factors. In addition, the model force measurements will be used to calculate the component's drag coefficient as a function of the component Reynolds number.

Bamberger, J. A.

1992-01-01T23:59:59.000Z

217

FEDERAL SMART GRID TASK FORCE - February 26, 2009 Task Force...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FEDERAL SMART GRID TASK FORCE - February 26, 2009 Task Force Meeting Agenda FEDERAL SMART GRID TASK FORCE - February 26, 2009 Task Force Meeting Agenda February 26, 2009 Task Force...

218

Radiative and climate impacts of absorbing aerosols  

E-Print Network (OSTI)

P.M. Forster (2004), The semi-direct aerosol effect: Impactof absorbing aerosols on marine stratocumulus. Q. J .2005), Global anthropogenic aerosol direct forcing derived

Zhu, Aihua

2010-01-01T23:59:59.000Z

219

External flow radiators for reduced space powerplant temperatures. Technical information report  

SciTech Connect

Nuclear space powerplants can operate at temperatures below 900 K and use stainless steel construction without a weight penalty if new radiator concepts can achieve radiator weights of 1-3 kg/m{sup 2}. Conventional tube-and-fin radiators weight about 10 kg/m{sup 2} because of heavy tube walls to prevent meteroid puncture. Radiator designs that do not require meteroid protection are possible; they operate with fluids of low vapor pressure that can be exposed directly to space in external-flow radiators. An example is the {open_quotes}rotating disk radiator{close_quotes} in which centrifugal force drives a liquid film radially outward across a thin rotating metal disk; meteroid punctures cause no loss of fluid other than from evaporation, which can be small. An even lighter concept is the liquid drop radiator in which heat is radiated directly from moving liquid drops. Such radiator concepts look practical, and they may be much easier to develop than the high-temperature, refractory-metal power systems necessitated by conventional radiators.

Elliott, D.G.

1984-01-01T23:59:59.000Z

220

Forced Trench Waves  

Science Conference Proceedings (OSTI)

A general theory for forced barotropic long trench waves in the presence of linear bottom friction is presented. Two specific forcing mechanisms are considered: (i) transverse fluctuations in a western boundary current as it flows across a trench,...

Lawrence A. Mysak; Andrew J. Willmott

1981-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "direct radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

SERVOMECHANISMS WITH FORCE FEEDBACK  

SciTech Connect

A class of linear proportional servomechanisms is examined in which an electrical signal proportional to output force is used to improve performance. The effect of this "force feedback" on a positional servomechanism is analyzed as well as the effect on a special type of servomechanism which reflects load forces back to the input. This latter type of servomechanism is called "force reflecting." Laboratory models of these servormechanisms were designed and constructed, and experimental data are presented in support of the analysis. (auth)

Arzbaecher, R.C.

1960-05-01T23:59:59.000Z

222

Calibrated Atomic Force Microscopy  

Science Conference Proceedings (OSTI)

... Vorburger, SL Tan, NG Orji, J. Fu, “Interlaboratory Comparison of Traceable Atomic Force Microscope Pitch Measurements,” SPIE Proceedings Vol. ...

2011-10-28T23:59:59.000Z

223

Measuring Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurement Activity SI Units and Prefixes Conversions Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Procedure Demonstration...

224

Dynamics of Line-Driven Disk Winds in Active Galactic Nuclei II: Effects of Disk Radiation  

E-Print Network (OSTI)

We explore consequences of a radiation driven disk wind model for mass outflows from active galactic nuclei (AGN). We performed axisymmetric time-dependent hydrodynamic calculations using the same computational technique as Proga, Stone and Kallman (2000). We test the robustness of radiation launching and acceleration of the wind for relatively unfavorable conditions. In particular, we take into account the central engine radiation as a source of ionizing photons but neglect its contribution to the radiation force. Additionally, we account for the attenuation of the X-ray radiation by computing the X-ray optical depth in the radial direction assuming that only electron scattering contributes to the opacity. Our new simulations confirm the main result from our previous work: the disk atmosphere can 'shield' itself from external X-rays so that the local disk radiation can launch gas off the disk photosphere. We also find that the local disk force suffices to accelerate the disk wind to high velocities in the radial direction. This is true provided the wind does not change significantly the geometry of the disk radiation by continuum scattering and absorption processes; we discuss plausibility of this requirement. Synthetic profiles of a typical resonance ultraviolet line predicted by our models are consistent with observations of broad absorption line (BAL) QSOs.

D. Proga; T. R. Kallman

2004-08-16T23:59:59.000Z

225

Climate Forcings and Climate Sensitivities Diagnosed from Coupled Climate Model Integrations  

Science Conference Proceedings (OSTI)

A simple technique is proposed for calculating global mean climate forcing from transient integrations of coupled atmosphere–ocean general circulation models (AOGCMs). This “climate forcing” differs from the conventionally defined radiative ...

Piers Mde F. Forster; Karl E. Taylor

2006-12-01T23:59:59.000Z

226

On the Observed Near Cancellation between Longwave and Shortwave Cloud Forcing in Tropical Regions  

Science Conference Proceedings (OSTI)

Observations based on Earth Radiation Budget Experiment (ERBE) satellite data indicate that there is a near cancellation between tropical longwave and shortwave cloud forcing in regions of deep convective activity. Cloud forcing depends on both ...

J. T. Kiehl

1994-04-01T23:59:59.000Z

227

Scale Dependence of the Thermodynamic Forcing of Tropical Monsoon Clouds: Results from TRMM Observations  

Science Conference Proceedings (OSTI)

Clouds exert a thermodynamic forcing on the ocean–atmosphere column through latent heating, owing to the production of rain, and through cloud radiative forcing, owing to the absorption of terrestrial infrared energy and the reflection of solar ...

Eric M. Wilcox; V. Ramanathan

2001-04-01T23:59:59.000Z

228

Evaluating the Direct and Indirect Aerosol Effect on Climate  

NLE Websites -- All DOE Office Websites (Extended Search)

one of the largest uncertainties in climate forcing studies is the effect of aerosols on the earth-atmosphere system. Aerosols affect the radiation budget under both clear...

229

Radiation Hydrodynamics  

DOE Green Energy (OSTI)

The discipline of radiation hydrodynamics is the branch of hydrodynamics in which the moving fluid absorbs and emits electromagnetic radiation, and in so doing modifies its dynamical behavior. That is, the net gain or loss of energy by parcels of the fluid material through absorption or emission of radiation are sufficient to change the pressure of the material, and therefore change its motion; alternatively, the net momentum exchange between radiation and matter may alter the motion of the matter directly. Ignoring the radiation contributions to energy and momentum will give a wrong prediction of the hydrodynamic motion when the correct description is radiation hydrodynamics. Of course, there are circumstances when a large quantity of radiation is present, yet can be ignored without causing the model to be in error. This happens when radiation from an exterior source streams through the problem, but the latter is so transparent that the energy and momentum coupling is negligible. Everything we say about radiation hydrodynamics applies equally well to neutrinos and photons (apart from the Einstein relations, specific to bosons), but in almost every area of astrophysics neutrino hydrodynamics is ignored, simply because the systems are exceedingly transparent to neutrinos, even though the energy flux in neutrinos may be substantial. Another place where we can do ''radiation hydrodynamics'' without using any sophisticated theory is deep within stars or other bodies, where the material is so opaque to the radiation that the mean free path of photons is entirely negligible compared with the size of the system, the distance over which any fluid quantity varies, and so on. In this case we can suppose that the radiation is in equilibrium with the matter locally, and its energy, pressure and momentum can be lumped in with those of the rest of the fluid. That is, it is no more necessary to distinguish photons from atoms, nuclei and electrons, than it is to distinguish hydrogen atoms from helium atoms, for instance. There are all just components of a mixed fluid in this case. So why do we have a special subject called ''radiation hydrodynamics'', when photons are just one of the many kinds of particles that comprise our fluid? The reason is that photons couple rather weakly to the atoms, ions and electrons, much more weakly than those particles couple with each other. Nor is the matter-radiation coupling negligible in many problems, since the star or nebula may be millions of mean free paths in extent. Radiation hydrodynamics exists as a discipline to treat those problems for which the energy and momentum coupling terms between matter and radiation are important, and for which, since the photon mean free path is neither extremely large nor extremely small compared with the size of the system, the radiation field is not very easy to calculate. In the theoretical development of this subject, many of the relations are presented in a form that is described as approximate, and perhaps accurate only to order of {nu}/c. This makes the discussion cumbersome. Why are we required to do this? It is because we are using Newtonian mechanics to treat our fluid, yet its photon component is intrinsically relativistic; the particles travel at the speed of light. There is a perfectly consistent relativistic kinetic theory, and a corresponding relativistic theory of fluid mechanics, which is perfectly suited to describing the photon gas. But it is cumbersome to use this for the fluid in general, and we prefer to avoid it for cases in which the flow velocity satisfies {nu} << c. The price we pay is to spend extra effort making sure that the source-sink terms relating to our relativistic gas component are included in the equations of motion in a form that preserves overall conservation of energy and momentum, something that would be automatic if the relativistic equations were used throughout.

Castor, J I

2003-10-16T23:59:59.000Z

230

Low Dose Radiation Program: Links - Organizations Conducting Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Conducting Low Dose Radiation Research Conducting Low Dose Radiation Research DOE Low Dose Radiation Research Program DoReMi Integrating Low Dose Research High Level Expert Group (HLEG) on European Low Dose Risk Research Multidisciplinary European Low Dose Initiative (MELODI) RISC-RAD Radiosensitivity of Individuals and Susceptibility to Cancer induced by Ionizing Radiation United States Transuranium & Uranium Registries Organizations Conducting other Radiation Research Argonne National Laboratory (ANL) Armed Forces Radiology Research Institute (AFRRI) Atmospheric Radiation Measurement (ARM) Program Brookhaven National Laboratory (BNL) Center for Devices and Radiological Health (CDRH) Central Research Institute of Electric Power Industry (CRIEPI) Colorado State University Columbia University

231

Relative Accuracy of 1-Minute and Daily Total Solar Radiation Data for 12 Global and 4 Direct Beam Solar Radiometers: Preprint  

DOE Green Energy (OSTI)

This report evaluates the relative performance of 12 global and four direct beam solar radiometers deployed at a single site over a 12-month period. Test radiometer irradiances were compared with a reference irradiance consisting of either an absolute cavity radiometer (during calibrations) or a low uncertainty thermopile pyrheliometer (during the evaluation period) for pyrheliometers; and for pyranometers a reference global irradiance computed from the reference pyrheliometer and diffuse irradiance from a shaded pyranometer.

Myers, D. R.; Wilcox, S. M.

2009-03-01T23:59:59.000Z

232

Toward a demonstration of a Light Force Accelerometer  

E-Print Network (OSTI)

The Light Force Accelerometer (LFA) is an optical inertial sensor in which radiation pressure from two counter-propagating laser beams optically confines a glass microsphere. Inertial acceleration of the device results in ...

Kotru, Krish

2010-01-01T23:59:59.000Z

233

Effects of Ozone Heating on Forced Equatorial Kelvin Waves  

Science Conference Proceedings (OSTI)

An equatorial beta-plane model of the stratosphere is used to examine the effects of longwave radiational cooling, ozone photochemistry, and ozone advection on the linear spatial modulation of forced equatorial Kelvin waves. The model atmosphere ...

Robert S. Echols; Terrence R. Nathan

1996-01-01T23:59:59.000Z

234

Bonding, antibonding and tunable optical forces in asymmetric membranes  

E-Print Network (OSTI)

We demonstrate that tunable attractive (bonding) and repulsive (anti-bonding) forces can arise in highly asymmetric structures coupled to external radiation, a consequence of the bonding/anti-bonding level repulsion of ...

Hui, Pui-Chuen

235

Factors Controlling ERBE Longwave Clear Sky and Cloud Forcing Fluxes  

Science Conference Proceedings (OSTI)

The factors controlling the Earth Radiation Budget satellite (ERBS) longwave clear sky and cloud-forcing fluxes are investigated using statistical analyses of the ERBS fluxes with International Satellite Cloud Climatology Project (ISCCP) cloud ...

Bryan C. Weare

1995-07-01T23:59:59.000Z

236

Research Directed at Developing a Classical Theory to Describe Isotope Separation of Polyatomic Molecules Illuminated by Intense Infrared Radiation. Final Report for period May 7, 1979 to September 30, 1979; Extension December 31, 1997  

DOE R&D Accomplishments (OSTI)

This final report describes research on the theory of isotope separation produced by the illumination of polyatomic molecules by intense infrared laser radiation. This process is investigated by treating the molecule, sulfur hexafluoride, as a system of seven classical particles that obey the Newtonian equations of motion. A minicomputer is used to integrate these differential equations. The particles are acted on by interatomic forces, and by the time-dependent electric field of the laser. We have a very satisfactory expression for the interaction of the laser and the molecule which is compatible with infrared absorption and spectroscopic data. The interatomic potential is capable of improvement, and progress on this problem is still being made. We have made several computer runs of the dynamical behavior of the molecule using a reasonably good model for the interatomic force law. For the laser parameters chosen, we find that typically the molecule passes quickly through the resonance region into the quasi-continuum and even well into the real continuum before dissociation actually occurs. When viewed on a display terminal, the motions are exceedingly complex. As an aid to the visualization of the process, we have made a number of 16 mm movies depicting a three-dimensional representation of the motion of the seven particles. These show even more clearly the enormous complexity of the motions, and make clear the desirability of finding ways of characterizing the motion in simple ways without giving all of the numerical detail. One of the ways to do this is to introduce statistical parameters such as a temperature associated with the distribution of kinetic energies of the single particle. We have made such an analysis of our data runs, and have found favorable indications that such methods will prove useful in keeping track of the dynamical histories.

Lamb, W. E. Jr.

1981-12-00T23:59:59.000Z

237

Research priorities for occupational radiation protection  

Science Conference Proceedings (OSTI)

The Subpanel on Occupational Radiation Protection Research concludes that the most urgently needed research is that leading to the resolution of the potential effects of low-level ionizing radiation. This is the primary driving force in setting appropriate radiation protection standards and in directing the emphasis of radiation protection efforts. Much has already been done in collecting data that represents a compendium of knowledge that should be fully reviewed and understood. It is imperative that health physics researchers more effectively use that data and apply the findings to enhance understanding of the potential health effects of low-level ionizing radiation and improve the risk estimates upon which current occupational radiation protection procedures and requirements depend. Research must be focused to best serve needs in the immediate years ahead. Only then will we get the most out of what is accomplished. Beyond the above fundamental need, a number of applied research areas also have been identified as national priority issues. If effective governmental focus is achieved on several of the most important national priority issues, important occupational radiation protection research will be enhanced, more effectively coordinated, and more quickly applied to the work environment. Response in the near term will be enhanced and costs will be reduced by: developing microprocessor-aided {open_quotes}smart{close_quotes} instruments to simplify the use and processing of radiation data; developing more sensitive, energy-independent, and tissue-equivalent dosimeters to more accurately quantify personnel dose; and developing an improved risk assessment technology base. This can lead to savings of millions of dollars in current efforts needed to ensure personnel safety and to meet new, more stringent occupational guidelines.

Not Available

1994-02-01T23:59:59.000Z

238

Erroneous Relationships among Humidity and Cloud Forcing Variables in Three Global Climate Models  

Science Conference Proceedings (OSTI)

Links are examined between time-averaged cloud radiative properties, particularly the longwave and shortwave components of cloud radiative forcing (CRF), and properties of the long-term averages of atmospheric soundings, in particular upper-...

Florian Bennhold; Steven Sherwood

2008-09-01T23:59:59.000Z

239

MEASUREMENT AND ANALYSIS OF CIRCUMSOLAR RADIATION  

E-Print Network (OSTI)

total direct solar (from the disk of the sun) radiation.by the direct solar (coming from the disk of the sun) plussolar radiation (that originating from the disk of the sun)

Grether, Donald

2013-01-01T23:59:59.000Z

240

JGI - Directions  

NLE Websites -- All DOE Office Websites (Extended Search)

Map to JGI Directions from Directions from key local start points, public transit Home > About Us > Map to JGI UC logo DOE logo Contact Us Credits Disclaimer Access...

Note: This page contains sample records for the topic "direct radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Why measure force?  

Science Conference Proceedings (OSTI)

... Automated industrial processes such as rolling mills require accurate force measurement to control roll pressure on bar steel, sheet metal, paper ...

2011-10-03T23:59:59.000Z

242

NUCLEAR PROXIMITY FORCES  

E-Print Network (OSTI)

One might summarize of nuclear potential energy has beendegree of freedom) for the nuclear interaction between anyUniversity of California. Nuclear Proximity Forces 'I< at

Randrup, J.

2011-01-01T23:59:59.000Z

243

Inferring Cloud Feedbacks from ARM Continuous Forcing, ISCCP...  

NLE Websites -- All DOE Office Websites (Extended Search)

models the direct radiative heatingcooling perturbation due to the greenhouse gas increase itself is small except at the surface and tropopause. Instead, strong positive...

244

Tropospheric Adjustment Induces a Cloud Component in CO2 Forcing  

Science Conference Proceedings (OSTI)

The radiative forcing of CO2 and the climate feedback parameter are evaluated in several climate models with slab oceans by regressing the annual-mean global-mean top-of-atmosphere radiative flux against the annual-mean global-mean surface air ...

Jonathan Gregory; Mark Webb

2008-01-01T23:59:59.000Z

245

Direct and semidirect aerosol effects of Southern African biomass burning aerosol  

Science Conference Proceedings (OSTI)

The direct and semi-direct radiative effects of biomass burning aerosols from Southern African fires during July-October are investigated using 20 year runs of the Community Atmospheric Model (CAM) coupled to a slab ocean model. The aerosol optical depth is constrained using observations in clear skies from MODIS and for aerosol layers above clouds from CALIPSO. Over the ocean, where the absorbing biomass burning aerosol layers are primarily located above cloud, negative top of atmosphere (TOA) semi-direct radiative effects associated with increased low cloud cover dominate over a weaker positive all-sky direct radiative effect (DRE). In contrast, over the land where the aerosols are often below or within cloud layers, reductions in cloud liquid water path (LWP) lead to a positive semi-direct radiative effect that dominates over a near-zero DRE. Over the ocean, the cloud response can be understood as a response to increased lower tropospheric stability (LTS) which is caused both by aerosol absorptive warming in overlying layers and surface cooling in response to direct aerosol forcing. The ocean cloud changes are robust to changes in the cloud parameterization (removal of the hard-wired dependence of clouds on LTS), suggesting that they are physically realistic. Over land where cloud cover changes are minimal, decreased LWP is consistent with weaker convection driven by increased static stability. Over the entire region the overall TOA radiative effect from the biomass burning aerosols is almost zero due to opposing effects over the land and ocean. However, the surface forcing is strongly negative requiring a reduction in precipitation. This is primarily realized through reductions in convective precipitation on both the southern and northern flanks of the convective precipitation region spanning the equatorial rainforest and the ITCZ in the southern Sahel. The changes are consistent with the low-level aerosol forced cooling pattern. The results highlight the importance of semi-direct radiative effects and precipitation responses for determining the climatic effects of aerosols in the African region.

Sakaeda, Naoko; Wood, Robert; Rasch, Philip J.

2011-06-21T23:59:59.000Z

246

A study of longwave radiation codes for climate studies: Validation with ARM observations and tests in general circulation models  

SciTech Connect

Research by the US Department of Energy (DOE) has shown that cloud radiative feedback is the single most important effect determining the magnitude of possible climatic responses to human activity. However, these effects are still not known at the levels needed for climate prediction. Consequently, DOE has launched a major initiative-- the Atmospheric Radiation Measurements (ARM) Program -- directed at improving the parameterization of the physics governing cloud and radiative processes in general circulation models (GCM's). One specific goal of ARM is to improve the treatment of radiative transfer in GCM's under clear-sky, general overcast and broken cloud conditions. Our approach to developing the radiation model will be to test existing models in an iterative, predictive fashion. We will supply the Clouds and Radiative Testbed (CART) with a set of models to be compared with operationally observed data. The differences we find will lead to the development of new models to be tested with new data. Similarly, our GCM studies will use existing GCM's to study the radiation sensitivity problem. We anticipate that the outcome of this approach will provide both a better longwave radiative forcing algorithm and a better understanding of how longwave radiative forcing influences the equilibrium climate of the atmosphere.

Ellingson, R.G.; Baer, F.

1992-01-01T23:59:59.000Z

247

ILC Citizens' Task Force  

NLE Websites -- All DOE Office Websites (Extended Search)

the Fermilab ILC Citizens' Task Force June 2008 Report of the Fermilab ILC Citizens' Task Force 3 Contents 1 Executive Summary 3 Chapter 1 Purpose 7 Chapter 2 Origins and Purpose of the Fermilab Citizens' Task Force 15 Chapter 3 Setting the Stage 19 Chapter 4 Current Status of High Energy Physics Research 25 Chapter 5 Bringing the Next-Generation Accelerator to Fermilab 31 Chapter 6 Learning from Past Projects 37 Chapter 7 Location, Construction and Operation of Facilities Beyond Fermilab's Borders 45 Chapter 8 Health and Safety 49 Chapter 9 Environment 53 Chapter 10 Economics 59 Chapter 11 Political Considerations 65 Chapter 12 Community Engagement 77 Chapter 13 Summary 81 Appendices Appendix A. Task Force Members Appendix B. Task Force Meetings and Topics

248

Radiation-Induced Bystander Effects and Relevance to Human Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation-Induced Bystander Effects and Relevance to Human Radiation Radiation-Induced Bystander Effects and Relevance to Human Radiation Exposures Review of phenomenon appears in Radiation Research Pamela Sykes and Benjamin Blyth One concern of radiobiologists is the effect radiation exposure might have on nearby unirradiated cells. For example, when only a small fraction of cells are directly hit by radiation energy, are the surrounding unirradiated cells also at an increased risk of cancer? The term "radiation-induced bystander effect" is used to describe radiation-induced biological changes that occur in unirradiated cells within an irradiated cell population. Radiation-induced bystander effects have become established in the vernacular and are considered as an authentic radiation response. However, there is still no consensus on a precise definition of the term, which

249

Definition: Direct normal irradiance | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Dictionary.png Direct normal irradiance the amount of solar radiation received per unit area by a surface perpendicular (normal) to the rays...

250

Multilayer radiation shield  

SciTech Connect

A power generation system including: a generator including a rotor including a superconductive rotor coil coupled to a rotatable shaft; a first prime mover drivingly coupled to the rotatable shaft; and a thermal radiation shield, partially surrounding the rotor coil, including at least a first sheet and a second sheet spaced apart from the first sheet by centripetal force produced by the rotatable shaft. A thermal radiation shield for a generator including a rotor including a super-conductive rotor coil including: a first sheet having at least one surface formed from a low emissivity material; and at least one additional sheet having at least one surface formed from a low emissivity material spaced apart from the first sheet by centripetal force produced by the rotatable shaft, wherein each successive sheet is an incrementally greater circumferential arc length and wherein the centripetal force shapes the sheets into a substantially catenary shape.

Urbahn, John Arthur (Saratoga Springs, NY); Laskaris, Evangelos Trifon (Niskayuna, NY)

2009-06-16T23:59:59.000Z

251

ARM - Evaluation Product - CMWG Data - SCM-Forcing Data, Cloud  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsCMWG Data - SCM-Forcing Data, Cloud ProductsCMWG Data - SCM-Forcing Data, Cloud Microphysical Properties and Radiative Heating Profiles Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : CMWG Data - SCM-Forcing Data, Cloud Microphysical Properties and Radiative Heating Profiles Site(s) GAN HFE NSA SGP TWP General Description SCM-forcing data are derived from the ARM Program observational data using the constrained variational analysis approach (Zhang and Lin 1997 and Zhang et al. 2001). The resulting products include both the large-scale forcing terms and the evaluation fields, which can be used for driving the Single-Column Models (SCMs) and Cloud Resolving Models (CRMs) and validating model simulations. Results from our studies are then used to

252

Piezoresistive cantilever force-clamp system  

Science Conference Proceedings (OSTI)

We present a microelectromechanical device-based tool, namely, a force-clamp system that sets or ''clamps'' the scaled force and can apply designed loading profiles (e.g., constant, sinusoidal) of a desired magnitude. The system implements a piezoresistive cantilever as a force sensor and the built-in capacitive sensor of a piezoelectric actuator as a displacement sensor, such that sample indentation depth can be directly calculated from the force and displacement signals. A programmable real-time controller operating at 100 kHz feedback calculates the driving voltage of the actuator. The system has two distinct modes: a force-clamp mode that controls the force applied to a sample and a displacement-clamp mode that controls the moving distance of the actuator. We demonstrate that the system has a large dynamic range (sub-nN up to tens of {mu}N force and nm up to tens of {mu}m displacement) in both air and water, and excellent dynamic response (fast response time, instruments such as a microscope with patch-clamp electronics. We demonstrate the capabilities of the system by using it to calibrate the stiffness and sensitivity of an electrostatic actuator and to measure the mechanics of a living, freely moving Caenorhabditis elegans nematode.

Park, Sung-Jin; Petzold, Bryan C.; Pruitt, Beth L. [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Goodman, Miriam B. [Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305 (United States)

2011-04-15T23:59:59.000Z

253

About Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation What is radiation? Radiation is a form of energy that is a part of our everyday lives. All of us receive a "dose" of radiation each day. Most of the dose comes from...

254

Optical Bernoulli forces  

E-Print Network (OSTI)

By Bernoulli's law, an increase in the relative speed of a fluid around a body is accompanied by a decrease in the pressure. Therefore, a rotating body in a fluid stream experiences a force perpendicular to the motion of ...

Movassagh, Ramis

255

Constraint and Restoring Force  

E-Print Network (OSTI)

Long-lived sensor network applications must be able to self-repair and adapt to changing demands. We introduce a new approach for doing so: Constraint and Restoring Force. CRF is a physics-inspired framework for computing ...

Beal, Jacob

2007-08-24T23:59:59.000Z

256

Reduction-in-Force  

Energy.gov (U.S. Department of Energy (DOE))

Reduction in force (RIF) is a set of regulations and procedures that are used to determine whether an employee keeps his or her present position, or whether the employee has a right to another...

257

Topographically Forced Convergence in Western Washington State  

Science Conference Proceedings (OSTI)

Several times a year when the low-level winds from off the Pacific Ocean are within a narrow range of speed and direction, air passes both north and south of the Olympic Mountains of Washington State and is forced to converge in Puget Sound by ...

Clifford Mass

1981-06-01T23:59:59.000Z

258

Weak nuclear forces cause the strong nuclear force  

E-Print Network (OSTI)

We determine the strength of the weak nuclear force which holds the lattices of the elementary particles together. We also determine the strength of the strong nuclear force which emanates from the sides of the nuclear lattices. The strong force is the sum of the unsaturated weak forces at the surface of the nuclear lattices. The strong force is then about ten to the power of 6 times stronger than the weak force between two lattice points.

E. L. Koschmieder

2007-12-11T23:59:59.000Z

259

Elastic Wave Radiation from a Line Source of Finite Length  

SciTech Connect

Straightforward algebraic expressions describing the elastic wavefield produced by a line source of finite length are derived in circular cylindrical coordinates. The surrounding elastic medium is assumed to be both homogeneous and isotropic, anc[ the source stress distribution is considered axisymmetic. The time- and space-domain formulae are accurate at all distances and directions from the source; no fa-field or long-wavelength assumptions are adopted for the derivation. The mathematics yield a unified treatment of three different types of sources: an axial torque, an axial force, and a radial pressure. The torque source radiates only azirnuthally polarized shear waves, whereas force and pressure sources generate simultaneous compressional and shear radiation polarized in planes containing the line source. The formulae reduce to more familiar expressions in the two limiting cases where the length of the line source approaches zero and infinity. Far-field approximations to the exact equations indicate that waves radiated parallel to the line source axI.s are attenuated relative to those radiated normal to the axis. The attenuation is more severe for higher I?equencies and for lower wavespeeds. Hence, shear waves are affected more than compressional waves. This fi-equency- and directiondependent attenuation is characterized by an extremely simple mathematical formula, and is readily apparent in example synthetic seismograms.

Aldridge, D.F.

1998-11-04T23:59:59.000Z

260

Method for microbeam radiation therapy  

DOE Patents (OSTI)

A method is disclosed of performing radiation therapy on a patient, involving exposing a target, usually a tumor, to a therapeutic dose of high energy electromagnetic radiation, preferably X-ray radiation. The dose is in the form of at least two non-overlapping microbeams of radiation, each microbeam having a width of less than about 1 millimeter. Target tissue exposed to the microbeams receives a radiation dose during the exposure that exceeds the maximum dose that such tissue can survive. Non-target tissue between the microbeams receives a dose of radiation below the threshold amount of radiation that can be survived by the tissue, and thereby permits the non-target tissue to regenerate. The microbeams may be directed at the target from one direction, or from more than one direction in which case the microbeams overlap within the target tissue enhancing the lethal effect of the irradiation while sparing the surrounding healthy tissue. No Drawings

Slatkin, D.N.; Dilmanian, F.A.; Spanne, P.O.

1994-08-16T23:59:59.000Z

Note: This page contains sample records for the topic "direct radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Method for microbeam radiation therapy  

DOE Patents (OSTI)

A method of performing radiation therapy on a patient, involving exposing a target, usually a tumor, to a therapeutic dose of high energy electromagnetic radiation, preferably X-ray radiation, in the form of at least two non-overlapping microbeams of radiation, each microbeam having a width of less than about 1 millimeter. Target tissue exposed to the microbeams receives a radiation dose during the exposure that exceeds the maximum dose that such tissue can survive. Non-target tissue between the microbeams receives a dose of radiation below the threshold amount of radiation that can be survived by the tissue, and thereby permits the non-target tissue to regenerate. The microbeams may be directed at the target from one direction, or from more than one direction in which case the microbeams overlap within the target tissue enhancing the lethal effect of the irradiation while sparing the surrounding healthy tissue.

Slatkin, Daniel N. (Sound Beach, NY); Dilmanian, F. Avraham (Yaphank, NY); Spanne, Per O. (Shoreham, NY)

1994-01-01T23:59:59.000Z

262

Radiation-Hydrodynamic Simulations of Massive Star Formation with Protostellar Outflows  

Science Conference Proceedings (OSTI)

We report the results of a series of AMR radiation-hydrodynamic simulations of the collapse of massive star forming clouds using the ORION code. These simulations are the first to include the feedback effects protostellar outflows, as well as protostellar radiative heating and radiation pressure exerted on the infalling, dusty gas. We find that that outflows evacuate polar cavities of reduced optical depth through the ambient core. These enhance the radiative flux in the poleward direction so that it is 1.7 to 15 times larger than that in the midplane. As a result the radiative heating and outward radiation force exerted on the protostellar disk and infalling cloud gas in the equatorial direction are greatly diminished. The simultaneously reduces the Eddington radiation pressure barrier to high-mass star formation and increases the minimum threshold surface density for radiative heating to suppress fragmentation compared to models that do not include outflows. The strength of both these effects depends on the initial core surface density. Lower surface density cores have longer free-fall times and thus massive stars formed within them undergo more Kelvin contraction as the core collapses, leading to more powerful outflows. Furthermore, in lower surface density clouds the ratio of the time required for the outflow to break out of the core to the core free-fall time is smaller, so that these clouds are consequently influenced by outflows at earlier stages of collapse. As a result, outflow effects are strongest in low surface density cores and weakest in high surface density one. We also find that radiation focusing in the direction of outflow cavities is sufficient to prevent the formation of radiation pressure-supported circumstellar gas bubbles, in contrast to models which neglect protostellar outflow feedback.

Cunningham, A J; Klein, R I; Krumholz, M R; McKee, C F

2011-03-02T23:59:59.000Z

263

Forces on laboratory model dredge cutterhead  

E-Print Network (OSTI)

Dredge cutting forces produced by the movement of the cutterhead through the sediment have been measured with the laboratory dredge carriage located at the Haynes Coastal Engineering Laboratory. The sediment bed that was used for the dredging test was considered to be relatively smooth and the sediment used was sand with a d50=0.27 mm. Forces on the dredge carriage were measured using five 13.3 kN (3000 lb) one directional load cells placed on the dredge ladder in various places so the transmitted cutting forces could be obtained. The objectives for this study are to determine the vertical, horizontal, and axial forces that are produced by the cutterhead while testing. So, to find these cutter forces, a static analysis was performed on the carriage by applying static loads to the cutterhead in the vertical, horizontal, and axial directions, and for each load that was applied, readings were recorded for all five of the load cells. Then, static equilibrium equations were developed for the dredge carriage ladder to determine loads in the five load cells. Also, equilibrium equations can be applied to a dredging test to find the cutterhead forces by taking the measured data from the five load cells and applying the known forces to the equations, and the cutterhead forces can be determined. These static equilibrium equations have been confirmed by using a program called SolidWorks, which is modeling software that can be used to do static finite element analysis of structural systems to determine stresses, displacement, and pin and bolt forces. Data that were gathered from the experimental procedure and the theoretical calculations show that the force on the dredge cutterhead can be determined. However, the results from the static equilibrium calculations and the results from the SolidWorks program were compared to the experiment procedure results, and from the comparison the procedure results show irregularities when a force of approximately 0.889 kN (200 lb) or above is applied to the cutterhead in a north, south, west, or east orientation. The SolidWorks program was used to determine the results for displacements of the dredge carriage ladder system, which showed that large displacements were occurring at the location of the cutterhead, and when the cutterhead displaces it means that the carriage ladder is also moving, which causes false readings in the five load cells. From this analysis it was determined that a sixth force transducer was needed to produce more resistance on the ladder; and the cell #1 location needed to be redesigned to make the ladder system as rigid as possible and able to produce good testing results. The SolidWorks program was used to determine the best location where the sixth force transducer would give the best results, and this location was determined to be on the lower south-west corner oriented in the direction east to west. The static equilibrium equations were rewritten to include the new redesigned cell #1 location and the new location of the sixth load cell. From the new system of equations, forces on the cutterhead can be determined for future dredging studies conducted with the dredge carriage. Finally, the forces on the laboratory cuttersuction dredge model cutterhead were scaled up to the prototype 61 cm (24 in) cuttersuction dredge. These scaled up cutting forces on the dredge cutterhead can be utilized in the design of the swing winches, swing cable size, ladder supports, and ladder.

Young, Dustin Ray

2009-12-01T23:59:59.000Z

264

NIST Ionizing Radiation Division 1998 - Future Directions  

Science Conference Proceedings (OSTI)

... sediments, human tissues, and ocean sediment, and is working on additional unique matrices: ashed bone, ocean shellfish, and Rocky Flats Soil-II. ...

265

7 DIRECT RADIATION: TLD PROGRAM CHAPTER CONTENTS  

E-Print Network (OSTI)

by intentional addition of silica and lime. Fluxes such as calcium fluoride may be added to make the slag more Systems ..................................4-9 4.7.5 Off-site Recycle by Reuse as a Construction Material separate from those of pollution prevention assessment.) Reclamation - Denotes internal reuse of materials

266

JGI - Directions  

NLE Websites -- All DOE Office Websites (Extended Search)

Directions Address DOE Joint Genome Institute 2800 Mitchell Drive Walnut Creek, CA 94598 From Oakland Airport Follow Airport exit signs onto AIRPORT DR. Turn RIGHT onto HEGENBERGER...

267

Alpha Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics of Radiation Basics of Radiation Gamma Radiation and X-Rays Beta Radiation Alpha Radiation Irradiation Radioactive Contamination Definitions Detection Measurement Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Basics of Radiation Characteristics of Alpha Radiation 1. Alpha radiation is not able to penetrate skin. 2. Alpha-emitting materials can be harmful to humans if the materials are inhaled, swallowed, or absorbed through open wounds. 3. A variety of instruments have been designed to measure alpha radiation. Special training in use of these instruments is essential for making accurate measurements. 4. A civil defense instrument (CD V-700) cannot detect the presence of radioactive materials that produce alpha radiation unless the radioactive materials also produce beta and/or gamma radiation.

268

Experiments with Cloud Properties: Impact on Surface Radiative Fluxes  

Science Conference Proceedings (OSTI)

Solar radiation reaching the earth’s surface provides the primary forcing of the climate system, and thus, information on this parameter is needed at a global scale. Several satellite-based estimates of surface radiative fluxes are available, but ...

H. Wang; R. T. Pinker; P. Minnis; M. M. Khaiyer

2008-06-01T23:59:59.000Z

269

Direct Aerosol Forcing: Sensitivity to Uncertainty in Measurements...  

NLE Websites -- All DOE Office Websites (Extended Search)

i.e., single scattering albedo and asymmetry parameter, and situational variables, i.e., solar geometry and surface albedo, and the wavelength dependencies of these quantities....

270

Directional Coarsening of Nickel Based Superalloys: Driving Force ...  

Science Conference Proceedings (OSTI)

Since plastic deformation is driven by the elastic energy stored in the .... channels , o, is the applied stress intensity, E, is the .... commercial superalloys [18], when the Orowan process .... dislocation building and contributing to a back-stress for.

271

Radiation: Radiation Control (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

It is the policy of the state to encourage the constructive uses of radiation and to control its harmful effects. This section contains regulations pertaining to the manufacture, use,...

272

A study of longwave radiation codes for climate studies: Validation with ARM observations and tests in general circulation models. Technical report, 16 March 1991--15 March 1992  

SciTech Connect

Research by the US Department of Energy (DOE) has shown that cloud radiative feedback is the single most important effect determining the magnitude of possible climatic responses to human activity. However, these effects are still not known at the levels needed for climate prediction. Consequently, DOE has launched a major initiative-- the Atmospheric Radiation Measurements (ARM) Program -- directed at improving the parameterization of the physics governing cloud and radiative processes in general circulation models (GCM`s). One specific goal of ARM is to improve the treatment of radiative transfer in GCM`s under clear-sky, general overcast and broken cloud conditions. Our approach to developing the radiation model will be to test existing models in an iterative, predictive fashion. We will supply the Clouds and Radiative Testbed (CART) with a set of models to be compared with operationally observed data. The differences we find will lead to the development of new models to be tested with new data. Similarly, our GCM studies will use existing GCM`s to study the radiation sensitivity problem. We anticipate that the outcome of this approach will provide both a better longwave radiative forcing algorithm and a better understanding of how longwave radiative forcing influences the equilibrium climate of the atmosphere.

Ellingson, R.G.; Baer, F.

1992-06-01T23:59:59.000Z

273

Work Force Restructuring Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Force Restructuring Activities Force Restructuring Activities December 10, 2008 Note: Current updates are in bold # Planned Site/Contractor HQ Approved Separations Status General * LM has finalized the compilation of contractor management team separation data for the end of FY07 actuals and end of FY08 and FY09 projections. LM has submitted to Congress the FY 2007 Annual Report on contractor work force restructuring activities. The report has been posted to the LM website. *LM conducted a DOE complex-wide data call to the Field and Operations offices for DOE Contractor Management teams to provide, by program, actual contractor separation data for the end of FY 2008 and projections for the end of FY 2009 and FY 2010. The data will be used to keep senior management informed of upcoming large WFR actions.

274

Wave-Induced Drift Force in the Marginal Ice Zone  

Science Conference Proceedings (OSTI)

Wind waves are commonly ignored when modeling the ice motion in the marginal ice zone. In order to estimate the importance of the wave forcing, an expression for the second-order wave-induced drift force on a floe exposed to a full directional ...

Diane Masson

1991-01-01T23:59:59.000Z

275

Solar radiation model validation  

Science Conference Proceedings (OSTI)

Several mathematical models have been developed within the past few years which estimate the solar radiation from other weather variables. Some of these models have been used to generate data bases which are extensively used in the design and analysis of solar system. Three of these solar radiation models have been used in developing the Augmented SOLMET Solar Data Tapes for the 26 SOLMET sites and the 222 ERSATZ Solar Data Tapes. One of the models, a theoretical one, predicts the solar noon radiation for clear sky conditions from the optical air mass, precipitable water vapor and turbidity variables. A second model, an empirical one, predicts the hourly total horizontal radiation from meteorological variables. And, a third model, also an empirical one, predicts the hourly direct normal radiation from the hourly total horizontal radiation. A study of the accuracy of these three solar radiation models is reported here. To assess the accuracy of these models, data were obtained from several US National Weather Service Stations and other sources, used the models to estimate the solar-radiation, and then compared the modeled radiation values with observed radiation values. The results of these comparisons and conclusions regarding the accuracy of the models are presented.

Hall, I.J.; Prairie, R.R.; Anderson, H.E.; Boes, E.C.

1980-10-01T23:59:59.000Z

276

RADIATION SAFETY MANUAL  

E-Print Network (OSTI)

RADIATION SAFETY is the responsibility of all faculty, staff and students who are directly or indirectly involved in the use of radioisotopes or radiation-producing machines. In July 1963, the State of Texas granted The University of Texas at Austin a broad radioactive materials license for research, development and instruction. While this means a minimum of controls by the state, it requires that The University establish and pursue an effective Radiation Safety Program. The Radiation Safety Committee is responsible for The University's radiation control program outlined in this manual. The use of radiation in a university, where a large number of people may be unaware of their exposure to radiation hazards, makes strict adherence to procedures established by federal and state authorities of paramount importance for the protection of The University and the safety of its faculty, staff and students. It is the responsibility of all faculty, staff and students involved in radiation work to familiarize themselves thoroughly with The University's radiation control program and to comply with its requirements and all applicable federal and state regulations. I hope you will always keep in mind that radiation safety depends on a continuous awareness of potential hazards and on the acceptance

unknown authors

2005-01-01T23:59:59.000Z

277

A Barotropic Stability Study of Free and Forced Planetary Waves  

Science Conference Proceedings (OSTI)

The stability of free and forced planetary waves in a ? plane channel is investigated with a barotropic model. The equilibrium flows that are considered have the gravest possible scale in the meridional direction and a zonal wavenumber of either ...

John Fyfe; Jacques Derome

1986-10-01T23:59:59.000Z

278

Stratospheric Forcing of Surface Climate in the Arctic Oscillation  

Science Conference Proceedings (OSTI)

Diagnostic results are presented indicating that during the Arctic oscillation surface climate variations are directly forced by changes in the strength of the stratospheric polar vortex. To be specific, large-scale potential vorticity anomalies ...

Robert X. Black

2002-02-01T23:59:59.000Z

279

Protection Against Ionizing Radiation in Extreme Radiation ...  

Science Conference Proceedings (OSTI)

Protection Against Ionizing Radiation in Extreme Radiation-resistant Microorganisms. ... Elucidated radiation protection by intracellular halides. ...

2013-05-01T23:59:59.000Z

280

Electron Diamagnetic Effect on Axial Force in an Expanding Plasma: Experiments and Theory  

SciTech Connect

The axial force imparted from a magnetically expanding current-free plasma is directly measured for three different experimental configurations and compared with a two-dimensional fluid theory. The force component solely resulting from the expanding field is directly measured and identified as an axial force produced by the azimuthal current due to an electron diamagnetic drift and the radial component of the magnetic field. The experimentally measured forces are well described by the theory.

Takahashi, Kazunori [Space Plasma, Power and Propulsion Laboratory, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Department of Electrical Engineering and Computer Science, Iwate University, Morioka 020-8551 (Japan); Lafleur, Trevor; Charles, Christine; Alexander, Peter; Boswell, Rod W. [Space Plasma, Power and Propulsion Laboratory, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia)

2011-12-02T23:59:59.000Z

Note: This page contains sample records for the topic "direct radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Omni-directional railguns  

DOE Patents (OSTI)

This invention is comprised of a device for electromagetically accelerating projectiles. The invention features two parallel conducting circular plates, a plurality of electrode connections to both upper and lower plates, a support base, and a projectile magazine. A projectile is spring-loaded into a firing position concentrically located between the parallel plates. A voltage source is applied to the plates to cause current to flow in directions defined by selectable, discrete electrode connections on both upper and lower plates. Repulsive Lorentz forces are generated to eject the projectile in a 360 degree range of fire.

Shahinpoor, M.

1994-12-31T23:59:59.000Z

282

Beta Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Beta Radiation 1. Beta radiation may travel meters in air and is moderately penetrating. 2. Beta radiation can penetrate human skin to the "germinal layer," where new skin cells...

283

RADIATION MONITORING  

E-Print Network (OSTI)

of Monitoring for Radiation Protection of Workers" in ICRPNo. 9, in "Advances in Radiation Protection and Dosimetry inDosimetry f o r Stray Radiation Monitoring on the CERN S i t

Thomas, R.H.

2010-01-01T23:59:59.000Z

284

Force Modulator System  

SciTech Connect

Many metal parts manufacturers use large metal presses to shape sheet metal into finished products like car body parts, jet wing and fuselage surfaces, etc. These metal presses take sheet metal and - with enormous force - reshape the metal into a fully formed part in a manner of seconds. Although highly efficient, the forces involved in forming metal parts also damage the press itself, limit the metals used in part production, slow press operations and, when not properly controlled, cause the manufacture of large volumes of defective metal parts. To date, the metal-forming industry has not been able to develop a metal-holding technology that allows full control of press forces during the part forming process. This is of particular importance in the automotive lightweighting efforts under way in the US automotive manufacturing marketplace. Metalforming Controls Technology Inc. (MC2) has developed a patented press control system called the Force Modulator that has the ability to control these press forces, allowing a breakthrough in stamping process control. The technology includes a series of hydraulic cylinders that provide controlled tonnage at all points in the forming process. At the same time, the unique cylinder design allows for the generation of very high levels of clamping forces (very high tonnages) in very small spaces; a requirement for forming medium and large panels out of HSS and AHSS. Successful production application of these systems testing at multiple stamping operations - including Ford and Chrysler - has validated the capabilities and economic benefits of the system. Although this technology has been adopted in a number of stamping operations, one of the primary barriers to faster adoption and application of this technology in HSS projects is system cost. The cost issue has surfaced because the systems currently in use are built for each individual die as a custom application, thus driving higher tooling costs. This project proposed to better marry the die-specific Force Modulator technology with stamping presses in the form of a press cushion. This system would be designed to operate the binder ring for multiple parts, thus cutting the per-die cost of the technology. This study reports the results of technology field application. This project produced the following conclusions: (1) The Force Modulator system is capable of operating at very high tempos in the stamping environment; (2) The company can generate substantial, controlled holding tonnage (binder ring pressure) necessary to hold high strength steel parts for proper formation during draw operations; (3) A single system can be designed to operate with a family of parts, thus significantly reducing the per-die cost of a FM system; (4) High strength steel parts made with these systems appear to show significant quality improvements; (5) The amounts of steel required to make these parts is typically less than the amounts required with traditional blank-holding technologies; and (6) This technology will aid in the use of higher strength steels in auto and truck production, thus reducing weight and improving fuel efficiency.

Redmond Clark

2009-04-30T23:59:59.000Z

285

ARMY SERVICE FORCES  

Office of Legacy Management (LM)

ARMY SERVICE FORCES ARMY SERVICE FORCES ' -, 1 MANHATTAN ENGINEER DISTRICT --t 4 IN "LPLI RC,' LR io EIDM CIS INTELLIGENCE AND SECURITY DIVISION CHICAGO BRANCH OFFICE i ., -,* - P. 0. Box 6770-A I ' 1 .' CHICAGO 80. ILLINOIS /lvb 15 February 1945 Subject: shipment Security Survey at &Uinckrodt Chemical Works. MEMORANDUM to the Officer in Charge. 1. The Mallinckrodt Chemical Works, St. Louis, Missouri, was contacted by the undersigned on 16 November 1944, for the purpose of -king an investigation to determine security provided shipments of interest to the Manhattan Engineer District. The investigation in- cluded shipments of vital materials originating with the Mallinckrodt Company and those received by them. Particular attention has been given to the future production and shipment schedules of these materials.

286

Fundamentals of Radiation Dosimetry  

Science Conference Proceedings (OSTI)

The basic concepts of radiation dosimetry are reviewed on basis of ICRU reports and text books. The radiation field is described with, among others, the particle fluence. Cross sections for indirectly ionizing radiation are defined and indicated is how they are related to the mass energy transfer and mass energy absorption coefficients. Definitions of total and restricted mass stopping powers of directly ionizing radiation are given. The dosimetric quantities, kerma, absorbed dose and exposure together with the relations between them are discussed in depth. Finally it is indicated how the absorbed dose can be measured with a calorimeter by measuring the temperature increase and with an ionisation chamber measuring the charge produced by the ionizing radiation and making use of the Bragg-Gray relation.

Bos, Adrie J. J. [Delft University of Technology, Faculty of Applied Sciences, Mekelweg 15, 2629JB Delft (Netherlands)

2011-05-05T23:59:59.000Z

287

METHOD FOR MEASURING RADIATION  

DOE Patents (OSTI)

A method for measuring an unknown integrated quantity of radiation with a condenser ionization chamber is described. The chamber is initially charged to a predetermined voltage by a voltage source. The chamber is then removed from the source and exposed to an unknown quantity of radiation for a period of time. The quantity of radiation to which the chamber was exposed is then measured by detecting the magnitude of the pulse of current necessary to recharge the chamber of its initial value through a suitable impedance. The current pulse is amplified and measured directly by a suitable pulse height analyzing system. (AEC)

Roesch, W.C.; McCall, R.C.

1961-11-21T23:59:59.000Z

288

Miniature quartz resonator force transducer  

SciTech Connect

The invention relates to a piezoelectric quartz force transducer having the shape of a double-ended tuning fork.

Eer Nisse, Errol P. (Albuquerque, NM)

1980-01-01T23:59:59.000Z

289

About Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Radiation What is radiation? Radiation is a form of energy that is a part of our everyday lives. All of us receive a "dose" of radiation each day. Most of the dose comes from naturally occurring radioactive materials such as uranium, thorium, radon, and certain forms of potassium and carbon. The air we breathe contains radon, the food we eat contains uranium and thorium from the soil, and our bodies contain radioactive forms of potassium and carbon. Cosmic radiation from the sun also contributes to our natural radiation dose. We also receive radiation doses from man-made sources such as X-rays, nuclear medical procedures, power plants, smoke detectors and older television sets. Some people, such as nuclear plant operators, flight crews, and nuclear medicine staff may also receive an occupational radiation dose.

290

Radiation Physics Portal  

Science Conference Proceedings (OSTI)

NIST Home > Radiation Physics Portal. Radiation Physics Portal. ... more. >> see all Radiation Physics programs and projects ... ...

2013-08-08T23:59:59.000Z

291

Hydrologic implications of different large-scale meteorological model forcing datasets in mountainous regions  

Science Conference Proceedings (OSTI)

Process-based hydrologic models require extensive meteorological forcing data, including data on precipitation, temperature, shortwave and longwave radiation, humidity, surface pressure and wind speed. Observations of precipitation and temperature ...

Naoki Mizukami; Martyn Clark; Andrew Slater; Levi Brekke; Marketa Elsner; Jeffrey Arnold; Subhrendu Gangopadhyay

292

Volcanic and Solar Forcing of the Tropical Pacific over the Past 1000 Years  

Science Conference Proceedings (OSTI)

The response of El Niño to natural radiative forcing changes over the past 1000 yr is investigated based on numerical experiments employing the Zebiak–Cane model of the tropical Pacific coupled ocean–atmosphere system. Previously published ...

Michael E. Mann; Mark A. Cane; Stephen E. Zebiak; Amy Clement

2005-02-01T23:59:59.000Z

293

Determining Longwave Forcing and Feedback Using Infrared Spectra and GNSS Radio Occultation  

Science Conference Proceedings (OSTI)

The authors investigate whether combining a data type derived from radio occultation (RO) with the infrared spectral data in an optimal detection method improves the quantification of longwave radiative forcing and feedback. Signals derived from ...

Yi Huang; Stephen S. Leroy; James G. Anderson

2010-11-01T23:59:59.000Z

294

Nonlinear Aspects of the Climate Response to Greenhouse Gas and Aerosol Forcing  

Science Conference Proceedings (OSTI)

In a series of equilibrium experiments the climate response to present-day radiative forcings of anthropogenic greenhouse gases and aerosol particles is calculated. The study was performed with a model system consisting of the ECHAM4 atmospheric ...

Johann Feichter; Erich Roeckner; Ulrike Lohmann; Beate Liepert

2004-06-01T23:59:59.000Z

295

Evidence of Decadal Climate Prediction Skill Resulting from Changes in Anthropogenic Forcing  

Science Conference Proceedings (OSTI)

It is argued that simulations of the twentieth century performed with coupled global climate models with specified historical changes in external radiative forcing can be interpreted as climate hindcasts. A simple Bayesian method for ...

Terry C. K. Lee; Francis W. Zwiers; Xuebin Zhang; Min Tsao

2006-10-01T23:59:59.000Z

296

Observed Relationships between Arctic Longwave Cloud Forcing and Cloud Parameters Using a Neural Network  

Science Conference Proceedings (OSTI)

A neural network technique is used to quantify relationships involved in cloud–radiation feedbacks based on observations from the Surface Heat Budget of the Arctic (SHEBA) project. Sensitivities of longwave cloud forcing (CFL) to cloud parameters ...

Yonghua Chen; Filipe Aires; Jennifer A. Francis; James R. Miller

2006-08-01T23:59:59.000Z

297

TECHNIQUES FOR MEASURING CIRCUMSOLAR RADIATION  

E-Print Network (OSTI)

from the sun, while for pyrheliometry and solar collectionlens and a sun- shade to prevent direct solar radiation fromby the solar disc and a circle 30 from the sun's center.

Hunt, A.J.

2011-01-01T23:59:59.000Z

298

Dust Aerosol Impact on North Africa Climate: A GCM Investigation of Aerosol-Cloud-Radiation Interactions Using A-Train Satellite Data  

Science Conference Proceedings (OSTI)

The climatic effects of dust aerosols in North Africa have been investigated using the atmospheric general circulation model (AGCM) developed at the University of California, Los Angeles (UCLA). The model includes an efficient and physically based radiation parameterization scheme developed specifically for application to clouds and aerosols. Parameterization of the effective ice particle size in association with the aerosol indirect effect based on cloud and aerosol data retrieved from A-Train satellite observations have been employed in the climate model simulations. Offline simulations reveal that the direct solar, IR, and net forcings by dust aerosols generally increase with increasing aerosol optical depth (AOD). When the dust semi-direct effect is included with the presence of ice clouds, positive IR radiative forcing is enhanced, since ice clouds trap substantial IR radiation, while the positive solar forcing with dust aerosols alone has been changed to negative values due to the strong reflection of solar radiation by clouds, indicating that cloud forcing could exceed aerosol forcing. With the aerosol indirect effect, the net cloud forcing is generally reduced for ice water path (IWP) larger than 20 g m-2. The magnitude of the reduction increases with IWP. AGCM simulations show that the reduced ice crystal mean effective size due to the aerosol first indirect effect result in less OLR and net solar flux at the top of the atmosphere over the cloudy area of the North Africa region because ice clouds with smaller size trap more IR radiation and reflect more solar radiation. The precipitation in the same area, however, increases due to the aerosol indirect effect on ice clouds, corresponding to the enhanced convection as indicated by reduced OLR. The increased precipitation seems to be associated with enhanced ice water contents in this region. The 200 mb radiative heating rate shows more cooling with the aerosol indirect effect since greater cooling is produced at the cloud top with smaller ice crystal size. The 500 mb omega indicates strong upward motion, which, together with the increased cooling effect, results in the increased ice water contents. Adding the aerosol direct effect into the model simulation reduces the precipitation in the normal rainfall band over North Africa, where precipitation is shifted to the south and the northeast produced by the absorption of sunlight and the subsequent heating of the air column by dust particles. As a result, rainfall is drawn further inland to the northeast. This study represents the first attempt to quantify the climate impact of aerosol indirect effect using a GCM in connection with A-train satellite data. The parameterization for the aerosol first indirect effect developed in this study can be readily incorporated for application to any other GCMs.

Gu, Y.; Liou, K. N.; Jiang, Jonathan; Su, Hui; Liu, Xiaohong

2012-02-15T23:59:59.000Z

299

On Thermally Direct Circulations in Moist Atmospheres  

Science Conference Proceedings (OSTI)

An expression is derived for the critical horizontal gradient of subcloud-layer ?e in radiative-convective equilibrium, sufficient for the onset of thermally direct, zonally symmetric circulations. This corresponds to zero absolute vorticity at ...

Kerry A. Emanuel

1995-05-01T23:59:59.000Z

300

Indirect and Semi-direct Aerosol Campaign  

Science Conference Proceedings (OSTI)

A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the boundary layer in the vicinity of Barrow, Alaska, was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC). ISDAC's ...

Greg M. McFarquhar; Steven Ghan; Johannes Verlinde; Alexei Korolev; J. Walter Strapp; Beat Schmid; Jason M. Tomlinson; Mengistu Wolde; Sarah D. Brooks; Dan Cziczo; Manvendra K. Dubey; Jiwen Fan; Connor Flynn; Ismail Gultepe; John Hubbe; Mary K. Gilles; Alexander Laskin; Paul Lawson; W. Richard Leaitch; Peter Liu; Xiaohong Liu; Dan Lubin; Claudio Mazzoleni; Ann-Marie Macdonald; Ryan C. Moffet; Hugh Morrison; Mikhail Ovchinnikov; Matthew D. Shupe; David D. Turner; Shaocheng Xie; Alla Zelenyuk; Kenny Bae; Matt Freer; Andrew Glen

2011-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "direct radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

TEXT Pro Force Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basic Protective Basic Protective Force Training Program DOE/IG-0641 March 2004 * None of the 10 sites included instruction in rappelling even though it was part of the special response team core curriculum and continued to be offered by the Nonprolif- eration and National Security Institute; * Only one site conducted basic training on use of a shotgun, despite the fact that a num- ber of sites used the weapon for breaching exercises and other purposes; and, * Seven of the sites modified prescribed training techniques by reducing the intensity or delivery method for skills that some security experts characterized as critical, such as handcuffing, hand-to- hand combat, and vehicle assaults. We found that the Department's facilities were not required to report departures from the core

302

ARM - Measurement - Backscattered radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsBackscattered radiation govMeasurementsBackscattered radiation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Backscattered radiation The scattering of radiant energy into the hemisphere of space bounded by a plane normal to the direction of the incident radiation and lying on the same side as the incident ray. Categories Aerosols, Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AOS : Aerosol Observing System IAP : In-situ Aerosol Profiles (Cessna Aerosol Flights)

303

On the collective curvature radiation  

E-Print Network (OSTI)

The paper deals with the one possible mechanism of the pulsar radio emission, i.e., with the collective curvature radiation of the relativistic particle stream moving along the curved magnetospheric magnetic field lines. It is shown that the electromagnetic wave containing one cylindrical harmonic exp{is{\\phi}} can not be radiated by the curvature radiation mechanism, that corresponds to radiation of a charged particle moving along curved magnetic field lines. The point is that the particle in vacuum radiates the triplex of harmonics (s, s \\pm 1), so for the collective curvature radiation the wave polarization is very important and cannot be fixed a priori. For this reason the polarization of real unstable waves must be determined directly from the solution of wave equations for the media. Its electromagnetic properties should be described by the dielectric permittivity tensor \\^{\\epsilon}({\\omega},k,r), that contains the information on the reaction on all possible types of radiation.

Istomin, Ya N; Beskin, V S

2011-01-01T23:59:59.000Z

304

Radiation Cataract  

NLE Websites -- All DOE Office Websites (Extended Search)

radiation including patients undergoing diagnostic CT scans or radiotherapy, atomic bomb survivors, residents of radioactively contaminated buildings, victims of the...

305

Nuclear Radiological Threat Task Force Established | National...  

National Nuclear Security Administration (NNSA)

Force Established Nuclear Radiological Threat Task Force Established November 03, 2003 Washington, DC Nuclear Radiological Threat Task Force Established NNSA's Administrator...

306

On the unsteady-motion theory of magnetic forces for maglev  

DOE Green Energy (OSTI)

Motion-dependent magnetic forces are the key elements in the study of magnetically levitated vehicle (maglev) system dynamics. This paper presents an experimental and analytical study that will enhance their understanding of the role of unsteady-motion-dependent magnetic forces and demonstrate an experimental technique that can be used to measure those unsteady magnetic forces directly. The experimental technique provides a useful tool to measure motion-dependent magnetic forces for the prediction and control of maglev systems.

Chen, S.S.; Zhu, S.; Cai, Y. [Argonne National Lab., IL (United States). Energy Technology Div.

1996-02-01T23:59:59.000Z

307

MODELING RADIATIVE FORCING BY AEROSOLS HOW GOOD IS GOOD ENOUGH?  

E-Print Network (OSTI)

1 2 3 Radiativeforcing(Wattspersquaremetre) CoolingWarming High Medium Medium Low Very Low Very Low Understanding -2 -1 0 1 2 3 Radiativeforcing(Wattspersquaremetre) CoolingWarming High Medium Medium Low Very Low(Wattspersquaremetre) CoolingWarming High Medium Medium Low Very Low Very Low Very Low Very Low Very Low Very Low CO2 Very Low

Schwartz, Stephen E.

308

Total aerosol effect: forcing or radiative flux perturbation?  

E-Print Network (OSTI)

heterogeneous ice nucleation in mixed-phase clouds, Environ.interactions with mixed-phase and ice clouds can be comparedice nuclei for the indirect aerosol effect on stratiform mixed-phase

Lohmann, Ulrike

2010-01-01T23:59:59.000Z

309

Radiative forcing from aircraft NOx emissions: mechanisms and seasonal dependence  

E-Print Network (OSTI)

), a Babcock Power Inc. company, has developed a new, innovative, high-efficiency NOX reduction technology into a single unit and provides the maximum NOX reduction and heat recovery practical. The paper will describe emissions. A new system for the reduction of NOX emissions to levels hereby unheard of for US WTE boilers

Stevenson, David

310

Characteristics of Cloud Radiation Forcing over East China  

Science Conference Proceedings (OSTI)

Observations indicate that the East Asian summer monsoon (EASM) exhibits distinctive characteristics of large cloud amounts with associated heavy and persistent rainfall, although short breaks for clear sky usually occur. Consequently, the ...

Wei-Chyung Wang; Wei Gong; Wen-Shung Kau; Cheng-Ta Chen; Huang-Hsiung Hsu; Chia-Hsiu Tu

2004-02-01T23:59:59.000Z

311

Simultaneously Constraining Climate Sensitivity and Aerosol Radiative Forcing  

Science Conference Proceedings (OSTI)

An energy balance climate model with latitudinal, surface–air, and land–sea resolution is coupled to a two-dimensional (latitude–depth) ocean model and used to simulate changes in surface and surface air temperature since 1765. The climate model ...

L. D. Danny Harvey; Robert K. Kaufmann

2002-10-01T23:59:59.000Z

312

Protective Force Firearms Qualification Courses  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PROTECTIVE FORCE PROTECTIVE FORCE FIREARMS QUALIFICATION COURSES U.S. DEPARTMENT OF ENERGY Office of Health, Safety and Security AVAILABLE ONLINE AT: INITIATED BY: http://www.hss.energy.gov Office of Health, Safety and Security Protective Force Firearms Qualification Courses July 2011 i TABLE OF CONTENTS SECTION A - APPROVED FIREARMS QUALIFICATION COURSES .......................... I-1 CHAPTER I . INTRODUCTION ................................................................................... I-1 1. Scope .................................................................................................................. I-1 2. Content ............................................................................................................... I-1

313

Radiation and photochemistry section  

Science Conference Proceedings (OSTI)

The highlights of this past year in the Radiation and Photochemistry Section at Argonne include: (1) picosecond optical studies of radical cations and excited states produced in hydrocarbon radiolysis provided the first kinetic measurements of ion transformation and production of triplet and singlet excited states by ion recombination. (2) studies of radical cations of alkyl-substituted amines and sulfides provided insights into ion-molecule reactions of radical cations in the condensed phase. (3) studies of the behavior of strained alkane radical cations, such as cubane {sup +}{center dot}, revealed new rearrangements and remarkable, medium-dependent differences in their structures. (4) H{center dot}atom reactions yielding e{sub aq}{sup {minus}} provided the first reliable measurements of hydrated-electron enthalpy and entropy and forced the revision of some previous thinking about the driving force in {sub aq}{sup {minus}} reactions.

Not Available

1991-01-01T23:59:59.000Z

314

EPRI Transformer Task Force Proceedings  

Science Conference Proceedings (OSTI)

The EPRI Transformer Task Force held a meeting on December 4, 2007, in San Antonio, Texas. This technical update contains the proceedings of the meeting.

2008-02-12T23:59:59.000Z

315

EPRI Transformer Task Force Proceedings  

Science Conference Proceedings (OSTI)

This report contains the proceedings from the EPRI Transformers Task Force, which was held in Montreal on October 26 and 27, 2006.

2006-12-12T23:59:59.000Z

316

Army Energy Initiatives Task Force  

Energy.gov (U.S. Department of Energy (DOE))

Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—covers the Army Energy Initiatives Task Force.

317

Physics Out Loud - Electromagnetic Force  

NLE Websites -- All DOE Office Websites (Extended Search)

Detector Previous Video (Detector) Physics Out Loud Main Index Next Video (Electron Scattering) Electron Scattering Electromagnetic Force Cynthia Keppel, a nuclear physicist,...

318

Does entropic force always imply the Newtonian force law?  

E-Print Network (OSTI)

We study the entropic force by introducing a bound between entropy and area of $S \\le A^{3/4}$ which was derived by imposing the non-gravitational collapse condition. In this case, applying a recent argument of Verlinde to this system does not lead to the Newtonian force law.

Myung, Yun Soo

2010-01-01T23:59:59.000Z

319

Radiator debris removing apparatus and work machine using same  

DOE Patents (OSTI)

A radiator assembly includes a finned radiator core and a debris removing apparatus having a compressed air inlet and at least one compressed air outlet configured to direct compressed air through the radiator core. A work machine such as a wheel loader includes a radiator and a debris removing apparatus coupled with on-board compressed air and having at least one pressurized gas outlet configured to direct a gas toward the face of the radiator.

Martin, Kevin L. (Washburn, IL); Elliott, Dwight E. (Chillicothe, IL)

2008-09-02T23:59:59.000Z

320

Tailored Force Fields for Space-Based Construction Narayanan M. Komerath, Sameh S. Wanis, Joseph Czechowski  

E-Print Network (OSTI)

. Such a project draws upon several technologies such as lunar-based solar power plants, in situ resource. Standing- wave fields offer important advantages - the radiation force in a standing wave field can be 3/electromagnetic and acoustic radiation is used to extend a microgravity flight result from acoustic standing wave fields

Note: This page contains sample records for the topic "direct radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Radiation hormesis. Its emerging significance in medical practice [see comments  

SciTech Connect

Because of the strong scientific evidence in support of radiation hormesis, we can no longer ignore this concept. There is, however, need for additional, carefully documented investigations in selected biological systems exposed to LLIR if the matter of radiation hormesis is to be settled once and for all. This need should be addressed without delay, as the matter of benefits derived from LLIR exposure could have major economic and epidemiologic implications. If radiation hormesis becomes firmly established, the requirements for LLIR protection might be relaxed, leading to a sizable cost saving, and the fear of nuclear energy should abate. If this happens, the evergrowing problems associated with energy production from fossil fuels on the one hand and the continued improvements in nuclear reactor technology on the other, will force a world-wide reassessment of risks and benefits associated with nuclear energy. Furthermore, as discussed herein, the major source of exposure from background radiation comes from the inhalation of radon gas. The very high cost associated with effective radon abatement would lead to an abandonment of this mitigation effort so that the limited funds available to improve public health world wide could be used more effectively elsewhere. Thus, we conclude that the time is now to consider eliminating the concept of the radiation paradigm from scientific thinking. We must not continue to unequivocally accept the propositions that (1) all radiation is harmful and (2) that the health effects of LLIR may be directly inferred by scaling down from known deleterious high-dose effects, in as much as there is no scientific basis for an agent not to cause multiple effects.

Loken, M.K.; Feinendegen, L.E. (Univ. of Minnesota Hospital, Department of Radiology, Minneapolis (United States))

1993-05-01T23:59:59.000Z

322

DISCRETE-FREQUENCY AND BROADBAND NOISE RADIATION FROM DIESEL ENGINE COOLING FANS.  

E-Print Network (OSTI)

??This effort focuses on measuring and predicting the discrete-frequency and broadband noise radiated by diesel engine cooling fans. Unsteady forces developed by the interaction of… (more)

Kim, Geon-Seok

2007-01-01T23:59:59.000Z

323

Feedbacks between Eddy Heat Fluxes and Radiative Heating in an Energy-Balance Model  

Science Conference Proceedings (OSTI)

The response of midlatitude temperature structure to changes in radiative forcing is examined in an analytical energy-balance model that includes parameterized eddy heat fluxes and linear radiative heating. The characteristics of heat-...

Lee E. Branscome; Enda O'Brien

1988-02-01T23:59:59.000Z

324

Air Force Renewable Energy Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 Ken Gray P.E. HQ AFCESA /CENR Air Force Renewable Energy Programs April, 2011 FUPWG "Make Energy a Consideration in All We Do" I n t e g r i t y - S e r v i c e - E x c e l l e n c e THINK GREEN, BUILD GREEN, Topics  Air Force Energy Use  Air Force Facility Energy Center  Current RE Generation  Project Development System  Programmed RE Generation FY11-13  Goal Achievement 2 I n t e g r i t y - S e r v i c e - E x c e l l e n c e THINK GREEN, BUILD GREEN, Air Force 2010 Energy Use The Air Force spent approximately $8.2 billion for energy in 2010; an increase of 22% from 2009 Energy Cost and Consumption Trends Energy Cost Breakdown Aviation 79% Facilities 17% 3 Aviation 84% Facilities 12% Vehicles & Equipment

325

Radiation Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Information << Timeline >> Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player July 31, 1942 The Army Corp of Engineers leases...

326

Low Dose Radiation Program: Links - Online Literature  

NLE Websites -- All DOE Office Websites (Extended Search)

Online Literature Online Literature Journals, Books and other Publications Armed Forces Radiobiology Research Institute Chornobyl Center for Nuclear Safety Radioactive Waste and Radioecology "Insight" Magazine Central Research Institute of the Electric Power Industry (CRIEPI) News: Aiming at an information center on low dose radiation research Health Physics International Journal of Radiation Biology Iranian Journal of Radiation Research Journal of Radiological Protection National Council on Radiation Protection and Measurements Radiation Research U.S. Department of Energy (DOE) Information Bridge Reports Animal Cancer Tests and Human Cancer Risk Assessment: A Broad Perspective Effects of Ionizing Radiation: Atomic Bomb Survivors and Their Children (1945-1995) Health Effects of Exposure to Low Levels of Ionizing Radiation: BEIR

327

Nuclear forces and chiral theories  

SciTech Connect

Recent successes in ab initio calculations of light nuclei (A=2-6) will be reviewed and correlated with the dynamical consequences of chiral symmetry. The tractability of nuclear physics evinced by these results is evidence for that symmetry. The relative importance of three-nucleon forces, four-nucleon forces, multi-pion exchanges, and relativistic corrections will be discussed in the context of effective field theories and dimensional power counting. Isospin violation in the nuclear force will also be discussed in this context.

Friar, J.L. [Los Alamos National Lab., NM (United States)]|[Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory

1995-09-01T23:59:59.000Z

328

Definition of Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Gamma Radiation and X-Rays Beta Radiation Alpha Radiation Irradiation Radioactive Contamination Definitions Detection Measurement Safety Around Radiation Sources Types of...

329

How to Detect Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

How to Detect Radiation How to Survey Measurement Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Procedure Demonstration Detection How...

330

The origins of Causality Violations in Force Free Simulations of Black Hole Magnetospheres  

E-Print Network (OSTI)

Recent simulations of force-free, degenerate (ffde) black hole magnetospheres indicate that the fast mode radiated from (or near) the event horizon can modify the global potential difference in the poloidal direction orthogonal to the magnetic field, V, in a black hole magnetosphere. There is a fundamental contradiction in a wave that alters V coming from near the horizon. The background fields in ffde satisfy the ``ingoing wave condition'' near the horizon (that arises from the requirement that all matter is ingoing at the event horizon), yet outgoing waves are radiated from this region in the simulation. Studying the properties of the waves in the simulations are useful tools to this end. It is shown that regularity of the stress-energy tensor in a freely falling frame requires that the outgoing (as viewed globally) waves near the event horizon are redshifted away and are ineffectual at changing V. It is also concluded that waves in massless MHD (ffde) are extremely inaccurate depictions of waves in a tenuous MHD plasma, near the event horizon, as a consequence black hole gravity. Any analysis based on ffde near the event horizon is seriously flawed.

Brian Punsly; Donato Bini

2003-12-16T23:59:59.000Z

331

Task Force for Strategic Developments to Blue Ribbon Commission  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Task Force for Strategic Developments to Blue Ribbon Commission Task Force for Strategic Developments to Blue Ribbon Commission Recommendations Task Force for Strategic Developments to Blue Ribbon Commission Recommendations Formed at the direction of the President to Secretary Chu and included leading experts. Purpose to conduct a comprehensive review of polices for managing the back end of the nuclear fuel cycle; i.e., recycle before storage and permanent disposal. Detailed analysis, with eight major recommendations; also recommended near-term actions. Task Force for Strategic Developments to Blue Ribbon Commission Recommendations More Documents & Publications Categorization of Used Nuclear Fuel Inventory in Support of a Comprehensive National Nuclear Fuel Cycle Strategy DOE Office of Nuclear Energy Transportation Planning, Route Selection, and

332

Task Force for Strategic Developments to Blue Ribbon Commission  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Task Force for Strategic Developments to Blue Ribbon Commission Task Force for Strategic Developments to Blue Ribbon Commission Recommendations Task Force for Strategic Developments to Blue Ribbon Commission Recommendations Formed at the direction of the President to Secretary Chu and included leading experts. Purpose to conduct a comprehensive review of polices for managing the back end of the nuclear fuel cycle; i.e., recycle before storage and permanent disposal. Detailed analysis, with eight major recommendations; also recommended near-term actions. Task Force for Strategic Developments to Blue Ribbon Commission Recommendations More Documents & Publications DOE Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues Categorization of Used Nuclear Fuel Inventory in Support of a Comprehensive

333

Short communication: A software component for estimating solar radiation  

Science Conference Proceedings (OSTI)

GSRad (global solar radiation) is a software component containing models to estimate extra-terrestrial and ground-level solar radiation (global and photosynthetically active; direct, diffuse, and reflected components) from alternative methods. Radiation ... Keywords: Atmospheric transmissivity, Component architecture, GSRad, Model extensibility, Solar radiation fractions

M. Donatelli; L. Carlini; G. Bellocchi

2006-03-01T23:59:59.000Z

334

River-Forced Estuarine Plumes  

Science Conference Proceedings (OSTI)

The development, maintenance, and dissipation of river-forced estuarine plumes with and without seaward sloping bottom are studied by use of a three-dimensional, primitive-equation model. Inside the estuary, discussion is focused on how the ...

Shenn-Yu Chao

1988-01-01T23:59:59.000Z

335

Nuclear Forces and Chiral Symmetry  

SciTech Connect

We review the main achievements of the research program for the study of nuclear forces in the framework of chiral symmetry and discuss some problems which are still open.

Renato Higa; Manoel Robilotta; Carlos Antonio da Rocha

2005-07-26T23:59:59.000Z

336

University Research Program in Robotics - "Technologies for Micro-Electrical-Mechanical Systems in directed Stockpile Work (DSW) Radiation and Campaigns", Final Technical Annual Report, Project Period 9/1/06 - 8/31/07  

Science Conference Proceedings (OSTI)

The University Research Program in Robotics (URPR) is an integrated group of universities performing fundamental research that addresses broad-based robotics and automation needs of the NNSA Directed Stockpile Work (DSW) and Campaigns. The URPR mission is to provide improved capabilities in robotics science and engineering to meet the future needs of all weapon systems and other associated NNSA/DOE activities.

James S. Tulenko; Carl D. Crane

2007-12-13T23:59:59.000Z

337

ImpAct: enabling direct touch and manipulation for surface computing  

Science Conference Proceedings (OSTI)

This paper explores direct touch and manipulation techniques for surface computing platforms using a special force feedback stylus named ImpAct(Immersive Haptic Augmentation for Direct Touch). Proposed haptic stylus can change its length when it is pushed ... Keywords: 6-dof input, direct touch, force feedback, haptic display, simulated projection rendering, touch screen

Anusha Withana; Makoto Kondo; Gota Kakehi; Yasutoshi Makino; Maki Sugimoto; Masahiko Inami

2010-10-01T23:59:59.000Z

338

Is Gravity an Entropic Force?  

E-Print Network (OSTI)

The remarkable connections between gravity and thermodynamics seem to imply that gravity is not fundamental but emergent, and in particular, as Verlinde suggested, gravity is probably an entropic force. In this paper, we will argue that the idea of gravity as an entropic force is debatable. It is shown that there is no convincing analogy between gravity and entropic force in Verlinde's example. Neither holographic screen nor test particle satisfies all requirements for the existence of entropic force in a thermodynamics system. Furthermore, we show that the entropy increase of the screen is not caused by its statistical tendency to increase entropy as required by the existence of entropic force, but in fact caused by gravity. Therefore, Verlinde's argument for the entropic origin of gravity is problematic. In addition, we argue that the existence of a minimum size of spacetime, together with the Heisenberg uncertainty principle in quantum theory, may imply the fundamental existence of gravity as a geometric property of spacetime. This may provide a further support for the conclusion that gravity is not an entropic force.

Shan Gao

2010-02-13T23:59:59.000Z

339

RADIATION FACILITY FOR NUCLEAR REACTORS  

DOE Patents (OSTI)

A radiation facility is designed for irradiating samples in close proximity to the core of a nuclear reactor. The facility comprises essentially a tubular member extending through the biological shield of the reactor and containing a manipulatable rod having the sample carrier at its inner end, the carrier being longitudinally movable from a position in close proximity to the reactor core to a position between the inner and outer faces of the shield. Shield plugs are provided within the tubular member to prevent direct radiation from the core emanating therethrough. In this device, samples may be inserted or removed during normal operation of the reactor without exposing personnel to direct radiation from the reactor core. A storage chamber is also provided within the radiation facility to contain an irradiated sample during the period of time required to reduce the radioactivity enough to permit removal of the sample for external handling. (AEC)

Currier, E.L. Jr.; Nicklas, J.H.

1961-12-12T23:59:59.000Z

340

Radiation in Particle Simulations  

SciTech Connect

Hot dense radiative (HDR) plasmas common to Inertial Confinement Fusion (ICF) and stellar interiors have high temperature (a few hundred eV to tens of keV), high density (tens to hundreds of g/cc) and high pressure (hundreds of megabars to thousands of gigabars). Typically, such plasmas undergo collisional, radiative, atomic and possibly thermonuclear processes. In order to describe HDR plasmas, computational physicists in ICF and astrophysics use atomic-scale microphysical models implemented in various simulation codes. Experimental validation of the models used to describe HDR plasmas are difficult to perform. Direct Numerical Simulation (DNS) of the many-body interactions of plasmas is a promising approach to model validation but, previous work either relies on the collisionless approximation or ignores radiation. We present four methods that attempt a new numerical simulation technique to address a currently unsolved problem: the extension of molecular dynamics to collisional plasmas including emission and absorption of radiation. The first method applies the Lienard-Weichert solution of Maxwell's equations for a classical particle whose motion is assumed to be known. The second method expands the electromagnetic field in normal modes (planewaves in a box with periodic boundary-conditions) and solves the equation for wave amplitudes coupled to the particle motion. The third method is a hybrid molecular dynamics/Monte Carlo (MD/MC) method which calculates radiation emitted or absorbed by electron-ion pairs during close collisions. The fourth method is a generalization of the third method to include small clusters of particles emitting radiation during close encounters: one electron simultaneously hitting two ions, two electrons simultaneously hitting one ion, etc. This approach is inspired by the virial expansion method of equilibrium statistical mechanics. Using a combination of these methods we believe it is possible to do atomic-scale particle simulations of fusion ignition plasmas including the important effects of radiation emission and absorption.

More, R; Graziani, F; Glosli, J; Surh, M

2010-11-19T23:59:59.000Z

Note: This page contains sample records for the topic "direct radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Radiatively Driven Interactions between Stratocumulus and Synoptic Waves  

Science Conference Proceedings (OSTI)

Quasigeostrophic disturbances on a midlatitude ?-plane channel forced by radiative heating perturbations due to synoptic-scale variations of low-level stratiform cloud are considered. The longitudinal phase of the cloud is linked to that of the ...

John H. E. Clark

1993-08-01T23:59:59.000Z

342

The Contribution of Radiative Feedbacks to Orbitally Driven Climate Change  

Science Conference Proceedings (OSTI)

Radiative feedbacks influence Earth's climate response to orbital forcing, amplifying some aspects of the response while damping others. To better understand this relationship, the GFDL Climate Model, version 2.1 (CM2.1), is used to perform ...

Michael P. Erb; Anthony J. Broccoli; Amy C. Clement

2013-08-01T23:59:59.000Z

343

Radiation dosimeter  

DOE Patents (OSTI)

A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even though the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

Fox, Richard J. (Oak Ridge, TN)

1983-01-01T23:59:59.000Z

344

Radiation dosimeter  

DOE Patents (OSTI)

A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even through the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

Fox, R.J.

1981-09-01T23:59:59.000Z

345

Bottke et al.: Yarkovsky Effect and Asteroid Evolution 395 The Effect of Yarkovsky Thermal Forces on the Dynamical  

E-Print Network (OSTI)

Miroslav Broz Charles University, Prague The Yarkovsky effect is a thermal radiation force that causes states, shapes, and internal structures of the sur- viving bodies. The largest impact events are believed with short cosmic-ray- exposure (CR

Bottke, William F.

346

Casimir forces beyond the proximity approximation  

E-Print Network (OSTI)

The proximity force approximation (PFA) relates the interaction between closely spaced, smoothly curved objects to the force between parallel plates. Precision experiments on Casimir forces necessitate, and spur research ...

Bimonte, G.

347

Cloud Scavenging Effects on Aerosol Radiative and Cloud-nucleating Properties - Final Technical Report  

Science Conference Proceedings (OSTI)

The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

2009-03-05T23:59:59.000Z

348

Direct and semi-direct aerosol effects of Southern African1 biomass burning aerosol2  

E-Print Network (OSTI)

1 Direct and semi-direct aerosol effects of Southern African1 biomass burning aerosol2 Naoko effects of biomass burning aerosols from Southern African fires9 during July-October are investigated region the overall TOA radiative effect from the23 biomass burning aerosols is almost zero due

Wood, Robert

349

NIST Radiation thermometry  

Science Conference Proceedings (OSTI)

Radiation thermometry. Summary: ... Description: Radiation thermometers are calibrated using a range of variable-temperature blackbodies. ...

2011-10-13T23:59:59.000Z

350

NIST Optical Radiation Group  

Science Conference Proceedings (OSTI)

Optical Radiation Group. Welcome. The Optical Radiation Group maintains, improves, and disseminates the national scales ...

2013-07-29T23:59:59.000Z

351

Note: Helical nanobelt force sensors  

Science Conference Proceedings (OSTI)

We present the fabrication and characterization of helical nanobelt force sensors. These self-sensing force sensors are based on the giant piezoresistivity of helical nanobelts. The three-dimensional helical nanobelts are self-formed from 27 nm-thick n-type InGaAs/GaAs bilayers using rolled-up techniques, and assembled onto electrodes on a micropipette using nanorobotic manipulations. The helical nanobelt force sensors can be calibrated using a calibrated atomic force microscope cantilever system under scanning electron microscope. Thanks to their giant piezoresistance coefficient (515 Multiplication-Sign 10{sup -10} Pa{sup -1}), low stiffness (0.03125 N/m), large-displacement capability ({approx}10 {mu}m), and good fatigue resistance, they are well suited to function as stand-alone, compact ({approx}20 {mu}m without the plug-in support), light ({approx}5 g including the plug-in support), versatile and large range ({approx}{mu}N) and high resolution ({approx}nN) force sensors.

Hwang, G. [Laboratory for Photonics and Nanostructures, Centre National de la Recherche Scientifique, Marcoussis 91460 (France); Hashimoto, H. [Department of EECE, Chuo University 1-13-27 Kasuga, Bunkyo-ku, Tokyo (Japan)

2012-12-15T23:59:59.000Z

352

Task Force Approach | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Task Force Approach Task Force Approach Task Force Approach Task Force Approach Results of the ARI Task Force: The purpose of the ARI Task Force is to 1) identify, prioritize, and resolve issues to enable sites and programs to implement revitalization efforts more effectively and 2) to facilitate programmatic incorporation of revitalization concepts into DOE's programmatic business environments. The Task Force must do this through coordinating and facilitating communication and connections, sharing lessons learned, broadening the general knowledge base, facilitating, analyzing problems, developing implementable solutions, and considering and incorporating broader perspectives and knowledge. The success of the Task Force can be evaluated by impacts to the Department upon its completion. These impacts

353

Web Force-Field (WebFF)  

Science Conference Proceedings (OSTI)

Web Force-Field (WebFF). Summary: ... WebFF - A web hosted, extensible force field repository with integrated assignment engine. Description: ...

2013-07-19T23:59:59.000Z

354

Fast Computation of Optimal Contact Forces  

E-Print Network (OSTI)

requirement, i.e., the ability of the contact forces to resist a specified external .... does not exceed the friction coefficient times the normal force. (In particular, it ...

355

Attribution of climate forcing to economic sectors  

NLE Websites -- All DOE Office Websites (Extended Search)

Attribution of climate forcing to economic sectors Title Attribution of climate forcing to economic sectors Publication Type Journal Article Year of Publication 2010 Authors Unger,...

356

Integration of contractile forces during tissue invagination  

E-Print Network (OSTI)

Contractile forces generated by the actomyosin cytoskeleton within individual cells collectively generate tissue-level force during epithelial morphogenesis. During Drosophila mesoderm invagination, pulsed actomyosin ...

Martin, Adam C.

357

Cellular telephone-based radiation detection instrument  

DOE Patents (OSTI)

A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

Craig, William W. (Pittsburg, CA); Labov, Simon E. (Berkeley, CA)

2011-06-14T23:59:59.000Z

358

Nuclear Forces and Nuclear Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Forces and Nuclear Systems Forces and Nuclear Systems Our goal is to achieve a description of nuclear systems ranging in size from the deuteron to nuclear matter and neutron stars using a single parameterization of the nuclear forces. Our work includes both the construction of two- and three-nucleon potentials and the development of many-body techniques for computing nuclear properties with these interactions. Detailed quantitative, computationally intense studies are essential parts of this work. In the last decade we have constructed several realistic two- and three-nucleon potential models. The NN potential, Argonne v18, has a dominant charge-independent piece plus additional charge-dependent and charge-symmetry-breaking terms, including a complete electromagnetic interaction. It fits 4301 pp and np elastic scattering data with a chi**2

359

Nuclear force in Lattice QCD  

E-Print Network (OSTI)

We perform the quenched lattice QCD analysis on the nuclear force (baryon-baryon interactions). We employ $20^3\\times 24$ lattice at $\\beta=5.7$ ($a\\simeq 0.19$ fm) with the standard gauge action and the Wilson quark action with the hopping parameters $\\kappa=0.1600, 0.1625, 0.1650$, and generate about 200 gauge configurations. We measure the temporal correlators of the two-baryon system which consists of heavy-light-light quarks. We extract the inter-baryon force as a function of the relative distance $r$. We also evaluate the contribution to the nuclear force from each ``Feynman diagram'' such as the quark-exchange diagram individually, and single out the roles of Pauli-blocking effects or quark exchanges in the inter-baryon interactions.

T. T. Takahashi; T. Doi; H. Suganuma

2006-01-05T23:59:59.000Z

360

EU Metric Directive  

Science Conference Proceedings (OSTI)

... View EU Metric Directive Commission Services Working Document PDF ... of European Union (EU) Meeting on Metric Directives (2005); Packaging ...

2012-12-13T23:59:59.000Z

Note: This page contains sample records for the topic "direct radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Orientational ordering of colloidal dispersions by application of time dependent external forces  

E-Print Network (OSTI)

We present a method of organizing incoherent motion of a colloidal suspension to produce synchronized, coherent motion. This method exploits general features of rotational response to time-dependent forcing, and it does not require interaction between the particles. We report two methods of achieving orientational alignment of an ensemble of identical colloids by means of a time-dependent, but spatially uniform forcing: a) a piecewise constant force alternating between two directions and b) a force uniformly rotating about an axis. The physical origin of the forcing may be e.g., sedimentation or electrophoresis. We will demonstrate that these forcing methods achieve alignment both by analyzing the equations of motion and by simulation. We find the conditions guaranteeing alignment, discuss the limitations of these methods, and suggest possible applications. Examples of such forcing include electrophoresis and sedimentation.

Brian Moths; T. A. Witten

2013-04-09T23:59:59.000Z

362

Automatic HTS force measurement instrument  

DOE Patents (OSTI)

A device is disclosed for measuring the levitation force of a high temperature superconductor sample with respect to a reference magnet includes a receptacle for holding several high temperature superconductor samples each cooled to superconducting temperature. A rotatable carousel successively locates a selected one of the high temperature superconductor samples in registry with the reference magnet. Mechanism varies the distance between one of the high temperature superconductor samples and the reference magnet, and a sensor measures levitation force of the sample as a function of the distance between the reference magnet and the sample. A method is also disclosed. 3 figs.

Sanders, S.T.; Niemann, R.C.

1999-03-30T23:59:59.000Z

363

Posters Radiation Impacts on Global Climate Models F. Baer, N. Arsky, and K. Rocque  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Posters Radiation Impacts on Global Climate Models F. Baer, N. Arsky, and K. Rocque University of Maryland College Park, Maryland Climate Prediction and Radiative Heating Climate models are driven by forcing, and these forces are seen primarily by the thermal field in general circulation models (GCMs). The major forces that affect the thermal field are longwave radiative (LWR) heating, shortwave radiative (SWR) heating, and convection (cumulus, etc.). These forcing effects are cycled through the thermal field to the motion field by nonlinear transfer. The dependent variables-in particular, temperature (T), moisture (Q) and especially clouds-evolve in time in a model and determine the subsequent forcing. If the dependent variables are not accurately calculated in space and time, the forcing

364

Aerosol Radiative Impact on Spectral Solar Flux at the Surface, Derived from Principal-Plane Sky Measurements  

Science Conference Proceedings (OSTI)

Accurate measurements of the spectral solar flux reaching the surface in cloud-free conditions are required to determine the aerosol radiative impact and to test aerosol models that are used to calculate radiative forcing of climate. Spectral ...

Y. J. Kaufman; D. Tanré; B. N. Holben; S. Mattoo; L. A. Remer; T. F. Eck; J. Vaughan; Bernadette Chatenet

2002-02-01T23:59:59.000Z

365

Measuring Molecular Motor Forces In Vivo: Implications for Tug-of-War Models of Bidirectional Transport  

E-Print Network (OSTI)

Measuring Molecular Motor Forces In Vivo: Implications for Tug-of-War Models of Bidirectional, The University of Texas at Austin, Austin, Texas ABSTRACT Molecular motor proteins use the energy released from the force motors generate amounts to directly probing their function. We report on optical trapping

Texas at Austin. University of

366

Casimir-Lifshitz force out of thermal equilibrium and heat transfer between arbitrary bodies  

E-Print Network (OSTI)

We study the Casimir-Lifshitz force and the radiative heat transfer occurring between two arbitrary bodies, each one held at a given temperature, surrounded by environmental radiation at a third temperature. The system, in stationary configuration out of thermal equilibrium, is characterized by a force and a heat transfer depending on the three temperatures, and explicitly expressed in terms of the scattering operators of each body. We find a closed-form analytic expression valid for bodies of any geometry and dielectric properties. As an example, the force between two parallel slabs of finite thickness is calculated, showing the importance of the environmental temperature as well as the occurrence of a repulsive interaction. An analytic expression is also provided for the force acting on an atom in front of a slab. Our predictions can be relevant for experimental and technological purposes.

Riccardo Messina; Mauro Antezza

2010-12-23T23:59:59.000Z

367

Solar and Greenhouse Gas Forcing and Climate Response in the Twentieth Century  

Science Conference Proceedings (OSTI)

Ensemble experiments with a global coupled climate model are performed for the twentieth century with time-evolving solar, greenhouse gas, sulfate aerosol (direct effect), and ozone (tropospheric and stratospheric) forcing. Observed global ...

Gerald A. Meehl; Warren M. Washington; T. M. L. Wigley; Julie M. Arblaster; Aiguo Dai

2003-02-01T23:59:59.000Z

368

USLCSG Task Force Meeting June 2003  

NLE Websites -- All DOE Office Websites (Extended Search)

All Task Force Meeting at SLAC All Task Force Meeting at SLAC June 15, 16, 2003 Meeting Agenda What's New! June 2003 Meeting Accommodations: The new SLAC Guest House is now available, but the block of rooms for the meeting has now been released, and space is first-come first-serve. If you want to use it, please book directly at SLAC Guest House. or let Naomi know ASAP. You need to mention Dave or Naomi's name as a host name. Daily rate is $50 + tax for the one full sized bed room (Standard room). Lunch on Sunday and Coffee services: The cafeteria is closed on Sunday, so we will order box lunches for meeting delegates. We will collect $10 per person to cover the cost of lunch on Sunday. Please pay $10 in cash to Naomi Nagahashi on Monday, June 16. If you need a receipt, she will provide one. We need a count of the lunches to provide, so please let Naomi know, if you need a box lunch, by Friday, June 6. On Monday, the cafeteria will be open for breakfast and lunch.

369

The Blackbody Radiation Spectrum Follows from Zero-Point Radiation and the Structure of Relativistic Spacetime in Classical Physics  

E-Print Network (OSTI)

The analysis of this article is entirely within classical physics. Any attempt to describe nature within classical physics requires the presence of Lorentz-invariant classical electromagnetic zero-point radiation so as to account for the Casimir forces between parallel conducting plates at low temperatures. Furthermore, conformal symmetry carries solutions of Maxwell's equations into solutions. In an inertial frame, conformal symmetry leaves zero-point radiation invariant and does not connect it to non-zero-temperature; time-dilating conformal transformations carry the Lorentz-invariant zero-point radiation spectrum into zero-point radiation and carry the thermal radiation spectrum at non-zero temperature into thermal radiation at a different non-zero-temperature. However, in a non-inertial frame, a time-dilating conformal transformation carries classical zero-point radiation into thermal radiation at a finite non-zero-temperature. By taking the no-acceleration limit, one can obtain the Planck radiation spect...

Boyer, Timothy H

2011-01-01T23:59:59.000Z

370

Thin-film forces in pseudoemulsion films  

SciTech Connect

Use of foam for enhanced oil recovery (EOR) has shown recent success in steam-flooding field applications. Foam can also provide an effective barrier against gas coning in thin oil zones. Both of these applications stem from the unique mobility-control properties a stable foam possesses when it exists in porous media. Unfortunately, oil has a major destabilizing effect on foam. Therefore, it is important for EOR applications to understand how oil destroys foam. Studies all indicate that stabilization of the pseudoemulsion film is critical to maintain foam stability in the presence of oil. Hence, to aid in design of surfactant formulations for foam insensitivity to oil the authors pursue direct measurement of the thin-film or disjoining forces that stabilize pseudoemulsion films. Experimental procedures and preliminary results are described.

Bergeron, V.; Radke, C.J. [California Univ., Berkeley, CA (United States). Dept. of Chemical Engineering]|[Lawrence Berkeley Lab., CA (United States)

1991-06-01T23:59:59.000Z

371

Radiation receiver  

SciTech Connect

The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

Hunt, Arlon J. (Oakland, CA)

1983-01-01T23:59:59.000Z

372

Radiation receiver  

DOE Patents (OSTI)

The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles. 5 figs.

Hunt, A.J.

1983-09-13T23:59:59.000Z

373

On Correction of Diffuse Radiation Measured by MFRSR  

NLE Websites -- All DOE Office Websites (Extended Search)

an angular correction is needed. Such a correction of MFRSR data is performed for direct solar radiation, whereas uncertainty exists concerning the diffuse irradiance, whose...

374

Raqs Media Collective Flash Force  

E-Print Network (OSTI)

extended only to a couple of inches. With the invention of light bulbs, scientists started detonatingRaqs Media Collective Flash Force: A Visual History of Might, Right and Light Perhaps the greatest of light and divorcing these from the potent explosions that initially produced them. It is a history

Canales, Jimena

375

RADIATION SOURCES  

DOE Patents (OSTI)

A novel long-lived source of gamma radiation especially suitable for calibration purposes is described. The source of gamma radiation is denoted mock iodine131, which comprises a naixture of barium-133 and cesium-137. The barium and cesium are present in a barium-cesium ratio of approximately 5.7/1 to 14/1, uniformly dispersed in an ion exchange resin and a filter surrounding the resin comprised of a material of atomic number below approximately 51, and substantially 0.7 to 0.9 millimeter thick.

Brucer, M.H.

1958-04-15T23:59:59.000Z

376

AIR FORCE SPECIAL WEAPONS CENTER  

Office of Legacy Management (LM)

HEADQUARTERS aII?y HEADQUARTERS aII?y 9 AIR FORCE SPECIAL WEAPONS CENTER 1 AIR FORCE SYSTEMS COMMAND . - KlRTlAND AIR FORCE BASE, NEW MEXICO - k FINAL REPORT O N AIR FORCE PARTICIPATION PROJECT RULISON .1 O c t o b e r 1969 P r e p a r e d by : CONT INENTAL TEST D I V I S ION DIRECTORATE OF NUCLEAR FIELD OPERATIONS This page intentionally left blank INDEX AIR FORCE PARTICIPATION I N PROJECT RULISON FINAL REPORT PARAGRAPH BASIC REPORT SUBJECT R e f e r e n c e s PAGE 2 G e n e r a l 1 3 P l a n n i n g 3 4 Command a n d C o n t r o l 5 O p e r a t i o n s , G r a n d ' J u n c t i o n M u n i c i p a l A i r p o r t . . ' A i r O p e r a t i o n s C e n t e r , He1 i c o p t e r P a d / ' 7.. - . M a t e r i e l : ' 8 M e d i c a l 1 9 R a d - S a f e C r a s h - R e s c u e S e c u r i t y 2 1 C o m m u n i c a t i o n s ~ d m i n i s t r a t ' i o n Summary ATTACHMENTS ATTACHMENT SUBJECI' 1 F r a g O r d e r 69-1 ( ~ r o j ' e c t RULISON) , AFSWC D

377

Alternative Fuels Data Center: Energy Task Force  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Energy Task Force to Energy Task Force to someone by E-mail Share Alternative Fuels Data Center: Energy Task Force on Facebook Tweet about Alternative Fuels Data Center: Energy Task Force on Twitter Bookmark Alternative Fuels Data Center: Energy Task Force on Google Bookmark Alternative Fuels Data Center: Energy Task Force on Delicious Rank Alternative Fuels Data Center: Energy Task Force on Digg Find More places to share Alternative Fuels Data Center: Energy Task Force on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Energy Task Force The Governor's Task Force on Energy Policy is developing a state energy plan to facilitate energy efficiency and the use of alternative and renewable fuels in Tennessee. The energy plan will include a summary of

378

Radiation Impacts on Conditionally Unstable Moist Convection  

Science Conference Proceedings (OSTI)

The present work analyzes the impacts of radiative cooling in three-dimensional high-resolution direct numerical simulations of moist Rayleigh–Bénard convection. An atmospheric slab is destabilized by imposing a warm, moist lower boundary and a ...

Olivier Pauluis; Jörg Schumacher

2013-04-01T23:59:59.000Z

379

Final Gulf Coast Ecosystem Restoration Task Force Strategic Plan |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Gulf Coast Ecosystem Restoration Task Force Strategic Plan Final Gulf Coast Ecosystem Restoration Task Force Strategic Plan Final Gulf Coast Ecosystem Restoration Task Force Strategic Plan The natural resources of the Gulf's ecosystem are vital to many of the region's industries that directly support economic progress and job creation, including tourism and recreation, seafood production and sales, energy production and navigation and commerce. Among the key priorities of the strategy are: 1) Stopping the Loss of Critical Wetlands, Sand Barriers and Beaches The strategy recommends placing ecosystem restoration on an equal footing with historic uses such as navigation and flood damage reduction by approaching water resource management decisions in a far more comprehensive manner that will bypass harm to wetlands, barrier islands and beaches. The

380

Trapping colloids near chemical stripes via critical Casimir forces  

E-Print Network (OSTI)

We study theoretically and experimentally the solvent-mediated critical Casimir force acting on colloidal particles immersed in a binary liquid mixture of water and 2,6-lutidine and close to substrates which are chemically patterned with periodically alternating stripes of antagonistic adsorption preferences. These patterns are experimentally realized via microcontact printing. Upon approaching the critical demixing point of the solvent, normal and lateral critical Casimir forces generate laterally confining effective potentials for the colloids. We analyze in detail the rich behavior of the spherical colloids close to such substrates. For all patterned substrates we investigated, our measurements of these effective potentials agree with the corresponding theoretical predictions. Since both the directions and the strengths of the critical Casimir forces can be tuned by minute temperature changes, this provides a new mechanism for controlling colloids as model systems, opening encouraging perspectives for applications.

Matthias Tröndle; Olga Zvyagolskaya; Andrea Gambassi; Dominik Vogt; Ludger Harnau; Clemens Bechinger; Siegfried Dietrich

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "direct radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Radiation Protection Act (Pennsylvania)  

Energy.gov (U.S. Department of Energy (DOE))

This Act combines the radiation safety provisions of The Atomic Energy Development and Radiation Control Act and the Environmental Radiation Protection Act, and empowers the Department of...

382

Radiation Tolerant Metallic Multilayers  

Science Conference Proceedings (OSTI)

Strategies that can alleviate radiation damage may assist the design of radiation tolerant materials. We will summarize our recent studies on radiation damage in ...

383

NEW SOURCES OF RADIATION  

E-Print Network (OSTI)

Stanford Synchrotron Radiation Project Report No. 75/07.IBL 79M0733 Fig. 20. Radiation emission pattern by electronsWinick, Stanford Synchrotron Radiation Laboratory. Fig. 21.

Schimmerling, W.

2010-01-01T23:59:59.000Z

384

Radiation-induced angiosarcoma  

E-Print Network (OSTI)

1a Figure 1b Figure 1. Radiation-induced angiosarcoma in afollowing completion of radiation therapy. Figure 2a Figurecell histiocytosis after radiation for breast carcinoma: can

Anzalone, C Lane; Cohen, Philip R; Diwan, Abdul H; Prieto, Victor G

2013-01-01T23:59:59.000Z

385

ARM - Measurement - Aerosol backscattered radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

backscattered radiation backscattered radiation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol backscattered radiation The scattering of radiant energy into the hemisphere of space bounded by a plane normal to the direction of the incident radiation and lying on the same side as the incident ray. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AOS : Aerosol Observing System MPL : Micropulse Lidar NEPHELOMETER : Nephelometer

386

Route to direct multiphoton multiple ionization  

Science Conference Proceedings (OSTI)

We address the concept of direct multiphoton multiple ionization in atoms exposed to intense, short-wavelength radiation and explore the conditions under which such processes dominate over the sequential. Their contribution is shown to be quite robust, even under intensity fluctuations and interaction volume integration, and reasonable agreement with experimental data is also found.

Lambropoulos, P. [Institute of Electronic Structure and Laser, FORTH, P.O. Box 1527, GR-71110 Heraklion (Greece); Department of Physics, University of Crete, P.O. Box 2208, GR-71003 Heraklion, Crete (Greece); Kavli Institute for Theoretical Physics, Santa Barbara, California 93106 (United States); Nikolopoulos, G. M. [Institute of Electronic Structure and Laser, FORTH, P.O. Box 1527, GR-71110 Heraklion (Greece); Kavli Institute for Theoretical Physics, Santa Barbara, California 93106 (United States); Papamihail, K. G. [Department of Physics, University of Crete, P.O. Box 2208, GR-71003 Heraklion, Crete (Greece)

2011-02-15T23:59:59.000Z

387

Negative azimuthal force of a nanofiber-guided light on a particle  

E-Print Network (OSTI)

We calculate the force of a quasicircularly polarized guided light field of a nanofiber on a dielectric spherical particle. We show that the orbital parts of the axial and azimuthal components of the Poynting vector are always positive while the spin parts can be either positive or negative. We find that, for appropriate values of the size parameter of the particle, the azimuthal component of the force is directed oppositely to the circulation direction of the energy flow around the nanofiber. The occurrence of such a negative azimuthal force indicates that the particle undergoes a negative torque.

Kien, Fam Le

2013-01-01T23:59:59.000Z

388

The Connection Between Inertial Forces and the Vector Potential  

E-Print Network (OSTI)

. The inertia property of matter is discussed in terms of a type of induction law related to the extended charged particle's own vector potential. Our approach is based on the Lagrangian formalism of canonical momentum writing Newton's second law in terms of the vector potential and a development in terms of obtaining retarded potentials, that allow an intuitive physical interpretation of its main terms. This framework provides a clear physical insight on the physics of inertia. It is shown that the electron mass has a complete electromagnetic origin and the covariant equation obtained solves the "4/3 mass paradox". This provides a deeper insight into the significance of the main terms of the equation of motion. In particular a force term is obtained from the approach based on the continuity equation for momentum that represents a drag force the charged particle feels when in motion relatively to its own vector potential field lines. Thus, the time derivative of the particle's vector potential leads to the acceleration inertia reaction force and is equivalent to the Schott term responsible for the source of the radiation field. We also show that the velocity dependent term of the particle's vector potential is connected with the relativistic increase of mass with velocity and generates a stress force that is the source of electric field lines deformation. This understanding broadens the possibility to manipulate inertial mass and potentially suggests some mechanisms for possible applications to electromagnetic propulsion and the development of advanced space propulsion physics.

Alexandre A. Martins; Mario J. Pinheiro

2006-11-17T23:59:59.000Z

389

Force-Free Magnetosphere of an Accreting Kerr Black Hole  

E-Print Network (OSTI)

I consider a stationary axisymmetric force-free degenerate magnetosphere of a rotating Kerr black hole surrounded by a thin Keplerian infinitely-conducting accretion disk. I focus on the closed-field geometry with a direct magnetic coupling between the disk and the event horizon. I first present a simple physical argument that shows how the black hole's rotation limits the radial extent of the force-free link. I then confirm this result by solving numerically the general-relativistic force-free Grad--Shafranov equation in the magnetosphere, using the regularity condition at the inner light cylinder to determine the poloidal current. I indeed find that force-free solutions exist only when the magnetic link between the hole and the disk has a limited extent on the disk surface. I chart out the maximum allowable size of this magnetically-connected part of the disk as a function of the black hole spin. I also compute the angular momentum and energy transfer between the hole and the disk that takes place via the direct magnetic link. I find that both of these quantities grow rapidly and that their deposition becomes highly concentrated near the inner edge of the disk as the black hole spin is increased.

Dmitri A. Uzdensky

2005-03-23T23:59:59.000Z

390

A two dimensional modeling study of the sensitivity of ozone to radiative flux uncertainties  

Science Conference Proceedings (OSTI)

Radiative processes strongly effect equilibrium trace gas concentrations both directly, through photolysis reactions, and indirectly through temperature and transport processes. We have used the LLNL 2-D chemical-radiative-transport model to investigate the net sensitivity of equilibrium ozone concentrations to several changes in radiative forcing. Doubling CO/sub 2/ from 300 ppmv to 600 ppmv resulted in a temperature decrease of 5 K to 8 K in the middle stratosphere along with an 8% to 16% increase in ozone in the same region. Replacing our usual shortwave scattering algorithms with a simplified Rayleigh algorithm led to a 1% to 2% increase in ozone in the lower stratosphere. Finally, modifying our normal CO/sub 2/ cooling rates by corrections derived from line-by-line calculations resulted in several regions of heating and cooling. We observed temperature changes on the order of 1 K to 1.5 K with corresponding changes of 0.5% to 1.5% in O/sub 3/. Our results for doubled CO/sub 2/ compare favorably with those by other authors. Results for our two perturbation scenarios stress the need for accurately modeling radiative processes while confirming the general validity of current models. 15 refs., 5 figs.

Grant, K.E.; Wuebbles, D.J.

1988-08-01T23:59:59.000Z

391

Principles Governing Departmental Directives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ELEMENTS FROM: SAMUEL W. BODMA 4 SUBJECT: Principles Governing Departmental Directives The Department of Energy uses directives as its primary means to establish,...

392

directed acyclic word graph  

Science Conference Proceedings (OSTI)

... and R. Verin, Direct Construction of Compact Directed Acyclic Word Graphs, 8th Annual Symposium, CPM 97, Aarhus, Denmark, 116-129, 1997. ...

2013-08-23T23:59:59.000Z

393

Single Column Model Simulations of Cloud Sensitivity to Forcing  

NLE Websites -- All DOE Office Websites (Extended Search)

Single-Column Model Simulations Single-Column Model Simulations of Cloud Sensitivity to Forcing A. D. Del Genio National Aeronautics and Space Administration Goddard Institute for Space Studies New York, New York A. B. Wolf National Aeronautics and Space Administration SGT, Inc., Goddard Institute for Space Studies New York, New York Introduction The Atmospheric Radiation Measurement (ARM) Program single-column modeling (SCM) framework has to date used several fairly brief intensive observing periods (IOPs) to evaluate the performance of climate model parameterizations. With only a few weather events in each IOP, it is difficult to separate errors associated with the instantaneous dynamical forcing from errors in parameterization. It is also impossible to determine whether model errors are systematic and climatically significant. This

394

Cutting forces in orthogonal cutting of unidirectional GFRP composites  

SciTech Connect

The results of orthogonal cutting tests carried out on unidirectional glass fiber reinforced plastic composites, using HSS tools, are presented and discussed. During the tests, performed on a milling machine at very low cutting speed to avoid thermal effects, the cutting speed was held constant and parallel to the fiber direction. Three parameters, namely the tool rake angle {alpha}, the tool relief angle {gamma}, and the depth of cut t, were varied. According to the experimental results, the horizontal force per unit width, F{sub hu}, undergoes a dramatic decrease, never verified for metals, with increasing {alpha}. Besides, F{sub hu} is only negligibly affected by the relief angle, and linearly increases with t. Similarly to metals, an effect of the depth of cut on the specific energy (size effect) is found also for composites. However, the presented results indicate that the size effect can be analytically modeled in a simple way in the case of composites. The vertical force per unit width, F{sub vu}, exhibits a marked reduction when the relief angle is increased. F{sub vu} is also very sensitive to the rake angle: the lower {alpha}, the higher is F{sub vu}. It is shown that this behavior probably reflects a strong influence of the rake angle on the forces developing at the flank. A linear dependence of the vertical force on the depth of cut is also demonstrated. Finally, the experimental data are utilized to obtain empirical formulae, allowing an approximate evaluation of cutting forces.

Caprino, G.; Nele, L. [Univ. of Naples Federico II (Italy). Dept. of Materials and Production Engineering

1996-07-01T23:59:59.000Z

395

First interim report of the Federal Fleet Conversion Task Force  

DOE Green Energy (OSTI)

The Federal Fleet Conversion Task Force was created by Executive Order 12844, signed by President Clinton on April 21, 1993. In the Order, the President directed that purchases of alternative fueled vehicles by the Federal Government be substantially increased beyond the levels required by current law. The President charged the Task Force with developing recommendations for carrying out the Executive Order, with special emphasis on setting a course that will lead to the widespread use of alternative fueled vehicles by Federal, State, and local government fleets, by private fleets and, ultimately, by individuals. The chief recommendation of the Task Force is the establishment of a Presidential Clean Cities Initiative. To support creation of the Presidential Initiative, the Task Force identified 38 cities and regions, prioritized into three tiers, for concentrating the Initiative`s efforts in Fiscal Years 1994 through 1996. This concentration of effort is key to the effectiveness of the Initiative. The 38 cities and regions would receive priority funding for Federal vehicle purchases and for infrastructure development. In addition, the Task Force has made specific recommendations for overcoming numerous regulatory, economic, and technical barriers that have slowed the introduction of alternative fueled vehicles into general use.

Not Available

1993-08-01T23:59:59.000Z

396

Interpretation of Surface and Planetary Directional Albedos for Vegetated Regions  

Science Conference Proceedings (OSTI)

An atmospheric solar radiation model has been coupled with surface reflectance measurements for two vegetation types, pasture land and savannah, in order to address several issues associated with understanding the directional planetary albedo; ...

Inna L. Vulis; Robert D. Cess

1989-09-01T23:59:59.000Z

397

Axial force imparted by a current-free magnetically expanding plasma  

SciTech Connect

The axial force imparted from a magnetically expanding, current-free, radiofrequency plasma is directly measured. For an argon gas flow rate of 25 sccm and an effective rf input power of {approx}800W, a maximum force of {approx}6mN is obtained; {approx}3mN of which is transmitted via the expanding magnetic field. The measured forces are reasonably compared with a simple fluid model associated with the measured electron pressure. The model suggests that the total force is the sum of an electron pressure inside the source and a Lorentz force due to the electron diamagnetic drift current and the applied radial magnetic field. It is shown that the Lorentz force is greatest near the magnetic nozzle surface where the radial pressure gradient is largest.

Takahashi, Kazunori [Space Plasma, Power and Propulsion Laboratory, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Department of Electrical Engineering and Computer Science, Iwate University, Morioka 020-8551 (Japan); Lafleur, Trevor; Charles, Christine; Alexander, Peter; Boswell, Rod W. [Space Plasma, Power and Propulsion Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia)

2012-08-15T23:59:59.000Z

398

Types of Radiation Exposure  

NLE Websites -- All DOE Office Websites (Extended Search)

External Irradiation Contamination Incorporation Biological Effects of Acute, Total Body Irradiation Managing Radiation Emergencies Procedure Demonstration Types of radiation...

399

Radiation Effects In Ceramics  

Science Conference Proceedings (OSTI)

RADIATION MATERIALS SCIENCE IN TECHNOLOGY APPLICATIONS II: Radiation Effects in Ceramics. Sponsored by: Jt. SMD/MSD Nuclear Materials ...

400

Radiation Physics Division  

Science Conference Proceedings (OSTI)

... The Radiation Physics Division, part of the Physical Measurement Laboratory ... the measurement standards for ionizing radiations and radioactivity ...

2013-09-05T23:59:59.000Z

Note: This page contains sample records for the topic "direct radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Fast Wave Polarization, Charge Horizons and the Time Evolution of Force-Free Magnetospheres  

E-Print Network (OSTI)

Numerical simulations of force-free, degenerate (ffde)pulsar and black hole magnetospheres are often based on 1-D characteristics. In particular, the plasma wave polarizations that can be propagated along the 1-D characteristics determine the time evolution of the entire system. There are two sets of characteristics,corresponding to the fast and Alfven modes. The fast wave is generally considered to be a transverse light wave, however recently it has been claimed that light-like fast waves can transport a longitudinal electric polarization, $E_{\\parallel}$, at the speed of light. The implication is quite profound if true, namely that the wrong information has been propagated along the fast characteristics in all previous simulations of force-free magnetospheres. It is shown in this Letter that the light-like fast waves must be transverse and previous simulations are valid. This result is demonstrated by means of a fundamental physical principle (associated with the fact that particles cannot flow faster than the speed of light), there exists a charge horizon in ffde magnetospheres. It is shown that the Alfven critical surfaces in a ffde magnetosphere are both charge and particle horizons, i.e. one way membranes that do not permit traversal by charges nor particles anti-directed to the bulk flow. Since the propagation of a discontinuous change in $E_{\\parallel}$ requires a physical surface charge on the wave-face, it is also a one-way membrane for longitudinally polarized waves. Besides justifying previous ffde simulations this result also invalidates previous claims that fast waves can radiate $E_{\\parallel}$ from the event horizon of a black hole.

Brian Punsly

2004-07-16T23:59:59.000Z

402

Definition: Direct normal irradiance | Open Energy Information  

Open Energy Info (EERE)

normal irradiance normal irradiance (Redirected from Definition:DNI) Jump to: navigation, search Dictionary.png Direct normal irradiance the amount of solar radiation received per unit area by a surface perpendicular (normal) to the rays that come in a straight line from the direction of the sun at its current position in the sky.[1] Also Known As DNI Related Terms Solar radiation, Irradiance, Concentrating solar power, Global horizontal irradiance References ↑ http://www.3tier.com/en/support/glossary/#dni Retrie LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ved from "http://en.openei.org/w/index.php?title=Definition:Direct_normal_irradiance&oldid=423379" Category: Definitions What links here Related changes Special pages Printable version Permanent link

403

Direct process for explosives  

SciTech Connect

A direct process of making ethylenediamine dinitrate through the reaction of ethylenediamine and ammonium nitrate.

Akst, Irving B. (1032 Duncan St., Pampa, TX 79065); Stinecipher, Mary M. (324 Connie St., Los Alamos, NM 87544)

1982-01-01T23:59:59.000Z

404

Effect of nuclear deformation on direct capture reactions  

E-Print Network (OSTI)

The direct radiative capture process is well described by the spherical potential model. In order for the model to explain direct captures more accurately, the effect of the nuclear deformation has been added and analyzed in this work, since most nucleuses are not spherical. The results imply that the nuclear deformation largely affects the direct capture and should be taken into account during discussing direct capture reactions.

G. W. Fan; X. L. Cai; M. Fukuda; Zhongzhou Ren; W. Xu

2013-05-01T23:59:59.000Z

405

Methods for Estimating Climate Anomaly Forcing Patterns  

Science Conference Proceedings (OSTI)

Inverse methods for determining the anomalous mean forcing functions responsible for climate change are investigated. First, an iterative method is considered, and it is shown to successfully reproduce forcing functions for various idealized and ...

Meelis J. Zidikheri; Jorgen S. Frederiksen

2013-08-01T23:59:59.000Z

406

Development of a light force accelerometer  

E-Print Network (OSTI)

In this work, the feasibility of a light force accelerometer was experimentally demonstrated. The light force accelerometer is an optical inertial sensor which uses focused laser light to levitate and trap glass microspheres ...

Butts, David LaGrange

2008-01-01T23:59:59.000Z

407

Methods for estimating climate anomaly forcing patterns  

Science Conference Proceedings (OSTI)

Inverse methods for determining the anomalous mean forcing functions responsible for climate change are investigated. Firstly, an iterative method is considered, and it is shown to successfully reproduce forcing functions for various idealised and ...

Meelis J. Zidikheri; Jorgen S. Frederiksen

408

Foreign Direct Investment  

Gasoline and Diesel Fuel Update (EIA)

Investment Investment Foreign Direct Investment Foreign Direct Investment Foreign Direct Investment in U.S. Energy in U.S. Energy in U.S. Energy in U.S. Energy in 1999 in 1999 in 1999 in 1999 June 2001 ii iii Contents Foreign Affiliates' Role in U.S. Energy Industry Operations ..............................................................................1 Foreign Direct Investment: The International Transactions Accounts ..............................................................8 U.S. Companies' Direct Investment Abroad in Energy ......................................................................................14 Conclusion...............................................................................................................................................................19

409

Nuclear Radiological Threat Task Force Established | National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiological Threat Task Force Established | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

410

Synchrotron Ultraviolet Radiation Facility SURF III ...  

Science Conference Proceedings (OSTI)

... Synchrotron Radiation. What is Synchrotron Radiation? Synchrotron radiation ... known. Properties of Synchrotron Radiation. Schwinger ...

411

Joint Staff, and J-Directorate Directives”  

E-Print Network (OSTI)

1. Purpose a. To provide the process and procedures for handling the transition and reconciliation of USJFCOM issuances into CJCS/Joint Staff directives in accordance with (IAW) references a and b. b. For the purpose of this notice, the word “issuances ” refers to USJFCOM policy documents, and the word “directives ” refers to Joint Staff policy documents. 2. Cancellation. None. 3. Applicability. This notice applies to all Joint Staff personnel and to all U.S. Joint Forces Command (USJFCOM) directorates, organizations, or other subordinate activities transitioning to the Joint Staff. It does not apply to USJFCOM entities transitioning to organizations outside the Joint Staff.

Dom/sjs Cjcs Notice

2011-01-01T23:59:59.000Z

412

Air Force Enhanced Use Lease  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 Air Force Enhanced Use Lease Mr. Brian Brown 16 Oct. 12 I n t e g r i t y - S e r v i c e - E x c e l l e n c e 2 Agenda  Brian Brown  Enhanced Use Lease (EUL) Overview  Energy EULs  EUL Goals  David Swanson  Energy EUL Market Drivers  Current EUL Projects  Partnering with the Air Force  Contact Information I n t e g r i t y - S e r v i c e - E x c e l l e n c e 3 Overview  Authority 10 USC 2667  An EUL is a lease  By the government  Of "non-excess" property  Under the control of the government  To a public or private sector lessee  In exchange for fair market value rental payments in cash and/or in kind consideration I n t e g r i t y - S e r v i c e - E x c e l l e n c e

413

Radiation Pressure in Massive Star Formation  

E-Print Network (OSTI)

Stars with masses of >~ 20 solar masses have short Kelvin times that enable them to reach the main sequence while still accreting from their natal clouds. The resulting nuclear burning produces a huge luminosity and a correspondingly large radiation pressure force on dust grains in the accreting gas. This effect may limit the upper mass of stars that can form by accretion. Indeed, simulations and analytic calculations to date have been unable to resolve the mystery of how stars of 50 solar masses and up form. We present two new ideas to solve the radiation pressure problem. First, we use three-dimensional radiation hydrodynamic adaptive mesh refinement simulations to study the collapse of massive cores. We find that in three dimensions a configuration in which radiation holds up an infalling envelope is Rayleigh-Taylor unstable, leading radiation driven bubbles to collapse and accretion to continue. We also present Monte Carlo radiative transfer calculations showing that the cavities created by protostellar winds provides a valve that allow radiation to escape the accreting envelope, further reducing the ability of radiation pressure to inhibit accretion.

Mark R. Krumholz; Richard I. Klein; Christopher F. McKee

2005-10-14T23:59:59.000Z

414

Reconciling Ground-Based and Space-Based Estimates of the Frequency of Occurrence and Radiative Effect of Clouds around Darwin, Australia  

Science Conference Proceedings (OSTI)

The objective of this paper is to investigate whether estimates of the cloud frequency of occurrence and associated cloud radiative forcing as derived from ground-based and satellite active remote sensing and radiative transfer calculations can be ...

A. Protat; S. A. Young; S. A. McFarlane; T. L’Ecuyer; G. G. Mace; J. M. Comstock; C. N. Long; E. Berry; J. Delanoë

415

Full-Time, Eye-Safe Cloud and Aerosol Lidar Observation at Atmospheric Radiation Measurement Program Sites: Instruments and Data Processing  

Science Conference Proceedings (OSTI)

Atmospheric radiative forcing, surface radiation budget, and top-of-the-atmosphere radiance interpretation involve knowledge of the vertical height structure of overlying cloud and aerosol layers. During the last decade, the U.S. Department of ...

James R. Campbell; Dennis L. Hlavka; Ellsworth J. Welton; Connor J. Flynn; David D. Turner; James D. Spinhirne; V. Stanley Scott III; I. H. Hwang

2002-04-01T23:59:59.000Z

416

The Angular Distribution of UV-B Sky Radiance under Cloudy Conditions: A Comparison of Measurements and Radiative Transfer Calculations Using a Fractal Cloud Model  

Science Conference Proceedings (OSTI)

In recent years, global warming concerns have focused attention on cloud radiative forcing and its accurate encapsulation in radiative transfer measurement and modeling programs. At present, this process is constrained by the dynamic movement and ...

Christopher Kuchinke; Kurt Fienberg; Manuel Nunez

2004-05-01T23:59:59.000Z

417

Radiative Reactions and Coherence Modeling in the High Altitude Electromagnetic Pulse  

E-Print Network (OSTI)

A high altitude nuclear electromagnetic pulse (EMP) with a peak field intensity of 5 x 10^4 V/m carries momentum that results in a retarding force on the average Compton electron (radiating coherently to produce the waveform) with magnitude near that of the geomagnetic force responsible for the coherent radiation. The retarding force results from a self field effect. The Compton electron interaction with the self generated magnetic field due to the other electrons accounts for the momentum density in the propagating wave; interaction with the self generated electric field accounts for the energy flux density in the propagating wave. Coherent addition of radiation is also quantitatively modeled.

Charles N. Vittitoe; Mario Rabinowitz

2003-06-03T23:59:59.000Z

418

Direct Photons at RHIC  

E-Print Network (OSTI)

Abstract. The PHENIX experiment has measured direct photons in ? sNN = 200 GeV Au+Au collisions and p+p collisions. The fraction of photons due to direct

Saskia Mioduszewski; Phenix Collaboration

2004-01-01T23:59:59.000Z

419

Direct Loan Program (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

The Connecticut Development Authority’s Direct Loan Program provides direct senior and subordinated loans and mezzanine investments to companies creating or maintaining jobs. Up to $20,000 per job...

420

Direct process for explosives  

DOE Patents (OSTI)

A direct process of making ethylenediamine dinitrate through the reaction of ethylenediamine and ammonium nitrate is described.

Akst, I.B.; Stinecipher, M.M.

1982-10-12T23:59:59.000Z

Note: This page contains sample records for the topic "direct radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Outgoing Longwave Radiation due to Directly Transmitted Surface Emission  

Science Conference Proceedings (OSTI)

A frequently used diagram summarizing the annual- and global-mean energy budget of the earth and atmosphere indicates that the irradiance reaching the top of the atmosphere from the surface, through the midinfrared atmospheric window, is 40 W m?2; ...

S. M. S. Costa; K. P. Shine

2012-06-01T23:59:59.000Z

422

Army Energy Initiatives Task Force  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UNCLASSIFIED UNCLASSIFIED Army Energy Initiatives Task Force Kathy Ahsing Director, Planning and Development UNCLASSIFIED 2 Perfect Storm UNCLASSIFIED 3 U.S. Army Energy Consumption, 2010 23% 77% 42% 58%  Facilities  Vehicles & Equipment (Tactical and Non-tactical) Sources: Energy Information Agency, 2010 Annual Energy Review; Agency Annual Energy Management Data Reports submitted to DOE's Federal Energy Management Program (Preliminary FY 2010) 32% 68% DoD 80% Army 21% Federal Gov 1% Federal Government United States Department of Defense U.S. = 98,079 Trillion Btu DoD = 889 Trillion Btu Fed Gov = 1,108 Trillion Btu U.S. Army = 189 Trillion Btu FY10 Highlights - $2.5+B Operational Energy Costs - $1.2 B Facility Energy Costs

423

Atomic force microscope: Enhanced sensitivity  

SciTech Connect

Atomic force microscopes (AFMs) are a recent development representing the state of the art in measuring ultrafine surface features. Applications are found in such fields of research as biology, microfabrication, material studies, and surface chemistry. Fiber-optic interferometer techniques developed at LLNL offer the potential of improving the vertical resolution of these instruments by up to 2 orders of magnitude. We are attempting to replace the current AFM measurement scheme, which consists of an optical beam deflection approach, with our fiber-optic interferometer scheme, a much more sensitive displacement measurement technique. In performing this research, we hope to accomplish two important goals; (1) to enhance the sensitivity of the AFM, and (2) to achieve important improvements in our fiber-optic interferometer technology.

Davis, D.T.

1995-06-01T23:59:59.000Z

424

Hyperbaric hydrothermal atomic force microscope  

SciTech Connect

A hyperbaric hydrothermal atomic force microscope (AFM) is provided to image solid surfaces in fluids, either liquid or gas, at pressures greater than normal atmospheric pressure. The sample can be heated and its surface imaged in aqueous solution at temperatures greater than 100.degree. C. with less than 1 nm vertical resolution. A gas pressurized microscope base chamber houses the stepper motor and piezoelectric scanner. A chemically inert, flexible membrane separates this base chamber from the sample cell environment and constrains a high temperature, pressurized liquid or gas in the sample cell while allowing movement of the scanner. The sample cell is designed for continuous flow of liquid or gas through the sample environment.

Knauss, Kevin G. (Livermore, CA); Boro, Carl O. (Milpitas, CA); Higgins, Steven R. (Laramie, WY); Eggleston, Carrick M. (Laramie, WY)

2002-01-01T23:59:59.000Z

425

Nuclear forces from lattice QCD  

SciTech Connect

Lattice QCD construction of nuclear forces is reviewed. In this method, the nuclear potentials are constructed by solving the Schroedinger equation, where equal-time Nambu-Bethe-Salpeter (NBS) wave functions are regarded as quantum mechanical wave functions. Since the long distance behavior of equal-time NBS wave functions is controlled by the scattering phase, which is in exactly the same way as scattering wave functions in quantum mechanics, the resulting potentials are faithful to the NN scattering data. The derivative expansion of this potential leads to the central and the tensor potentials at the leading order. Some of numerical results of these two potentials are shown based on the quenched QCD.

Ishii, Noriyoshi [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

2011-05-06T23:59:59.000Z

426

Nuclear Forces from Lattice Quantum Chromodynamics  

E-Print Network (OSTI)

A century of coherent experimental and theoretical investigations have uncovered the laws of nature that underly nuclear physics. The standard model of strong and electroweak interactions, with its modest number of input parameters, dictates the dynamics of the quarks and gluons - the underlying building blocks of protons, neutrons, and nuclei. While the analytic techniques of quantum field theory have played a key role in understanding the dynamics of matter in high energy processes, they encounter difficulties when applied to low-energy nuclear structure and reactions, and dense systems. Expected increases in computational resources into the exa-scale during the next decade will provide the ability to numerically compute a range of important strong interaction processes directly from QCD with quantifiable uncertainties using the technique of Lattice QCD. These calculations will refine the chiral nuclear forces that are used as input into nuclear many-body calculations, including the three- and four-nucleon interactions. I discuss the state-of-the-art Lattice QCD calculations of quantities of interest in nuclear physics, progress that is expected in the near future, and the impact upon nuclear physics.

Martin J. Savage

2013-09-18T23:59:59.000Z

427

Radiation Safety  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brotherhood of Locomotive Brotherhood of Locomotive Engineers & Trainmen Scott Palmer BLET Radiation Safety Officer New Hire Training New Hire study topics * GCOR * ABTH * SSI * Employee Safety * HazMat * Railroad terminology * OJT * 15-week class * Final test Hazardous Materials * Initial new-hire training * Required by OSHA * No specified class length * Open book test * Triennial module Locomotive Engineer Training A little bit older...a little bit wiser... * Typically 2-4 years' seniority * Pass-or-get-fired promotion * Intensive program * Perpetually tested to a higher standard * 20 Weeks of training * 15 of that is OJT * General Code of Operating Rules * Air Brake & Train Handling * System Special Instructions * Safety Instructions * Federal Regulations * Locomotive Simulators * Test Ride * Pass test with 90% Engineer Recertification

428

RADIATION COUNTER  

DOE Patents (OSTI)

This patent relates to a radiation counter, and more particularly, to a scintillation counter having high uniform sensitivity over a wide area and capable of measuring alpha, beta, and gamma contamination over wide energy ranges, for use in quickly checking the contami-nation of personnel. Several photomultiplier tubes are disposed in parallel relationship with a light tight housing behind a wall of scintillation material. Mounted within the housing with the photomultipliers are circuit means for producing an audible sound for each pulse detected, and a range selector developing a voltage proportional to the repetition rate of the detected pulses and automatically altering its time constant when the voltage reaches a predetermined value, so that manual range adjustment of associated metering means is not required.

Goldsworthy, W.W.

1958-02-01T23:59:59.000Z

429

RADIATION DOSIMETER  

DOE Patents (OSTI)

An improvement was made in the determination of amounts of ionizing radiation, particularly low-energy beta particles of less than 1000 rad total dose by means of fluid-phase dosimeter employing a stabilized-- sensitized ferrous-ferric colorimetric system in a sulphuric acid medium. The improvement in the dosimeter consists of adding to the ferrous-ferric system in concentrations of 10/sub -2/ to 10/sup -4/M an organic compound having one or more carboxylic or equivalent groups, such compounds being capable of chelating or complexing the iron ions in the solution. Suitable sensitizing and stabilizing agents are benzoic, phthalic, salicylic, malonic, lactic, maleic, oxalic, citric, succinic, phenolic tartaric, acetic, and adipic acid, as well as other compounds which are added to the solution alone or in certain combinations. As in conventional fluid-phase dosimeters, the absorbed dosage is correlated with a corresponding change in optical density at particular wavelengths of the solution.

Balkwell, W.R. Jr.; Adams, G.D. Jr.

1960-05-10T23:59:59.000Z

430

Drag reduction in pipe flow by optimal forcing  

E-Print Network (OSTI)

In most settings, from international pipelines to home water supplies, the drag caused by turbulence raises pumping costs many times higher than if the flow were laminar. Drag reduction has therefore long been an aim of high priority. In order to achieve this end, any drag reduction method must modify the turbulent mean flow. Motivated by minimization of the input energy this requires, linearly optimal forcing functions are examined. It is shown that the forcing mode leading to the greatest response of the flow is always of m=1 azimuthal symmetry. Little evidence is seen of the second peak at large m (wall modes) found in analogous optimal growth calculations, which may have implications for control strategies. The model's prediction of large response of the large length-scale modes is verified in full direct numerical simulation of turbulence ($Re=5300$, $Re_\\tau\\approx 180$). Further, drag reduction of over 12% is found for finite amplitude forcing of the largest scale mode, m=1. Significantly, the forcing ...

Willis, Ashley P; Cossu, Carlo

2009-01-01T23:59:59.000Z

431

Timescape cosmology with radiation fluid  

E-Print Network (OSTI)

The timescape cosmology represents a potentially viable alternative to the standard homogeneous cosmology, without the need for dark energy. Although average cosmic evolution in the timescape scenario only differs substantially from that of Friedmann-Lemaitre model at relatively late epochs when the contribution from the energy density of radiation is negligible, a full solution of the Buchert equations to incorporate radiation is necessary to smoothly match parameters to the epoch of photon decoupling and to obtain constraints from cosmic microwave background data. Here we extend the matter-dominated solution found in earlier work to include radiation, providing series solutions at early times and an efficient numerical integration strategy for generating the complete solution. The numerical solution is used to directly calculate the scale of the sound horizon at decoupling, and at the baryon drag epoch. The constraints on these scales from the Planck satellite data yield bounds on the timescape cosmological...

Duley, James A G; Wiltshire, David L

2013-01-01T23:59:59.000Z

432

direct normal | OpenEI  

Open Energy Info (EERE)

normal normal Dataset Summary Description (Abstract): A map depicting model estimates of monthly average daily total radiation using inputs derived from satellite and surface observations of cloud cover, aerosol optical depth, precipitable water vapor, albedo, atmospheric pressure and ozone sampled at a 40km resolution. (Purpose): A visual depiction of solar energy resource for concentrating solar power systems. Source NREL Date Released December 11th, 2003 (10 years ago) Date Updated October 30th, 2007 (7 years ago) Keywords Central America direct normal DNI map NREL solar SWERA UNEP Data application/pdf icon Download Map (pdf, 67.1 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below

433

Smart Grid Task Force Presentations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services Technology Development Smart Grid Federal Smart Grid Task Force Smart Grid Task Force Presentations Smart Grid Task Force Presentations Presentations about the...

434

Smart Grid Task Force Presentations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smart Grid Federal Smart Grid Task Force Smart Grid Task Force Presentations Smart Grid Task Force Presentations Electricity Advisory Committee Technology Development...

435

Casimir force for absorbing media in an open quantum system framework: Scalar model  

SciTech Connect

In this article we compute the Casimir force between two finite-width mirrors at finite temperature, working in a simplified model in 1+1 dimensions. The mirrors, considered as dissipative media, are modeled by a continuous set of harmonic oscillators which in turn are coupled to an external environment at thermal equilibrium. The calculation of the Casimir force is performed in the framework of the theory of open quantum systems. It is shown that the Casimir interaction has two different contributions: the usual radiation pressure from the vacuum, which is obtained for ideal mirrors without dissipation or losses, and a Langevin force associated with the noise induced by the interaction between dielectric atoms in the slabs and the thermal bath. Both contributions to the Casimir force are needed in order to reproduce the analogous Lifshitz formula in 1+1 dimensions. We also discuss the relationship between the electromagnetic properties of the mirrors and the spectral density of the environment.

Lombardo, Fernando C.; Rubio Lopez, Adrian E. [Departamento de Fisica Juan Jose Giambiagi, FCEyN UBA and IFIBA CONICET, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); Mazzitelli, Francisco D. [Departamento de Fisica Juan Jose Giambiagi, FCEyN UBA and IFIBA CONICET, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); Centro Atomico Bariloche Comision Nacional de Energia Atomica, R8402AGP Bariloche (Argentina)

2011-11-15T23:59:59.000Z

436

392 JOURNAL OF CLIMATE VOLUME 19 Surface Cloud Forcing in the East Pacific Stratus Deck/Cold Tongue/ITCZ Complex*  

E-Print Network (OSTI)

Data from the Eastern Pacific Investigation of Climate Studies (EPIC) mooring array are used to evaluate the annual cycle of surface cloud forcing in the far eastern Pacific stratus cloud deck/cold tongue/ intertropical convergence zone complex. Data include downwelling surface solar and longwave radiation from 10 EPIC-enhanced Tropical Atmosphere Ocean (TAO) moorings from 8°S, 95°W to 12°N, 95°W, and the Woods Hole Improved Meteorology (IMET) mooring in the stratus cloud deck region at 20°S, 85°W. Surface cloud forcing is defined as the observed downwelling radiation at the surface minus the clear-sky value. Solar cloud forcing and longwave cloud forcing are anticorrelated at all latitudes from 12°N to 20°S: clouds tended to reduce the downward solar radiation and to a lesser extent increase the downward longwave radiation at the surface. The relative amount of solar radiation reduction and longwave increase depends upon cloud type and varies with latitude. A statistical relationship between solar and longwave surface cloud forcing is developed for rainy and dry periods and for the full record length in six latitudinal regions: northeast tropical warm pool, ITCZ, frontal zone, cold tongue, southern, and stratus deck regions. The buoy cloud forcing observations and empirical relations are compared with the International Satellite Cloud Climatology Project (ISCCP) radiative flux data (FD) dataset and are used as benchmarks to

Meghan F. Cronin; Nicholas A. Bond; Christopher W. Fairall; Robert A. Weller

2004-01-01T23:59:59.000Z

437

Plasma parameters and electromagnetic forces induced by the magneto hydro dynamic interaction in a hypersonic argon flow experiment  

SciTech Connect

This work proposes an experimental analysis on the magneto hydro dynamic (MHD) interaction induced by a magnetic test body immersed into a hypersonic argon flow. The characteristic plasma parameters are measured. They are related to the voltages arising in the Hall direction and to the variation of the fluid dynamic properties induced by the interaction. The tests have been performed in a hypersonic wind tunnel at Mach 6 and Mach 15. The plasma parameters are measured in the stagnation region in front of the nozzle of the wind tunnel and in the free stream region at the nozzle exit. The test body has a conical shape with the cone axis in the gas flow direction and the cone vertex against the flow. It is placed at the nozzle exit and is equipped with three permanent magnets. In the configuration adopted, the Faraday current flows in a closed loop completely immersed into the plasma of the shock layer. The electric field and the pressure variation due to MHD interaction have been measured on the test body walls. Microwave adsorption measurements have been used for the determination of the electron number density and the electron collision frequency. Continuum recombination radiation and line radiation emissions have been detected. The electron temperature has been determined by means of the spectroscopic data by using different methods. The electron number density has been also determined by means of the Stark broadening of H{sub {alpha}} and the H{sub {beta}} lines. Optical imaging has been utilized to visualize the pattern of the electric current distribution in the shock layer around the test body. The experiments show a considerable effect of the electromagnetic forces produced by the MHD interaction acting on the plasma flow around the test body. A comparison of the experimental data with simulation results shows a good agreement.

Cristofolini, Andrea; Neretti, Gabriele; Borghi, Carlo A. [Department of Electrical Engineering, University of Bologna, Viale Risorgimento 2, 40136 Bologna (Italy)

2012-08-01T23:59:59.000Z

438

Gamma Radiation & X-Rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Gamma Radiation and X-Rays 1. Gamma radiation and X-rays are electromagnetic radiation like visible light, radio waves, and ultraviolet light. These electromagnetic radiations...

439

Modeling the Direct and Indirect Effects of Atmospheric Aerosols on Tropical Cyclones  

E-Print Network (OSTI)

The direct and indirect effects of aerosols on the hurricane ‘Katrina’ have been investigated using the WRF model with a two-moment bulk microphysical scheme and modified Goddard shortwave radiation scheme. Simulations of the hurricane ‘Katrina’ are conducted under the three aerosol scenarios: 1) the clean case with an aerosol number concentration of 200 cm-1, 2) the polluted case with a number concentration of 1000 cm-1, and 3) the aerosol radiative effects (AR) case with same aerosol concentration as polluted case but with a modified shortwave radiation scheme. The polluted and AR cases have much larger amounts of cloud water and water vapor in troposphere, and the increased cloud water can freeze to produce ice water paths. A tropical cyclone in dirty and dusty air has active rainbands outside the eyewall due to aerosol indirect effects. The aerosol direct effect can lead to the suppressing of convection and weakening of updraft intensity by warming the troposphere and cooling the surface temperature. However, these thermal changes in atmosphere are concerned with the enhanced amounts of cloud hydrometeors and modification of downdraft and corresponding the low level winds in rainband regions. Thus, the AR case can produce the enhanced precipitation even in the weakest hurricane. When comparing the model performance between aerosol indirect and direct effect by ensemble experiments, the adjustment time of the circulation due to modification of the aerosol radiative forcing by aerosol layers may take a longer time than the hurricane lifetime, and the results from the simulated hurricane show that it is more sensitive to aerosol indirect effects which are related to the cloud microphysics process changes. From this aerosol study, we can suggest that aerosols can influence the cloudiness, precipitation, and intensity of hurricanes significantly, and there may be different results in the meso-scale convective clouds cases. The hurricane system is a large and complex convective system with enormous heating energy and moistures. Moreover, relationships between various hydrometeors in hurricane systems are difficult to isolate and thus, it needs further study with more realistic cloud microphysical processes, aerosol distributions, and parameterizations.

Lee, Keun-Hee

2011-12-01T23:59:59.000Z

440

The two dimensional Cerenkov radiation  

E-Print Network (OSTI)

We derive the power spectrum of photons generated by charged particle moving in parallel direction to the graphene-like structure with index of refraction n. While the graphene sheet is conductive, some graphene-like structures, for instance graphene with implanted ions, or, also 2D-glasses, are dielectric media, and it means that it enables the experimental realization of the Cerenkov radiation. We calculate it from the viewpoint of the Schwinger theory of sources.

Miroslav Pardy

2012-05-17T23:59:59.000Z

Note: This page contains sample records for the topic "direct radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

DETECTORS FOR RADIATION DOSIMETRY  

E-Print Network (OSTI)

2) W. J. Price, "Nuclear Radiation Detection" (2nd ed. , Newand R. J. Berry, "Manual on Radiation Dosimetry" (New York:4) G. F. Knoll, "Radiation Detection and Measurement" (New

Perez-Mendez, V.

2010-01-01T23:59:59.000Z

442

Evaluation of the Town Energy Balance (TEB) Scheme with Direct Measurements from Dry Districts in Two Cities  

Science Conference Proceedings (OSTI)

The Town Energy Balance (TEB) model of Masson simulates turbulent fluxes for urban areas. It is forced with atmospheric data and radiation recorded above roof level and incorporates detailed representations of the urban surface (canyon geometry) ...

V. Masson; C. S. B. Grimmond; T. R. Oke

2002-10-01T23:59:59.000Z

443

International Journal of Mass Spectrometry 291 (2010) 108117 Contents lists available at ScienceDirect  

E-Print Network (OSTI)

Direct International Journal of Mass Spectrometry journal homepage: www.elsevier.com/locate/ijms Detection of radiation-exposure Keywords: Metabolomic Radiation exposure DMS Ion mobility Electrospray a b s t r a c t Technology to enable rapid screening for radiation exposure has been identified as an important need, and, as a part of a NIH

Brenner, David Jonathan

444

Mechanochromism, Shear Force Anisotropy, and Molecular Mechanics in Polydiacetylene Monolayers  

SciTech Connect

The authors use scanning probe microscopy to actuate and characterize the nanoscale mechanochromism of polydiacetylene monolayer on atomically-flat silicon oxide substrates. They find explicit evidence that the irreversible blue-to-red transformation is caused by shear forces exerted normal to the polydiacetylene polymer backbone. The anisotropic probe-induced transformation is characterized by a significant change in the tilt orientation of the side chains with respect to the surface normal. They also describe a new technique, based on shear force microscopy, that allows them to image friction anisotropy of polydiacetylene monolayer independent of scan direction. Finally, they discuss preliminary molecular mechanics modeling and electronic structure calculations that allow them to understand the correlation of mechanochromism with bond-angle changes in the conjugated polymer backbone.

BURNS,ALAN R.; CARPICK,R.W.; SASAKI,DARRYL Y.; SHELNUTT,JOHN A.; HADDAD,R.

2000-08-14T23:59:59.000Z

445

Stability of alert survivable forces during reductions  

Science Conference Proceedings (OSTI)

The stability of current and projected strategic forces are discussed within a framework that contains elements of current US and Russian analyses. For current force levels and high alert, stability levels are high, as are the levels of potential strikes, due to the large forces deployed. As force levels drop towards those of current value target sets, the analysis becomes linear, concern shifts from stability to reconstitution, and survivable forces drop out. Adverse marginal costs generally provide disincentives for the reduction of vulnerable weapons, but the exchange of vulnerable for survivable weapons could reduce cost while increasing stability even for aggressive participants. Exchanges between effective vulnerable and survivable missile forces are studied with an aggregated, probabilistic model, which optimizes each sides` first and determines each sides` second strikes and costs by minimizing first strike costs.

Canavan, G.H.

1998-01-01T23:59:59.000Z

446

Frictional forces in helical buckling of tubing  

SciTech Connect

Previous analyses of helical buckling of tubing have not considered frictional forces. This paper describes the modifications to helical buckling theory necessary to include friction. The first need is a relationship between the buckling force and the casing to tubing contact force. This contact force is determined through use of the principle of virtual work. The next need is the relationship between the friction forces, the buckling force, and the geometry of the tubing helix. Differential equations are derived and solved for two cases of interest: buckling during the landing of the tubing and thermal and differential pressure loading subsequent to landing. Several example problems are examined to evaluate the relative importance of friction.

Mitchell, R.F.

1984-09-01T23:59:59.000Z

447

Radiation in molecular dynamic simulations  

DOE Green Energy (OSTI)

Hot dense radiative (HDR) plasmas common to Inertial Confinement Fusion (ICF) and stellar interiors have high temperature (a few hundred eV to tens of keV), high density (tens to hundreds of g/cc) and high pressure (hundreds of Megabars to thousands of Gigabars). Typically, such plasmas undergo collisional, radiative, atomic and possibly thermonuclear processes. In order to describe HDR plasmas, computational physicists in ICF and astrophysics use atomic-scale microphysical models implemented in various simulation codes. Experimental validation of the models used to describe HDR plasmas are difficult to perform. Direct Numerical Simulation (DNS) of the many-body interactions of plasmas is a promising approach to model validation but, previous work either relies on the collisionless approximation or ignores radiation. We present a new numerical simulation technique to address a currently unsolved problem: the extension of molecular dynamics to collisional plasmas including emission and absorption of radiation. The new technique passes a key test: it relaxes to a blackbody spectrum for a plasma in local thermodynamic equilibrium. This new tool also provides a method for assessing the accuracy of energy and momentum exchange models in hot dense plasmas. As an example, we simulate the evolution of non-equilibrium electron, ion, and radiation temperatures for a hydrogen plasma using the new molecular dynamics simulation capability.

Glosli, J; Graziani, F; More, R; Murillo, M; Streitz, F; Surh, M

2008-10-13T23:59:59.000Z

448

Courses on Synchrotron Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Synchrotron Radiation The following is an incomplete list of courses on Synchrotron Radiation. For additional courses, check lightsources.org. XAFS School The APS XAFS School...

449

Radiation Physics Events  

Science Conference Proceedings (OSTI)

NIST Home > Radiation Physics Events. Radiation Physics Events. (showing 1 - 3 of 3). CIRMS 2012 Start Date: 10/22/2012 ...

2011-12-01T23:59:59.000Z

450

Bayesian Radiation Source Localization  

Science Conference Proceedings (OSTI)

Technical Paper / Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Measurements and General Instrumentation

Kenneth D. Jarman; Erin A. Miller; Richard S. Wittman; Christopher J. Gesh

451

Radiation Control (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Health is responsible for regulating radiation and radioactive materials in the Commonwealth of Virginia. Although the Department's Radiation Control Program primarily focuses on...

452

Solar radiation resource assessment  

DOE Green Energy (OSTI)

The bulletin discusses the following: introduction; Why is solar radiation resource assessment important Understanding the basics; the solar radiation resource assessment project; and future activities.

Not Available

1990-11-01T23:59:59.000Z

453

Nuclear Force from Lattice QCD  

E-Print Network (OSTI)

The first lattice QCD result on the nuclear force (the NN potential) is presented in the quenched level. The standard Wilson gauge action and the standard Wilson quark action are employed on the lattice of the size 16^3\\times 24 with the gauge coupling beta=5.7 and the hopping parameter kappa=0.1665. To obtain the NN potential, we adopt a method recently proposed by CP-PACS collaboration to study the pi pi scattering phase shift. It turns out that this method provides the NN potentials which are faithful to those obtained in the analysis of NN scattering data. By identifying the equal-time Bethe-Salpeter wave function with the Schroedinger wave function for the two nucleon system, the NN potential is reconstructed so that the wave function satisfies the time-independent Schroedinger equation. In this report, we restrict ourselves to the J^P=0^+ and I=1 channel, which enables us to pick up unambiguously the ``central'' NN potential V_{central}(r). The resulting potential is seen to posses a clear repulsive core of about 500 MeV at short distance (r < 0.5 fm). Although the attraction in the intermediate and long distance regions is still missing in the present lattice set-up, our method is appeared to be quite promising in reconstructing the NN potential with lattice QCD.

Noriyoshi ISHII; Sinya AOKI; Tetsuo HATSUDA

2006-09-30T23:59:59.000Z

454

Radiation Safety Manual  

E-Print Network (OSTI)

From University phones, dial direct............................................................................................ 555

unknown authors

2005-01-01T23:59:59.000Z

455

Tropical Cyclogenesis Sensitivity to Environmental Parameters in Radiative-Convective Equilibrium  

E-Print Network (OSTI)

In this study, the relationship between the likelihood of tropical cyclogenesis and external environmental forcings is explored in the simplest idealized modelling framework possible: radiative-convective equilibrium on a ...

Nolan, David S.

456

A Systematic Study of GCM Sensitivity to Latitudinal Changes in Solar Radiation  

Science Conference Proceedings (OSTI)

Paleoclimatic data and climate model simulations have demonstrated that orbitally forced changes in solar radiation can have a pronounced effect on global climate. Key questions remain, however, about the spatial patterns in the climatic ...

Benjamin Felzer; Robert J. Oglesby; Hong Shao; Thompson Webb III; Dena E. Hyman; Warren L. Prell; John E. Kutzbach

1995-04-01T23:59:59.000Z

457

Fluctuation of Mass Flux in a Cloud-Resolving Simulation with Interactive Radiation  

Science Conference Proceedings (OSTI)

It was shown by Craig and Cohen that fluctuations of cumulus clouds under homogeneous large-scale forcing satisfy the Gibbs canonical ensemble in a strict radiative–convective equilibrium (RCE). In the limit of random noninteracting convective ...

J. Davoudi; N. A. McFarlane; T. Birner

2010-02-01T23:59:59.000Z

458

Determination of Extratropical Tropopause Height in an Idealized Gray Radiation Model  

Science Conference Proceedings (OSTI)

This paper investigates the mechanisms that determine the extratropical tropopause height, extending previous results with a Newtonian cooling model. A primitive equation model forced by a meridional gradient of incoming solar radiation, with the ...

Pablo Zurita-Gotor; Geoffrey K. Vallis

2013-07-01T23:59:59.000Z

459

Elastic actuator for precise force control  

DOE Patents (OSTI)

The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section.

Pratt, Gill A. (Lexington, MA); Williamson, Matthew M. (Boston, MA)

1997-07-22T23:59:59.000Z

460

Internet Engineering Task Force KK Ramakrishnan ...  

Science Conference Proceedings (OSTI)

... Engineering Task Force KK Ramakrishnan INTERNET DRAFT AT&T Labs Research draft-kksjf-ecn-00.txt Sally Floyd LBNL November 1997 ...

2009-08-19T23:59:59.000Z

Note: This page contains sample records for the topic "direct radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Reduction of the Casimir force using aerogels  

E-Print Network (OSTI)

By using silicon oxide based aerogels we show numerically that the Casimir force can be reduced several orders of magnitude, making its effect negligible in nanodevices. This decrease in the Casimir force is also present even when the aerogels are deposited on metallic substrates. To calculate the Casimir force we model the dielectric function of silicon oxide aerogels using an effective medium dielectric function such as the Clausius-Mossotti approximation. The results show that both the porosity of the aerogel and its thickness can be use as control parameters to reduce the magnitude of the Casimir force.

R. Esquivel-Sirvent

2007-08-02T23:59:59.000Z

462

Reduction of the Casimir force using aerogels  

E-Print Network (OSTI)

By using silicon oxide based aerogels we show numerically that the Casimir force can be reduced several orders of magnitude, making its effect negligible in nanodevices. This decrease in the Casimir force is also present even when the aerogels are deposited on metallic substrates. To calculate the Casimir force we model the dielectric function of silicon oxide aerogels using an effective medium dielectric function such as the Clausius-Mossotti approximation. The results show that both the porosity of the aerogel and its thickness can be use as control parameters to reduce the magnitude of the Casimir force.

Esquivel-Sirvent, R

2007-01-01T23:59:59.000Z

463

A molecular mechanics force field for lignin  

DOE Green Energy (OSTI)

A CHARMM molecular mechanics force field for lignin is derived. Parameterization is based on reproducing quantum mechanical data of model compounds. Partial atomic charges are derived using the RESP electrostatic potential fitting method supplemented by the examination of methoxybenzene:water interactions. Dihedral parameters are optimized by fitting to critical rotational potentials and bonded parameters are obtained by optimizing vibrational frequencies and normal modes. Finally, the force field is validated by performing a molecular dynamics simulation of a crystal of a lignin fragment molecule and comparing simulation-derived structural features with experimental results. Together with the existing force field for polysaccharides, this lignin force field will enable full simulations of lignocellulose.

Petridis, Loukas [ORNL; Smith, Jeremy C [ORNL

2009-02-01T23:59:59.000Z

464

Weardale Task Force | Open Energy Information  

Open Energy Info (EERE)

search Name Weardale Task Force Place England, United Kingdom Sector Biomass, Geothermal energy, Hydro, Solar, Wind energy Product Durham based project consortium that is...

465

Direct and semidirect aerosol effects of southern African biomass burning aerosol  

E-Print Network (OSTI)

Direct and semidirect aerosol effects of southern African biomass burning aerosol Naoko Sakaeda,1 2011; published 21 June 2011. [1] Direct and semidirect radiative effects of biomass burning aerosols static stability. Over the entire region the overall TOA radiative effect from the biomass burning

Wood, Robert

466

Direct Photons at RHIC  

E-Print Network (OSTI)

The PHENIX experiment has measured direct photons in $\\sqrt{s_{NN}} = 200$ GeV Au+Au collisions and p+p collisions. The fraction of photons due to direct production in Au+Au collisions is shown as a function of $p_T$ and centrality. This measurement is compared with expectation from pQCD calculations. Other possible sources of direct photons are discussed.

S. Mioduszewski; for the PHENIX Collaboration

2004-09-29T23:59:59.000Z

467

Direct Photons at RHIC  

E-Print Network (OSTI)

A brief overview of direct-photon measurements in p+p and Au+Au collisions at sqrt(s_NN) = 200 GeV with the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) is given. Direct-photon yields for pT > 4 GeV/c and photon-hadron azimuthal correlations were determined with the aid of an electromagnetic calorimeter. By detecting e+e- pairs from the internal conversion of virtual photons direct-photon yields were measured between 1 direct-photon yield in this range.

Klaus Reygers; for the PHENIX Collaboration

2009-08-17T23:59:59.000Z

468

Direct energy conversion systems  

SciTech Connect

The potential importance of direct energy conversion to the long-term development of fusion power is discussed with stress on the possibility of alleviating waste heat problems. This is envisioned to be crucial for any central power station in the 21st century. Two approaches to direct conversion, i.e., direct collection and magnetic expansion, are reviewed. While other techniques may be possible, none have received sufficient study to allow evaluation. It is stressed that, due to the intimate connection between the type of fusion fuel, the confinement scheme, direct conversion, and the coupling technique, all four element must be optimized simultaneously for high overall efficiency.

Miley, G.H.

1978-01-01T23:59:59.000Z

469

Scattering-matrix approach to Casimir-Lifshitz force and heat transfer out of thermal equilibrium between arbitrary bodies  

E-Print Network (OSTI)

We study the radiative heat transfer and the Casimir-Lifshitz force occurring between two bodies in a system out of thermal equilibrium. We consider bodies of arbitrary shape and dielectric properties, held at two different temperatures, and immersed in a environmental radiation at a third different temperature. We derive explicit closed-form analytic expressions for the correlations of the electromagnetic field, and for the heat transfer and Casimir-Lifshitz force, in terms of the bodies scattering matrices. We then consider some particular cases which we investigate in detail: the atom-surface and the slab-slab configurations.

Riccardo Messina; Mauro Antezza

2011-08-23T23:59:59.000Z

470

Air Force Announces Funding for Alternative Energy Research ...  

Air Force Announces Funding for Alternative Energy Research & Development. December 16, 2013. The Air Force Research Laboratory (AFRL) has ...

471

Low Dose Radiation Program: Radiation Biology and the Radiation Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Biology and the Radiation Research Program Biology and the Radiation Research Program The Department of Energy (DOE) and its predecessor organizations, Energy Research and Development Agency (ERDA) and Atomic Energy Commission (AEC), always have been concerned about the health effects of ionizing radiation. Extensive research has been conducted under their sponsorship at all levels of biological organization from molecules to man. Over the past 60 years, studies using every type of radiation source have included exposure to both external radiation sources and to internally deposited radioactive materials. These exposures used different dose patterns and distributions delivered over a wide range of experimental times. This extensive research provided the basis for the new Low Dose Radiation Research Program, linking

472

Advances in Radiative Transfer Modeling in Support of Satellite Data Assimilation  

Science Conference Proceedings (OSTI)

Development of fast and accurate radiative transfer models for clear atmospheric conditions has enabled direct assimilation of clear-sky radiances from satellites in numerical weather prediction models. In this article, fast radiative transfer ...

Fuzhong Weng

2007-11-01T23:59:59.000Z

473

The Estimation of Hourly Global Solar Radiation Using a Cloud Cover Model Developed at Blytheville, Arkansas  

Science Conference Proceedings (OSTI)

The lack of a comprehensive solar radiation monitoring network throughout the United States has led to extensive modeling. Some of the models use a measured component, usually the global solar radiation, to predict the other components, direct ...

W. D. Turner; Abdulaziz Mujahid

1984-05-01T23:59:59.000Z

474

National Solar Radiation Database | Open Energy Information  

Open Energy Info (EERE)

National Solar Radiation Database National Solar Radiation Database Jump to: navigation, search The National Solar Radiation Database, or NSRDB, describes the amount of solar energy which is available at any location in the United States. It is generated by the National Renewable Energy Laboratory, with the assistance of many collaborators.[1] Technical Overview Per its user's manual, "The NSRDB is a serially complete collection of hourly values of the three most common measurements of solar radiation (global horizontal, direct normal, and diffuse horizontal) over a period of time adequate to establish means and extremes, and at a sufficient number of locations to represent regional solar radiation climates."[2] There have been two releases of the NSRDB, each covering different time

475

Comparison of Experimental and Theoretical Forces on a Model Dredge Cutterhead  

E-Print Network (OSTI)

Dredging is a critical part of maintaining the nation’s ports and harbors that play a major role in international trade. The design of dredge equipment requires knowledge of the forces expected on an average dredge. For a cutter suction dredge one of the largest forces is applied on the cutter head. To determine the design criteria for a given cutter suction dredge the forces on the cutter head must be known. Forces on a 33 cm (13 inch) model cutter head have been measured using a model cutter suction dredge 10.2 cm ( (4 inch)) suction and 3 inch (7.6 cm) discharge) in the Haynes Coastal Engineering Laboratory. The experimental results are compared to the results of a previously developed theory for estimating cutterhead forces. A MATLAB program is written and used to solve the theoretical equations. The sediment used in the study had a d50 of 0.27 mm and an angle of internal friction of 21.6°. The sediment is contained in the deep sediment pit 7.6 m (25 ft long), 3.7 m wide(12 ft ) and 1.5 m deep(5 ft) in the dredge/tow tank that is 45.7 m long(150 ft), 3.7 m wide(12 ft), and 3.0 m deep(10 ft). The objectives of the study are to calculate the forces using existing theory and MATLAB program and compare the theoretical results to those measured in the laboratory. The effects of the depth of cut, direction of swing, and cutter rpm on the forces acting on the cutter head are evaluated. The forces on the cutterhead are determined through the use of a set of six load cells rated at 13.3 kN (3000 lb). The load cell measurements allow direct calculation of the forces on the cutter head through the use of static equilibrium equations with the assumption of a constant swing speed. Once the forces are determined the results can be scaled to fit an actual dredge and then be applied in the determination of dredge design characteristics. The study shows the ability of the theory to determine the forces within an order or magnitude. The theoretical forces allow design of a cutter using a factor of safety. The variability of the forces in the laboratory study shows the assumption that the cutting forces are generally steady is not always valid.

Permenter, Rusty

2010-12-01T23:59:59.000Z

476

Diurnal Cycle of Convection at the ARM SGP Site: Role of Large-Scale Forcing, Surface Fluxes, and Convective Inhibition  

NLE Websites -- All DOE Office Websites (Extended Search)

Diurnal Cycle of Convection at the ARM SGP Site: Diurnal Cycle of Convection at the ARM SGP Site: Role of Large-Scale Forcing, Surface Fluxes, and Convective Inhibition G. J. Zhang Center for Atmospheric Sciences Scripps Institution of Oceanography La Jolla, California Introduction Atmospheric convection undergoes strong diurnal variation over both land and oceans (Gray and Jacobson 1977; Dai 2001; Nesbitt and Zipser 2003). Because of the nature of the diurnal variation of solar radiation, the phasing of convection with solar radiation has a significant impact on the atmospheric radiation budget and cloud radiative forcing. A number of studies have investigated the possible mechanisms of the diurnal variation of convection (Gray and Jacobson 1977; Randall et al. 1991; Dai et al. 1999; Dai 2001). Yet, in regional and global climate models, the diurnal variation of

477

How dangerous is low level radiation?  

Science Conference Proceedings (OSTI)

Problems in the threshold basis for the linear-no threshold theory of radiation carcinogenesis are reviewed, and it is shown that they very strongly suggest that the theory greatly overestimates the risk of low level radiation. A direct test of the theory, based on the radon-lung cancer relationship is described; it strongly reinforces that conclusion. However, it is shown that even if the linear-no threshold theory is valid; the public`s fear of low level radiation, at least in some contexts, is grossly exaggerated. 30 refs., 2 figs., 3 tabs.

Cohen, B.L. [Univ. of Pittsburgh, PA (United States)

1995-12-01T23:59:59.000Z

478

FEDERAL SMART GRID TASK FORCE - February 26, 2009 Task Force Meeting Agenda  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FEDERAL SMART GRID TASK FORCE - February 26, 2009 Task Force FEDERAL SMART GRID TASK FORCE - February 26, 2009 Task Force Meeting Agenda FEDERAL SMART GRID TASK FORCE - February 26, 2009 Task Force Meeting Agenda February 26, 2009 Task Force Meeting Agenda - CONFERENCE CALL Agenda FEDERAL SMART GRID TASK FORCE CONFERENCE CALL February 26, 2009 10:00-11:00 AM 10:00 Opening and Introduction - Eric Lightner, DOE * Call the meeting to order, around-the-table introductions, review of the agenda, additions to agenda 10:05 Update from DOE - Eric Lightner * Stimulus update * E-Forum * Fact sheet - discussion 10:30 Update from FERC - Ray Palmer, David Andrejcak * NARUC-FERC Smart Grid Collaborative meeting update 10:40 Update from NIST - William Anderson, Jerry FitzPatrick * Interoperability Standards Framework report to Congress

479

Einstein's Dream of Unified Forces - forces | U.S. DOE Office of Science  

Office of Science (SC) Website

Do all the forces become one? Do all the forces become one? The International Linear Collider The U.S. is pushing superconducting technology forward for use in future accelerators like the proposed International Linear Collider. (Credit: Fermilab) At the most fundamental level, particles and forces may converge, either through hidden principles like grand unification, or through radical physics like superstring. We already know that remarkably similar mathematical laws and principles describe all the known forces except gravity. Perhaps all forces are different manifestations of a single grand unified force, a force that would relate quarks to leptons and predict new ways of converting one kind of particle into another. Such a force might eventually make protons decay, rendering ordinary matter unstable.

480

The Response of a Stochastically Forced ENSO Model to Observed Off-Equatorial Wind Stress Forcing  

Science Conference Proceedings (OSTI)

This study investigates the response of a stochastically forced coupled atmosphere–ocean model of the equatorial Pacific to off-equatorial wind stress anomaly forcing. The intermediate-complexity coupled ENSO model comprises a linear, first ...

Shayne McGregor; Neil J. Holbrook; Scott B. Power

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "direct radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

NIST MIRF - Accelerator Radiation Physics  

Science Conference Proceedings (OSTI)

Accelerator Radiation Physics. Medium-energy accelerators are under investigation for production of channeling radiation ...

482

NIST Synchrotron radiation in SSD  

Science Conference Proceedings (OSTI)

Synchrotron radiation in the Sensor Science Division. ... Synchrotron Radiation-Based Calibrati